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Abstract—Analyzing privacy leakage in distributed algorithms
is challenging as it is difficult to track the information leakage
across different iterations. In this paper, we take the first step to
conduct a theoretical analysis of the information flow in distributed
optimization ensuring that gradients at every iteration remain
concealed from others. Specifically, we derive a privacy bound
on the minimum information available to the adversary when
the optimization accuracy is kept uncompromised. By analyzing
the derived bound we show that the privacy leakage depends
heavily on the optimization objectives, especially the linearity
of the system. To understand how the bound affects privacy,
we consider two canonical federated learning (FL) applications
including linear regression and neural networks. We find that
in the first case protecting the gradients alone is inadequate for
protecting the private data, as the established bound potentially
exposes all sensitive information. For more complex applications
such as neural networks, protecting the gradients can provide
certain privacy advantages as it will be more difficult for the
adversary to infer the private inputs. Numerical validations are
presented to consolidate our theoretical results.

I. INTRODUCTION

In recent years, distributed optimization has drawn increased
attention due to the demand for big-data processing and
easy access to ubiquitous computing units (e.g., a com-
puter, a mobile phone or a CPU-equipped sensor). Popular
applications include telecommunication [1], wireless sensor
networks [2], cloud computing and machine learning [3].
Due to the absence of a central processing point (fusion
center), participants/agents/nodes use their own processing
ability to locally carry out simple computations and transmit
only the required and partially processed data to neighboring
nodes. However, such information exchange might cause severe
information leakage about the sensitive data held by each
participant, hindering the adoption of distributed optimization
into privacy-sensitive applications such as medical systems,
financial analysis, and smart grids [4]. Therefore, investiga-
tions on privacy-preservation in distributed optimization have
received significant attention recently.

To solve distributed optimization problems, many optimiza-
tion algorithms have been proposed, e.g., the dual ascent
algorithm [5], ADMM [6] and PDMM [7]. While these
optimization algorithms often do not require each participant
to exchange his/her own private data directly, other information
such as gradients1 are exchanged. Such gradient information

1Subgradients can be used for non-differentiable objective functions.

is related to the private data and thus can cause severe privacy
leakage. As an example, it has been shown in federated learning
[8] that revealing the local gradient information can cause
a serious privacy breach. As a consequence, most existing
approaches attempt to protect privacy by protecting the local
gradients held by each node. These approaches can be broadly
classified into two classes, one prioritizing accuracy and one
prioritizing privacy. The former attempts to protect the privacy
while keeping the accuracy uncompromised. These methods
often require that the adversary has limited information about
the participants, and are typically based on secure multiparty
computation [9], [10], [11], [12], [13], [14], [15] or subspace
perturbation [16], [17], [18], [19]. The latter class provides
stronger privacy guarantees by assuming the adversary has
the maximum amount of information available about the
participants. However, they come with a trade-off between
privacy and algorithm accuracy. Examples of this class are
methods based on differential privacy [20], [21], [22], [23], [24],
[25]. Connections and combinations of subspace perturbation
and differential private mechanism can be found in [26], [27].

Even though there is evidence that revealing the gradients
in distributed applications would cause privacy leakage [8],
[28], they are mostly empirical and do not consider a fully
decentralized setting. Theoretical analysis has been absent due
to many challenges, for example, the difficulty of analyzing
information leakage across successive algorithmic iterations.
In this paper, we take the first step to theoretically analyze the
privacy leakages in distributed optimization. We derive results
showing that even though the gradients are being protected,
a certain amount of privacy leakage is inevitable. Our main
contributions are summarized as follows:

1) We derive a lower bound on the privacy leakage by
analyzing the gradient information in privacy-preserving
distributed optimization under the condition that perfect
accuracy is achieved. To the best of our knowledge, this
is the first theoretical privacy analysis in this context.

2) We show that privacy leakage depends heavily on the
objective function, especially the linearity of the system.
To have a better understanding of how the linearity of
systems affects privacy, we analyze two cases including
linear regression where the lower bound reveals all private
information and an application of neural networks where
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the lower bound also reveals some private information but
it is less severe compared to the case of not protecting
gradients.

We present experimental results obtained by computer simula-
tions to substantiate our claims.

II. PRELIMINARIES

In this section, we review the necessary fundamentals needed
for the remainder of this paper.

