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ABSTRACT: Vertical temperature profiles influence the wind power generation of large offshore wind farms through
stability-dependent effects such as blockage and gravity waves. However, numerical tools that are used to model these ef-
fects are often computationally too expensive to cover the large variety of atmospheric states occurring over time. Gener-
ally, an informed decision about which representative nonidealized situations to simulate is missing because of the lack of
easily available information on representative vertical profiles, taking into account their spatiotemporal variability. There-
fore, we present a novel framework that allows a smart selection of vertical temperature profiles. The framework consists
of an improved analytical temperature model for the atmospheric boundary layer and lower troposphere, a subsequent
clustering of these profiles to identify representatives, and last, a determination of areas with similar spatiotemporal charac-
teristics of vertical profiles. When applying this framework on European ERA5 data, physically realistic representatives
were identified for Europe, excluding the Mediterranean. Two or three profiles were found to be dominant for the open
ocean, whereas more profiles prevail for land. Over the open ocean, weak temperature gradients in the boundary layer and
a clear capping inversions are widespread, and stable profiles are absent except in the region of the East Icelandic Current.
Interestingly, according to the ERA5 data, at its resolution, coastal areas and seas surrounded by land behave more similar
to the land areas than to the open ocean, implying that a larger set of model integrations are needed for these areas to
obtain representative results for offshore wind power assessments in comparison with the open ocean.

SIGNIFICANCE STATEMENT: Numerical tools used to simulate the effect of large, offshore wind farms on neigh-
boring farms and the atmosphere are very expensive. Therefore, they can only be computed for a limited number of
cases. As temperature is one of the most important parameters in these kinds of simulations, this work provides a new
vertical temperature model and an analysis framework that allows for a smart selection of these cases such that they
ideally represent the full variation of the atmosphere’s temperature profiles.

KEYWORDS: Europe; Boundary layer; Temperature; Renewable energy; Clustering

1. Introduction

Wind energy is projected to play an important role in the
transition toward a sustainable energy mix [International
Energy Agency IEA (2021)]. Therefore, accurate wind resource
assessments and power forecasting are crucial to develop new
wind farms and to balance the electricity grid. The emergence
of large, offshore wind farms introduces new challenges. More
specifically, to accurately predict the energy yields and the influ-
ence that different wind farms have on the atmosphere and
neighboring farms, effects such as wind farm wakes (Emeis et al.
2016; Platis et al. 2018), blockage (Bleeg et al. 2018; Branlard
et al. 2020), gravity waves (Allaerts and Meyers 2017; Allaerts
et al. 2018; Ollier et al. 2018), and entrainment from above
(Andersen et al. 2017; Kelly et al. 2019) should be taken into
account.

Currently, different models are used to study this inter-
action of wind turbines and farms on the one hand, and the
atmosphere on the other hand. Large-eddy simulations (LES)
are frequently used to simulate the effect that a wind turbine

or a single wind farm has on the atmosphere and energy pro-
duction in detail (Porté-Agel et al. 2020; Allaerts and Meyers
2015; Lanzilao and Meyers 2022). Mesoscale models are used
for studies over larger areas with multiple wind farms and
possibly over longer periods (Fitch et al. 2013; Chatterjee et al.
2016; Porchetta et al. 2021; Fischereit et al. 2022; Docquier
et al. 2016). Both LES and mesoscale models are computa-
tionally expensive, making it difficult to simulate all occurring
atmospheric conditions. Therefore, they are typically only ap-
plied to a limited number of atmospheric states or time peri-
ods. Mesoscale simulations usually are integrated over long
time periods without making an a priori subselection of states,
although there are studies that are based on weather type
approaches using the surface level pressure to find suitable
states (Reyers et al. 2015; Lamb 1972; Souverijns et al.
2016; Demuzere et al. 2009; Brisson et al. 2011). LES typi-
cally needs vertical profiles of physical quantities that are
selected based on theoretical assumptions and model limi-
tations (Porté-Agel et al. 2020; Allaerts and Meyers 2015;
Lanzilao and Meyers 2022). For wind speed profiles, ad-
vancements in smart selection have already been made by
Schelbergen et al. (2020), however, this kind of selection is
still missing for temperature profiles.Corresponding author: S. Jamaer, sebastiaan.jamaer@kuleuven.be
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Vertical temperature profiles are a key parameter for these
simulations since large-scale effects influencing energy produc-
tion depend on the stability of the surface layer (SL) and the at-
mospheric boundary layer (ABL) (Platis et al. 2022; Argyle and
Watson 2014; Platis et al. 2018). For example, a stably stratified
ABL is less turbulent, and therefore the wind farm wakes dissi-
pate slower, while the increased turbulence levels in an unstable
ABL dissipates wakes more efficiently, reducing their length
(Platis et al. 2021, 2022). Furthermore, wind farm blockage and
gravity waves (GWs) are strongly linked to the capping inver-
sion (CI), as it traps the air in the ABL and prevents entrain-
ment from the troposphere. The strength of GWs also depends
on the stratification of the lower troposphere (Schneemann et al.
2021; Devesse et al. 2022).

A smart selection of the vertical temperature profiles for
wind farm simulations can therefore be beneficial for future
studies regarding farm–farm and farm–atmosphere interactions.
However, because of a lack of easily accessible data and data
mining techniques, the choice of these background profiles is
rarely informed by a temporal analysis of the ABL temperature
profiles in the area of interest. This implies that the background
temperature profiles for expensive LES simulations are possibly
not ideal for offshore wind energy applications and extrapolat-
ing location-specific results to other locations is difficult. Hence,
a comprehensive overview of these temperature profiles, and
more in general the stability of the ABL and lower troposphere,
support an improved selection procedure of cases, more repre-
sentative for the conditions occurring at the specific site.

Previous temperature profile studies are generally focused
on one aspect of the profile or on one type of profile. Studies
focus either on the surface layer stability (Baas et al. 2016;
Argyle and Watson 2014), CI characteristics (Rampanelli and
Zardi 2004), the boundary layer height (BLH; Dang et al. 2019;
Seibert et al. 2000), the stratification of the free atmosphere
(Schneider 2007), or studies focus on just stable (Mahrt and
Acevedo 2023) or neutral/unstable profiles (Liu and Stevens
2022). Studies rarely treat the entire profile in an unknown sta-
bility state (with a notable exception in Lang et al. 2018). One
reason for this is the absence of a generally applicable tempera-
ture model for the lower atmosphere. Therefore, an existing an-
alytical temperature model (Rampanelli and Zardi 2004) was
further developed to allow for a spatiotemporal data analysis of
temperature profiles up to the lower troposphere regardless of
the atmospheric stability of the ABL.

Currently, analytical temperature models can broadly be
divided into two kinds: piecewise linear (Deardorff 1979;
Fedorovich and Mironov 1995; Batchvarova and Gryning 1994)
and continuously differentiable fits (Rampanelli and Zardi 2004;
Frei 2014). For the piecewise linear fits, the temperature profile
is assumed to consist of approximately piecewise linear parts,
possibly with a discontinuous jump (zeroth-order jump) at the
CI. These piecewise linear models are often combined with a
constant temperature for the mixed layer to model the neutral
and unstable ABLs. Generally, unconstrained piecewise linear
fits are suitable for all kinds of stability criteria. However, they
often can be difficult to interpret and, because they are not con-
tinuously differentiable, they more easily end up in a local mini-
mum during optimization.

The continuously differentiable Rampanelli and Zardi model
(RZ) (Rampanelli and Zardi 2004) is, to the authors’ knowl-
edge, the only developed continuously differentiable model for
potential temperature profiles. RZ uses a linear combination of
basis functions that each model a part of the temperature pro-
file. By defining each of these functions over the entire height of
the profile, they ensure a continuously differentiable function,
allowing for higher-order optimization algorithms. Furthermore,
their basis functions are based on physical insight and, therefore,
they are suited for physical interpretation of the fits. However,
the RZ model is only usable for neutral boundary layers. There-
fore, it is not suitable to use in a general setting where the stabil-
ity of the surface layer is unknown. In this work, we extend the
original RZmodel with an extra basis function to create the sur-
face extended Rampanelli and Zardi model (SERZ), which is
applicable to both stable and unstable boundary layers.

