
1

Visualization of Point Clouds in Mobile

Augmented Reality using Continuous

Level of Detail Method

Liyao Zhang

Mentor #1: Peter van Oosterom

Mentor #2: Haicheng Liu

Faculty of Architecture and The Built Environment, TU Delft, The
Netherlands

04-11-2020

2

Overview

1. Introduction

2. Methodology

3. Implementation

4. Results

5. Analysis

6. Comparison

7. Conclusion

3

(Pokémon GO)

Introduction – Augmented Reality

Augmented Reality (AR)

• An Augmented Reality system is

a system that has the following

properties (Azuma et al., 2001):

o combines real and virtual

objects in a real

environment;

o runs interactively, and in

real-time;

o aligns real and virtual

objects with each other.

• AR applications can be used on

mobile devices without specific

equipment like helmets and

handles.

4

Introduction - Motivation

Reasons of showing point clouds in mobile Augmented Reality using

cLoD method:

• Point clouds have become important data resources of multiple fields,

however, the use of point clouds in mobile AR is waited to be explored.

• Save a lot of time and resources if we can directly get use of point clouds

in mobile AR: some pre-processing steps can be avoided.

• Large point clouds can’t be visualized without LoD support, and will be

visualized ugly with dLoD approaches.

Challenges of showing point clouds in mobile AR using cLoD method:

• Dealing with huge-amount data of point cloud datasets with limited

memory, CPU and GPU resources of mobile devices

• Reaching relatively high visual quality and performance requirements

• CLoD based visualization has not been used in mobile AR before

5

Overview

1. Introduction

2. Methodology

3. Implementation

4. Results

5. Analysis

6. Comparison

7. Conclusion

6

Methodology - Overview

7

Methodology – cLoD Calculation

blue bars: refined discrete level-of-detail, red curve: continuous function

(van Oosterom, 2019)

Refined discrete levels (max level L = 13), r: refinement, r = 2^(1/2^r)

This cLoD model is developed based on the idea of refining ideal discrete

LoDs and making them be a continuous function.

8

Methodology – cLoD Calculation

• L – the max level of detail

• l – levels between 0 and L+1

• n – number of dimensions

For ideal continuous function over levels (nD):

𝑓 𝑙, 𝑛 =
2 𝑛−1 𝑙 𝑛 − 1 𝑙𝑛2

2(𝑛−1)(𝐿+1) − 1

This function has Cumulative Distribution Function (CDF):

𝐹 𝑙, 𝑛 =
2 𝑛−1 𝑙 − 1

2(𝑛−1)(𝐿+1) − 1

When the number of sublevels approaches infinity, the CDF can be seen as

continuous function. So, the inverse function of F(l,n) together with random

generator U (uniform between 0 and 1) is used to generate continuous level l

for points in nD space:

𝑙 = 𝐹−1(𝑈) =
ln(2 𝑛−1 𝐿+1 −1 𝑈+1)

𝑛−1 𝑙𝑛2
(van Oosterom, 2019)

9

Methodology – cLoD Calculation

dLoD (left) and cLoD(right) (Guan, 2019)

Properties of cLoD model:

• This cLoD model has ideal distribution over LoDs

• Can realize smooth transition in density, avoid density shocks as present in

discrete LoD approaches

• Keeps the desired relative point density as much as possible

10

Issues of showing

points as the same

size:

• If the size is too

small, then there

will be obvious

holes between

points;

• If the size is too

big, the

neighboring points

will overlap a lot

and cause a loss of

information.

Methodology – Adaptive Point Size Strategy Rendering

Points with different sizes (left) and with same size (right)

11

Therefore, in order to get better visual quality, we’ll use the Adaptive point

size strategy, which sets the point size of each point as different values. Based

on the perspective projection matrix, we derive a formula to calculate ideal

point sizes at different depth in the viewing z-axis direction.

𝑠𝑖𝑧𝑒 =
𝑠 ∗ 𝑛 ∗ 𝑟 ∗ 𝑠𝑐𝑟𝑒𝑒𝑛𝐻𝑒𝑖𝑔ℎ𝑡

𝑧𝑒𝑦𝑒 ∗ tan(0.5 ∗ 𝑓𝑜𝑣)

𝑟 = right coordinate of near

clipping plane

s = coefficient to scale the points

𝑛 = near clipping plane distance

𝑓𝑜𝑣 = field of view

screenHeight = height of screen

𝑧𝑒𝑦𝑒 = point depth in the viewing z-axis

direction

Methodology – Adaptive Point Size Strategy Rendering

12

Methodology – Selective Query

• The computation in point-wise is too expensive for mobile devices and will cause

an extremely low frame rate and even software crashes. Thus a uniform threshold

over cLoD is used to filter the points.

