
Single-molecule protein
sequencing using

biological nanopores.

Konstantinos Andreadis
(4999967)

End Project Thesis of the Bachelor
of Science (BSC) in Applied Physics
Research group: Cees Dekker Lab
Department: Bionanoscience
Faculty of Applied Sciences (TNW)
Technical University of Delft

Date of Submission: Delft, 23. 06. 2022
To be defended publicly on the 7th of July at 14:00

Thesis supervisor: Cees Dekker
Daily supervisors: Ian Nova and Justas Ritmejeris
Special thanks to: Henry Brinkerhoff



Abstract

The last few years have shown promising developments in single-molecule protein sequencing using a biolog-
ical nanopore. Using only one membrane pore in a salt buffer, an applied potential creates a measurable ion
current through the pore’s constriction. If a small molecule passes through the pore, this disruption is visible
as a characteristic current pattern based on the molecular structure of the molecule. Recent developments by
Henry in 2021 show that single amino acid substitution in short proteins can be detected using this method.
Unfortunately, due to the complexity of the reading, de novo sequencing does not yet apply to these single-
molecule reads. Nevertheless, detecting different variants of a protein is possible. In current work this method
is being developed to detect phosphorylation sites on a peptide of biological significance. For the latter, an
immunopeptide called IRS2 is chosen to be once and twice phosphorylated. This phosphorylation causes
the peptide to be a cancer biomarker. If this low-cost method of post-translational modification detection is
successful, it would be an improvement compared to the standard mass spectrometry sequencing approach.

In this BEP research, problems faced before and after sequencing the IRS2 peptide are approached from
two different perspectives. The first aim is to adapt the data acquisition software to automate the workflow.
The second aim is to adapt and model the Freely Jointed Chain (FJC) Model to a heterogeneously charged
peptide. Both aims are defined to be applicable to other peptides as well.

For the first aim, a LabVIEW plugin was developed using insights from data processing in MATLAB. This
tool detects the state of the nanopore reading, responds using voltage control in a closed feedback loop and
frequently allows for calibration checks. All features were tested with training sequences from real data and
show promising results. However, more testing in the lab is required to determine its accuracy compared to a
human operator.

For the second aim, the FJC model was analytically adapted to the IRS2 peptide inside the nanopore’s elec-
tric field. The energetically most favourable configuration was then sought with a Metropolis Algorithm. As a
result, the electrostatic potential was calculated and implemented into the Metropolis Algorithm. Despite the
simplification of this method, it is still expandable in a modular way to incorporate additional potential such
as charge-charge interactions or springs to simulate backbone flexibility. Finally, improving this model further
would eventually lead to the relative positions of all chain elements inside the pore to develop an understand-
ing of the (phosphorylated) IRS2 readings.
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1
Introduction

In Biomedicine, accurately determining the sequence of proteins is vital in improving disease diagnosis, treat-
ment, and prevention. While DNA sequencing is widely available and efficient, protein sequencing still is
mainly dependent on inconvenient methods with complex instrumentation. These include mass spectrome-
try, which directly measures short peptides. Even if mass spectrometry is accurate for small peptide readings,
it requires expensive instrumentation and large copy numbers. Furthermore, while DNA or RNA sequencing
can determine a protein’s coded sequence, mutations after biosynthesis or post-translational modifications
cannot be detected using only DNA sequencing techniques. Therefore, nanopore sequencing has emerged as
a new form of sequencing single molecules and is currently being adapted to protein reads.

At first, nanopore sequencing was used for reading DNA sequences (Laszlo, 2014 [1] and Nova, 2017 [2])
by the following principle: A membrane in a salt buffer contains a single pore protein. After applying a volt-
age, ions flowing through the pore produce a measurable current. If single-stranded DNA (ssDNA) is added
and passes through the nanopore, the measured ion-current is reduced. These characteristic changes in ion
current are then related to the sequence of the DNA. However, as free ssDNA will move through the pore too
quickly to resolve, a motor enzyme is added to "walk" on the probe. As DNA is negatively charged, it automat-
ically "threads" into the pore due to the electric force "pulling" it downwards. As soon as the motor enzyme
attached to the end of the DNA reaches the pore protein, it starts to translocate the DNA step-wise, pulling the
DNA up out through the pore and allowing the bases to be sequenced as they proceed sequentially. With each
enzyme step, multiple DNA bases simultaneously influence the measured current. The latest methods even
use a hectometre map (with an average of 6 bases at a time) as a reference. With the steps described above,
DNA sequencing is now possible and commercially available. A more detailed explanation of the sequenc-
ing process will follow in chapter 2. Next to DNA sequencing, protein sequencing using the same biological
nanopore and process is now in development. As it does not need to be negatively charged, it requires a differ-
ent approach and complex resolving methods to determine its sequence.

In order to assess the DNA methods potential for sequencing proteins, it is essential to distinguish between
three types of sequencing: "De Novo," "Referencing," and "Fingerprinting." De Novo relates to reading a se-
quence without prior knowledge, the ’ideal’ case. Referencing detects changes from known sequences, e.g.,
mutations. Last, Fingerprinting aims to identify a protein from a mixture. In the case of the DNA nanopore
sequencing method, de novo sequencing is now possible and commercially available. However, its complexity
(44 bases) is far below that of proteins (208 amino acid combinations with amino acids being half the size of
bases). Therefore, de novo is not yet possible for protein sequencing using nanopores. Nevertheless, referenc-
ing is possible for short proteins. Based on the research of Henry Brinkerhoff et al. in 2021 [3] (and Manrao,
2012 [4]), a DNA and peptide conjugate can be used to detect single amino acid substitutions in short pro-
teins. For this research, it is applied to the imunopeptide IRS2, a biomarker for cancer if its S amino acid is
phosphorylated once (pIRS2) or twice (p2IRS2) (Zarling, 2014 [5]). If this method is successful, it will present
an opportunity for early cancer diagnosis.

However, challenges faced at the moment are not limited to the development of the method: As single-
molecule sequencing is very sensitive and prone to error, the experiment runs often require the dedication of
a lab worker. This work includes continuously responding to "bad" signals with voltage control and reading
off characteristic current values. Automated workflow is therefore critical to efficiency as meaningful data
acquisition requires multiple traces without any "errors".
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The post-experimental data analysis provides several difficulties as well. Even though a nanopore has never
read this immunopeptide before, it depicts an apparent phosphorylation pattern difference. However, its bio-
physical interpretation is rather difficult due to the complexity of such small-scale systems. In addition, one
of the most significant differences with the known DNA nanopore sequencing method is the charge. As DNA
is poly-negatively charged, a protein with negative, neutral or positive charge is an unprecedented molecule
to be read. As all (electric) forces inside the pore depend on the charge profile, it essentially creates a new
field of research. While Molecular Dynamics Simulations (MD) could help gain insight into interactions be-
tween parts of the system, a more qualitative understanding of the heterogeneity of the probe’s charge in this
nanopore confinement is necessary. The latter could aid in explaining the readings obtained by the lab or
create the building blocks for these types of complex biophysics simulations.

This BEP research approached the two problems from two different perspectives. First, the acquisition
software (LabVIEW) was adapted to automate the workflow of the measuring process in the lab. Specifically,
based on MATLAB classification, a set of rules for system state detection and voltage control were added to
the existing LabVIEW acquisition code, enabling automated feedback control without user input. In addition,
calibration features were added for ease of use. For the second problem, a model known as the Freely Jointed
Chain Model (FJC) was adapted to the heterogeneously charged probe inside the nanopore’s electric field. In
order to solve for the most favourable state in a given setting, it was adapted analytically and optimised with
the Metropolis Algorithm. Based on this approach, an explanation of the phosphorylated peptide reading was
sought. To conclude, the research aims are stated as follows:

1. Adapting the data acquisition software to automate the workflow.

2. Adapting the Freely Jointed Chain Model to a heterogeneously charged probe in an electric field, con-
fined to a nanopore, and optimising it with a Metropolis Algorithm."
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2
Theory

This chapter explains the relevant theory to understand the approach taken. First, the peptide to be sequenced
is introduced, combined with a description of the full sequencing workflow. This includes an analysis of a typ-
ical reading process and its common problems. Finally, the FJC model is adapted analytically to the nanopore
sequencing setup and protein used.

2.1. Immunopeptides and phosphorylations: The IRS2 peptide
In this section, the significance of the immunopeptide IRS2 is explained. As developments by Henry in 2021
[3] showed that single amino acid substitution in short proteins can be detected using nanopore sequencing
with biological nanopores, an application of this principle is the immunopeptide IRS2. IRS2 is of biological
significance as its phosphorylation indicates a form of cancer, acting therefore as biomarker. This phosphory-
lation essentially refers to its S amino acid being phosphorylated once (pIRS2) or twice (p2IRS2) as explained
by Zarling in 2014 [5]. In this work, an IRS2 protein is therefore pre-ordered with Post-Translational Modifi-
cations (PTMs) at its S amino acid. These PTMs are of unprecedented value as they cannot be detected with
DNA sequencing methods.

2.2. Nanopore protein sequencing in the lab
2.2.1. Experimental setup
In this section, the experimental procedure for nanopore sequencing is described. After preparation, a KCl
buffer solution is added to the U-shaped tube (depicted in figure 2.1). Next, a voltage is applied, and the K+
kations and Cl- anions are attracted to their opposite charge side. Next, the lipid membrane is created and re-
arranged on the (-) side (seen right in figure 2.1) using air bubbles to form one homogeneous layer. Finally, the
MspA is added (marked green in figure 2.1). As it attaches automatically to the membrane, a pore is opened,
letting ions pass through. This "open state" current read by the ampere meter, based on experience, should
be approximately 200 pA (for a given temperature) for one single MspA and an applied voltage of 180 mV. In
order to remove the excess MspA, a buffer is added and extracted at the same time. As soon as one MspA is
"captured," the Helicase, ATP and Magnesium are added. The setup is now complete.

2.2.2. Peptide-oligo conjugate as solution for protein sequencing challenges
In this section, the challenges of protein vs. DNA sequencing are explained, followed by an explanation of all
capturing, reading etc. processes involved after a completed experimental setup.

