PHYSICAL REVIEW B

VOLUME 52, NUMBER 35

Characterization of free volume in atomic models of metallic glasses
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An analysis of interatomic space is presented for atomic models of amorphous Pds,Ni;,P,¢ in the as-
quenched state and in an annealed state. Interstitial voids are constructed as clusters of overlapping
spheres that are placed in Delauney tetrahedra. It is found that the difference between as-quenched and
annealed Pds,Ni;,P,s predominantly lies in the quantity of the relatively large voids. More specifically,
the number of voids surrounded by nine or less atoms (“intrinsic voids”) increases, whereas the number
of voids surrounded by ten or more atoms (“holes”) strongly decreases. The interpretation is that during
structural relaxation the holes break up into two or more intrinsic voids. Since in the annealed state the
diffusivity is a factor 25 smaller than in the as-quenched state, the diffusion process is explained in terms
of the occurrence of holes. The analysis of the volumes and shapes of the holes shows that (1) the
volume distribution becomes narrower on structural relaxation, and (2) although holes with a volume of
one atomic volume or more do occur, their shape is strongly nonspherical, and they certainly do not
resemble crystalline vacancies. It is furthermore argued that, because of the importance of holes for the
atomic mobility, the hole volume is to be regarded as the free volume appearing in the well-known free-
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volume model by Turnbull and Cohen.

I. INTRODUCTION

The structure of metallic glasses combines two proper-
ties that make these materials particularly interesting: a
packing fraction as high as in most crystalline phases,
and a liquidlike disorder in atomic coordinations. The
question about the mechanism of atomic mobility
(diffusion, viscous flow) in such structures has not yet
been unambiguously answered. The atomic mobility is
too strongly restricted by the high density and low tem-
perature to be caused by liquidlike mechanisms like hy-
drodynamic flow. On the other hand, defects that often
play a role for the atomic mobility in crystals, like vacan-
cies or dislocations, cannot well be envisioned to be
present. It is likely that a more or less spherical hole as
large as a vacancy will not be stable in a disordered struc-
ture.! Still, the experimentally observed diffusivity in me-
tallic glasses is not vanishing,? nor is their viscosity
infinite.> The atomic mobility also leads to changes in the
disordered structure when the material is subjected to
moderately high temperatures. At temperatures low
enough to avoid crystallization, the properties of metallic
glasses change significantly, notably the diffusivity and
the viscosity. The relation between the kinetics of this
structural relaxation and the atomic mobility has been
treated in a number of studies.* In general, the atomic
mobility decreases when an as-quenched metallic glass is
heat treated.>® For relatively stable glasses a metastable
equilibrium state can be reached, in which the atomic
mobility is no longer time dependent. Viscosity measure-
ments during temperature-cycling experiments® show
that the equilibrium state is temperature dependent.

The concept of defects in metallic glasses appears in
the application of the free-volume theory to this prob-
lem.%” A defect is defined as a site at which the free
volume exceeds a critical value, which is on the order of
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an atomic volume. According to the model, the atomic
mobility, reflected by the viscosity and the diffusivity, is
assumed to be proportional to the concentration of de-
fects; for instance, when an as-quenched metallic glass is
annealed, the decreasing diffusivity is caused by a de-
creasing defect concentration. Although this theory has
been successful in the description of observations of
structural relaxation,>® some questions remain: (1) What
is the actual identity of a defect? (2) Why does a single
defect appear to cause diffusive motion, whereas a pair of
defects is needed for viscous flow?*!° (3) Why does the
diffusivity not reflect the temperature dependence of the
equilibrium state?® This paper deals primarily with the
first two questions. Aiming to characterize free volume
and defects in metallic glasses on a microscopic scale, we
analyze two sets of atomic models of amorphous
Pds,;Ni;, P, one for the as-quenched state and one for a
relaxed state.

