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Abstract
Introduction CT is a versatile medical imaging method to diagnose and monitor patient diseases. However,
varying patient characteristics and scan settings create challenges in maintaining consistent image quality,
complicating image comparisons, especially across different sources. The reconstruction kernel in CT image
reconstruction is a key parameter in the reconstruction process. It affects image characteristics, such as
sharpness, contrast, and noise. There is an urgent need for a method that effectively compares and cate-
gorises reconstruction kernels from different vendors using real patient scans. Therefore, this thesis focuses
on extracting features from real patient images to facilitate kernel comparisons within and across manufactur-
ers.

Objective This research aims to create a machine learning (ML) method that categorises reconstruction
kernels from various vendors into groups based on their sharpness. This categorisation will rely on image
features extracted directly from real patient scans with diverse scan parameters.

Methods Two distinct methods were explored to achieve the objective, each utilising different image fea-
tures and applied to a selected subset of the CT datasets from the National Lung Screening Trial (NLST) and
the Lung Image Database Consortium image collection (LIDC-IDRC). The first method focused on noise fea-
tures, specifically the standard deviation (SD) of the most homogeneous region of interest (ROI) to measure
CT scan noise magnitude and the central frequency (CF) derived from the noise power spectrum (NPS) to
represent scan noise texture. These noise features were used as input for a linear support vector machine
(SVC), creating the SVC_noise model. Additionally, an approach that incorporated radiomic features was
explored. These radiomic features were extracted from 30-pixel-sized ROIs selected from the ten most homo-
geneous patches. The radiomic feature sets were then used to train a random forest classifier (RFC), creating
the RFC_radiomics model. The models were evaluated using accuracy and Receiver Operating Character-
istic Area Under the Curve (ROC AUC) scores. McNemars test was employed to determine if one model
significantly outperformed the other. Evaluating the categorisation results presented a significant challenge
due to the lack of a ground truth. Consequently, a subset of the smoothest and sharpest kernels from each
manufacturer was selected to train, validate, and test the models. Subsequently, the models were applied to
the remaining kernels, and ground truth was established for each kernel by identifying the predominant class
within each one.

Results Both models demonstrated strong performance when applied to 270 cases featuring 37 distinct re-
construction kernels. The SVC_noise model achieved an impressive ROC AUC score of 0.97 and misclassified
eight of the 270 cases based on its smooth and sharp categorisation definition. The RFC_radiomics model
achieved a slightly lower ROC AUC score of 0.96, with ten misclassifications out of the 270 cases. McNe-
mars test indicated that the difference in performance between the two models was not statistically significant.
Moreover, the ground truth approach, applied manually, resulted in only one inconsistent kernel between the
two models; specifically, the determination of the ground truth of kernel B50s differed.

Conclusion In summary, the SVC_noise and RFC_radiomics models displayed promising performances,
with neither significantly surpassing the other. Both models exhibited the capacity to effectively identify
sharpness-related patterns within the two classes while disregarding the noise caused by variations in scan
parameters and patient characteristics in real patient data. This capability offers valuable insights that can
bridge the divide between research and clinical applications. However, it is important to note that the findings
from this research are preliminary, and caution should be exercised when applying these results to broader
contexts, including newer reconstruction kernels and techniques.
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1
Introduction

In medical imaging, Computed Tomography (CT) is employed in a wide range of applications [1]. From fa-
cilitating precise patient diagnoses [2] to monitoring the progression of diseases [3, 4], CT is a cornerstone
of modern medicine. However, this versatility presents a significant challenge: each specific application, in
combination with a patient’s characteristics, such as weight and age, necessitates a tailored approach regard-
ing scan parameters. A tailored approach means that acquisition and reconstruction settings are adjusted to
create CT images that yield sufficient image quality for gathering the necessary diagnostic information while
carefully managing the radiation dose [5]. The wide diversity of scan parameters and scanners employed
across different clinical contexts can lead to significant differences in the image quality [5, 6]. This diversity
complicates comparing CT images, for example, when attempting to analyse data acquired from different
scanners, time points, operators and institutions [7].

Most CT scanners from different vendors offer uniform settings for the majority of scan parameters. For in-
stance, the slice thickness, which determines the thickness of each cross-sectional image, can be adjusted to
a specific measurement in millimetres. However, each manufacturer offers its proprietary set of reconstruction
algorithms and kernels regarding the reconstruction parameters, including its unique naming system.

Both reconstruction algorithms and kernels are essential components of the image reconstruction process,
working together to transform raw X-ray data into human interpretable cross-sectional images [8]. A recon-
struction algorithm is a mathematical technique to convert the raw X-ray projection data acquired during a
CT scan into detailed cross-sectional images of the scanned area. This process involves complex calcula-
tions to determine the attenuation of X-rays as they pass through various tissues within the body, where a
reconstruction kernel is a filter applied during the reconstruction process [9]. It influences the appearance
and characteristics of the final image. Different kernels emphasise specific features or qualities in the image,
such as sharpness, contrast, or noise [8, 10]. The choice of kernel depends on the diagnostic goals, the type
of tissues being imaged and the user’s preference.

This thesis focuses on extracting features directly from reconstructed images of actual patients, facilitating the
comparison of various kernels from the same and different vendors.

1.1. Problem Statement
The lack of uniformity in the CT reconstruction process carries significant implications. In medical research,
the diversity in data collection practices across hospitals compromises the statistical power of studies and
undermines the reliability of their conclusions. The diversity in CT scan acquisition procedures complicates
the ability to generalise findings, potentially constraining results to specific hospital environments, particular
equipment manufacturers, or the unique preferences of individual healthcare practitioners.

Furthermore, selecting a reconstruction kernel substantially influences the characteristics of CT scan images,
impacting critical factors like image sharpness and noise. This variability introduces uncertainty into the inter-
pretation of CT scans, whether performed by human radiologists, algorithmic systems, or artificial intelligence
(AI) models. AI models trained on specific sets of reconstruction kernels may demonstrate suboptimal per-
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formance when presented with scans reconstructed using different kernels, as the latter may alter the tissue
characteristics crucial for generating accurate diagnostic outputs. Recent research confirms the lack of repro-
ducibility in radiomic features due to variance in CT reconstruction parameters [11–14], which are pivotal in
providing essential insights into tumour characteristics and are extensively utilised in medical image analysis,
including cancer diagnosis, treatment prediction, and patient outcomes’ assessment [15].

In addition, a study by Blazis et al. [7] revealed that a commercially available Computer-Aided Diagnosis
(CAD) exhibited distinct performance disparities when analysing CT images reconstructed with iterative re-
construction (IR) compared to filtered back projection (FBP) kernels. This CAD system was developed by
Aidence B.V., an Amsterdam-based company specialising in AI-powered clinical applications for lung cancer.
Aidence and similar companies operating in this space would greatly benefit from developing a classification
model capable of categorising CT scans based solely on objective image-based features and scan acquisition
parameters rather than relying on manufacturer-specific information. Such a model has the potential to facili-
tate more accurate and reliable performance evaluations for their products; this, in turn, could lead to valuable
insights for improving scan stratification, thereby creating more balanced datasets for enhanced AI model
training. Additionally, this model makes it possible to more reliably select the most optimal CT scan series for
a given diagnostic task, ultimately resulting in more accurate and clinically relevant outcomes.

Hence, a compelling need exists for a method to effectively compare and categorise reconstruction kernels
across vendors based on real patient scans, including a wide range of scan parameters. This leads to the
following problem statement:

Problem statement

Lack of standardisation in CT scan reconstruction kernels across vendors creates various problems,
leading to data inconsistencies in research and clinical settings. To overcome this challenge, a method
is needed to categorise these kernels based on scan characteristics extracted from actual patient
scans, enhancing research, model performance, and healthcare education.

This research underlines the need to develop a systematic framework for categorising reconstruction kernels,
mainly focusing on their sharpness and noise attributes. By doing so, it aims to enhance the consistency and
reliability of CT image analysis, ultimately advancing the field of medical imaging.

1.2. Related Works
Two studies have attempted to identify the kernels across vendors that produce similar images based on
characteristics extracted from a phantom [16, 17]. Solomon et al. [17] used the noise power spectrum (NPS),
estimated from the uniform section of the phantom, to quantitatively compare noise texture across a wide
selection of reconstruction kernels. On the other hand, Mackin et al. [16] aimed to identify reconstruction
kernels that produced the most similar radiomics feature values for the materials in a specially designed
radiomics phantom to enable more effective comparison of images produced using scanners from different
manufacturers. While the previous research endeavours by Solomon et al. [17] and Mackin et al. [16] have
made valuable contributions to the understanding of CT reconstruction kernels, it is important to recognise
several shared limitations in these studies that necessitate the development of a novel approach based on
scan characteristics extracted from actual patients.

Both Solomon et al. [17] and Mackin et al. [16] conducted their investigations using phantom scans, which
inherently restricts their applicability to real-world clinical scenarios. Though valuable in controlled settings,
phantoms cannot fully encapsulate the intricacies and variabilities in actual patient scans. For instance, they
lack the physiological nuances and pathologies encountered in clinical practice, rendering the findings less
directly transferable to the clinical setting.

A second shared limitation is that both studies are constrained to evaluating a single set of acquisition settings
per manufacturer. This limitation does not align with the practical reality of clinical operations, where various
acquisition parameters may be employed based on specific diagnostic needs. Consequently, the findings
derived from these studies may not adequately represent the full spectrum of clinical scenarios, limiting their
practical utility. Furthermore, while maintaining consistent acquisition settings for evaluating reconstruction
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kernels is methodologically systematic, the unmanageable magnitude of potential configurations, due to their
exponential nature, makes the execution of an exhaustive search impractical.

Lastly, both studies primarily employ methods that compare individual kernels to one another. For instance,
Mackin et al. [16] define a ’standard’ kernel for comparison. However, this approach cannot systematically
compare all kernels relative to each other and does not provide a systematic method to categorise kernels into
groups. Instead, it primarily reveals the extent of differentiation between kernels based on the feature values
they extract, which, while informative, leaves an unaddressed need for a more comprehensive classification
system for kernels.
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2
Research Design

As highlighted in the introduction, the absence of standardized CT reconstruction kernels across vendors
requires attention, preferably through a categorisation approach based on scan characteristics in the clinical
environment. While the categorisation of reconstruction kernels is still in its early stages, the field of stan-
dardization of CT images is in active development, making it an intriguing subject for exploration within the
literature review. The literature review aims to answer the following question:

Research question - Literature Review

What are the current state-of-the-art deep learning strategies for standardization across CT scans that
vary due to reconstruction techniques?

This literature review offers a comprehensive overview of state-of-the-art deep learning (DL) strategies aimed
at standardizing diverse CT scans with varying reconstruction techniques, detailed in Appendix A. A com-
parative analysis is conducted among these strategies, considering the standardization approach, DL archi-
tectures, and performance evaluation methods. Valuable insights are gained from this literature review that
contribute to the development of this present thesis.

Foremost, a primary observation is the challenge of obtaining sufficiently large datasets for DL-based stan-
dardization techniques. Existing datasets often constrain themselves to specific scanner types or a restricted
number of reconstruction kernels. Furthermore, many techniques involve training with pairs of images from
the same source but reconstructed using different methods, raising questions about their generalizability to
diverse patient scans and scanners. Consequently, the persisting issue of incomparability in reconstruction
kernels across various vendors remains unresolved by these strategies.

Another noteworthy insight is using radiomic features as evaluation metrics for assessing standardization
methods, as identified in several studies. This underscores the potential of radiomic features in characterizing
reconstruction kernels based on actual patient scans.

Given these insights, this thesis aims to develop a machine learning (ML) method that categorises recon-
struction kernels from different vendors into two groups based on their sharpness. Reconstruction kernels
are commonly described by their sharpness. ’Sharp’ kernels yield images with the highest achievable spatial
resolution but come at the cost of increased pixel noise and the presence of streak artefacts. Conversely,
’smooth’ kernels produce images with lower spatial resolution, but, on the other hand, they mitigate noise and
artefacts, thereby enhancing the capability to detect low-contrast objects against the background [18]. The
aimed method enables reconstruction kernels to be comparable with each other, not only within one vendor
but also across vendors. Different methods and scan characterises are analysed to accomplish the main
research objective following:
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Main Research Objective

The development of an ML-based method for categorizing reconstruction kernels from different ven-
dors into groups based on their sharpness. This categorisation will be accomplished by utilizing image
features directly extracted from patient scans with varying scan parameters.

To accomplish this objective, the thesis first focuses on the question of whether it is possible to extract image
features directly from patient scans that allow for kernel categorisation, forming research question 1:

Research Question 1

Can scan characteristics directly extracted from real patient scans facilitate the categorisation of re-
construction kernels?

To answer this question, several sub-questions have been developed that are listed below. First, image
features that can effectively enable kernel categorisation are identified. From the related works, it became
clear that two different sets of image features have the potential to effectively enable kernel categorisation:
quantitative noise measures and radiomics features. Therefore, the thesis is divided into two distinct research
components where the first delves into the potential of quantitative noise features, drawing inspiration from
the study of Solomon et al. [17]. In parallel, the second component explores the practicability of evaluating
radiomic features, inspired by the research conducted by Mackin et al. [16].

It is worth noting that these two studies have not been directly compared before, and their scope has been
confined to phantom studies. As a result, the most suitable method for categorizing reconstruction kernels
derived from actual patient scans acquired with a diverse set of scan parameters is an active research field.
As a result, using both approaches, the thesis aims to answer the following sub-questions:

Research Sub-Questions 1

1.1. Which image features can effectively enable kernel categorisation?

1.2. Which machine learning (ML) models are suitable for utilizing these image features for categori-
sation?

1.3. What is the performance of the ML models using the identified image features in the context of
kernel categorisation?

A significant challenge arises when it comes to evaluating the categorisation results. The absence of a
ground truth poses a fundamental issue. The sole information accessible regarding the sharpness of the re-
construction kernels originates from the vendors’ descriptions. Consequently, this thesis attempts to address
Research Question 2 by seeking a methodology to assess the performance of the developed categorisation
methods.

Research Question 2

How can the kernel categorisation be effectively evaluated when ground truth data is unavailable?
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3
Theory

3.1. Computed Tomography
"Computed Tomography", abbreviated as CT, describes a computerized X-ray imaging technique. In this
procedure, an X-ray beam is directed at a patient and rapidly rotated around the body. This rotation generates
signals that are then processed by the machine’s computer system to create cross-sectional images, often
referred to as "slices". These slices are known as tomographic images and provide clinicians with more
intricate and detailed information than traditional X-rays. Once a series of successive slices is gathered and
processed by the machine’s computer, they can be digitally assembled to construct a three-dimensional (3D)
patient representation. This 3D image facilitates the easier identification of anatomical structures and the
detection of potential tumours or abnormalities [8, 19].

CT scanners use a rotating X-ray source within a donut-shaped gantry, unlike traditional X-rays with stationary
tubes. The patient lies on a moving bed as the X-ray tube orbits around them, emitting a polychromatic X-ray
beam, thus consisting of a range of energies. The tube current (mA) and voltage (kV) control the X-ray beam.
Tube current dictates the X-ray intensity, with higher current producing more photons, while tube voltage
determines X-ray energy, influencing penetration. Digital detectors, instead of the X-ray source, capture
exiting X-rays and transmit data to a computer [19, 20]. Figure 3.1 displays a schematic visualization of a CT
scanner set-up.

Between the source and the detectors, collimators are present for multiple purposes. They protect the patient
by confining the X-ray beam to the specific anatomical area of interest, shaping it, and reducing the impact of
scattered radiation. Additionally, collimators assist in determining the slice thickness [20]. Scattered radiation
arises when the X-ray beam interacts with matter and changes direction. This phenomenon can diminish
image quality in medical imaging since the scattered X-rays lack valuable diagnostic information and can
introduce undesired noise into the X-ray image [19].

Figure 3.1: Schematic overview of a CT scanner set-
up including the X-ray source, gantry, pa-
tient bed and multiple row detector.

Figure 3.2: The motorized bed incrementally ad-
vances into the gantry while the data are
acquired continuously during 360-degree
scans, creating a helical path.6
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With each complete rotation of the X-ray source, the CT computer applies advanced mathematical techniques
to construct a two-dimensional image slice of the patient, as elaborated in section 3.1.2. The motorized bed
incrementally advances into the gantry while the data are acquired continuously during 360-degree scans
until the desired number of slices has been acquired; this process is shown in Figure 3.2.

3.1.1. Image Quality
Image quality in CT can be defined by how accurately the CT image reproduces the 3D attenuation distribution
of the x-ray beam through the patient, which is influenced by the following factors: noise, spatial resolution,
contrast and artefacts [21]. This thesis will mainly focus on the noise and spatial resolution factors. Therefore,
these two are explained in detail below.

Noise
In CT images, noise arises from random fluctuations within the image, which is associated with the number of
X-rays contributing to each detector measurement. Factors affecting the number of detected X-rays and thus
the noise in the image are, for example, the scan (rotation) time, electronic interference, radiation exposure
and the slice thickness [21]. Noise results in unwanted variations that obscure image details and compro-
mise overall image quality. This noise manifests as a grainy or speckled pattern within the image, making it
challenging to differentiate between various tissues or structures [22].

Reducing noise is essential in CT imaging, as it directly impacts the radiologist’s ability to provide accurate
diagnoses. Mitigating noise may entail adjusting scan parameters, carefully increasing the radiation dose
within safe limits, or applying image processing techniques to filter out noise while preserving essential image
details selectively [23, 24].

Spatial Resolution
Spatial resolution refers to an imaging system’s capacity to distinguish objects in the spatial dimensions of an
image [21]. It quantifies the system’s ability to identify two objects as they become smaller and closer together.
The better the spatial resolution, the closer these objects can be without merging into one another.

It is worth noting that in CT imaging, spatial resolution and sharpness are often used interchangeably, espe-
cially when discussing reconstruction kernels. In this thesis, the term "sharpness" will specifically describe
this image quality aspect. Further elaboration on reconstruction kernels and their impact on sharpness can
be found in Section 3.1.4.

3.1.2. Scan Reconstruction
The X-rays transmitted through the patient interact with the body tissues they encounter, which causes an
exponential reduction in distance travelled in beam intensity based on tissue density and composition. As the
X-ray photons exit the patient, they are absorbed by a CT detector and converted into an electronic signal.
The attenuation of the X-ray beam as it passes through a material along a line in direction s can be calculated
using the line integral in Equation 3.1. Using the measured intensity I and the incoming initial intensity I0, the
linear attenuation coefficient µ(x,y) of tissue at the position(x,y) in a 2D plane can be computed.

I = I0e−
∫

µ(x(s),y(s))ds (3.1)

A set of line integrals along all the ray paths in the X-ray beam creates a projection. Figure 3.3 visualized a
schematic visualization of the incoming X-rays, with a line in direction s and the final projection along all the
ray paths. Finally, the complete collection of line integrals that traverse the patient’s body for every possible ray
trajectory within the X-ray beam, encompassing all gantry angles, is called the Radon transform [8].

The basic idea behind CT scan reconstruction is to use mathematical algorithms to estimate the linear atten-
uation coefficient in each voxel of the image volume, which is strongly related to the tissue density. This is
done by solving an inverse problem (back-projection), where the goal is to find the tissue density distribution
that best explains the measured X-ray projections.
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Figure 3.3: Illustration of the incom-
ing X-rays, with a line in
direction s and the final
projection of the patient
section along all the ray
paths.

Figure 3.4: Left : the original image is the Shepp-Logan phantom, a standard test
image. Right : the sinogram of the original image.

Radon Transform
The Radon transform of a CT slice is a graphical representation of the intensity losses measured by the CT
scanner, also called the sinogram, where the vertical axis represents the distance various beams are from the
origin, and the horizontal axis represents the angle at which the slice is measured [8, 25]. Therefore, a single
point in the sinogram represents the measured change in intensity for a given distance and angle, equal to
the line integral over µ in Equation 3.1. Figure 3.4 shows an example of a sinogram.

Central Slice Theorem
The central slice theorem is one of the fundamental concepts in CT image reconstruction, which enables the
transformation of the complex collection of line integrals into a spatial representation of the object’s internal
structure [26]. This theorem, also known as the Fourier slice theorem, states that the 2D Fourier transform (FT)
of an object is equivalent to the 1D FT of the object’s projection passing through its centre and perpendicular
to the plane of the 2D FT [27]. This means that the 1D Fourier transform of a projection is identical to a 1D
profile through the origin of the 2D Fourier transform of the irradiated object (x,y). This concept is visualized
in Figure 3.5.

By transforming all projections of the object into the 1D Fourier transform and interpolating them into a 2D
Fourier space, the complete 2D FT of the object can be reconstructed. The original object is reconstructed
from the full 2D FT using the inverse FT.

The theorem has provided a mathematical foundation for reconstructing images from X-ray projections and
has facilitated the development of various CT reconstruction algorithms. The subsequent section explains
how CT scans are reconstructed in practice based on the abovementioned theory.

Figure 3.5: This illustration demonstrates the funda-
mental concept of the central slice theo-
rem. In the left image, the process of gen-
erating the projection, denoted as Pθ , from
a specific gantry angle θ is depicted in red.
On the right, the object’s 2D Fourier trans-
form (FT) displayed in the left image is vi-
sualized. The red-marked slice in the right
image corresponds to the 1D FT of the pro-
jection shown on the left. This 1D FT of
the projection is identical to a 1D profile
through the centre of the 2D FT of the ob-
ject.
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3.1.3. Reconstruction Techniques
Various strategies are used for CT image reconstruction, including FBP, IR, and deep learning reconstruction
(DLR). For decades, FBP was the standard image reconstruction method because of its simplicity and com-
putational efficiency [28, 29]. It was not until 2009 that the initial IR algorithms were introduced to the market,
replacing the conventional FBP technique [28]. The current state-of-the-art method for CT image formation is
image reconstruction based on DL, although currently, only three DLR algorithms are commercially available
[30]. In the following subsections, each technique is briefly explained.

Filtered Back-Projection
Filtered back projection is a common reconstruction method that reconstructs a 3D image of an object from
its projection data (sinograms) by taking the exact inverse. In short, the method evenly distributes the mea-
sured filtered signal over the projection line to compute 2D slices, which are combined to form a 3D volume
representing the object [8, 31]. More specifically, for each gantry angle in a sinogram, the attenuation value is
divided by the number of image pixels along the path of the projection from the X-ray source to the detector.
The resulting average attenuation value is then allocated to those pixels. This process is carried out for every
gantry angle. The back-projected data is then summed to form the final back-projected image; this process is
displayed in Figure 3.6.

Before back-projection, the projection data is filtered to counteract blurring that occurs because of evenly
spreading the attenuation value; this blurring is also visualized in Figure 3.6 [8, 32]. Applying an ideal ramp
filter to modify the original projection through convolution in the spatial domain or multiplication in the Fourier
domain filters out the low frequencies and passes the high frequencies, with a linear behaviour in between
[9]. This enhances sharp boundaries between different anatomical structures while minimising blurring (low
frequencies). However, this amplification also increases image noise, particularly at high spatial frequencies
where noise is more prominent in the raw signal.

Iterative Reconstruction
The underlying principle of IR is to calculate image data that accurately corresponds to the acquired projec-
tion data using iterative algorithms [29, 32]. It formulates the problem as a constrained optimization task,
seeking the unknown image data that best fits the measured projection data while satisfying the constraints.
The optimization involves matching the reconstruction to the measured data and suppressing noise through
regularization.

To reconstruct CT images with IR, a cycle of forward- and back-projection steps minimises a cost function,
quantifying how well the reconstructed image matches the acquired projection data. The process is iterated
until a predefined stopping criterion is met. Two adjustable parameters impact the IR outcome: the recon-
struction kernel used in the back projection step, affecting image noise and sharpness, and the algorithm’s
strength, influencing noise reduction [33, 34]. Nevertheless, excessive IR strength, particularly at higher lev-
els, can produce unsightly "blooming" artefacts that hinder the display of minute structures [35]. As a result,
the impact of the IR algorithm’s strength on image quality must be weighed carefully to strike a balance.

Figure 3.6: A. Back-projection reconstruction is applied to a simple phantom comprising three
objects with different attenuation values. In addition, the projections at three differ-
ent angles are shown. B. Attenuation values are spread out evenly along their ray
path; this process is done for each angle. C. The final image results from the sum-
mation of the four angles of the phantom. Despite its efficiency, the back-projection
method produces images that exhibit significant blurriness.
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Iterative reconstruction approaches can be classified into statistical (hybrid) and model-based iterative algo-
rithms based on how the imaging process is modelled [36, 37]. Medical manufacturers all have their own IR
approaches that use different modelling and apply different cost functions.

Deep Learning Reconstruction
Deep-learning-based techniques for CT image reconstruction is an emerging approach that can potentially
improve image quality further and thus reduce dose [38]. Unlike traditional CT reconstruction methods that
use analytical models, DLR uses neural networks to either learn the mapping between the raw projection
data (sinograms) and the corresponding high-quality CT images or to differentiate between signal and noise
in low-quality images.

Training a neural network that learns the mapping demands a large dataset of CT projection data and cor-
responding high-quality CT images. Such a dataset originates from phantom images and patient scans con-
ducted in a clinical setting. However, this amount of data is not always available [39]. Once this type of neural
network is trained, it can take raw projection data as input and generate high-quality CT images as output [38,
39].

Conversely, a neural network that differentiates between noise and signal requires a sizable dataset con-
taining low-quality and corresponding high-quality CT images. The low-quality CT images can be intentionally
generated by introducing noise into the high-quality ones, facilitating the creation of this dataset. Once trained,
this neural network can effectively enhance the signal and reduce noise in reconstructed CT images acquired
with low-dose radiation [30].

3.1.4. Reconstruction Kernels
As mentioned before, in the reconstruction process of CT scans, a ramp filter is applied to eliminate blurriness
caused by back-projection in both FBP and IR approaches [9]. This ramp filter can be paired with filters of
varying intensities (kernels) to heighten the spatial resolution of the ultimate image, dependent on the specific
application [8, 10]. This combination is called the reconstruction kernel, a parameter that can be adjusted to
emphasize different tissue characteristics and influence image sharpness and noise.

