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Problem area 

Airports have a hard time keeping up with the air traffic growth rate. Apart from 

the expansion of airport infrastructure to increase capacity, airports aim to higher 

the efficiency of operations. All stakeholders (ATC, airlines, and service providers) 

require capacity figures in order to plan their operations and thus rely on airports 

to provide these. Capacity underestimation lead to unnecessary cancellation costs, 

customer dissatisfaction, and inefficient use of the system, whilst overestimations 

lead to long delays and congestion. These are problems that are introduced in  

(pre-)tactical planning; a few days before the planning execution. Accurate capacity 

forecasting is one means of increasing predictability and therefore the use of 

resources. How to integrate accurate capacity forecasts in the planning process of 

multiple stakeholders? 

Description of work 

This document is the thesis research project of Jelmer Borst. The research entails 

the development of capacity forecasting models and integrating these as part of a 
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negotiation model for distributed operational planning. The content focusses on 

the forecasting of runway operations, snow removal operations, and de-icing 

operations, based on winter weather forecasts. 

Results and conclusions 

This document presents heuristic models as alternative to computationally 

expensive planning algorithms. Additionally, decision flows for air traffic control, 

snow removal, de-ice operator and airlines are presented as basis for distributed 

planning simulation using principled negotiation. The simulation is the basis for a 

decision support system for predictive operations. Additionally, the impact of 

overestimating and underestimating of capacity shows a 1.5% increase in delay and 

cancellation costs for each deviation percentage with respect to the realization. 

Applicability 

The focus of this research is planning under winter scenarios. The underlying 

predictive models are extended to include winter capabilities and therefore remain 

valid for other weather scenarios. 

The capacity models are input for an airport collaboration toolset. The 

stakeholders included are the airport, air traffic control, snow removal, and de-

icing operator. The same methodology can be applied to other stakeholders whom 

are involved in the airport operations or in different areas that includes operational 

planning processes. 

Lastly, this work is applicable to any major airport and does not confine itself to a 

specific airport. 
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Abstract 

Airports have a hard time keeping up with the air traffic growth rate. Apart from the expansion of airport 

infrastructure to increase capacity, airports aim to higher the efficiency of operations. All stakeholders (ATC, airlines, 

and service providers) require capacity figures in order to plan their operations and thus rely on airports to provide 

these. Capacity underestimation lead to unnecessary cancellation costs, customer dissatisfaction, and inefficient use 

of the system, whilst overestimations lead to long delays and congestion. These are problems that are introduced in 

(pre-)tactical planning; a few days before the planning execution. Accurate capacity forecasting is one means of 

increasing predictability and therefore the use of resources. 

The above lead to the following research objective: 

Research objective 
“To increase predictability in the (pre-)tactical airport airside operational processes through integrating capacity 
forecasting and decision support for air traffic control, the airport and service providers under winter conditions.”  

At the core of the objective of the research objective, are the 2 main goals: 

1. To extend current capacity forecasting models to include winter conditions, thus allowing for all-weather 

capacity forecasting. 

2. To develop a decision support facility that evaluates the effect of capacity forecasting and integrates the 

collaborative planning of runway management, de-icing, and snow-removal operations. 

The above objective and goals require forecasting for the runway configuration and forecasting for de-icing, snow 

removal, and runway capacity. This is used in planning algorithms for de-icing, snow removal, and runway flight 

planning. Lastly, the stakeholders need to establish a joint plan of action through collaborative planning with the 

aforementioned planning algorithms based on the capacity forecasts. 
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Runway, de-icing, and snow removal capacity is mostly determined by meteorological influences such as precipitation, 

temperature and wind conditions as well as available staff and equipment. Therefore, KNMI model output statistics 

(MOS) forecast data has been used to determine aircraft wind and visibility conditions and snow accumulation. These 

are then used as input to ensure values do not exceed safety limitations, such as maximum cross or tailwind or snow 

depth at the runway. 

The joint plan of action is established through a multi-agent negotiation model using the principled negotiation 

protocol. Each stakeholder (air traffic control, snow removal team, de-icing service provider, and airlines) is modelled 

as a self-motivated agent, aiming to maximize their goals. For each agent an option generation algorithm is introduced 

that resembles the agent its decision making. 

 Runway management: Ensure safe operations and deliver best capacity / demand fit 

 Runway flight planning: Minimize arrival and departure delays 

 Snow removal management: Satisfy runway availability during snowfall 

 De-icing planning: Minimize departure delays 

 Airlines: Minimize (disruption) costs through possible flight cancellations 

Simulating the negotiation process shows an average of 13.8 proposals required per agent to reach an agreement. 

This is acceptable with a fairly large amount of agents (121, consisting of mostly airlines) and relatively ‘dumb’ agents 

compared to sophisticated planning algorithms and long-term experts. Estimated is that in reality the negotiation 

process would require an average of 0.5 proposals per agent to reach the agreement. Both are very favourable 

compared to the current situation in which all stakeholders are meeting for hours in similar winter scenarios. 

Lastly, the costs of over- or underestimating runway capacity are analysed. In both cases costs are impacted 

significantly. Underestimations lead to unnecessary cancellations and cancellations costs increase, whilst 

overestimations lead to unnecessary delays and delay costs increasing. Underestimating with 10% lead to a 15% 

increase in total costs and 10% overestimating lead to 20% increased costs. Whilst both lead to extra costs, 

underestimating capacity remains a better option than overestimating it. 
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1 Introduction 

Airports have a hard time keeping up with the air traffic growth rate. Apart from the expansion of airport 

infrastructure to increase capacity, airports aim to higher the efficiency of operations. All stakeholders (air traffic 

control, airlines, and service providers) require capacity figures in order to plan their operations and thus rely on 

airports to provide these. Capacity underestimation lead to unnecessary cancellation costs, customer dissatisfaction, 

and inefficient use of the system, whilst overestimations lead to long delays and congestion. These are problems that 

are introduced in (pre-)tactical planning; a few days before the planning execution. Accurate capacity forecasting is 

one means of increasing predictability and therefore the use of resources. 

1.1 Problem formulation 

Airlines have little influence in the expansion of airport capacity, but require capacity figures in order to plan their 

operations and thus rely on airports to provide these. Currently, declared capacity values are used in long-term 

planning, but these values are not representative at all scenarios. Factors such as weather affect the capacity such 

that it affects flight planning. 

Underestimations of capacity may lead to unnecessary cancellation costs, customer dissatisfaction, and inefficient use 

of the system, whilst overestimations lead to long delays and congestion. This is an issue that arises due to the 

uncertainty (unpredictability) of the operations. This uncertainty can be limited through receiving up-to-date 

information and forecasting. 

Additionally, most current planning systems include advanced algorithms that run in batches (few times a day) but fail 

to provide real-time planning support. Most real-time planners are done manually, through the use of experts. 

