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AbstractÐAssuming signed digit number representations, we investigate the implementation of some addition related operations

assuming linear threshold networks. We measure the depth and size of the networks in terms of linear threshold gates. We show first

that a depth-2 network with O�n� size, weight, and fan-in complexities can perform signed digit symmetric functions. Consequently,

assuming radix-2 signed digit representation, we show that the two operand addition can be performed by a threshold network of

depth-2 having O�n� size complexity and O�1� weight and fan-in complexities. Furthermore, we show that, assuming radix-�2nÿ 1�
signed digit representations, the multioperand addition can be computed by a depth-2 network with O�n3� size with the weight and fan-

in complexities being polynomially bounded. Finally, we show that multiplication can be performed by a linear threshold network of

depth-3 with the size of O�n3� requiring O�n3� weights and O�n2 logn� fan-in.

Index TermsÐComputer arithmetic, signed-digit number representation, signed-digit arithmetic, carry-free addition, redundant

adders, redundant multipliers, threshold logic, neural networks.
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1 INTRODUCTION

HIGH performance addition and addition related opera-
tions, such as multiplication, play an important role in

the computer-based computational paradigm. A major
impediment to improving the speed of arithmetic execution
units incorporating addition and addition related opera-
tions is the presence of carry and borrow chains. One
solution for the elimination of carry chains is the use of
redundant representation of operands, proposed by Avi-
zienis in [1]. The Signed Digit (SD) number representation
method allows, under certain assumptions, the so-called
ªtotally parallel additionº [1], which limits the propagation
of the carries at the expense of some overhead in data
storage space and in processing time for the conversion of
the results and potentially of the operands.

The redundant representation operates as follows:

For any radix r � 2, a sign-digit integer number

X � �xnÿ1; . . . ; x1; x0�SDr
, represented with n digits, has

the algebraic value X �Pnÿ1
i�0 xi � ri. Each digit xi of the

X number can assume its value in the digit set

�r � fÿ�;ÿ�� 1; . . . ;ÿ1; 0; 1; . . . ; �ÿ 1; �g. The cardinality

of the set �r is 2�� 1 and the maximum digit magnitude �

must satisfies the relations stated in (1).1

rÿ 1

2

� �
� � � rÿ 1: �1�

In order to have minimum redundancy and, as a conse-
quence, minimum storage overhead, one can assume that
� � r

2

� �
, but, in order to break the carry chain, i.e., to have

ªtotally parallel addition,º the value of � should satisfy the
relations stated in (2).

r� 1

2

� �
� � � rÿ 1: �2�

Based on sign-digit representation, a number of high-speed
architectures2 have been reported, see, for example [2], [3],
[4], [5], [6]. Thus far, all the investigations in SD arithmetic
architectures assumed logic implementation with technol-
ogies that directly implement Boolean gates. Currently,
other possibilities exist in VLSI for the implementation of
Boolean functions using threshold devices in CMOS
technology [7], [8], [9], [10]. In assuming Threshold Logic
(TL), the basic processing element can be a Linear Thresh-
old Gate3 (LTG) computing the Boolean function F �X� such
that:

F �X� � sgn�F�X�� � 1 if F�X� � 0

0 if F�X� < 0

�
F�X� �

Xn
i�1

!ixi ÿ  ;
�3�

where the set of input variables and weights are defined by
X � �x1; x2; . . . ; xnÿ1; xn� and by 
 � �!1; !2; . . . ; !nÿ1; !n�,
respectively. Such an LTG contains a threshold value,  , a
summation device, �, computing F�X�, and a threshold
element, T , computing F �X� � sgn�F�X��.

Given that TL may be promising, it is of interest to
investigate new schemes applicable to such a new
technology. To this end, assuming binary nonredundant
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1. Note that, for a given radix r, it might be that � is not unique,
therefore, there can be more than one possible digit set.

2. Serial, on-line, and parallel.
3. Such a threshold gate corresponds to the Boolean output neuron

introduced in the McCulloch-Pitts neural model [11], [12] with no learning
features.
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representations, a number of recent proposals regarding

addition and multiplications, see, for example, [13], [14],

[15], [16], [17], [18], [19], [20], have been developed that

assume threshold, rather than Boolean, logic.
Thus far, there are no studies assuming redundant

representations and TL. In this paper, we assume SD

number representation and we investigate linear threshold

networks for 2ÿ 1 addition, multioperand addition, and

multiplication. We assume that the operands are n-SD

numbers and we are mainly concerned with establishing

the limits of the circuit designs using threshold-based

networks. We measure the depth and the size of the

networks we propose in terms of LTGs.
The main contributions of our proposal can be summar-

ized as:

. Any SD symmetric function can be implemented by
a depth-2 feed-forward Linear Threshold Network
(LTN) with O�n� size, weight and fan-in values.

. Assuming radix-2 redundant operand representa-
tion, the addition of two n-SD numbers can be
computed by a depth-2 LTN with O�n� size and O�1�
weight and fan-in values.

. Assuming radix-�2nÿ 1� redundant operand repre-
sentation, the multioperand addition of n n-SD
numbers can be computed by an explicit depth-2
LTN with the size in the order of O�n3�, with the
maximum weight value in the order of O�n3�, and
the maximum fan-in value in the order of O�n2�.

. Assuming radix-�2nÿ 1� operand representation,
the multiplication of two n-SD numbers can be
computed by an explicit depth-3 LTN with the size
in the order of O�n3�. The maximum weight value is
in the order of O�n3� and the maximum fan-in value
is in the order of O�n2 logn�.

We also note here that, while our results are primarily

theoretical, there exist technology proposals, see, for

example, [10], which may implement at least some of the

proposed schemes, e.g., two operand addition.
The presentation is organized as follows: In Section 2, we

discuss background information on Boolean symmetric

functions and their implementation with TL and introduce

some preliminary results; in Section 3, we present TL

schemes for the 2ÿ 1 addition of radix-2 SD numbers; in

Section 4, we study the multiplication of radix-2 SD

numbers and we present schemes for the multioperand

addition and the multiplication of radix-�2nÿ 1� SD

numbers; we conclude the presentation with some final
remarks.

2 BACKGROUND AND PRELIMINARIES

In order to make this presentation self-consistent, we
introduce in this section the definition of Boolean sym-
metric functions and some TL-based implementation
techniques that we will use in our investigation.

Definition 1. A Boolean function of n variables Fs is symmetric
if and only if for any permutation � of < 1; 2; . . . ; n > ,
Fs�x1; x2; . . . ; xn� � Fs�x��1�; x��2�; . . . ; x��n��.

For any n input variable symmetric Boolean function Fs, the
sum � �Pn

i�1 xi ranges from 0 (all input variables are 0) to
n (all input variables are 1). Inside this definition domain
�0; n�, there are r intervals �qj; Qj�; j � 1; 2; . . . ; r, for which if
� 2 �qj; Qj�, then Fs is equal to 1 and, outside these intervals,
the function is 0. This is graphically depicted in Fig. 1 and
formally described by (4).

Fs�x1; x2; . . . ; xn� �
1 if � �Pn

i�1 xi 2 �qj; Qj�; j � 1; 2; . . . ; r

0 � q1 � Q1 < q2 � Q2 < . . . < qr � Qr � n
0 elsewhere:

8><>: �4�

The number of intervals depends on the function definition
and we proved elsewhere [21] that, for any Boolean
symmetric function, the maximum number of intervals r
is upper bounded by dn�1

2 e.
Definition 2. A Boolean function of n variables Fgs is

generalized symmetric4 if it entirely depends on
� �Pn

i�1 wixi, the weighted sum of its input variables, with
wi, i � 1; 2; . . . ; n, given integer constants.5

In essence, a generalized symmetric Boolean function Fgs is

either a symmetric Boolean function or a nonsymmetric

Boolean function that can be transformed into a symmetric

Boolean function by trivial transformations, e.g., assign-

ment of different weight values to the inputs or input
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Fig. 1. Interval-based representation of Fs.