With this improved model, a spatiotemporal analysis of the
vertical temperature profiles of Europe (excluding the Medi-
terranean area) is carried out to create a reference atlas with
representative temperature profiles, with a focus on offshore
applications. The reanalysis data ERA5 (Hersbach et al. 2020)
are used as input data for this work, as it has a relatively high
resolution, both in time and space, for a global multiyear data-
set. Our approach follows three steps: First, the ERA5 data are
fitted with the analytical SERZ model up to a height of 5000 m.
Second, the resultant fitting parameters are clustered to create
several representative temperature profiles that ideally span the
atmospheric variation. Third, with these representatives, each
point in space, which represents the weighted volume averages
of the data in the spatial discretization, is assigned a fingerprint
and these fingerprints are analyzed with a second clustering al-
gorithm. These points in space will further be referred to as pix-
els and their fingerprints as pixel fingerprints.

The resulting product of this multiclustering approach is a tem-
perature profile atlas for Europe with clusters of pixels that be-
have similarly in their atmospheric stratification up to 5000 m.
Each of those clusters has a different prevalence of each represen-
tative profile, showing the wide variation of temperature profiles
over Europe. This atlas is useful for subselecting atmospheric con-
ditions for computationally expensive models, such as LES or me-
soscale atmospheric model studies for wind energy and can be
used to compare simulations from different sites.

This paper is structured as follows. In the data and methods
section (section 2), the domain and variables of the data, the
new SERZ model, and the general fingerprinting framework
are presented. Afterward, in the results and discussion section
(section 3), the SERZ model and fingerprinting algorithm are
applied to Europe to obtain representative profiles and clusters
of similar points. A section with brief conclusions and future
work is added to complete this paper (section 4).

2. Data and methods

a. Data

The virtual potential temperature profiles were extracted
from ERA5 data on their native hybrid vertical discretization
(Hersbach et al. 2020), which are assumed to be good
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approximations for the real temperature profiles of the atmo-
sphere. Because of computational constraints, a subset of only
one year of a window centered over the North Sea was used. The
window spans 258W–258E and 408–708N over the year 2020 at a
resolution of 0.288 (see appendix B for a map). This domain con-
tains both parts of the Atlantic Ocean as well as the majority of
Europe, which allows for a comparison between the types of sur-
face. However, the focus will be on offshore and open ocean
areas, since this study is mainly tailored toward offshore wind
energy.

Since we are only interested in the lower atmosphere, the
height of the profiles was limited to 5000 m, which allows for
a characterization of the ABL stratification as well as the
stratification of the lower troposphere. The ERA5 data up to
5000 m contain, on average, 40 height levels, where the levels
are more densely spaced close to the surface. These height lev-
els (shown in Fig. B2) are vertical hybrid coordinates from
ERA5 (Hersbach et al. 2020) that follow the orography close to
the surface and converge to pressure levels higher in the atmo-
sphere. The temporal resolution was the native hourly resolu-
tion of ERA5, resulting in approximately 1663 106 profiles.

b. SERZ

The stability of the ABL and the lower troposphere is mainly
determined by the vertical potential temperature gradient. Tra-
ditionally, the stratification of the ABL is split into three differ-
ent kinds: stable, neutral, and unstable (Stull 1988). The stable
ABL typically has a positive potential temperature gradient,
which is often assumed to be constant. The conventionally neu-
tral and unstable ABL are relatively similar and are typically
modeled with a constant temperature in the ABL, topped by a
capping inversion. Additionally, the unstable ABL has a nega-
tive potential temperature gradient close to the surface (typi-
cally the lowest 5%–10% of the ABL).

As most clustering algorithms that generate representative
cases have difficulties with high-dimensional data, the raw
ERA5 data with their 40 height levels need to be preprocessed

to reduce the number of variables. Therefore, an extension to
the Rampanelli and Zardi model was implemented that results
in a set of seven parameters for each profile. The RZ model was
chosen as it is still used in many wind energy applications (Lan-
zilao and Meyers 2022; Allaerts and Meyers 2017), and by using
a physics-based analytical model, derivation of physical parame-
ters such as the ABL height and CI strength is more natural
than when using more abstract models such as autoencoders or
piecewise linear fits.

The original vertical temperature model of Rampanelli and
Zardi (2004) was developed for conventionally neutral and
weakly convective boundary layers. The model consists of the
linear combination of two basis functions, f (Fig. 1a) and g
(Fig. 1b), that model the CI and the stratification of the tropo-
sphere, respectively. The main parameters of this model are the
linear fit parameters, denoted with a, b, and um, which mainly
determine the CI strength, free lapse rate, and the temperature
in the mixed layer, respectively, and two nonlinear parameters,
the height and width of the CI (zabl and Dh1). The two nonlinear
parameters zabl and Dh1 are used to create a nondimensional
height h on which the basis functions f and g are applied. The
original RZmodel’s formulation is summarized by the following
equations (Rampanelli and Zardi 2004):

ûRZ(z) :5 um 1 af (h) 1 bg(h), (1)

where f, g, and h are defined as

f (h) 5 tanh(h) 1 1
2

,

g(h) 5 ln[2 cosh(h)] 1 h

2
; and

h 5
z 2 zabl
C1Dh1

,

with C1 5 3/2 being a constant; z is the geopotential height
above the surface.

FIG. 1. Construction of (d) an example temperature profile û using the vertical temperature model consisting of the linear combination
of the three basis functions (a) f, (b) g, and (c) h. Physical parameters that can be extracted from the SERZ model are indicated in (d): the
stratification of the free atmosphere g, ABL height zabl, CI width Dh1, CI strength Du1, SL height Dh2, and SL strength Dh2.
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When h " 2‘, or, equivalently, z ,, zabl, both f and g will
approach zero. This means that the original RZ model is not
able to model a boundary layer with surface layer that has a
nonzero temperature gradient. Therefore, to accommodate
for atmospheres with a nonconstant surface layer temperature
or a stable boundary layer, an extra basis function h was in-
cluded in the model:

û(z) :5 um 1 af (h) 1 bg(h) 1 ch(h′), (2)

where

h(h′) 52
ln[2 cosh(h′)] 2 h′

2
,

with h′ 5
z 2 azabl

C2
;

c and a are trainable parameters, and C2 5 100 m a constant
that is related to the shape of the temperature profile of the
surface layer and that was chosen such that the optimization
remained well behaved [e.g., the function h(h′) remained
smoothly differentiable at our resolution]. The extra parame-
ter a determines the height relative to the boundary layer
height where the boundary layer deviates from a constant
temperature. The three basis functions of the SERZ model
are shown in Figs. 1a–c.

To find the SERZ parameters from a vertical temperature
profile, an optimization problem was solved. In this work, the
optimal fit of a temperature profile is defined as the fit that mini-
mizes the mean-squared error (MSE) between the data and the
approximation model. However, a simple least squares optimi-
zation can sometimes result in an ill-conditioned problem that
yields unrealistic results. As this ill conditioning is mainly caused
by large values of zabl, two extra constraints are added to the op-
timization problem that limits this parameter. The full optimiza-
tion problem is then given by

minimize
Q

S 5
1
N
∑
N

i51
[ui 2 û(zi; Q)]2,

(3)

subject to

0 # um, a, b, zabl, Dh1, (4)

0 # a # 1, (5)

azabl , zabl 2
Dh1
2

; and (6)

zabl 1
Dh1
2

, 4000 m, (7)

where N is the number of height levels, Q the set of fitting
parameters (Q 5 [a, b, c, um, zabl, Dh1, a]), the first two
constraints are simple bounds, and the last two constraints
are there to ensure a limited Dh1 and zabl. The constraint

azabl , zabl 2 (Dh1/2) ensures that the surface layer and CI
do not overlap, and the constraint zabl 1 (Dh1/2), 4000 m
ensures that the maximal height of the CI is 4000 m. These
constraints were effectively reached in 6% for our profiles,
where the majority (.5%) of these cases reached the con-
straint 0 # a # 1 and the other constraints were only reached
in less than 0.6% of the time. Further implementation details
can be found in appendix A.