• B+ tree is applied to speed up the query on the cLoD value.

• The main idea of filtering the points is to reach an ideal point cloud density for

display at certain distance.

• The Cumulative Density (CD) at a certain level can be obtained from the

Cumulative Distribution Function.

𝐶𝐷 𝑙, 𝑛 =
𝐹 𝑙, 𝑛 𝑁

𝐸𝑛 =
2 𝑛−1 𝑙 − 1 𝑁

(2 𝑛−1 𝐿+1 − 1)𝐸𝑛

𝑙 = continuous level

𝑁 = the total number of points in the dataset

𝑛 = number of dimension

𝐸𝑛 = size of spatial domain in nD case

13

Methodology – Selective Query

• The value of ideal density is chosen based on the ideal point sizes at each

depth in the adaptive point size strategy rendering step.

• A logarithm of distance from the center of the point cloud model to the

camera is set as the denominator. -> Higher density when the model is

nearby, and lower density when the model is far away.

• By visualizing all the points with level less than l, we can reach the wanted

density.

𝐶𝐷 𝑙, 𝑛 =
𝐷

𝑙𝑛 ((𝑥 − 𝑢)2+(𝑦 − 𝑣)2+(𝑧 − 𝑤)2) + 1

𝑙 = continuous level

𝑛 = number of dimension

𝐷 = ideal density

𝑥, 𝑦, 𝑧 = coordinates of the point cloud

center in world space

𝑢, 𝑣, 𝑤 = camera coordinates in world space

14

Overview

1. Introduction

2. Methodology

3. Implementation

4. Results

5. Analysis

6. Comparison

7. Conclusion

15

Implementation – Tools

Software

• ARCore (version 1.17.0)

• Unity game engine (version 2018.4.21)

Language

• C#

• LAZ file system in C# - LASzip

• High-Level Shading Language (HLSL)

Hardware

• The tests and benchmarks are carried on a Redmi

K20 Pro model.

• Qualcomm Snapdragon 855 processor at 2.84

GHz, 8 GB of Random Access Memory (RAM),

2340 x 1080 pixels resolution, and a triple-camera

setup.

16

Implementation – Datasets

• Furniture Point Clouds: point clouds of furniture, such as chair, table, and

sofa.

• Architecture Point Clouds: Point clouds of an underground garage,

obtained by the NAVVIS M6 indoor mobile mapping system. Available at:

https://www.navvis.com/m6-pointclouds

• Terrain Point Clouds:

o NEON AOP Discrete Return Light Detection and Ranging (LiDAR) Point

Cloud, which is an American Society for Photogrammetry and Remote

Sensing (ASPRS) LASer format data product in UTM map projection.

Available at: https://data.neonscience.org/data-products/DP1.30003.001;

o AHN2 (Actueel Hoogtebestand Nederland) dataset, which is the digital

elevation map for the whole Netherlands. Available for download via the

PDOK (Publieke Dienstverlening Op de Kaart).

https://www.navvis.com/m6-pointclouds
https://data.neonscience.org/data-products/DP1.30003.001

17

Implementation - Overview

18

Implementation – Point Cloud Input and Storage

• The point clouds are stored as LAZ files in order to reduce the file size and

speed up loading. A C# library called LASzip is used to read the LAZ files.

• The minimum and maximum x, y, z coordinates of the point cloud are first

read from the header of the LAZ file and waiting to be used in the later

transformation.

• The coordinates, colour

and calculated cLoD of

each point are stored as

separated arrays, and are

sorted based on the cLoD

value in ascending order.

The cLoD array is then

organized using a B+ tree

to speed up the selective

query on the continuous

levels.

19

Implementation – Hit Detection

• In order to put 3D virtual objects on 2D

plane, ARCore performs a raycast

against detected planes.

• In this case, the direction of the raycast

is determined by the hit position on the

screen and the camera position.

• The point cloud models will be put into

the scene based on this hit pose.

20

Implementation – Point Cloud

Rendering

There are few things to do when rendering

the point cloud models in the scene:

• Implement the selective query.

• Store the information of the selected

points as Mesh.

o The Mesh class can handle large

number of points.

o The Mesh class has some useful

properties and functions, which can

assist mesh generation.

21

Implementation – Point Cloud

Rendering

• Create a new GameObject and bind the

Mesh to the GameObject.

• Create anchors based on the hit pose.

• Deliver the vertex positions, colours,

indices to the GPU, and calculate the

point sizes in the GPU.