The changes in the disordered structure during
structural relaxation can be studied by diffraction experi-
ments. The most extensive study of this type has been
performed by Schaal, Lamparter, and Steeb,!! applying
isotopic substitution in neutron diffraction to amorphous
Pds,;Ni;,P¢ in the as-quenched state and after annealing
treatments. These data form a useful starting point for a
study on the relation between structure and atomic mo-
bility, since one of the annealing treatments that was ap-
plied (2 h at 570 K) reduces the atomic mobility by a fac-
tor of 25. This can be derived from diffusivity data for
Au in amorphous Pd NiP,,,° under the assumption
that the composition difference and the type of diffusor
have no strong influence. More generally, structural-
relaxation studies on mobility related properties in a large
array of different metallic glasses have shown great simi-
larities. It can therefore be assumed that the present
analysis is not pertinent to just Pds,Ni;,P,¢, but expresses
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the general characteristics of metallic glasses.

Pusztai, Sietsma, and Thijsse12 have derived atomic
models of the atomic structure of Pds,Ni;,P,¢ from
Schaal’s diffraction data by means of the reverse Monte
Carlo technique.!®> The resulting atomic structure and
the changes therein induced by structural relaxation have
been described in two previous papers.'>!* Although it
was found that the atomic-volume distributions, especial-
ly for Pd atoms, respond to structural relaxation in a way
that is consistent with the free-volume theory, no atten-
tion was paid to the identity and occurrence of defects.
In the present paper we will study the characteristics of
the interatomic space, primarily in search of a realistic
picture of defects. With this goal in mind, interatomic
voids are identified and analyzed in terms of the number
of atoms surrounding them, their volume, and their
shape. The relation with the atomic mobility in metallic
glasses is discussed.

II. THE STRUCTURE OF INTERATOMIC SPACE

Eight of the 4096-atom models presented in Ref. 14
were used in the present study on amorphous
Pd;,Ni3,P4: four for the as-quenched state and four for
the state after annealing for 2 h at 570 K. Each set of
four models has been obtained by application of the re-
verse Monte Carlo (RMC) simulation technique to the ex-
perimental reduced radial distribution function G (r), the
structure factor S (Q), the pair-correlation function g (7),
and the renormalized reduced radial distribution function
[(r)=G(r)/{|G(r)|), where { --- ) denotes averaging
over the  range.!” For both the as-quenched and the re-
laxed state a density of 75 atoms/nm? has been used, re-
sulting in an edge length of 3.794 nm for the cubic simu-
lation box. The effect of structural relaxation on the
atomic structure is exemplified in Fig. 1, giving the par-
tial reduced radial distribution function Gpgpy(7). For
comparison, a random packing of 4096 hard Pd, Ni, and
P spheres (RPHS), having the same density as the models
for the metallic glass, is also included in this study. The
RPHS model has been constructed using the same set of
smallest allowed interatomic distances as the one used in
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FIG. 1. Pd-Pd partial reduced radial distribution functions
G'pgpq(r) for the atomic models of amorphous Pds,;Ni;,Ps. Re-
sults for the as-quenched state and the 570 K state are obtained
by the RMC simulation on G(r). RPHS denotes a random
packing model of hard spheres.
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the RMC simulations.!? Its Gpypy(7) is also shown in
Fig. 1.

The definition of interatomic voids that is adopted in
this paper has been recently proposed by Voloshin and
Naberukin.!® In each atomic model a Voronoi tesselation
is constructed. In order to account for the difference in
atomic radii, the radical-plane method'” is applied, using
atomic radii of 0.140 nm for Pd, 0.126 nm for Ni, and
0.090 nm for P.!> The Voronoi tesselation is the starting
point for the characterization of interatomic voids. To
each vertex of the Voronoi network the largest possible
sphere is assigned that can be fit in at that position
without overlapping any of the neighboring atoms.!® 18
These vertex spheres represent the open space inside all
tetrahedral groups of four atoms (Delauney tetrahed-
rons). The interconnection of the vertex spheres is an im-
portant characteristic of the interatomic space. In analo-
gy with Ref. 16, vertex spheres are defined as being con-
nected, and thereby forming a ““void,” if the separation of
their centers is less than the sum of their radii. In other
words: two vertices are part of the same void, if they
touch or overlap, i.e.,

lt,—r;| S(1—f)R,+R;), (1)

with r;,1; the position vectors of the vertices i and j, and
R;,R; the radii of the spheres assigned to them. In this
work, the overlap factor f is taken as zero, which means
that spheres that merely touch belong to the same void.
The choice f =0 is somewhat arbitrary, but is consistent
with the idea that, if one would remove an atom, the re-
sulting void should include both the volume of this atom
and the voids adjacent to it. As a test, the procedure was
applied to molecular-dynamics fcc crystals containing
N =1372 atoms. It correctly yielded 2N tetrahedral
voids and N octahedral voids. Temperature vibrations
caused incidental splitting of some of the octahedral
voids, which indicates that f =0 is not to small.