4. This definition and, also, Definition 1 are not specific to functions with
Boolean input variables. The symmetry is an intrinsic property of the
function and do not depend on the input variable type. Therefore, they also
appy to functions of other types of input variables, e.g., integer, real.

5. The weights wi can be also real numbers, but we have assumed integer
values here because of practical considerations related to the LTG
fabrication technology [7], [10].



replication. Fgs can be described as a function of � �Pn
i�1 wixi and the definition domain extends from �0; n� to

�0; �max�, where �max �
Pn

i�1 wi. All the results that stand

true for symmetric Boolean functions can be also applied to

generalized symmetric Boolean functions.
To clarify the generalized symmetric Boolean function

concept, let us consider the 4 2-bit multioperand addition

producing a 4-bit result. The truth table and the schematic

diagram for such a function are depicted in Fig. 2. First, it

can be observed that, in order to produce the sum at bit

position 0, we need to consider only the bits in the first

column (LSB position). It can be easily verified that the

Boolean function computing the sum's LSB, s0�x0; y0; z0; w0�
is symmetric because it can be clearly determined by the

integer value of � � x0 � y0 � z0 � w0, i.e., if � � 0, then

s0 � 0, if � � 1, then s0 � 1, if � � 2, then s0 � 0, if � � 3,

then s0 � 1, and if � � 4, then s0 � 0. This property,

however, does not hold for the other sum bits. For example,

the Boolean function s1�x0; y0; z0; w0; x1; y1; z1; w1� is not a

symmetric Boolean function as its value depends on the

positioning of the inputs and cannot always be correctly
determined from the x0 � y0 � z0 � w0 � x1 � y1 � z1 � w1

value.
The s1 function is, however, a generalized symmetric

Boolean function as it can be made to be a symmetric
Boolean function if a weight of 2 is associated with the input
bits in the column 1. Consequently, the s1 sum bit can be
computed by a symmetric Boolean function s1���, where
� � x0 � y0 � z0 � w0 � 2�x1 � y1 � z1 � w1�, which inter-
val-based representation is graphically depicted in Fig. 3.

Given that symmetric (generalized or not) functions
constitute a frequently used class of Boolean functions and
because they are expensive to implement in hardware, in
terms of area and delay, their implementation with feed-
forward LTNs has been the subject of numerous theoretical
and practical scientific investigations, see, for example, [22],
[23], [24], [25], [16], [21].

The most network-size efficient approach known so far
for the depth-2 implementation of symmetric Boolean
function with TL is the telescopic sum method, introduced
by Minick in [23]. The method can be used for the

COTOFANA AND VASSILIADIS: SIGNED DIGIT ADDITION AND RELATED OPERATIONS WITH THRESHOLD LOGIC 195

Fig. 2. Four 2-bit multioperand addition.

Fig. 3. Interval-based representation of s1.



implementation of any Boolean symmetric function and
produces depth-2 feed-forward LTNs with the size in the
order of O�n�, measured in terms of LTGs, and with linear
weight and fan-in values. We shortly describe this method
by introducing the following lemma.

Lemma 1 [23]. Any Boolean symmetric function

Fs�x1; x2; . . . ; xn�, described as in (4), can be implemented
by a two-layer feed-forward LTN with a size complexity

measured in terms of LTGs in the order of O�n� as follows:

Fs � sgn
Xn
i�1

xi ÿ t0 �
Xr
j�1

tjuj

" #" #
; �5�

where

t0 � q1tj � qj�1 ÿ qj �j � 1; 2; . . . ; rÿ 1�;

uj � sgn
Xn
i�1

xi ÿ �Qj � 1�
" #

tr � n� 1ÿ qr if Qr 6� n and tr � 0 if Qr � n:

A formal proof of Lemma 1 and implementation examples
can be found in [26].

Given that we assume SD operands (that is, we consider
functions with no Boolean input variables), we need to map
them into general Boolean functions. In order to achieve this
mapping, we first have to choose a representation for the
SDs. One possible representation is the 2's complement
[27].6

Given a fixed radix r, an SD number is represented as
�snÿ1; snÿ2; . . . ; s1; s0�. In this presentation, we will consider
that any digit si can assume a value in the symmetric7 digit
set fÿ�;ÿ�� 1; . . . ; 1; 0; 1; . . . ; �ÿ 1; �g, with the maxi-
mum digit magnitude � satisfying (1) or (2). The cardinality
of the digit set is 2�� 1 and, consequently, any SD si can be
binary represented by a k-tuple �xkÿ1; . . . ; x1; x0� with k �
dlog�2�� 1�e and xl 2 f0; 1g, for l � 0; 1; . . . ; kÿ 1.

For the particular case of the 2's complement codification

of the SDs, the dimension of the k-tuple can also be computed

as k � 1� dlog ��� 1�e. For each si, i � 0; 1; . . . ; nÿ 1, the

values of xl, l � 0; 1; . . . ; kÿ 1, are to be computed such as

si � ÿ2kÿ1xkÿ1 �
Pkÿ2

l�0 2lxl. Assuming 2's complement re-

presentation codification of the SDs, we will prove (in the

following lemma) that any generalized symmetric SD

function can be implemented by a depth-2 LTN with

polynomially bounded size.

Lemma 2. Let F�snÿ1; snÿ2; . . . ; s1; s0� be an arbitrary general-

ized symmetric function of n SD variables, with si 2
fÿ�;ÿ�� 1; . . . ;ÿ1; 0; 1; . . . ; �ÿ 1; �g and � satisfying

(1) or (2) for a fixed radix r. F can be implemented by an

LTN with the cost in the order of O�n�.

Proof. Given that F is generalized symmetric, it can be
expressed as in (6), where wi, i � 0; 1; . . . ; nÿ 1, are
arbitrary integer constant weights.

F�snÿ1; snÿ2; . . . ; s1; s0� � F
Xnÿ1

i�0

wisi

 !
: �6�

Under 2's complement representation of the SDs si, (6) is
equivalent to:

F�snÿ1; . . . ; s1; s0� � F
Xnÿ1

i�0

wi ÿ2kÿ1xkÿ1 �
Xkÿ2

l�0

2lxl

 ! !

� F
Xnÿ1

i�0

wi ÿ2dlog ���1�exdlog ���1�e �
Xdlog ���1�eÿ1

l�0

2lxl

 ! !
:

�7�
As a consequence of (7), F is expressed as a general-
ized Boolean symmetric function of n�1� dlog ��� 1�e�
variables, then it can be computed with the scheme in
Lemma 1. The size of the LTN implementing F
depends, on the number of intervals on the definition
domain. Given that, in our case, the maximum
absolute value any digit can assume is � � rÿ 1, the
argument of F as described in (7), in the worst case
scenario, can take any value inside the definition
domain �ÿPnÿ1

i�0 wir;
Pnÿ1

i�0 wir�. Consequently, the max-
imum number of intervals is upper bounded by

2r
Pnÿ1

i�0 wi � 1

2

& '
:

Because we assumed that the weights wi and the radix r
are arbitrary integer constants, the LTN cost is in the
order of O�n�. Obviously the weight and fan-in values
are in the order of O�n�. tu

3 SIGNED DIGIT 2ÿ 1 ADDITION

In this section, we investigate 2ÿ 1 addition schemes using
a ªtotally parallelº [1] addition approach. We use a fixed
radix of 2 and the corresponding digit set f1; 0; 1g, where 1
denotes ÿ1. We consider two n-SD integers X �
�xnÿ1; . . . ; x1; x0�SD2

and Y � �ynÿ1; . . . ; y1; y0�SD2
and pro-

pose two schemes to compute the sum Z � X � Y ,
represented as Z � �znÿ1; . . . ; z1; z0�SD2

.
Traditionally, in the context of Boolean logic, the 2ÿ 1

addition of radix-2 SD represented operands has been
achieved with two-step approaches [2], [27], [3]: First, an
intermediate carry ci and an intermediate sum si satisfying
the equation xi � yi � 2ci � si are computed for each digit
position i. Second, the sum digit zi, i � 0; 1; . . . ; nÿ 1, is
computed as si � ciÿ1.