Additionally, planning systems are at place to support one organization (intra-enterprise). However, with a lot of 

dependencies in airport operations, there is a need to shift towards inter-enterprise planning [1]. This shift offers the 

possibilities to spot issues earlier on and help synchronizing supply and demand [2]. Both trends are visualized in 

Figure 1, where trajectory (1) is desired and can be achieved through firstly move to real-time planning (2) and then 

move to inter-enterprise planning (3). 

In short, two main gaps are identified: 

1. Uncertainty in operations: Little capacity forecasting done by all stakeholders 

2. Lack of coordination: Little capacity information shared between stakeholders 

Based on these two major gaps: how to integrate accurate capacity forecasts in the planning process of multiple 

stakeholders? And: how to effectively collaborate on the complete airport planning, combining each stakeholder’s 

wishes? 
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Figure 1: Change in enterprise systems [1] 

1.2 Research objective and goals 

Through delineation and taking into account scientific relevance, as well as time constraints, the following research 

objective is derived.  

 What: Capacity forecasting 

 Who: Airport, Air Traffic Control, de-icing service providers, and airlines 

 Where: Airport runway operational processes 

 When: Winter conditions 

 Why: To increase operational efficiency and predictability 

 How: Decision support facility for collaborative operational planning 

The delineation is formalized into a research objective, which is defined as: 

Research objective 
“To increase predictability in the (pre-)tactical airport airside operational processes through integrating capacity 
forecasting and decision support for air traffic control, the airport and service providers under winter conditions.” 

At the core of the objective of the proposed research, are the 2 main objectives: 

1. To extend current capacity forecasting models to include winter conditions, thus allowing for all-weather 

capacity forecasting. 

2. To develop a decision support facility that evaluates the effect of capacity forecasting and integrates the 

collaborative planning of runway management, de-icing, and snow-removal operations. 
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In order to reach the above goals, the following sub-questions are defined that are required to provide a satisfactory 

answer to the objective. The methodologies that support in answering the questions are discussed in section 1.3. 

1. How can the capacity forecast models be extended to include winter conditions? 

a. How to model runway capacity under winter conditions? 

b. How to model the relationship between de-icing capacity and runway capacity in winter conditions? 

c. How to model the relationship between snow removal capacity and runway capacity in winter 

conditions? 

2. How to model a collaborative planning decision support facility? 

a. How to model the stakeholder decisions? 

b. How to include stakeholder interests? 

c. How to integrate forecast uncertainty? 

d. What is and how to choose the best decision w.r.t. the forecasted capacity? 

e. How to incorporate decision deviations (i.e. human factors)? 

3. What advantages can be gained through planning with forecasted capacity? 

a. What are the effects for different stakeholders? 

b. What are impacts on the planning through capacity forecasting on efficiency? 

c. What are impacts on the planning through capacity forecasting on predictability? 

1.3 Research scope and methodology approach 

As the objective includes the extension of current runway capacity forecast models with the inclusion of winter 

conditions, this leads to scoping the research to airside capacity, snow removal capacity, and de-icing capacity. The 

reason to include all three is that each influences the other in winter conditions. That is to say, more collaboration is 

required. With respect to the stakeholders, this means that the main actors whom are responsible for the runway, 

snow removal, and de-icing processes are taken into account. 

Summarized, it means that the scope of this research is limited to: 

 The airport airside operational processes 

 Airport runway, de-icing and snow-removal capacity 

 The stakeholders: 

o Air Traffic Control, performing runway management at an airport 

o Airport, performing the snow-removal operations at an airport 

o Service provider, performing the de-icing operations at an airport 

o Airlines, performing flight operations between airports  

The 2 main goals that were defined in the previous section result in 3 major elements for developing the model to 

evaluate the research objective, namely: 

1. Capacity forecasting 

2. Planning optimization 

3. Collaborative planning 
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The process that links the forecasting of capacity and the decision support, whilst taking into account the four 

aforementioned stakeholders is shown in Figure 2. The grey processes, planning optimizers, are assumed external; 

assuming existing models that can be used and integrated and do not need to be developed within the research 

project. Snow removal planning models were not found in literature and developing one is therefore in scope for this 

thesis. 

 

Figure 2: Research process flow indicating to-be-developed (dark blue) and of-the-shelf (grey) processes 

The structure of Figure 2 is used as a basis for this document. The capacity forecasting is elaborated upon in chapter 2, 

planning modelling and optimization in chapter 3, and the collaborative planning is addressed in chapter 4. The 

integration of all three components can be found in chapter 5. 
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2 Airport capacity forecasting 

The efficiency of an airport is a trade-off between demand and used or available capacity. There have been a 

multitude of efforts that work on the forecasting of demand, yet to make this trade-off accurately and increase the 

airport its efficiency, proper forecasting of capacity is vital. The purpose of capacity forecasting can be summarized as 

follows [3]: 

 Major improvement in predictability of airport operations 

 Provide input to planning systems through automatic airport capacity forecasts 

In Figure 3, a general overview is shown with respect to the integration and goals of forecasting capacity. The 

dependencies in the models on many aspects of the airport’s components, integration of flight plans, ATC systems, 

meteorological forecasts, planning and other airport systems are necessary in order to deliver useful capacity 

forecasts to the respective stakeholders. 

 

Figure 3: Airport capacity forecasting context [4] 

One can provide forecasts for 3 particular phases: strategic, pre-tactical and tactical phase. The strategic phase is up to 

a week before execution, the pre-tactical phase up to a day before execution, and the tactical phase includes the day 

before and the day of execution. The scope here is the tactical and pre-tactical phase. In these phases, meteorological 

forecasts still have acceptable uncertainty ranges and are most useful in the airport operations. Additionally, it is 

scoped to runway capacity, de-icing capacity, and snow removal capacity as highlighted in Figure 4. The figure 

provides a comprehensive overview of all airport capacity components. 

The first research question deals with the problem of extending forecast models to include winter conditions for the 

near-term. Firstly, the modelling of capacity is elaborated upon in section 2.1 as a basis. In order to extend forecasting 

models to include winter conditions, a deeper dive into weather forecast models and weather forecast model outputs 
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is required to comprehend the input of the new model. This is done in section 2.1.3. Individually forecasting the 

capacity based on the weather information is then done in 2.2 thru 2.4, dealing with runway capacity, snow removal 

capacity and de-icing capacity, respectively. 

 

Figure 4: Airport capacity breakdown, based on [3]; in scope (dark blue), out of scope (grey) 

2.1 Capacity modelling 

Before diving into the forecasting of capacity, it is important to understand what capacity exactly is. This section 

therefore provides the baseline definitions of capacity in the first subsection, 2.1.1. Following, the main influencing 

factors on capacity are described, from which the ones that apply to this research are highlighted. 