A. Distributed optimization over networks

Distributed optimization has been intensively investigated
due to its wide adaptability in many applications. The problems
in those applications can be formulated as optimization over a
graphical model G = (V, E), where V = {1, . . . , n} is the set
of vertices, or nodes, in the network and E ⊆ V ×V the set of
(undirected) edges representing the interconnections between
the nodes. For each node i we denote Ni = {j | (i, j) ∈ E} as
its set of neighbors, and ni = |Ni| its degree.

Assume each node i has a local objective function fi : Ru →
R ∪ {∞}. The nodes’ aim is to jointly solve an optimization
problem given some constraints over the network. This can be
formulated as

minimize
{x1, . . . ,xn}

∑
i∈V

fi (xi),

subject to ∀(i, j) ∈ E : Bi|jxi +Bj|ixj = bi,j ,
(1)

where xi ∈ Ru denotes the local optimization variable at node
i, and its associated objective function fi is assumed to be
convex, closed and proper (CCP). The notation (·)i|j indicates
that the variable/data relates to edge (i, j) but is held by node
i. In many applications, the objective functions will have a
similar form among nodes, i.e. fi(xi) = f(xi, si), and si is
user-specific (private) data that typically needs to be prevented
from being revealed to others.

In this paper, we will focus on solving consensus problems.
That is, we want to solve problem (1) under the constraint
that all xi are the same, i.e. xi = x for all i ∈ V and some
x ∈ Ru. Assuming the graph is connected, this constraint is
obtained by defining Bi|j ∈ R as

Bi|j =

 1, if (i, j) ∈ E and i < j,
−1, if (i, j) ∈ E and i > j,
0, otherwise,

(2)

and bi,j = 0, where 0 denote the zero vector in Ru. We denote
the optimal xi by x∗. That is, x∗ is a feasible solution for (1).

B. Performances and evaluation metrics

The performances of privacy-preserving distributed optimiza-
tion approaches are evaluated with the following two metrics.

1) Output accuracy: The output accuracy should reflect
how close the optimization results of the privacy-preserving
algorithms are compared to the original non-privacy-preserving
ones. Here, we use the squared error defined as ∥x(tmax)

i −x∗∥22
to quantify the accuracy, where tmax denotes the maximum
number of iterations.

2) Individual privacy: In this paper, we consider two widely-
used adversary models: the eavesdropping and passive (or
honest-but-curious) adversary model. These two adversaries
are assumed to be able to cooperate and their goal is to infer
sensitive information about the private data si. To this end, the
adversaries have the following information at their disposal: (a)
all messages communicated through non-securely encrypted
channels, and (b) knowledge of all so-called corrupt nodes,
nodes that participate in the designed protocol as expected.

As for the privacy metric, we adopt mutual information for
quantifying information leakage. Given two continuous random
variables X and Y , the mutual information is defined as

I(X;Y ) = h(X)− h(X|Y ), (3)

where I(·; ·) and h(·) denote mutual information and differen-
tial entropy2, respectively [29].

C. Distributed optimizers

A number of distributed optimization algorithms such as
ADMM [6] and PDMM [7], [30] have been proposed to solve
problem (1) in a decentralized manner. It was shown in [30] that
ADMM and PDMM are fundamentally linked using monotone
operator theory and operator splitting techniques in the sense
that ADMM is a 1

2 -averaged version of PDMM (see [31] for
details on monotone operator theory). In the ADMM-PDMM
framework, at every iteration t, each node i updates its local
optimization variable xi, and computes, for every neighbor
j ∈ Ni, an auxiliary variable zj|i. The update equations for
node i are given by

x
(t+1)
i = argmin

xi

(
fi(xi) +

∑
j∈Ni

z
(t)⊺
i|j Bi|jxi +

cni

2
x2
i

)
,

(4)

∀j ∈ Ni : z
(t+1)
j|i = (1− θ)z

(t)
j|i + θ

(
z
(t)
i|j + 2cBi|jx

(t+1)
i

)
,

(5)
where (·)⊺ denotes matrix transposition, c is a constant for
controlling the convergence rate and θ ∈ (0, 1] is a constant for
controlling the averaging of Peaceman-Rachford splitting. The
case θ = 1 results in the PDMM algorithm, while the case θ =
1
2 (Douglas-Rachford splitting) results in the ADMM algorithm.
ADMM converges for any CCP function, while convergence for
PDMM is guaranteed when the objective function is strongly
convex and differentiable. The optimality condition for (4) for
each node i ∈ V is given by3

0 = ∇fi(x
(t)
i ) +

∑
j∈Ni

B⊺
i|jz

(t−1)
i|j + cnix

(t)
i , (6)

Given that the adversary can intercept all communications,
it is evident from (6) that transmitting the auxiliary variables
zj|i would disclose ∇fi(x

(t)
i ), as x(t)

i can be determined from
(5). While encrypting the auxiliary variables at every iteration

2In the case of discrete random variables, we can replace the differential
entropy by the Shannon entropy H(·).