In our approach, we will use the ªtotally parallelº
addition described in Table 1 [3]. We also assume that any
digit x in the set f1; 0; 1g is represented in the 2's
complement notation by two bits, as is shown in Table 2.
Note that, in this codification, the combination x� � 0 and
xÿ � 1 is not allowed and cannot appear during the
computations.
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6. There are also other possibilities, but the 2's complement notation
seems to be the natural choice. Later on we will suggest that, in some
particular cases, other codification schemes are more convenient as they
lead to the reduction of the network depth.

7. The symmetry of the digit set is not a restriction. We make this
assumption for simplicity of notations. Digit sets which are not symmetric
can also be considered without changing the results we report in the next
sections.



It can be observed in Table 1 that the digits in position

iÿ 1 contribute into the computation of si and ci only by

their sign. Therefore, what we have to compute in order to

implement the scheme presented in the table are the

functions si�xi; yi; xÿiÿ1; y
ÿ
iÿ1� and ci�xi; yi; xÿiÿ1; y

ÿ
iÿ1�. These

two functions, as is directly implied from the table, are not

symmetric in their input variables. They can be made

symmetric by computing the weighted sum of the inputs �s
stated by (8) such that (9), (10) with proper determined

weights wi and wiÿ1 hold true for all the possible input

combinations.

�s � wi�ÿ2xÿi � x�i ÿ 2yÿi � y�i � � wiÿ1�xÿiÿ1 � yÿiÿ1� �8�

si��s� � si�xi; yi; xÿiÿ1; y
ÿ
iÿ1� �9�

ci��s� � ci�xi; yi; xÿiÿ1; y
ÿ
iÿ1�: �10�

We compute the weights wi and wiÿ1 by taking into

consideration the specific structure of the functions si and

ci. The choice for wiÿ1 � 1 is straightforward. Given that, for

the digits in position iÿ 1, we take into account only the xÿ

bits, the minimum value of wi should be equal8 to 3.

Consequently, the weighted sum �s in (8) can be computed

as ÿ6�xÿi � yÿi � � 3�x�i � y�i � � xÿiÿ1 � yÿiÿ1 and the descrip-

tion of the symmetric functions computing si and ci is

described in Table 3.
From the table, we derive the interval description

(similar to the description of (4)) for the required Boolean

functions:

s�i � 1 if �s 2 f�ÿ3;ÿ1�; �3; 5�g �11�

sÿi � 1 if �s 2 f�ÿ3�; �3�g �12�

c�i � 1 if �s 2 f�ÿ6;ÿ4�; �ÿ2;ÿ1�; �3�; �6; 8�g �13�

cÿi � 1 if �s 2 f�ÿ6;ÿ4�; �ÿ2;ÿ1�g: �14�
Assume that �����i and ���ÿ�i are computed as in (15), (16).

�����i � sgn ÿ6�xÿi � yÿi � � 3�x�i � y�i � � xÿiÿ1 � yÿiÿ1 ÿ �
� 	

�15�

���ÿ�i � sgn �� 6�xÿi � yÿi � ÿ 3�x�i � y�i � ÿ xÿiÿ1 ÿ yÿiÿ1

� 	
:

�16�
We next introduce an implicit depth-1 implementation

technique based on the fact that any symmetric Boolean

function Fs, defined as in (4), can be expressed as:

Fs�x1; x2; . . . ; xn� � q�
�

1 Q
�ÿ
1 � q�

�

2 Q
�ÿ
2 � . . .� q��r Q�

ÿ

r ; �17�
where q�

�
j � 1 if � � qj, Q�

ÿ
j � 1 if � � Qj, for j � 1; 2; . . . ; r,

and � and concatenation represent logical OR and AND,

respectively.

Lemma 3. Any Boolean symmetric function Fs�x1; x2; . . . ; xn�,
described in (17), can be implemented by an implicit depth-1

feed-forward LTN with the size in the order of O�n� as follows:
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8. wi has to be greater than the maximum value that can be assumed by
wiÿ1�xÿiÿ1 � yÿiÿ1� which, in this case, is 2.

TABLE 1
Totally Parallel Addition at Digit Position i

TABLE 2
Digit Codification of x 2 f1; 0; 1g



Fs�x1; x2; . . . ; xn� � q�
�

1 �Q�
ÿ

1 � q�
�

2 �Q�
ÿ

2 � . . .� q��r �Q�
ÿ

r ÿ r:
�18�

Proof. To verify (18), it will be shown that Fs is indeed 1
when the sum � �Pn

i�1 xi lies inside an interval �qj; Qj�
for a specific j and that Fs is 0 when there is no j such
that � 2 �qj; Qj� for all j, 1 � j � r.

. Case 1: � 2 �qj; Qj� for a specific j, 1 � j � r.
In this case, Q�

ÿ
l � 1 for l � j; j� 1; . . . ; r, Q�

ÿ
l �

0 for l � 1; 2; . . . ; jÿ 1, q�
�
l � 1 for l � 1; 2; . . . ; j,

and q�
�
l � 0 for l � j� 1; . . . ; r. The refor e ,

Fs � rÿ j� 1� jÿ r, i.e., is 1 as needed.
. Case 2: There is no j, 1 � j � r, such that

� 2 �qj; Qj�.
In this case, there are three possibilities: � 2

�Ql; ql�1� for a given l, 1 � l � r, � 2 �0; q1�, and
� 2 �Qr; n�. We will prove that, in all of them, Fs is
0 as needed. In the first subcase, Q�

ÿ
l � 1 for

l � j� 1; j� 2; . . . ; r, Q�
ÿ
l � 0 for l � 1; 2; . . . ; j,

q�
�
l � 1 f o r l � 1; 2; . . . ; j, a n d q�

�
l � 0 f o r

l � j� 1; . . . ; r. Therefore,

Fs � rÿ jÿ 1� 1� jÿ r;
i.e., is 0. In the second subcase, Q�

ÿ
l � 1 for l �

1; 2; . . . ; r and q�
�
l � 0 for l � 1; 2; . . . ; r. Conse-

quently, Fs � rÿ r, i.e., is 0. In the last subcase,
Q�
ÿ
l � 0 f o r l � 1; 2; . . . ; r a n d q�

�
l � 1 f o r

l � 1; 2; . . . ; r. Consequently, Fs � rÿ r, i.e., is 0.