2.1.1 Capacity definitions 

Capacity refers to the throughput of a facility, being the maximum number of entities that can be handled in a period 

of time. When referring to airport capacity, one usually refers to the runway capacity and the associated amount of 

aircraft that can be handled as this is constraining factor for the majority of airports. However, there is a lot more to 

airport capacity than just runway capacity as is shown in Figure 4. Generally, when talking of ‘(airport) capacity’ one 

refers to the `Declared capacity'. Yet, there are 4 types of capacity that can be distinguished in process facilities [3] [5]  

[6]. Using runway capacity as an example, ‘entities’ refer to the aircraft that take-off or land (are processed). 

 Intrinsic Capacity 

Availability  of  capacity  (supply)  directly  related  to  infrastructure  element  or  resource;  theoretical 

capacity, does not include external limitations. 
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 Operational Capacity 

Also referred to as Unconstrained Capacity: Actual capacity (supply) provided by the infrastructure element 

or resource; recognizes infrastructural complexity. 

 Saturation Capacity 

Also referred to as Ultimate Capacity: The maximum number of entities that can be served without violating 

any rules or regulations, assuming continuous demand. 

 Declared Capacity 

Also referred to as Practical Capacity: Number of slots available for schedule coordination purposes, taking 

into account infrastructure, typical operating conditions, accepted delay and political issues. With declared 

capacity usually referring to average values that can be used for long-term planning, practical capacity can 

vary throughout the day, accounting for peaks and other influences. 

The above definitions can be visualized as in Figure 5, where the practical capacity is matched to an acceptable 

amount of delay 𝑋. The saturation delay indicates the maximum throughput of the configuration but shows larger 

amounts of delay occurring. Lastly the unconstraint capacity is shown, which follows the same curve as the saturation 

capacity, however due to no additional constraints then safety it shows a higher capacity level for the same delay 

values. Clearly, it can be noted for each demand/delay curve in Figure 5 that steady-state delays growths towards 

infinity as movements/hour increase due to the nature of the problem: a 10 second delay for the first landing aircraft, 

introduces at least the same delay in the directly following aircraft. 

 

Figure 5: Capacity versus delay indicating practical (𝜆𝑃𝑥), saturation (𝜆𝑆) and unconstrained (𝜆𝑈) capacity [7] 

Note: The capacity definitions along with Figure 5 are for general process facilities. In the case of runway capacity, the 

behaviour is slightly different. After the integration of flow management meant the process cannot be modelled 

stochastically anymore, which has led to decreased delay at high levels of capacity. 

2.1.2 Capacity influencers 

Depending on which capacity component one is looking at, there are different sources that impact the capacity level. 

Landside operations are primary dependent on resource availability and planning. Desks such as passport or security 
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control are subject to the servicing rate of employees and the number of booths that are available, with employees 

working at a fairly steady rate. 

In addition to resources and planning, airside operations also need to take into account the impacts of weather.  

When weather such as snow arrives, airside capacity is significantly impacted and may only leave a fraction of capacity 

remaining. But also wind direction and speeds impact capacity through the limitations in cross and tail winds, limiting 

runway configuration choices. 

Lastly, on all aspects of airport operations and planning, rules and regulations are in effect. In the Netherlands, for 

example, noise abatement is defined by law to which airports simply must adhere to. These regulations are in place to 

minimize the annoyance amongst citizen of passing aircraft, but in place automatically limits the airport its operations. 

Summarized, the list below is a comprehensive list of major influencers on the airport its capacity [8, pp. 238-245] [9]. 

The influencers highlighted in bold are deemed in scope and related to this research. Others are shown here for 

completeness. 

 Airport characteristics 

o Geographic layout 

o Equipment 

o Runway configuration 

o Runway size 

o Runway exits and taxiways 

 Meteorological conditions 

o Wind speed & wind direction 

o Visibility conditions (RVR) & cloud base 

o Precipitation, snowfall and ice formation 

 Planning 

o Staff availability 

o Equipment availability 

o (Un)Scheduled maintenance 

o Flight schedules and aircraft mixes 

o Flight trajectories 

o Aircraft arrival and departure ratios 

 External constraints 

o Noise limits 

o Runway restrictions 

o Safety regulations 

o EU regulations 

o Human / social factors 

o ATC workload 

Most of the above influencing factors are mapped in Table 1 with respect to the impact per planning phase, partly on 

basis of [10]. It shows that influences such as human factors have considerable impact in the near-term, but is 

negligible in the long-term. With ATC guiding aircraft from, to, and around airports, the efficiency of an individual 

controller directly impacts capacity, yet when measured over a longer term the individual ATC performance evens out. 

Weather largely impacts the tactical phase as well and has very little influence on the long-term.  
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For strategic planning, the airport cannot use reliable weather forecasting and thus relies on general capacity figures. 

Regulations, for example, primarily impacts capacity on a strategic level. The rules at which the processes abide to do 

not change overnight, but do have substantial impact. Consider noise regulations as an example of a major impacting 

regulation. These lead to decreasing capacity at night and different runway use distribution over time. 

Table 1: Capacity influencing factor impacts per planning phase 

Impact Tactical Pre-tactical Strategic 

Considerable  Meteorological conditions 

 Human factors 

 ATC workload 

 Forecasted meteorological 
conditions 

 Staff / equipment 
availability 

 Regulations and limits 

Negligible   Flight trajectories  Human factors 

 Meteorological conditions 

2.1.3 Meteorological conditions and forecasts 

There are various meteorological models that aim to forecast the weather and are usually referred to as NWP models, 

numerical weather prediction models. In this research, forecasting data format that is used is Model Output Statistics 

(MOS). MOS aims to provide sensible weather parameters and is usually the output of a transformation of NWP 

output data. The weather parameters are a set of predictands that are the result of the forecasted physics of the NWP 

model. 

Whilst other techniques usually deliver an ensemble forecast as the result of NWP model output, MOS enhances the 

NWP output with probabilities of events occurring. Events that are related to our research and are included in MOS 

data are snow or visibility levels. For example it forecasts the probability of visibility being larger than 5km, instead of 

merely providing with an (average) forecasted visibility range. Reliability of MOS is usually better than the 

probabilities that are the result of ensemble post-processing [11]. More information regarding MOS can be found in 

Appendix B for Dutch KNMI data and Appendix C for US data. 

This research is scoped to winter conditions and thus requires snowfall forecasting data. The availability of forecast 

can be of 3 possible ways: no snow forecast is made, snow intensity category is given, or snow is already forecasted. In 

Appendix D US snowfall data is explored along with possible methods that can derive snowfall based on other forecast 

features, in the case where forecast data contain no snow features. 
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2.2 Runway forecasting 

Within the forecasting of runway operations, two major components arise. These two components are the runway 

configuration and the runway capacity. Here, capacity is driven by the configuration but includes additional criteria 

and forecast data. In other words, the knowledge of the configuration does not de facto lead to a forecasted runway 

capacity. The coming two subsections will deal with each of the two components, respectively. 