One of the vast challenges facing protein sequencing using nanopores is their net charge. As DNA is neg-
atively charged (the backbone having -1 as charge), peptides have heterogeneous charge. The 20 amino acids
are positively, negatively, or neutrally charged. This presents a difficulty to the "threading" process, which
refers to the DNA’s negatively charged ’tail’ being drawn to the positive side of the membrane. Furthermore,
all known motor enzymes do not walk on (denatured) proteins and can therefore not ensure a slower stepping
rate. A peptide-oligo conjugate (POC) is used to avoid the latter. This combination of a known single-stranded
DNA (ssDNA) template, peptide, threading ssDNA, and click-attachment chemistry is shown below and in
figure A.5.
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Figure 2.1: Illustration of the experimental setup of nanopore sequencing. Marked in red, a lipid
membrane is applied on the negative side of a U-shaped buffer solution in a electric potential. The

MspA, marked in green, attaches to said membrane. As soon as only one MspA remains, the Helicase,
ATP and Magnesium are added. The setup is now complete. (Own figure created with Adobe

Illustrator.)

Template DNA + DBCO + azide + YLDSGIHSGAC + mal- threading DNA

2.2.3. MspA as biological nanopore and Hel308 as motor enzyme
Next, the Mycobacterium smegmatis porin A (MspA) is used as the biological nanopore (with its key character-
istics described in Laszlo, 2016 [6] and Crnkovic, 2021 [7]). In figure 2.2, it is shown inside the lipid membrane
(the top view (left) and enlarged cross-section view (right)). The two main areas of interest are the vestibule
and constriction. As particles can be "captured" inside the vestibule, the constriction defines the ion flow and
is essentially the "sensor" of the nanopore.

Figure 2.2: Illustration of a Mycobacterium smegmatis porin A
(MspA) inside a lipid membrane indicating its vestibule and

constriction areas. (Own figure created with Adobe Illustrator.)

Finally, the motor enzyme helicase (specifically: Hel308) is chosen due to its natural function of unwinding
double-stranded DNA. All three POC, MspA and Hel308 enable the "capture process".

2.2.4. Capture process of a peptide-oligo conjugate in a nanopore
First, a single current value is read from the ion current flow (figure 2.3 a). Next, the POC tail threads into the
pore (b) with the cholesterol binding directly to the membrane (not shown in figure), and the complementary
ssDNA is "peeled" off the template ssDNA (c). As soon as the helicase rests on the MspA, the POC is "captured."
The helicase now "walks" on the probe, reversing the translocation direction. (d). This complete process is
equivalent to a sudden drop in current.

2.2.5. Reading process of a peptide-oligo conjugate in a nanopore
Next, as shown in figure 2.4, the template ssDNA passes through the constriction at the start of the reading
process. After this, the template ssDNA is read (a), resembling a step-like current pattern. However, once
the linker passes through (b), it suddenly switches to the peptide reading (c) for unknown reasons. Finally, it
re-reads the second linker (d) because the helicase falls off the first linker. The latter is visible as a periodic
pattern.
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Figure 2.3: Illustration of the probe capturing process: First, a single current value is read from the ion current
flow (a). Next, the POC tail threads into the pore (b), and the complementary ssDNA is "peeled" off the template

ssDNA (c). As soon as the helicase rests on the MspA, the POC is "captured." The helicase now "walks" on the
probe, reversing the translocation direction. (d) This complete process is equivalent to a sudden drop in

current. (Own figure created with Adobe Illustrator.)

Figure 2.4: Illustration of the probe reading process: At first, the template ssDNA is read (a), resembling a
step-like current pattern. However, once the linker passes through (b), it suddenly switches to the peptide

reading (c) for unknown reasons. Finally, it re-reads the second linker (d) because the helicase falls off the first
linker. The latter is visible as a periodic pattern. (Own figure created with Adobe Illustrator.)
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2.3. LabVIEW automation: Problems during nanopore reads in the lab
A real capturing and reading process, however, is prone to various problems. First, the open state value is only
stable in theory. This value is defined by the ion current if the nanopore is unoccupied, therefore "open". As
single DNA strands pass through frequently, this current pattern is rather very noisy. Second, particles blocking
the constriction of the MspA "clog" the pore. As depicted in figure 2.5 (a), this corresponds to a drop to a value
with few/no steps. Hereafter, a typical reading is depicted with a sudden shift to a lower value. This process
is called "gating" (b) and is thought to be caused by the rear ends of the MspA "folding" inside. The last error
is already mentioned before: "re-reading" (c). This repeated process also hinders the nanopore in its further
reads, as it would normally continue on endlessly if the user in the lab does not intervene.

Figure 2.5: Illustration of potential errors encountered during nanopore reads. Particles blocking the
constriction of the MspA "clog" its pore (a), this corresponds to a drop to a value with few/no steps. Hereafter, a
typical reading is depicted with a sudden shift to a lower value. This process is called "gating" (b) and is caused

by the rear ends of the MspA "folding" inside. Finally, "re-reading" (c) refers to the figure 2.4 (d).
(Own figure created with Adobe Illustrator.)

With this, a collection of states is defined to describe the system during a read:

• Open State
• Event

– "Bad" event: Clog
– "Good" event:

⋄ Gating
⋄ Re-reading

A ’bad’ event is less favourable and should be avoided, whereas a ’good’ event represents a reading of the
POC as a whole during a typical data acquisition. In order to manage those events, the voltage can be flipped
(essentially "kicking" out the probe by repelling the DNA’s negative charge) or scaled (to "reset" the system by
lowering the voltage to a lower level).

In addition, two other types of calibration errors occur. First, an open state value drift is measured. This
increase over time is determined by the heating process of the equipment in the lab. With higher temperature
and therefore thermal fluctuations, a higher flux of ions through the pore’s constriction slowly increases said
value. Second, an intrinsic offset of the measurement system does always apply. This would for example
not allow for zero current if no voltage is applied. Both the increased open state and offset values should be
measured frequently to improve measurement.

Once traces are recorded in the lab, their interpretation still requires an improved model to describe the
POC inside this nanopore confinement. For example, figure 2.4 completely disregards the chain-like character
of the POC and its arrangement in space.
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2.4. Python adaptation and optimisation: The Freely Jointed Chain model
An existing model for polymers is adapted to the situation at hand: The Freely Jointed Chain model (FJC). It
is widely used for different types of polymers with a force applied at the end (Noakes, 2019 [8]). It describes
a chain of connected elements with their respective angles and distances to one other (see figure 2.6 (a)), as-
suming it cannot be stretched. It is fixed at one end (the helicase) and embedded in an electric field. However,
not just one force is applied at the polymer’s end. Instead, it is a heterogeneously charged polymer in which
each element responds differently to the potential at its position. Furthermore, each element is not equivalent
to one amino acid or base. It is instead a collection, as the persistence length between elements determines
the least amount of length not significantly affected by the curvature. In order to model the boundary condi-
tions of the nanopore confinement, figure 2.6 (b) depicts the 3D areas "prohibited" for chain elements to pass
through. The membrane is modelled as a flat surface at z = 0 with pore radius R, the MspA as a cone shifted
and cut at both sides and the helicase as a flat surface on top of the MspA.

Figure 2.6: Illustration of the Freely Jointed Chain Model (a) and the simplified
boundary conditions for the analytical approach taken (b).

(Own figure created with Adobe Illustrator.)

With this, the following variables are defined:

• i = chain element index
• n = total chain element count
• θ,φ = list of chain element relative angles with θ ∈ [0,π], φ ∈ [0,2π]
• R = constriction radius
• η = MspA cone angle

The boundary condition forcing the chain to "avoid" certain regions is described by adding a potential
barrier V = ∞ or indicator function 1= 0 if

• zi <
√

x2
i +y2

i

tan(η) for z ∈ [0, zhel ]("avoid MspA")

• zi = 0 →
√

x2
i + y2

i >R ("stay inside constriction and avoid membrane")

•
(
x1, y1, z1

)= (0,0, zhel ) ("start at helicase")

• zn < 0 ("end of the chain should be in trans area (below membrane) and not above (cis)")

As the FJC model is now adapted mathematically, its physical behaviour must be re-defined for this hetero-
geneously charged polymer and electric field. From Statistical Physics, a useful concept is the "partition func-
tion" denoted by Z. As a chain can arrange itself in multiple ways in 3D, an ensemble of states/configurations
must be analysed. For example, the derive the probability of obtaining one state is Pst ate = 1

Z e−β Est ate with
β= 1/(kB T ). However, i requires all states’ Boltzmann distributions to be summed to form the partition func-
tion shown in equation 2.1. It is important to note that the state chosen here is a collection of relative angles
and a fixed starting point in xyz.

Z = ∑
st ates

e−β Est ates (2.1)

7



Next, the electrostatic energy of one state is defined with V (r⃗i ) being the electric potential at location r⃗i :

Est ate =
∑

i
qi V (r⃗i ) (2.2)

However, the electric potential must first be obtained by solving the Poisson equation for the given bound-
ary conditions. Using Est ate and taking all spherical surface elements of the angles into account according to
simonensemble.github [9], the final partition function is now as follows:

Z=∏
i
1(i )

∫ 2π

0

∫ π

0
e−βUi sin(θi )dθi dφi (2.3)

with 1(i) chosen as:

1(i ) =
 0 :

(
zi <

√
x2

i +y2
i −R

tanη ∧ zi ∈ [0, zhel ]
)∨ (

zi = 0∧
√

x2
i + y2

i > R
)

1 : el se
(2.4)

The last step is the calculation of the Helmholtz Free Energy:

F =− 1

β
ln(Z ) =− 1

β
ln

(∏
i

∫ 2π

0

∫ π

0
e−β(Ui+g (i )) sin(θi )dθi dφi

)
(2.5)

If Est ate and F are minimised, the system would theoretically be in the most energetically favourable state.
However, solving this problem only analytically is not possible. Therefore, a Metropolis-Hastings algorithm is
implemented. It aims to derive the target distribution of all states by using its proportionality to the partition
function. Using one initial state, it chooses whether to add a new random state perturbation based on statistic
transition probabilities using the aforementioned Z. Due to its proximity to the partition function, it stays rel-
atively close to the energetically most favourable states. In theory, if the algorithm runs for an infinite amount
of iterations, it should converge to the "actual" configuration space. A more detailed algorithm is shown later
(1).
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3
Experimental Procedure

This chapter explains the experimental procedure for three major steps: Data processing with MATLAB, au-
tomation in LabVIEW and model adaptations in Python.