Given that any q�
�
j can be obtained with an LTG

computing sgnf�ÿ qjg and any Q�
ÿ
j with an LTG

computing sgnfQj ÿ �g, the entire network is built with
2r LTGs, i.e., the implementation cost is in the order of
O�n�. All the input weights are 1 and the fan-in for all the
gates is n. tu

The method presented in Lemma 3 can also be applied
for the implementation of generalized symmetric functions.
Given that, in this case, the number of intervals is upper
bounded by Pn

i�1 wi � 1

2

� �
;

the implementation cost will be upper bounded by

2

Pn
i�1 wi � 1

2

� �
;

i.e., is still in the order of O�n�.
Remark 1. The scheme in Lemma 3 can be changed into an

explicit one by connecting all the outputs of the gates
computing q�

�
j and Q�

ÿ
j to a gate with the threshold value of

r� 1. The output of this extra gate will explicitly provide the
value of Fs after the delay of 2 TGs.

Remark 2. If q1 � 0, then q�
�
1 is always 1 and (18) becomes:

Fs�x1; x2; . . . ; xn� � Q�
ÿ

1 � q�
�

2 �Q�
ÿ

2 � . . .� q��r �Q�
ÿ

r ÿ r� 1:

�19�
If Qr � n, then Q�

ÿ
r is always 1 and (18) becomes:

Fs�x1; x2; . . . ; xn� � q�
�

1 �Q�
ÿ

1 � q�
�

2 �Q�
ÿ

2 � . . .� q��r ÿ r� 1:

�20�
If q1 � 0 and Qr � n, then q�

�
j and Q�

ÿ
j are always 1 and (18)

becomes:

Fs�x1; x2; . . . ; xn� � Q�
ÿ

1 � q�
�

2 �Q�
ÿ

2 � . . .� q��r ÿ r� 2: �21�

It should be noted that, if used in cascaded computation,
the method described in Lemma 3 increases the fan-in of the

next stage because the value of the function Fs is carried by
2r signals.

From Table 3 and using (15, (16), (17), the four Boolean

symmetric functions describing the computations of the
intermediate sum si and carry ci can be expressed by the

following:

s�i � �ÿ3���i �ÿ1�ÿ�i � �3�
�
�
i �5�

ÿ
�
i �22�

sÿi � �ÿ3���i �ÿ3�ÿ�i � �3�
�
�
i �3�

ÿ
�
i �23�

c�i � �ÿ6���i �ÿ4�ÿ�i � �ÿ2���i �ÿ1�ÿ�i � �3�
�
�
i �3�

ÿ
�
i � �6�

�
�
i �8�

ÿ
�
i �24�

cÿi � �ÿ6���i �ÿ4�ÿ�i � �ÿ2���i �ÿ1�ÿ�i : �25�
By applying Lemma 3, we derive from (22), (23), (24), (25)

an implicit depth-1 implementation of the first step of the
ªtotally parallelº addition scheme. Because �ÿ6���i and �8�ÿ�i
are always 1 and Remark 2, we have that:

s�i � �ÿ3���i � �ÿ1�ÿ�i � �3�
�
�
i � �5�

ÿ
�
i ÿ 2 �26�

sÿi � �ÿ3���i � �ÿ3�ÿ�i � �3�
�
�
i � �3�

ÿ
�
i ÿ 2 �27�

c�i � �ÿ4�ÿ�i � �ÿ2���i � �ÿ1�ÿ�i � �3�
�
�
i � �3�

ÿ
�
i � �6�

�
�
i ÿ 2 �28�

cÿi � �ÿ4�ÿ�i � �ÿ2���i � �ÿ1�ÿ�i ÿ 1: �29�
In order to make the way this implicit scheme is working
more intuitive, we depict in Fig. 4 the regions in which the

threshold signals �����i and ���ÿ�i are active for each of the four
signals s�i ; s

ÿ
i ; c

�
i ; c

ÿ
i .

The second step of the ªtotally parallelº addition is the

computation of zi � si � ciÿ1. Following the reasoning used
for the computation of s�i ; s

ÿ
i ; c

�
i ; c

ÿ
i :

z�i � d�ÿ1�ÿ�i � c�1���i ÿ 1 �30�

zÿi � d�ÿ1�ÿ�i ; �31�
where

�z � ÿ2�sÿi � cÿiÿ1� � s�i � c�iÿ1 �32�

d�ÿ1�ÿ�i � sgn ÿ1ÿ �zf g �33�

c�1���i � sgn �z ÿ 1f g: �34�
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Theorem 1. Assuming radix-2 SD operand representation and

the SD codification in Table 2, the addition of two n-SD

numbers can be computed by an implicit depth-2 LTN with

11n� 2 LTGs, a maximum weight value of 6, and a maximum

fan-in of 12.

Proof. The quantities d�ÿ1�ÿ�i and c�1���i in (33), (34) can be

computed by doing the proper substitutions, using (26),

(27), (28), (29), as:

d�ÿ1�ÿ�i � sgn ÿ1ÿ �zf g � sgn 2 sÿi � cÿiÿ1

ÿ �ÿ s�i ÿ c�iÿ1 ÿ 1
� 	

� sgn �ÿ3���i � 2�ÿ3�ÿ�i � �3�
�
�
i � 2�3�ÿ�i ÿ �ÿ1�ÿ�i ÿ �5�

ÿ
�
i

n
��ÿ4�ÿ�iÿ1 � �ÿ2���iÿ1 � �ÿ1�ÿ�iÿ1 ÿ �3�

�
�
iÿ1 ÿ �3�

ÿ
�
iÿ1 ÿ �6�

�
�
iÿ1 ÿ 3

o
�35�

c�1���i � sgn �z ÿ 1f g � sgn ÿ2 sÿi � cÿiÿ1

ÿ �� s�i � c�iÿ1 ÿ 1
� 	

� sgn ÿ�ÿ3���i ÿ 2�ÿ3�ÿ�i ÿ �3�
�
�
i ÿ 2�3�ÿ�i � �ÿ1�ÿ�i � �5�

ÿ
�
i

n
ÿ�ÿ4�ÿ�iÿ1 ÿ �ÿ2���iÿ1 ÿ �ÿ1�ÿ�iÿ1 � �3�

�
�
iÿ1 � �3�

ÿ
�
iÿ1 � �6�

�
�
iÿ1 � 1

o
:

�36�
Consequently, (30), (31) provide an implicit depth-2

implementation scheme for the computation of the sum

digit zi. On the first level of the network, we compute, for

each digit position i, i � 0; 1; . . . ; nÿ 1, the values �ÿ4�ÿ�i ,

�ÿ3�ÿ�i , �ÿ3���i , �ÿ2���i , �ÿ1�ÿ�i , �3�ÿ�i , �3���i , �5�ÿ�i , and �6���i , i.e., we

use nine TGs per digit. On the second level, we need two

TGs for each digit position i, i � 0; 1; . . . ; nÿ 1, in order

to compute d�ÿ1�ÿ�i ; c�1���i as stated by (35), (36). Therefore,

the network producing all the sum digits can be
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ÿ
iÿ1, and yÿiÿ1

Fig. 4. Description of threshold signals for s�i ; s
ÿ
i ; c

�
i ; c

ÿ
i .



constructed with 11n TGs. For the digit position nÿ 1,

we have to produce the carry-out. This can be explicitly

generated in depth-2 at the expanse of two TGs

computing:

c�nÿ1 � sgn �ÿ4�ÿ�nÿ1 � �ÿ2���nÿ1 � �ÿ1�ÿ�nÿ1 � �3�
�
�
nÿ1

n
��3�ÿ�nÿ1 � �6�

�
�
nÿ1 ÿ 2

o �37�

cÿnÿ1 � sgn �ÿ4�ÿ�nÿ1 � �ÿ2���nÿ1 � �ÿ1�ÿ�nÿ1 ÿ 1
n o

: �38�

Therefore, the cost of the entire addition network is
11n� 2, i.e., of O�n� complexity. Obviously, the weight
values and fan-in values do not depend on n. The
maximum fan-in is 12 and the maximum weight value
is 6, i.e., having O�1� complexity. tu
Note that, for this scheme, the value of z�i is carried by

two signals and one threshold value and zÿi is actually
depth-2 explicitly computed. If used in cascaded computa-
tion, this method will increase with 1 the fan-in of the next
stage and will contribute with 1 to the threshold value of
some of the gates in the next stage.