2.2.1 Runway configuration forecasting 

During take-off or landing at a particular runway, the manoeuvres of an aircraft are affected by the wind. For aircraft, 

a headwind is favourable in both take-offs and landings. Namely, more lift is generated and allows for safer 

operations. Additionally, low crosswinds are favoured, as a high crosswind make it harder to manoeuvre and 

decreases the safety. Apart from safety, tailwind and crosswind decrease the ground speed at take-off. A lower 

ground speed leads to a longer required runway length, which might not be available. Therefore, tailwind and 

crosswind should be below the maximum allowable values. 

The result of forecasted wind direction 𝛼𝑤 and wind speed 𝑉𝑤 on each runway 𝑠 is different due to its geographic 

orientation 𝛼𝑠. It is important to know the components of the wind speed in terms of crosswind and tailwind (𝑉𝑐,𝑠 

and 𝑉𝑡,𝑠) due to the safety precautions that are defined using these components. Both can be found through simple 

trigonometry and the relations are shown in eq. ( 1 ) and eq. ( 2 ).  

 𝑉𝑡,𝑠 = 𝑉𝑤 𝑐𝑜𝑠(𝛼𝑤 − 𝛼𝑠) eq. ( 1 ) 

 𝑉𝑐,𝑠 = 𝑉𝑤 𝑠𝑖𝑛(𝛼𝑤 − 𝛼𝑠) eq. ( 2 ) 

Apart from wind conditions impacting lift, the limits are also established with respect to the runway friction. Especially 

during crosswind operations a high friction runway is desired, as it prevents the aircraft from slipping sideways. But 

also during landings the friction is necessary to allow the aircraft to brake within the runway its length or during take-

off when braking is required in case of a rejected take-off. 

In wet or ice scenarios, the friction is reduced. To assess the impact, the runway is categorized using friction 

measurements and pilot reports (PIREPs) into a runway condition category (RCC). Or, if both are not available, the 

category may be determined by the (estimated) amount of liquid present on the runway. This may be done by using 

the Take-off and Landing Performance Assessment (TALPA) matrix (see Appendix D). 
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Figure 6: Feasible wind directions for a given runway 𝑟1 [12] 

For each given runway condition category, there exists a maximum tail and crosswind coefficient. Checking the cross- 

and tailwind component that exist for each runway 𝑠 as done in eq. ( 3 ), results in the ‘feasibility’ of a runway. Figure 

6 shows how runway can be checked for feasibility based on the wind direction and speeds. Namely, the hashed areas 

show the crosswind and tailwind limitations for a given runway, which the forecasted wind conditions can be 

compared against. Additionally, the snow depth of each runway should be below the maximum allowable depth 

(more information see section 2.3). This then leads to the set of feasible runways 𝑅 and defined in eq. ( 4 ). 

 𝑠 = {
1, if 𝑉𝑡,𝑠 ≤ 𝑉𝑡,𝑚𝑎𝑥 ∧ 𝑉𝑐,𝑠 ≤ 𝑉𝑐,𝑚𝑎𝑥 ∧ 𝑑𝑠 < 𝑑𝑚𝑎𝑥
0, elsewhere

, ∀𝑠 ∈ 𝑆 eq. ( 3 ) 

 𝑅 ∈ {𝑠|𝑠 ∈ 𝑆, 𝑠 = 1} eq. ( 4 ) 

With the feasible runways 𝑅, a set of feasible configurations 𝐶 can be found that consist of all possible configurations 

that consist of runways 𝑟 that exist in 𝑅, as shown in eq. ( 5 ). As elaborated in [13], air traffic control at many airports 

use the concept of runway configuration preference lists. This list consist of possible configurations that is already 

sorted, where a trade-off between capacity, noise, and other external factors have been made. Combining the set of 

feasible configurations and the preference list then leads to a sorted list that incorporates cross- and tailwind 

limitations. 

 𝐶 ∈ {𝑐|𝑟 ∈ 𝑐: 𝑟 ∈ 𝑅} eq. ( 5 ) 

For now, the availability of the runway in terms of snow is not accounted for in the set of feasible runway 

configurations. That is to say, the runway might be feasible (safe to use), but not available due to possible snow 

removal operations. Snow removal might occur before the snow depth reaches its maximum allowed depth. This is 

due to the fact that the runway condition is dependent on the snow removal operations. More can be found in section 

2.3. 
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2.2.2 Runway capacity forecasting 

Visibility is the main driver that determines runway capacity during operations. The visibility refers to seeing the 

runway over a distance and from a certain height. When a pilot lands an aircraft, it needs to be able to see that a 

runway is clear of any obstacles and what its altitude is with respect to the runway. If the pilot is not able to do that, 

instruments are required and for safety reasons more time is reserved per aircraft. 

Because of safety regulations, runway configurations have decreased capacity under lower visibility conditions. The 

levels of capacity are the declared capacity values associated with a certain visibility condition. The conditions are a 

factor of cloud base height and runway visibility; an example is shown in Figure 7. 

 

Figure 7: Visibility categories [14] 

Combining the forecasted condition with this capacity as done by Hesselink et al. [15], see eq. ( 6 ), provides the 

forecasted reference capacity. Hereby, the weighted average capacity 𝐶𝐹
𝑅 is calculated by multiplying the probability 

𝑃(𝑀) for each visibility condition 𝑀, times the capacity 𝐶𝑀(𝑋, 𝑌) of a configuration 𝑋 in peak category 𝑌 under that 

condition. It is referred to as reference capacity, as snow removal procedures are not yet taken into account that 

disturb the capacity levels (see ‘clearance interval’ in Figure 8). 

 𝐶𝐹
𝑅 = ∑𝑃(𝑀)𝐶𝑀(𝑋, Y) eq. ( 6 ) 

The maximum theoretical runway capacity decreases over time under winter conditions due to the snow 

accumulation, as can be seen in Figure 8. However, due to large safety margins that are applied, this effect is not 

included in the computation of capacity as the practical runway capacity already takes this into account. 
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Figure 8: Airport runway capacity under snow conditions [16] 

2.3 Snow removal capacity forecasting 

During snow removal procedures there are three types of equipment that are being used [17]: 

1. Rotary plough, also known as blower 

2. Displacement plough 

3. Sweeper 

In many cases, the sweeper and displacement plough are combined, but the procedure remains the same. The 

displacement plough will move the snow from the runway to the side of the runways and uses the sweeper to remove 

the remaining snow. This is done at a relatively high speed: 30-40kph, depending on the equipment. With the width of 

a runway being around 45m, multiple ploughs need to clear next to the other or multiple passes are required. 