Various kernels with distinct features are at clinicians’ disposal in their day-to-day operations [32]. ’Smooth’
kernels are designed to lower image noise and bolster the display of low-contrast details but can lead to a
drop in image sharpness. Meanwhile, ’sharp’ kernels aim to enhance the illustration of intricate elements in
high-contrast structures, although they can increase image noise to a level that hinders the recognition and
distinction of low-contrast structures [8, 10, 40]. In Figure 3.7, an example of a CT image pair is displayed, a
CT scan that is reconstructed with a ’smooth’ kernel, the standard kernel of GE medical systems (left scan),
as well as with a ’sharp’ kernel, the bone kernel of GE medical systems (right scan).

Figure 3.7: The left CT scan is reconstructed with the standard reconstruction kernel, whereas the right CT scan is reconstructed with
the sharper kernel, called the bone reconstruction kernel. Both reconstruction kernels are developed at GE Medical Sytems.
The standard, smoother kernel shows lower image noise and displays more low-contrast details, but, on the downside, it has
a lower image sharpness. On the contrary, the scan reconstructed with the bone kernel, a sharper kernel, enables a better
edge definition and shows more structural details, which are visible around the bones. However, it also shows an increased
image noise.
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The four largest manufacturers of CT scanners are Philips Healthcare, Siemens Healthineers, GE HealthCare
and Toshiba Medical (currently known as Canon Medical Systems Corporation). The manufacturers are
respectively referred to as Philips, Siemens, GE and Toshiba in this thesis. Each manufacturer has its own
reconstruction techniques and reconstruction kernels they offer. In addition, each manufacturer also has its
own designation system for the reconstruction kernels, some more complex than others. Explanations of these
systems are hard to find, very limited and vague. Nevertheless, each designation system per manufacturer
is explained in the following subsections, and the reconstruction kernels relevant to this thesis are described
(if possible) based on their usage and sharpness. The complete overview of all kernels is added in the
appendices.

GE Healthcare
GE Healthcare mentions nine different kernels in their manual for the CT Revolution [41]. The manufacturer
provides insights into the suitable applications for each kernel and arranges the kernels in descending order,
moving from higher spatial resolution to lower contrast detection capability. Table 3.1 describes and orders
the kernels used in this thesis. The complete overview of all the available kernels for GE is shown in Table
B.1 in Appendix B.

Table 3.1: Descriptions of the relevant GE reconstruction kernels. Extracted from the user manual of

GE Healthcare Revolution CT scanner.

Kernel Description

Soft for tissues with similar densities, but not useful for un-enhanced scans

Std for routine exams, e.g., chest, abdomens, and pelvis scans

Lung for interstitial lung pathology

Bone for high-resolution exams and sharp bone detail.

Philips Healthcare
The CT scanners of Philips Healthcare use an alphabetical system for the designation of their reconstruction
kernels [42]. In general, the sharpness increases for an increasing letter in the alphabet, and different res-
olution strengths are available per kernel. This research only focuses on standard resolution. The relevant
kernels are outlined in Table 3.2, and the full overview is given in Table B.2 in Appendix B.

Table 3.2: Descriptions of the relevant Philips reconstruction kernels. Extracted from the user manual of Philips Brilliance CT scanner.

Kernel Description

A Very smoothed, can be used to decrease noise significantly. Recommended for use when the
patient is very large and the dose inadequate for the patient’s size

B Smoothed, but sharper and noisier than A. Recommended for CTA (for example, COW), routine
abdomen, and pelvis.

C Sharper, creates relatively low-noise images. Recommended for CTA (for example, COW), rou-
tine abdomen, and pelvis to get slightly higher sharpness than with Filter B

D Sharp and edge-enhancing. Creates relatively high-noise images and raises the bone density

11
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Siemens Healthineers
Siemens Healthineers offers various appropriate kernels for different applications [43]. They have three dif-
ferent types of kernels: "H "stands for Head, "B "stands for Body, "C "stands for Child Head and "S" stands
for Special Application. The numbers define the image’s sharpness: the higher the number, the sharper the
image; the lower the number, the smoother the image. The last letter indicates the scanning mode: "s" stands
for standard rotation time, and "f" stands for fast rotation time. In addition, the vendor offers special kernels
that are indicated by a "+-sign" in the description. These kernels have an added fine-grained noise structure,
which improves the low contrast detectability, usually a characteristic of a smoother kernel. The relevant ker-
nels for this research are shown in Table 3.3, and the other kernels offered by Siemens are overviewed in
Table B.3 in Appendix B.

Table 3.3: Descriptions of the relevant Siemens

reconstruction kernels. Extracted

from a Siemens Somatom Sensation

manual.

Kernel series Description

B20s/B20f Smooth

B30s/B30f Medium smooth

B31s/B31f Medium smooth +

B35f HeartView medium

B40s/B40f Medium

B41s Medium +

B45s/B45f Medium

B50s/B50f Medium sharp

B60s/B60f Sharp

B70f Very sharp

B70f Ultra sharp

Toshiba Medical
Toshiba Medical, currently known as Canon Medical Systems Corporation, uses a naming system where
each ten has a different application [44]. In addition, within a ten, a higher number indicates an increase in
sharpness. Unfortunately, the manufacturer does not indicate how the tens compare to each other regarding
sharpness. The kernels from FC01 and FC10 are the same reconstruction algorithm; the only difference is
whether beam hardening correction processing is used.

This processing mitigates artefacts resulting from X-ray beam hardening, a phenomenon that arises as the
beam passes through a patient due to its polychromatic nature. Lower-energy X-rays are more likely to be
absorbed as X-rays pass through the body, leaving the higher-energy X-rays to dominate the beam. Conse-
quently, the X-ray beam’s average energy rises as it traverses the body, leading to beam hardening.

Table 3.4 describes the relevant kernels and the complete overview can be found in Table B.4 in Appendix B.

Table 3.4: Descriptions of the relevant Toshiba reconstruction kernels. Extracted from a Toshiba Aquilion16

manual.

Kernel series Description

From FC01 For the abdomen, with beam hardening correction (BHC) processing

From FC10 For the abdomen

From FC30 For the inner ear and bones

From FC50 For the lung field

From FC82 For high resolution, for the lung field (high-resolution CT)

12
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3.1.5. Scan Parameters
Besides the reconstruction kernels, many other scan parameters can be adjusted to control image quality.
Each of these parameters has a different impact on the output of the CT scanner and influences the image
quality, such as noise and sharpness [45]. Therefore, they can act as confounding factors when analysing
reconstruction kernels using a dataset with a large variety of other scan parameters. The most important
CT scan parameters are explained to understand each parameter’s impact, including their impact on the
sharpness and noise of the CT scan output.

Slice Thickness
determines the thickness of each cross-sectional image (slice) acquired during the scan, and thus the number
of detected x-rays [21].

• Sharpness Impact: Thinner slice thickness improves spatial resolution in the axial direction and image
sharpness by reducing volume averaging of adjacent structures. Conversely, thicker slices lead to
reduced sharpness due to increased partial volume effects.

• Noise impact: Thinner slices tend to have higher noise levels because fewer X-ray photons contribute to
each slice; thus, a lower signal is detected. Since fewer photons are involved, the statistical fluctuations
in their detection become more pronounced, leading to increased image noise.

Tube Current (mA)
controls the amount of radiation emitted by the X-ray tube (beam intensity).

• Sharpness Impact: Higher tube current improves signal-to-noise ratio by increasing the number of X-ray 
photons detected, enhancing sharpness.

• Noise Impact: A lower tube current increases the image noise by decreasing the number of X-ray pho-
tons detected. The influence of this noise can be more noticeable in homogeneous materials compared 
to textured materials [46].

Tube Voltage (kVp)
determines the energy level of the X-rays and affects the contrast and penetration ability.

• Sharpness Impact: Lower kVp settings can enhance tissue contrast and sharpness by reducing beam
hardening artefacts.

• Noise Impact: Lower kVp settings can increase image noise due to reduced penetration of X-rays
through the body. Higher kVp settings reduce noise by increasing the number of detected photons.

3.2. Machine Learning
Machine learning is a subfield of Artificial Intelligence that focuses on developing algorithms and models that
enable computers to learn from and make predictions or decisions based on data [47]. Machine learning sys-
tems use statistical techniques to identify patterns, relationships, and insights within datasets. These systems
can then generalize from their findings to make predictions or decisions when presented with new, unseen
data. Machine learning has a wide range of applications, from image and speech recognition to recommen-
dation systems and autonomous vehicles, and it plays a crucial role in today’s data-driven world.

Machine learning relies on different algorithms to solve data problems; in this research, a support vector
classifier (SVC) and a random forest classifier (RFC) have been used, which are schematically displayed in
Figure 3.8 and Figure 3.9, respectively. The concepts are explained in detail in the sections below.

3.2.1. Support Vector Classifier
A support vector classifier, also known as a support vector machine for binary classification, is a powerful
supervised machine learning algorithm for separating data points into two distinct classes [48]. In this thesis,
a linear SVC is applied to perform linear classification. Consequently, this section focuses only on the theory
behind a linear SVC.

The fundamental concept behind a linear SVC is to find a decision boundary (hyperplane) that best separates
data points belonging to two different classes. The key objective is to maximize the margin, which is the
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distance between the decision boundary and the nearest data points (support vectors) from each class. This
margin maximization helps ensure that the classifier can make accurate predictions on the training data and
new, unseen data. The hyperplane in a linear SVC is a flat, linear boundary that divides the feature space into
two regions corresponding to the two classes. For a two-dimensional feature space, the hyperplane is a line.
In higher-dimensional spaces, it becomes a hyperplane. The linear SVC identifies the optimal hyperplane
based on its ability to maximize the margin [48, 49].

One important hyperparameter that can be optimised to achieve optimal results is the regularization parameter
C. This parameter is the degree to which the model will accept misclassification in the dataset of each training
example. For large values of C, the optimization will choose a smaller-margin hyperplane if that hyperplane
does a better job of correctly classifying all the training points. Conversely, a very small value of C will cause
the optimizer to look for a larger-margin separating hyperplane, even if that hyperplane misclassifies more
points [50].

3.2.2. Random Forest Classifier
The random forest classifier is a powerful ensemble learning algorithm for solving classification problems
[51]. It is particularly popular due to its ability to handle complex, high-dimensional data and provide accurate
predictions [52]. The algorithm is based on an ensemble of decision trees, combining multiple individual trees
to make collective predictions. A decision tree is a flowchart-like structure where each internal decision node
represents a feature, and each leaf node represents a class label. The tree is built by repeatedly partitioning
the input data based on the selected features, aiming to create homogeneous subsets of data at each leaf
node. In an RFC, multiple trees are constructed instead of using a single decision tree. Each tree is built
using a random subset of the training data and a random subset of the features [51]. This randomness
introduces diversity among the trees, making them less prone to overfitting and more capable of capturing
different aspects of the data. Overfitting occurs when an ML model learns the training data too well, capturing
noise and random fluctuations instead of the underlying patterns. This results in poor generalization to new,
unseen data [53].

During the training phase of the random forest classifier, the individual trees are constructed independently.
Each tree is built by repeatedly selecting a subset of data with replacement (bootstrapping) and randomly
selecting a subset of features at each split. The splitting process identifies the feature and threshold that
maximally separate the classes. Once all the trees are constructed, the RFC predicts the class label of a new

Figure 3.8: Illustration of a linear support vec-
tor classifier (SVC). This graphic
shows the key elements of an SVC,
including the support vectors, the
margin, and the separating hyper-
plane, highlighting the principles of
this classification algorithm.

Figure 3.9: Illustration of a random forest classifier (RFC) showing the
inner workings of an RFC. Using bootstrapping, the RFC
generates diverse decision trees, each based on different
subsets of the training data. These individual trees make
their predictions for unseen data points, which are aggre-
gated through majority voting to yield the final prediction.
The diagram further illustrates decision nodes (highlighted
in red), which mark points where decisions are made within
the tree, and leaf nodes (highlighted in green), which repre-
sent the endpoints where final predictions are determined.
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data point by aggregating the predictions of each tree [51]. This aggregation can be done by majority voting,
where the class label that receives the most votes is assigned as the final prediction. Alternatively, probabilistic
predictions can be obtained by taking the class probabilities from each tree and averaging them.

Unfortunately, RFC has a risk of overfitting, so hyperparameter tuning is crucial. By setting a maximum depth
(max_depth), you can control the depth of tree growth. Similarly, by specifying the number of estimators
(n_estimators), you determine the ensemble size at each step [54]. Finding optimal values for these hyperpa-
rameters is determined empirically.

3.3. Noise Features
As mentioned in Section 3.1.4, reconstruction kernels influence the sharpness and noise of a CT image.
Smoother kernels use low-pass filters to block high-frequency content, improving low-contrast resolution and
reducing noise. Conversely, sharper kernels retain high-frequency details to enhance spatial resolution at the
expense of increasing noise in the final CT image.

Image noise can be characterized by its magnitude and texture [55, 56]. Noise magnitude refers to the random
pixel value fluctuations in a homogeneous region. In contrast, noise texture concerns relationships between
neighbouring pixels that manifest as the grainy appearance in CT scans [55].

3.3.1. Noise Magnitude
In CT scans, noise magnitude refers to the extent of random fluctuations or variations in pixel values within
homogeneous or uniform regions of the image. This noise is primarily caused by statistical variations in the
number of detected X-ray photons [55]. In a clinical image, measurements of noise magnitude are commonly
performed based on calculating the standard deviation (SD) within a region of interest (ROI) in the most
uniform region. Anam et al. [56] claim that they have developed an automated method for quantifying noise
in CT images, capable of distinguishing variations in noise magnitude stemming from input parameters like
tube currents and image reconstruction kernels. This method estimates noise magnitude by pinpointing the
minimum SD value within an SD map. The SD map is produced through a sliding window operation, where
the SD value for each pixel location (x,y) is computed using the following equation:

SD0 =

√
1

n×n ∑
n×n

∑
i=1

(Ib,i − Īb)
2 (3.2)

With ’n’ representing the dimensions of the sliding window (n× n), Ib,i denotes the pixel value at a certain
location i within the window of the image b and Īb stands for the mean intensity value of all pixels within the
window. Once the SD calculation is finalized for a single pixel, the window shifts to the next pixel to calculate
the SD value similarly. This iterative procedure continues until SD values have been computed for all pixels,
resulting in the generation of the SD map.

3.3.2. Noise Texture
The NPS characterises the noise texture, thus giving a better and more complete description of noise than
the simple pixel’s standard deviation [56, 57]. In a stationary system, the NPS gives a complete description
of the noise by providing its amplitude over the entire frequency range of the image [58]. If the image noise is
not stationary, the NPS is not a complete description, and the whole covariance matrix would be needed for
a complete description. However, if applied with care, for example, working with small ROIs extracted from a
restricted image region, the NPS can be applied to CT images [57]. To compute the NPS of a CT image, it is
necessary to select homogeneous ROIs within the CT image. The 2D NPS can then be computed as:

NPS2D ( fx, fy) =
∆x∆y

LxLy

1
NROI

NROI

∑
i=1

∣∣FT2D
{

ROIi(x,y)−ROIi
}∣∣2 (3.3)

Where ∆x, ∆y are the pixel sizes in the x and y dimension in millimetres, Lx, Ly are the ROI’s lengths (in pixel)
for both dimensions, NROI is the number of ROIs used in the average operation and ROIi is the mean pixel
value of the ith ROI.
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Subsequently, the 2D NPS is averaged along a 1D radial frequency using the equation fr =
√

f 2
x + f 2

y , so
the central frequency (CF) can be determined from the NPS curve using Equation 3.4. This value indicates
the dominant frequency in the spectrum [55]. A smaller CF indicates that the centre of gravity is skewed
toward lower frequencies. This implies a greater degree of blurred image texture or a more pronounced loss
of higher-frequency components after noise reduction [55, 59].

CF =

∫
f ×NPS( f )d f∫

NPS( f )d f
(3.4)

3.4. Radiomic Features
Radiomic features are used in the field of radiomics, which involves extracting and analysing various quanti-
tative features from medical images [60]. These features provide valuable information invisible to the human
eye about the underlying tissue characteristics, such as shape, texture, intensity, and spatial relationship
[61]. Some key areas where radiomic features are used include cancer diagnosis and prognosis, treatment
response assessment, predictive modelling, and personalized medicine [62].

When the noise values influence noise values in each voxel in neighbouring voxels, it is called correlated noise.
In the reconstruction process, the kernel contributes to creating a correlated noise texture [63]. Texture fea-
tures might be sensitive to this correlated noise in a CT image because most of these features describe spatial
relationships of voxel intensities within an ROI. For example, features based on grey-level co-occurrence ma-
trices (GLCM) characterize an image’s texture by counting the number of occurrences where pairs of voxels
sharing identical grey levels within a specific spatial relationship occur within an ROI [63]. Therefore, radiomic
features may provide useful information on the underlying noise texture related to the applied reconstruction
kernel.

3.4.1. Feature Classes
Various feature types can be derived from clinical images, which can either be extracted directly from the ROIs
or after applying different filters or transforms, such as the wavelet transform (explained in the next section).
The features are normally categorised into the following classes:

First-order statistics features are derived from histograms and focus solely on the distribution of individual
voxel values, disregarding any spatial correlations. They encompass statistical characteristics such as the
mean, median, maximum, and minimum voxel intensities within an ROI, as well as measures of skewness
(asymmetry), kurtosis (flatness), uniformity, and randomness (entropy) [64].

Second order statistics features consider the interrelationships between neighbouring pixels in an ROI and
are the so-called texture features [65]. Using grey-level dependence matrices, the second-order statistical
features can be classified into five groups [64]:

1. Gray Level Co-occurrence Matrix, GLCM features (22 features) describe combinations of grey levels of
neighbouring pixels.

2. Gray Level Run Length Matrix, GLRLM features (16 features) quantify grey level runs in an image,
defined as the number of pixels with the same grey level value.

3. Gray Level Size Zone Matrix, GLSZM features (16 features) quantify grey level zones in an image,
defined as the number of connected pixels with the same grey level values.

4. Neighbouring Gray Tone Difference Matrix, NGTDM features (5 features) quantify the differences in
grey-level intensities between each pixel or voxel and its neighbouring pixels or voxels within the ROI.

5. Gray Level Dependence Matrix, GLDM features (14 features) quantify how often pairs of pixels or voxels
with specific grey levels are adjacent within the ROI.

Higher order statistics features refer to statistical measures that capture complex relationships and patterns
beyond first-order and second-order statistics. These features are generated by applying filters, e.g. the
wavelet transform, to the ROI before extracting features [66].

16



3.5. Performance Metrics Chapter 3. Theory

3.4.2. Wavelet Transform Filtering
The wavelet transform is a technique that decomposes an image into different frequency components by
applying high-pass and low-pass filters to accentuate or suppress certain frequency bands [67]. A one-level
wavelet decomposition produces four distinct filtered images denoted as LL (low-low), HL (high-low), LH (low-
high), and HH (high-high), where "low" signifies low-frequency components and "high" signifies high-frequency
components.

High-pass filtering in both directions (HH) captures diagonal details. High-pass filtering followed by low-pass
filtering (HL) captures vertical edges. Conversely, low-pass filtering followed by high-pass filtering (LH) cap-
tures horizontal edges. Finally, low-pass filtering in both directions (LL) captures the lowest frequencies at
varying scales.

The low-frequency components, representing smooth variations, serve as the foundation of an image. In
contrast, the high-frequency components, responsible for capturing edges and fine details, refine the image,
resulting in a more detailed representation [68].

3.5. Performance Metrics
This research uses two performance metrics to assess the developed ML models: the accuracy and the Re-
ceiver Operating Characteristic Area Under the Curve (ROC AUC). Accuracy is a common and straightforward
metric used to assess the performance of classification models, particularly in ML and data analysis. It mea-
sures how often a model correctly predicts the class labels of the data points in a dataset [69] and is predicted
using the following equation:

Accuracy =
Number of Correct Predictions

Total Number of Predictions
(3.5)

While it is easy to calculate and interpret, it has a few limitations when evaluating model performance. Firstly,
for an imbalanced dataset, where one class significantly outnumbers the other, a model that predicts the
majority class for all instances can still achieve a high accuracy. Furthermore, this metric does not provide
insights into the types of errors the model makes. For example, it doesn’t distinguish between false positives
and false negatives.

The ROC AUC is also a metric used to evaluate the performance of binary classification models. It quantifies
the ability of a model to distinguish between two classes across different classification thresholds. It derives
its name from the receiver operating characteristic (ROC) curve, a graphical representation of a model’s
performance, see Figure 3.10.

The ROC curve plots the True Positive Rate (TPR) against the False Positive Rate (FPR) at various threshold
values. TPR, also known as Sensitivity or Recall, represents the proportion of actual positive instances
correctly classified as positive by the model. FPR, on the other hand, represents the proportion of actual
negative instances incorrectly classified as positive by the model. Subsequently, the ROC AUC score is
calculated as the area under the ROC curve, which values from 0.5 to 1.0 [69, 70].

Figure 3.10: This graph showcases a Receiver Operating Charac-
teristic (ROC) curve, a valuable tool in assessing the
performance of classification models. It illustrates the
trade-off between the True Positive Rate (TPR) and
the False Positive Rate (FPR). A random classifier’s
curve is depicted as a baseline, while a perfect clas-
sifier is expected to create a curve that passes through
the upper left corner, marked in the graph by a blue
star. The Area Under the Curve (AUC) quantifies the
classifier’s ability to distinguish between classes, with
a higher AUC indicating better performance.
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A higher ROC AUC score implies that the model is more effective at distinguishing between two classes.
Consequently, ROC AUC serves as a valuable metric for assessing the overall quality of a binary classification
model. It is particularly useful when comparing different models or selecting the most suitable model for a
specific classification task.

3.6. McNemar’s Test
McNemar’s test is a statistical method employed to evaluate the significance of disparities in the performance
of two closely related ML models. It helps determine if there is a statistically significant difference in the
classification results on the same dataset of two models. This test constructs a 2 × 2 contingency table
using the classifiers’ binary classification outcomes (see Figure 3.11). It calculates the McNemar statistic,
which measures the contradictions in their classifications while considering interdependencies. The resulting
statistic is evaluated against a significance level 0.05 to confirm whether one model significantly outperforms
the other. McNemar’s test is particularly valuable for assessing differences in classifier performance and is a
useful tool for hypothesis testing in machine learning model evaluation [71].

Figure 3.11: A 2×2 contingency table
using the classifiers’ binary
classification outcomes.
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4
Methods

This section outlines the methodology for categorising reconstruction kernels based on features extracted
from real patient scans. Those features serve as input for different models that aim to distinguish between
sharp and soft kernels.

4.1. Dataset
This study used thoracic CT scans from the National Lung Screening Trial (NLST) [72] and the Lung Im-
age Database Consortium image collection (LIDC-IDRC) [73]. These data sets comprise scans obtained
from multiple vendors using various reconstruction kernels and other reconstruction and acquisition parame-
ters. In the NLST, approximately 54,000 participants were enrolled, which resulted in the acquisition of over
75,000 CT screening exams [72]. The smaller LIDC-IDRC dataset contains 1018 cases from 1010 patients
[73]. The datasets represent a wide range of scanner manufacturers and models, as well as scan parame-
ters. The datasets comprise CT scans acquired before 2010, all using the conventional FBP reconstruction
technique.

In the datasets, 37 distinct reconstruction kernels from four manufacturers are available; for each reconstruc-
tion kernel, ten cases were selected if possible, otherwise the maximum number of cases available. Patient
scans with less than ten slices available were excluded because these scans might not provide enough infor-
mation or coverage to represent the case accurately. Similarly, kernels with less than 100 applicable slices
were not included.

4.2. Selecting Extremes
Two kernel types are chosen for each manufacturer: one representing the smoothest kernel and the other
representing the sharpest kernel among their products. This selection is based on the vendor descriptions
described in the previous theory section (Section 3.1.4) and on the number of applicable patients and slices
to ensure a sufficient data set size and scan parameter diversity.

4.3. Preprocessing
Each scan undergoes processing before computing its characteristics. The pixel values are initially rescaled
to convert them into a more interpretable and consistent range, the Houndsfield unit (HU) [74]. This rescaling
process utilizes the ’RescaleSlope’ and ’RescaleIntercept’ attributes for a linear transformation of the data
using the following formula: rescaled_value = (pixel_value∗ rescaleSlope)+ rescaleIntercept.

Following the rescaling process, the patient is segmented from the scan. This involves applying a threshold
of −200HU to the image, identifying the largest cluster, and then employing a morphological algorithm to fill
any holes within the cluster, thus creating a final mask that covers the entire patient. By multiplying this mask
with the rescaled CT scan, only the pixels corresponding to the patient are selected and utilized for further
research purposes. Figure 4.1 shows the complete preprocessing process.
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Figure 4.1: The preprocessing steps that are applied to each CT scan. The first (left) image shows the original scan retrieved from the
dataset. The middle image shows the patient mask that segments only the patient from the whole scan. This mask is created
by applying a threshold of −200HU , identifying the largest cluster, and utilizing a morphological algorithm to address gaps
within the cluster. The last (right) image shows the final image, where the patient is segmented using the mask and the pixel
values are rescaled to HU.

4.4. Feature Extraction
This section explains the extraction of two distinct sets of image features that have the potential to facilitate
kernel categorisation: noise features and radiomic features.

4.4.1. Noise Features
Noise Magnitude
The measurement of the noise magnitude is based on the calculation of the SD following the automated noise
calculation method proposed by Anam et al. [56], which was explained more in-depth in Theory Section
3.3.1. This approach comprises three steps: initially, the patient’s image is segmented as explained in the
preprocessing step (Section 4.3). Subsequently, an SD heatmap is generated by computing the SD value for
each pixel using a sliding window of 30×30 pixels. Finally, the noise is estimated by identifying the minimum
SD value from the SD heatmap. This method is applied to every slice in the data set, which results in one
noise magnitude value per slice.

Noise Texture
The determination of noise texture relies on computing the CF of the NPS. The ten most homogeneous
ROIs from each slice, indicated by the ten lowest SD values, are extracted with pixel dimensions (Lx ×Ly) of
30× 30 pixels. The ROIs are allowed to overlap with a maximum of 50%; this overlap has traditionally been
recommended when calculating the NPS [75, 76].

The mean value is subtracted for each ROI to recentre the inputs around zero. The recentring simplifies the
analysis and ensures that the frequency components of the image are correctly interpreted. Following that, a
zero-padding of 30 pixels is applied to enhance the accuracy of the Fourier transform. This results in a new
image with the original content centred in the middle and the newly added values set to zero. Zero padding
increases the resolution of the NPS curve, but it also introduces a slight increase in noise [59, 77].