If we compare the scheme introduced in Theorem 1 with
the depth-2 scheme presented in [28], which has a network
size of 25n� 5, a maximum fan-in of 26, and a maximum
weight value of 123, one can observe that we achieved a
substantial reduction in network size, weight, and fan-in
values for the same network depth. However, the new

depth-2 scheme is implicit and this fact increases the fan-in
of the stage requiring as inputs the digits zi. In the
remainder of this section, we show that it is possible to
explicitly compute the sum while maintaining the network
depth and complexity.

The method described by (30), (31) is implicit because of

the way we compute the final sum bit z�i . All the other

signals, i.e., zÿi , c�nÿ1, and cÿnÿ1 are explicitly computed with

two levels of TGs. Consequently, (30) has to be modified to

appear as zÿi � c�
�ÿ�i or zÿi � c�
���i without inducing funda-

mental changes to (31), (37), (38). To this end, we assume

that, in order to represent a SD x in the set f1; 0; 1g, we use

the codification described in Table 4 instead of the 2's

complement codification in Table 2. Note that, with this

new codification, the combination x� � 1 and xÿ � 1 is not

allowed and cannot appear during the computations.
Under this assumption, the quantity �s can be expressed

as in (39) and it can take values in the definition interval
�ÿ12; 8�.

�s � 3�xi � yi� � xÿiÿ1 � yÿiÿ1

� 3�ÿ21xÿi � 20x�i ÿ 21yÿi � 20y�i � � xÿiÿ1 � yÿiÿ1

� ÿ6�xÿi � yÿi � � 3�x�i � y�i � � xÿiÿ1 � yÿiÿ1:

�39�

Thus, the first step of the ªtotally parallelº addition scheme
is described in Table 5. From the table, it can be deduced
that the Boolean symmetric functions describing the
computations of the intermediate sum si and carry ci are
as follows:

s�i � �ÿ5���i �ÿ4�ÿ�i � �4�
�
�
i �5�

ÿ
�
i �40�

sÿi � �ÿ6���i �ÿ6�ÿ�i � �3�
�
�
i �3�

ÿ
�
i �41�

c�i � �3�
�
�
i �3�

ÿ
�
i � �6�

�
�
i �8�

ÿ
�
i �42�
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cÿi � �ÿ12���i �ÿ10�ÿ�i � �ÿ5���i �ÿ4�ÿ�i : �43�
As was proven in Lemma 3, from these equations we can

derive an implicit depth-1 implementation of the first step

of the ªtotally parallelº addition scheme. Because �ÿ12���i
and �8�ÿ�i are always 1, the results of Remark 2 can also be

included in the derivation. Thus,

s�i � �ÿ5���i � �ÿ4�ÿ�i � �4�
�
�
i � �5�

ÿ
�
i ÿ 2 �44�

sÿi � �ÿ6���i � �ÿ6�ÿ�i � �3�
�
�
i � �3�

ÿ
�
i ÿ 2 �45�

c�i � �3�
�
�
i � �3�

ÿ
�
i � �6�

�
�
i ÿ 1 �46�

cÿi � �ÿ10�ÿ�i � �ÿ5���i � �ÿ4�ÿ�i ÿ 1: �47�
The second step of the ªtotally parallelº addition is the

computation of zi � si � ciÿ1. In this case, �z � ÿ2�sÿi �
cÿiÿ1� � s�i � c�iÿ1 and the second step can be described by

Table 6. Following the same reasoning applied previously

for the computation of s�i ; s
ÿ
i ; c

�
i ; c

ÿ
i , this step can be

implemented by:

z�i � c�1���i �48�

zÿi � d�ÿ2�ÿ�i : �49�

Theorem 2. Assuming radix-2 SD operand representation and

the SD codification in Table 4, the addition of two n-SD

numbers can be computed by an explicit depth-2 LTN with

12n� 2 LTGs, a maximum weight value of 10 and a

maximum fan-in of 14.

Proof. By proper substitutions, using (44), (45), (46), (47),

(48), (49) provide an explicit depth-2 implementation

scheme of the 2ÿ 1 addition as follows:

zÿi � sgn ÿ2ÿ �zf g � sgn 2 sÿi � cÿiÿ1

ÿ �ÿ s�i ÿ c�iÿ1 ÿ 2
� 	

� sgn 2�ÿ6���i � 2�ÿ6�ÿ�i � 2�3���i � 2�3�ÿ�i
n
ÿ�ÿ5���i ÿ �ÿ4�ÿ�i ÿ �4�

�
�
i ÿ �5�

ÿ
�
i

�2�ÿ10�ÿ�iÿ1 � 2�ÿ5���iÿ1 � 2�ÿ4�ÿ�iÿ1 ÿ �3�
�
�
iÿ1

ÿ�3�ÿ�iÿ1 ÿ �6�
�
�
iÿ1 ÿ 5

o
�50�

z�i � sgn �z ÿ 1f g � sgn ÿ2 sÿi � cÿiÿ1

ÿ �� s�i � c�iÿ1 ÿ 1
� 	

� sgn ÿ2�ÿ6���i ÿ 2�ÿ6�ÿ�i ÿ 2�3���i ÿ 2�3�ÿ�i � �ÿ5���i
n
��ÿ4�ÿ�i � �4�

�
�
i � �5�

ÿ
�
i

ÿ2�ÿ10�ÿ�iÿ1 ÿ 2�ÿ5���iÿ1 ÿ 2�ÿ4�ÿ�iÿ1 � �3�
�
�
iÿ1

��3�ÿ�iÿ1 � �6�
�
�
iÿ1 � 2

o
:

�51�
On the first level, we compute, for each digit position i,

i � 0; 1; . . . ; nÿ 1, the values �ÿ10�ÿ�i , �ÿ6�ÿ�i , �ÿ6���i , �ÿ5���i ,

�ÿ4�ÿ�i , �3�ÿ�i , �3���i , �4��� , �5�ÿ�i , and �6���i , i.e., we use 10 TGs per

digit. On the second level, we need two TGs for each

digit position i, i � 0; 1; . . . ; nÿ 1, in order to computed�ÿ2�ÿ�i ; c�1���i as stated by (50), (51). For the digit position

nÿ 1, we have to produce the carry-out. This can be also

explicitly generated in depth-2 at the expanse of two TGs

computing:

c�nÿ1 � sgn �3���nÿ1 � �3�
ÿ
�
nÿ1 � �6�

�
�
nÿ1 ÿ 1

n o
�52�

cÿnÿ1 � sgn �ÿ10�ÿ�nÿ1 � �ÿ5���nÿ1 � �ÿ4�ÿ�nÿ1

n o
: �53�

Therefore, the cost of the entire addition network is
12n� 2. The maximum fan-in is 14 and the maximum
weight value is 10. tu
One can observe that all the quantities involved in

Theorem 2 are in the same order of magnitude as in
Theorem 1. Even though the scheme in Theorem 1 requires
slightly larger maximum fan-in (14 instead of 12) and
weight values (10 instead of 6), it has the advantage of
explicitly computing the sum digits after the delay of 2 TGs.