3Note that ADMM can also be applied to non-differentiable problems
where the optimality condition can be expressed in terms of subdifferentials:
0 ∈ ∂fi(x

(t)
i ) +

∑
j∈Ni

B⊺
i|jz

(t−1)
i|j + cnix

(t)
i .

2233

Authorized licensed use limited to: TU Delft Library. Downloaded on November 27,2024 at 13:59:09 UTC from IEEE Xplore.  Restrictions apply. 



would address this concern, it is prohibitively resource-intensive.
To address it, only initial values z

(0)
j|i are transmitted securely

and the changes in the auxiliary variables, represented by
∆z

(t+1)
j|i = z

(t+1)
j|i − z

(t)
j|i are sent without any encryption.

Therefore, upon receiving ∆z
(t+1)
j|i , one can deduce the value

of the auxiliary variable z
(t+1)
j|i as

z
(t+1)
j|i = z

(t)
j|i +∆z

(t+1)
j|i =

t+1∑
τ=1

∆z
(τ)
j|i + z

(0)
j|i . (7)

Hence, z(t+1)
j|i can only be determined whenever z(0)

j|i is known,
so that eavesdropping only reveals{

∆z
(t)
j|i : t ≥ 1, (i, j) ∈ E

}
. (8)

In what follows we will consider the case θ = 1 (PDMM)
in order to simplify the equations. However, the results are
easily generalized to all θ ∈ (0, 1].

III. PRIVACY BOUND

In this section, we first derive a privacy bound showing that
the privacy leakage depends on the difference of gradients over
successive iterations and then give some discussions on the
derived bound.

A. Main result

Assumption 1. Assume all the local optimization variables xi

reach convergence, i.e. x(tmax)
i = x∗ for all i ∈ N .

Theorem 1. Let i be an honest node that has at least one
corrupt neighbor. The adversary can learn {x(t)

i : t ≥ 1}, as
well as:

∇fi
(
x
(t)
i

)
−∇fi

(
x
(t+2)
i

)
, t ≥ 1. (9)

Proof. We first prove that all {x(t)
i : t ≥ 1} are known to the

adversary. Since the adversary has knowledge in (8), we then
have

∆z
(t+1)
j|i −∆z

(t)
i|j = z

(t+1)
j|i − z

(t)
j|i −

(
z
(t)
i|j − z

(t−1)
i|j

)
= 2cBi|jx

(t+1)
i − 2cBi|jx

(t)
i

= 2cBi|j(x
(t+1)
i − x

(t)
i ), (10)

where the second equality uses (5) (when setting θ = 1). Hence,
by collecting all the ∆z

(t+1)
j|i s, the adversary has knowledge

of x(t+1)
i − x

(t)
i at each and every iteration. Moreover, since

x
(t)
i → x∗ for all i ∈ N , the adversary can infer the individual

x
(t)
i s.
To prove (9), consider two successive z-updates (5):

z
(t+1)
i|j − z

(t−1)
i|j = 2cBi|j

(
x
(t)
i − x

(t+1)
j

)
. (11)

By combining (11) and (6) at iteration t and t+ 2, we obtain

∇fi
(
x
(t)
i

)
−∇fi

(
x
(t+2)
i

)
=
∑
j∈Ni

B⊺
i|j

(
z
(t+1)
i|j − z

(t−1)
i|j

)
+ cni

(
x
(t+2)
i − x

(t)
i

)
= cni

(
x
(t)
i + x

(t+2)
i

)
− 2c

∑
j∈Ni

x
(t+1)
j . (12)

Hence, as all terms on the RHS are known to the adversary,
(9) is known to the adversary, which completes the proof. □

B. Impact of maximum iterations

In practice, Assumption 1 may not always hold. Conse-
quently, the adversary only knows x∗ up to an error and can
therefore only estimate the individual x

(t)
i s up to a certain

accuracy. To quantify this error, let ϵ(tmax)
i = x̂

(tmax)
i −x

(tmax)
i

be the adversary’s estimation error in x
(tmax)
i . Since x

(t)
i =

x
(tmax)
i −

∑tmax−1
τ=t

(
x
(τ+1)
i − x

(τ)
i

)
and the adversary has

knowledge of x
(t+1)
i − x

(t)
i at every iteration, we conclude

that

x̂
(t)
i = x

(t)
i + ϵ

(tmax)
i , 1 ≤ t ≤ tmax, (13)

so that the adversary can only estimate (9) up to a certain
accuracy determined by ϵ

(tmax)
i .