Subsequently, the 2D NPS is computed according to Equation (3.3) by averaging over the extracted ten ROIs.
Next, the radial symmetry of the 2D NPS is utilized to generate a 1D spectrum: the data is binned according to
its radial spatial frequency, followed by averaging the data in each bin. The radial bin size for all calculations
was selected as 0.1 mm−1. This value was established through manual adjustment to achieve the desired
level of spectral smoothness. Ultimately, the 1D NPS curve is normalized by calculating the area under the
curve.

The CF was computed from the normalized NPS curves, using Equation 3.4, which is equivalent to calculating
the centre of gravity of the NPS [55, 78].
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4.4.2. Radiomic Features
The radiomic feature extraction process uses the PyRadiomics library, an open-source package widely used
for radiomic analysis [79]. This package provides a comprehensive set of features that can be extracted from
the CT scans. These features encompass a range of quantitative measurements, including intensity-based,
shape-based, texture-based, and wavelet-based features, calculated using PyRadiomics’s built-in functions.
The features are extracted using the default settings of PyRadiomics: a fixed bin width of 25HU.

The following feature classes are included: first-order statistics (18 features), GLCM (22 features), GLRLM
(16 features), GLSZM (16 features), NGTDM (5 features), and GLDM (14 features). The shape features are
excluded as this study is not interested in a certain shape of the tissue because this has no relation to the
applied reconstruction kernel. In total, 91 features are extracted from the original image shape.

In addition, wavelet filtering is applied to decompose the original image into different frequency bands, which
allows for the analysis of image details at different scales and resolutions. From the resulting four images, the
same 91 features are extracted. This results in the extraction of 455 radiomic features per ROI.

ROI Selection
In radiomics, feature extraction typically involves isolating an ROI, either manually or automatically, to separate
it from the background and surrounding tissues. Commonly used ROIs in radiomics include tumours, organs
and lesions [62]. However, it is important to note that the primary goal of this study is not to analyse the
intrinsic tissue characteristics of a specific anatomical region for medical purposes.

Instead, the focus here is on analysing the specific attributes of reconstruction kernels, which can provide valu-
able insights for quantifying different reconstruction kernels. Consequently, the extraction of radiomic features
must be carried out on an ROI that minimizes the influence of patient-specific characteristics. Unfortunately,
the most suitable ROI selection approach for this analysis remains uncertain. As an initial approach, the anal-
ysis will be performed on the ten most homogeneous patches per CT slice, extracted from the patient area
measuring 30×30 pixels using the SD heatmap developed in Section 4.4.1. These patches are not allowed
to overlap to ensure that each patch represents a distinct and independent region of interest.

4.4.3. Number of ROIs
It is worth emphasizing that noise characteristics can only be derived once per slice, unlike radiomic features,
which are not subject to such limitations. This thesis quantifies noise magnitude by the SD value obtained from
the most uniform area, representing the lowest SD value. In contrast, noise texture is established by averaging
the NPS values from the ten most uniform areas. Consequently, a single collection of noise features can be
generated per slice, whereas radiomic features can be calculated from various ROIs within a single slice,
allowing for the extraction of multiple sets of radiomic features from the same slice.

4.5. Distribution Analysis
In total, one set of noise features and ten sets of radiomic features are computed for each slice. Each set
of noise features, consisting of the SD and the CF value, is used to gain insight into the distribution of the
dataset and the relationship between these two features. This distribution analysis exclusively considers the
noise features due to their high interpretability, particularly compared to the extensive set of radiomic features.
Moreover, prior knowledge concerning the noise features and their association with reconstruction kernels
makes them more relevant to this analysis.

4.5.1. Distribution
For each patient, the median value for both features, the SD and CF, is determined and documented. The
median is used because it is robust to outliers, making it more resistant to extreme values [80]. The median
values are graphically analysed per kernel by displaying the box plots, which offer valuable insights into a
dataset, including identifying outliers and information about the symmetry and tightness of data clustering
[81].
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4.5.2. Relationship
An optimal reconstruction shall maintain a high CF, indicating a small loss of higher frequency components
while having a low SD, which indicates a larger amount of noise reduction. Unfortunately, in practice, most
noise reductions are paired with a CF shift toward the lower frequency [55]. The relationship of the computed
CF and SD values will be visualized by mapping the patients in a 2D space.

Subsequently, the Spearman’s correlation coefficient (ρ) between the two features is calculated to assess the
relationship between the two features. It measures the strength and direction of the monotonic relationship
between two variables. Specifically, it assesses whether there is a consistent trend in how the two variables
change together without assuming that the relationship is strictly linear. The values of ρ range from -1 to
1, where -1 indicates a perfect negative monotonic relationship, 1 indicates a perfect positive one, and 0
suggests no monotonic relationship. The Spearman’s correlation coefficient is calculated using the following
Equation:

ρ = 1− 6∑n
i=1 d2

i
n(n2 −1)

(4.1)

Where di is the difference between the ranks of the two variables for each data pair and n is the number of
data points. Spearman’s correlation coefficient is preferred here over other correlation coefficient approaches,
like Pearson’s correlation coefficient, since it does not necessitate normally distributed variables as input, in
contrast to Pearson’s coefficient [82].

4.6. Model Implementation
Two ML models are trained to categorise ’smooth’ and ’sharp’ kernels based on image features extracted from
CT scans. The first model, the SVC_noise, is a linear SVC model trained using noise features. The second
model, referred to as the RFC_radiomics model, is an RFC model trained with radiomic features.

A linear SVC is chosen for the noise features because it is assumed that the data can be well-separated by
a linear decision boundary based on the expected relationship between CF and SD values. Furthermore,
a linear SVC provides easily interpretable results, is computationally efficient, is less prone to overfitting
compared to more complex models, and tends to have good generalization performance.

On the other hand, for the radiomic features, an RFC model is selected due to its simplicity in implementation
and fast operational speed. Furthermore, it has been proven to be extremely successful in various domains
and, most notably, it can handle large and complex datasets effectively [83].

4.6.1. Input data
For the models’ training, validation and testing, the kernels selected as the smoothest and sharpest following
Section 4.2 are used. The data points are labelled as smooth (0) and sharp (1), and the data has been split
into a training and test dataset with a ratio of 80:20.

Each CT slice has one set of noise features and ten sets of radiomic features available through the feature
extraction performed in Section 4.4. This tenfold difference in the number of radiomic feature sets arises be-
cause radiomic features are extracted ten times for each slice, while noise measures are extracted only once.
To maintain consistency, the split was performed based on the slice numbers. This approach guarantees that
different patches extracted from the same slice are included in the same subset, ensuring that the training
and test datasets for the RFC model match those utilized in the SVC model.

The training dataset is used for the hyperparameter tuning and performance analysis, using ten-fold cross-
validation, and the test dataset for model evaluation, see Figure 4.2. Ten-fold cross-validation means the
training dataset is partitioned into ten equally sized folds. Each fold acts as a validation set once, while the
remaining nine folds serve as the training set. This partitioning ensures that every dataset sample is used for
training and validation purposes.
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Figure 4.2: Overview of the datasets used in the methods. The extremes dataset comprises the CT scans
reconstructed with the eight selected extreme kernels in Section 4.2. This dataset is split into a
training dataset (80%) and a test dataset (20%). The training data is used for the hyperparameter
tuning and the performance analysis, employing ten-fold cross-validation. In the ten-fold cross-
validation, the training dataset is split into ten folds. In each split, nine folds are used for training,
and one is used for validation. This process is repeated ten times, using a different fold as the
validation group in each split. The test dataset is reserved for model evaluation. Additionally, the
test dataset is combined with the remaining dataset, which contains all CT scans reconstructed
with kernels not identified as "extreme", for model deployment

4.6.2. Hyperparameter Tuning
For each model, a subset of hyperparameters is tuned to tweak the model performance for optimal perfor-
mance. Only the regularization parameter C has been tuned for the SVC model using the GridSearchCV func-
tion in the Scikit-learn library [84]. This function performs a search over a specified parameter grid, systemati-
cally trying all hyperparameters and cross-validating the model’s performance to find the best value for the hy-
perparameter. For the regularization parameter, the specified parameter grid is the list of values: [0.1 1. 10.]
and a ten-fold cross-validation is performed to evaluate the performance of each parameter.

Hyperparameter tuning for the RFC model is performed for two parameters: n_estimators and max_depth
using the RandomizedSearchCV function in Scikit-learn [84]. This function searches through a hyperparameter
space randomly and finds the optimal combination of parameters for the models. It randomly selects a fixed
number of combinations from the specified distributions for each hyperparameter. The function randomly
selects a hundred combinations (specified by n_iter) from the hyperparameter space. The distribution of the
number of decision trees to be created (n_estimators) is between, [10− 100] and of the maximum depth of
each decision tree (max_depth) between [10−120].

4.6.3. Performance Analysis
For the performance analysis of the models, a ten-fold cross-validation with a hundred repeats is applied
using the optimal hyperparameters determined in the previous step. This method ensures robust classifier
performance evaluation so the results are as generalizable as possible.

The cross-validation process proceeds iteratively, with each fold serving as the validation set exactly once.
This entire cross-validation process is repeated a hundred times to enhance the reliability and stability of
the evaluation. The repeated evaluation helps account for potential variability and randomness in the data,
ensuring that a specific dataset partitioning does not bias the results. This approach increases the reliability
of performance measures and provides a more comprehensive assessment of the model.
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For each fold, the accuracy and ROC AUC of the training and validation set are computed and saved. The
mean and standard deviation ROC AUC and accuracy are determined as the final performance measure for
the training and validation performances.

4.6.4. Model Evaluation
The trained and validated models are evaluated using the test set. For each set of features in the test dataset,
a prediction is obtained by both models by applying the model.predict function in the Scikit-learn library [84].
Subsequently, the accuracy and ROC AUC scores are calculated to measure the performance of both models
on unseen data. This process ensures that the model’s effectiveness and generalizability are assessed,
allowing meaningful conclusions and insights to be drawn from the results.

4.7. Model Deployment
The models are deployed to classify smooth (0) kernels and sharp (1) kernels. The cases reconstructed with
the kernels that were not identified as the extremes, together with the test dataset, are used as input; see
Figure 4.2. This will result in one prediction per slice by the SVC_noise model and ten predictions per slice by
the RFC_radiomics model (one per patch).

4.7.1. True Class Label
Since no true class labels (the ground truth) are available for the newly added kernels, the performance of
the deployed model can not be evaluated yet. Therefore, the true class label of each kernel is determined by
identifying the predominant class within each kernel. For instance, if 50.1% of the slices extracted from kernel
"C" are classified as smooth, the true class label for kernel "C" is assumed to be smooth.

4.7.2. Aggregation
A final prediction for each patient is determined by aggregating the predictions for that patient. The predictions
are aggregated by applying majority voting per patient; this involves classifying a data point based on the
majority among a group of predictions. Majority voting is a simple and effective way to make decisions based
on consensus when there are multiple sources of information, such as multiple slices from the same patient.
It can help improve the robustness and accuracy of predictions. Several majority voting approaches have
been applied, explained below; for each approach, the ROC AUC and accuracy scores are calculated using
the previously determined true class labels and newly predicted labels per patient.

Majority Voting Approaches
The aggregation approaches for the noise and radiomic features differ based on the number of feature sets
available for each slice. Noise features provide one set of features per slice extracted from the most homoge-
neous patch. This allows for majority voting based on the slice predictions. Conversely, radiomic features yield
ten sets per slice, offering multiple options for majority voting. These aggregation approaches are described
below and are visualized in Figure 4.3.

1. Slice-Level Voting (SLV): In this approach, one prediction per slice is aggregated to determine the
final patient prediction, with predictions based on the most homogeneous patch of the slice. It applies
to both the SVC_noise and RFC_radiomics models.

2. Multi-Patch Slice-Level Voting (MPSLV): This method aggregates ten predictions per slice to derive
the final patient predictions, with predictions made on the ten patches per slice. This approach is
specifically applicable to the RFC_radiomics model.

3. Hierarchical Multi-Patch Voting (HMPV): In this strategy, the initial aggregation combines the ten
predictions per slice to determine slice predictions, which are further aggregated to establish the final
patient predictions. This strategy applies exclusively to the RFC_radiomics model.

4.8. Radiomic Features Analysis
An extensive set of radiomic features is extracted from each slice’s ten most homogeneous ROIs. As men-
tioned, the most suitable ROI selection method for extracting radiomic features remains uncertain for this
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Figure 4.3: Visualization of the three distinct majority voting approaches employed as data aggregation methods to deter-
mine the final prediction per patient. The left branch displays Slice-Level Voting (SLV), the middle Hierarchical
Multi-Patch Voting (HMPV) and the right Multi-Patch Slice-Level Voting (MPSLV).

application. In addition, selecting the ten most homogeneous patches of each slice is computationally heavy.
Therefore, in this section, a random ROI selection approach for extracting radiomic features is explored and
compared with the original ROI selection method.

Furthermore, a feature importance analysis is conducted to understand the underlying dataset relationships
better and improve the model interpretability. Also, it is a first step for feature selection, which may improve
the performance of the RFC and reduce the computational costs of the radiomic feature extraction and the
training time.

4.8.1. ROI Selection: Random versus Most Homogeneous
A random patch selection approach is evaluated and compared to the original homogeneous patches ap-
proach. Ten random non-overlapping patches are extracted from the patient of 30× 30 pixels for each slice.
Subsequently, the same process has been completed: hyperparameter tuning, performance analysis, model
evaluation and finally, model deployment. The final results are compared to the model performance of the
RFC trained on homogeneous patches using McNemar’s test (explained in theory section 3.6).

4.8.2. Feature Importance
In total, the RFC has been fed with an extensive set of 455 radiomic features; in this section, the significance
of each feature is investigated. RFC models typically provide a feature importance measure known as the
Mean Decrease in Impurity. This measure quantifies each feature’s contribution to the model’s predictive
performance. However, it has a limitation; it may assign high importance to features not necessarily predictive
on unseen data, particularly when the model is overfitting.

To mitigate this issue, a permutation-based feature importance approach is employed. Unlike MDI, this tech-
nique allows computing feature importance on unseen data, making it more robust. Permutation feature
importance is the reduction in a model’s score when a single feature’s values are randomly shuffled [51].
This shuffling disrupts the relationship between the feature and the target variable. Consequently, the drop in
the model’s score indicates the feature’s importance, revealing how much the model relies on that particular
feature.

This permutation-based technique offers the advantage of being model-agnostic and applicable across vari-
ous models. It can be repeatedly calculated with different feature permutations, providing a robust assessment
of feature importance.
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4.9. Model Comparison
In the previous steps, two models have been developed for categorising reconstruction kernels based on
their sharpness, SVC_noise and RFC_radiomics. In this section, a model comparison is performed, including
several aspects.

Firstly, a comparative assessment is conducted to evaluate the performance of the two models, SVC_noise
and RFC_radiomics. For this comparison, for each model, the final model with the best-performing major-
ity approach is used as input to McNemar’s test (explained in section 3.6) to confirm whether one model
significantly outperforms the other.

Additionally, a thorough analysis explores the differences in the categorisation of sharp and soft kernels em-
ployed by each model. This investigation aims to shed light on the implications of designating one of these
categorisations as the gold standard and its impact on the performance of the other model. An examination of
misclassified patients for each model is also carried out, with particular attention to identifying any overlap be-
tween the two models’ misclassifications. Finally, an overall performance comparison is performed, evaluating
the advantages and disadvantages of each model.
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5
Results

5.1. Dataset
As a result of the predefined criteria, 14 cases were excluded from the dataset due to having fewer than ten
slices. It is worth noting that 10 of these excluded cases were exclusively reconstructed with the Toshiba
kernel FC11, excluding this entire kernel. Additionally, the case reconstructed with FC52 was not included
due to the total number of available slices for this kernel being less than 100, leading to the removal of this
entire kernel. This selection process led to a dataset of 270 cases, reconstructed using 35 distinct kernels,
each characterized by a wide range of acquisition and reconstruction parameters. A concise summary of the
chosen dataset is presented in Table 5.1, while a comprehensive overview can be found in Appendix C.

5.2. Selecting Extremes
The chosen smoothest and sharpest kernels per vendor, respectively, are Standard, shortened as STD &
Lung (GE), A & D (Philips), B20f & B80f (Siemens), and FC01 & FC82 (Toshiba). Standard has been chosen
instead of Soft due to the limited number of patients (1) and slices (116) available for the Soft kernel. This
is the same reason for selecting B20f instead of B20s; only one patient is available containing 331 slices for
B20s.
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Table 5.1: The arrangement of kernels follows a vendor-based order derived from the sharpness

descriptions given by the vendors. It ranges from smooth (upper) to sharp (lower). The

kernels in bold and highlighted with a green colour represent the selected smoothest

and sharpest kernels per vendor.

kernel Tube
current

Tube
voltage

Slice
thickness

Patient Slices

Philips

A 67-417 120 3.2 10 920

B 67-180 120 3.2 10 1255

C 60-120 120 1.3-3.2 10 1656

D 93-187 120 2.0-3.2 10 1770

EC 93-187 120 3.2 3 460

GE

SOFT 60 120 2.5-10 1 116

STD 45-160 120-140 1.25-2.5 10 1706

BONE 40-90 120-140 1.25-2.5 10 987

LUNG 80-160 120 2.5 10 1671

Siemens

B20s 225 130 1.25 1 331

B20f 90-120 120 2.0 10 1579

B30s 38-173 110-130 2.0-5.0 10 1499

B30f 75-210 120 1.0-2.0 10 1769

B31s 38-275 130 2.5-3.0 10 1271

B31f 40-500 120 2.0-3.0 10 1327

B35f 120 120 2.0 2 347

B40s 133 130 3.0 1 278

B40f 80-330 120-140 5.0 4 264

B41s 270 120 3.0 1 138

B45f 120-513 120 1.0-3.0 10 2826

B50s 80-100 120-130 2.0 4 672

B50f 90-160 120-140 2.0-5.0 10 1445

B60s 63-270 110-130 2.0-3.0 10 1492

B60f 90-160 120 2.0 10 1652

B70f 105-381 120 2.0 9 1980

B80f 150-250 120 1.0 10 3372

Toshiba

FC01 80-260 120-135 2.0-3.0 10 1419

FC02 160 120 3.0 9 844

FC03 260 130 2.0 3 445

FC10 80-150 120 2.0 10 1790

FC50 80-160 120 2.0 9 1523

FC51 80-160 120 2.0 10 1703

FC53 80 120 1.0-2.0 3 585

FC30 160 120 2.0-3.0 10 1348

FC82 80-160 120 2.0 10 1513
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5.3. Feature Extraction
5.3.1. Noise Features
The noise magnitude in terms of the lowest SD of a 30× 30 pixel’s ROI has been extracted from each slice.
An example of this process is visualized in Figure 5.1.

Figure 5.1: The SD heatmap of a patient CT scan is
visualized. The heatmap is created using
a sliding window of 30 × 30 pixels. The
most homogeneous ROI of the image is
indicated by blue and represents the ROI
with the lowest SD. On the right, a zoom-in
of this most homogeneous patch is added.

The ten most homogeneous patches have been identified and selected using the SD heatmap. Subsequently,
the average NPS of each slice has been computed. These NPS values have been radially averaged to create
a 1D spectrum and compute the CF for each slice; this process is shown in Figure 5.2.

Figure 5.2: The left image displays the ten most homogeneous patches (30× 30 pixels) with a maximum overlap of 50% on top of a
preprocessed CT scan. These patches have been identified using an SD heatmap. The right side of the figure shows the 1D
NPS curves of each patch in light blue and the final radial averaged NPS in dark blue. The radial averaged NPS is utilized to
compute the CF of the slice, indicated by the red line in the graph.

5.3.2. Radiomic Features
An example of the ROI selection process for the radiomic features is visualized in Figure 5.3. The ten patches
indicated by blue are the ten most homogeneous non-overlapping patches of the slice, and 455 radiomic
features are extracted from each patch.

Figure 5.3: A preprocessed CT scan
including the ten non-
overlapping most homo-
geneous patches (30 × 30
pixels) indicated by blue.
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5.4. Distribution Analysis
5.4.1. Noise Magnitude Distribution
Subsequently, for each patient, the median of the noise magnitude has been computed; these results are
added to Appendix D in Table D.1 and visualized in Figure 5.4 using box plots. The following observations are
made:

• The kernels with a lower noise magnitude are distributed closer together than those with a higher noise
magnitude, which means that the noise values are more similar within these kernels.

• The kernels with a higher median noise magnitude are more spread out.
• The kernels chosen as the extremes do not always show the smallest or largest values, e.g. B20f and

FC82.
• The kernels of Siemens with a higher noise magnitude have multiple outliers.
• GE and Philips tend to show two distinct groups based on their noise magnitude values, whereas

Toshiba and, in particular, Siemens show a more linear increase in the noise magnitude.
• Philips generally has lower noise magnitude values than the other manufacturers.

Figure 5.4: The distribution of the median noise magnitude values per kernel is displayed using box plots. The four manufacturers are
visualized separately; for each graph, the kernels are ordered from left (lowest) to right (highest) based on the median SD
value for that kernel. The kernels that have been identified as ’extremes’ in Section 4.2 are highlighted by blue (smoothest)
and red (sharpest). The black points indicate the outliers.
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5.4.2. Noise Texture Distribution
For each patient, the median of the noise texture has been calculated by taking the median central frequency
value of all slices of one patient. These results have been included in Appendix E and are presented in Table
E.1. Additionally, the distribution per kernel has been visualized through box plots in Figure 5.5, and the
following findings are noted:

• Kernels with a lower noise texture are distributed slightly closer together, less obvious than the noise
magnitude.

• Kernels chosen as the extremes do not always show the smallest or largest values, e.g. FC01 and D.
• Kernels of Toshiba with a higher noise texture have several outliers.
• The results per manufacturer show less clear discernible groups compared to the distribution of the

noise magnitude values.
• Philips generally has lower noise texture values than the other manufacturers.

Figure 5.5: The distribution of the median noise texture values per kernel is displayed using box plots. The four manufacturers are
visualized separately; for each graph, the kernels are ordered from left (lowest) to right (highest) based on the median CF
value for that kernel. The kernels that have been identified as ’extremes’ in Section 4.2 are highlighted by blue (smoothest)
and red (sharpest). The black points indicate the outliers.
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5.4.3. Relationship
The relationship between the noise magnitude and the noise texture is visualized in Figure 5.6 by plotting the
median values of the central frequency and the standard deviation per kernel in a scatter plot.

The graph illustrates the anticipated relationship: when the central frequency rises, signifying a transition
towards higher frequencies, it is accompanied by an increase in the standard deviation, resulting in a decrease
in noise reduction. This finding is further supported by the calculated Spearman’s correlation coefficient:
r=0.79, p<0.001. This outcome underscores a strong, positive, statistically significant monotonic relationship
between the two noise features.

Moreover, the scatter plot visually reveals that two linearly separable clusters emerge when utilizing noise
magnitude and texture as features. This discovery encourages further exploring a linear classification algo-
rithm that employs noise features as input variables.

Figure 5.6: The relationship between the noise magnitude mea-
sured as SD [HU] and the noise texture measured
as CF [mm−1]. Each point is the median value com-
puted over all patients from the same kernel. The
scatter plot shows a strong, positive monotonic rela-
tionship, confirmed by Spearman’s correlation coeffi-
cient of 0.79.

5.5. Model Implementation
5.5.1. Input data
Table 5.2 shows the number of slices per kernel and dataset. For each slice, one set of noise features and
ten sets of radiomic features are available. When considering the total number of slices within the smooth
and sharp categories, it becomes evident that there exists a class imbalance. Specifically, the sharp category
comprises a significantly larger number of slices (8326 slices) compared to the smooth category (5624 slices)
despite a similar number of patients in both groups.

Table 5.2: Specifications of the input data split in training and test dataset,

per kernel, the number of slices per dataset is specified. The

training set is used for the hyperparameter tuning and model

performance analysis, whereas the test set is used for model

evaluation.

Vendor Smooth Sharp

Kernel Training Test Kernel Training Test

GE STD 1384 322 LUNG 1342 329

Philips A 747 173 D 1399 371

Siemens B20f 1259 320 B80f 2683 689

Toshiba FC01 1135 284 FC82 1211 302

Total 4525 1099 6635 1691

5.5.2. Hyperparameter Tuning
For the SVC_noise model, the regularization parameter C has been tuned to find the optimal value. This
search yielded an optimal value of 0.1 for the regularization parameter, with a mean test ROC AUC score of
0.9803.
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The hyperparameter search conducted for the n_estimators and max_depth parameters of the RFC_radiomics
model led to the identification of the most effective parameter combination, which consisted of n_estimators =
20 and max_depth = 18. This combination achieved a mean test ROC AUC score of 0.9789, as highlighted
by the red cross in Figure 5.7, which shows the performance of the hundred randomly selected combina-
tions.

Figure 5.7: The outcomes of a hyperparameter search are
presented for the ’n_estimators’ and ’max_depth’
parameters of the ’RFC_radiomics’ model, em-
ploying a random grid search. The x-axis illus-
trates the ’n_estimators’ parameter values, while
the y-axis represents ’max_depth’. Each scatter
point represents a selected hyperparameter com-
bination, with the colour signifying the mean test
ROC AUC score achieved through 10-fold cross-
validation. The red cross highlights the most ef-
fective hyperparameter combination.

5.5.3. Performance Analysis
Using the optimal hyperparameters, a ten-fold cross-validation with one hundred iterations was performed
to analyse the performance of both models. The results per iteration are visualized in Figure 5.8 for the
SVC_noise model and in Figure 5.9 for the RFC_radiomics model. Table 5.3 shows the averaged performance
scores, including their SD.

The performance of the SVC_noise model demonstrates an average accuracy score of 0.94 in both the training
and validation sets. Notably, the ROC AUC metric shows a slightly elevated value of 0.98 in both sets. It is
worth highlighting minimal variation across the iterations, with an SD of less than 0.01 for both metrics. On the
other hand, the performance of the RFC_radiomics model surpasses this, achieving scores exceeding 0.99
for both ROC AUC and accuracy in both the training and validation sets. Furthermore, the SD between the
repetitions is minimal, measuring less than 0.001.

The impressive performance scores in the training group affirm that both models can efficiently learn from the
training data, effectively capturing patterns and relationships within both groups. Furthermore, the strong per-
formance, as evidenced by the high scores on the validation data, suggests that both models can generalize
effectively to unseen data.