At the runway banks, the slower rotary plough will gather the heaps of snow and blow either field inwards or into a 

truck when the former is not possible. Lastly, a de-icing truck follows provide anti-icing liquid that aims to minimize 

the snow build-up and ice formation. The ice formation is important to minimize, as its very low friction results in bad 

braking action and has a major impact on safety. 

Based on the previous, the capacity of rotary ploughs is determined through the speed of processing snow, usually in 

tonne/hr, and the capacity of a displacement plough and sweeper is determined by its blade width i.e. the area it can 

cover whilst clearing under a certain velocity. 

Clearing an area 𝑆𝑎  of priority 𝑎, velocity of clearing 𝑉 with a blade of width 𝑏𝑒 and 𝑛𝑝 number of ploughs, the time to 

clear the area 𝑡𝑎can be computed as in eq. ( 7 ). This relation also includes the efficiency factor 𝜂𝑝, which can be 

assumed constant at 70% as per the Airport Snow and Ice Control Equipment advisory of the FAA [17]. 
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 𝑡𝑝,𝑎 =
𝑆𝑎𝑑𝑠𝜌𝑠
𝜂𝑉 ∑ 𝑞𝑝

𝑃
𝑝

=
𝑆𝑎

𝑛𝑝𝜂𝑝𝑉𝑏𝑒
 eq. ( 7 ) 

 𝑏𝑒 =
𝑞𝑟𝜂𝑅

𝑑𝑠𝑉𝜌𝑠𝜂𝑝
× 4.545 = 𝑏𝛼 𝑐𝑜𝑠 𝜃 eq. ( 8 ) 

The capacity of rotary ploughs, 𝑞𝑅, is the amount of snow it can process per time unit. The time required to clear can 

be easily computed as in eq. ( 9 ), using the same notation as in eq. ( 7 ). 

 𝑡𝑅,𝑎 =
𝑑𝑠𝜌𝑠

𝜂𝑅 ∑ 𝑞𝑟
𝑅
𝑟

=
𝑑𝑠𝜌𝑠
𝑛𝑅𝜂𝑅𝑞𝑅

 eq. ( 9 ) 

 𝑡𝑎 = 𝑚𝑎𝑥(𝑡𝑅,𝑎  , 𝑡𝑝,𝑎) eq. ( 10 ) 

Concluding, the capacity of snow removal is largely dependent on the availability of equipment and staff. Both can be 

extracted from either planning tools and are not related to the weather forecasts. However, in many cases the staff 

availability is scheduled using weather forecasts as input. 

 𝑡𝑎 = time to clear area 𝑎 [s] 

 𝑆𝑎 = surface area of priority area 𝑎 [m
2
] 

 𝜌𝑠 = snow density [kg/m
3
] 

 𝑑𝑠 = snow depth [m] 

 𝑉 =speed of snow displacement [m/s] (plough: 𝑉𝑝, blower: 𝑉𝑅) 

 𝑞𝑟 = snow clear rate of resource 𝑟 [kg/s] 

 𝜂 =snow clear efficiency [-] (plough: 𝜂𝑝, blower: 𝜂𝑅) 

 𝑛𝑝 = number of ploughs 

 𝑏𝑟 = plough blade width (effective: 𝑏𝑒, actual: 𝑏𝛼) 

When computing snow removal performance, it can be assumed to clear the maximum allowable depth 𝑑𝑠 = 1 inch 

(25.4mm) of snow, with a snow density 𝜌𝑠 = 50𝑘𝑔/𝑚
3 (new snow), and snow removal efficiency 𝜂𝑝 = 𝜂𝑅 = 70%. If 

equipment is not yet specified, a velocity of 𝑉 = 40𝑘𝑚/ℎ can be assumed. 

The time to clear an area is – naturally – dependent on the size of that area. Time is therefore not a useful unit to use 

when forecasting snow removal. A unit that is irrespective of the size of the area is the performance of snow removal 

operations, which can be described by the area that can be cleared in 1 hour, or m
2
/hr.  

Rewriting eq. ( 7 ) to express the snow removal capacity forecast 𝐶𝐹
𝑆(𝑡), leads to eq. ( 52 ). It assumes 𝑁 ploughs that 

work and can be staffed at time 𝑡. Each plough 𝑛 has their respective velocity 𝑉(𝑛) and the blade width 𝑏𝑐(𝑛). 

 𝐶𝐹
𝑆(𝑡) = ∑𝜂𝑝𝑉(𝑛)𝑏𝑐(𝑛)

𝑁

 eq. ( 11 ) 
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2.4 De-icing capacity forecasting 

Ice formations on the lift surfaces of an aircraft change the aerodynamic performance of aircraft such that it 

negatively impacts the lift. Not only is this less efficient, it is dangerous as well as stall behaviour is heavily impact. To 

prevent ice on these surfaces, anti-icing or de-icing fluid is applied to reduce or prevent ice formation.  Aircraft de-

icing is required when frost, snow, or ice accumulates on the wing of an aircraft. At airports de-icing is done in two 

possible ways: either an aircraft taxies to a de-icing location for a de-icing truck to apply the fluid, or the truck will 

drive to the aircraft at the gate. Both have their benefits and an airport might even offer both varieties, depending on 

the de-icing service provider. 

The problem managing de-icing operations is that many airports do not do this very often. When de-icing is less 

common, fewer de-icing stations are present. Therefore, the de-icing facilities are usually the limiting factor in the 

departure throughput. With de-icing facilities being limited to a couple of stations, the de-icing capacity is limited as 

well. The limiting capacity often leads to a capacity-demand imbalance and delays are quickly accumulated. 

The de-icing time for an aircraft is determined based on the de-ice category of the aircraft. The categories are defined 

in the Association of European Airlines de-icing recommendations [18]. Herein, it provides an overview for the 

majority of aircraft with the associated de-ice category and categorises each aircraft between category A and F, where 

A takes the least amount of time to de-ice and F the most. As the de-icing is the application of fluids on the wing and 

tail surfaces, the categories are mostly determined through the surface areas of each aircraft. 

The service rate, and thus the capacity, of a de-icing facility can be expressed in the number of aircraft serviceable per 

hour. However, the service rate then depends on the demand, namely the type of aircraft that need to be serviced. As 

the time to de-ice an aircraft determined by the amount of de-icing fluid required, which in turn is a function of the 

surface areas and the fluid rates, the alternative is to express the service rate in the amount of area that can be de-

iced per time. The fluid spray rate can be assumed to be constant. 