4 SIGNED DIGIT MULTIOPERAND ADDITION AND

MULTIPLICATION

Threshold networks for multioperand addition and multi-
plication of n-bit binary operands have been reported [14],
[15], [26], [29]. Generally speaking, multioperand addition
and multiplication can be achieved in two steps, namely:
First, reduce a multioperand addition (in multiplication,
such addition is required for the reduction of the partial
product matrix) into two rows; second, add the two rows to
produce the final result. In addition to these two steps, the
multiplication also requires a third step, the production of
the partial product matrix. In this section, we investigate
these processes. For such a scheme and nonredundant
representations, the following has been suggested:
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. The reduction of the multioperand addition (or the
reduction of multiplication partial product matrix)
into two rows can be achieved by depth-2 networks
with the cost of the network, in terms of LTGs, in the
order of O�n2� and a maximum fan-in in the order of
O�n logn�, see, for example, [15], [29].

. The entire multiplication can be implemented by a
depth-4 network [14].

It was also suggested in [30], based on a result in [31],
that multioperand addition can be computed in depth 2 and
multiplication in depth 3, but no explicit construction for
the networks and no complexity bounds are provided. A
constructive approach can be derived if the result in [32]
suggesting that a single threshold gate computing F �x� �
sgnf!0 � !1x1 � � � � � !nxng with arbitrary weights can be
simulated by an explicit polynomial-size depth-2 network is
used. Such a LOGSPACE-uniform construction as stated in
[32] produces a network with O�log12 W �n�� wires and the
weights of those wires in order of O�log8 W �n��, for a total
size of O�n20 log20 n�. The total size for such a construction
was further reduced to O�n12 log12 n� in [33]. LOGSPACE-
uniform constructions for depth 2 multioperand addition
and depth 3 multiplication has been suggested in [32], but
the discussion about depth-2 multioperand addition or
depth-3 multiplication schemes is marginal and no com-
plexity bounds are explicitly given. In an attempt to assess
the complexity of such a scheme for multioperand addition
which operates on an n2-input function instead of an n-
input function, we can use the least expensive scheme in
[32] and estimate that such a depth-2 multioperand
addition or depth-3 multiplication network may require a
total size of O�n24 log24 n�.

In this section, we investigate the potential benefit that
can be expected by using SD represented operands in TL
multiplication schemes. First, we prove that multioperand
addition can be achieved by a depth-2 network with O�n3�
size, O�n3� weights, and O�n2� fan-in complexities. It must
be noted that the proposed network performs an n operand
to one result reduction in depth-2, not an n operand to two

reduction in depth-2 as previously proposed schemes [15],
[29] do. Subsequently, we show that the multiplication (that
is, the generation of the partial products and the matrix
reduction into one row representing the product) can be
achieved with a depth-3 network with O�n3� size, O�n3�
weights, and O�n2 logn� fan-in complexities.

4.1 Depth-2 Multioperand Addition

It is well-known that, in order to perform n-bit multi-
operand addition, first, the n rows (representing the n
numbers) are reduced to two, then the two rows are added
to produce the final result. This two-step process is
depicted, for the particular case of eight 8-bit numbers, in
Fig. 5a. As indicated in the introduction of the section, the
first step of multioperand addition not using redundant
digit representations requires a depth-2 network and
additional depth is required to perform the second step.
In the following, we will prove that, if we assume SD
operands in an appropriate representation radix the multi-
operand addition of n n-SD numbers and, consequently, the
reduction of the partial product matrix of the multiplication
operation, into one row, can be achieved in one computa-
tion step, as in Fig. 5b, requiring a depth-2 network. This is
achieved by determining a radix which allows an n-digit
ªtotally parallelº addition. Avizienis investigated this issue
in [1], but from the dual point of view, by assuming a given
radix-r SD representation and determine the maximum
number of digits that can be added in ªtotally parallelº
mode within that radix-r SD representation. In our
investigation, the number of digits n is given and a
minimum value for the radix-r must be found to compute
n SD addition into a ªtotally parallelº mode. We answer to
this question in the following lemma.

Lemma 4. The simultaneous addition of n SDs can be done in a
ªtotally parallelº mode by assuming a representation radix
greater or equal with 2nÿ 1.

Proof. The simultaneous addition of n SDs can be done in a
way similar to the addition of two digits. That is, in order
to add the n digits x1

i ; x
2
i ; . . . ; xni in a ªtotally parallelº
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Fig. 5. Addition of eight 8-bit numbers. (a) Two-step reduction. (b) One-step reduction.



mode, we first have to produce an intermediate sum
digit ui and a transport digit ti that satisfy (54) and, also,
we have to satisfy the constraint indicating that the
subsequent addition in (55) that gives the value of the
sum digit zi in the position i, can be performed without
generating a carry-out. That is:

x1
i � x2

i � � � � � xni � ui � rti �54�

zi � ui � tiÿ1: �55�
We have to find the value of the radix r for which the
computation in (54), (55) can be achieved and, also, the
maximum absolute values that we can allow for the
intermediate sum digit ui and the transport digit ti. In
order to have consistency, we have to assume that
jxji jmax � jzijmax � jxjmax and jtijmax � jtiÿ1jmax � jtjmax.
Therefore, if mapped in absolute maximal values, (54),
(55) become:

njxjmax � jujmax � rjtjmax �56�

jxjmax � jujmax � jtjmax: �57�
From (56), (57), we can derive the following inequalities:

nÿ 1

rÿ 1
jxjmax � jtjmax � jxjmax ÿ jujmax: �58�

In order to obtain the greatest range for jtjmax, we have to
assume the maximum redundancy digit set, i.e., jxjmax �
rÿ 1 and, for the intermediate sum, an absolute
maximum value of jujmax � r

2

� �
. This, together with (58)

and depending if we assume an odd radix ro or an even
one re, leads to re � 2n or ro � 2nÿ 1. Therefore, in order
to perform simultaneous addition of n SDs in a ªtotally
parallelº mode, we have to use a representation radix
greater or equal with 2nÿ 1. tu
Assuming a representation radix of 2nÿ 1, we introduce

the depth-2 multioperand addition scheme for n n-SD
numbers.

Theorem 3. Assuming radix-�2nÿ 1� SD representation, the
multioperand addition of n n-SD numbers (that is, the
reduction via addition of an n-digit n row matrix to one row)
can be computed by an explicit depth-2 LTN with the size of
O�n3�. The maximum weight value is the order of O�n3� and
the maximum fan-in value is in the order of O�n2�.

Proof. Assume that the n SD numbers we have to add are
xi � �x1

i ; x
2
i ; . . . ; xni �, with i � 1; 2; . . . ; n and all the digits

xji , i; j � 1; 2; . . . ; n can take value within the symmetric
digit set

D � f2nÿ 2; 2nÿ 3; . . . ; 1; 0; 1; . . . ; 2nÿ 3; 2nÿ 2g:
Given that the radix-�2nÿ 1� allows for ªtotally

parallelº addition of n SDs, we can compute the sum
of the n numbers as follows: For each position i, produce
an intermediate sum digit ui and a transport digit ti that
satisfy ui � �2nÿ 1�ti � x1

i � x2
i � � � � � xni ; the sum digit

zi in the position i is computed as zi � ui � tiÿ1 without
generating a carry-out. If we assume that the greatest
absolute values for the input digits, transport digits, and

i n t e r m e d i a t e s u m d i g i t s a r e jxjmax � 2nÿ 2,
jtjmax � nÿ 1, and jujmax � nÿ 1, respectively, the sum
digit zi will depend only on the values of the digits in the
columns i and iÿ 1 of the multioperand addition matrix
and can be computed with the two-step approach. With
this scheme, the network implementing the multioper-
and addition contains one subcircuit performing this
computation for each digit position i, i � 1; 2; . . . ; n.
Obviously, the cost of the entire network is n times the
cost of the circuit performing the ªtotally parallelº
addition of n digits. The delay of the multioperand
addition, the maximum weight, and fan-in values are
imposed by their similar values in the circuit performing
the ªtotally parallelº addition of n digits.