Figure 5.8: The performance results of the SVC using 10-fold
cross-validation with 100 iterations, showing the
training accuracy, training ROC AUC, test accuracy
and test ROC AUC scores for each iteration. Addi-
tionally, the SD within each iteration is shown for
each performance metric.

Figure 5.9: The performance results of the RFC using 10-fold
cross-validation with 100 iterations, showing the
training accuracy, training ROC AUC, test accuracy
and test ROC AUC scores for each iteration. Addi-
tionally, the SD within each iteration is shown for
each performance metric.
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Additionally, the low SDs observed across cross-validation repeats indicate that, for both models, their per-
formance remains consistent across different data folds or splits. Consequently, the specific data partitioning
into training and test sets does not significantly influence the model’s performance. The minimal variability
between the iterations underscores the robustness and reliability of the models.

5.5.4. Model Evaluation
The trained models underwent evaluation using the test dataset, which led to the performance scores dis-
played in Table 5.3. The evaluation of the SVC_noise model resulted in a score of 0.94 for both the ROC AUC
and the accuracy. Furthermore, the confusion matrix was computed to represent the classification results
(Figure 5.10), illustrating the number of correct and incorrect predictions per class. In this case, it shows
that 118 smooth slices (4.23%) were incorrectly classified as sharp. Conversely, only 48 slices (1.72%) were
misclassified as smooth.

When applying the test dataset to the trained RFC_radiomics model, a score of 0.99 was achieved for both the
ROC AUC and the accuracy. The confusion matrix of the classification results for the RFC_radiomics model is
visualized in Figure 5.11. It reveals that 203 (0.73%) smooth patches were wrongly classified as sharp, while
only 66 (0.24%) sharp patches were misclassified as smooth.

Notably, in both models, the misclassification rate for smooth slices/patches is higher than that of sharp
slices/patches, despite the smaller number of smooth slices/patches used in the input for this model evalua-
tion.

Figure 5.10: The confusion matrix representing
the classification results of the
SVC_noise model. The figure shows
the number of correct and incor-
rect predictions per class of the test
dataset.

Figure 5.11: The confusion matrix representing
the classification results of the
RFC_radiomics model. The figure
shows the number of correct and in-
correct predictions per class of the
test dataset.

5.6. Model Deployment
The trained models are deployed to classify each data point in the dataset, comprising the test dataset of
"extreme" kernels together with all the other available kernels. In total, 270 patients are included with 35
different kernels. The relative frequency of the data classified as smooth and sharp according to each model
is visualized using a stacked bar chart (Figure 5.12).

On the left side of this figure, the relative frequencies per kernel of smooth predictions are visualized for both
models. The right side shows the relative frequency per kernel of the sharp predictions. The white line serves
as the threshold boundary for determining the true label. In the case of light colours (smooth), when the
relative frequency lies above this threshold, it is presumed to belong to the smooth category, while if it falls
below, it is considered sharp, and vice versa for dark colours (sharp). Figure 5.12 shows that only for one
kernel the true class label identified by the threshold boundary differs between the two models; this kernel is
the B50s kernel from Siemens.
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Figure 5.12: Graph of the relative frequencies of the data classified as smooth and sharp according to each
model per kernel. A relative frequency of 100 per cent means that all data points of that kernel
have been classified as that class. In the graph, the light and dark blue bars represent the pre-
dictions of the SVC_noise model, whereas the light and dark red bars indicate the predictions
made by the RFC_radiomics model. On the left side, the relative frequencies of kernels classi-
fied as smooth are displayed; on the right side, the relative frequencies of kernels are classified
as sharp. The two white dotted lines indicate the threshold boundary for determining the true
labels.
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5.7. Aggregation
The final model is created by aggregating the data through applying majority voting on patient level; for the
SVC_noise, only one approach was possible. On the other hand, for the RFC_radiomics, three different
approaches have been applied for majority voting. The results are shown in Table 5.3.

The majority voting for the SVC_noise model resulted in an ROC AUC and accuracy score of 0.97. The model
misclassified, according to its definition of smooth and sharp, eight of the 270 patients with five distinct kernels:
B45f (n=2), B50f (n=1), B50s (n=2), FC50 (n=1) and D (n=2).

The three majority voting approaches (SLV, MPSLV, HMPV) for the RFC_radiomics model all increased perfor-
mance regarding ROC AUC and accuracy (see Table 5.3). MPSLV yielded the highest performance, yielding
an ROC AUC and accuracy score of 0.96.

This approach wrongly classified ten of the 270 patients with eight distinct kernels according to its definition
of smooth and sharp: B45f (n=2), B50f (n=1), B50s (n=1), B60s (n=1), B70f (n=1), FC50 (n=1), FC51 (n=2)
and C (n=1).

Table 5.3: The performance results of the SVC_noise and RFC_radiomics models in terms of accuracy and ROC AUC scores. The

table shows the performance analysis results, model evaluation and final prediction through aggregation. SLV, MPSLV and

HMPV indicate the three different majority approaches explained in Figure 4.3.

Dataset Accuracy ROC AUC

SVC_noise RFC_radiomics SVC_noise RFC_radiomics

5.5.3 Performance Analysis

Training (SD) Train 0.9423 (7.52E-4) 0.9993 (1.50E-4) 0.9837 (3.14E-4) 1.00 (0.00)

Validation (SD) Train 0.9422 (65.6E-4) 0.9918 (8.48E-4) 0.9837 (28.2E-4) 0.9996 (1.22E-4)

5.5.4 Model Evaluation

Testing Test 0.9405 0.9904 0.9432 0.9910

5.7 Aggregation

SLV Test + remaining 0.9703 0.9407 0.9691 0.9370

MPSLV Test + remaining N/A 0.9630 N/A 0.9617

HMPV Test + remaining N/A 0.9556 N/A 0.9527

5.8. Radiomic Features Analysis
5.8.1. ROI selection: Random versus Most Homogeneous
In the previous experiments, the ROI selection was based on the most homogeneous patches; this section
delves into the impact of using randomly selected patches, which are considerably more cost-effective to
acquire. The RFC model trained with radiomic features extracted from randomly selected patches is called
the RFC_random model.

The ten random patches of size 30×30 pixels were selected from each slice. Subsequently, hyperparameter
tuning resulted in the best-performing combination of parameters: n_estimators = 39 and max_depth = 11 with
a mean test AUC score of 0.9763.

The performance analysis resulted in the mean performance scores shown in Table 5.4 under the heading
RFC_random. The model performs well in the training and validation sets, with minimal standard deviation
among repeated runs. This indicates that the model’s performance is largely unaffected by how the data is
divided into training and validation subsets. The minimal variability across iterations underscores the model’s
robustness and reliability.

Subsequently, the trained model is applied to the test set, and the predictions are evaluated using the true
labels. The performance scores are shown in terms of accuracy and ROC AUC in Table 5.4. Additionally, the
model is deployed to classify each patch in the test dataset combined with the data of the unseen kernels to
determine the true labels following the same procedure as previously described.

Last, majority voting has been applied using the three proposed approaches; the results are noted in Table
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5.4. SLV and MPSLV achieved the same high-performance level, attaining an accuracy and ROC AUC score
of 0.97. Both these approaches resulted in the misclassification of nine out of the 270 patients with seven
distinct kernels: B45f (n=2), B50f (n=1), B50s (n=1), FC50 (n=1), FC51 (n=2), C (n=1) and D (n=1).

The performances of both models following data aggregation with MPSLV (best-performing approach) showed
no significant difference, as the p-value of the McNemar test performed using the contingency table [[259,2],
[1,8]] is 1.0. The p-value of 1.0 indicates that there is no evidence to reject the null hypothesis, which, in this
context, would mean that the two models perform similarly in terms of misclassification.

Also, the categorization of the kernels is equal to that of the RFC_radiomics model. However, there are a few
interesting differences. Firstly, in contrast to the RFC_radiomics model, MPSLV did not increase the model’s
performance compared to SLV. Furthermore, the ROI selection process of RFC_random is computationally
less heavy. Finally, the training and validation results are slightly lower and have more variation (higher SD);
this may indicate less overfitting compared to the RFC_radiomics model.

Table 5.4: The performance results of the RFC_radiomics and RFC_random models in terms of accuracy and ROC AUC scores. The

table shows the performance analysis results, model evaluation and final prediction through aggregation. SLV, MPSLV and

HMPV indicate the three different majority voting approaches explained in Figure 4.3.

Dataset Accuracy ROC AUC

RFC_random RFC_radiomics RFC_random RFC_radiomics

5.5.3 Performance Analysis

Training (SD) Train 0.9758 (2.94E-4) 0.9993 (1.50E-4) 0.9986 (0.62E-4) 1.00 (0.00)

Validation (SD) Train 0.9684 (16.0E-4) 0.9918 (8.48E-4) 0.9961 (3.58E-4) 0.9996 (1.22E-4)

5.5.4 Model Evaluation

Testing Test 0.9649 0.9904 0.9687 0.9910

5.7 Aggregation

SLV Test + remaining 0.9667 0.9407 0.9659 0.9370

MPSLV Test + remaining 0.9667 0.9630 0.9659 0.9617

HMPV Test + remaining 0.9411 0.9556 0.9444 0.9527
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5.8.2. Feature Importance
Permutation importance was assessed using the test set; the top 20 features are shown in Figure 5.13,
revealing that the feature with the highest permutation importance yielded a modest decrease of 0.000534
in accuracy when its values were permuted. This result suggests that, on average, permuting this particular
feature led to a negligible impact on model performance, implying that none of the features are individually
important. However, this finding contradicts the model’s high performance, indicating that there must be
features of significance.

Figure 5.13: The distribution of the permutation importance values of the top 20 features, visualized using box plots. The black dots
indicate the outliers. The permutation importance values are defined as the decrease in prediction ROC AUC score following
permuting that specific feature. Each feature name is composed as filteringtype_featureclass_feature. All the features
stated here are extracted from the wavelet-filtered images.

5.9. Model Comparison
5.9.1. McNemar’s Test
The best-performing models for the comparison are used; for SVC_noise the model applying SLV, and for
RFC_radiomics the model applying MPSLV. This created the 2x2 contingency table of [[256,6], [4,4]] shown
in Figure 5.14 and resulted in a p-value of 0.75. The relatively large p-value of 0.75 suggests that the null
hypothesis that none of the two models performs better than the other can not be rejected. Given these
results, there is no sufficient statistical evidence to conclude that one classifier model significantly outperforms
the other.

Figure 5.14: The 2×2 contingency table
using the SVC_noise and
RFC_radiomics binary clas-
sification outcomes.
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5.9.2. Differences in Categorization
The true class label for each unseen kernel in each model is determined by the majority class within the kernel.
In some cases, this leads to inconsistent true class labels between the two models, resulting in different kernel
categorizations. When comparing these true class labels (see Appendix F), we found only one kernel, B50s,
categorized differently. The SVC_noise model assigns it the true class label "sharp", while the RFC_radiomics
model labels it "smooth". Siemens describes B50s as a medium sharp kernel with "s" denoting standard
rotation time.

Changing the true class label for B50s to "smooth" in the SVC_noise model does not affect its performance
since it equally classifies the kernel as "smooth" and "sharp". However, in the RFC_radiomics model with
MPSLV, altering the true class label for B50s would lead to a slight performance decrease of less than 0.1 in
accuracy and ROC AUC score. This is because the model predominantly classifies the kernel as "smooth"
(three times) compared to "sharp" (once).

5.9.3. Misclassified Patients
Eight patients have been misclassified by the SVC_noise model and ten by the RFC_radiomics model out of
270 patients, both by their own definitions of sharp and smooth categorization. Four of those patients are
misclassified by both models; their specifications, together with the median values for that kernel, are outlined
in Table 5.5. The patients are reconstructed with three distinct kernels: B45 f , B50 f and FC50, which are all
on the border of smooth and sharp, as shown in Figure 5.12.

Table 5.5: The four cases misclassified by both models, including their specifications in terms of manufacturer, CT

scanner model, kernel, tube current and slice thickness compared with the median tube current and slice

thickness values of that specific kernel.

Manufacturer Model Kernel Tube current (mA) Slice thickness (mm)

Patient Median Patient Median

1. SIEMENS Volume Zoom B45f 140 417 2.0 1.0

2. SIEMENS Sensation 16 B45f 120 417 1.0 1.0

3. SIEMENS Sensation 16 B50f 90 120 5.0 2.0

4. TOSHIBA Aquilion FC50 140 100 2.0 2.0

By comparing these four patients with the other patients of the same kernels in Appendix C, to see if the other
scan parameters potentially explain the misclassifications, some notable observations emerge:

1st Patient: Patient reconstructed with B45 f misclassified as ’sharp’.
This patient is the sole instance of a B45 f case acquired with a Volume Zoom scanner model.
Furthermore, it has a slice thickness of 2.0 mm, unlike most B45 f cases, with a 1.0 mm slice
thickness. This suggests the presence of less noise and reduced sharpness, creating a
smoother appearance compared to cases with a 1.0 mm slice thickness. Additionally, it
exhibits one of the lowest tube current values, typically resulting in increased image noise
and reduced sharpness. From the investigated scan parameters, only the increased image
noise caused by the low tube current may explain the misclassification of this case.

2nd Patient: Another patient reconstructed with B45 f misclassified as ’sharp’
This case is acquired with a Sensation 16 model, similar to the majority of B45 f cases. The
only noteworthy difference in acquisition parameters compared to the other cases is using
the lowest tube current value. The increased image noise resulting from this low value might
have contributed to the misclassification of this patient.

3rd Patient: Patient reconstructed with B50 f misclassified as ’smooth’
This could be attributed to the exceptionally high slice thickness of 5.0 mm, whereas the
others, except one, all have a slice thickness of 2.0 mm. Higher slice thickness is typically
associated with reduced sharpness due to increased partial volume effects, potentially ex-
plaining the misclassification. Nevertheless, an increased slice thickness also results in lower
noise levels because more X-ray photons contribute to each slice.
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4th Patient: Patient reconstructed with FC50 misclassified as ’smooth’
This case does not substantially differ in scan parameters compared to the other FC50 cases.
The only notable parameter distinction is that this patient is acquired with the lowest tube
current value compared to the other patients within this kernel. This could potentially explain
the misclassification since a lower tube current value increases image noise.
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6
Discussion

The main objective of this thesis was to develop a method for categorising reconstruction kernels from different
vendors based on their sharpness. This approach involves using scan characteristics directly extracted from
actual patient scans with varying parameters. Two distinct methods were investigated to achieve this objective,
and several research questions were formulated to guide the research process, all of which will be addressed
below.

The first research question aims to research if scan characteristics directly extracted from actual patient
scans can facilitate the categorisation of reconstruction kernels and is answered using several sub-questions,
all shown below.

Research (Sub-)Question(s) 1

Can scan characteristics directly extracted from actual patient scans facilitate the categorisation of
reconstruction kernels?

1.1. Which image features can effectively enable kernel categorisation?

1.2. Which ML models are suitable for utilising these image features for categorisation?

1.3. What is the comparative performance of the ML models using the identified image features in
the context of kernel categorisation?

In this thesis, two distinct sets of image features were extracted from CT patient scans: noise features and
radiomic features. The noise features extracted from the CT examines in the extremes dataset were utilised as
input to train, validate, and evaluate the SVC_noise model. This model achieved an average ROC AUC score
of 0.9837 (28.2E-4) in the validation group and a score of 0.9432 in the testing group. Similarly, the radiomic
features from the same extremes dataset were used to train, validate, and evaluate the RFC_radiomics model.
In the validation group, this model obtained an average ROC AUC score of 0.9996 (1.22E-4), while the testing
group achieved a score of 0.9910.

These outcomes demonstrate that both sets of image features facilitate the categorisation of kernels found in
the extremes dataset. They exhibit impressive ROC AUC performance in the testing groups, signifying the ef-
fective generalisation of the models to unseen data. Moreover, the SVC proves to be a suitable machine learn-
ing classification model for the noise features, while the RFC is aptly suited for the radiomic features.

Following this, the two models were deployed to categorise smooth and sharp kernels. The test dataset,
combined with the remaining dataset containing kernels not classified as extremes, was used for this deploy-
ment. Given the absence of ground truth data for the remaining dataset, evaluating this deployment posed a
significant challenge. To address this, we determined the true class label for each kernel by identifying the
predominant class within that kernel, aiming to address the second research question:

Research Question 2

How can the kernel categorisation be effectively evaluated when ground truth data is unavailable?
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The true class labels were determined for both models using the previously mentioned method. This resulted
in a nearly consistent categorisation of the true labels for most kernels between the two models, except for
kernel B50s, which had a different true class label. Subsequently, a final prediction was made for each patient
by aggregating the predictions for that patient. The final predictions were compared to the established true
class labels. The SVC_noise model applied aggregation approach SLV, which yielded an ROC AUC score of
0.97, per the model’s definition of smooth and sharp. In total, the model misclassified eight out of the 270
patients. On the other hand, MPSLV performed best for the RFC_radiomics model, achieving a ROC AUC
score of 0.96, following the model’s definition of smooth and sharp. This model misclassified ten out of the
270 included patients.

In the following sections, the chapter presents research findings and critically reflects on the research process.
It delves into the limitations and potential complications of the study’s design and their implications for result
interpretation. Furthermore, the chapter offers several suggestions for future research.

6.1. Dataset
The dataset used in this research comprises thoracic CT scans from the NLST and LIDC-IDRC open-source
datasets. It encompasses a diverse range of employed scan parameters, and the exceptional performance of
both models suggests their ability to discern patterns associated with both classes accurately. Moreover, the
models demonstrate robustness against the noise introduced by variations in scan parameters and patient
characteristics. Notably, these models consistently classify previously unseen kernels into the same cate-
gories within each model and across both models, with the sole exception being the classification of the B50s
kernel, which differs between the two models.

For the implementation of the models, a specific subset of the dataset was chosen (the "extremes dataset").
This subset consists of each manufacturer’s smoothest and sharpest kernels available in the NLST and LIDC-
IDRC datasets. However, the distribution analysis has unveiled an interesting observation: the extreme ker-
nels selected for analysis do not consistently correspond to those with the lowest and highest values in the
dataset’s noise magnitude and texture distribution. Despite this inconsistency, it is essential to recognise
that employing these extreme cases has been empirically validated as reasonable. The models consistently
demonstrate their ability to generalise effectively when applied to unseen kernels. This indicates the ro-
bustness of the models and the practicality of using these extreme kernels for the intended categorisation
tasks.

Furthermore, all scans within the dataset were reconstructed using the outdated FBP technique due to their
acquisition predating 2010. Consequently, the extent to which the proposed method can be applied to more
advanced and intricate reconstruction techniques, such as iterative and deep learning-based methods, is left
for future work.

It is also relevant to highlight that the dataset exclusively comprises thoracic CT scans and reconstruction ker-
nels suitable for thoracic scans. This limitation confines the generalizability of the models to other body parts
and reconstruction techniques. Moreover, the dataset is imbalanced, with a predominant representation of
the sharp class in contrast to the smooth class. This imbalance likely affects the heightened misclassification
rate observed for smooth slices/patches. The models’ limited ability to categorise the smooth class stems
from insufficient training data, a direct outcome of this class imbalance.

For future research, several paths are worth exploring. Deploying the models on a larger dataset with the
same kernels could help confirm their performance and categorisations. Additionally, extending the appli-
cation of the models to datasets reconstructed with other unseen kernels, reconstruction techniques, and
CT scans of different body parts can help ascertain the models’ consistency and ability to identify precise
categorisations. Training the models on different kernels identified as extremes and evaluating potential differ-
ences in categorisation distributions between the models could offer insights into the models’ adaptability and
performance. Lastly, addressing the issue of class imbalance by training the models on a balanced dataset
may improve the misclassification rate for smooth classes and enhance overall model performance.
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6.2. Noise Features
The analysis of the noise features extracted from each slice showed a notable pattern where the noise values
of kernels assumed to be smoother are distributed closely together, thus having a smaller deviation. Con-
versely, kernels with higher sharpness displayed greater variability and occasionally featured outliers within
the distribution of these measures. Moreover, the relationship between CF and SD showed a strong, positive,
and statistically significant monotonic relationship supported by the Spearman’s correlation coefficient yield-
ing a value of 0.79 (p<0.001), confirming the anticipated relationship as has previously been demonstrated
[55]. In addition, the relationship between the two features reveals two linearly separable clusters, which
well-founded the use of the linear classifier to classify the reconstruction kernels.

In this thesis, the automated technique developed by Anam et al. [56] was employed to assess the noise
magnitude in CT images. This method effectively distinguishes differences in noise magnitude resulting from
reconstruction kernels when combined with noise texture values as input for a linear SVC model. While using
a 30×30 pixel ROI has been demonstrated as adequate for this purpose, it is important to acknowledge that
its optimality is still uncertain. Further research is required to explore and determine the most optimal ROI
size in this context.

In the context of real patient scans, the applicability of NPS encounters notable challenges owing to the
inherent non-stationary nature of such imaging systems, as highlighted by Dainty et al. [58]. For CT scans
reconstructed using FBP, the assumption may be that CT noise exhibits local stationarity within a small ROI
situated in a uniform background. This assumption underpinned the selection of a compact 30-pixel ROI
extracted from the most homogenous patch recommended in the literature [77]. Nevertheless, it is essential
to acknowledge that this assumption may not hold for nonlinear IR algorithms, which can manifest highly
non-stationary noise patterns when anatomical structures are present [85]. Consequently, further research is
needed to ascertain the suitability of the CF as an image feature for the categorisation model in the context of
CT scans reconstructed using IR algorithms.

6.3. Radiomic Features
In comparing random ROI selection and utilising the most homogeneous patches, noteworthy findings emerged.
The model trained on random patches demonstrated slightly superior performance, achieving an ROC AUC
score of 0.97 compared to 0.96 for the homogeneous ROI selection. However, the improvement observed
was not statistically significant according to the McNemar test. This suggests that radiomic features extracted
from both homogeneous and random patches can effectively serve as input for an RFC when categorising
reconstruction kernels. The random ROI selection might be preferred due to its computational efficiency. Addi-
tionally, the RFC_random model exhibited identical performance results for the SLV and MPSLV approaches,
indicating that extracting ten patches per slice could be considered redundant, potentially enhancing com-
putational efficiency. Further research is warranted to validate this finding and determine the optimal RFC
performance configuration.

Furthermore, the analysis of permutation feature importance sheds light on the model’s robustness against
disturbances in individual features. This resilience is likely attributed to the presence of collinearity among
the features. Perturbing a single feature had a negligible impact on the model’s performance, as it could
still derive similar information from correlated features. To address the challenge of multicollinearity, future
research could explore techniques such as hierarchical clustering based on Spearman rank-order correlations
[86]. Establishing a correlation threshold and retaining only one representative feature from each cluster
could help mitigate redundancy and ensure that the selected features genuinely contribute to the model’s
effectiveness.

Finally, the selection of a 30-pixel ROI size for radiomic feature extraction was made arbitrarily, as there is a
lack of literature-based recommendations regarding the ideal ROI size. Therefore, this aspect presents an
intriguing avenue for future research exploration.
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6.4. Model Development
Both the RFC model employed for radiomic features and the SVC model utilised for noise features showed
exceptional consistency in their predictions when classifying reconstruction kernels within the smooth and
sharp groups. This success underscores the suitability of these specific ML algorithms for this task. In
addition, the models were trained on a subset of kernels known as the ’extremes’, yet they have demonstrated
their adaptability to other kernels, indicating their potential for generalisation to unseen data. This adaptability
further underlines their utility in real-world scenarios.

Nevertheless, it is worth highlighting that this research did not encompass an exhaustive comparison of a
wide array of machine learning models, which could be an intriguing avenue for future exploration. Such
a comprehensive comparative analysis of diverse machine learning models would provide valuable insights
into how the RFC and SVC models stack up against alternative methods. This comparative study could
evaluate factors like accuracy, computational efficiency, and the robustness of different models, offering a
more comprehensive understanding of their respective strengths and weaknesses.

Moreover, this thesis primarily focuses on machine learning models, but it is worth acknowledging the potential
benefits of exploring DL models in this context. DL models have shown considerable promise in image
classification tasks [87]. By leveraging DL models, researchers could achieve even more refined and nuanced
results in categorising reconstruction kernels. This research direction opens up a wide range of possibilities,
including applying convolutional layers to automatically learn relevant features from the image data, ultimately
enhancing the accuracy and generalizability of the classification model.

The model performance evaluation relies mainly on the ROC AUC score. However, this score does not
always provide a complete picture of a model’s performance. While it effectively quantifies a model’s ability
to discriminate between different classes, it may not reflect the overall classification performance. In cases
where the class distribution is imbalanced, which is the case in this research, the ROC AUC score can appear
favourable, even if the model struggles with accurate classification within the minority class. To mitigate this
limitation, incorporating other metrics such as precision, recall, and F1 score can offer a more comprehensive
evaluation of model performance, mainly when class imbalances exist. These metrics can be particularly
informative when one class is more prevalent than the other.

Furthermore, determining the true class labels for each kernel relies on identifying the predominant class
within each kernel group. This operation inherently depends on the model’s performance and may introduce a
degree of bias into the categorisation results. Consequently, the ROC AUC scores used to assess the model’s
performance can be regarded as measures of how well the model aligns with its own predictions, rather
than indicators of its overall performance in classification. This is because it cannot be guaranteed that the
assumed true classes are correct. Nevertheless, it should be noted that the differences in the assigned true
class labels between the two models, specifically SVC_noise and RFC_radiomics, as well as the RFC_random
model, are limited. The sole exception is the kernel B50s, which receives a different true class label based
on the models. This observation suggests that, for most kernels, all three models consistently identify similar
patterns associated with both classes. This alignment in the models’ outputs supports the reliability of the
true class labels assigned in this context.