C. Information theoretical measure

The following proposition shows that the differences between
local gradients can reveal private data and the revealed
information is no bigger than the information contained by the
gradients themselves.

Proposition 1. For each honest node i, let Si and ∇fi
(
X

(t)
i

)
be random variables having realizations si and ∇fi

(
x
(t)
i

)
,

respectively. Moreover, denote Ac = {∇fi
(
X

(t)
i

)
: t ≥ 1} and

Ad = {∇fi
(
X

(t)
i

)
−∇fi

(
X

(t+2)
i

)
: t ≥ 1}. We then have

I(Si;Ac) ≥ I(Si;Ad). (14)

Proof. Let Ae = {∇fi
(
X

(1)
i

)
,∇fi

(
X

(2)
i

)
}. Then

I(Si;Ac)− I(Si;Ad)
(a)
= I(Si;Ae,Ad)− I(Si;Ad)

(b)
= I(Si;Ae|Ad) ≥ 0,

where (a) holds since Ac can be constructed from Ad ∪ Ae,
and (b) follows from the chain rule for mutual information. □

Note that how much information is leaked through the
differences of gradients depends on the form of gradients,
i.e, on the objective function fi(·). In the coming section we
will give two FL examples to provide a deeper understanding.

IV. FEDERATED LEARNING APPLICATIONS AND NUMERICAL
VALIDATIONS

We now investigate two concrete examples of FL.

A. Linear example: federated linear regression

For each node i, consider an integer pi, a matrix Qi ∈
Rpi×u and a vector yi ∈ Rpi . The pair si = (Qi,yi)
represents the local information held by node i of a joint
linear regression problem. Let fi(xi) :=

1
2 ||yi−Qixi||22. Then

∇fi(x
(t)
i ) = Q⊺

i (Qix
(t)
i − yi) and the optimal x is given by

x∗ =
(∑

i∈V Q⊺
i Qi

)−1 (∑
i∈V Q⊺

i yi

)
. Hence, (12) becomes

∇fi(x
(t)
i )−∇fi(x

(t+2)
i ) = Q⊺

i Qi

(
x
(t)
i − x

(t+2)
i

)
= cni

(
x
(t)
i + x

(t+2)
i

)
− 2c

∑
j∈Ni

x
(t+1)
j .

Let h(t)
i = cni

(
x
(t)
i + x

(t+2)
i

)
− 2c

∑
j∈Ni

x
(t+1)
j . Defining

X
(t)
i,u =

(
x
(t)
i −x

(t+2)
i , . . . ,x

(t+u−1)
i −x

(t+u−1)
i

)
∈ Ru×u and
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Fig. 1. Reconstruction error in Q⊺
1Q1 as a function of the number of

observations.

H
(t)
i,u =

(
h
(t)
i , . . . ,h

(t+u−1)
i

)
∈ Ru×u, we have Q⊺

i QiX
(t)
i,u =

H
(t)
i,u, and thus

Q⊺
i Qi = H

(t)
i,u

(
X

(t)
i,u

)−1

.

Hence, we need u (linearly independent) observations in order
to determine Q⊺

i Qi. That is, knowing the difference of gradient
does not prevent the revealing of sensitive information Q⊺

i Qi.
Note that we only need u iterations to obtain the u

independent observations and that it does not matter which
u observations we take; the first u observations are as good
as the last ones. What matters to the adversary is that tmax

is sufficiently large so that the estimation error ϵ
(tmax)
i in

(13) is sufficiently small. This is illustrated in Fig. 1 which
shows the reconstruction error in Q1 for a fully connected
network with n = 3 nodes as a function of the number of
observations for three different values of tmax. The dimension
of the primal variables is u = 3 and we assume that each
node has p = 5 feature vectors. That is, Qi ∈ R5×3 and
y ∈ R5 which are generated at random (zero mean, unit
variance Gaussian distributed). Results are averaged over 103

runs. Similar results are found for Q⊺
2Q2 and Q⊺

3Q3. Clearly,
the larger tmax is, the smaller the input reconstruction error
is. Hence, with sufficient iterations, the sensitive data Q⊺

i Qi

can be reconstructed by the adversary (with negligible error).
In this case, techniques like differential privacy [32] can be
deployed to protect the sensitive information of individuals.