This definition of voids does not include all the space
between the atoms. About 20% of the total volume is
unaccounted for. More refined constructions are possi-
ble, such as centering spheres away from the vertices, or
iteratively adding increasingly smaller spheres (e.g., Ref.
19). Nevertheless, the present method is believed to give
a useful schematization of the interatomic space, and to
provide a sufficiently realistic local measure of the avail-
able translational freedom of the atoms.

Each void can be characterized by two numbers: N,,
which is the number of atoms surrounding the void, and
N,, the number of vertices that make up the void. A sim-
ple example (N,=5,N,=2) is given in Fig. 2. In addi-
tion to these numbers we will also consider the volumes
and shapes of the voids. Since the problem to determine
analytically the total volume of an arbitrary number of
spheres overlapping in an arbitrary way is quite complex,
the void volumes are approximated by subdividing the
simulation box into cubes of edge length 0.0076 nm
(volume 0.44 X 10~ % nm?), and counting how many cubes
each void contains. In this calculation, the uncertainty in
the void volumes v is determined by the number of cubes
that are only partly inside the void. The present cubes



3250 JILT SIETSMA AND BAREND J. THIJSSE 52

FIG. 2. Example of a void consisting of two vertex spheres
(N, =2, the small spheres), surrounded by five atoms (N, =S5,
the larger spheres). The atoms are shown at 40% of their size.

lead to a relative uncertainty of about 0.009 for small
voids, with v =~0.3X1073 nm?, and of about 0.002 for
large voids, having v ~20X 1073 nm®. These uncertain-
ties are considerably smaller than the bin sizes used for
the volume distributions, and hence can be ignored.

The shape of a void is characterized by a sphericity pa-
rameter ¢, defined as the ratio of the volume of the void
and the volume of its circumscribing sphere. For a per-
fectly spherical void ¢ has the value 1, for pancake or ci-
gar shapes ¢ assumes smaller values. For instance, for
three identical, touching spheres in a triangle ¢=0.375,
for four spheres in a tetrahedron ¢=0.5. For a straight

row of n touching spheres ¢ =n ~2.

III. RESULTS

Numerical results of the analysis of the interatomic
space are given in Table I. It is seen that all numbers fol-
low a monotonous trend in the sequence RPHS-AQ-570
K. This clearly shows that the annealing treatment has
enhanced the degree of ordering in the glass. In all cases
the difference between RPHS and as-quenched (AQ) is
larger than the difference between AQ and 570 K. The
enhanced order in the atomic structure after structural
relaxation is also visible in Fig. 1.

The structure of the 570 K state differs from the as-
quenched structure in a lower number of vertices (Table
I). Surprisingly, the number of voids increases slightly
(10%) during structural relaxation, but their cumulative
volume decreases from about 12.3% of the total
simulation-box volume to 11.5%. Both the number and
the volume of the large voids, called “holes” (these are

TABLE I. Results of the analysis of interatomic space in nine atomic models of amorphous
Pds,Ni3,Pi6. RPHS, random packing of hard spheres; AQ, four RMC models for the as-quenched state;
570 K, four RMC models for the annealed state. The last column gives the function that was used in
the RMC procedure to obtain the model. The parameter N, denotes the number of atoms surrounding

a void; holes are voids with N, = 10.