The direct implementation of this two-step computa-
tion procedure with the scheme in Lemma 1 is not
convenient because it will lead to a depth-4 LTN.
However, given that any generalized symmetric Boolean
function can be implemented with a depth-2 network,
we can reduce the depth of the network to 2 if we are
able to compute the value of zi with a symmetric
function of 2n input variables, i.e., all the digits in the
columns i and iÿ 1 of the multioperand addition matrix.
This can be done by observing the direct link that exists
between the value of zi and the value assumed by the
weighted sum � of all the 2n digits

x1
i ; x

2
i ; . . . ; xni ; x

1
iÿ1; x

2
iÿ1; . . . ; xniÿ1

in the columns i and iÿ 1, computed as in (59).

� � �2nÿ 1�
Xn
j�1

xji �
Xn
j�1

xjiÿ1: �59�

This link exists as a consequence of the fact that, under

the maximum value assumptions we made for the input

digits, transport digits, and intermediate product digits,

the radix-�2nÿ 1� representation of the sum � is

�ti; zi; tiÿ1�, where the values of ti, zi, and tiÿ1 follow

from (54), (55). The maximum absolute value that can be

assumed by � can be derived from (59) under the

assumption that all the xji ; x
j
iÿ1 digits are 2nÿ 2. This will

lead to j�jmax � 4n2�nÿ 1� and to a variation domain for

� equal to �ÿ4n2�nÿ 1�; 4n2�nÿ 1��.
Because the digits involved into the computation in

(59) belong to the set D, we need �log �2nÿ 1�� � 1 bits for

their 2's complement codification. Under this codifica-

tion, each digit xji is represented by a ��log�2nÿ 1�� � 1�-
tuple �xj;�log�2nÿ1��

i ; x
j;�log�2nÿ1��ÿ1
i ; . . . ; xj;1i ; x

j;0
i �. Each of

these bits will take part in the computation of � with a

weight that corresponds to its position inside the digit

and following the 2's complement codification conven-

tion. With this assumption, (59) becomes:
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� �

�2nÿ 1�
Xn
j�1

ÿ2�log�2nÿ1�� xj;�log�2nÿ1��
i �

X�log�2nÿ1��ÿ1

k�0

2kxj;ki

 !

�
Xn
j�1

ÿ2�log�2nÿ1�� xj;�log�2nÿ1��
iÿ1 �

X�log�2nÿ1��ÿ1

k�0

2kxj;kiÿ1

 !
;

�60�
assuming all of these product digit zi can be expressed

by a function F���. Obviously, because of the weighted

manner, we did the computation of the sum �, the

function F is symmetric in all of the input variables9 and,

consequently, it can be implemented using the method

described in Lemma 1 with a depth-2 LTN.

Because zi can assume any digit value in the set D, we

again need �log�2nÿ 1�� � 1 bits for its codification.

Therefore, in order to compute F���, we have to

compute �log �2nÿ 1�� � 1 symmetric Boolean functions

F i���, i � 0; 1; . . . ; �log �2nÿ 1��. For the implementation

of each symmetric Boolean function F i���, we need ri
LTGs in the first layer of the network, ri being the

number of intervals in the definition domain where F i

assume the value of 1 and one LTG in the second layer.

Consequently, the computation of the function F��� can

be done with:

G �
X�log �2nÿ1��

i�0

ri � �log �2nÿ 1�� � 1 �61�

LTGs. The definition domain for F��� is given by

�ÿ4n2�nÿ 1�; 4n2�nÿ 1�� and, within it, F��� can change

its value at most I � 2�4n2�nÿ1��1
2nÿ1 times. As a conse-

quence, for each Boolean function F i���, the number of

intervals ri cannot be greater than I. Given that the

changes of the values of F i��� can appear only in certain

fixed positions common for all of them, we can use the

gate sharing concept we introduced in [29]. In this way,

the gates associated with the upper limit of the intervals

can be shared between the networks implementing the

Boolean functions F i���. This fact leads to an upper

bound of 8n2�nÿ1��1
2nÿ1

l m
for the maximum number of TGs in

the first level of the network. The second level of the

network has to contain one gate for each F i���, i.e., bit

position in the 2's complement representation of zi, then

it can be built with �log�2nÿ 1�� � 1 gates.
Therefore, the network computing the sum digit zi as

F��� can be built with at most

8n2�nÿ 1� � 1

2nÿ 1

� �
� �log�2nÿ 1�� � 1

LTGs. Because we need one such network for each digit

position i and the multioperand addition matrix has n

columns,10 the cost of the entire multioperand addition is

upper bounded by n� 8n2�nÿ1��1
2nÿ1

l m
� �log�2nÿ 1�� � 1�.

Asymptotically speaking, this leads to an implemen-
tation of the multioperand addition of n n-SD numbers
with a depth-2 network having the number of LTGs in
the order of O�n3�.

The maximum weight value is upper bounded by the

dimension of the definition domain, i.e., 8n2�nÿ 1� � 1,

and, consequently, it is in the order of O�n3�. The

maximum fan-in value is imposed by the gates in the

second level of the network which take as inputs all the

bits participating into the computation, i .e. ,

2n��log�2nÿ 1�� � 1�, and some outputs of the gates on

the first level. The total number of gates in the first level

of the network is upper bounded by 8n2�nÿ1��1
2nÿ1

l m
and,

consequently, the maximum fan-in value is in the order

of O�n2�. tu
We conclude our investigation on TL networks for the

multiplication of SD operands by introducing a depth-3
LTN for multiplication which uses the multioperand
addition scheme we presented in Theorem 3.

4.2 Depth-3 Multiplication

Multiplication is achieved with the generation and reduc-
tion of a partial product matrix. In the previous section, we
showed that the multioperand addition (and, by extension,
the reduction of the multiplication partial product matrix)
can be performed in depth-2 using threshold networks and
SD representations. In this section, we investigate the entire
multiplication operation, including the generation of the
partial product matrix.

In the case of nonredundant operand representation, the
generation of the partial product matrix can be performed
at the expanse of n2 TGs in depth-1 because we need one
AND gate to produce each partial product zi;j � xi � yj,
i; j � 0; 1; . . . ; nÿ 1. This may not be true for sign digit
operands where each partial product zi;j is an SD which has
to be computed as the product of two SDs xi and yj. In
essence, even though, using TL and SD representation, the
partial product reduction can be achieved by a depth-2, it is
not said that multiplication can be achieved by a depth-3
network.

To achieve a depth-3 multiplication, we use Theorem 3
for the reduction of the partial product matrix and use
implicit computations in the network connecting the partial
product production and the first stage of partial product
reduction. Given that, in order to use the scheme in
T h e o r e m 3 , a l l t h e p a r t i a l p r o d u c t s zi;j,
i; j � 0; 1; . . . ; nÿ 1, have to assume values inside the digit
set D � f2nÿ 2; 2nÿ 3; . . . ; 1; 0; 1; . . . ; 2nÿ 3; 2nÿ 2g, we
have to restrict the maximum absolute values for the SDs
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9. The number of input Boolean variables is given by the product of the
number of digits involved into the computation of zi and the number of bits
we need in order to represent a digit in D, i.e., 2n��log�2nÿ 1�� � 1�.