3.1. MATLAB Data Processing: Classification of reading events
The first objective of this thesis’s research was to develop an automated data acquisition controller that could
take the role of a technician’s real-time operations during an experiment. A technician actively manages the
applied voltage during an experiment based on the observed ion-current patterns. Prerecorded data was anal-
ysed to establish the categories of recorder signals and related user input for these types of signals in order to
define the rules for this automated controller.

This chapter describes the data processing done in MATLAB to obtain insight for automation in LabVIEW.
The goal was to classify and visualise categories of ’bad’ and ’good’ events. The dataset analysed in this re-
search was the unphosphorylated immunopeptide (IRS2) reading. Recorded in LabVIEW, it contained all mea-
sured or controlled variables at a high sampling rate (50 kHz). The "event classifier" script, previously written
in MATLAB, then lets the user visually classify pre-processed traces of events using two tags: The "category"
and the "quality" of the event shown. In this research, six categories were visually defined based on the dataset
provided and documented numerically. The categories chosen are listed as follows:

1. moderate (< 10 as standard deviation, with few exceptions) or noisy clog without steps
2. moderate clog with single or few steps
3. moderate or noisy clog with multiple steps
4. moderate or noisy clog without steps intervened
5. moderate clog with few spikes
6. gating

An example of a category 1 event is shown in figure 3.1 (a), depicting a "clog" and category 6 event of
"gating" during reading (b). As qualities, three degrees of a ’success’ of a reading were defined:

1. A repeating pattern is visible
2. A template ssDNA reading is visible
3. A template ssDNA and peptide reading are visible

The third quality, with an example trace shown in figure 3.2, was the "target" trace. It can be compared to
the predicted sequence of the template shown in figure 3.3, where a characteristic end-of-reading collection
of two peaks is visible. This type of reading was to be aimed for while recording in the lab. In order to gain
insights from both categories and qualities, a MATLAB LiveScript was written. This script (Appendix A.4.2)
imports data and their assigned categories and qualities. Using interactive sliders, events can be filtered by
category or quality to create histograms and extract relevant data. This data included but was not limited to
event duration, mean and standard deviation. For the IRS2 dataset, all insights derived via MATLAB are shown
in tables A.1, A.2 and A.3. The sorted events by category and quality are shown in figure A.1. The next section
will define LabVIEW state recognition logic with these characteristic values.
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Finally, an additional feature in the MATLAB code was added for testing purposes. A training sequence
could be created using only an array containing the indices of wanted events. The sequence also included
an increase in the open state value over time to simulate thermal fluctuations and added typical open state
current patterns in between events.

Figure 3.1: Example of a category type 1 event classified in MATLAB ("clog") (a) and
category type 6 event ("gating") during a reading (b). (Own figure created with MATLAB.)

Figure 3.2: Example of a quality 3 event of a successful template, peptide and linker re-reading
in MATLAB. (Own figure created with MATLAB.)

Figure 3.3: Prediction by MATLAB of the ssDNA template reading of the IRS2 probe.
(Figure used with permission from Ian Nova, created with MATLAB.
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3.2. LabVIEW Automation: Design and testing of the plugin
This chapter describes the steps taken to automate the data acquisition workflow in LabVIEW. As this software
is to be used primarily by researchers in the lab, their needs are thoroughly documented and converted to a
logic scheme for LabVIEW.

The demands are listed as follows:

• It should detect states using moving standard deviation and ratio current value / open state value.

– Open state → relative value is above a threshold
– Event→relative value is below a threshold

⋄ "Bad" Event → Standard Deviation (StdDev) is below threshold

· Clogging

⋄ "Good" Event → StdDev is above a threshold

· Gating →relative value is below a threshold
· Re-reading → typical reading duration from the start of trace reading has elapsed

• It should provide feedback on voltage control and apply it to the voltage generator.

– If "Clogging", it should flip the voltage for short and long duration
– If "Gating", it should scale the voltage to 1/5
– If "Re-reading", it should flip the voltage
– It should have safety mechanisms to ensure a smooth run

• It should implement closed-loop feedback control to check for success and adapt accordingly.
• It should periodically update the open state value if in "Open State".
• If in "Open State", it should enable turning off the voltage to measure offset current value.
• Everything should be optional (with a possibility to turn the plugin off as a whole).

Based on these demands, a flow-chart concept design is shown in figure 3.4.
To develop said automated lab "helper", an initial sandbox environment was made. It is a closed testing

environment with an artificial current signal made by the user. Its feature include, for example, a turning knob
to simulate a standard deviation in the current reading. The state detection, voltage control, and calibration
codes were developed in this environment. The detected state is shown using indicators, and the voltage value
"controlled" is depicted on the graph.

All three algorithms can be found in Appendix algorithm 2 to 4.
However, as it required real data to determine the state accurately, training sequences from MATLAB were

then implemented. Figure A.3 shows an example of such a training process. All current values were read
value-by-value, and the reading speed can be adjusted or a forward/reset button pressed. Up until this point,
all programming was done in a different LabVIEW code. However, as the original "main.vi" code (the original
front panel thereof is depicted in figure A.2) was adapted to a Data Acquisition System (DAQ), several changes
had to be made when integrating code. These challenges included working with wave-forms (collection of
data points with timestamps) and sampling issues. Also, all direct control of voltage must be connected to the
plugin and timing issues must be addressed. The latter emerges from the target "main.vi" code uses multiple
complex loops, and LabVIEW timing is unfortunately not 100% predictable.

Finally, it was tested in the lab with the real DAQ attached to it. Parallel to this, a second version was created
for testing purposes. The latter simulates using a training sequence (described in algorithm 5) and saves its
recommendations and/or decisions to a file for documentation purposes. From this, two final sets of codes
were defined with their complete codes in Appendix A.4.2.

• main_final_andreadis.vi" containing the plugin inside the data acquisition software
• main_simulation_final_andreadis.vi containing the plugin inside a simulation environment
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Figure 3.4: LabVIEW operator diagram flowchart describing its tasks (left) and possible states of the system (right).
(Own figure created with Draw.io)
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3.3. Python Model: Boundary conditions, Laplace and Metropolis
This chapter deals with the methods used in the biophysics Python model. First, the environment described in
the theoretical chapter was converted to a set of planes visualised in figure 3.5. Second, an algorithm checked
the validity according to figure 3.6 (a) and algorithm 8 to avoid chain-environment crossings. In figure 3.6 (b)
this check is demonstrated using a random population of chains with non-valid chains marked grey.

Figure 3.5: 3D boundary conditions applied with a plane as
membrane, shifted and cut cone as MspA and plane as helicase.

(Own figure created with Python.)

Figure 3.6: Illustration of theoretical (im-)possible configurations (a) and the validity check implementation in
Python using a random sample of chains with all non-valid ones marked grey (b).

(Own figure created with Adobe Illustrator (a) and Python (b))

Next, the electric field is to be calculated for the pore. A radial symmetric field is assumed to revolve around
the z-axis perpendicular to the membrane, centred in the MspA. This coordinate transformation corresponds
to a conversion from cylindrical (s,φ,z) to Cartesian (x,y ,z) coordinates. Figure 3.7 shows the boundary con-
dition, while an additional voltage drop is applied as V/2 and -V/2 at z = +∞ and z=-∞, respectively. In order
to solve for the remaining (s,z) coordinates, the Poisson Equation must now be solved.

Even though this 2D cylindrical approach avoids extra computational time for 3D, it required some adap-
tations to the Poisson equation. Furthermore, no charges were assumed to be present, neglecting surface
charges of the membrane, MspA and Helicase, and the charges of the probe. The latter could still be imple-
mented by solving for each charge configuration individually. However, it is only relevant for charge-charge
interactions and beyond the time scope of this Thesis. The Poisson equation, now also called the "Laplace"
equation, can be rewritten as stated in equation 3.1:
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Figure 3.7: 2D plot of the boundary conditions applied for the Laplace electric
potential solver. At these points in space, the electric potential should be 0. (Own

figure created with Python.)
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Due to rotational symmetry, ∂2φ
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ρ
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)
and φ is the electrostatic potential of interest. However, solving this for boundary and voltage condi-

tions requires a computational approach. For this, the Finite Difference Method is implemented, simplifying
to equation 3.2:

∇2φ≈ 1

s

φ (s +a, z)−φ (s, z)

a
+ φ (s +a, z)+φ (s −a, z)+φ (s, z +a)+φ (s, z −a)−4φ (s, z)

a2 (3.2)

taking a = 1 leads to equation 3.3:

φN+1 (s, z) = φN (s +a, z)+φN (s −a, z)+φN (s, z +a)+φN (s, z −a)+ 1
sφN (s +a, z)

4+ 1
s

(3.3)

This procedural relation can be solved using the Jacobi method for solving linear partial differential equa-
tions (PDEs). Using an initial guess and many iterations, it converged to the solution. However, it is not time-
efficient and is often improved by the Gauss-Seidel method, which uses already calculated values for φ for
faster convergence. At last, Successive over-relaxation (SOR) increases Gauss-Seidel’s efficiency even more by
using φnew

(
x, y, z

) = φol d
(
x, y, z

)+ωδ(
x, y, z

)
. ω is the SOR parameter between 1 and 2, while δ

(
x, y, z

)
is

the difference between the newly calculated potential and the one before. All steps are described in detail in
algorithm A.4.2.

Now that the electrostatic potential was calculated, a chain must be created in 3D with algorithm 7. The
latter requires a spherical to Cartesian coordinate transformation described in algorithm 6. For completeness,
each chain is a matrix with the following five columns: The x, y, and z positions and relative angles θ and φ.
Each row represents one element of the chain. The collection of chains would then be an array containing
individual matrices. Next, the charge distribution was defined by dividing the chain into segments with their
respective charges. Figure 3.8 depicts these charge profiles for the two different phosphorylations (see algo-
rithm 7. Note that this division is not to scale and certainly simplifies the charges of the probe, neglecting net
charge effects.

To calculate the electrostatic energy of a state, all left to do is use the afore-calculated φ in algorithm 12
However, the difficulty lies within the discrete nature of finite element analyses. Therefore, a very dense grid is
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Figure 3.8: Plot of charge vs. chain element index for three degrees of phosphorylation of a
IRS2 immunopeptide. (Own figure created with Python.)

chosen (200x200 points), and the position of each element is "snapped" to a grid point. With this algorithm 9,
each electrostatic potential can be obtained and multiplied by the respective charge.