RPHS AQ 570 K RMC fit function
Number of atoms 4096 4096 4096

Number of vertices 25079 24746 G(r)
25098 24744 S(Q)
25090 24786 '(r)
25074 24721 g(r)

25884 25085 24749 four-model average
Number of voids 10 863 11997 G(r)
11055 12075 S(Q)
10728 11723 '(r)
10921 12157 g(r)

7153 10892 11988 four-model average
Volume fraction 0.1227 0.1144 G(r)
of the voids 0.1220 0.1147 S(Q)
0.1232 0.1157 L(r)
0.1222 0.1140 g(r)

0.1482 0.1225 0.1147 four-model average
Number of holes 354 232 G(r)
358 219 S(Q)
344 253 '(r)
351 221 g(r)

623 351 231 four-model average
Total hole volume 2113 1135 G(r)
(1073 nm?) 2090 1064 S(Q)
2024 1226 I'(r)
2074 1063 g(r)

4793 2075 1122 four-model average
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voids with N, = 10, a choice that will be explained below)
decrease considerably during structural relaxation.

The characterization of the voids by the number of
atoms N, and the number of vertices N, leads to the dis-
tributions of Fig. 3. This figure gives the number of oc-
currences of voids, cumulated over the four models, as a
function of N,, subdivided for different values of N,. For
both the as-quenched state and the 570 K state a particu-
lar value of N, is seen to be dominant for the voids with
N, =8. In Fig. 4, showing the differences between the
as-quenched and the 570 K state, this dominance is seen
to become stronger upon structural relaxation. Also, for
N, =9 especially the (N,=9) voids increase in number.
An important feature in Fig. 4 is the zero crossing be-
tween N, =9 and N,=10. Voids with N, =9 increase in
number upon structural relaxation, voids with N, =10
decrease in number. Figure 4 provides a strong clue to
the type of change that voids undergo during structural
relaxation: large voids break up into smaller ones, and
small voids show a stronger preference for a distinct
shape, i.e., a particular value for N,. The net effect is
that the total number of voids increases, but their volume
(both the average volume per void and the total volume)
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FIG. 3. Cumulative number of voids in four models of as
quenched Pds;Ni;,P¢ (upper frame) and annealed Pds,;Ni;,P,¢
(lower frame) as a function of N,, the number of atoms sur-
rounding a void. Different shadings give the contribution of
voids built up by different numbers of vertex spheres N, .
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FIG. 4. Differences in numbers of voids between annealed
and as-quenched Pds,;Ni;P;s. A positive number means a
greater number in the annealed state.

decreases. The persistent presence of the (N, <9) voids
indicates that these voids should be seen as intrinsic voids,
i.e., as voids that are intrinsically present in a dense pack-
ing of spheres. They are in this respect comparable to
tetrahedral and octahedral voids in fcc crystals. This dis-
tinction between voids with N, <9 and voids with
N, =10 is the reason that we use different terms for them.
In view of the difference in character and in behavior be-
tween intrinsic voids and holes, we will treat them sepa-
rately in the remainder of this paper.

Intrinsic voids. Arbitrarily chosen examples of the six
preferential types of intrinsic voids are shown in Fig. 5.
The top row gives the three most abundant intrinsic
voids: the tetrahedral void (N,=4,N,=1), two
tetrahedral voids merged into one (N,=5,N,=2), and
the octahedral void (N,=6,N,=4). Figure 5 bears
resemblance to Bernal’s set of five canonical holes,?° but
it is not the same. A straightforward explanation of the
differences is difficult, since Bernal only considered a
monoatomic system and used the shape of the network of
surrounding atoms as a classification criterion, rather
than the number of surrounding atoms.

Figure 6 shows the volume distributions of the intrinsic
voids for the as-quenched state and the 570 K state. It is
found that they are not significantly different. This sup-
ports the interpretation that these small voids are “intrin-
sic” to the metallic glass structure, whatever its state of
ordering. A somewhat different volume distribution is
found for the RPHS model, notably in the range
v <0.3X 1072 nm?. Since all the voids in this range are
single or double tetrahedral voids, and 80% of these
voids fall within this volume range, Fig. 6 shows that a
distinct difference exists between the tetrahedral packing
in a completely random structure and in structures hav-
ing the short-range ordering of metallic glasses.

The total amount of undefined space increases from
19.2% in the as-quenched state to 19.9% in the 570 K
state. Although no further specification can be made, the
stable volume distributions of intrinsic voids indicate that
no important changes in the character of the undefined
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space should be expected. The slight increase upon
structural relaxation is trivially related to the increased
number of voids.