Lastly, categorising kernels solely into two broad groups, "sharp" and "smooth", raises a valid point of de-
bate. This binary classification may oversimplify the inherent complexity of kernel characteristics, potentially
leading to a loss of important details and nuances in the data. To address this issue, the consideration of
introducing an intermediate sharpness category is a concept worth investigating more thoroughly. The ratio-
nale behind this suggestion lies in the recognition that kernels can exhibit a spectrum of sharpness levels
rather than fitting neatly into just two extreme categories. Introducing an intermediate category could create
a more finely-grained classification system. This intermediate category would allow kernel characterisation
with characteristics falling between those typically associated with sharp and smooth kernels, such as kernel
B50s.
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6.5. Conclusion
In conclusion, this thesis aimed to develop an ML-based method for categorising reconstruction kernels based
on their sharpness. The SVC_noise and RFC_radiomics models demonstrated promising performances, nei-
ther outperforming the other. The ability of both models to accurately discern patterns associated with the
sharpness of each class while ignoring the noise introduced by variation in scan parameters and patient
characteristics in real patient data provides valuable insights, bridging the gap between research and clinical
applications. The results point towards the feasibility of scan characteristics extracted from real patient scans
in combination with ML models, addressing the challenge of kernel categorisation but also providing practi-
cal, versatile, and efficient tools that can benefit the broader medical imaging community. Nevertheless, the
results of this research are still preliminary, and caution is warranted when extrapolating the observed results
to broader contexts, such as newer reconstruction kernels and techniques.
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Abstract— Computed tomography (CT) is vital for diagnosing, monitoring, and treating various medical conditions. However, CT scans
pose challenges in large, multi-site or longitudinal studies due to variations in reconstruction techniques used by different manufacturers
and hospitals. Such variations result in significant differences in image quality, hindering the comparison and analysis of CT images across
different scanners and institutions. The development of a deep-learning based post-processing framework offers a new solution to address
inconsistent CT images. It has the potential to standardize and normalize existing CT images while preserving most anatomical details
simultaneously. The aim of this scoping review is to comprehensively overview the state-of-the-art DL strategies for standardizing CT scans
that vary due to reconstruction techniques. The strategies are compared based on the type of standardization, underlying DL architecture,
and performance evaluation. In total, thirteen studies were included and reviewed after a systematic literature search in PubMed and
IEExplore. The techniques evaluated all atttempt to solve intra-scanner variation resulting from different reconstruction kernels, whereas only
four studies aim to tackle intra- and cross-scanner variation. GAN-based model alterations demonstrate the most promising results in terms
of non-paired image usage, content preservation, forward and backward mapping, and combined intra- and cross-standardization. Despite
the promosing developments, further research is still required before these innovative standardization approaches can be implemented in a
stable manner in clinical settings.

Keywords—Computed Tomography, standardization, deep learning, reconstruction

I. INTRODUCTION

Computed tomography (CT) is an essential imaging tech-
nique for the diagnosis, monitoring, and treatment of various
medical conditions [1]. However, the use of CT scans can be
challenging in large multi-site studies or longitudinal studies
due to the variations in the reconstruction techniques used
by different manufacturers and hospitals [2]. These variations
can lead to significant differences in the image quality [3, 4],
making it difficult to compare and analyse CT images across
different scanners and institutions [5].

Several research studies have reported that the perfor-
mance of medical image analysis techniques depends on
the image variations arising from different reconstruction
techniques. For instance, Blazis et al. [5] discovered that a
commercially available Computer-Aided Diagnosis system
based on Deep Learning (DL) performs differently on images
reconstructed with iterative reconstruction (IR) compared to
filtered back projection (FBP). Furthermore, recent research
indicates a lack of reproducibility of radiomic features in
response to the variance in CT reconstruction parameters
[6–8]. Radiomic features provide valuable information about
tumour characteristics, and are employed in medical image
analysis, e.g. to diagnose and differentiate between different
types of cancer or predict treatment response and patient
outcomes [9]. These findings stress the importance of taking
caution while implementing automatic image analysis in a

hospital with multiple CT scanners and different reconstruc-
tion protocols.

A new solution to tackle the issue of inconsistent CT
images has emerged through the development of a deep-
learning based post-processing framework. This framework
has the potential to standardize and normalize existing
CT images, while simultaneously preserving most of the
anatomic details.

1. Outline

This systematic review aims to provide a comprehensive
overview of the state-of-the-art DL strategies for standardiza-
tion across CT scans that vary due to reconstruction tech-
niques. The strategies are compared with each other by com-
paring the type of standardization, underlying DL architecture
and the performance evaluation that has been performed.

To answer this, background information is provided in sec-
tion II about CT image reconstruction, clinically available re-
construction techniques and their strengths and limitations,
and lastly, about DL including interesting architectures for
image-to-image translation. In section III, the literature search
and eligibility criteria are described. Consecutively, the results
of the literature search are discussed in Section IV. In Sec-
tion V, the found results are discussed and finally, in Section
VI conclusions are drawn on the current status of CT image
standardization based on DL models.
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II. TECHNICAL BACKGROUND

1. Computed tomography image reconstruction

The CT scan is performed by rotating an X-ray source and de-
tector around a patient to acquire a series of two-dimensional
(2D) X-ray projections, or ’slices’ at different angles [10].
These slices represent thin cross-sections of the patient’s
anatomy, which can be processed to reconstruct a three-
dimensional (3D) object.

The X-rays transmitted through the patient interact with the
body tissues they encounter, which causes an exponential
reduction with distance travelled in beam intensity based on
tissue density and composition. As the X-ray photons exit the
patient, they are absorbed by a CT detector and converted
into an electronic signal. The attenuation of the X-ray beam
as it passes through a material along the line γ can be calcu-
lated using the line integral (Eq. 1). In the equation, µ(x,y) is
the linear attenuation coefficient of the tissue at position (x,y)
in a 2D plan and γ(t) = (x(t),y(t)) is a parametric equation
for a straight line that intersects the plane. The integral is
taken over the entire length of the line γ .

I = e−
∫

µ(x(s),y(s))ds (1)

A set of line integrals along all the ray paths in the X-ray
beam form an x-ray projection (or attenuation profile) that is
used to compute a 3D representation of the patient’s inter-
nal anatomy. Finally, the complete collection of line integrals
that traverse the patient’s body for every possible ray trajec-
tory within the X-ray beam, encompassing all gantry angles,
is called the Radon transform [10].

The basic idea behind CT image reconstruction is to use
mathematical algorithms to estimate the tissue density in
each voxel of the image volume. This is done by solving an in-
verse problem (back-projection), where the goal is to find the
tissue density distribution that best explains the measured X-
ray projections.

1.1. Sinogram

For CT image reconstruction, a sinogram is created, which is
a 2D representation of a CT scan [10, 11]. In the sinogram
each column represents a single row in the raw projection
data arranged in increasing angular order, thus provides a
compact representation that can be easily filtered and back-
projected to obtain an estimate of the 3D object. Typically,
the x-axis represents the gantry angle (θ ) and the y-axis rep-
resents the x-ray projection by a detector element along the
detector row, thus the distance along the projection direction
(l). Consequently, the sinogram comprises a series of sine
functions that overlap, where the amplitude and phase rely
on the voxel’s location, and the gray value corresponds to the
volume element’s gray value, while the wavelength remains
constant. An example of a sinogram is visualized in Figure 1.

1.2. Central slice theorem

The central slice theorem is one of the fundamental concepts
in CT image reconstruction [12]. This theorem, also known as
the Fourier slice theorem, states that the 2D Fourier transform
(FT) of an object is equivalent to the 1D FT of the object’s

Fig. 1: Left : the original image, which is the Shepp-Logan phantom,
a standard test image. Right : the sinogram of the original image.

projection passing through its centre and perpendicular to the
plane of the 2D FT [13]. By transforming all projections of the
object into the 1D Fourier transform and interpolating them
into a 2D Fourier space, the complete 2D FT of the object can
be reconstructed. Using the inverse FT, the original object is
reconstructed from the full 2D FT.

The theorem has provided a mathematical foundation for
the reconstruction of images from X-ray projections and has
facilitated the development of various CT reconstruction algo-
rithms. The subsequent section explains how CT scans are
reconstructed in practice based on the aforementioned the-
ory.

2. Reconstruction techniques

There are various strategies used for CT image reconstruc-
tion, including FBP, iterative reconstruction (IR), and deep
learning reconstruction (DLR). FBP was the standard image
reconstruction method for decades because of its simplicity
and computational efficiency [14, 15]. In fact, it was not un-
til 2009 that the initial IR algorithms were introduced to the
market, replacing the conventional FBP technique [14]. The
current state-of-the-art method for CT image formation is im-
age reconstruction based on DL, currently only three DLR
algorithms are commercially available [16]. In the following
subsections, each technique is explained and the strengths
and limitations are reviewed per technique. In addition, in
Appendix A the commercially available algorithms are briefly
explained.

2.1. Filtered back-projection

Filtered back projection is a common reconstruction method
that reconstructs a 3D image of an object from its projection
data (sinograms). In short, the method evenly distributes the
measured filtered signal over the projection line to compute
2D slices, which are then combined to form a 3D volume that
represents the object [10, 17].

More specific, for each gantry angle in a sinogram, the
attenuation value is divided by the number of image pixels
along the path of the projection from the X-ray source to the
detector. The resulting average attenuation value is then
allocated to those pixels. This process is carried out for every
gantry angle. The back-projected data is then summed to
form the final back-projected image.
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Fig. 2: The left CT scan is reconstructed with the standard reconstruction kernel, whereas the right CT scan is reconstructed with the
sharper kernel, called bone reconstruction kernel. Both reconstruction kernels are developed and GE Medical Sytems. The standard,

smoother kernel, shows lower image noise and displays more low-contrast details, but, on the downside it has a lower image sharpness.
On the contrary, the scan reconstructed with the bone kernel, a sharper kernel, enables a better edge definition and shows more structural

details, which is clearly visible around the bones, however, it also shows an increased image noise.

Prior to back-projection, the projection-data is filtered to
counteract blurring that occurs because of evenly spreading
the attenuation value [10, 18]. Applying a ramp filter (re-
construction kernel) to the projection, either through convo-
lution in the spatial domain or multiplication in the Fourier do-
main, generates a "filtered" projection featuring negative side-
lobes. This results in a spatial-frequency-amplified rendition
of the initial projection, where the high-frequency augmen-
tation matches the high-frequency damping applied during
back-projection. The method heightens rapid spatial varia-
tions in the attenuation pattern, such as boundaries between
anatomical structures of contrasting densities. It suppresses
low spatial frequency components of the attenuation profiles,
thus reduces blurring. However, the filter also enhances im-
age noise, which exists in the raw signal primarily at high spa-
tial frequencies.

Reconstruction kernel The ramp filter is required mathe-
matically to eliminate blurriness from back-projection, but it
can be paired with filters of varying intensities (kernels) to
heighten the spatial resolution of the ultimate image, depen-
dent on the specific application [10, 19]. For example, a
’sharper’ kernel, with higher filtration, may be employed to
enable a better definition of edges and a clearer delineation
of structural detail [15]. However, the downside of attaining
a greater spatial resolution is the increase in image noise
[10, 15].

Various kernels with distinct features are at the disposal of
clinicians in their day-to-day operations [18]. ’Smooth’ ker-
nels are designed to lower image noise and bolster the dis-
play of low-contrast details, but can lead to a drop in image
sharpness. Meanwhile, ’sharp’ kernels aim to enhance the
illustration of intricate elements in high-contrast structures,
although they can increase image noise to a level that hin-
ders the recognition and distinction of low-contrast structures
[19, 20]. In Figure 2 an example of a CT image pair is dis-

played, a CT scan that is reconstructed with a ’smooth’ ker-
nel, the standard kernel of GE medical systems (left scan), as
well as with a ’sharp’ kernel, the bone kernel of GE medical
systems (right scan).

Strengths and limitations The FBP technique is computa-
tionally efficient, and therefore a very simple and fast method
[10]. The user has control over image characteristics, i.e. by
indication-specific choice of reconstruction kernel. Also, FBP
reconstructs images with well-known image texture, and the
conventional image quality metrics are globally valid for this
method.

However, FBP makes certain assumptions that are not ac-
curate, such as treating the focal spot on the X-ray tube as a
point source with a perfectly shaped pencil beam that hits the
patient’s body at a single point, and measuring the intensity
at the central point of each detector element [10, 14, 15, 19].
Consequently, each pixel value in the resulting image comes
with an inherent uncertainty that stems from the X-ray detec-
tion process and the image reconstruction process.

While the ramp filter applied during FBP helps eliminate
blurring and improve edge detection in the image, it also am-
plifies the image noise already present in the raw signal, par-
ticularly at high spatial frequencies. This results in FBP CT
images having a characteristic speckled or mottled appear-
ance. Low-dose CT scans are not feasible since the resultant
image quality would not be sufficient for diagnostic purposes
due to its noisy nature [14, 19].

2.2. Iterative reconstruction

The underlying principle of iterative image reconstruction is
to calculate image data that accurately corresponds to the
acquired projection data using iterative algorithms [15, 18].
The iterative algorithm can be defined as a constrained op-
timization problem, in which the image data is the unknown
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optimum solution to the problem. Mathematically, this can
be expressed as a cost function that seeks to optimize two
aspects of the reconstruction simultaneously: conformity of
the reconstructed image data with the measured projection
data (data term), and noise suppression through a regular-
ization term that penalizes noisy solutions to the optimiza-
tion problem. By incorporating constraints in the optimization
problem, it is possible to account for the CT imaging process
model’s statistical and system optic properties. In essence, IR
reconstruction requires repeatedly updating the image data
to minimize the cost function, thus enhancing conformity be-
tween measured and reconstructed data while minimizing im-
age noise.

To reconstruct CT images through IR, an optimal process
consists of a cycle of forward- and back-projection steps. This
involves repeatedly converting between raw projection data
and image space. During the forward projection step, syn-
thetic projection data is created and compared with measured
projection data. The correction obtained from the difference
between the simulated and measured projections is propa-
gated to image space via the back projection step, typically
through filtered back projection. This correction is then ap-
plied as an update to the current image data estimate. The it-
erative cycle of forward and back-projection steps is repeated
until a predefined stopping criterion is met.

Two adjustable parameters can be identified that influence
the outcome of the IR method: the reconstruction kernel and
the strength of the algorithm. The reconstruction kernel is
employed in the FBP step of the algorithm, and influences
the image noise and image sharpness. The selection of the
strength level leads to varying degrees of noise reduction
[21, 22]. Nevertheless, excessive IR strength, particularly at
higher levels, can produce unsightly "blooming" artefacts that
tend to hinder the display of minute structures [23]. As a re-
sult, the impact of the IR algorithm’s strength on image quality
must be weighed carefully to strike a balance.

The major medical manufacturers have their own IR ap-
proach(es) that can be roughly categorized into statistical
(hybrid) and model-based iterative algorithms, depending on
the extent to which they model the imaging process [24, 25].
These categories are further explained in the next sections.

Statistical iterative reconstruction (hybrid) IR algorithms
based on statistical models employ iterative data filtration,
which is performed separately in projection space and/or im-
age space [15]. However, despite this, the actual image re-
construction process often still relies on FBP. As a result, the
speed of image reconstruction for this category of IR algo-
rithms, often referred to as hybrid IR, is generally similar to
that of FBP.

In projection space, statistical filtration involves iterative
analysis of data variation. By using statistical models, neigh-
bouring projection data is compared to identify overly noisy
or photon-starved projections. These projections are then ei-
ther replaced or modified to ensure maximum data consis-
tency, i.e., to minimize variation. Without modification, such
projections would contribute significantly to image noise and
artefacts, such as streaking, while providing limited informa-
tion for the reconstructed image data [26]. Unlike FBP, where
all projections have equal weighting, modified projections can

be assigned a lower weight to prevent potential bias, result-
ing in reduced contribution to the reconstructed image data
compared to unaltered projections [19].

After transitioning to image space, for example, via FBP,
statistical models of the noise structures characteristic of the
imaged body regions are employed to iteratively filter the im-
age data, further reducing image noise [14, 19, 26]. Edge-
preserving filters are used to minimize the impact on the de-
piction of fine structure and low-contrast detail [26]. Although
it is possible to apply iterative filtration in projection or image
space alone, current state-of-the-art statistical IR algorithms
typically perform iterative optimization in both spaces.

Model-based iterative reconstruction Model-based itera-
tive reconstruction (MBIR) differs from statistical IR in that it
involves simulating projection data by at least one forward
projection from image space to projection space based on the
current image estimate [15]. This requires a model of the CT
imaging process for forward projection, as well as a model
or estimate of the imaged object, also known as a prior for
initializing the iterative cycle (e.g., gained by FBP reconstruc-
tion). The closer the image prior is to the imaged object, the
faster the MBIR algorithm will converge. Back projection of a
correction term computed by comparing synthetic and mea-
sured projection data yields updated image data, which can
be used to initialize the subsequent forward projection of the
iterative cycle. Since simulating synthetic raw data by forward
projection in MBIR is complex and requires a large amount
of computation time, iterative filtration in projection and im-
age space, similar to the statistical filtration processes used
in statistical IR, can also be used to limit the number of re-
quired iterative forward projection steps and facilitate faster
convergence [26].

In contrast to statistical IR, which only models photon
statistics, MBIR models the technical properties of the CT
system used, such as system optics and further details of
CT imaging physics, as part of the CT imaging process [15].
As a result, the modelling of the CT imaging process in MBIR
is more precise and detailed than in statistical IR, making it
more complex and computationally intensive.

Strengths and limitations The primary advantage of IR
techniques over FBP is their ability to significantly reduce im-
age noise and artefacts while preserving accurate attenua-
tion values. As a result, signal-to-noise (SNR) and contrast-
to-noise (CNR) ratios are increased, and the visualization of
low-contrast features is enhanced. In addition, for MBIR slight
improvements in spatial resolution can be observed [15, 19].

On the downside, the image reconstruction time increases
with the complexity of the CT imaging process modelling. Es-
pecially, MBIR is more computationally demanding, resulting
in increased reconstruction times [14, 15]. Another weakness
of IR is the risk of over smoothing and of altered, unfamiliar
appearing image texture, e.g., at tissue interfaces [14, 19].
Furthermore, alteration of image characteristics through the
use of IR may have a potential impact on quantitative CT
analyses. Consequently, applying reference standards de-
termined from image data reconstructed with FBP without
proper consideration might lead to significant disparities in
outcomes [19, 27].
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2.3. Deep learning reconstruction

Deep-learning-based techniques for CT image reconstruction
is an emerging technique that has the potential to further im-
prove image quality and thus reduce dose [28]. Opposed
to traditional CT reconstruction methods that use analytical
models, DLR uses neural networks to learn the mapping be-
tween the raw projection data (sinograms) and the corre-
sponding high-quality CT images. Training this neural net-
work requires a large dataset of CT projection data and corre-
sponding high-quality CT images. Such a dataset originates
from phantom images as well as patient scans conducted in a
clinical setting [29]. Once the neural network is trained, it can
be used to reconstruct CT images from new raw projection
data [28, 29]. The network takes the raw projection data as
input and produces a high-quality CT image as output.

There are several types of deep neural networks that can
be used for CT image reconstruction, including convolutional
neural networks (CNNs), residual neural networks, and gen-
erative adversarial networks (GANs). GAN-based methods
are particularly useful for CT image reconstruction because
they can generate high-quality images with fine details and
textures, even when there is limited or noisy data. In the next
section (section II.3), Deep learning and interesting networks
are explained more in depth.

Strengths and limitations Deep learning-based CT image
reconstruction has shown promising results in improving im-
age quality and reducing radiation dose in CT scans. It allows
for noise reductions relative to FBP without suffering from the
unnatural appearing noise textures associated with IR solu-
tions [16, 30]. However, it requires a large amount of train-
ing data and significant computational resources to train the
neural network. Therefore, there is ongoing research in de-
veloping more efficient and effective deep learning-based CT
reconstruction methods.

The reliability of the reconstructed image is another limita-
tion of DL-based image reconstruction, as there is no guaran-
tee that important patient structures will not be changed dur-
ing reconstruction [29]. Even if a DL algorithm produces an
accurate image, it could be based on wrong reasoning. For
instance, a particular lesion might be eliminated or blurred
out because it was not adequately represented in the train-
ing data, leading the model to mistake it for noise. On the
other hand, the reconstruction technique might introduce a
non-existent lesion into the reconstructed images.

Worth noting is that while commercially available DLR al-
gorithms have primarily been trained to reduce noise, DLR
has the potential to solve a variety of image reconstruction
issues, including cone-beam artefacts, motion artefacts, and
truncation artefacts [16].

3. Deep learning

Deep learning is a subfield of machine learning that is based
on artificial neural networks [31]. Such a network consists
of many individual artificial neurons, which are modelled af-
ter the structure and function of the biological neuron [31, 32]
The artificial neurons modify the connections between them
through the training process in the artificial neural network,
similar to a biological neuron [33]. Deep learning models are
made up of multiple layers of interconnected artificial neurons

that process input data and learn hierarchical representations
of data, which enables it to solve complex tasks [34]. This
is achieved through a process known as backpropagation,
which involves iteratively adjusting the weights of the neural
network based on the error between the predicted and actual
outputs [35].

3.1. Convolutional neural network

The convolutional neural network is the most famous and
commonly employed model, it typically has an architecture
that is structured as a series of stages [36]. The first few
stages are composed of two types of layers: convolutional
layers and pooling layers.

The convolutional layer, the main building block of a CNN,
contains a set of filters, parameters of which are to be learned
throughout the training. Each filter convolves with the input
(the image or previous feature maps), and creates a new fea-
ture map, where each component is a neuron. The output
volume of the layer is generated by stacking the feature maps
of every filter along the depth dimension. Each neuron is con-
nected to local patches in the previous feature maps through
a set of weights [34, 36]. Due to the local connectivity of the
convolutional layer, the network is forced to learn filters that
have the maximum response to a local region of the input.
The initial convolutional layers capture the low-level features
(e.g., lines) of images, while the later layers extract the mid-
level features (e.g., shapes and specific objects) [36, 37]. A
nonlinearity (activation) function, e.g. a rectified linear unit
(ReLU), is applied in between convolution layers changing the
linear nature of the neural network, allowing to approximate
non-linear functions [37].

The pooling layer down-samples every feature maps in the
sub-sampling layers, which leads to a reduction in the repre-
sentation dimensions, thereby accelerating the training pro-
cess. In addition, it allows for handling of overfitting problems
[37, 38].

At the end of its architecture, a CNN can include fully-
connected layers that take in mid- and low-level features to
create high-level abstractions, thereby representing the last-
stage layers [37]. This is an optional feature of CNNs, which
depends on the purpose of the model.

U-net The U-Net network is a type of CNN designed by
Ronneberget et al. [39] and allows preserving the spatial dis-
tribution of the image while abstracting image features due to
its design. Originally, the network was developed for segmen-
tation purposes, and later its applications extended to image-
to-image translation [40]. The U-Net consists of an encoder,
containing down-sampling layers, a decoder, containing up-
sampling layers and connections from down-sampling layers
to the corresponding up-sampling layers to recover lost infor-
mation during down-sampling [40].

The encoder takes the input image and convolves it, gener-
ating increasingly complex feature maps as it moves deeper
into the network, while the spatial scale reduces with the con-
volutional and pooling operations. The decoder combines the
feature maps and spatial information through a sequence of
deconvolution block and concatenation with high resolution
features from the connection path [37, 40].

5



3.2. Generative adversarial network

The generative adversarial network is a class of DL models
that learns the data distribution of training images and gen-
erates synthesized images under the same distribution. Two
neural networks contest with each other in this model: the
generator (G) and the discriminator (D) [41]. The first gen-
erates synthesized data from random noise, and the latter
learns a data distribution from the training data and deter-
mines whether the synthesized data generated by G is drawn
from real or fake data [40, 42]. The goal of G is to gener-
ate data that is so realistic that D cannot tell the difference
between the generated and real data.

The training process of a GAN involves iteratively training
the generator and the discriminator [43]. In each iteration, the
generator generates new data based on the random noise
input, and the discriminator evaluates both the real and gen-
erated data to determine which is real and which is fake. The
discriminator’s output is then used to update both the gener-
ator and discriminator’s weights, so that they can better com-
pete against each other in the next iteration.

CycleGAN CycleGAN is a type of GAN that is used to per-
form image-to-image translation [44]. It is designed to learn
the mapping between two different image domains, without
requiring paired examples of corresponding images in the two
domains.

The key idea behind CycleGAN is to have two GANs, each
with a generator and a discriminator, and train them in a cy-
cle. The two domains are referred to as the source domain
and the target domain. The generators in the two GANs are
trained to learn the mapping between the two domains in both
directions: from the source domain to the target domain, and
from the target domain to the source domain. This is achieved
by introducing a cycle consistency loss, which enforces that
if an image is translated from the source domain to the tar-
get domain and then back to the source domain, it should be
similar to the original image.

III. METHODS

1. Search strategy

This literature review was carried out by following the guide-
lines of the Preferred Reporting Items for Systematic reviews
and Meta-Analyses extension for Scoping Reviews (PRISMA-
ScR) statement [45]. A systematic literature search was con-
ducted in the PubMed and IEEEXplore databases using the
search queries stated in Appendix B. All articles published
prior to the 14th of March 2023 were included.

2. Study selection

Primary studies that were available as English full text and
published in 2012 or later were found eligible when it de-
scribed a new DL-based method for CT scan standardization
of variability caused by reconstruction techniques. Study se-
lection was cut off before 2012, because the application of
deep learning for medical imaging is relatively recent, only
since 2012 deep learning started to outperform conventional
methods [37]. The eligibility criteria are outlined in Table 1.

TABLE 1: ELIGIBILITY CRITERIA

Category Criteria

Date of publication 1 January 2012 - 14 March 2023

Language English

Type of article Primary study

Publications Published as full-text article in a peer-
reviewed Journal

Study objective Description of a scan standardization
method, that meets the following require-
ments:
(1) Deep learning based
(2) Target imaging modality is conven-
tional CT
(3) New technique is presented
(4) The variability caused by reconstruc-
tion methods is addressed
(5) Creates a standardized image

3. Results synthesis

For each study, the DL-based standardization model was ex-
tracted. More in depth, for each model, specifications of its
purpose, the type of DL model, specifications of the data
sets used for training and for evaluation, and performance re-
sults were extracted and summarized. To provide a structured
overview, the studies are categorized and reviewed based on
three different characteristics:

1. Purpose of the standardization method, defined as
the standardization type. Either intra-scanner, cross-
scanner or intra- & cross-scanner standardization.

2. Type of deep learning model, which is subdivided in two
main DL classes: CNN or GAN.

3. The performance evaluation that the study has per-
formed. For this characteristic, two main types of eval-
uation can be identified: image similarity and radiomic
feature similarity.

IV. RESULTS

1. Study selection

A total of 68 studies were identified from the electronic
database search. After removing one duplicate study, the re-
maining 67 studies were screened on title and abstract. This
resulted in the removal of 43 studies, with as predominant
reason for exclusion that the study did not describe a scan
standardization method (n=25). The remaining 24 studies
continued for eligibility assessment based on the full text,
which lead to the final selection of thirteen studies for this
review. The complete overview of the search flow is shown in
Figure 3.