The parameters obtained by solving the optimization prob-
lem can in some cases be linked to physical quantities of the
boundary layer and the lower troposphere, as shown in Fig. 1d.
Since the SERZ model is based on the RZ model, many of the
interpretations from Rampanelli and Zardi (2004) can be used
for known convective and conventionally neutral boundary
layers. Quantities that were derived by Rampanelli and Zardi
(2004) are the stratification rate in the lower troposphere, the
boundary layer height, the (constant) boundary layer tempera-
ture, the capping inversion width, and the temperature jump of
the capping inversion (if present). The boundary layer height,
boundary layer temperature, and capping inversion width fol-
low straight from the optimization problem in the parameters
zabl, um, and Dh1, respectively. The stratification coefficient g
and the temperature jump across the CI Du1 are given by

g 5
b

C1Dh1
and (8)

Du1 5 a 1
b

2C1
: (9)

Note that the equation for Du1 differs from the one in RZ
(Rampanelli and Zardi 2004); yet, it was confirmed that this is
the correct expression for Du1 (D. Zardi 2021, personal
communication).

The height and strength of the surface layer that is added in
this work through the extra function h require more discus-
sion. Since h is a continuous function that only reaches zero in
the limit h′ " 1‘, a significant surface layer can be present
even if a 5 0. In these cases, the (absolute) value of c will also
be large, which, together with the fact that h(0)5 [ln(2)]/2, al-
lows a substantial surface layer even if a 5 0. To account for
these effects, the height of the surface layer Dh2 is defined as
the height on which the profile reaches a band of width 2k
centered around um. The height Dh2 is found by solving

|h[h′(Dh2)]| 5 k 5

∣∣∣∣Tr

c

∣∣∣∣, (10)

where Tr is a temperature threshold taken equal to 0.5 K.
Solving this using the formulation of h gives

Dh2 5 max azabl 2
C2

2
ln(e2k 2 1), 0

[ ]
: (11)

Note that there is a distinct difference between Dh1 and Dh2
in their meaning and the way they are computed: Dh1 is the
depth of the CI and is one of the parameters that is directly
computed by the optimization. Dh2 is the height of the surface
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layer and is not included in the parameters of the optimization
but derived from its fitting parameters.

Last, the surface layer strength Du2 is given by

Du2 52ch(h′
0), (12)

where

h′
0 5

2azabl
C2

: (13)

Since h(h′) , 0 for all h′, a positive c corresponds to an in-
crease in temperature in the surface layer. This definition of
Du2 can be used since the basis function h is the only signifi-
cant contribution to the SL strength, given the constraint
azabl , zabl 2 (Dh1/2).
ON THE USE OF THE PHYSICAL QUANTITIES

As explained above, physically meaningful quantities can
be derived from the fits. However, it should be kept in mind
that these quantities are purely derived from the mathemati-
cal fits, which can result in flawed physical values. This mainly
follows from two limitations of our model.

First, because of the nonlinearity, the optimization problem
is nonconvex, which means that there can be multiple local
minima. Therefore, the optimization problem can in some
cases depend on the choice of initial conditions.

Second, even if the optimization problem ends in the global
minimum, it is not guaranteed to also be physically accurate,
for example, the value of zabl or Dh1 may not correspond to
their respective physical quantities. This is because vertical
temperature profiles are seldom ideal. Hence, if the overall
curvature of the profile is better fitted with a large Dh1 when
compared with a fit where Dh1 models the actual capping in-
version, the optimization problem will end with a large Dh1.

Therefore, it is the authors’ opinion that, whenever possi-
ble, the analysis should be carried out on the raw fitting pa-
rameters instead of analysis on the extracted physical
values. However, if physical parameters are necessary (e.g.,
the ABL height for LES), the optimization problem can be
made more robust by tailoring the constraints to the user’s
case. For example, a constraint on Dh1 can be added when
requiring a limited depth of the CI, or a constraint on a can
be added to limit the height of the surface layer. Similarly,
our code base allows users to include regularization on para-
meters in the optimization problem by adding a Tikhonov
regularization term (see appendix A). This regularization
allows the user to penalize unrealistically large values for
the fitting parameters by adding a weighted, quadratic term
to the cost function in Eq. (3). Tuning these weights then
becomes an integral part of the application that we do not
consider further.

The primary goal of this work is to create representatives that
are as accurate as possible, thus, it omits any regularization and
limits itself to the absolutely necessary constraints, as this will
generate the best fits with respect to the mean squared error.
Therefore, the resulting representative profiles are accurate, but
also more difficult to interpret.

c. Fingerprint analysis

The SERZ fit of the ERA5 data results in a new dataset of
fitting parameters (a, b, c, um, zabl, Dh1, and a) that are defined
over a spatial grid over a period of one year. The presence of
temporal and spatial variation in the multidimensional data
complicates its analysis and interpretation. To tackle this, a
simple fingerprinting framework based on a two-stage cluster-
ing algorithm is proposed. This framework will result in repre-
sentative profiles and the temperature profile atlas and offers
several advantages over traditional analyses of the mean and
standard variation of each parameter:

• By using a representative set, all aspects of the profile are
combined and analyzed together. Therefore, the algorithm
automatically incorporates correlations between different
components of the profile, and it produces physically realis-
tic representative profiles.

• The number of representatives can be chosen independently
from the number of parameters in the original dataset. This is
particularly useful when the number of parameters becomes
too large to manually interpret and cross correlate.

• By automatically determining spatial clusters in the data,
the fingerprinting framework eliminates possible bias rela-
tive to when the areas would be identified manually.

In our application, the inputs of the framework are the SERZ
fit parameters without the parameter um, as stability is mainly
determined by the temperature gradient, and is therefore inde-
pendent of the absolute temperature. With this choice of param-
eters, the temperature gradient of the SL (c and a), CI (a and
Dh1), and free atmosphere (b), as well as the boundary layer
height zabl are represented in the dataset.

The first part of this fingerprinting algorithm (shown in Fig. 2)
computes the individual fingerprints of each pixel. To do this, the
fingerprinting algorithm starts by flattening the data over time
and space and normalizing it using a quantile transformation
(QT) with 1000 bins, which maps the empirical quantiles on
the quantiles of the normal distribution. Then, the Mini-
batch kMeans11 algorithm (Sculley 2010), initialized using
the kMeans11 procedure, finds cluster centers by itera-
tively updating the centers with batch size 2560 and a reas-
signment rate of 0.1. After convergence, each point in time
and space is assigned to one of the representatives and these
assignments are used to compute the occurrence rate of
each representative for each point in space. This creates a
frequency distribution for each pixel, which is referred to as
the fingerprint of the pixel.

After removing the temporal component from the signal in
the aforementioned way, the second step of our spatiotempo-
ral data analysis algorithm groups the fingerprints to find
areas with similar behavior, allowing for easier interpretation
and visualization. To this end, a bottom-up agglomerative
clustering with Ward linkage, implemented with the scikit-
learn package (Pedregosa et al. 2011), was used that recur-
sively merges points together based on the resulting variance
reduction until the desired number of clusters is achieved.
This algorithm was chosen because it allows for a direct com-
parison between instances with different numbers of clusters.
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Last, the inverse quantile transformation (IQT), that is, the
reversed mapping of the bins of the distributions, is applied to
the representatives and the results are visualized. The finger-
prints of each pixel are visualized as bar plots (see Fig. 3a for
an example) where each bar represents the occurrence rate of
profiles similar to the relative representative. These represen-
tatives are ordered based on their value of c, which is similar
to an ordering the temperature gradient of the surface layer.
Profiles with very high and very low values for c correspond
to boundary layers with surface layers that are stable and un-
stable, respectively, which are equivalent to large surface-
induced cooling and heating, respectively.