Finally, a Metropolis Algorithm is implemented as described in augustinus.kristia.de [10] and statlect.com
[11]. The initial state is a collection of zeros for the θ and φ angles, thus a vertical line. With each iteration,
an angle perturbation is drawn from a Normal(µ = 0, σ = 1) distribution. Based on a comparison between
a Uniform(0,1) distribution sample and the new-to-old ratio of the Helmholtz Free Energy, the new state is
accepted. The latter also requires the new state to be a valid state based on algorithm 8. These steps are shown
in algorithm 1. Overall the whole progress is saved as a .gif animation for visualisation purposes (to be shown
at the Thesis Defence).

Algorithm 1: Metropolis Algorithm

input:
• N_iterations (-)
• initial [] and [] (both arrays in radians)
• kB (J/K)
• T (K)
• check_valid (function)
• E (function)

output:

• accepted/refused states (array of arrays)

β= 1/(kB ∗T ) ;
for i in range(N_iterations) do

∆θ,∆φ = random.normal();
P_accept = exp(β*[E(θ + ∆θ,φ + ∆φ) - E(θ,φ)] ) *Πi (sin(θ[i] + ∆θ[i])/sin(θi ));
sample = random.uniform(0,1);
if (sample < min(P_accept,1) and (check_valid(chain(θ+∆θ,φ+∆φ)) == True) then

θ+=∆θ;
φ+=∆φ;

end
end
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4
Results and Discussion

This chapter describes the results from both LabVIEW automation and Python Modelling, as well as discusses
their relevance and/or potential shortcomings.

4.1. LabVIEW Automation: Developed plugin and training results
First, the results obtained from automating the data acquisition software in LabVIEW were analysed. Figure
4.1 shows the developed plugin, with variables to be controlled, state detection indicators, voltage control
suggestions and admin control features. The simulation environment, depicted in figure A.4, recorded the
main results. It is to be noted that the ’re-reading’ detection only works for the given dataset, as its precise
calculation would require a full Hel308 reaction scheme analysis to determine the enzyme stepping rate in the
given conditions. The latter would, however, exceed the scope of this BEP project. Figures 4.2(and Appendix
A.6 and A.7) show the three training sequences used as well as a precise state detection denoted by the state
index, a voltage control suggestion and an Open State value. Overall, it shows a successful implementation of
the requirements set by the user. As marked with text boxes, the open state was detected, followed by a "good"
reading event. As soon as the drop was detected, a "gating" state was marked, followed by the scaling of the
voltage. After a typical duration had elapsed, "re-reading" was marked, ended with a return to the open state.
As its open state value had now increased, the update was indeed successful. The "bad" event then triggered
the flipping of the voltage in a periodic manner until the open state was reached again.

Three critical insights were gained from these training sets: At every state change an initial time lag was
required until the response was taken. This is determined by the standard deviation point-by-point calculation
requiring a certain amount of samples to continue. Furthermore, frequent open state value updates improved
the initial guess correctly. Finally, voltage control mimicked the actions of a lab worker for flipping or scaling
the voltage.

When testing in the lab, multiple insights were gained as well. First, the Open State update should only be
accepted if the relative deviation from the previous one is not too significant (by a deviation of ≈ 20%). Second,
all ’wait time’ functions need to be converted to ’elapsed time’ functions to avoid timing issues. Finally, the
standard deviation should be 0 if the state is in an "Open State" or if it is too large due to voltage control actions.

This feedback was implemented, and the final code A.4.2 and algorithms A.4.1 were made completely mod-
ular for future changes and available in the Appendix. However, more lab tests had not been possible due to
time constraints and difficulties in sample preparation. For future improvements, more safety features must
also be implemented to avoid a direct voltage flip when a "good" reading is about to occur. Furthermore, the
standard deviation calculation must be adapted for better compatibility with different sampling frequencies.
Finally, a type of confidence metric should be determined by recording actual lab responses and suggestions
of the software to compare its accuracy.
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Figure 4.1: LabVIEW plugin front panel view. (Own figure export from LabVIEW)

Figure 4.2: Training result of the state detection and voltage control features of the LabVIEW code when given a training sequence
generated from real data in MATLAB. The different plotted lines denote the measured current I (pA), controlled voltage V (mV),

detected Open State (pA) and State Index. (Own figure created with MATLAB.)
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4.2. Python Model: Model adaptation and optimisation results
This chapter describes the result of the Python model adaptation and simulation. First, the pore configura-
tion’s electrostatic potential was solved, as visible in figure 4.3. Furthermore, the validity check of the chain in-
side the boundary conditions was proven to be very rigid for various amounts of random testing populations.
However, most importantly, the Metropolis algorithm for the probe IRS2 (so without any phosphorylation)
showed promising results. First, as depicted in figure 4.4 (a), the states it accepted are all valid. Second, shown
in figure 4.4 (b), the electrostatic energy depicts a decreasing trend with each new iteration. Finally, as the state
with minimal energy, figure 4.5 depicts such a configuration. It is plotted for the IRS2 probe (a), once (b) and
twice (c) phosphorylated according to the charge profile shown in 3.8. A full .gif movie animation of the opti-
misation process will be shown at the thesis defence. It is fascinating to see the outcomes of the algorithm and
its arrangement with respect to the electrostatic potential. One possible interpretation of a state with more
horizontal elongation is its preference for the x-y plane. As the potential increases with lower z, aiming for the
same z value would decrease the energy. However, this would need more extensive testing and more accurate
parameters are needed, especially for the persistence length defining the chain element spacing. In this case,
a guess of 0.6nm as pore diameter, 5 degrees as pore angle with the vertical, a height of 8nm and chain spacing
of 1.2 nm are given for the situation. Nonetheless, it did prove the method developed for the FJC model yields
a chain θ and φ space which can be optimised. Finally, it is to be noted that while this approach may seem to
oversimplify all conditions of the actual situation, it is expandable in a modular way. These extensions include:
First, charge-charge interactions can be added by solving the Laplace equation for each charge configuration.
Second, a spring potential can be added to simulate backbone flexibility and thus creating an Extensible FJC
model. Third, electro-osmotic potentials and surface charge–probe interactions could be added. All these ad-
ditional potentials are merely added to the exponential inside the partition function. Combined with these
improvements, a more extensive test run must be conducted to understand the readings differing in three de-
grees of phosphorylation. The latter includes analysing the relative positions of all chain elements with respect
to the MspA’s constriction and solving these for different charge profiles as well as chain lengths. Finally, the
last point of discussion would be related to the fixed system in 3D, as the MspA can also translocate in the xy
plane, adding a force applied by the constriction during movement.

The final code in Jupyter Notebook format A.4.2 and algorithms A.4.2 were all made available in the Ap-
pendix.

Figure 4.3: Electrostatic potential derived by solving the Laplace equation with
successive over relaxation in Python, approached with Finite Difference Methods. It

clearly responds to the boundary conditions imposed.
(Own figure created with Python.)
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Figure 4.4: The states accepted by an iteration of 80000 steps are all drawn together to visualise the validity condition always
being met(a). Second, shown in figure (b), the electrostatic energy depicts a decreasing trend with each new iteration.

(Own figure created with Python.)

Figure 4.5: 3D plot of the three lowest energy states derived with the help of the Metropolis algorithm for the immunopeptide
IRS2 (a) being once (b) and twice (c) phosphorylated. (Own figure created with Python.)
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5
Conclusions

In this BEP research, problems faced before and after sequencing the IRS2 peptide were approached from two
different perspectives. The first aim was to adapt the data acquisition software to automate the workflow. The
second aim was to adapt and model the Freely Jointed Chain (FJC) Model to a heterogeneously charged probe.

At first, the acquisition software in LabVIEW was adapted with MATLAB data processing insights. Then,
tested with training sequences, it accurately determined the system’s state and responded to it. Next, its cal-
ibration features, such as the offset measurement and open state value update, showed promising results in
actual lab test runs. However, more lab tests were needed as well as safety features to avoid e.g. a direct voltage
flip when a "good" reading is about to occur. Furthermore, the standard deviation calculation must be adapted
for better compatibility with different sampling frequencies. Finally, a type of confidence metric should be de-
termined by recording actual lab responses and suggestions of the software to compare its accuracy.

For the second problem, the Freely Jointed Chain Model model was analytically adapted to the IRS2 probe
inside the nanopore’s electric field. The energetically most favourable configuration was then sought with
a Metropolis Algorithm. As a result, the electrostatic potential was calculated and implemented into the
Metropolis algorithm. Despite the simplification of this method, it is still expandable in a modular way to
incorporate additional potential such as charge-charge interactions by solving the Laplace equation for each
charge configuration, a spring potential to simulate backbone flexibility, electro-osmotic potentials and sur-
face charge–probe interactions. These additional potentials are merely added to the exponential inside the
partition function. Finally, improving this model in the feature would eventually lead to the relative positions
of all chain elements with respect to the MspA’s constriction to develop an understanding of the (phosphory-
lated) IRS2 readings.
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A
Appendix

A.1. Additional LabVIEW and MATLAB automation material
A.1.1. MATLAB event classification results

Table A.1: Results of category classification (of IRS2 events) in MATLAB .