Holes. A clear effect of structural relaxation is visible
in the volume distributions of the holes in as-quenched
and annealed Pds,Ni;,P ¢ (Fig. 7). In addition to the de-
crease in the total number of holes (Table I), the volume
distributions show a relatively strong decrease in the frac-
tion of larger holes. The average volume of a hole
changes from 5.9 X 1073 nm?® for the as-quenched models
to 4.9 1073 nm? for the 570 K models (7.7X 1073 nm?
for RPHS). Since the atomic volume is about 15X 1073
nm?, the average hole is far too small to host a mobile
atom like a vacancy does in crystalline structures. The
total volume occupied by the holes amounts to 3.8% in
the as-quenched state and 2.1% in the annealed state
(8.8% for RPHS).

The sphericity distributions for the holes are given in
Fig. 8 and the correlation between sphericity and volume
in Fig. 9. The results show that ¢ assumes rather small
values, indicating strongly nonspherical shapes for the
holes. In particular, the sphericity of the holes that have
a volume on the order of an atomic volume never exceeds
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FIG. 6. Volume distributions for the intrinsic voids.
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FIG. 5. The six types of preferred intrinsic
voids. The large spheres represent atoms, the
tiny spheres vertices.

0.1. This indicates the complete absence of spherical, va-
cancylike defects in the amorphous structure. Since there
is no significant effect of structural relaxation on the
sphericity distribution, the probability of a void breaking
up during structural relaxation does not seem to be relat-
ed to its shape.

IV. DISCUSSION

The effect of structural relaxation on the volume distri-
bution of the holes (Fig. 7) is the direct cause of the de-
crease in atomic mobility that has been experimentally
observed (increasing viscosity,>> decreasing diffusivity®®).
In this section the connection between atomic mobility
and the occurrence of holes will be further discussed.
One should bear in mind that the present study can only
resolve differences in static structures. It can therefore at
best merely give indications on the nature of the process-
es of atomic mobility. Besides, no information can be
gained on the temperature dependence of the defect
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FIG. 7. Volume distributions for the holes. The symbols
denote the individual models. The solid lines are the exponen-
tial fits to the tails of the distributions. The dotted line is drawn
at v, =v,.
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FIG. 8. Sphericity distributions for the holes.

structure, or the metastable equilibrium state, to which
the diffusivity and the viscosity react differently.’
Molecular-dynamics studies focused on the behavior of
the holes in metallic glasses will be undertaken to investi-
gate these issues further. The present results do never-
theless contain revealing information, and give rise to the
following interpretation.

(i) A number of experimental studies on diffusion in
metallic glasses have shown that collective motions of
atoms are more likely to take place than single-atom
jumps. The isotope effect on the diffusivity indicates that
at least ten atoms are involved in a diffusion event,?! and
on the basis of experimental structural-relaxation data
Van den Beukel?? estimates some 30 atoms to be involved
in diffusion events. Expressed in terms of the results of
the present work, it is plausible to assume that a collec-
tive motion of a group of atoms will only be possible if
they are all adjacent to the same hole. In general, the
mobility of a group of atoms will be determined by the
void they share. Intrinsic voids do not play a role in the
atomic mobility processes for two reasons. First, while
during the heat treatment the atomic mobility decreases,
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FIG. 9. Correlation between hole volume and sphericity.
Each symbol represents a particular hole.
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the abundance of intrinsic voids increases. Secondly, the
number of atoms around intrinsic voids (on the order of 5
or 6) is considerably less than the 10-30 atoms men-
tioned above. Atomic mobility is therefore likely to take
place at holes. A further experimental indication that
holes are related to diffusion is found in studies on the
pressure effect on the diffusivity. For the diffusivity of
Au in amorphous Pd,,Ni,P,, (Ref. 23) an activation
volume of (11+4)X 10~ 3 nm?3 is reported,?* which is very
well within the range of the hole-volume distribution in
amorphous Pds,Ni3, P (Fig. 7).

Diffusion events can be imagined to take place at a
hole when strong thermal fluctuations cause a significant
displacement of the atoms. If no other hole is present
near the atoms in the next shell (i.e., the atoms surround-
ing the hole atoms), these atoms will not be able to follow
the fluctuations, and push the hole atoms more or less
back to their original positions. In this process the shape
of the group of atoms changes only temporarily, but the
atoms might swap places when they return to their posi-
tions.