When fingerprints are grouped in a cluster, an aggre-
gated fingerprint is defined. This fingerprint is defined as a
bar graph with error bars, where the error bars indicate the
90% confidence interval. As an example, Fig. 3 shows a hy-
pothetical fingerprint and the corresponding aggregated
fingerprints and guides the reader in interpreting the fin-
gerprint plots. In this example, the fingerprint of a single
pixel (Fig. 3a) shows that it is classified to P4 for more than
25% of the time. The aggregated fingerprint of the relevant
cluster (Fig. 3b) then shows that 90% of pixels within that
cluster have an occurrence rate for the fourth representa-
tive between 26% and 32%.

FIG. 2. Setup of the fingerprinting analysis. First, the data are preprocessed using a quantile transformer (QT). Second, the MiniBatch
kMeans clustering algorithm is used to find the representatives and compute the fingerprints. Third, agglomerative clustering is applied to
the fingerprints to generate clusters and cluster fingerprints. Fourth, the representative profiles are transformed back to the original space
with the inverse quantile transformer (IQT) and the results are visualized.

FIG. 3. (a) A fictional example of an individual fingerprint that was computed using eight rep-
resentatives. Each bar represents the occurrence rate of the corresponding class of profiles that
are associated with the representative, and each concentric circle is a 10% interval. (b) A fic-
tional example of an aggregated fingerprint that was computed using eight representatives. Each
bar represents the median occurrence rate of the corresponding class of profiles, and each error
bar corresponds to the 90% confidence interval for the occurrence rate for points in the cluster.
The PX labels in the squares refer to hypothetical representatives of the example.
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3. Results and discussion

The results of this work are grouped into two parts. First,
the performance of the SERZ model is compared with the
original RZ model. Second, the fingerprinting analysis is ap-
plied for one year of SERZ data with which we identify areas
with similar behavior in temperature profiles and link the
physical parameters of these areas with physical systems. Ad-
ditionally, an analysis of seasonal and diurnal differences is
carried out, both to gain insight into the profile behavior and
to see if the most well-known characteristics of the tempera-
ture profiles can be distinguished. To make the results from
the complete period comparable with the seasonal and diur-
nal analysis, the representative profiles are always computed
using the full dataset and only the clusters were computed
separately for the seasons and time stamps and subsequently
matched as well as possible to the clustering colors of the clus-
tering with the full dataset. The seasonal analysis applies the
fingerprint analysis to summer months (June–August) and
winter months (December–February) separately. The diurnal
analysis limits the fingerprint analysis to daily hours (1200–
1700 UTC) and nightly hours (0000–0500 UTC). Please note
that the diurnal division was made based on UTC and not on
local time; however, since our domain is centered around the
Greenwich meridian, the UTC is the mean time of our do-
main. Hence, since our window only spans up to longitudes
with time zones UTC 6 2, the approximation with the UTC
time for all pixels is justified.

a. SERZ evaluation

The original RZ model was not developed to be applicable
for stable profiles. Therefore, the MSE was computed sepa-
rately for stable and unstable profiles, where the stability pa-
rameter z (Stull 1988) was used to classify the profiles. The
stability parameter z was computed using the expression:

z 52
kzrefg0(w′u′ )s

T2mu
3
*

, (14)

where k is the von Kármán constant, zref 5 2 m, u* is the fric-
tion velocity, g0 is the gravitational constant (’9.81 m s22),
and T2m is the 2-m temperature, which are parameters ex-
tracted from the ERA5 data. The (w′u′ ) is the surface heat
flux approximated by

(w′u′ ) 52
Fsh

rCp

2
Ry

Rd 2 1
T2mFe

r
, (15)

where Ry and Rd are the gas constants for water vapor and
dry air, respectively, Cp is the specific heat of dry air, and r,
Fsh, and Fe are the air density, sensible heat flux, and moisture
flux, respectively, which are all included in the ERA5 data.
The sign of z determines the stability of a profile (Stull 1988):
profiles with a positive value of z were classified as stable and
profiles with a negative value were classified as unstable. This
is equivalent to classifying stability based on the sign of the
net heat flux from the 2-m level to the surface.

Figure 4 shows the MSE for both RZ and SERZ models
over the entire period and domain. We see that the SERZ

model performs much better than the original RZ model for
stable profiles while causing a marginal decrease in perfor-
mance for unstable profiles. While both these results are statisti-
cally significant (p ,, 0.05), the difference in performance for
the stable profiles is much larger than for the unstable profiles.
SERZ decreases the MSE for stable profiles by 43.2% relative
to RZ, while the MSE for unstable profiles only increases by
1.6%. This implies that our extra basis function serves its pur-
pose in modeling overall stable profiles, allowing it to be used
without prior knowledge of the stability of the profile.

b. Fingerprints of the ABL

To determine the number of representatives and the num-
ber of clusters, the Davies–Bouldin index (DBI; Davies and
Bouldin 1979) was used. This index compares the inter- and
intracluster variance to find the optimal number of clusters,
where a low index implies a better clustering. Figure 5 shows
that the optimal number of representatives is eight, and the
optimal number of spatial clusters is two. The number of rep-
resentatives is taken as such, however, the number of spatial
clusters requires more attention. Because of their fundamen-
tal differences in ABL processes, the two clusters that opti-
mally divide the data split the domain in land and open
ocean. However, the difference in temperature profile behav-
ior between land and open ocean is already well known and
would therefore limit the usability of the atlas. Hence, a
higher number of clusters is chosen in this work. This number
determines the trade-off between the interpretability of the
atlas and the possibility to recognize interesting systems. As a
compromise, six clusters were chosen, as the resulting atlas al-
ready offered substantial physical insight, while not overfitting
clusters by splitting them into multiple, similar, smaller clus-
ters. Nevertheless, the fingerprinting analysis was repeated
with 2, 4, and 8 clusters, which all gave similar results. These
results are included in appendix C.

Figure 6 shows the representative profiles extracted from
the data and Table 1 shows their corresponding physical

FIG. 4. Mean-square error comparison between RZ and SERZ,
split for stable and unstable profiles, where the stability parameter was
used for the classification. Note the logarithmic axis, which prevents
the boxplots from being dominated by their upper whiskers.
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values. The optimal representative profiles show the variety
of profiles that are known to appear during the daily cycle
(Stull 1988): Profile 1 (P1) and profile 2 (P2) have a constant
ABL temperature without a significant CI. Representative 3
(P3) corresponds to a profile with a constant ABL tempera-
ture and a deep CI. Representative 4 (P4) has a strong and
more shallow CI and its ABL has a weak, positive tempera-
ture gradient. Representative 5 (P5) and 6 (P6) are fully sta-
ble profiles, where the difference between the two lies in the
height and significance of the nick in the temperature gradi-
ent. Representatives 7 (P7) and 8 (P8) correspond to profiles
that have a stable surface layer and a neutral residual layer,
where the CI for P7 is lower than for P8. All representatives
have occurrence rates of over 10% in the entire dataset, ex-
cept for P2. P2 only occurs in 3.5% of the cases, implying that
these profiles are likely outliers that are clustered together
into one representative, which could be connected to the large
value of Dh1 without the presence of a significant CI. Never-
theless, as the DBI indicated the optimal number of profiles,
it is still included in the further analysis, though it will be ig-
nored for large parts of the discussion.

The clusters and their corresponding aggregated fingerprints,
shown in Fig. 7 and summarized in Table 2, give insight into the
temperature profile behavior. Furthermore, Figs. 8 and 9 show
the clusters and their aggregated fingerprints when limiting the
data to day/night and winter/summer, respectively.