Category Description Event Nr. Mean St. Dev. Open State ± Level 1 Level 2 Level 3 Level 4 Steps? Spike? Duration (s)
1 moderate more noisy clog without steps 5 38.9 3.0 202 1 39 - - - 0 0 2.356
1 moderate clog without steps 3 42.2 1.0 202 1 42 - - - 0 0 2.424
1 noisy clog without steps 12 78.5 10.6 208 1 77 - - - 0 0 2.298
1 moderate clog without steps 17 77.9 3.5 212 1 77 - - - 0 0 5.768
1 moderate clog without steps 21 68.0 2.1 213 2 68 - - - 0 0 2.9772
2 moderate clog with single step 4 80.1 9.0 202 1 61 84 - - 1 0 3.872
2 moderate clog with single step 7 64.9 7.5 203 2 82 62 - - 1 0 2.058
2 moderate clog with few initial steps 19 84.6 4.8 212 1 85 - - few 0 2.706
2 moderate clog with few steps 20 66.8 7.2 212 2 74 64 80 60 few 0 4.306
2 moderate clog with single step 30 72.0 9.2 215 1 66 87 - - 1 0 3.538
3 moderate clog with small multiple steps 9 77.8 3.5 206 1 78 - - multiple 0 4.344
3 noisy clog with multiple steps 25 63.5 15.4 214 2 80 59 75 53 multiple 0 2.929
3 noisy clog with multiple steps 27 58.0 17.1 214 1 52 99 - - multiple 0 3.06
4 noisy clog without steps intervened 6 45.9 26.3 203 1 50 - - - 0 0 3.65
4 moderate clog without steps intervened 8 67.9 21.5 206 1 70.5 - - - 0 0 5.368
4 moderate clog without steps intervened 26 54.9 20.9 214 2 53 - - - 0 0 2.914
5 moderate clog with two spikes 10 52.9 9.5 207 1 51 - - - 0 2 7.408
5 moderate clog with initial step and spike 23 59.5 8.9 213 2 84 56 106 - 1 1 4.306
6 gating 11 82.7 9.2 208 - 90 49 - - - 0 5.738
6 gating 15 69.3 26.8 210.5 - 79 14 - - - 0 14.11

Table A.2: Classification of IRS2 MATLAB "gating"-type events.

Quality Type Event Nr. Duration (s) St. Dev. Lower Threshold I/I0 Open State Mean St. Dev. Level 1 Level 2
1 Repeating Pattern 11 5.738 9.1873 0.236 208 82.7172 9.1873 90 49
3 DNA + peptide read 15 14.11 26.8495 0.067 210.5 69.2967 26.8495 79 14

Typical duration (s): 7.636
Lower gating threshold: 0.236

Table A.3: Results of quality classification (of IRS2 events) in MATLAB .

Quality Description Event Nr. Duration (s) St. Dev.
1 Repeating Pattern 33 4.2546 11.8848
1 Repeating Pattern 49 6.266 13.4151
1 Repeating Pattern 11 5.738 9.1873
2 DNA read 35 2.5408 11.3213
2 DNA read 16 3.298 15.232
2 DNA read 51 4.572 13.5364
2 DNA read 38 2.849 10.013
2 DNA read 18 3.386 10.3257
3 DNA + peptide read 14 7.23 13.7489
3 DNA + peptide read 13 7.818 12.793
3 DNA + peptide read 50 7.86 14.7071
3 DNA + peptide read 28 8.21 13.5463
3 DNA + peptide read 15 14.11 26.8495
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Figure A.1: All MATLAB classified events sorted by 6 categories and 3 qualities. (Own figure created with MATLAB.)
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A.1.2. Original LabVIEW front panel

Figure A.2: Original LabVIEW front panel view "main.vi".
(Own exported figure of LabVIEW.)

A.1.3. Intermediate testing recording snapshot

Figure A.3: Snapshot of training sequence simulation in LabVIEW.
(Own exported figure of LabVIEW.)
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A.1.4. Final simulated testing front panel

Figure A.4: Final simulation front panel view in LabVIEW.
(Own exported figure of LabVIEW.)

A.2. Chemical drawing of IRS2

Figure A.5: Chemical Drawing of peptide-oligo conjugate IRS2 used to allow
for peptide sequencing with previous DNA nanopore sequencing methods. (Figure

used with permission from Ian Nova using ChemDraw.)
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A.3. Additional training sequences results

Figure A.6: Training result 2 of the state detection and voltage control features of the LabVIEW code when given a training
sequence generated from real data in MATLAB. The different plotted lines denote the measured current I (pA), controlled voltage

V (mV), detected Open State (pA) and State Index. (Own figure created with MATLAB.)

Figure A.7: Training result 3 of the state detection and voltage control features of the LabVIEW code when given a training
sequence generated from real data in MATLAB. The different plotted lines denote the measured current I (pA), controlled voltage

V (mV), detected Open State (pA) and State Index. (Own figure created with MATLAB.)
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A.4. All developed algorithms

A.4.1. LabVIEW algorithms

Algorithm 2: State detection algorithm

input:
• activate operator (True/False)
• standard deviation (pA)
• “bad” event stdev cutoff (pA)
• open state threshold (-)
• current open state (pA)
• measured current (pA)
• event start threshold (-)
• gating threshold (-)
• typical duration (s)

output:

• state (“”)
• state_index (-)
• boolean (led) indicators (True/False):unknown, open state, event, clogging, good event, gating,

re-reading

while activate operator == True do
current ratio = measured current (pA) / current open state (pA);
if standard deviation > stdev voltage control cutoff then

standard deviation = 0;
end
if current ratio > open state threshold then

state = “open state”;
open state = True;
state_index = 1;

end
if not open state and current ratio < event start threshold then

state = “event”;
event = True;
state_index = 2;

end
if event and standard deviation < “bad” event stdev cutoff then

state = ”clog”;
clogging = True;
state_index = 3;

else
state = “good event”;
good event = True;
state_index = 4;

end
if good event then

if current ratio < gating threshold then
state = ”gating”;
gating = True;
state_index = 5;

end
if elapsed time > typical duration then

state = ”re-reading” ;
re-reading = True ;
state_index = 6 ;

end
end
if (open state, event, clogging, good event, gating, re-reading) == False then

state = “unknown” ;
unknown = True;
state_index = 0;

end
end
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Algorithm 3: LabVIEW Voltage control algorithm

input:
• activate operator (True/False)
• state ("”)
• gating scale duration (ms)
• vmax (mV)
• pulse duration long (ms)
• pulse duration short (ms)
• scale count max (-)
• pulse count max (-)
• boolean controls (True/False):control clogging, gating and re-reading

output:

• voltage (mV)
• pulse count (-)
• scale count (-)
• boolean led indicators (True/False): flip, scale and turn off voltage

while activate operator == True do
if state == “good event” then

scale voltage, flip voltage = False;
voltage = vmax;

end
if state == “clog” then

scale voltage = False;
if control clogging and not gating then

if pulse count > pulse count max / 2 then
time to wait = pulse duration short;

else
time to wait = pulse duration long;

end
if not flip voltage and time to wait then

pulse count += 1;
voltage = -vmax;
flip voltage = True;

else
if pulse count == pulse count max then

pulse count = 0;
end
voltage = vmax;
flip voltage = False;

end
end

end
if state == “gating” and control gating then

[ additional code is left out, however visible in LabVIEW block diagram ] if elapsed time > gating
scale duration then

voltage = 0.2 * vmax;
scale voltage = True;

else
voltage = vmax;
scale voltage = False;

end
end
if state == “re-reading” and control re-reading then

if control clogging and not gating then
if pulse count > pulse count max / 2 then

time to wait = pulse duration short;
else

time to wait = pulse duration long;
end
if not flip voltage and elapsed() == time to wait then

pulse count += 1;
voltage = -vmax;
flip voltage = True;

else
if pulse count == pulse count max then

pulse count = 0;
end
voltage = vmax;
flip voltage = False;

end
end

end
end
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Algorithm 4: labview Calibration algorithm

input:
• activate operator (True/False)
• state ("”)
• wait between open state updates (s)
• initial open state (pA)
• measured current (pA)
• measure open state (True/False)
• measure offset (True/False)

output:

• current open state (pA)
• offset (pA)
• boolean led indicators (True/False)

– flip voltage
– scale voltage
– turn off voltage
– open state update

while activate operator == True do
flip voltage = False;
if measure open state and elapsed time > wait between open state updates then

open state update = True;
if |measured current - initial open state| / initial open state < 0.2 then

current open state = measured current;
else

current open state = initial open state;
end

end
if measure offset then

turn off voltage = True;
voltage = 0;
if measured current < 5 then

offset = measured current;
end

else
turn off voltage = False;
voltage = vmax;

end
end

Algorithm 5: LabVIEW Simulation Training algorithm

input:
• training data (.csv spreadsheet separated by "," delimiter)
• read speed (-)
• restart file reading (True/False)
• voltage (mV)
• current open state (pA)
• state index

output:

• record (.csv spreadsheet separated by “;” delimiter for columns)

while not LabVIEW_stop do
if i >= size(training data) or restart file reading then

i = 0;
else

i += 1;
end
measured current = training data [ range (i, size(training data) ];
write_delimited_spreadsheet(measured current, voltage, current open state, state index);

end
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A.4.2. Python Model algorithms

Algorithm 6: sph2cart:Spherical to Cartesian coordinate converter

input:
• r (-)
• θ,φ (rad)

output:

• x,y,z (-)

x = r*sin(theta)*cos(phi);
y = r*sin(theta)*sin(phi);
z = r*cos(theta);

Algorithm 7: create_chain: Create an ideal 3D chain

input:
• θ,φ (arrays in rad)
• chain_spacing (-)

output:

• chain (matrix):

– 1st column: x coordinates
– 2nd column: y coordinates
– 3rd column: z coordinates
– 4th column: theta angles
– 5th column: phi angles

chain = zeros((N_chain, 5)) chain[0,0] = 0;
chain[0,1] = 0;
chain[0,2] = z_hel;
for i in range(1,N_chain) do

chain[i,0] = chain[i-1,0] + sph2cart(chain_spacing, theta[i], phi[i])[0];
chain[i,1] = chain[i-1,1] + sph2cart(chain_spacing, theta[i], phi[i])[1];
chain[i,2] = chain[i-1,2] - sph2cart(chain_spacing, theta[i], phi[i])[2];

end
chain[:,3] = theta;
chain[:,4] = phi;

Algorithm 8: check_valid: test validity with boundary conditions

input:
• _chain_ (matrix)

output:

• valid (boolean true/false)

valid = True;
for i in range(len(_chain_)) do

chain_x = _chain_[i,0];
chain_y = _chain_[i,1];
chain_z = _chain_[i,2];
chain_s = sqrt(chain_x**2 + chain_y**2);
if ((chain_z < (chain_s-R)/tan(angle_pore)) and (chain_z >= 0)) then

valid = False;
end
if ((-0.1 < chain_z < 0.1) and (chain_s > R)) then

valid = False;
end
if (chain_z > z_hel) then

valid = False;
end
if _chain_[-1,2] > 0 then

valid = False;
end

end
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Algorithm 9: snap_xyz: Snap coordinate to nearest meshgrid point

input:
• xyz (array)

output:

• snap_index (-)

error = 0.2;
xyz = round(xyz,3);
val = round(val,3);
snap_index = where((xyz > (val - error)) and (xyz < (val + error)));

Algorithm 10: create_charge_chain: Map charges to chain array

input:
• Charge q (in terms of e) for:

– template ssDNA
– linker
– peptide
– phosphorylated amino acid
– threading ssDNA

• e (C)

output:

• charges (array)

charges = ones((N_chain))*10;
temp = round((11/23)*N_chain);
link = round((1/23)*N_chain);
pep = round((2/23)*N_chain);
p_pep = round((2/23)*N_chain);
thread = round((4/23)*N_chain);
charges[0:temp-1] = q_tem * e;
charges[temp-1:temp+link-1] = q_lin * e;
charges[temp+link-1:temp+link+pep-1] = q_pep * e;
charges[temp+link+pep-1:temp+link+pep+p_pep-1] = q_phos * e;
charges[temp+link+pep+p_pep-1:temp+link+2*pep+p_pep-1] = q_pep * e;
charges[temp+link+2*pep+p_pep-1:temp+link+2*pep+p_pep+link-1] = q_lin * e;
charges[temp+link+2*pep+p_pep+link-1:] = q_thread * e;

Algorithm 12: E_elecstat: Calculate electro-static energy of chain

input:
• _chain_ (matrix)
• e (C)
• V_phi (matrix)
• charges (array)

output:

• E (-)

q_template = -1 ;
q_threading = q_template ;
q_linker = 0 ;
q_peptide = 0 ;
q_phospho = -1 or 3 for pIRS2 and -5 for p2IRS2 ;
charges = create_charge_chain(q_template, q_linker, q_peptide, q_phospho,q_threading);
E = 0;
for i in range(len(_chain_)) do

E += charges[i] * V_phi[snap_xyz(z,_chain_[i,2]),;
snap_xyz(s,sqrt(_chain_[i,0]**2+_chain_[i,1]**2))];

end
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A.5. Full Code
A.5.1. MATLAB LiveScript code
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General code overview:

Initialisation of parameters: Initialisation of state and voltage values:

State detection machine:

A.5.2. LabVIEW block diagram code
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“Open Sate” and “clogging” voltage control:

“Good” event and “gating” voltage control:

37



Additional simulation testing environment code:

“Re-reading” voltage control:
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BEP Andreadis 2022 | Simulation of a (non-) charged
probe

Import required libraries

In [1]: # Import Numerical and Plotting Libraries

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from mpl_toolkits import mplot3d

from mpl_toolkits.mplot3d import Axes3D

import warnings

import time

from matplotlib import animation, rc

from IPython.display import HTML

warnings.filterwarnings("ignore", category=UserWarning)


# %matplotlib notebook  # if interactive 3D plot is desired

# Set resolution to 200 dpi for thesis media creation

plt.rcParams['figure.dpi'] = 200


Define and visualise 3D boundary conditions

In [2]: # Geometric Parametes

R = 0.5                     # radius of pore

angle_pore = np.radians(5)  # angle of MspA in degrees

z_hel = 13                  # 'height' of helicase above membrane = fixed start
point of chain


# 3D plotting parameters

N = 200 # amount of points to plot

xmin = -7*1.5 

xmax =  7*1.5

ymin = xmin

ymax = xmax

zmin = -20*2

zmax =  20


# Define x and y range of points in space

x_range    = np.linspace(xmin,xmax,N)

y_range    = np.linspace(ymin,ymax,N)

X,Y        = np.meshgrid(x_range,y_range)


# Define boundary conditions of mspa, membrane and helicase

Z_mspa     = (np.sqrt(X**2 + Y**2) - R)/np.tan(angle_pore)

Z_mspa[Z_mspa >= z_hel] = None # crop cone above helicase

Z_mspa[Z_mspa < 0]     = None # crop cone below membrane


Z_membrane = np.zeros((N,N))

Z_membrane[R > np.sqrt(X**2+Y**2)] = None # crop pore out of membrane


Z_helicase = np.ones((N,N))*z_hel

Z_helicase[ (z_hel*np.tan(angle_pore) + R) < np.sqrt(X**2+Y**2)] = None # simple 
plane above mspa


# Plot findings

fig = plt.figure(figsize=(12,12))

ax = plt.gca(projection = "3d")


ax.plot_surface(X,Y, Z_membrane,color="0.4",alpha=0.7, label='membrane')

ax.contour3D(X,Y, Z_mspa,25,alpha=0.7, label='MspA')

ax.plot_surface(X,Y, Z_helicase,color="k",alpha=1, label='Helicase')

ax.set_xlim(xmin,xmax)

ax.set_ylim(ymin,ymax)

ax.set_zlim(zmin,zmax)

ax.set_xlabel("$x$")

ax.set_ylabel("$y$")

ax.set_zlabel("$z$")

ax.view_init(10, 30)

# ax.legend()

plt.savefig('figures/boundary_conditions.png')

plt.show()


# plt.figure(figsize=(8,8))

# plt.plot(range(10),label='membrane')

# plt.plot(range(10),label='MspA')

# plt.plot(range(10),label='helicase')

# plt.legend()

# plt.savefig('figures/boundary_conditions_legend.png')

# plt.show()


Solving the Laplace Equation in cylindrical coordinates

Due to rotational symmetry,  and 

 being the fixed charges and  the electro-static potential

Finite Difference Method (Central)

taking  leads to

Jacobi method for solving linear partial differential equations (PDEs), uses initial guess and converges to
solution
Gauss-Seidel method speeds up Jacobi method by using already calculated values for 
Successive over-relaxation (SOR) increases Gauss-Seidel even more by using 

 being the S.O.R. parameter, speeds up if above 1, however does not converge any more if bigger than
2

 being the difference between the newly calculated potential and the one before

− = ϕ = (s ) + + = + +
ρ(s,ϕ, z)
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A.5.3. Python code
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In [3]: '''

input:

   N_plot_points (-)

   xmin,xmax,ymin,ymax,zmin,zmax (-)

   V (mV)

   target_accuracy (-)

   SOR_parameter (-)


output:

   Electric potential V_phi (matrix: N_plot_points x N_plot_points)

'''


# Amount of plotting points

N = 200


# Cylindrical and cartesian coordinates

smin = 0

smax = np.sqrt(xmax**2+ymax**2)

s = np.linspace(smin,smax,N)

x = np.linspace(xmin,xmax,N)

y = np.linspace(ymin,ymax,N)

z = np.linspace(zmin,zmax,N)


# Voltage applied in V
V = 0.180


# Desired accuaracy of simulation

target_accuracy = 1e-4


# Initialise electric potential matrix

V_phi = np.zeros([N,N])

delta = V_phi.copy()


# Initialise fixed boundary conditions

boundary_membrane_mspa = np.zeros((N,N))

membrane_z_N  = int(N*(abs(zmin)/(zmax + abs(zmin))))

boundary_membrane_mspa[membrane_z_N,7:] = 1

for zi in range(N):

   for si in range(N):

       if ((round(z[zi]) == round((s[si] - R)/np.tan(angle_pore))) and (z[zi] <
= z_hel) and (z[zi] > 0)):

           boundary_membrane_mspa[zi,si] = 1

boundary_membrane_mspa = np.flipud(boundary_membrane_mspa) #flip matrix (needed
due to abnormal errors of matplotlib)


# Initialise phi difference (for convergence check)

delta_max = 1

delta_max_list = []


SOR_parameter = 1.8 # successive over-relaxation parameter for faster convergenc
e, determined by trial-and-error

print("Using SOR parameter ω =",round(SOR_parameter,2))

start = time.time()

while delta_max > target_accuracy: # Laplace electric potential solver

   # this loop may take a while depending on target_accuracy and the dimension
N

   for i in range(N):

       for j in range(N):

           # Add voltage drop across membrane

           if   i == 0:   V_phi[i,j] = -V/2

           elif i == N-1: V_phi[i,j] =  V/2

           # if s = 0 is reached, reflect and use 2nd value instead

           elif j == 0:

               V_phi[i,j]  = V_phi[i,1]


           # if s = smax is reached, reflect again

           elif j == N-1: 

               delta[i,j] = (V_phi[i+1,j]+V_phi[i-1,j]+V_phi[i,j-1]+V_phi[i,j-1
] + V_phi[i,j-1]/s[j])/(4+1/s[j]) - V_phi[i,j]

               V_phi[i,j]  += SOR_parameter*delta[i,j]

           # if boundary is reached, set potential to 0

           else:

               if boundary_membrane_mspa[i,j]:

                   V_phi[i,j] = 0

               else:

                   delta[i,j] = (V_phi[i+1,j]+V_phi[i-1,j]+V_phi[i,j+1]+V_phi[i
,j-1] + V_phi[i,j+1]/s[j])/(4+1/s[j]) - V_phi[i,j]

                   V_phi[i,j]  += SOR_parameter*delta[i,j]

   # calculate max phi difference to test convergence            

   delta_max = np.max(np.abs(delta))

   delta_max_list.append(delta_max)

   print("N_iter %d delta_max %e\r" % (len(delta_max_list), delta_max), end='')

end = time.time()

print()

print("Finished! Elapsed time:",str(round(end-start,1))+"s")


Using SOR parameter ω = 1.8

N_iter 168 delta_max 9.943225e-05

Finished! Elapsed time: 27.7s


In [5]: # Plot phi_V

plt.figure(figsize=(8, 8))

plt.imshow(V_phi*1000,extent = [smin,smax,zmin,zmax],cmap='seismic')

plt.colorbar(label='$\Phi_{V}$ (mV)')

plt.imshow(boundary_membrane_mspa,extent = [smin,smax,zmin,zmax],alpha=0.4)

# plt.imshow(boundary_membrane_mspa !=0,cmap="binary",extent = [smin,smax,zmin,z
max],alpha=1)

plt.xticks(np.arange(smin,smax+1,2))

plt.xlabel("$s$")

plt.ylabel("$z$")

# plt.savefig('figures\laplace_s-z_boundary.png')

plt.savefig('figures\laplace_s-z.png')

plt.show()


(charge) chain creation, validity check and energy calculation

In [6]: # Define relevant variables

e = 1.60217663e-19  # charge of an electron in C

k_B = 1.380649e-23  # Boltzmann costant in J/K

T   = 273 + 30      # room temperature in K

beta = 1/(k_B*T)