10. If the multioperand addition matrix is the partial product matrix
corresponding to the multiplication of two n-SD numbers, the number of
columns is 2n and the cost changes as a consequence. However, this does
not change the asymptotic cost.



xi and yj to
��������������
2nÿ 2
p� �

. In the following lemma, we assume
that the operand digits are represented with the 2's
complement codification discussed in Section 2 and prove
that the entire partial product matrix can be produced by a
depth-2 LTN with polynomially bounded size, weight, and
fan-in values.

L e m m a 5 . A s s u m i n g t w o n- S D o p e r a n d s X �
�xnÿ1; xnÿ2; . . . ; x1; x0� and Y � �ynÿ1; ynÿ2; . . . ; y1; y0� with

jxij �
��������������
2nÿ 2
p� �

and jyjj �
��������������
2nÿ 2
p� �

, the partial product

matrix kzi;jki;j�0;1;...;nÿ1, zi;j � xi � yj can be produced by a

depth-2 LTN with the size measured in terms of LTGs in the

order of O�n3�. The maximum weight value is in the order of

O�n� and the maximum fan-in value is in the order of O�n�.
Proof. We assume that all the SDs are represented in the 2's

complement notation by xi � �xdÿ1
i ; xdÿ2

i ; . . . ; x1
i ; x

0
i � and

yj � �ydÿ1
j ; ydÿ2

j ; . . . ; y1
j ; y

0
j �. The value of d is imposed by

the maximum absolute value of
��������������
2nÿ 2
p� �

we have

assumed for the operand digits and is equal to

log
��������������
2nÿ 2
p� �� �� 1. With these assumptions, the partial

product zi;j can be expressed as in the following

equation:

zi;j � xi � yj

� ÿ2dÿ1xdÿ1
i �

Xdÿ2

k�0

2kxki

 !
ÿ2dÿ1ydÿ1

j �
Xdÿ2

l�0

2lylj

 !
:

�62�
On the other hand, zi;j is a SD in the set

D � f2nÿ 2; 2nÿ 3; . . . ; 1; 0; 1; . . . ; 2nÿ 3; 2nÿ 2g
and can be represented by the ��log�2nÿ 1�� � 1�-tuple

�z�log�2nÿ1��
i;j ; z

�log�2nÿ1��ÿ1
i;j ; . . . ; z1

i;j; z
0
i;j�. Consequently, each

bit zri;j, r � 0; 1; . . . ; �log�2nÿ 1�� can be expressed by a

symmetric Boolean function Fr��m� with the weighted

sum �m computed as in (63).

�m � 22dÿ2xdÿ1
i ydÿ1

j �
Xdÿ2

k�0

Xdÿ2

l�0

2k�lxki y
l
j

ÿ
Xdÿ2

k�0

2d�kÿ1ydÿ1
j xki ÿ

Xdÿ2

l�0

2d�lÿ1xdÿ1
i ylj:

�63�

This function can be implemented with a depth-2

network, as shown in Lemma 1. By its construction, �m

can assume values in the definition domain

�ÿ�2nÿ 2�; 2nÿ 2�. Consequently, the definition domain

for all the Fr��m� describing the partial product zi;j is

given by �ÿ�2nÿ 2�; 2nÿ 2�. Within this definition

domain, any Fr��m� can change its value at most
4�nÿ1��1

2 times. Using the same way of reasoning as in

Theorem 3, an upper bound of 4�nÿ1��1
2

l m
can be obtained

for the maximum number of TGs in the first level of the

network. The second level of the network has to contain

one gate for each Fr��m�, i.e., bit position in the 2's

complement representation of the partial product zi;j,

then it can be built with �log�2nÿ 1�� � 1 gates.

Therefore, the network computing the partial product

zi;j can be built with at most 4�nÿ1��1
2

l m
� �log�2nÿ 1�� � 1

LTGs. Because one such network for each digit pair �i; j�,
i; j � 0; 1; . . . ; nÿ 1, is required, the cost of the network

producing the entire partial product matrix is upper

bounded by n2� 4�nÿ1��1
2

l m
� �log�2nÿ 1�� � 1�.

This leads to an implementation cost of the depth-2

network producing the partial product matrix in the

order of O�n3�. The maximum weight value is upper

bounded by the dimension of the definition domain for

the Fr��m� functions, i.e., 4�nÿ 1� � 1, and, conse-

quently, it is in the order of O�n�. The maximum fan-in

value is imposed by the gates in the second level of the

network which take as inputs all the bits participating

into the computation, i.e., 2�log � ��������������2nÿ 2
p �� � 2, and some

outputs of the gates on the first level. Because we proved

that the total number of gates in the first level of the

network is upper bounded by 4�nÿ1��1
2

l m
, the maximum

fan-in value is also in the order of O�n�. tu
By connecting the results for the multioperand addition

and the generation of the partial product matrix for SD
operands, we obtain a depth-4 scheme for the multiplication
of SD numbers as stated in the following corollary:

Corollary 1. Assuming radix-�2nÿ 1� SD representation the
multiplication of two n-SD numbers can be computed by an
explicit depth-4 LTN with the size measured in terms of
LTGs in the order of O�n3�. The maximum weight value is
the order of O�n3� and the maximum fan-in value is in the
order of O�n2�.

Proof. Trivial from Lemma 5 and Theorem 3. tu

The delay of the multiplication network can still be
reduced by producing the partial product matrix using an
implicit computation scheme presented in Lemma 3.

Theorem 4. Assuming radix-�2nÿ 1� SD representation the
multiplication of two n-SD numbers can be computed by an
explicit depth-3 LTN with the size in the order of O�n3�. The
maximum weight value is the order of O�n3� and the
maximum fan-in value is in the order of O�n2 logn�.

Proof. Trivial. First, use the implicit implementation
(Lemma 3) in order to produce the partial products zi;j
with the delay of one TG. This derivation will not change
the asymptotic costs we derived in Lemma 5. Second, use
the depth-2 multioperand addition in Theorem 3 to
produce the product. The implicit computation of the
partial products will only increase the fan-in of the gates
in the first level of the network performing the multi-
operand addition from 2n��log�2nÿ 1�� � 1� to at most
2n�4nÿ 3���log�2nÿ 1�� � 1�. This will change the
asymptotic bound for the fan-in from O�n2� to
O�n2 logn�. The asymptotic size of the network and the

COTOFANA AND VASSILIADIS: SIGNED DIGIT ADDITION AND RELATED OPERATIONS WITH THRESHOLD LOGIC 205



maximum weight value will remain unchanged. Conse-
quently, this depth-3 scheme has a network size in the
order of O�n3� and the maximum weight value is the
order of O�n3�. tu

5 CONCLUSIONS

We investigated LTNs for symmetric Boolean functions
2ÿ 1 addition, multioperand addition, and multiplication.
We assumed SD number representation and we were
mainly concerned with establishing the limits of the circuit
designs using threshold based networks. We have shown
that, assuming radix-2 representation, the addition of two
n-SD numbers can be computed by an explicit depth-2 LTN
with O�n� size and O�1� weight and fan-in values. If a
higher radix of �2nÿ 1� is assumed, we proved that the
multioperand addition of n n-SD numbers can be computed
by an explicit depth-2 LTN with the size in the order of
O�n3�, with the maximum weight value in the order of
O�n3� and the maximum fan-in value in the order of O�n2�.
Finally, we have shown that the multiplication of two n-SD
numbers can be computed by an explicit depth-3 LTN with
the size in the order of O�n3�. The maximum weight value is
in the order of O�n3� and the maximum fan-in value is in
the order of O�n2 logn�.
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