Overall, it is remarkable that the pixels within each cluster
are grouped together geographically and are not randomly

distributed in space. This indicates that the behavior of the tem-
perature profiles is strongly correlated in space and that this cor-
relation is captured by the algorithm. Moreover, the clusters
mostly follow the surface type and locations of known physical
systems, such as the East Icelandic Current in the northwest and
the Azores high in the southwest of the domain. The majority
of continental Europe is also classified in the same cluster (C),
and coastal areas are grouped together in the same cluster (B).

In what follows, we will discuss each cluster depicted in Fig. 7,
its geographical spread, and possibly diurnal and seasonal differ-
ences in its drivers that emerge from the analyses in Figs. 8 and
9, respectively. Furthermore, to quantify each cluster and the
differences between clusters, Tables 2 and 3 are included that
contain the median frequencies of each representative within
each cluster, and the pairwise Euclidean distances between
these median frequencies.

Cluster F is situated over the southern part of the Atlantic
Ocean (with respect to our domain) and accounts for 9.3% of
the pixels. The most prevalent profile for this cluster is P4
(median value of 34.6%), which has a clear CI and a weak,
positive temperature gradient in the ABL itself. Furthermore,
representatives P7 and P8 are mostly absent in this area with
a combined occurrence rate of about 5%–6%. This is likely

FIG. 5. The Davies–Bouldin index for the two clustering steps in
the fingerprinting algorithm, where a low index corresponds to a
better clustering: (a) the DBI for the clustering to find representa-
tive profiles in function of the number of representatives. (b) the
DBI for the clustering of the fingerprints in function of the number
of spatial clusters.

FIG. 6. Representative profiles from the fingerprinting analysis,
ordered on the basis of their value for c. Since the variables um
were not included in the clustering, the representatives were set
with um 5 0.

TABLE 1. Physical quantities for each representative profile. The last column shows the overall occurrence rate of each representative.

g (K km21) zabl (m) Dh1 (m) Du1 (K) Dh2 (m) Du2 (K) Frequency (%)

P1 4.15 893 517 1.57 0 20.380 12.8
P2 4.86 1437 2113 5.17 0 20.107 3.5
P3 3.60 1417 1814 13.17 0 20.358 12.2
P4 4.10 1359 737 7.30 692 2.18 22.0
P5 5.11 1763 250 0.71 1384 4.82 13.6
P6 4.83 1009 10 0.57 889 4.20 13.3
P7 4.23 807 537 1.83 315 3.61 10.1
P8 3.95 1623 1889 8.06 210 2.87 12.5
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because cluster F is completely situated over the open ocean,
where, due to the slow sea surface temperature variation be-
cause of the ocean’s larger thermal capacity, the ABL tends
to be in equilibrium with the sea surface temperature. This is
also confirmed by looking at the diurnal analysis of this cluster
(Fig. 8), where we see only marginal differences between the
aggregated fingerprints and geographical locations of the clus-
ters situated at the same location as cluster F in Fig. 7.

Geographically, cluster F coincides with the Azores high,
which is a large high pressure system situated around 308N in
the Atlantic Ocean close to western Africa and Spain. This

permanent high pressure system causes subsidence of air masses
that leads to stabilization of the temperature profile (Wallace
and Hobbs 2006), which strengthens the CI and causes a weak,
positive temperature gradient in the ABL. The link between the
Azores high and P4 is also confirmed when looking at the sea-
sonal fingerprint analysis (Fig. 9), where we see that during sum-
mer, when the Azores high moves northward, the cluster
containing the dominant P4 profile also moves northward (clus-
ter F in both summer and winter fingerprints).

Cluster A is situated in the North Atlantic Ocean and the
Norwegian Sea and covers 22.1% of the domain. It has two
profiles that have an occurrence rate of over 20%, P1 and P2,
and, similarly to cluster F, it has low prevalence rates for P7
and P8. Relative to cluster F covering the Azores high, cluster
A has a substantially smaller occurrence rate for the P4 profile.
Furthermore, we see that the P1 profile is much more prevalent
in winter than in summer (Fig. 9) for this cluster and, except for
part of the Norwegian Sea, there does not seem to be large diur-
nal differences for the North Atlantic. The reason for the change
in the spatial distribution of the clusters over the Norwegian Sea
when limiting the clustering to either day or night is not entirely
clear, however, increasing the number of clusters for the daily fin-
gerprints showed that the change in distribution for the cluster
containing the Norwegian Sea was mainly caused by variation in
continental profiles contained in the same cluster.

Cluster D is the smallest cluster, accounting for only 8.1%
of all pixels. It is the cluster that contains the transition area
between the Azores high cluster (F), the North Atlantic clus-
ter (A), and cluster E to the east. The dominant profile in this
cluster is still P4, though it is less extreme than in cluster F.
Furthermore, the Euclidean distance between cluster D and F is
lower than all other pairwise distances computed in Table 3, im-
plying that clustering with only 5 clusters would merge clusters
D and F with respect to the clustering based on 6 spatial clusters
in Fig. 7. This was also confirmed in the clustering with 4 spatial
clusters (appendix C), as well as the fact this area is not classi-
fied as a separate cluster in the diurnal and seasonal analysis,
when there is more variation elsewhere in the domain.

Cluster C contains the majority of continental Europe, along
with the Adriatic Sea. This cluster contains 27% of all pixels in
our domain and has the highest prevalence rates for P7, and P8.
These two representatives are characterized by a significant
temperature gradient in the surface layer, which is caused by
the diurnal variation of the surface temperature over land (Pal
and Haeffelin 2015). This is also confirmed by examining the

FIG. 7. Fingerprints of the ABL. (top) The clusters of pixels with
similar stratification behavior. (bottom) the aggregated fingerprints
of the cluster, where the median value of the occurrence rate of
each representative is shown as a bar, with an error bar of the 90%
interval to indicate the spread. The concentric circles in the bar
chart indicate multiples of 10%. The median statistics of this map
are also summarized in Table 2.

TABLE 2. Results from the fingerprinting analysis shown in Fig. 7. The main body of the table shows the median frequency rate for
each representative within each cluster. The bottom row corresponds to the overall frequency of each representative. The last
column corresponds to the fraction of pixels classified to each cluster.

Median frequency (%) P1 P2 P3 P4 P5 P6 P7 P8 Cluster frequency

A 20.5 4.5 16.6 23.3 13.5 12.9 5.0 4.0 22.1
B 8.9 2.4 9.3 20.8 15.2 13.2 13.1 16.3 21.9
C 9.4 4.0 7.1 15.3 13.8 10.3 16.0 22.9 27.0
D 15.4 4.1 16.9 28.9 10.8 14.9 4.1 3.1 8.1
E 11.8 2.2 12.6 23.4 15.4 15.1 9.3 10.3 11.6
F 13.8 2.6 16.8 34.6 8.2 17.9 3.2 2.2 9.3
Representative frequency 12.8 3.5 12.2 22.0 13.6 13.3 10.1 12.5
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clusters covering continental Europe in the diurnal analysis
(Fig. 8): During the day, profiles over land are generally more
unstable (P1), while during the night, there is a clear peak in
profiles with a stable surface layer (P7 and P8). Moreover, the
diurnal analysis also shows that the time of the day has a larger
influence on the spatial distribution of the clustering over land
than it has on the clustering over the open ocean, confirming
the strong continental diurnal forcing.

Furthermore, cluster C also covers the Adriatic Sea. This is
likely due to the surrounding land, which makes advection of
continental air mass possible for all wind directions. However,
the Adriatic Sea is only classified in the same cluster when in-
cluding the entire dataset. When limiting the clustering to
summer/winter or day/night, it is classified in clusters covering
coastal seas and shores. Therefore, a more extensive analysis
of the Mediterranean is recommended when dealing with the
Adriatic Sea (and the Mediterranean Sea in general).