The characteristics of the included articles are summa-
rized in Table 2 and discussed in more details in the
upcoming sections. The proposed standardization models
are compared with each other based on the type of standard-
ization (section IV.2), underlying DL architecture (section
IV.3), and model performance evaluation (section IV.4).
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Fig. 3: Flow chart of the literature search in PubMed and
IEEEXplore

2. Standardization type

Broadly speaking, there are two types of CT image standard-
ization models that serve different purposes. The first type
is known as intra-scanner image standardization, which gen-
erally requires paired image data. In this context, a pair of
images is generated from the same object, either a patient
or phantom scan, but with varying reconstruction kernels or
algorithms. The image created using non-standard settings
is referred to as the source image, while the image produced
using standard settings is known as the target image. With
access to paired image training data, a model can learn how
to transform source images into target images. The second
type of models is designed for cross-scanner image stan-
dardization and does not require paired image data. In this
scenario, paired images are not needed; instead, images ac-
quired using standard and non-standard protocols are stored
separately. Acquiring paired training data is relatively straight-
forward, but is typically restricted to a single scanner.

In this review, nine articles are included that developed a
model that addresses the variability in reconstruction within
the scanner [40–42, 46–51]. No included studies focus on
cross-scanner standardization alone, whereas four studies
designed a model for the combination of intra- and cross-
scanner standardization [2, 52–54]. A summary of the studies
regarding their standardization type and data used for training
is given in the Tables in Appendix C. In specific, the studies
are divided in intra-scanner and cross- & intra scanner stan-
dardization and the specifications of the training data set and
the purpose of the proposed method are stated.

2.1. Intra-scanner CT image standardization

The simplest standardization models perform conversion of
CT images that are reconstructed with one kernel to images

reconstructed with a different kernel. As mentioned before,
image pairs are used to train these type of models, which
consist of a pair of images reconstructed with different ker-
nels, generally it contains a smooth and sharp reconstructed
image.

The two CNN-based models proposed by Choe et al. [46]
and Lee et al. [47] employ a similar intra-scanner standard-
ization method. These models were trained to learn the differ-
ence between the target and source images (also known as
residual images), and create the converted image by adding
the residual images to the input. For each distinctive sharp-
smooth reconstruction pair and conversion direction, a new
model was developed, which resulted in the development of
two models by Choe et al. [46] and twelve models by [47].
Both developed a model for the conversion from smooth (B30f
kernel) to sharp (B50f kernel) and vice versa. The developed
models of Lee et al. [47] also included kernel conversion from
and to the B10f and B70f kernels.

A similar standardization technique has been introduced
by Jin et al. [40], however, only for the conversion of a CT
scan reconstructed with a sharp kernel to that of a standard
(smoother) kernel. The model is based on a U-net architec-
ture, and in total four models are trained using different data
sets that are acquired from different vendors.

Liang et al. [42] present a simple intra-scanner standard-
ization method that attempts to convert images reconstructed
with the Bl57 kernel to the predefined standard-kernel, Bl64.
In contrast to the previous two described models, this model
learns the data distribution of the target data and generates
synthesized images from the source images under the same
distribution of the target images using adversarial learning.

The studies of Selim et al. [41] and Wu et al. [49] both
present a model to convert various non-standard reconstruc-
tion settings to one predefined standard setting. Wu et al.
[49] uses images reconstructed with four different kernels,
varying in smoothness, and a slice thickness of 5-mm as
input and converts them to an 1-mm sharp-kernel image that
was defined as the standard protocol. On the other hand,
the study of Selim et al. [41] defines the Bl64 kernel as
standard, since according to them, it has been widely used in
clinical practice. The non-standard protocols consist of two
reconstruction kernels that are smoother compared to Bl64.

Using a U-net based architecture, Tanabe et al. [48]
have proposed a standardization technique for sharp to
smooth conversion, where the novelty of the study lies in the
region-wise learning. The authors found that the accuracy
of the conversion decreased for the region with CT values
ranging from -200 to 200 HU. To overcome this challenge,
the authors trained an additional network (the partial-model)
to convert images from sharp-kernel to soft-kernel, truncating
both to the range of -300 to 300 HU. They also trained a
full-model with non-truncated images. The final converted
image was generated by combining the outputs of the two
models using a weighted sum.

Opposed to the other studies, Yang et al. [50] attempt
to translate images between any pairs of kernel domains
along the interpolation path. This approach enables the
effective utilization of intermediate kernel images, which
facilitates image conversion between sharp-to-smooth and
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TABLE 2: INCLUDED STUDIES OVERVIEW. FROM EACH STUDY THE PUBLISHING YEAR, STANDARDIZATION TYPE (TYPE), CONVERSION

DIRECTION: SMOOTH-TO-SHARP (SM-TO-SH) OR SHARP-TO-SMOOTH (SH-TO-SM), UNDERLYING ARCHITECTURE, #OF TRAINED MODELS BY

THE AUTHORS, PERFORMANCE EVALUATION METRIC(S) AND THE USE OF PAIRED-DATA FOR TRAINING HAS BEEN EXTRACTED.

Article Year Type Conversion
direction

Architecture #of
trained
models

Performance evaluation metric Paired
data (for
training)

Feature
similarity

Image simi-
larity

Alternative

Choe et
al. [46]

2019 Intra-
scanner

Sm-to-sh &
sh-to-sm

CNN 2 CCC, # of
reproducible
features

N/A N/A Yes

Lee et
al. [47]

2019 Intra-
scanner

Sm-to-sh &
sh-to-sm

CNN 12 N/A RMSE of CT
value

N/A Yes

Jin et al.
[40]

2019 Intra-
scanner

Sm-to-sh &
sh-to-sm

CNN:
U-net based

4 N/A N/A Variability in
lung density:
RA950,
perc15, MLA

Yes

Yang et
al. [50]

2021 Intra-
scanner

Sm-to-sh &
sh-to-sm

GAN:
Switchable +
split AdaIN

2 N/A SSIM,
PSNR

N/A Yes

Tanabe
et al. [48]

2022 Intra-
scanner

Sh-to-sm CNN:
U-net based

1 N/A Difference in
CT value

N/A Yes

Liang et
al. [42]

2019 Intra-
scanner

Sm-to-sh GAN:
Alternative
training

1 AE, RE N/A N/A Yes

Selim et
al. [41]

2020 Intra-
scanner

Sm-to-sh GAN 1 AE N/A N/A Yes

Wu et al.
[49]

2021 Intra-
scanner

Sm-to-sh GAN:
CycleGAN

1 N/A MSE, PSNR N/A Yes

Lee et
al. [51]

2022 Intra-
scanner

N/A GAN 1 CCC SSIM,
PSNR

Image quality:
CNR

Yes

Du et al.
[52]

2022 Cross-
& Intra-
scanner

Sm-to-sh &
sh-to-sm

CNN 2 PNFD, ICC N/A N/A Yes

Kim et
al. [55]

2022 Cross-
& Intra-
scanner

Sm-to-sh &
sh-to-sm

GAN:
Routable
decoder

1 N/A N/A Domain classi-
fication accu-
racy

No

Selim et
al. [2]

2022 Cross-
& Intra-
scanner

Sm-to-sh GAN:
CycleGAN
+ domain
adaptation

1 RE, # of re-
producible
features

N/A N/A Yes

Li et al.
[53]

2021 Cross-
& Intra-
scanner

N/A GAN:
SingleGAN
based

1 % of aligned
features

N/A N/A No

Abbreviations: CNN = convolutional neural network, GAN = generative adversarial network, AdaIN = adaptive instance normalization, CCC = concordance
correlation coefficient, PNFD = patient-normalized feature difference, ICC = intraclass correlation, AE = absolute error, RE = relative error, SSIM = structural
similarity index, PSNR = peak signal-to-noise ratio, RMSE = root mean squared error, CT = computed tomography, MSE = mean squared error, RA950 =
relative lung area under 950 HU, perc15 = lower 15th percentile threshold, MLA = mean lung attenuation, CNR = contrast-to-noise ratio.

smooth-to-sharp, as well as between intermediate-to-smooth
or intermediate-to-sharp and vice versa, with the training of
just one model.

All previous studies focused on the conversion between
reconstruction kernels, whereas the study of Lee et al. [51]
aims to convert images reconstructed with the same kernel
but with different reconstruction algorithms. The model that
has been presented by the authors generates synthetic CT
images similar to images reconstructed with IR, in specific
SAFIRE or ADMIRE, from images reconstructed using
conventional FBP. This is the only study that includes a
reconstruction algorithm different from FBP in their research.

2.2. Intra- & cross-scanner CT image standardization

Four studies presented a standardization method that
included both intra- and cross-scanner standardization, the
methods differ greatly from each other. The authors of [2]
propose a standardization tool to convert any CT image
acquired differently than the defined standard protocol into
the standard one. For the training, they use a data set
containing paired images reconstructed with Br40 and Bl64
kernels acquired with a Siemens scanner. Consequently, a
second data set consisting of single images obtained with the
LUNG kernel using a GE scanner has been used to evaluate
the model’s conversion from LUNG kernels to the standard
kernel, the Bl64 kernel.

The model of Du et al. [52] also converted a broad
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variation of non-standard kernel images from a variety of
scanners to a standard protocol. Contrary to the method of
Selim et al. [2], it utilizes two different standard protocols,
one where reconstruction is performed with a sharp kernel
(B70f) and the other with a smooth kernel (B30f), referred to
as protocol A and B, respectively. In line with defining two
different standard protocols, two separate standardization
models are trained, each with one of the standard protocols
as target and the other as source.

Subsequently, to apply the standardization to varied
kernels of different vendors, their median patient-normalized
feature values were compared with the feature values
calculated from protocol A and B. In cases where the non-
standard protocol had a difference greater than 1 compared
to protocol A or B, identified as dissimilar feature values,
the non-standard protocols were converted to that specific
standard protocol using a model trained specifically with that
standard protocol as the target.

Kim et al. [54] propose a multi-domain translation net-
work based on a routable GAN (RouteGAN) to effectively
convert diverse CT images across several settings. The
RouteGAN’s encoder was designed to extract a shared
feature for improved conditioning power and expressiveness.
The decoder layers enable the selection of different target
routes by altering the condition vector, thereby simulating
the use of distinct decoders for each domain. The research
covered seven distinct domains with varying radiation dose,
vendor and reconstruction kernel.

A cross- and intra-scanner standardization technique
that aims to normalize CT images acquired with different
scanners, and different reconstruction protocols, to one
standard reconstruction protocol has been proposed by
Li et al. [53]. The input images are obtained with three
different scanners from different vendors: GE Healthcare,
Philips Healthcare & Siemens Healthcare. The input images
underwent normalization based on the features of images
reconstructed using a Siemens reconstruction protocol, that
was acquired from the same Siemens scanner from the input
data set, however with different reconstruction parameters.
Additionally, the model acquired a reverse mapping from
the destination images to the source images, facilitating the
learning process despite non-paired images from various
reconstruction protocols in a single patient that were not
pixel-aligned.

3. Type of deep learning model

Two main types of deep learning models are identified: CNN
and GAN models, which mainly differ in their purpose and
training process. CNN is generally used for image recogni-
tion and classification, and is trained to minimize the error
between the predicted output and the actual output by up-
dating the weights of the network. On the other hand, GAN
is mainly used for generating new data that resembles the
training data, and during training, the generator network gen-
erates fake data, and the discriminator network tries to distin-
guish between the real and fake data.

It is worth mentioning that while the generator and discrim-
inator networks in a GAN model can be based on the CNN

architecture, the GAN model is fundamentally different from
a standard CNN due to its distinct purpose and training pro-
cesses. Therefore, GAN and CNN are considered as two
different classes of DL models.

Of the included articles in this review, five articles fit the first
category: CNN-models [40, 46–48, 52], however, the largest
number of articles (8) present a GAN-based standardization
model [2, 41, 42, 49–51, 53, 54].

3.1. CNN-based model

In 2019, the first two DL models were proposed by Choe et al.
[46] and Lee et al. [47] for image conversion among different
reconstruction kernels using CNN. Both studies are based on
the findings of Kim et al. [55] that demonstrate that CNNs
can be taught differences between high- and low-resolution
images (residual images) and that CNNs can be used to ac-
curately and rapidly convert low-resolution images to high-
resolution images. The articles propose identical CNN ar-
chitectures of six convolutional layers with 3 x 3 kernel size.
The CNNs were trained to learn the difference between the
target and input images (residual image), and to create the
converted image by adding the residual images to the input.

The developed CNN model by Du et al. [52] was also in-
spired by the model of Kim et al. [55]. However, the authors
used perceptual loss in the training phase, which optimized
the model in feature space instead of image space by mini-
mizing the mean squared error between features.

U-net-based model Jin et al. [40] presented a kernel nor-
malization network based on the U-net architecture for image-
to-image translation from a sharp kernel image (input) to a
standard (smoother) kernel image (target). The input and out-
put nodes are connected with a sum operator that allows the
model to learn the residual components, which is inspired by
residual learning.

The study of Tanabe et al. [48] propose a standardization
method that is U-net based as well. Contrary to Jin et al.
[40], they introduce region-wise learning by training an extra
network with images that were truncated in pixel values. By
fusing the outputs of the two models by the weighted sum,
the final converted image was generated, which resulted in a
better performance.

3.2. GAN-based models

Between 2016 and 2018, GAN models have shown promising
performance in image-to-image mapping tasks, which moti-
vated Liang et al. [42] to utilize them as the foundation for their
standardization method for CT scans from multiple sources.
Unfortunately, GAN models do not contain any constraints to
control what modes of data it shall generate, therefore syn-
thesized images are not guaranteed to be similar to the target
images. The authors address this challenge by proposing a
novel DL framework, GANai, that makes the GAN model ap-
plicable for medical image synthesis, where great image de-
tails have to be maintained. This novel framework has a simi-
lar architecture as conditional GAN (cGAN), but with a signif-
icantly different training process. The architecture of a cGAN
learns the conditional distribution of the source image given
the target image, and then performs image transference from
one domain to another, which makes it suitable for medical
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image synthesis [56]. More importantly, the authors introduce
an alternative improvement training strategy which contains
two alternate training phases, and enables a series of tech-
nical improvements, including phase-specific loss functions,
phase-specific training data, and the adoption of ensemble
learning.

With the architecture and alternative training strategy of
GANai as foundation, Selim et al. [41] introduces STAN-CT,
a DICOM-to-DICOM image standardization framework. The
novel framework includes two new key components: the
latent loss and the feature loss. The latent based loss func-
tion enforces one-to-one mapping between the synthesized
image and the standard image. Whereas, the feature loss
aims to improve generator diversity.

In [51] a GAN-based model is presented where both
the generator and discriminator have a CNN architecture.
The architecture of G was inspired by a residual feature
aggregation network that was proposed for a single image
super resolution task. After the first layers of spatial average
pooling, convolution and activation by Leaky ReLU, the en-
coded features were subjected to two sequential hierarchical
feature synthesis modules. Each module contains multiple
feature attention blocks that each enhances the residual
feature. After going through the whole module, a high-level
feature map is encoded.

CycleGAN-based models A cycle-consistent adversarial
network (cycleGAN) is an unsupervised image style transfer
method that can learn to translate between two different do-
mains without the use of paired training data [44]. The model
uses, besides an adversarial loss, a cycle-consistency loss to
ensure that the translation has one-to-one correspondence
and maintains the underlying structure of the original images.
The architecture typically consists of two generators and two
discriminators. Two studies focused on using cycle GANs to
convert CT scans into different imaging settings or conditions
[2, 50].

Unlike the conventional cycleGAN, Yang et al. [50] em-
ploy a switchable cycleGAN architecture for kernel conver-
sion. This approach utilizes a single conditional generator
with adaptive instance normalization (AdaIN) for both forward
and backward kernel conversion. This singular generator can
produce every conceivable interpolating path along an opti-
mal transport path between two target domains during the
inference phase. The AdaIN layer calculates the mean and
variance of style features to adjust the mean and variance of
content features. Furthermore, split AdaIN code generators
are incorporated to effectively use intermediate domain ker-
nel images during training, which considerably enhances the
feature domain interpolation performance.

Selim et al. [2] introduces a conventional cycle GAN ar-
chitecture containing two generators and two discriminators.
The ’master generator’ is responsible for domain A image
synthesis (intra-scanner standardization), where paired train-
ing data are provided. On the other hand, the other generator,
is responsible for domain B data synthesis where unpaired
images are provided (cross-scanner standardization). The
authors tend to improve model generalizability using a com-
prehensive data augmentation approach that perturbs the in-

puts with adversarial noise generated from a Gaussian distri-
bution.

Alternative GAN-based models Two articles propose al-
ternative GAN-based models [53, 54]. Li et al. [53] adopted
a modified architecture from the single GAN that consists of
one generator and multiple discriminators. The generator was
trained to establish a one-to-one mapping between three dis-
tinct domains and a target domain. It learned to convert im-
ages from each domain to the target domain and vice versa,
by cycling through this process. This allowed the generator
to learn without having access to pixel-aligned images from
all domains in a single patient. The generator was able to
capture the unique features of images in each domain and
translate them to images in another domain with minimal loss
of content.

Kim et al. [54] presents a routable GAN (routeGAN) ar-
chitecture to address the limited scalability to multi-domain
translation of CycleGAN. The key innovation of this architec-
ture lies in the independent functions of the encoder and de-
coder components of the generator in image translation. To
elaborate, the encoder is responsible for extracting shared la-
tent information from data across multiple domains, while the
decoder is trained to generate specific target domain images
by transforming the shared latent feature vectors using differ-
ent routing codes.

4. Performance evaluation

Two clear performance evaluation categories can be distin-
guished from the reviewed studies: the evaluation of image
similarity and the evaluation of radiomic feature similarity be-
tween the target image and the converted (standardized) im-
age. A total of six studies report a performance evaluation of
the image similarity using varying metrics [40, 47–51]. The
other category is evaluated by seven studies, again using a
broad variety of metrics [2, 41, 42, 46, 51–53]. One study
uses alternative metrics to evaluate the performance of their
proposed standardization model [55].

An overview of the studies is given in the Tables in Ap-
pendix D summarizing the data sets used for performance
evaluation. The studies are again divided based on their stan-
dardization type, and the characteristics of the data sets are
outlined.

4.1. Image similarity

Different image similarity metrics have been performed as a
means of evaluating performance, which share the common
condition of requiring a pair of images as input. Image
similarity metrics basically measure the difference between
two images, which is used to check if a predicted/synthesized
image is similar to its target image. Additionally, the structural
similarity index (SSIM), attempts to take into account the
quality of the image itself as well by considering the image
structure.

Four articles only measure how similar the converted
image is to its target image by comparing the CT values
pixel-by-pixel using the mean-squared-error (MSE) [49] and
peak signal-to-noise ratio (PSNR) [49], root mean squared
error (RMSE) [47], difference in CT value [48] or lung density
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metrics, such as the mean lung attenuation (MLA) [40]. For
each of these metrics, except PSNR, applies that a smaller
value indicates an increased similarity. Conversely, a higher
PSNR value suggests greater image similarity.

Lee et al. [47] report that the models trained on the conver-
sion of sharp-to-smooth reconstructed images perform much
better than the models trained vice versa. The RMSE is
53.48% reduced between the synthesized sharp images and
their target image averaged over all smooth-to-sharp models,
compared to 78.11% for the converted smooth images, also
averaged. A potential reason for the improved performance
may be attributed to the process of removing noise from the
image while preserving its key features, as done in sharp-to-
smooth conversion [57]. This approach results in a clearer
and more precise image compared to the alternative method
of enhancing previously weakened high-frequency compo-
nents, which can introduce unwanted details and distortions.
This alternative method is employed in smooth-to-sharp con-
version. In addition, the very small data set should be taken
into account when interpreting these results, only CT data
acquired from two patients, 631 CT images in total, were in-
cluded for the evaluation.

A large increase in the image similarity measured by
lung density metrics was recorded by Jin et al. [40] for the
conversion of images from sharp-to-smooth. They measured
the relative lung area under 950 HU (RA950), the lower 15th
percentile threshold (perc15) and the MLA and calculated
the pair wise mean differences between the original image
pair and between the converted and target image pair. This
resulted in a reduction of 99.16% for RA950, 98.43% for
perc15 and 84.75% for MLA pair wise differences averaged
over all four models, each trained with images from a different
scanner.

The other two articles did not report the difference in
image similarity before and after standardization. Tanabe et
al. [48] only showed the reduction in difference in CT values
before and after conversion using graphs. Whereas, the
study of Wu et al. [49] solely reports the MSE and PSNR
between the converted image and its ground truth image,
without showing the similarity before the conversion.

The SSIM quantifies the image quality degradation caused
by processing, such as data compression, or losses in
data transmission. SSIM in combination with the PSNR,
not only image similarity is measured, but the perceptual
difference between two images is also taken into account.
Lee et al. [51] and Yang et al. [50] report this combination
of image similarity metrics to evaluate the performance of
their proposed model. The images acquired with a low-dose
that were converted by the model of Lee et al. [51] showed
a significantly higher SSIM (0.759 ± 0.023 vs 0.817 ± 0.003,
P< 0.001) and PSNR (26.92 ± 2.21 vs 29.32 ± 1.21, P<
0.001) compared with the original images. On the contrary,
converted images acquired with an equivalent dose or high
dose did not show a significant difference in SSIM (0.825
± 0.033 vs 0.824 ± 0.002, P = 0.394), and even showed a
significantly lower PSRN (32.61 ± 1.66 vs 30.76 ± 0.13, P<
0.001) [51].

Yang et al. [50] did not compare the PSNR and SSIM

values of their converted images with the original image. On
the other hand, it did compare their findings with various
conversion methods: classical kernel conversion using
smoothing and sharpening, supervised learning using the
MSE loss and conventional CycleGAN. The average PSNR
and SSIM values obtained using their 2-domain switchable
CycleGAN method compared with the other methods are
given in Table 3. Their proposed method outperformed the
classical conversion and cycleGAN methods for generating
sharp and smooth images, however, only the difference with
the classical conversion was significant. Although higher
PSNR and SSIM values were obtained from conversion
using supervised learning, the visual investigation showed
that blurring artefacts were present in the converted images
by supervised learning, which indicates the limitations of
these quantitative metrics for the evaluation of the conversion
model. The study also proposes a three domain learning,
which slightly enhances the performance of the model
in terms of PSNR and SSIM values. This model utilizes
intermediate kernel images to generate other kernel images
using self-consistency loss.

4.2. Radiomic feature similarity

An alternative approach to assess the effectiveness of a stan-
dardization method is to compare the radiomic features of the
resulting image with those of the target images. Radiomic fea-
tures are a set of quantitative features extracted from medical
images, including CT scans, using image processing tech-
niques [58]. These features can be used to analyse the spa-
tial and temporal characteristics of a tumour or other regions
of interest in the image and have the potential to provide
important diagnostic, prognostic, and predictive information
in a variety of medical applications. Radiomic features can
be classified into several categories, such as intensity-based
features, texture-based features, shape-based features, and
wavelet-based features.

The similarity between radiomic features can be measured
using various metrics, such as the absolute error (AE)
[41, 42], patient-normalized feature difference (PNFD) [52],
and the concordance correlation coefficient (CCC) [46, 51].
Subsequently, the reproducibility of the features can be
determined by defining a threshold for these metrics, as been

TABLE 3: QUANTITATIVE COMPARISON OF VARIOUS METHODS IN

TWO- AND MULTI-DOMAIN LEARNING, REPORTED BY YANG ET AL.
[50]. 2-DOMAIN AND 3-DOMAIN SWITCHABLE ARE THE PROPOSED

METHODS BY [50]

PSNR SSIM
to
sharp

to
smooth

to
sharp

to
smooth

Average data set 1 & 2, two-domain
Classical method 12.7781 12.4653 0.5916 0.6390
Supervised 30.4943 22.7256 0.8551 0.8212
CycleGAN 28.2048 19.6636 0.8024 0.8064
2-domain switchable 29.1500 21.7453 0.8243 0.8551

Average data set 3, multi-domain
3-domain switchable 25.7611 19.2320 0.7137 0.8524
2-domain switchable 25.3679 18.8973 0.7345 0.8139
CycleGAN 25.2707 17.6606 0.7084 0.8240
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done by several studies [2, 46, 53].

The proposed standardization methods of Choe et al.
[46] and Lee et al. [51] both assess feature similarity by
calculating the CCC between the converted and target image
and compare this with the CCC before standardization. The
CCC measures the degree to which pairs of observations
fall on a straight line [59]. It is based on the correlation
coefficient, but also takes into account the agreement in the
mean and variability of the two sets of measurements. The
two studies included intensity-, texture- and wavelet-based
features, and found that especially, intensity-based features
showed better improvement compared to the wavelet-based
features before and after image standardization [46, 51]. The
performance evaluation performed by Du et al. [52] using
the PNFD found similar results that indicate an improved
reproducibility of the intensity-based features, and a poorer
improved reproducibility of the wavelet features after conver-
sion.

Separate models for sharp-to-smooth conversion and
smooth-to-sharp conversion have been trained and eval-
uated by both Choe et al. [46] and Du et al. [52]. The
conversion to smooth by Choe et al. [46] increased the
number of reproducible features, defined as features with
a CCC value higher than 0.85, from 107 (15.2%) to 460
(65.5%) features. Their model for the conversion of smooth-
to-sharp showed an increase of 107 (15.2%) to 388 (55.3%)
reproducible features. The mean pair wise difference of the
PNFD before and after conversion has been calculated by
Du et al. [52] for the assessment of their models. They
reported an average of 60.88% decrease of the mean
pair wise difference for the conversion of sharp-to-smooth,
whereas the other model even showed an average decrease
of 67.72%. It should also be noted that the models of Du
et al. [52] has been trained on the conversion between the
B30f (smooth) and B70f (sharp) kernels of Siemens while the
evaluation was assessed on the conversion of a broad range
of different kernels and scanners.

The multi-domain standardization method introduced by
Li et al. [53] was evaluated by performing the Wilcoxon
rank-sum test on the paired features between the converted
and target images. This test is used to assess whether
two samples are likely to derive from the same population,
where the p-value is the probability that both populations
are the same is true. They define features with a p-value
greater than 0.05 as aligned features and tested in total
77 radiomic features. The percentage of aligned features
before standardization is 10.4% between domain A and
the target (T), 18.2% between domain B and T and 50.1%
between C and T, after standardization these percentages in-
crease to 93.5% (A vs T), 89.6% (B vs T) and 77.9% (C vs T).