B. Non-linear example: neural networks

Unlike the above linear regression example, it is very difficult
to derive an analytical solution for non-linear applications such
as deep neural networks. Thus, we use a numerical method
to estimate private information. In conventional centralized
FL where the gradient is directly shared, a series of so-called
gradient inversion attacks [33], [28] are proposed to utilize the
leaked gradients to approximate the local dataset iteratively.
In what follows we will first briefly discuss how traditional
attacks work and then explain how to apply them given the
derived lower bound.

1) Gradient Leakage: Let (si, ℓi) denote the local private
data and label held by node i. Thus fi(xi, (si, ℓi)) denotes
the cost/objective function of node i and xi is the model
weight to be learned. Given the knowledge of the local gradient
∇fi(xi, (si, ℓi), the adversary can (partially) recover the input
data (si, ℓi) as [33]

(s′∗i , ℓ
′∗
i ) = argmin

s′
i,ℓ

′
i

∥∇fi(xi, (s
′
i, ℓ

′
i))−∇fi(xi, (si, ℓi))∥

2
,

Fig. 2. Image quality comparison of the reconstructed inputs via inverting
gradients and differential gradients using structural similarity index measure
(SSIM) for different batchsizes pi = 1, 2, 4, 8.

or variants thereof [28]. In fact, the gradient inversion attack
iteratively finds input data that produce a gradient similar to
the gradient generated by the (private) input data.

2) Differential Gradient Leakage: Similar to the attack
described above, we can recover private information from
differential gradient leakage for fully decentralized systems
given by

(s′∗i , ℓ
′∗
i ) = argmin

s′
i,ℓ

′
i

∥∥∥∇fi

(
x
(t)
i , (s

′
i, ℓ

′
i)
)
−∇fi

(
x
(t+2)
i , (s′i, ℓ

′
i)
)

−
(
∇fi

(
x
(t)
i , (xi, ℓi)

)
−∇fi

(
x
(t+2)
i , (si, ℓi)

))∥∥∥2 .
To demonstrate the leaked information caused by differences of
gradients, termed as ’differential gradient leakage’, we consider
a classification problem with the two-layer perceptron on the
MNIST dataset [34]. We first verify the test performance of
fully distributed FL using PDMM. To simulate a fully decen-
tralized system, we generate a connected random geometric
graph [35] with n = 10 and randomly split the dataset into
n = 10 folds and each node holds one fold. As expected, the
test accuracy is similar to the centralized case using FedAvg
[36], which is around 91%. Therefore, we will compare their
privacy leakages.

We consider an example with 50 nodes and each node i
randomly selects pi data samples from the dataset. In Fig. 2 we
compare the quality of reconstructed inputs using gradients and
difference of gradients under different batchsizes 1, 2, 4, 8, the
quality is quantified using structural similarity index measure
(SSIM) and the results are averaged over the complete dataset.
While for both cases the reconstruction quality degrades when
increasing batchsize, the reconstruction quality of inverting
gradients is clearly better than the case of inverting difference
of gradients. This is further illustrated in Fig. 3 where some
example images are demonstrated for visualization. Due to
the space limit, we only demonstrate three cases for 1, 2, 8
and in each case 8 images are randomly selected from the
nodes. Overall, we conclude that the difference of gradients
can reveal sensitive information about the input private data
and the reconstructed inputs are less accurate compared to the
traditional case of revealing gradients directly.

V. CONCLUSION

In this paper, we investigated privacy leakage in the con-
text of privacy-preserving distributed optimization through a
gradient flow analysis. We derived a theoretical bound on the
minimum information available to the adversary, showing that
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Fig. 3. Reconstructed inputs through inverting gradients and differential
gradients using the MNIST datasets for different batchsizes pi = 1, 2, 8.

the difference of local gradient is revealed. With this bound
we quantify the privacy leakage given the objective function.
By analyzing two FL applications, we showed that for linear
regression the private information is inherently revealed during
the iterations. For neural network applications, the derived
bound also reveals sensitive information about the private data
but it is less severe compared to the traditional case where local
gradients are directly revealed. We substantiated our claims
with both theoretical investigations and numerical simulations.
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