Clusters B (21.9%) and E (11.6%) contain the Baltic Sea,
most coastal areas and shallow seas, the United Kingdom, Ice-
land, part of Scandinavia, and the seas to the north and east of
Iceland. The fact that coastal areas are classified in a different
cluster than the European continent or the Atlantic Ocean
clearly shows that these areas have substantially different temper-
ature profiles. Moreover, there is overall more variation in

temperature profiles for clusters B and E than there is for the
clusters covering the open ocean. This larger variation can be ex-
plained by the advection of air from the nearby land, which, be-
cause of its strong diurnal forcing, has a preference for P7 and P8,
and the advection of air from the Atlantic Ocean, which contains
more P1 and P4. Hence, coastal seas and the coast itself are tran-
sition areas where both characteristics of the continental land and
open ocean are present, which can also be seen by comparing
their respective fingerprints. This is clear from the Euclidean dis-
tances between the different clusters (Table 3), where the cluster
of continental Europe (C) is closest to the cluster for the North
Sea and Baltic Sea (B), which in turn is closest to cluster E,
which, finally, is close to both cluster A (North Atlantic) and
cluster D (Azores high transition area).

The influence of the land on the coastal seas and the seas
surrounded by land is also present in the seasonal clustering
(Fig. 9) where during summer, the prevalence of profiles with
a stable surface layer (P7, P8) is higher for coastal seas such as
the Baltic, Adriatic, and North Sea than it is for the Atlantic
Ocean and Norwegian Sea.

Last, profiles with a stable internal boundary layer (P7, P8)
are mostly absent over the open ocean. However, a maritime
system that contains more of these profiles emerges close to Ice-
land (cluster B and E in Fig. 7). This area coincides with the

FIG. 8. Fingerprinting analysis applied to the (bottom) day hours (1200–1700 UTC) and (top) night hours (0000–0500 UTC) separately.
Note that the representatives were still determined using the full year but the second step (agglomerative clustering) was computed for
each time window separately.
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East Icelandic Current (EIC), which transports cold, Arctic
water southeastward, which could cause this change in tempera-
ture behavior of the lower atmosphere (Casanova-Masjoan et al.
2020). This is again confirmed by looking at its seasonality,
which is known to strengthen this current during winter
(Casanova-Masjoan et al. 2020).

c. Limitations and tests of robustness

1) SERZ

The SERZ model is a compromise between the best fit of the
temperature and the physical interpretability of the results.
Therefore, it has drawbacks that should be taken into account:

First of all, the SERZ model has two model parameters (C1 and
C2) influencing the overall curvature of the profile that are fixed
before the optimization. To assess the sensitivity toward C2,
local experiments were carried out in which C2 was changed
to both 50 and 200 m (at the Belgian–Dutch wind farms at
51844′N, 2858′E). Both cases yielded similar results as the
C2 5 100 m case, and the extracted physical parameters were
(highly) correlated to the physical parameters computed with
C2 5 100 m, with a correlation of 0.88 between the results
with C2 5 50 m and C2 5 100 m, and a correlation of 0.89 for
C2 5 200 m and C2 5 100 m. Although these local experiments
showed a relatively high correlation, an extensive and nonlocal
study on the influence of these parameters could still be valuable.

Second, the possibility of physically interpreting the fit of a
profile depends on the kind of profile, and the constraints or
regularization used in the optimization. This is both an advan-
tage and a disadvantage, as it allows the user to create user-
specific constraints, but it also can create discrepancies between
interpretations depending on the constraints set. For example,
some wind farm simulations require the wind turbines to be
completely below the CI. Therefore, they might consider adding
an extra constraint that ensures this. However, since each of the
parameters is intrinsically linked in the optimization, this might
also result in different values for other parameters such as the
ABL height and CI strength.

FIG. 9. Fingerprinting analysis applied to the summer months and winter months separately. Note that the representatives were still deter-
mined using the full year but the second step (agglomerative clustering) was computed for each season separately.

TABLE 3. Relative Euclidean distances between the clusters
based on their median values. The average distance to each
other cluster was added in the last column. Note that only the
relative differences in distances are meaningful.

A B C D E F Avg distance

A 0 20 28 8 13 15 16.9
B 20 0 10 21 9 25 17.2
C 28 10 0 30 18 34 24.0
D 8 21 30 0 13 7 15.9
E 13 9 18 13 0 18 14.1
F 15 25 34 7 18 0 20.0
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2) FINGERPRINTING ANALYSIS

A first drawback of the fingerprinting algorithm is the fact
that there are hyperparameters that need to be chosen by the
user. The main hyperparameters are the number of clusters in
the final clustering, and the type of normalization used on the
data before the start of the clustering. The former is a param-
eter that determines a trade-off between finding interesting
systems and keeping the results interpretable. The latter de-
termines the distribution of the data before the first clustering
stage, and, therefore, can have an impact on the final result. It
is worth noting, however, that the kind of normalization did
not significantly change the results in our application. Since
the fingerprinting analysis is relatively cheap, we recommend
experimenting with the hyperparameter settings to assess the
sensibility for the domain and application of interest.

A second drawback is that the results from our fingerprint
analysis are unique to the domain under consideration and the
data used. Hence, changing the domain or resolution of the
data will result in different representatives and possibly differ-
ent clusters. Therefore, it is recommended to users that the sec-
ond clustering is repeated for their domain and data of interest.

Because of computational constraints, the analysis was lim-
ited to only one year of ERA5 data. This implies that interan-
nual variability (IAV) of the temperature profiles and the
ABL depth (Pal and Haeffelin 2015) is absent in the final at-
las. Nevertheless, the main conclusions that are drawn from
one year of data should remain valid since they are coupled to
large-scale physical systems that are present every year, even
though their exact location and intensity may vary.

3) TESTS OF ROBUSTNESS

To test the temperature model dependency of our finger-
print algorithm, the fingerprinting analysis was also carried out
on parameters extracted from a linear fit (see appendix C).
This showed that, although the interpretation of the represen-
tatives and aggregated fingerprints is less clear, the cluster re-
gions mostly coincide with the results of the SERZ model,
implying that the clusters and their aggregated fingerprints are
relatively model independent.

To test the effect of the number of clusters on the results,
the fingerprint analysis was carried out with 2, 4, and 8 clus-
ters in the final clustering of the fingerprints (see appendix C).
This analysis did not show substantially different results over-
all. However, increasing the number of clusters revealed that
highly mountainous regions, which are known to behave atyp-
ically (Frei 2014), emerged as separate clusters. However, it
is not clear if this is an artifact of the SERZ model fitted to
atypical (mountainous) profiles or because of a currently un-
known reason. Therefore, subsequent studies are necessary to
assess the SERZ model performance for these areas. Further-
more, care should be taken with clusters that are not specifi-
cally located in any geographically known system and have
similar aggregated fingerprints: Seemingly random splits be-
tween two clusters can be a consequence of the choice of the
number of clusters, which can cause some clusters to be split
even though they are sufficiently similar, or can cause two clusters

to merge even though they differ significantly (especially for
datasets of limited size).

The previous analysis was also carried out on other years of
ERA5 data that yielded similar results, both in the different rep-
resentatives extracted from the data as in the clusters found
over the grid. The analysis presented here is tailored to the
European domain but can be applied elsewhere. Moreover, sub-
regions in Europe can be analyzed in more detail. For example,
in our application the Azores high system is found to have one
dominant profile (P4), yet if the analysis was done for the do-
main only covering the area of the Azores high this one repre-
sentative might be split into multiple, similar representatives.
Nevertheless, this new set of representatives will be physically
close to the P4 profile, allowing direct comparison with the
findings in this work.

4. Conclusions and future work

This work introduces a modified vertical potential tempera-
ture model, the surface extended Rampanelli and Zardi model,
for the atmospheric boundary layer and lower troposphere,
and presents a temperature profile atlas for Europe, excluding
the Mediterranean. To this end, a new spatiotemporal analysis
framework based on pixel fingerprints was developed to deal
with the spatiotemporal data and create generally applicable
representative profiles.