The models introduced and evaluated by Liang et al.
[42] (GANai), Selim et al. [41] (STAN-CT) and Selim et al. [2]
(UDA-CT) are compared with each other in terms of RE and
number of reproducible features in the most recent published
study of Selim et al. [2]. A reproducible feature is defined as
a feature with an absolute relative error below 0.15, and thus
a similarity of 85% or higher. UDA-CT outperforms GANai

and STAN-CT for two out of three assessed tumours for
intra-scanner standardization. The results of the comparison
are shown in Table 8 in Appendix E. Only intra-scanner
standardization has been compared between these models,
as GANai and STAN-CT do not include cross-scanner
standardization, opposed to UDA-CT.

4.3. Alternative evaluation

Image and radiomic feature similarity can only be assessed
when the converted image can be compared with the ground
truth image, therefore image pairs have to be available. For
the study of Kim et al. [55] this data was not accessible,
therefore they address this issue by training an extra classifier
for the domain classification which was used for the quantita-
tive evaluation. The classifier evaluates the performance by
checking whether their model produces an image that is clas-
sified as a target image by reflecting the characteristics of the
target domain well. This means that if their model can con-
vert images to the target domain appropriately, the classifica-
tion accuracy should be high. They report that their proposed
routable GAN model shows a relatively stable accuracy in all
domains. Furthermore, the total accuracy is comparable to
that of a Cycle-GAN based model.

Besides the classification accuracy, Kim et al. [55] also
evaluated the translation results in the frequency domain by
calculating the radial average (average along the radial di-
rection in k-spaces). This can function as performance eval-
uation, because in medical image translation preserving low-
frequency details, such as the overall content of images, while
converting high-frequency details, such as sharp edges and
artefacts in low dose images, is crucial. Thus, an appropriate
translation of an image to the target domain requires similar
high-frequency regions of the converted and target domain
image without the change of the low-frequency region. Ac-
cording to the findings presented in [55], their method suc-
cessfully produces converted images that present compara-
ble intensity levels to those of the target domain in the high-
frequency region of k-space.

V. DISCUSSION

CT scans are routinely employed in clinical settings, aiding in
diagnostic and treatment-related decision-making processes.
However, due to the use of varying reconstruction techniques
across different manufacturers and hospitals, image quality
can differ significantly, posing a challenge for the devel-
opment of reliable and universally applicable software. In
response to this issue, a range of standardization techniques
based on deep learning have been recently introduced to
address these limitations.

In this paper, a systematic review investigating the state-
of-the-art of deep learning approaches for standardization
across CT scan variations due to reconstruction techniques.
A search key was used to specifically look for studies report-
ing a DL based scan standardization method for conventional
CT scans that standardizes images in the image-domain. In
total, 68 studies were identified from the electronic database
search, of which thirteen were included in the review after
full-text eligibility assessment. The search reveals that
since 2019 different DL models have been proposed for
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standardization of CT scans that serve different purposes:
intra-scanner standardization or intra- and cross-scanner
standardization. The studies are further compared based
on their underlying architecture and their performance
evaluation.

The techniques evaluated in this review all attempt to
solve intra-scanner variation resulting from the utilization of
diverse reconstruction kernels by kernel conversion from
sharp-to-smooth or the reverse. Older models, that are
based on a CNN architecture, were trained separately per
distinctive kernel pair and conversion direction [40, 46, 47].
The rise of GAN-based deep learning models for image-
to-image mapping tasks has motivated various authors to
apply this method as foundation for CT scan standardiza-
tion [2, 9, 41, 42, 50, 51, 53, 54]. Multiple variations on
the GAN-based architecture have been introduced, such
as an alternative training strategy [42], or the addition of
latent and feature loss to enforce one-to-one mapping and
improve generator diversity [41]. With the use of GAN-based
architectures, models have been developed that utilize
unpaired images [53, 55], and the combination of cross- and
intra-scanner standardization is proposed for the first time
[53]. The study of Yang et al. [50] is the only one that has
shown promising results regarding standardization using the
intermediate kernel images to translate images between any
pairs of kernel domains along the interpolation path.

Despite the recent developments in DL based CT scan
standardization, challenges remain. Firstly, in the majority of
the reviewed articles, the size of the data set used for training
is small (Tables in Appendix C). Besides, often only one scan-
ner is used and a limited amount of reconstruction kernels
are included. On top of this, the training data sets are usually
outdated, which means only old scanner models, and thus
reconstruction techniques and kernels, are involved in the
training process. Only one study attempted to convert FBP
reconstruction to the more novel reconstruction technique,
iterative reconstruction [51]. All together, this means that it is
hard to predict how the reviewed methods work on images
acquired from different scanners, e.g. newer models of the
same vendor, and thus newer reconstruction techniques, or
scanners from other manufacturers. Moreover, tackling this
challenge is complicated as most of the reviewed strategies
rely on paired images for training, which are very difficult
to acquire over a wide range of reconstruction kernels. In
addition, acquiring such pairs from different scanners is
nearly impossible since the images have to be captured from
a single patient.

Secondly, evaluating the potential of each method is chal-
lenging because the studies employ a broad range of evalu-
ation metric, which makes it impossible to compare the mod-
els directly. Furthermore, most studies do not compare their
model with other models within their research, further compli-
cating the assessment of their effectiveness.

Finally, the suitability of commonly used similarity metrics
for evaluating the performance of medical image translation
methods is questionable. Content preservation is the most
critical aspect of a standardization method as it ensures that
important textures in the image, which are essential for radiol-
ogists or algorithms to inform a diagnosis, are not lost. There-

fore, the effectiveness of a standardization method cannot be
solely determined based on similarity metrics

1. Limitations

Several potential limitations can be identified for this review.
The literature search was restricted to studies that presented
a novel standardization method for CT scans to handle the
variation across reconstruction parameters. DL-based mod-
els that standardize other medical images, such as MRI im-
ages, or those that standardize across acquisition parame-
ters, such as dosage, may also serve as a valuable source
of inspiration for standardizing CT images. For instance, Liu
et al. [60] carried out a study to harmonize MRI images from
multiple arbitrary sites using a style transferable GAN. They
demonstrated that their model was effective on previously un-
seen images, as long as enough data from multiple sites was
available for training. Furthermore, Wei et al.’s study [61] uti-
lized a 3D GAN to standardize CT images acquired with vary-
ing slice thicknesses and dosage scenarios, which is a unique
approach as it simultaneously performs denoising and super-
resolution. Although the standardization of medical scans
other than CT scans, as well as standardization of variations
caused by factors other than reconstruction parameters, were
not within the scope of this review, it would be worthwhile to
analyse these areas in future studies.

Secondly, only methods that work on their own were in-
cluded, which resulted in the exclusion of domain adaptation
techniques. Domain adaptation is a field of computer vision,
where the goal is to train a neural network on a source dataset
and secure a good accuracy on the target dataset, which is
significantly different from the source dataset [62]. This ap-
proach has also been proposed as solution for the hetero-
geneity in CT scans, e.g. by Xu et al. [63]. They integrate an
unsupervised content-preserved adaptation network in a pul-
monary texture classification network to alleviate the perfor-
mance degradation caused when applied to data from other
scanners. Utilizing domain adaptation techniques, as sug-
gested in existing literature, could be a promising solution for
addressing CT scan variations when utilizing DL-based im-
age analysis software to analyse them.

Lastly, due to the variation between the included studies, a
quantitative comparison was not feasible. The studies differ in
several aspects, including performance evaluation methods,
data used for model training and evaluation, and conversion
direction. Another factor preventing quantitative comparison
of the models, is the lack of comparison within the studies it-
self with other models by performing standardization on the
same data set. In the future, it would be highly valuable to
conduct a research comparing these standardization meth-
ods by training and evaluating on the same data set with a
sufficient size.

VI. CONCLUSION

Several CT scan standardization techniques based on deep
learning have the potential to address the difficulties in com-
parison and analysis of CT images across different scanners
and institutions. Alterations of GAN-based models report the
most promising results in terms of usage of non-paired im-
ages, content preservation, both forward and backward map-
ping and combined intra- and cross-standardization.
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However, the strategies available in the literature also sug-
gest that further research is needed before these innovative
standardization approaches can enter the clinic in a stable
manner. Large-scale research from multiple sites is nec-
essary to quantitatively compare the standardization tech-
niques. Furthermore, conducting extensive research on the
effects of reconstruction techniques and kernels from diverse
vendors and models on CT patient scans could yield valuable
insights. These findings could then be utilized to develop a
generalized and resilient standardization approach that can
be implemented across multiple CT scanner manufacturers.

In addition, valuable insights for CT standardization of re-
construction effects may be gained from standardization tech-
niques developed for other imaging modalities, as well as
from strategies for standardizing variation caused by factors
unrelated to reconstruction methods.
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A. COMMERCIALLY AVAILABLE RECONSTRUCTION TECHNIQUES

Reconstruction
method

Vendor Explanation

Hybrid iterative reconstruction

Iterative reconstruc-
tion in image space
(IRIS)

Siemens
Healthineers

IRIS is based in image space, where it reconstructs an image from the raw data using three to five iterations [19, 64]. IRIS allows for dose reduction up to
60%, while maintaining spatial and low-contrast resolution and not affecting image texture according to the manufacturer [65].

Sinogram-affirmed it-
erative reconstruction
(SAFIRE)

Siemens
Healthineers

SAFIRE estimates the initial reconstruction by weighted FBP, from which new synthetic raw data is calculated using forward projection. The synthetic data
is compared with the original raw data to reconstruct a correction image and update the original image. This loop is repeated a number of times and cor-
rects imperfections and removes artefacts [66, 67].
Within each iteration, regularization is also performed to reduce image noise while maintaining image structures. SAFIRE employs a precise local image
noise model that is derived by analysing the statistical significance of the raw data contributing to that pixel in the raw data sinogram [19, 67]. SAFIRE can
control image impression and noise reduction through the five strength levels that are available for adaptation of the regularization term, with strength 1
being noisier and strength 5 being smoother [66, 67].

Adaptive statistical it-
erative reconstruction
(ASIR(-V))

GE Healthcare ASIR involves comparing a measured projection to a modeled projection, which is based on the system statistics. It uses information generated by the
FBP algorithm as a building block. The difference between the two projections is used to update the original projection, and this process is repeated until
the final estimated projection ultimately converges to the ideal projection. ASIR reduces image noise, however a higher percentage of ASIR can lead to a
decline in image quality [19, 68].
ASIR-V is the next generation of ASIR and compared to ASIR it contains more advanced noise modeling and object modeling, and physics modeling has
been added to the process [69].

iDose4 Philips Health-
care

The iDose4 algorithm starts by analyzing the projection data to identify and correct the noisiest raw CT data. Through an iterative diffusion process, the
noisy data is penalized and edges are preserved. Following this process, uncorrelated noise that remains is propagated to the image space, which is highly
localized and therefore can be effectively removed through iterations [19, 70]. The strength of the IR algorithms can be ranged from level 1 to 7, increasing
levels indicate increase noise reduction [70, 71]

Adaptive iterative
dose reduction (AIDR
3D)

Canon Health-
care

The original AIDR algorithm applied image noise reduction in the image domain, which required that the original high-noise images undergo several loops
of iteration until the desired noise level is achieved [72]. AIDR 3D is the replacement of the original technique. It uses a 3D processing algorithm and per-
forms IR in both the image and raw-data domain. In the raw-data domain, a statistical noise and a CT model are used together with projection noise esti-
mation to reduce electronic noise. The reconstructions are then optimized by an iterative technique that detects and preserves sharp details and smooths
the images at the same time. Finally, the output image is created by blending the initial reconstruction with the final iterative image [73, 74].

Model-based iterative reconstruction

Advanced modeled it-
erative reconstruction
(ADMIRE)

Siemens
Healthineers

ADMIRE is an iterative algorithm for image reconstruction in CT that incorporates an adaptive regularization term to control the smoothness of the image
estimate while preserving image features. It is an effective technique for producing high-quality images from noisy projection data.

Veo GE Healthcare Veo includes an extensive 3D model of the data acquisition process that considers various factors such as the shape of the beam as it leaves the X-ray
source and to the focal spot. The interaction of the beam with the patient, and with the X-ray detector, are also taken into account [64, 75]. Due to its incor-
poration of system statistics and physics as well as multiple back and forward reconstructions, Veo is very time-consuming [64].

Iterative model recon-
struction (IMR)

Philips Health-
care

IMR takes into account data statistics, image statistics and system models and applies forward and backward reconstruction steps. The algorithm provides
the user some control over the desired image characteristics by incorporating knowledge that constraints the optimization [20].



Forward projected it-
erative reconstruction
solution (FIRST)

Canon Medical
Systems

FIRST is a full IR algorithm that jointly enhances image quality in both the sinogram and image domains. The technique integrates a forward and statisti-
cal model into the projection data fidelity term, which leads to high spatial resolution and reduced noise streaks, respectively. Moreover, an organ-specific
regularization process is subjected to the images to further reduce image noise, e.g. in the bone, heart, lung and abdomen. After multiple iterations, the
resulting pair of images are combined to produce the final converged solution that incorporates the benefits of increased spatial resolution and decreased
image noise [76, 77].

Deep learning based reconstruction

True Fidelity GE Healthcare The True Fidelity DLR utilises deep CNNs (DCNNs) that are trained with high quality images obtained through high dose FBP, so the DCNNs learn to dif-
ferentiate between noise and signal [30, 78]. The goal is to produce images of comparable quality from low-dose examination. This is achieved by noise
reduction while restoring preferred noise texture, that therefore improves overall image quality when compared to other reconstruction methods. The algo-
rithm reconstructs images directly from input sinogram acquired at low radiation doses [28, 30]. The resulting images retain FBP-like noise texture, sharp-
ness, and artefact properties because the model was trained on FBP images [16].

Precise Image Philips Health-
care

For Precise Image a CNN was trained on lower-dose simulated sinograms (input) and matched routine-dose FBP images as the ground truth. Simulated
noise was introduced prior to reconstruction. The CNN was trained on patient data from different groups and populations, with a range of scan parameters
[79]

AiCE Canon Medical
Systems

AiCE is a DLR that uses DCNNs to produce high-quality MBIR images from hybrid-IR images without the longer processing time that is associated with
MBIR [80]. The difference between MBIR and hybrid-IR images are given as feedback to be ’learned’ and ’updated’ by the DCNN. Before DCNN-based
restoration, the input data from the scan undergoes data domain filtering and hybrid-IR reconstruction [78]. Because MBIR images are used ground truth,
the technique allows for artifact reduction due to its ability to model system optics, system physics, scanner statistical properties and human anatomy [78,
80]



B. SEARCH TERMS

Pubmed: ("CT" [tiab] OR "computed tomography"[tiab] OR "Tomography, X-Ray Computed" [MeSH]) AND ("generalization"
[tiab] OR "harmonization" [tiab] OR "domain adaptation" [tiab] OR "standardization" [tiab] OR "homogenizing" [tiab] OR "con-
version" [tiab] OR "normalization" [tiab] OR ("characterizing" [tiab] AND "matching" [tiab])) AND ("reconstruction setting*" [tiab]
OR "reconstruction algorithm*" [tiab] OR "reconstruction method*" [tiab] OR "reconstruction kernel*" [tiab] OR "reconstruction
filter*" [tiab] OR "convolution kernel*" [tiab] OR "convolution filter*" [tiab] OR "imaging protocol*" [tiab]) AND ("deep learning"
[all fields] OR "DL" [all fields] OR "CNN" [all fields] OR "GAN" [all fields] OR "neural network*" [all fields] OR "Deep Learning"
[MeSH])

IEEE Xplore: (("Abstract": CT OR "Abstract": computed tomography) AND ("Abstract": generalization OR "Abstract": har-
monization OR domain adaptation OR "Abstract": homogenizing OR "Abstract": conversion OR "Abstract": normalization OR
"Abstract": standardization) AND ("Abstract": reconstruction settings OR "Abstract": reconstruction kernels OR "Abstract":
reconstruction algorithms OR "Abstract": reconstruction methods OR "Abstract": reconstruction kernels OR "Abstract": recon-
struction filters OR "Abstract": convolution kernels OR "Abstract": convolution filters OR "Abstract": imaging protocols) AND
("All Metadata": deep learning OR "All Metadata": DL OR "All Metadata": CNN OR "All Metadata": GAN OR "All Metadata":
neural network*))
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C. METHOD AND TRAINING DATA SET OVERVIEW

TABLE 4: OVERVIEW OF DATA SETS USED FOR TRAINING IN THE INCLUDED STUDIES IN THIS SYSTEMATIC REVIEW THAT PROPOSE A CROSS- AND INTRA-SCANNER STANDARDIZATION METHOD.

Article Type Conversion Data set Paired
data

Tissue Series
(n)

Slices
(n)

Data aug-
mentation

Scanner Scanner type Kernel (pairs) Source data Target data

Du et al.
[52]

Cross- &
Intra-scanner

Sharp-to-smooth &
Smooth-to-sharp

Private Yes Chest 30 N/A No Siemens N/A B30f & B70f B30f B70f

B70f B30f

Kim et
al. [54]

Cross- &
Intra-scanner

Sharp-to-smooth &
Smooth-to-sharp

Private No Chest 218 18.142 Yes Siemens N/A B60f All possible combinations

B70f

B46f

Private No Chest 214 26.473 Yes GE N/A BONE

Private No Chest 125 33.797 Yes Philips N/A YC

Private No Chest 45 9133 Yes Toshiba N/A FC85

Selim et
al. [2]

Cross- &
Intra-scanner

Smooth-to-sharp Private Yes Chest N/A 9900 Yes Siemens Force Br40 & Bl64 Br40 Bl64

TCIA No Chest N/A 4255 Yes GE Revolution EVO LUNG LUNG Bl46

Li et al.
[53]

Cross &
Intra-scanner

N/A Private No Chest 60 10.000 No GE N/A N/A GE SiemensT

Private No Chest 60 10.000 No Philips N/A N/A Philips SiemensT

Private No Chest 60 10.000 No Siemens N/A N/A Siemens SiemensT

Private No Chest 60 10.000 No SiemensT N/A N/A



TABLE 5: OVERVIEW OF DATA SETS USED FOR TRAINING BY THE INCLUDED STUDIES IN THIS SYSTEMATIC REVIEW THAT PROPOSE AN INTRA-SCANNER STANDARDIZATION METHOD.

Article Type Conversion Data set Paired
data

Tissue Series
(n)

Slices
(n)

Data aug-
mentation

Scanner Scanner type Kernel (pairs) Source data Target data

Choe et
al. [46]

Intra-scanner Sharp-to-smooth &
Smooth-to-sharp

Private Yes Chest 40 N/A No Siemens Definition Edge B30f & B50f B30f B50f

B50f B30f

Lee et
al. [47]

Intra-scanner Sharp-to-smooth &
Smooth-to-sharp

Private Yes Chest 8 2.669 No Siemens Definition Edge B10f & B30f &
B50f & B70f

All possible combinations

Yang et
al. [50]

Intra-scanner Sharp-to-smooth &
Smooth-to-sharp

Private Yes Head 9 450 Yes Siemens Definition Edge J30s & J70h J30s J70h

J70h J30s

Private Yes Facial
bone

10 1.355 Yes Siemens Definition Edge J40s & J70h J40s J70h

J70h J40s

Private Yes Facial
bone

7 1.282 Yes Siemens Definition Edge Hr40 & Hr49 &
Hr68

All possible combinations

Jin et al.
[40]

Intra-scanner Sharp-to-smooth NLST Yes Chest 111 15.317 No Siemens Volume zoom B30f & B50f B50f B30f

44 6.308 No GE Lightspeed 16 STANDARD &
BONE

BONE STANDARD

14 2.711 No Philips Mx8000 C & D D C

6 991 No Canon Aquilion FC10 & FC51 FC51 FC10

Tanabe
et al. [48]

Intra-scanner Sharp-to-smooth Private Yes Chest 30 11.052 No Canon Aquilion Prime FC13 & FC51 FC51 FC13

Liang et
al. [42]

Intra-scanner Smooth-to-sharp Private Yes Chest N/A 2448 yes Siemens Force Bl57 & Bl64 Bl57 Bl64

Selim et
al. [41]

Intra-scanner Smooth-to-sharp Private Yes Chest N/A 14688 yes Siemens Force Bl57 & Bl64 &
Br40

Bl57 Bl64

Br40 Bl64

Wu et al.
[49]

Intra-scanner Smooth-to-sharp Private Yes Chest 174 8352 Yes Siemens Definition AS
5-mm B30f &
5-mm B31f &
5-mm B60f &
5-mm B80f

5-mm B30f 1-mm sharp

5-mm B31f 1-mm sharp

5-mm B60f 1-mm sharp

5-mm B80f 1-mm sharp

Lee et
al. [51]

Intra-scanner N/A Private Yes Phantom 60 N/A No Siemens Definition Flash FBP 30f &
SAFIRE 30f

FBP 30f SAFIRE 30f



D. PERFORMANCE EVALUATION DATA SET OVERVIEW

TABLE 6: OVERVIEW OF DATA SETS USED FOR EVALUATION IN THE INCLUDED STUDIES IN THIS SYSTEMATIC REVIEW THAT PROPOSE A CROSS- AND INTRA-SCANNER STANDARDIZATION METHOD.

Article Target Data set Paired data Tissue Series (n) Slices (n) Scanner Scanner type Source data

Du et al. [52] B30f or B70f Private Yes Chest 85 N/A Siemens Definition AS B30f & B70f

Private Yes Chest 164 N/A Siemens Definition AS B30f & B70f

Private Yes Phantom 22 N/A GE Discovery STE Soft, Detail, Stan-
dard, Lung, Edge

Philips Brilliance 64 A, B, C, L, YA

Siemens Definition AS I26f-2, I30f-2, I40f-2,
I44f-2, I50f-2, I70f-2

Siemens Sensation 64 B10f, B20f, B30f,
B50f, B60f, B70f

Kim et al. [54] B60f, B70f,
B46f, BONE,
YC or FC85

Private No Chest 24 1.912 Siemens N/A B60f, B70f, B46f

23 1.842 GE N/A BONE

14 1.596 Philips N/A YC

5 1.016 Toshiba N/A FC85

Selim et al. [2] Bl64 Private Yes Phantom 1 N/A Siemens Force Br40

No Phantom 1 N/A GE Revolution EVO LUNG

Li et al. [53] SiemensT Private No Chest 80 N/A GE N/A N/A

80 N/A Philips N/A N/A

80 N/A Siemens N/A N/A

Private No Chest 38 N/A GE N/A N/A

28 N/A Philips N/A N/A

32 N/A Siemens & SiemensT N/A N/A



TABLE 7: OVERVIEW OF DATA SETS USED FOR EVALUATION IN THE INCLUDED STUDIES IN THIS SYSTEMATIC REVIEW THAT PROPOSE AN INTRA-SCANNER STANDARDIZATION METHOD.

Article Target Data set Paired data Tissue Series (n) Slices (n) Scanner Scanner type Source data

Choe et al. [46] B50f or B70f Private Yes Chest 104 N/A Siemens Definition Edge 50f & B70f

Lee et al. [47] B10f, B30f,
B50f or B70f

Private Yes Chest 2 2.669 Siemens Definition edge B10f, B30f, B50f,
B70f

Yang et al. [50] J30s or J70h Private Yes Head 1 44 Siemens Definition edge J30s, J70h

J40s or J70h Private Yes Facial
bone

1 165 Siemens Definition edge J40s, J70h

Hr50, Hr49 or
Hr68

Private Yes Facial
bone

1 209 Siemens Definition edge Hr50, Hr49, Hr68

Jin et al. [40] B50f Private Yes Chest 110 14.732 Siemens Volume Zoom B50f

BONE Private Yes Chest 45 664 GE Lightspeed 16 STANDARD

C Private Yes Chest 14 2.694 Philips Mx8000 D

FC10 Private Yes Chest 9 1.703 Canon Aquilion FC51

Tanabe et al.
[48]

FC13 Private Yes Chest 30 N/A Canon Aquilion Prime FC51

Liang et al. [42] Bl64 Private Yes Chest N/A 3.554 Siemens Force Bl57

Selim et al. [41] Bl64 Private Yes Chest N/A 7620 (patches) Siemens Force Bl57, Br40

Wu et al. [49] 1-mm sharp Private No Chest 108 N/A Siemens Definition AS 5-mm B30f, 5-mm
B31f, 5-mm B60f or
5-mm B80f

Lee et al. [51] ADMIRE
32f/36f

Private Yes Phantom 80 N/A Siemens Force FBP 32f/36f



E. PERFORMANCE EVALUATION RESULTS

TABLE 8: QUANTITATIVE COMPARISON OF INTRA-SCANNER AND CROSS-SCANNER STANDARDIZATION EMPLOYED TO IMAGES FROM A

LUNGMAN CHEST PHANTOM EMBEDDED WITH THREE TUMOURS USING THE NUMBER OF REPRODUCIBLE FEATURES AND THE RELATIVE

ABSOLUTE ERROR. THE PROPOSED METHOD, STAN-CT [2], INCLUDES BOTH INTRA- AND CROSS-SCANNER STANDARDIZATION IN A

UNIFIED MANNER. ONLY THE INTRA-SCANNER STANDARDIZATION IS COMPARED WITH GANAI [42] AND STAN-CT [41]. FOR

UDA-CTBASIC , THE DATA AUGMENTATION COMPONENT OF THE ORIGINAL IS REMOVED.

Tumor 1 Tumor 2 Tumor 3
# of repro-
ducible features

RE # of repro-
ducible features

RE # of repro-
ducible features

RE

Intra-scanner standardization
Baseline 557 1.59 ± 4.68 699 1.32 ± 7.89 651 5.12 ± 76.99
GANai 851 0.46 ± 1.29 760 0.74 ± 4.96 714 0.72 ± 4.9
STAN-CT 903 0.23 ± 0.66 896 0.45 ± 4.36 734 0.74 ± 7.96
UDA-CTBASIC 1036 0.24 ± 0.64 902 0.18 ± 0.28 651 0.24 ± 1.61
UDA-CT 1174 0.20 ± 0.56 1162 0.08 ± 0.45 714 0.21 ± 2.54

24



B
Reconstruction Kernel Specifications

Table B.1: Descriptions of the available GE reconstruction kernels. The algorithms going from top to bottom increase

spatial resolution and decrease low contrast detectability. Extracted from user manual of GE Healthcare

Revolution CT scanner.