According to the de-icing guidelines [18] it takes 1L per 1m
2
 to remove 1mm of ice. With the fluid being constant in 

the amount of litres per hour, this leads to the cleanable surface area through the aforementioned relationship and is 

shown in eq. ( 12 ).  The surface area that can be cleaned per hour by de-icing station 𝑚 is denoted by 𝑆𝑑(𝑚). 

Equating the surface area to the fluid required (as 1L = 1m
2
) leads that 𝑆𝑑(𝑚) = 𝜇(𝑚), with 𝜇(𝑚) denoting the fluid 

rate by de-icing station 𝑚. An efficiency factor is required as application of the fluid is never perfect. Correlating the 

fluid required and the surface area per aircraft from [18], leads to the estimated de-icing efficiency factor of 𝜂𝑑 =

0.25. This is compensated for in eq. ( 12 ), which expresses the forecasted de-icing capacity 𝐶𝐹
𝐷 with the 

aforementioned variables. 

 𝐶𝐹
𝐷(𝑡) =∑

𝑆𝑑(𝑚)

1 + 𝜂𝑑
𝑀

=∑
𝜇(𝑚)

1 + 𝜂𝑑
𝑀

 eq. ( 12 ) 
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3 Airport operational planning using capacity 
forecasts 

Each stakeholder involved in the operation of the airport has its own goal and desires; hence, each stakeholder aims 

for efficient use of its resources.  This aim also applies to the planned pre-tactical operations, which is the focus of this 

research.  The evaluation of resource efficiency is done through a comparison between (forecasted) demand and 

(forecasted) capacity. There is thus no escape in involving some form of planning as it will provide the required output 

to make the comparison. 

Preferably, a heuristic will be used to plan the operations instead of a full-blown optimization technique. This allows 

for computation speed, which will provide advantages when combining the algorithms during collaboration 

simulations. Additionally, heuristics also provide more flexibility in modelling and therefore allows more complex 

decision flows to be integrated in the collaboration model. Also, keep in mind that most stakeholders will always use 

their own (planning) tools for generation new solutions. The latter will elaborated upon at a later stage, namely in 

chapter 4. This chapter will also evaluate the heuristic with respect to the optimization to provide a sense of accuracy. 

3.1 Runway planning 

In order to determine the capacity fit of a runway configuration, it is deemed important to evaluate this measure 

against the traffic demand. As such, it can be determined if the particular runway configuration provides 

undercapacity or overcapacity. With additional computation, the delays with respect to the planned arrival and 

departure times can be determined. 

With a given demand, the flights are scheduled and lead to an initial plan. The assumption is made that this initial plan 

is computed by current planning systems and thus already exists, consisting of the scheduled departure and arrival 

times. This assumption also means that no sophisticated flight sequencing or planning algorithm is required. Based on 

the forecasted capacity, a forecasted delay can be computed as a result of the discrepancy between capacity and 

demand. 

The flight planning can be divided up into 𝑛 slots, where 20min per slot is a generally accepted timeframe by ATC. In 

such a timeframe (slot 𝑘) there exists a forecasted service rate  𝜇𝑘 and a given demand 𝜆𝑘. Combining both rates lead 

to the expected (average) delay 𝑑𝑖  for flight 𝑖 in slot 𝑘. The distinction between arrival and departure demand, service 

rate, and delay has to be made. The relationship is shown in eq. ( 13 ). 

The plan can then be updated by adding the expected delay to the scheduled arrival time 𝑇𝑆𝐴𝑇  and scheduled 

departure time 𝑇𝑆𝐷𝑇 , which is shown in eq. ( 14 ). 
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 𝑑𝑖 = max (0, 𝑑𝑖−1 +
𝜆𝑘
𝜇𝑘
− 1) eq. ( 13 ) 

 {
𝑇𝐿𝐷𝑇,𝑖
𝑛𝑒𝑤 = 𝑇𝑆𝐴𝑇,𝑖 + 𝑑𝑖

𝑇𝑇𝑂𝑇,𝑖
𝑛𝑒𝑤 = 𝑇𝑆𝐷𝑇,𝑖 + 𝑑𝑖

 eq. ( 14 ) 

3.2 Snow removal scheduling 

The snow removal operations have a large impact on the capacity of an airport during winter conditions. Clearing an 

area of snow implies no flight operations are possible in the vicinity. In many cases it means that an entire runway is 

not operable and implies that no aircraft can arrive or depart during these procedures. Efficient planning of snow 

removal operations is therefore key. 

Together with the forecasted snow intensity, a model of snow accumulation is required as input for the planning of 

snow removal operations. This is addressed in the first subsection. No snow removal planning algorithm could be 

found in literature. Therefore, a linear programming model is developed along with two additional heuristics for snow 

removal planning procedures. Lastly, the results of both are compared to verify the heuristic. 

3.2.1 Snow depth modelling 

The simplest method of modelling the snow depth is by adding the snowfall intensity 𝐼𝑡 for a specified time interval Δ𝑡 

to the current depth. Snowfall intensity is usually expressed in mm/h with a water-equivalent density. This is done in 

such a manner to allow for easy comparison between rain and snowfall. However, it does complicate things a little 

more, as snowfall density is not constant. This varies with temperature, snowflake diameter and water contents.  

Additionally, snow melts with temperatures above zero. Whilst this does not eliminate the need for snow removal, it 

slows the accumulation and thus prolongs the availability of a runway. In the paper of Meyers, et al. [19] a simplistic 

relationship between temperature and melt rates 𝑀𝑡is found and validated. In eq. ( 15 ), a derived version of the 

relationship is shown, where the formula is converted to SI units. 

 𝑀𝑡 = 0.014𝑚𝑎𝑥(𝑇𝑡 , 0) eq. ( 15 ) 

In eq. ( 16 ) the accumulation of snow is shown for each runway 𝑟 at each time step 𝑡. The depth 𝑑𝑡,𝑟 at time 𝑡 and 

runway 𝑟 is the simple summation of the snow intensity 𝐼 and compensating for the melting of snow. As the snowfall 

intensity is measured in water equivalent rates, for e.g. comparison with rain, a multiplication with the ratio of snow 

to water 𝜌 is done. Generally, this ratio may vary between wet and dry snow, as well as old and new snow. Values 

generally range between 1:10 to 1:20. New snow generally has a density with a 1:20 ratio. 
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 𝑑𝑡,𝑟 = 𝜌∑(𝐼ℎ −𝑀ℎ)

𝑡

ℎ=0

, ∀𝑡 ∈ 𝑻, 𝑟 ∈ 𝑹 eq. ( 16 ) 

The depth of snow is reality lower than the previous approach of eq. ( 16 ). Simply adding all snow intensities lead to 

an overestimation of the snow depth. This is because the snow compacts and increases in density over time. To 

include the concept of snow compaction, eq. ( 16 ) is updated and leads to eq. ( 17 ). Here, the intensity is multiplied 

with a negative exponential that is dependent on the time since it the snow fell [20] [21]. The compression constant 𝑎 

is determined to be 0.008. 