N_chain = 30        # number of chain elements

chain_spacing = 1.2 # space betwen chain elements


def sph2cart(r, theta, phi): # spherical to cartesian coordinate transformation

   '''

   input:

       r (-)

       theta (radians)

       phi (radians)

   output:

       x,y,z

   '''

   return [r * np.sin(theta) * np.cos(phi),r * np.sin(theta) * np.sin(phi),r * 
np.cos(theta)]


def create_chain(theta, phi): # Create ideal 3D chain

   '''

   input:

       theta (array in radians)

       phi (array in radians)

   output:

       chain (matrix):

       1st column: x coordinates

       2nd column: y coordinates

       3rd column: z coordinates

       4th column: theta angles

       5th column: phi angles

   '''

   chain = np.zeros((N_chain, 5))

   chain[0,0] = 0

   chain[0,1] = 0

   chain[0,2] = z_hel

   for i in range(1,N_chain):

       chain[i,0] = chain[i-1,0] + sph2cart(chain_spacing, theta[i], phi[i])[0]

       chain[i,1] = chain[i-1,1] + sph2cart(chain_spacing, theta[i], phi[i])[1]

       chain[i,2] = chain[i-1,2] - sph2cart(chain_spacing, theta[i], phi[i])[2]

   chain[:,3] = theta

   chain[:,4] = phi

   return chain


def check_valid(_chain_): # test validity with boundary conditions

   '''

   input:

       _chain_ (matrix)

   output:

       valid (boolean true/false)

   '''

   valid = True    

   for i in range(len(_chain_)):

       chain_x = _chain_[i,0]

       chain_y = _chain_[i,1]

       chain_z = _chain_[i,2]

       chain_s = np.sqrt(chain_x**2 + chain_y**2)

       if ((chain_z < (chain_s-R)/np.tan(angle_pore)) and (chain_z >= 0)):

           valid = False

       if ((-0.1 < chain_z < 0.1) and (chain_s > R)):

           valid = False

       if (chain_z > z_hel):
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           valid = False

   if _chain_[-1,2] > 0:

       valid = False

   return valid


def snap_xyz(xyz,val): # Snap coordinate to nearest meshgrid point

   '''

   input:

       xyz (array)

   output:

       snap_index (-)
   '''

   error = 0.2

   xyz = np.round_(xyz,3)

   val = round(val,3)

   snap_index = np.where((xyz > (val - error)) & (xyz < (val + error)))

#     print(val,xyz)

   return snap_index[0][0]


def create_charge_chain(q_tem, q_lin, q_pep, q_phos,q_thread): # Map charges to
chain array

   '''

   input:

       Charge q (in terms of e) for:

       template ssDNA
       linker

       peptide

       phosphorylated amino acid

       threading ssDNA

       e (C)

   output:

       charges (array)

   '''

   charges  = np.ones((N_chain))*10

   

   temp     = round((11/23)*N_chain)

   link     = round((1/23)*N_chain)

   pep      = round((2/23)*N_chain)

   p_pep    = round((2/23)*N_chain)

   thread   = round((4/23)*N_chain)

   charges[0:temp-1]                                              = q_tem * e

   charges[temp-1:temp+link-1]                                    = q_lin * e

   charges[temp+link-1:temp+link+pep-1]                           = q_pep * e

   charges[temp+link+pep-1:temp+link+pep+p_pep-1]                 = q_phos * e

   charges[temp+link+pep+p_pep-1:temp+link+2*pep+p_pep-1]         = q_pep * e

   charges[temp+link+2*pep+p_pep-1:temp+link+2*pep+p_pep+link-1]  = q_lin * e

   charges[temp+link+2*pep+p_pep+link-1:]                         = q_thread * 
e

   return charges


q_template   = -1

q_threading  = q_template

q_linker     = 0

q_peptide    = 0

q_phospho    = -1 #-3 for pIRS2 and -5 for p2IRS2


charges    = create_charge_chain(q_template, q_linker, q_peptide, q_phospho,q_th
reading)

charges_p  = create_charge_chain(q_template, q_linker, q_peptide, -3,q_threading
)

charges_p2 = create_charge_chain(q_template, q_linker, q_peptide, -5,q_threading
)


plt.figure(figsize=(9,6))

plt.plot(charges/e, "s--",color='b',label="IRS2",alpha=0.7)

plt.plot(charges_p/e, "o--",color='r',label="pIRS2",alpha=0.7)

plt.plot(charges_p2/e, "P--",color='g',label="p2IRS2",alpha=0.7)

plt.xlabel("chain element index $i$")

plt.ylabel("charge $q$ ($e$)")

plt.legend()
plt.savefig("figures\charges.png")

plt.show()


def E_elecstat(_chain_):

   # Calculate electro-static energy of chain

   '''

   input:

       _chain_ (matrix)

       e (C)

       V_phi (matrix)
       charges (array)

   output:

       E (-)

   '''

   E = 0

   for i in range(len(_chain_)):

       E += charges[i]*V_phi[snap_xyz(z,_chain_[i,2]), snap_xyz(s,np.sqrt(_chai
n_[i,0]**2+_chain_[i,1]**2))]

   return E

Metropolis Algorithm

In [7]: '''

input:

   N_iterations (-)

   initial [θ] and [φ] (both arrays in radians)

   kB (J/K)

   T (K)

   check_valid (function)

   E (function)

output:

   accepted/refused states (array of arrays)

'''

theta_record_all = []

phi_record_all = []

chain_all = []

energy_all = []


np.random.seed(0)


theta_record = np.zeros(N_chain)

phi_record = np.zeros(N_chain)


N_iter_tot = 5000

A = 1


for N_iter in range(N_iter_tot):

   delta_theta_record = np.radians(A*np.random.normal(size = N_chain))

   delta_phi_record   = np.radians(A*np.random.normal(size = N_chain))

   chain_original = create_chain(theta_record, phi_record)

   chain_shifted  = create_chain(theta_record+delta_theta_record, phi_record+de
lta_phi_record)

   E_original = E_elecstat(chain_original)

   E_shifted = E_elecstat(chain_shifted)

   P_accept = np.exp(beta*(E_shifted - E_original))


   for i in range(N_chain):

       if theta_record[i] == 0 or theta_record[i] == 0:

           P_accept *= 1 + (np.cos(theta_record[i] + delta_theta_record[i]))/np
.cos(theta_record[i]) #taylor expansion around theta = 0

       else:

           P_accept *= (np.sin(theta_record[i] + delta_theta_record[i]))/np.sin
(theta_record[i])

   

   sample_test = np.random.uniform(0,1)

   Pt = min(P_accept,1)

   if sample_test < Pt and check_valid(chain_shifted): #accept

       theta_record += delta_theta_record

       phi_record   += delta_phi_record

       theta_record_all.append(theta_record)
       phi_record_all.append(phi_record)

       chain_all.append(chain_shifted)

       energy_all.append(E_shifted)

   else:

       pass

   

   print("Progress: {}%".format(round(100*N_iter/N_iter_tot)), end='\r')


theta_record_all = np.asarray(theta_record_all)

phi_record_all = np.asarray(phi_record_all)

chain_all = np.asarray(chain_all)

optimal_chain = chain_all[-1]

energy_all = np.asarray(energy_all)
print()

print("Finished!")


In [8]: plt.figure(figsize=(9,5))
plt.plot(energy_all,'--')

plt.xlabel("Iteration i")

plt.ylabel("Electrostatic Energy")

plt.savefig('figures\energy_vs_iteration.png')

plt.show()


Visualise converged states

Progress: 100%

Finished!
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In [9]: fig = plt.figure(figsize=(10,10))

ax = plt.gca(projection = "3d")


ax.plot_surface(X,Y, Z_membrane,color="0.6",alpha=0.6)


plot_selected = True


if plot_selected:

#     chain_select = chain_all[-1]

   chain_select = chain_all[np.argmin(energy_all)]


   ax.plot(chain_select[:,0],chain_select[:,1],chain_select[:,2],color='b',alph
a=0.5,marker='o',markersize=3,mfc='r')    

#     ax.scatter3D(chain_select[:,0],chain_select[:,1],chain_select[:,2],s=10,al
pha=0.5,c = charges, cmap='Spectral')  

else:

   for i in range(len(chain_all)):

       ax.plot(chain_all[i][:,0],chain_all[i][:,1],chain_all[i][:,2],color='b',
alpha=0.1,marker='o',markersize=1,mfc='r')

#         ax.scatter3D(chain_all[i][:,0],chain_all[i][:,1],chain_all[i][:,2],s=
5,alpha=0.5,c = charges, cmap='Spectral')  


ax.contour3D(X,Y, Z_mspa,30,alpha=0.4)

ax.plot_surface(X,Y, Z_helicase,color="0.4",alpha=0.6)

   

ax.set_xlim(xmin,xmax)

ax.set_ylim(ymin,ymax)

ax.set_zlim(zmin,zmax)

ax.set_xticks(np.arange(xmin,xmax+1,5))

ax.set_xlabel("$x$")

ax.set_ylabel("$y$")

ax.set_zlabel("$z$")

ax.view_init(0, 25)

if plot_selected:

   plt.savefig('figures/plot_selected.png')

else:

   plt.savefig('figures/all_state_visited.png')

plt.show()


Save Metropolis algorithm progress as .gif

In [10]: plt.rcParams['figure.dpi'] = 100

fig = plt.figure(frameon=False)

fig.set_size_inches(10,8)

ax = fig.add_subplot(projection='3d')

line, = ax.plot([],[],[],marker='o',markersize=3,mfc='r',label='0')

ax.plot_surface(X,Y, Z_membrane,color="0.6",alpha=0.6)

ax.contour3D(X,Y, Z_mspa,30,alpha=0.2)

ax.plot_surface(X,Y, Z_helicase,color="0.4",alpha=0.6)


ax.set_xlim(xmin,xmax)

ax.set_ylim(ymin,ymax)

ax.set_zlim(zmin,zmax)

ax.set_xlabel("$x$")

ax.set_ylabel("$y$")

ax.set_zlabel("$z$")

ax.view_init(1, 25)

fig.subplots_adjust(left=0, bottom=0, right=1, top=1, wspace=None, hspace=None)


def init():

   line.set_data(chain_all[0][:,0],chain_all[0][:,1]) 

   line.set_3d_properties(chain_all[0][:,2])

   return line


frame_duration = 10 # in s

gif_duration_total = 1 # in s

total_frame_count = int(gif_duration_total/(frame_duration/1000))

print(total_frame_count)


def animate(i):

   i = int(i*len(chain_all)/total_frame_count)

   line.set_data(chain_all[i][:,0],chain_all[i][:,1]) 

   line.set_3d_properties(chain_all[i][:,2])

   line.set_label("Iteration i = {}".format(i))

   ax.legend(loc='upper center')

   return line


anim = animation.FuncAnimation(fig, animate, init_func=init,frames=total_frame_c
ount, interval=frame_duration)

anim.save('figures/metropolis_progress.gif',progress_callback=lambda i, n: print
("Progress: {}%".format(round(100*i/n)), end='\r'))

print()

print("Finsihed saving .gif animation!")

plt.close(fig)

plt.rcParams['figure.dpi'] = 200


MovieWriter ffmpeg unavailable; using Pillow instead.