Kernel Description

Soft for tissues with similar densities, but not useful for un-enhanced scans

Stnd for routine exams, e.g., chest, abdomens, and pelvis scans

Lung for interstitial lung pathology

Chest for mediastinum and lung detail studies.

Detail for post myelograms, where hybrid tissue detail and bone edges are important.

Bone for High resolution exams and sharp bone detail.

Bone Plus for sub mm detailed head work.

Edge for small bone work in the head, as well as high resolution scans.

Ultra for inner ear scan.
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Appendix B. Reconstruction Kernel Specifications

Table B.2: Descriptions of the available Philips reconstruction kernels. Extracted from user manual of Philips Brilliance CT scanner.

Kernel Description Resolution availability

A Very smoothed, can be used to significantly decrease noise. Rec-
ommended for use when the patient is very large and the dose in-
adequate for the patients size

Standard, High, Ultra-high

B Smoothed, but sharper and noisier than A. Recommended for CTA
(for example, COW), routine abdomen, and pelvis.

Standard, High, Ultra-high

C Sharper, creates relatively low-noise images. Recommended for
CTA (for example, COW), routine abdomen, and pelvis to get
slightly higher sharpness than with Filter B

Standard, High, Ultra-high

D Sharp and edge-enhancing. Creates relatively high-noise images
and raises the bone density

Standard, High, Ultra-high

E Sharper, delivers relatively correct CT values, even for small details. Standard, High, Ultra-high

L Sharper than E. Delivers relatively correct CT values even for small
details.Recommended for reconstruction of low -noise lung image

Standard, High

YA Sharper and noisier. Recommended for reconstruction of sinuses,
facial bones, dental, etc.

Standard

YB Sharper and noisier than YA, recommended for reconstruction of
sinuses, facial bones, etc.

Standard

YC Sharper and noisier than YB. Recommended for reconstruction of
lungs, sinuses, facial bones, dental, and orthopaedics.

High

YD Extremely sharp and noisy. Recommended for reconstruction of
IAC (when the scan is HR rather than UHR) and sinuses. Also for
reconstruction of lungs and orthopaedics

High

YE Very sharp and noisy, recommended for extremities. Ultra-high

YF Extremely sharp, in fact the sharpest filter of the system. It is also
the noisiest filter. Recommended for extra-sharp extremity images.

Ultra-high

UA Designed for head scans only. Minimizes the beam-hardening arte-
facts and significantly improves the bone-soft tissue interface (in
areas such as brain or orbits). Low noise, allows detection of small
lesions with relatively low noise.

Standard, High

UB Designed to detect small lesions with improved bone/ soft tissue
interface (in areas such as brain or orbits). Low contrast, for moder-
ate resolution

Standard, High

UC Designed to detect small lesions with improved bone/ soft tissue
interface (in areas such as brain or orbits). Increases noise in
images.X

Standard, High
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Appendix B. Reconstruction Kernel Specifications

Table B.3: Descriptions of the available Siemens

reconstruction kernels. Extracted from

a Siemens Somatom Sensation man-

ual.

Kernel series Description

B10s/B10f Very smooth

B20s/B20f Smooth

B30s/B30f Medium smooth

B31s/B31f Medium smooth +

B35s/B35f HeartView medium

B36f HeartView medium

B40s/B40f Medium

B41s/B41f Medium +

B45s/B45f Medium

B46f HeartView sharp

B50s/B50f Medium sharp

B60s/B60f Sharp

B70s/B70f Very sharp

B80s/B80f Ultra sharp

H10s/H10f Very smooth

H20s/H20f Smooth

H30s/H30f Medium smooth

H31s/H31f Medium smooth +

H32s/H32f Medium smooth FR+

H40s/H40f Medium

H41s/H41f Medium +

H42f Medium FR+

H42s Medium FR

H45s/H45f Medium

H50s/H50f sharp

H60s/H60f medium

H70h Very sharp

H80 Very sharp

C20s/C20f Smooth

C30s/C30f Medium smooth

C60s Sharp
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Appendix B. Reconstruction Kernel Specifications

Table B.4: Descriptions of the relevant Canon/Toshiba reconstruction kernels. Extracted from a Toshiba Aquil-

ion16 manual.

Kernel series Description

From FC01 For the abdomen, with beam hardening correction (BHC) processing

From FC10 For the abdomen

From FC20 For the head, with beam hardening correction (BHC) processing

From FC30 For the inner ear and bones

From FC40 For the head

From FC50 For the lung field

From FC60 Xe-study

From FC70 For system maintenance

From FC80 For high resolution 1, for the inner ear and bones

From FC82 For high resolution 2, for the lung field (High resolution CT)

From FC90 For high resolution 3
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C
Data Set Specifications
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Table C.1: Specifications of the selected data acquired from CT scanners from GE Medical Systems manufacturer. The different models of the CT scanners are stated, and the reconstruction kernels are listed, in

smooth to sharp order, according to the manufacturer. In addition, the tube peak voltage, slice thickness, tube current are given, which are acquisition parameters.

STANDARD HiSpeed QX/i 120 2.5 80 1 122

LightSpeed Plus 120 2.5 120 1 225

120 2.5 160 1 108

LightSpeed QX/i 120 2.5 60 1 212

120 2.5 80 3 444

140 2.5 140 1 133

LightSpeed Ultra 120 1.25 120 1 291

LightSpeed16 120 2.5 45 1 171

BONE HiSpeed QX/i 120 2.5 80 2 231

LightSpeed Pro 16 120 2.5 60 1 106

LightSpeed QX/i 120 2.5 60 1 130

120 2.5 70 1 120

120 2.5 90 1 136

140 2.5 40 1 139

LightSpeed Ultra 120 1.25 60 1 32

LightSpeed16 120 2.5 60 1 100

120 2.5 80 1 132

LUNG LightSpeed Plus 120 2.5 80 2 508

120 2.5 100 1 246

120 2.5 160 5 630

LightSpeed16 120 2.5 80 1 123

120 2.5 140 1 164

Total 31 4619

Manufacturer Reconstruction
kernel

CT scanner model Tube peak
voltage [ kVp]

Slice thickness
[ mm]

Tube current
[ mA]

Patients [ n] Slices [ n]

GE MEDICAL
SYSTEMS

SOFT LightSpeed16 120 2.5 60 1 116



Table C.2: Specifications of the selected data acquired from CT scanners from Philips manufacturer. The different models of the CT scanners are stated, and the reconstruction kernels are listed, in smooth to sharp

order, according to the manufacturer. In addition, the tube peak voltage, slice thickness, tube current are given, which are acquisition parameters.

120 3.2 8.3 1 92

120 3.2 100 5 486

120 3.2 133 1 75

120 3.2 417 1 88

B Mx8000 120 3.2 67 3 253

120 3.2 92 1 66

120 3.2 93 2 329

120 3.2 100 1 99

120 3.2 150 2 325

Mx8000 IDT 16 120 2.0 180 1 183

C Mx8000 120 3.2 60 1 149

120 3.2 67 1 94

120 3.2 93 5 797

120 1.3 120 2 473

120 3.2 140 1 143

D Mx8000 120 3.2 93 6 993

120 3.2 100 1 160

120 3.2 150 1 161

120 3.2 187 1 156

Brilliance 16P 120 2.0 240 1 301

EC Mx8000 120 3.2 93 1 175

120 3.2 140 1 130

120 3.2 187 1 155

Total 43 6062

Manufacturer Reconstruction
kernel

CT scanner model Tube peak
voltage [ kVp]

Slice thickness
[ mm]

Tube current
[ mA]

Patients [ n] Slices [ n]

Philips A Mx8000 120 3.2 67 2 179



Table C.3: Specifications of the selected data acquired from CT scanners from Siemens manufacturer. The different models of the CT scanners are stated, and the reconstruction kernels are listed, in smooth to

sharp order, according to the manufacturer. In addition, the tube peak voltage, slice thickness, tube current are given, which are acquisition parameters.

SIEMENS B20f Sensation 16 120 2.0 90 3 477

120 2.0 120 2 298

Volume Zoom 120 2.0 120 5 804

B20s Emotion 6 130 1.25 225 1 332

B30f Sensation 16 120 1.0 150 1 358

120 2.0 75 1 183

120 2.0 80 1 169

120 2.0 90 1 151

Volume Zoom 120 2.0 120 2 330

120 2.0 150 2 247

120 2.0 188 1 172

120 2.0 210 1 159

B30s Emotion 6 130 2.5 38 1 10

130 2.5 51 1 158

130 4.0 173 1 320

130 5.0 66 1 66

Emotion 16 110 2.0 63 1 176

130 2.0 100 4 619

Volume Zoom 120 2.0 80 1 152

B31f Sensation 16 120 3.0 40 1 117

120 3.0 212 1 122

120 3.0 256 1 102

120 3.0 292 1 154

120 3.0 392 1 126

120 3.0 494 1 119

Manufacturer Reconstruction
kernel

CT scanner model Tube peak
voltage [ kVp]

Slice thickness
[ mm]

Tube current
[ mA]

Patients [ n] Slices [ n]

Continued on next page



Table C.3: Specifications of the selected data acquired from CT scanners from Siemens manufacturer. The different models of the CT scanners are stated, and the reconstruction kernels are listed, in smooth to

sharp order, according to the manufacturer. In addition, the tube peak voltage, slice thickness, tube current are given, which are acquisition parameters. (Continued)

120 3.0 500 1 113

Volume Zoom 120 2.0 120 3 482

B31s Emotion 6 130 2.5 38 1 155

130 3.0 40 1 124

130 3.0 64 1 112

130 2.5 75 1 141

130 3.0 226 1 151

130 3.0 256 1 120

130 3.0 275 4 476

B35f Volume Zoom 120 2.0 120 2 347

B40f Sensation 4 120 5.0 80 1 78

Volume Zoom 120 5.0 210 1 65

120 5.0 295 1 63

140 5.0 330 1 58

B40s Emotion Duo 130 3.0 133 1 279

B41s Sensation 16 120 3.0 270 1 138

B45f Definition 120 1.0 332 1 251

Sensation 16 120 1.0 120 1 401

120 1.0 345 1 331

120 1.0 412 1 299

120 1.0 421 1 328

120 1.0 432 1 349

120 1.0 440 1 339

Sensation 64 120 1.0 513 1 266

120 3.0 435 1 104

Manufacturer Reconstruction
kernel

CT scanner model Tube peak
voltage [ kVp]

Slice thickness
[ mm]

Tube current
[ mA]

Patients [ n] Slices [ n]

Continued on next page



Table C.3: Specifications of the selected data acquired from CT scanners from Siemens manufacturer. The different models of the CT scanners are stated, and the reconstruction kernels are listed, in smooth to

sharp order, according to the manufacturer. In addition, the tube peak voltage, slice thickness, tube current are given, which are acquisition parameters. (Continued)

B45f Volume Zoom 120 2.0 140 1 166

B50f Sensation 16 120 2.0 90 2 325

120 5.0 90 1 68

Sensation 16 120 5.0 108 1 58

Volume Zoom 120 2.0 120 4 623

120 2.0 150 1 168

140 2.0 160 1 203

B50s Emotion 16 130 2.0 100 3 520

Volume Zoom 120 2.0 80 1 152

B60f Sensation 16 120 2.0 90 6 1029

Volume Zoom 120 2.0 120 1 141

140 2.0 140 2 321

120 2.0 160 1 161

B60s Emotion 16 110 2.0 63 2 302

130 2,0 90 1 151

130 2.0 100 6 947

Sensation 16 120 3.0 270 1 92

B70f Sensation 16 120 2.0 105 4 803

120 2.0 208 1 346

120 2.0 360 1 344

120 2.0 381 1 325

Volume Zoom 120 2.0 150 3 510

B80f Sensation 16 120 1.0 150 7 2423

120 1.0 250 3 949

Total 123 22618

Manufacturer Reconstruction
kernel

CT scanner model Tube peak
voltage [ kVp]

Slice thickness
[ mm]

Tube current
[ mA]

Patients [ n] Slices [ n]



Table C.4: Specifications of the selected data acquired from CT scanners from Toshiba Healthcare manufacturer. The different models of the CT scanners are stated, and the reconstruction kernels are listed, in

smooth to sharp order, according to the manufacturer. In addition, the tube peak voltage, slice thickness, tube current are given, which are acquisition parameters.

Manufacturer Reconstruction
kernel

CT scanner model Tube peak
voltage [ kVp]

Slice thickness
[ mm]

Tube current
[ mA]

Patients [ n] Slices [ n]

TOSHIBA FC01 Aquilion 120 2.0 80 1 140

120 2.0 160 5 797

135 3.0 260 4 486

FC02 Aquilion 120 3.0 160 9 844

FC03 Aquilion 135 2.0 260 3 458

FC10 Aquilion 120 2.0 80 3 519

120 2.0 100 1 159

120 2.0 120 5 962

120 2.0 150 1 150

FC30 Aquilion 120 2.0 160 6 920

120 3.0 169 4 428

FC50 Aquilion 120 2.0 80 4 630

120 2.0 100 2 369

120 2.0 120 1 193

120 2.0 140 1 161

120 2.0 160 1 170

FC51 Aquilion 120 2.0 80 5 832

120 2.0 120 2 334

120 2.0 150 2 359

120 2.0 160 1 180

FC53 Aquilion 120 1.0 80 1 263

120 2.0 80 2 322

FC82 Aquilion 120 2.0 80 7 1039

Aquilion 120 2.0 100 1 164

120 2.0 160 2 310

Total 87 11214



D
Noise magnitude results

Table D.1: Median noise magnitude measured as standard deviation value per patient (1-10), order per kernel from low to high, left to right.

The median standard deviation per kernel has also been computed together with the median absolute deviation (MAD)

A 12.80 13.73 14.40 14.46 15.19 15.64 15.73 16.05 18.27 18.71 15.41 0.98

B 10.86 12.59 13.40 13.47 16.32 19.43 19.99 20.38 21.39 22.56 17.88 3.96

C 15.87 17.25 19.91 22.75 23.28 24.22 25.60 26.16 26.43 29.10 23.75 2.55

D 20.75 28.33 45.42 45.63 58.23 64.42 68.86 69.13 83.77 86.11 61.33 15.80

EC 19.85 24.26 24.93 n/a n/a n/a n/a n/a n/a n/a 24.26 0.67

SOFT 21.94 n/a n/a n/a n/a n/a n/a n/a n/a n/a 21.94 n/a

STD 11.57 14.86 18.21 18.63 18.76 21.11 21.60 26.00 26.90 28.64 19.93 3.40

BONE 43.54 44.22 45.34 54.04 55.28 57.85 64.55 73.91 73.95 78.56 56.57 11.78

LUNG 38.78 38.78 51.52 53.04 65.77 70.15 80.72 82.36 113.52 140.97 67.96 15.68

B20s 12.91 n/a n/a n/a n/a n/a n/a n/a n/a n/a 12.91 n/a

B20f 13.96 14.22 14.37 15.39 15.77 17.59 18.20 24.88 24.90 25.42 16.68 2.38

B30s 9.88 11.20 14.00 14.31 16.36 16.75 17.64 17.75 19.95 20.45 16.55 2.40

B30f 12.37 14.94 15.01 18.10 19.20 25.14 25.60 27.36 28.89 29.17 22.17 5.95

B31s 8.45 8.83 8.96 9.06 9.09 9.26 9.42 9.46 11.33 15.11 9.17 0.26

B31f 8.08 9.58 9.66 10.53 10.61 12.72 14.02 16.36 18.06 19.64 11.66 2.22

B35f 21.66 31.12 n/a n/a n/a n/a n/a n/a n/a n/a 26.39 4.73

B40f 10.40 11.46 12.90 17.78 n/a n/a n/a n/a n/a n/a 12.18 1.25

B40s 17.38 n/a n/a n/a n/a n/a n/a n/a n/a n/a 17.38 n/a

B41s 8.89 n/a n/a n/a n/a n/a n/a n/a n/a n/a 8.89 n/a

B45f 14.89 20.30 21.65 25.30 27.39 27.42 27.88 29.89 44.04 57.63 27.41 4.12

B50f 28.42 41.67 41.83 47.48 50.92 51.75 53.83 54.51 54.94 59.39 51.34 3.73

B50s 27.94 31.30 37.19 65.18 n/a n/a n/a n/a n/a n/a 34.24 4.63

B60f 50.18 55.47 66.12 70.48 73.60 80.50 80.52 89.61 96.56 98.70 77.05 11.74

B60s 34.93 35.13 35.66 42.95 44.33 44.36 46.66 48.02 49.44 49.74 44.34 4.39

B70f 35.95 41.11 65.33 71.55 73.39 73.88 75.41 85.46 94.17 n/a 73.39 8.06

B80f 76.63 79.45 84.22 87.15 87.86 89.20 92.88 94.99 125.34 125.90 88.53 5.41

FC01 6.01 7.27 12.65 12.98 14.61 18.60 20.71 25.92 27.38 34.13 16.61 6.71

FC02 9.41 10.00 11.38 11.89 12.78 14.63 17.02 17.36 19.91 n/a 12.78 2.78

FC03 6.47 7.53 13.34 n/a n/a n/a n/a n/a n/a n/a 7.53 1.07

Kernel 1 2 3 4 5 6 7 8 9 10 Median MAD

Continued on next page
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Appendix D. Noise magnitude results

Table D.1: Median noise magnitude measured as standard deviation value per patient (1-10), order per kernel from low to high, left to right. The

median standard deviation per kernel has also been computed together with the median absolute deviation (MAD) (Continued)

FC10 17.50 18.67 20.26 21.50 22.21 22.22 23.59 24.37 28.77 29.00 22.22 2.05

FC50 28.61 36.73 37.06 46.15 46.28 48.82 50.89 53.71 79.70 n/a 46.28 7.44

FC51 30.85 31.83 38.21 38.78 64.82 66.17 69.70 72.99 94.50 107.87 65.50 27.00

FC53 51.07 52.91 97.44 n/a n/a n/a n/a n/a n/a n/a 52.91 1.83

FC30 57.73 72.70 74.98 82.82 86.23 90.02 90.58 111.40 118.97 139.18 88.13 14.29

FC82 42.58 48.79 53.14 59.15 66.69 72.08 72.84 80.69 90.26 94.84 69.39 13.78

Kernel 1 2 3 4 5 6 7 8 9 10 Median MAD
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E
Noise texture results

Table E.1: Median noise texture measured as central frequency extracted from the 1D noise power spectrum per patient (1-10), order per kernel

from low to high, left to right. The median standard deviation per kernel has also been computed together with the median absolute

deviation (MAD)

A 0.1053 0.1167 0.1175 0.1190 0.1241 0.1241 0.1242 0.1282 0.1285 0.1287 0.1241 4.525E-3

B 0.0918 0.1155 0.1156 0.1164 0.1190 0.1191 0.1273 0.1440 0.1484 0.1646 0.1190 5.888E-3

C 0.1461 0.1616 0.1656 0.1676 0.1745 0.1799 0.1807 0.1923 0.1980 0.2014 0.1772 13.32E-3

D 0.1303 0.1375 0.1410 0.1510 0.1516 0.1559 0.1587 0.1702 0.2073 0.2366 0.1538 14.53E-3

EC 0.0973 0.1011 0.1278 n/a n/a n/a n/a n/a n/a n/a 0.1011 3.788E-3

SOFT 0.1266 n/a n/a n/a n/a n/a n/a n/a n/a n/a 0.1266 n/a

STD 0.1023 0.1184 0.1191 0.1219 0.1257 0.1359 0.1395 0.1418 0.1448 0.1603 19.93 11.35E-3

BONE 0.1237 0.1404 0.1422 0.1445 0.1614 0.1840 0.2282 0.2762 0.2894 0.3059 0.1727 40.62E-3

LUNG 0.1424 0.1466 0.1643 0.1739 0.1961 0.1972 0.2014 0.2040 0.2065 0.2463 67.96 16.33E-3

B20s 0.1334 n/a n/a n/a n/a n/a n/a n/a n/a n/a 0.1334 n/a

B20f 0.0966 0.1046 0.1060 0.1132 0.1137 0.1154 0.1195 0.1219 0.1262 0.1318 0.1145 7.927E-3

B30s 0.0756 0.1054 0.1195 0.1230 0.1244 0.1351 0.1435 0.1478 0.1520 0.1546 0.1334 15.91E-3

B30f 0.1041 0.1097 0.1235 0.1244 0.1270 0.1274 0.1305 0.1382 0.1397 0.1522 0.1272 7.339E-3

B31s 0.0813 0.0898 0.0932 0.1026 0.1030 0.1032 0.1115 0.1188 0.1233 0.1297 0.1031 11.56E-3

B31f 0.0796 0.0853 0.0906 0.0959 0.1060 0.1129 0.1177 0.1233 0.1282 0.1095 0.1095 16.29E-3

B35f 0.1210 0.1290 n/a n/a n/a n/a n/a n/a n/a n/a 0.1250 3.984E-3

B40f 0.1044 0.1180 0.1330 0.1341 n/a n/a n/a n/a n/a n/a 0.1255 8.003E-3

B40s 0.0460 n/a n/a n/a n/a n/a n/a n/a n/a n/a 0.0460 n/a

B41s 0.1238 n/a n/a n/a n/a n/a n/a n/a n/a n/a 0.1238 n/a

B45f 0.1294 0.1528 0.1625 0.1669 0.1690 0.1824 0.1862 0.1926 0.1955 0.2001 0.1757 15.07E-3

B50f 0.1427 0.1624 0.1639 0.1732 0.1970 0.2117 0.2133 0.2139 0.2353 0.2551 0.2043 40.01E-3

B50s 0.1376 0.1810 0.2176 0.2881 n/a n/a n/a n/a n/a n/a 0.1993 31.02E-3

B60f 0.1680 0.1733 0.1920 0.1970 0.2028 0.2036 0.2110 0.2290 0.2478 0.2679 0.2032 18.53E-3

B60s 0.1631 0.1722 0.1738 0.1821 0.1965 0.1998 0.2533 0.2537 0.2563 0.2650 0.1982 30.52E-3

B70f 0.1630 0.1687 0.1754 0.1780 0.1797 0.1811 0.2221 0.2415 0.2567 n/a 0.1797 11.06E-3

B80f 0.1870 0.1873 0.2028 0.2042 0.2055 0.2060 0.2269 0.2465 0.2481 0.2484 0.2057 18.55E-3

FC01 0.0748 0.0894 0.0987 0.1016 0.1106 0.1327 0.1422 0.1452 0.1456 0.1460 0.1217 23.24E-3

FC02 0.0828 0.1102 0.1108 0.1268 0.1320 0.1322 0.1440 0.1542 0.1551 n/a 0.1320 21.16E-3

Kernel 1 2 3 4 5 6 7 8 9 10 Median MAD

Continued on next page
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Appendix E. Noise texture results

Table E.1: Median noise texture measured as central frequency extracted from the 1D noise power spectrum per patient (1-10), order per kernel

from low to high, left to right. The median standard deviation per kernel has also been computed together with the median absolute

deviation (MAD) (Continued)

FC03 0.0656 0.0787 0.0926 n/a n/a n/a n/a n/a n/a n/a 0.0787 13.07E-3

FC10 0.1061 0.1216 0.1232 0.1303 0.1341 0.1357 0.1493 0.1525 0.1674 0.1857 0.1349 13.84E-3

FC50 0.1334 0.1628 0.1689 0.1750 0.1780 0.1802 0.1830 0.1833 0.27 n/a 0.1779 5.325E-3

FC51 0.1549 0.1645 0.1691 0.1696 0.1780 0.1838 0.1914 0.1951 0.2021 0.2342 0.1809 13.00E-3

FC53 0.1215 0.2756 0.2884 n/a n/a n/a n/a n/a n/a n/a 0.2756 12.76E-3

FC30 0.1609 0.1663 0.1740 0.1755 0.1765 0.1816 0.1833 0.1985 0.2388 0.2418 0.1791 8.935E-3

FC82 0.1568 0.1573 0.1637 0.1675 0.1698 0.1771 0.1793 0.1797 0.2345 0.2608 0.1734 8.008E-3

Kernel 1 2 3 4 5 6 7 8 9 10 Median MAD
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F
Comparison Model Categorization

Table F.1: Categorisations per kernel. The table shows the correct percentage of classifica-

tions per kernel for the SVC_noise and RFC_radiomics models. Additionally, it shows

the manually determined true class label per kernel.

A 10 smooth 100 smooth 100

B 10 smooth 100 smooth 100

C 10 smooth 100 smooth 90

D 10 sharp 80 sharp 100

EC 3 smooth 100 smooth 100

SOFT 1 smooth 100 smooth 100

STD 10 smooth 100 smooth 100

BONE 10 sharp 100 sharp 100

LUNG 10 sharp 100 sharp 100

B20s 1 smooth 100 smooth 100

B20f 10 smooth 100 smooth 100

B30s 10 smooth 100 smooth 100

B30f 10 smooth 100 smooth 100

B31f 10 smooth 100 smooth 100

B31s 10 smooth 100 smooth 100

B35f 2 smooth 100 smooth 100

B40f 4 smooth 100 smooth 100

B40s 1 smooth 100 smooth 100

B41s 1 smooth 100 smooth 100

B45f 10 smooth 80 smooth 80

B50f 10 sharp 90 sharp 90

B50s 4 sharp 50 smooth 75

B60f 10 sharp 100 sharp 100

B60s 10 sharp 100 sharp 90

B70f 9 sharp 100 sharp 89

B80f 10 sharp 100 sharp 100

FC01 10 smooth 100 smooth 100

SVC_noise RFC_radiomics

Kernel N True class Correct [%] True class Correct [%]

Continued on next page
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Appendix F. Comparison Model Categorization

Table F.1: Categorisations per kernel. The table shows the correct percentage of classifica-

tions per kernel for the SVC_noise and RFC_radiomics models. Additionally, it shows

the manually determined true class label per kernel. (Continued)

FC02 9 smooth 100 smooth 100

FC03 3 smooth 100 smooth 100

FC10 10 smooth 100 smooth 100

FC50 10 sharp 89 sharp 89

FC51 10 sharp 100 sharp 80

FC53 3 sharp 100 sharp 100

FC30 10 sharp 100 sharp 100

FC82 10 sharp 90 sharp 100

SVC_noise RFC_radiomics

Kernel N True class Correct [%] True class Correct [%]
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