The new SERZmodel is successful in modeling different atmo-
spheric boundary layer stratifications and can be fine-tuned to
user-specific applications by including extra constraints or regulari-
zation. It significantly reduces (with a substantial margin) the fit-
ting error for stable profiles by 43.2% while it only increased the
mean error for unstable profiles with 1.6%. In doing so, SERZ
performs equally well for stable and unstable ABLs, allowing it
to be used in a general setting where the stability of the ABL is
unknown. The general applicability allowed us to reduce the com-
plexity of the data, with originally around 40 varying height levels,
to only 6 parameters, which allowed further analysis.

The fingerprint analysis is a unique and flexible way to visu-
alize and analyze spatiotemporal data successfully. In this
analysis, optimally chosen representatives are used to remove
the temporal component from the data, which allows the re-
sulting pixel fingerprints to represent the temporal variation
of the signal. Furthermore, the number of representatives can
be chosen independently from the number of parameters in
the data, which is useful when the number of parameters be-
comes too large to manually interpret and cross correlate. In
addition, the fingerprint analysis results in a number of uni-
versal representatives and clusters that provide an easy way
to visualize and interpret complex spatiotemporal data.

The resulting clusters with their agglomerated fingerprints
show that the ABL stratification behaves fundamentally dif-
ferently between land, ocean, and coastal seas. Over land and
coastal areas, profile type variation is larger than over the
ocean. This is likely due to the diurnal variation in the surface
temperature, which is higher over land due to its lower heat ca-
pacity, which is advected toward the sea. Over the open ocean,
the behavior of the ABL is limited to only two or three profiles
and the diurnal variation is mostly absent. Furthermore, the
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Azores high pressure system and the East Icelandic Current be-
haved distinctively different from the surrounding ocean, show-
ing that differences in synoptic-scale systems or ocean currents
substantially influence the ABL profiles.

The stratification of the ABL can differ significantly based on
geographical location, time of day, and time of the year, and
these differences in stratification should be taken into account
when selecting and comparing atmospheric conditions. Especially
for offshore wind energy applications that require subselections
of the atmospheric state, good selections of the temperature pro-
files are important, as the choice of background profiles for these
locations influences the results of these simulations and is often
based on onshore experience. The universal applicability of our
new SERZmodel, together with the framework of the fingerprint
analysis, provides an easy way of determining these background
profiles. We applied this to Europe to generate the ideal repre-
sentatives for this area resulting in a stratification atlas that can
be consulted for various applications. By implementing and in-
cluding the SERZ model, fingerprinting analysis, and the data in
a user-friendly way, it is also readily available to apply the com-
plete framework to other areas.

Future work could include wind profiles and surface variables
in this atlas, as it only consists of temperature profiles at this stage.
Wind resource assessments would then be able to use the same at-
las for all atmospheric conditions in their simulations, which would
also remove the need to interpret correlations between these vari-
ables. Furthermore, a comparison of the resulting fingerprints
with local temperature profile measurements (Pandolfi et al. 2013;
Granados-Muñoz et al. 2012; De Tomasi et al. 2011) would be in-
teresting to study the uncertainties of these results caused by using
ERA5 in combination with the fingerprinting analysis.
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APPENDIX A

Numerical Implementation

In general, the implementation is straightforward, but
some pitfalls should be avoided.

a. Functions f, g, and h

The functions f, g and h are defined as

f (h) 5 tanh(h) 1 1
2

5
1

1 1 e22h , (A1)

g(h) 5 ln[2 cosh(h)] 1 h

2
5

ln(eh 1 e2h) 1 h

2
, and (A2)

h(h′) 52
ln[2 cosh(h′)] 2 h′

2
5

h′ 2 ln(eh′
1 e2h′ )

2
(A3)

and are implemented using internal functions of the NumPy
module. The hyperbolic tangent and hyperbolic cosine are
defined by NumPy. The direct implementation for f is al-
ways numerically stable (in absolute error). However, for g
and h, overflow can occur because, for larger |x|, ex can be-
come either zero or infinity. This then causes the ln function
to return either 2‘ or ‘. Therefore, for these cases, the val-
ues are replaced by

g(h) ’ |h| 1 h

2
and

h(h′) ’ h′ 2 |h′|
2

:

b. Including regularization in the optimization problem

The optimization problem in Eq. (3) was implemented such
that regularization on individual parameters to improve physical
interpretability was possible through the Tikhonov regularization.

minimize
Q

S 5
1
N
∑
i
[ui 2 û(zi; Q)]2 1 lrR(Q)

subject to
0 # um, a, b, zabl, Dh1,

0 # a # 1,

azabl , zabl 2
Dh1
2

, and

zabl 1
Dh1
2

, 4000 m,

with
R(Q) 5 ∑

p2Q
(p/wp)2, (A4)

which is the regularization term, where wp is the weight as-
signed to parameter p and lr is a factor determining the
overall weight of the regularization. Note that for the re-
sults in this work, we set lr 5 0.
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c. Ill conditioning

To see why an unconstrained version of the optimization
problem can be ill conditioned, we construct the linear sub-
optimization problem over the parameters a, b, c, and um. We
start from the fact that minimizing S without constraints will
require that all of its partial derivatives are zero: Minimizing
the function S will, for all of its unconstrained values, require
that its partial derivative is zero, so

∑
i
[ui 2 û(zi; Q)] û

um
(zi) + lr



um
R(Q) � 0,

∑
i
[ui 2 û(zi; Q)]û

a
(zi) + lr



a
R(Q) � 0,

∑
i
[ui 2 û(zi; Q)]û

b
(zi) + lr



b
R(Q) � 0,

∑
i
[ui 2 û(zi; Q)]û

c
(zi) + lr



c
R(Q) � 0,

∑
i
[ui 2 û(zi; Q)] û

Dh1
(zi) + lr



Dh1
R(Q) � 0,

∑
i
[ui 2 û(zi; Q)] û

zabl
(zi) + lr



zabl
R(Q) � 0, and

∑
i
[ui 2 û(zi; Q)]û

a
(zi) + lr



a
R(Q) � 0,

Now, by definition,

û

um
(zi) 5 1,

û

a
(zi) 5 f (hi),

û

b
(zi) 5 g(hi), and

û

c
(zi) 5 h(h′

i )

with the corresponding definitions of h and h′. Then, using
the definition of û, we can rewrite the first four equations to

umN + a∑ f (hi) + b∑g(hi) + s∑h(h′
i ) + 2lr

um
wum

�∑ui,

um∑ f (hi) + a∑ f 2(hi) + b∑ f (hi)g(hi) + c∑ f (hi)h(h′
i ) + 2lr

a
wa

�∑ f (hi)ui,

um∑g(hi) + a∑g(hi)f (hi) + b∑g2(hi) + c∑g(hi)h(h′
i ) + 2lr

b
wb

�∑g(hi)ui, and

um∑h(h′
i ) + a∑h(h′

i )f (hi) + b∑h(h′
i )g(hi) + c∑h2(h′

i ) + 2lr
c
wc

�∑h(h′
i )ui, (A5)

which is a linear system in the form of Ax5 b for the parameters um, a, b, and c, where A is a square 43 4 matrix, x is the vector of
those four parameters, and b is a vector containing the right-hand side of the equations in Eq. (A5). This linear system in
Eq. (A5) can be reformulated in the elegant shape A 5MTM 1 2lrW with

M 5

1 f (h1) g(h1) h(h′
1)

1 f (h2) g(h2) h(h′
2)

..

. ..
. ..

. ..
.

1 f (hN) g(hN) h(h′
N)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and W 5

wum
0 0 0

0 wa 0 0

0 0 wb 0

0 0 0 wc

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
: (A6)

If zabl becomes very large, both f and g approach a
constant in the lower atmosphere, and therefore the
matrix M becomes singular. Therefore, it also becomes

clear why for large values for zabl, the optimization
problem is ill conditioned if no regularization is
applied.
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APPENDIX B

Extra Material and Tables

a. Summary tables: Seasonal and diurnal clustering

Day clustering is shown in Table B1, night clustering is
shown in Table B2, summer clustering is shown in Table B3,
and winter clustering is shown in Table B4.

b. Map domain and height distribution

Figure B1 is a map of the study area, and Fig. B2 shows
the mean height levels of the ERA5 data.