 𝑑𝑡,𝑟 = 𝜌∑(𝐼ℎ −𝑀ℎ) 𝑒𝑥𝑝(−𝑎√𝑡 − ℎ)

𝑡

ℎ=0

, ∀𝑡 ∈ 𝑻, 𝑟 ∈ 𝑹 eq. ( 17 ) 

The impact of compaction is shown in Figure 9. Here, a simulated snowfall of 2.5mm/h during a 120min period is 

simulated. The snow removal is performed when the maximum allowable snow depth is reached. Temperature is 

assumed to be below 0 and therefore no melting occurs. 

The accumulated snow depth in Figure 9b shows that snow removal is required 10 minutes later when compaction is 

taken into account, compared to no compaction. This means that snow removal is required about 1.33 times less. It 

can therefore be concluded that it has a major impact on snow removal operations and thus need to be taken into 

account. 

  

Figure 9a: Snow intensity input Figure 9b: Snow depth 

Figure 9: Snow compaction over time 

 A side effect from compaction is that the snow density increases. For the purchasing or evaluating of snow removal 

equipment, this needs to be taken into account. Performance of snow removal equipment is usually expressed in 

tonnes/hr. As density increases, the same volume needs more heavy equipment. This could form a constraint for snow 

removal operations or lead to longer snow removal clear times. For the simulated snowfall, the density over time is 

shown in Figure 10. 
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Figure 10a: Snow density over time Figure 10b: Snow:water ratio over time 

Figure 10: Snow density impact due to compaction 

3.2.2 Snow removal planning optimization using MILP 

One method of scheduling the snow removal is through an optimization algorithm. A Mixed Integer Linear 

Programming (MILP) model has been formed that maximizes the availability of runways and therefore schedules the 

removal of snow at a particular runway optimally, whilst still maintaining safe runway operating procedures. The latter 

has been achieved through limiting the allowable snow depth on a runway, 𝑑𝑚𝑎𝑥 . 

With the set of feasible runways 𝑅 ∈ [0, … , 𝑟𝑚𝑎𝑥] within a time horizon 𝑇 ∈ [0, … , 𝑡𝑚𝑎𝑥], the runway availability 𝐴𝑡,𝑟 is 

maximized in the objective in eq. ( 18 ). Additionally, the objective includes a slight preference to minimize the snow 

depth using the small constant 𝜇. 

 

Objective 

𝑚𝑎𝑥 𝑍 =∑∑𝐴𝑡,𝑟

𝑅

𝑟

𝑇

𝑡

− 𝜇∑∑𝑑𝑡,𝑟

𝑅

𝑟

𝑇

𝑡

 

eq. ( 18 ) 

The start of snow clearing is defined by the Boolean 𝑐𝑡,𝑟. With a time to clean a runway (𝑡𝑠𝑟), the snow removal 

procedure could have started at 𝑡 − 𝑡𝑠𝑟 + 1 for any given time 𝑡. This defines the interval 𝑄𝑡, as shown in eq. ( 27 ). It 

is very well possible to have a runway dependent clearance time. 

 𝐴𝑡,𝑟 = {
1, if 𝑑𝑡,𝑟 ≤ 𝑑𝑚𝑎𝑥  ∧  ∑𝑐𝑡𝑠,𝑟

𝑄𝑡

𝑡𝑠

= 0

0, elsewhere

   ∀𝑡 ∈ 𝑇, 𝑟 ∈ 𝑅 eq. ( 19 ) 
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 𝐴𝑡,𝑟 =

{
 
 

 
 
1, if 𝑑𝑡,𝑟 ≤ 𝑑𝑚𝑎𝑥

1, else if ∑𝑐𝑡𝑠,𝑟

𝑄𝑡

𝑡𝑠

= 0

0, elsewhere

 eq. ( 20 ) 

The availability of a runway can be expressed two-fold. Firstly, the depth of the accumulated snow has to be below 

the allowable level 𝑑𝑚𝑎𝑥 . Secondly, the runway is not available when any snow removal procedures are in progress for 

that particular runway. These conditions are shown in eq. ( 19 ). In an effort to rewrite these conditions to a constraint 

for the LP model, both conditions are split as shown in eq. ( 20 ). The first condition described is bounded through eq. ( 

23 ) and the second through eq. ( 21 ). Additionally, only one runway can be cleared at any given time, which is 

constraint by eq. ( 22 ). 

Using the relation of eq. ( 16 ), the snow is accumulated using constraint eq. ( 24 ) and eq. ( 25 ) using familiar 

notation. 

 

Subject to 

𝐴𝑡,𝑟 +∑𝑐𝑡𝑠,𝑟

𝑄𝑡

𝑡𝑠

≤ 1, ∀ 𝑡 ∈ 𝑇, 𝑟 ∈ 𝑅 

eq. ( 21 ) 

 ∑∑𝑐𝑡𝑠,𝑟

𝑅

𝑟

𝑄𝑡

𝑡𝑠

≤ 1, ∀ 𝑡 ∈ 𝑇 eq. ( 22 ) 

 𝑑𝑡,𝑟 − 𝑑𝑚𝑎𝑥 ≤ (1 − At,r)K eq. ( 23 ) 

 𝑑0,𝑟 + 𝐾𝑐0,𝑟 = 𝜌(𝐼0 −𝑀0), ∀𝑟 ∈ 𝑅 eq. ( 24 ) 

 𝑑𝑡,𝑟 − 𝑑𝑡−1,𝑟 + 𝐾∑𝑐𝑡𝑠,𝑟

𝑄

𝑡𝑠

≥ 𝜌(𝐼𝑡 −𝑀𝑡), ∀𝑡 ∈ {𝑡|𝑡 ∈ 𝑇, 𝑡 > 0}, 𝑟 ∈ 𝑅 eq. ( 25 ) 

 𝐴𝑡,𝑟 ∈ {0,1}, 𝑐𝑡,𝑟 ∈ {0,1}, 𝑑𝑡,𝑟 ≥ 0 eq. ( 26 ) 

 

𝑇 = [0, 1, 2, … , 𝑡𝑚𝑎𝑥] 
R = [0, 1, 2, … , rmax] 

Qt = [max(0, 𝑡 − 𝑡𝑠𝑟 + 1) … min(𝑡, 𝑡𝑚𝑎𝑥)] 
eq. ( 27 ) 

Additionally, 𝐾 is an arbitrary large number which is assumed to be 𝐾 = 9999. Also, 𝜇 is a small number such that 

𝜇 ≪ 1 and is assumed to be 𝜇 = 0.01. 
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3.2.3 Snow removal scheduling using heuristics 

Alternatively to optimize the runway scheduling, one can use a heuristic to speed up the process that does not require 

an implementation of the LP. The advantage is that the heuristic allows for more flexibility and computation speed. 