• The point cloud model in the scene will

be updated every X frames accords to

new cLoD based selection result. X is a

parameter called UpdateFrequency.

22

Implementation – Object

Manipulation

• In order to scale and rotate the point cloud

models, ARCore’s object manipulation

system is loaded.

• There are some changes in the pre-

compiled scripts:

o The script of Selection Manipulator is

revised to avoid putting a new object

into the scene when the user hits on an

existing object.

o The script of Scaling Manipulator is

revised so that the number of points to

be rendered will change while scaling.

23

Implementation – User Interfaces

Change update
frequency

Change wanted
density (for
selective query)

Change point size

24

Overview

1. Introduction

2. Methodology

3. Implementation

4. Results

5. Analysis

6. Comparison

7. Conclusion

25

Results – Source Code

• Source code and APK are available at:

https://github.com/LiyaoZhang0702/AR_PointCloud (Only supports

Android devices at current stage)

https://github.com/LiyaoZhang0702/AR_PointCloud

26

Results - Visualization

• Visualizing small point cloud models like furniture

27

Results - Visualization

• Visualizing large point cloud models (scanned

point cloud of an Office with 1.5M points)

28

Results - Visualization

• Visualizing large point cloud models (Terrain

point cloud with 4.7M points)

29

Results - UI

• Use different parameters to visualize point

clouds

o Different update frequency

o Different wanted density

o Different point size

30

Overview

1. Introduction

2. Methodology

3. Implementation

4. Results

5. Analysis

6. Comparison

7. Conclusion

31

Analysis

• In order to evaluate the capability of the rendering system, some additional

experiments are carried using different types of test datasets.

• The test datasets can be mainly divided into three categories: furniture

point clouds, architecture point clouds, and terrain point clouds.

• To assess the results under the same criterion, all of the results are of the

following condition:

o The distance from the centre of the point cloud model to the camera is

around 1 meter

o The spatial domain of the point cloud model is around 1 square meter

o The rendering results are considered to have nice visual quality from

the tester’s perspective.

32

Analysis – Parameters
Wanted Density

• There is no clear

relationship between the

properties of the point

clouds and the value of

wanted density.

• The selection of the wanted density is affected by the original density, the

distribution of the point cloud, and the spatial domain of the rendering result.

So, it’s quite challenging to find a proper value of wanted density for all

datasets.

• Although there is a recommended value of the wanted density that is from

100,000 points/ 𝑚2 to 200,000 points/ 𝑚2. Manual adjustment is still

needed, especially when visualizing sparse point clouds or unevenly

distributed point clouds.

33

Analysis – Parameters
Update Frequency

• When visualizing all the point

clouds that are under the

capability of the rendering

system, the update can be

implemented more frequently

than once per 5 frames.

• The pauses between each update

are not noticeable.

Point Size

• The ideal point size (x5) performs well when visualizing the dense point

clouds.

• When visualizing the sparse furniture point clouds, the adjustment of point

size is required.

34

Analysis – Parameters

35

Analysis – Performance

Boundary

• The rendering system can process at most 10 million points in memory /

CPU, and contain at most 5 million points in the scene by GPU.

Frame Rate

• After experiments, we find that no matter how many points are processed

and visualized by the rendering system, the frame rate stays at 30 fps

stably.

36

Analysis – Performance

Proportion of Reduced

Points

• When visualizing large

point clouds in small area

(1 𝑚2), the proportion of

reduced points is high,

which is from 70% to 90%.

• The proportion of reduced

points is determined by the

spatial domain, distribution,

and the original density of

the point cloud.

• For most of the indoor applications that usually have small field of vision,

the number of points can be reduced significantly when visualizing large

point clouds.

37

Analysis – Performance

Utilized Memory

• The utilized memory

increases when the number

of points to be processed

increases.

• When visualizing large

point clouds, the

consumption of memory is

quite high.

• The consumption of

memory is too high for a

simple point cloud renderer.

38

Overview

1. Introduction

2. Methodology

3. Implementation

4. Results

5. Analysis

6. Comparison

7. Conclusion

39

Comparison - Preprocessing

Pre-processing Workflow

40

Comparison - Preprocessing

Pre-processing Time

• The pre-processing time of the

mesh-based visualization is the

sum of the time to import

point cloud, time to calculate

the normals, and the time to

implement the Screened

Poisson algorithm.

• Although the pre-processing

steps of the mesh-based

visualization are implemented

on the computer, for most

cases the pre-processing time

of our cLoD-based

visualization is still less than

the pre-processing time of

mesh-based visualization.