(ii) Detailed studies on structural relaxation in
Pd ,Ni P, by Van den Beukel and co-workers”!® have
led to the conclusion that viscous flow and diffusion are
governed by different defects. In fact, they found that
concentration ¢, of defects for diffusion is related to the
concentration ¢, of defects for viscous flow by ¢, =c}’%.
In case of a random distribution of defects over the struc-
ture, this relation implies that a diffusion defect is a single
entity and that viscous flow can occur when two of these
defects interact. This can be understood by extending the
arguments given above: when, at the time of a strong
thermal fluctuation around a diffusion defect, the atoms
in the neighboring shell do have another hole at their
disposition, the fluctuation in atomic positions can be ac-
commodated, and the change in shape results in local
shear. This leads to the conclusion that for a viscous-
flow event two holes are needed.

(iii) During structural relaxation, the reduction of the
defect concentration gives rise to a reduction of the atom-
ic mobility. From the experimentally observed linear in-
crease of the viscosity with time> one can deduce that the
reduction rate of the defect concentration (—dc, /dt) is
proportional to ¢j. This indicates that the mobility need-
ed to break up holes is supplied only if three holes are in-
teracting. Apparently, the shear that then takes place
makes it possible for the atoms to change their local or-
der in such a way that the holes break up in intrinsic
voids. It is, however, not clear why at least three holes
are necessary for this process.

Finally, the present interpretation is used to propose an
alternative approach to the concept “free volume.” Con-
trary to the present work, the free-volume theory®’ takes
the atomic-volume distribution as a starting point.'*
Atoms with a Voronoi-cell volume V larger than a cer-
tain value ¥V, are defined to have an amount of free
volume equal to Vy=V —V,.. The critical value V,
represents the Voronoi volume of an atom in the densest
state of the glass. According to Ref. 14, ¥, =17.6X 1073
nm? for Pd atoms in Pds,Ni;,P;s. The assumption that
this free volume is freely redistributed over the atoms in
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the structure (i.e., without energy barriers) leads to an ex-
ponential  distribution  P(V;)=(1/{¥V,))exp(—V,
/{V;)), with (V) the average free volume per atom.
One could, however, question the “free” character of free
volume, since diffusion and viscous flow, as well as
structural relaxation, are processes that involve an activa-
tion energy. Therefore, at least in those cases where the
redistribution of free volume leads to diffusion, viscous
flow, or annihilation of defects, it is no longer barrier
free. Nevertheless, the exponentially decreasing tail of
the volume distribution is important for the description
of the atomic mobility. Defects are defined as those
atoms that have V,>V*, with V* a certain minimum
volume for a defect. The defect concentration is thus
given by c;=exp(—1/x), with x=(V,)/V* the re-
duced average free volume. The description of experi-
mental observations of structural relaxation by means of
the free-volume theory makes no direct use of the
definition of free volume in terms of the atomic-cell
volume. It merely uses the quantity x to describe con-
sistently the changes in widely different physical proper-
ties as resistivity (Ap « Ax), specific heat (¢, <dx/dT),
and diffusivity [D «<c;=exp(—1/x)]. This is successful
primarily because free volume is defined as an excess
volume, not because free volume is defined in terms of the
atomic-cell volume.

In Ref. 14 the atomic-cell definition of free volume has
been used for the present models of Pds,Ni;,P,, which
yielded (¥;)=0.58 X107 nm® for the Pd atoms in the
as-quenched state, decreasing to (¥,)=0.31X10"> nm?
in the annealed state. Although the relative reduction of
( Vf) is in agreement with the reduction from x =0.082
to x =0.065 (c;=5X107® to 2X1077) that was derived
from diffusivity measurements,” two problems remain.
First, the atomic-cell concept of free volume strongly
suggests that a single-atom mechanism is the principle
carrier of atomic mobility. Secondly, in this interpreta-
tion defect concentrations turn out to be extremely low:
if ¥* is supposed to be equal to the activation volume for
Au diffusion [11X 1073 nm? (Ref. 23)], the defect concen-
trations for Au diffusion result to be 5.8 X 10™° per atom
in the as-quenched state, and 3.9 X 107 !¢ in the annealed
state. Not only are these values unphysically low, the
reduction is also far larger than the experimentally ob-
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served reduction in diffusivity by a factor of 25.