100

Progress: 99%

Finsihed saving .gif animation!
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Initial Online Search & skim for/of relevant papers 5.0 Literature Study before begin - Done
MATLAB refreshing courses online 2.0 BEP planning before begin - Done
LabVIEW refreshing with study course material 3.0 BEP planning before begin - Done
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Ian explanation on experimental setup 2.0 Literature Study 19/4/2022 - Done
Ian explanation on experimental setup 4.0 Literature Study 20/4/2022 - Done
Ian explanation on theory 2.0 Literature Study 20/4/2022 - Done
LabServant & co. campus card access rights 1.0 Setup 20/4/2022 - Done
Reading 4 papers on theory and experiments 1.0 Literature Study 20/4/2022 - Done
Cees Dekker Protein Sequencing Meeting 1.0 Meeting 21/4/2022 - Done
Reading 4 papers on theory and experiments 2.0 Literature Study 21/4/2022 - Done
Ian explanation on MATLAB workflow 2.0 Literature Study 21/4/2022 - Done
MATLAB, LabVIEW, GitLab and EndNote setup 2.0 Setup 21/4/2022 - Done
Reading 3 papers on extra theory (E.O. flow) 3.0 Literature Study 22/4/2022 - Done
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Cees Dekker Lab Meeting 2.5 Meeting 28/4/2022 - Done
MATLAB quality and category classification 3.0 Classification 29/4/2022 - Done
LabVIEW initial test environment setup 2.0 Setup 29/4/2022 - Done
LabVIEW operator design with flowcharts 1.0 Automation 2/5/2022 - Done
LabVIEW Event detection and voltage control 3.0 Automation 2/5/2022 - Done
LabVIEW Calibration 3.5 Automation 3/5/2022 - Done
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Cees Dekker Protein Sequencing Meeting 1.0 Meeting 4/5/2022 - Done
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Henri original LabVIEW code explanation and cross-VI integration tips 1.0 Meeting 6/5/2022 he would like a modular state detection diagram for own (neural network based detection) research Done
LabVIEW rewriting with modular structure and seperate loops 5.0 Automation 7/5/2022 - Done
LabVIEW rewriting with modular structure and seperate loops 2.0 Automation 9/5/2022 - Done
Setup DAQ simulator for LabVIEW compatibility 2.0 Setup 9/5/2022 - Done
LabVIEW operator code integration into main.vi code 4.0 Automation 11/5/2022 - Done
Initial test with DAQ and experimental set up 0.5 Test 11/5/2022 - Done
Advanced MATLAB Classification 2.5 Classification 11/5/2022 - Done
Start of Thesis Report Structuring 2.0 Thesis Report Writing 12/5/2022 - Done
Test State Detection with real experimental DAQ set-up 2.0 Test 12/5/2022 membrane broke, however initial success for proof of concept Done
Test State Detection and calibration with real experimental DAQ set-up 1.5 Test 12/5/2022 adaptions to code made live Done
Update LabVIEW code after initial lab test run to improve amongst else timing issues 4.0 Automation 13/5/2022 open state update fixed, change all time wait functions to elapsed time functions, change StDev calculation Done
Update operator design diagram and other work done 1.0 Thesis Report Writing 17/5/2022 - Done
Test State Detection and calibration with real experimental DAQ set-up 0.5 Test 17/5/2022 without experiment attached, however very effective and functional! Done
Thesis Report Content Structuring 2.0 Thesis Report Writing 18/5/2022 - Done
Thesis Report Theory Figure creation 1.0 Thesis Report Writing 18/5/2022 - Done
Meeting with Henry in lab to discuss code 0.5 Meeting 18/5/2022 pay attention to StDev calculation --> exclude spikes! Done
Thesis Report Theory Figure creation 2.5 Thesis Report Writing 19/5/2022 - Done
Update LabVIEW code with stdev calculation, overall (visual) improvement and indicators 5.0 Automation 19/5/2022 - Done
Meeting Cees Dekker Protein Sequencing meeting 1.0 Meeting 19/5/2022 - Done
LabVIEW creation of simulation file input alternative 2.5 Automation 20/5/2022 made simulation using test file, optimised StDev calculation and file reading Done
LabVIEW saving of state and suggestions 0.5 Automation 20/5/2022 Done
Ian meeting for next part of thesis 0.5 Meeting 20/5/2022 decided to replace noise analysis by charge and spring simulation, coming week perhaps labview tests in lab Done
Literature study on A.C. sequencing, other types of DNA/peptide force interactions 4.0 Literature Study 23/5/2022 - Done
Python Simulation initial set up with simplifications 1.0 Force analysis on (charged) probe 23/5/2022 - Done
Python Simulation langevin function modeling 3.5 Force analysis on (charged) probe 23/5/2022 - Done
LabVIEW code simulation and operator finalization and commenting 4.0 Automation 24/5/2022 - Done
MATLAB figure export of events of interest 1.5 Classification 24/5/2022 - Done
create 3 training sequences and record LabVIEW response 0.5 Test 24/5/2022 - Done
create 3 training sequences and record LabVIEW response 2.5 Test 25/5/2022 - Done
Literature study on chain models for ssDNA and peptide 2.5 Force analysis on (charged) probe 25/5/2022 - Done
Cees Dekker Lab Meeting 1.5 Meeting 25/5/2022 - Done
Initial simplified model set up 1.5 Setup 25/5/2022 - Done
Google Sheet and Python model development 2.0 Force analysis on (charged) probe 26/5/2022 - Done
Thesis content writing 3.0 Thesis Report Writing 27/5/2022 - Done
Electric force simulations in Python 3.0 Force analysis on (charged) probe 30/5/2022 introduced radial electric field in addition to linear field, vector arrow representation Done
Thesis content writing 4.5 Thesis Report Writing 30/5/2022 wrote algorithms of labview code Done
Electric and -osmotic force simulations in Python 7.0 Force analysis on (charged) probe 31/5/2022 addition of vestibule Done

LabVIEW Lab Test with IRS2 0.5 Test 31/5/2022

open state value should adopt last value if too large and not initial open state value
initial open state value should be live control
clogging too fast, durations larger + begin waiting time
measure offset only in open state, otherwise scale voltage == FALSE !!!
StDev is sometimes large (because of noisy clog)

Done

Meeting Henry on Simulation 2.0 Meeting 31/5/2022 very helpful, simplified problem with analytical solution + metropolis algorithm Done
Literature Study and Developement of formula's and boundary conditions (on paper and in Python)7.5 Force analysis on (charged) probe 1/6/2022 analytical approach: formula's and boundary conditions and computational set up with visualisation of boundary conditionsDone
Implementation of Henry Feedback on formula's and initial laplace simulations 7.0 Force analysis on (charged) probe 2/6/2022 laplace electrostatic potential calculation: where is potential?? Done
simulation of chain 10.0 Force analysis on (charged) probe 2/6/2022 Done
simulation of chain 3.0 Force analysis on (charged) probe 3/6/2022 Done
Cees Dekker Protein Sequencing Meeting 1.0 Meeting 3/6/2022 Henry Feedback: Implement first potential due to applied voltage without chain, and then add charges (this neglects charge-charge interaction, however is better for initial complexity)Done
Simulation of Chain with elecstat. Potential energy calculation 7.0 Force analysis on (charged) probe 4/6/2022 only solution for Laplace initial voltage, charge list created, lapalce solving adaptation to boundaries instead of fixed charges, Chain now also with theta phi columnsDone
Simulation of Chain with elecstat. Potential energy calculation 2.0 Force analysis on (charged) probe 7/6/2022 visualised state with lowest potential energy from random sample collection with charges as markers Done
Helmholtz calculation and Voltage boundary conditions 4.0 Force analysis on (charged) probe 8/6/2022 Done
Thesis figure Creation 3.5 Thesis Report Writing 9/6/2022 Done
Thesis figure Creation 2.5 Thesis Report Writing 9/6/2022 Done
Thesis report writing 4.0 Thesis Report Writing 10/6/2022 Done
Meeting Henry on Simulation 1.0 Force analysis on (charged) probe 10/6/2022 Done
Implementation of Henry's feedback on Laplace solving and Metropolis algorithm 4.0 Force analysis on (charged) probe 10/6/2022 Done
Implementation of Henry's feedback on Laplace solving and Metropolis algorithm 3.0 Force analysis on (charged) probe 11/6/2022 A changes plots significantly, thetha and phi initial guess is now 0,0 Done
Thesis report writing 4.0 Force analysis on (charged) probe 12/6/2022 Done
Metropolis solving and gif documentation thereof 5.5 Force analysis on (charged) probe 13/6/2022 Done
Thesis report writing 3.0 Thesis Report Writing 13/6/2022 Done
Thesis report writing 4.0 Thesis Report Writing 14/6/2022 Done
Thesis report writing 12.5 Thesis Report Writing 14/6/2022 Done
Thesis report writing 16.0 Thesis Report Writing 15/6/2022 Done
Thesis report writing 4.0 Thesis Report Writing 16/6/2022 Done
Thesis report writing 8.0 Thesis Report Writing 20/6/2022 Done
Thesis report writing 7.5 Thesis Report Writing 21/6/2022 Done

Planned
Planned
Planned
Planned
Planned

A.6. BEP Thesis hour log
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