TABLE B1. Results from the fingerprinting analysis shown in Fig. 8, constrained to the noon hours. The main body of the table
shows the median frequency rate for each representative within each cluster. The bottom row corresponds to the overall frequency
of each representative. The last column corresponds to the fraction of pixels classified to each cluster. Note that the cluster
labels (A, B, … ) correspond to the clusters for the clustering shown in Fig. 8, day panel.

Mean frequency (%) P1 P2 P3 P4 P5 P6 P7 P8 Cluster frequency

A 21.5 7.4 14.0 17.5 15.0 10.7 6.0 7.3 23.0
B 10.4 2.6 10.9 19.7 15.9 12.9 12.1 14.5 19.5
C 15.1 4.1 11.6 21.7 16.4 13.1 7.9 9.1 15.9
D 20.1 5.0 17.4 24.6 12.6 12.9 3.6 3.1 17.7
E 29.2 6.6 18.8 15.7 12.0 9.4 3.1 3.7 7.8
F 14.7 2.9 17.9 30.7 9.1 17.1 3.2 2.5 16.1
Representative frequency 17.5 4.9 14.6 21.9 14.0 12.9 6.6 7.6

TABLE B2. Results from the fingerprinting analysis shown in Fig. 8, constrained to the nightly hours. The main body of the table
shows the median frequency rate for each representative within each cluster. The bottom row corresponds to the overall frequency
of each representative. The last column corresponds to the fraction of pixels classified to each cluster. Note that the cluster
labels (A, B, … ) correspond to the clusters for the clustering shown in Fig. 8, night panel.

Mean frequency (%) P1 P2 P3 P4 P5 P6 P7 P8 Cluster frequency

A 0.7 0.7 3.8 19.8 13.5 13.2 20.7 26.8 19.7
B 0.4 0.9 2.4 13.7 9.4 8.7 26.6 36.7 18.8
C 19.4 4.3 16.4 23.8 13.6 13.3 4.9 3.8 29.4
D 8.9 2.2 10.3 20.0 16.4 12.8 12.5 16.3 13.7
E 13.3 2.6 16.3 35.1 8.5 18.0 3.6 2.6 10.2
F 11.6 2.3 13.3 25.0 14.2 16.0 8.9 9.1 8.2
Representative frequency 9.3 2.4 10.2 21.8 12.8 13.2 13.5 16.7

TABLE B3. Results from the fingerprinting analysis shown in Fig. 9, constrained to the summer months. The main body of the
table shows the median frequency rate for each representative within each cluster. The bottom row corresponds to the overall
frequency of each representative. The last column corresponds to the fraction of pixels classified to each cluster. Note that the cluster
labels (A, B, … ) correspond to the clusters for the clustering shown in Fig. 9, summer panel.

Mean frequency (%) P1 P2 P3 P4 P5 P6 P7 P8 Cluster frequency

A 15.4 7.6 4.0 9.1 19.0 9.4 12.2 21.0 31.4
B 4.0 2.5 1.2 8.8 16.7 10.1 20.6 33.2 5.4
C 9.9 0.8 16.9 36.1 6.1 22.1 3.8 2.9 24.4
D 10.0 1.0 12.5 26.3 10.2 19.8 9.8 8.9 21.9
E 17.3 3.4 11.0 16.6 11.7 14.1 12.0 12.7 9.7
F 4.5 0.5 5.3 19.1 12.6 14.9 21.3 19.7 7.2
Representative frequency 11.7 3.4 9.8 21.0 12.8 16.1 11.2 14.0
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APPENDIX C

Extra Fingerprint Analyses

a. Linear fingerprint analysis

Figure C1 shows the representatives for the year 2020 fit-
ted with three-line piecewise linear profiles. The representa-
tives were ordered based on their gradient of the lowest line
fragment. The resulting representatives are slightly different
from the representatives found with the SERZ fits, although

this is mainly due to the less straightforward ordering of these
profiles. In general, we do see similar representatives: The rep-
resentative of the SERZ model (P4) is very similar to the
fourth representative with the linear profile (L4). Further-
more, P8 is relatively similar to L7, P7 is similar to L8, P2 is
similar to L1 and L5, and P1 is similar to P3.

The clusters and aggregated fingerprints based on the fits
with the linear profile (Fig. C2) also show similar spatial distri-
butions, especially over sea. In these clusters, we again recog-
nize the Azores high pressure system and the East Icelandic
Current. Furthermore, coastal waters behave differently from
the open ocean, although this is less clear for the linear fits.

b. Varying number of clusters

To assess the influence of the number of clusters on our re-
sults, we repeated our analysis with a varying number of clus-
ters. The number of clusters varied between 2 and 8, in steps
of 2. For all setups, the same representatives were used (which
are independent of the number of spatial clusters). Since the
difference between the different setups is small, only the clus-
tering based on the full dataset is included in this appendix.
Furthermore, since the spatial clustering uses agglomerative
clustering, increasing the number of clusters by 1 will split the
cluster with the most variance into two new clusters without

FIG. B1. Map of the study area.

FIG. B2. Mean height levels of the ERA5 data.

FIG. C1. Representative profiles based on piecewise linear fits.

TABLE B4. Results from the fingerprinting analysis shown in Fig. 9, constrained to the winter months. The main body of the table
shows the median frequency rate for each representative within each cluster. The bottom row corresponds to the overall frequency
of each representative. The last column corresponds to the fraction of pixels classified to each cluster. Note that the cluster
labels (A, B, … ) correspond to the clusters for the clustering shown in Fig. 9, winter panel.

Mean frequency (%) P1 P2 P3 P4 P5 P6 P7 P8 Cluster frequency

A 2.7 0.9 6.4 18.5 9.3 10.1 22.0 28.2 14.4
B 17.4 3.2 17.9 25.2 15.3 12.5 3.3 3.8 21.1
C 29.1 6.1 19.6 19.7 13.2 9.0 1.2 1.0 24.7
D 2.4 0.5 8.1 31.3 11.9 15.2 12.8 15.4 14.7
E 13.0 3.0 16.8 33.3 10.5 14.7 3.6 3.1 12.7
F 2.4 0.7 6.0 25.0 11.4 13.2 17.8 21.5 12.4
Representative frequency 13.4 3.2 13.9 24.5 12.7 12.3 9.2 10.8
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redistributing the other points. Hence, increasing the number
of clusters by 2 will either split two existing clusters into two
or will split an existing cluster in three.

Figure C3 shows that the fingerprinting algorithm splits the
domain into ocean and land/coastal areas when using only two
clusters. Interesting to see here is that the East Icelandic Cur-
rent behaves more similar to the land then it does to the open

ocean. Furthermore, we can already see with two clusters that
P7 and P8 mainly occur over land/coast, while P1 and P4 are
much more prevalent over open ocean.

Figure C4 shows the fingerprinting algorithm with four clus-
ters. Here we see that both clusters from Fig. C3 are split: the
ocean cluster is split along the borders of the Azores high
pressure system and the rest of the Atlantic Ocean and open
North Sea, and the land and coastal cluster is split in a cluster
that mainly contains continental Europe and a pixel that en-
compasses coastal seas, the EIC, Iceland, and the United
Kingdom. This figure already shows the main characteristics
of the atlas with six spatial clusters.

Figure C5 shows the analysis with eight spatial clusters. In
comparison with the map with six clusters (Fig. 7) we see that
cluster A6 is split into two and the Europe mainland cluster is
split into two. However, for each of these splits, the difference
in the agglomerated fingerprints for the two new clusters is
relatively small. Yet, an interesting pattern around the higher
and more mountainous regions seems to appear. However, it
was beyond the scope of this work to investigate this further.

FIG. C2. Fingerprint analysis based on piecewise linear profiles.

FIG. C3. Fingerprint analysis with only two clusters.

FIG. C4. Fingerprint analysis with four clusters.
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