Here we propose an interpretation in which the con-
centration of holes is the determining factor for the atom-
ic mobility, rather than the Voronoi-cell volume of single
atoms. In order to establish a quantitative relation with
atomic mobility we define free volume in terms of the
hole volume. The distribution of the hole volumes v, in
the as-quenched and the 570 K state has been shown in
Fig. 7. If the free volume is defined by v,=v, —v,, with
v, =4X107? nm? an exponential tail is found for the
free-volume distributions. The critical volume v, ac-
counts for the fact that small voids having N, > 10 may
occur even in the densest state of the glass. On the one
hand, the exponential decay is identical to the free-
volume distribution in the original theory. Therefore, no
modifications have to be made to the expressions for x
and c, (apart from substituting (v, ) for (¥, ) and v, for
V.), and this alternative free volume works equally well
in the description of structural-relaxation effects on the
different physical properties.>® On the other hand, the
physical relevance of the present definition of free volume
is much clearer. The hole volume is truly an excess
volume, and its role in processes of collective atomic mo-
bility can well be envisaged.

The high-volume tail of the hole-volume distributions
can be represented by the average free volume per hole,
being 2.2X 1073 nm® for the as-quenched state, and
1.4X107% nm? for the 570 K state. In the as-quenched
state 75% of the holes is large enough to contribute to
the free volume, in the 570 K state, 67%. Again using
the activation volume as the smallest amount of free
volume qualifying a defect, the holes with a volume
v, > 15X 1072 nm? can act as a vehicle for the diffusion of
Au. In this way, the resulting defect concentrations are
4.3X10"* per atom in the as-quenched state, and
1.5X 1077 in the annealed state. Not only are these
values more reasonable than the ones obtained with the
classical free-volume definition, but also the observed
reduction of the diffusivity is very well reproduced.

Finally, Table II gives a number of features concerning
the description of diffusion in metallic glasses by means
of the free-volume theory. This table summarizes the
main differences between the classical definition of free
volume and the one presented in this paper.

TABLE II. Summary of differences between the classical free-volume theory (Ref. 6) and the present
work. Numerical results are given for amorphous Pds,Ni;,P,¢ in the as-quenched state and after a heat

treatment for 2 h at 570 K.

Free-volume theory

This work

Volume entities

Centered at

Critical volume

Annihilation mechanism

Diffusion process

Mean free volume, as quenched
Mean free volume, annealed
Defect concentration, as quenched
Defect concentration, annealed

Atomic-cell volume V
Atoms
V,=18X1073 nm?

Single-atom?
0.58X107° nm?
0.31X1073 nm?

5.8x107°
3.9X10716

Hole volume v,
Open space
v, =4X1073 nm3
Holes break up into smaller voids
Ten or more atoms
2.2X1073 nm?
1.4X1073 nm?
4.3X107*
1.5X1073
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V. CONCLUSIONS

The change in the degree of ordering of the atomic
structure, induced by structural relaxation, is consistently
reflected in the distributions of interatomic voids in the
structure. As in crystalline atomic packings, intrinsic
voids can be identified also in metallic-glass structures.
These are voids that are surrounded by nine or less
atoms. During structural relaxation, larger voids
(““holes”), surrounded by ten or more atoms, break up
into several intrinsic voids. This causes a decrease in the
concentration of holes, and an increase in the concentra-
tion of intrinsic voids.

Holes play a determining role in atomic-transport pro-
cesses. The concept of free volume can be naturally de-
scribed in terms of the hole volumes, which has arguably
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more physical reality than the original definition in terms
of atomic-cell volumes. This also leads to a more con-
sistent picture with respect to the experimental evidence
on the diffusion process in metallic glasses.
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FIG. 2. Example of a void consisting of two vertex spheres
(N, =2, the small spheres), surrounded by five atoms (N, =5,
the larger spheres). The atoms are shown at 40% of their size.