41

Comparison - Preprocessing

Utilized Memory of Pre-

processing Steps

• The utilized memory of our

cLoD-based visualization pre-

processing is from 0 to 1200

MB, which is much less than

the utilized memory of mesh-

based visualization pre-

processing (from 1600 to 4600

MB).

42

Comparison - Visualization

Visual Quality

• The overall visual

quality of our

cLoD-based point

cloud visualization

and the mesh-

based visualization

is quite close.

Point clouds (top) and mesh models (bottom)

43

Comparison - Visualization

Visual Quality

• The major drawback of our

cLoD-based point cloud

visualization is that the point

cloud models don’t have

complete geometry and

topology.

• Some complex behaviours

like shading and adding

shadows are not feasible for

point cloud models, which

can performs well on the

mesh models.

(Different rendering results of the same mesh

model due to different environment)

44

Comparison - Visualization

Runtime Utilized Memory

• Mesh models contains more

information, such as uv texture

coordinates, texture, and

normal.

• The run-time utilized memory

of mesh-based visualization is

always more than that of our

cLoD-based point cloud

visualization.

45

Overview

1. Introduction

2. Methodology

3. Implementation

4. Results

5. Analysis

6. Comparison

7. Conclusion

46

Conclusion - Contributions

• With this method, the rendering system can handle point cloud models

with at most 10M points, contain 5M points in the scene and visualize

them at 30 fps. Visualizing such large point clouds is not possible without

the cLoD method, and we can even visualize multiple large point cloud

models only if there are less than 5M points in the scene after selection.

• We add the concept of ideal density to the cLoD method and choose to use

a uniform threshold of cLoD to filter the points, which makes the

improved cLoD method fit the mobile AR environment.

• Besides mobile AR applications, the improved cLoD method can also be

used in other applications that need to render point clouds on mobile

phones.

47

Conclusion - Contributions

• In the rendering system, basic operations of an mobile AR application,

interactions, and friendly user interfaces are realized.

• The rendering system has pretty nice usability. No matter the point clouds

are unevenly distributed or are very sparse, the users can always find

proper value of parameters to improve the rendering results in the end.

• Compared to the mesh-based visualization, our cLoD-based point cloud

visualization doesn’t need much pre-processing steps, once the file is

loaded into the system, the point cloud models can be visualized without

delay.

• The final visual quality is close to the mesh-based visualization as well.

48

Conclusion - Limitations

• The quality of the automatic estimation needs to be improved. Manual

operations are sometimes required to find the proper value of parameters.

• The usability of the rendering system in the outdoor environment is under

question.

• Due to the lack of valid geometry and topology, shading models can not be

implemented and shadows can not be generated for the point cloud

models.

• The memory bandwidth is overused. The utilized memory is too much for

a simple mobile point cloud renderer.

• The phone will be overheating when running the rendering system for

more than 20 minutes.

49

Conclusion - Applications

• Strength of this method:

o Can directly get use of the

easily obtained point clouds

o The materials and shaders

used can be easily changed

• Potential Applications:

o Outdoor: architecture,

industrial design

o Indoor: home renovation,

estate sales, architectural

design

o …

50

Conclusion – Future Work

• Improve the quality of automatic estimation.

• Upgrade the formula of selective query, using distance from the camera to

individual points and nD data structure to improve the results.

• Optimize the app, reduce the utilized memory and solve the overheating problem.

• Test our method with more datasets and different devices to see its applicability.

• Explore the potential of our method to visualize larger point clouds like city or

nation wide point clouds.

• Apply more interactions to the rendering system.

51

References

• Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S., and MacIntyre,

B. (2001). Recent advances in augmented reality. IEEE computer graphics

and applications, 21(6):34–47.

• Schutz, M., Krosl, K., & Wimmer, M. (2019). Real-Time Continuous

Level of Detail Rendering of Point Clouds. 2019 IEEE Conference on

Virtual Reality and 3D User Interfaces (VR). doi:

10.1109/vr.2019.8798284van Oosterom, P., 2019. From discrete to

continuous levels of detail for managing nD-PointClouds. Keynote

presentation at the ISPRS Geospatial Week 13 June 2019, Enschede, The

Netherlands.

• Virtanen, J.-P., Daniel, S., Turppa, T., Zhu, L., Julin, A., Hyyppa, H.,

Hyyppa, J., 2020. Interactive dense point clouds in a game engine. ISPRS

Journal of Photogrammetry and Remote Sensing, 163, 375–389.

• Xuefeng, G., 2019. 三维点云可视化系统技术报告.

52

Thank you, any questions?