This is shown in Heuristic 1 by eq. ( 28 ). Interestingly, this relation is very analogous to eq. ( 19 ). The difference is that 

the former relation defines the availability of the runway as a result of the snow clearing procedures, whilst the 

heuristic prescribes the snow removal times. 

 

Heuristic 1 

𝑐𝑡,𝑟 = {
1, if 𝑑𝑡,𝑟 > 𝑑𝑚𝑎𝑥 ∧∑𝑐𝑡𝑠,𝑟

𝑄𝑡

𝑡𝑠

= 0

0, elsewhere

  ∀𝑡 ∈, ∈ 𝑇, 𝑟 ∈ 𝑅 
eq. ( 28 ) 

It can be noted that the heuristic of eq. ( 28 ) is very ad-hoc: the snow clearing will only start when the boundary is 

reached. This might result in inefficient clearing. To partly improve this, eq. ( 29 ) introduces a form of look-ahead to 

start clearing earlier and thus allows to spot issues earlier on. 

 

Heuristic 2 

𝑐𝑡,𝑟 =

{
 
 
 

 
 
 
1, if 𝑑𝑡,𝑟 > 𝑑𝑚𝑎𝑥 ∧∑𝑐𝑡𝑠,𝑟

𝑄𝑡

𝑡𝑠

= 0

1, else if ∑ 𝑑𝑡′,𝑟

𝑡+𝑡𝑠𝑟

𝑡′=𝑡

> 𝑑𝑚𝑎𝑥 ∧∑𝑐𝑡𝑠,𝑟

𝑄𝑡

𝑡𝑠

= 0

0, elsewhere

∀𝑡 ∈ 𝑇, 𝑟 ∈ 𝑅 
eq. ( 29 ) 

 

3.2.4 Results and verification 

This section contains the results of applying the linear programming model and the two heuristics that were 

developed previously. The behaviour of the heuristics are analysed with comparison to the exact model. 

3.2.4.1 Snow removal heuristic verification 

A scenario of moderate snow fall was simulated. The given snow intensity over time can be seen in Figure 11a, which 

is a water-equivalent 0.5 mm/h snowfall over the course of 90min, which corresponds to ‘Moderate Snowfall’ as 

defined by ICAO. The snow-water ratio 𝜌 is assumed constant at 1:11. The temperature 𝑇 is assumed to be below 

zero, therefore eliminating the snow melting rate 𝑀𝑡. 
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The scenario assumes an airport with 2 independent runways with equal snow clearing times of 20min. It is expected 

that at most one runway can be operable during the period of snow. It may occur that a period of no availability 

results. 

Using the MILP formulation as described in 3.2.2 and the above input, optimal snow clearing time is determined (see 

Figure 12a) with the resulting availability (see Figure 12b). 

  

Figure 11a: Given water-equivalent snow intensity over 
time 

Figure 11b: Runway snow accumulation in actual depth 
i.e. not water-equivalent 

Figure 11: Scenario snow accumulation under given snow intensity 

 

  

Figure 12a: Snow clearing times Figure 12b: Runway availability 

Figure 12: Scenario results of optimal snow removal planning using a MILP solver 
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Using the first heuristic as described in 3.2.3 (see eq. ( 28 )), the clearing times are found as shown in Figure 13a and 

leads to runway availability as shown in Figure 13b. The colours correspond to the same runways as in the MILP 

results. It can be seen that the sum of the availability of the heuristic (40) equals that of the MILP, the runway usage of 

the MILP is more efficient i.e. there is no moment where no runways are available. To be precise, 92% of times at least 

one runway is available using the first heuristic. The MILP does, however, spend more snow removal resources by 

clearing 4 times instead of 3, which leads to a 100% uptime (at least one runway available). 

  

Figure 13a: Snow clearing times Figure 13b: Runway availability 

Figure 13: Scenario results of optimal snow removal planning using heuristic 1 

A second heuristic was also introduced (see eq. ( 29 )) to better look ahead and integrate a very simplistic form of 

preventive snow removal. This increases the times with at least one runway operable as can be seen in Figure 14. 

Namely, 96% of times at least one runway is available. Comparing these results to that of the first heuristic, it can be 

concluded that heuristic 2 performs better. 
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Figure 14a: Snow clearing times Figure 14b: Runway availability 

Figure 14: Scenario results of optimal snow removal planning using heuristic 2 

N.B.: for convenience, the naming refers to runway clearing and runway availability, but could be very well substituted 

for area clearing and availability. Both the MILP and the heuristics remain equally valid in that case with the use of 

area clearing times instead of runway clear times. 
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4 Airport collaborative operational planning 

This research aims to model and evaluate the collaboration between various parties in the airport environment. 

Stakeholders are the airport, air traffic control, snow removal operator, and airlines. The question will be to 

investigate whether the multiple stakeholders can operate and collaborate more efficiently by forecasting their 

operations. 

Before any answer can be given to whether and to what extent forecasting increases efficiency, the interaction flows 

between the stakeholders need to be modelled. By creating this model, one can simulate the behaviour. The resulting 

behaviour can then be compared with the behaviour if no forecasting would have been done. The models introduced 

in chapter 2 and 3 are required as underlying models as input to the simulation of decision making in stakeholder 

collaboration. 

More specifically, this section addresses the research question #2, which was defined as: 

 How to model a collaborative planning decision support facility? 

o How to model the stakeholder decisions? 

o How to include stakeholder interests? 

o How to integrate forecast uncertainty? 

o What is and how to choose the best decision w.r.t. the forecasted capacity? 

o How to incorporate decision deviations (i.e. human factors)? 

Firstly, an appropriate technique to model stakeholder decision making is selected in section 4.1. Using this technique, 

each stakeholder’s decision flow is modelled in 4.2, in which the stakeholder interests are integrated. Both section 4.1 

and 4.2 are focussing on choosing the best possible decision, based on the information available. Combining all flows 

and simulating the response can be found in 5. 

4.1 Modelling stakeholder decisions: negotiation 
techniques 

The operational processes at an airport consist of many stakeholders and many people playing their part in the larger 

process. Airlines schedule flights, but it is the air traffic control that determines when a flight can depart. The crew fly 

the aircraft and operate the flight, but if the airport ground personnel has not loaded baggage, cleaned the aircraft, or 

fuelled the aircraft, it cannot take-off. These are all examples of how different parties are involved in the process and 

may limit the performance of each party, because they are simply dependent on each other. 

The best way to cope with the problem of dependency is collaboration. The challenge of collaborating between 

multiple stakeholders, however, is reaching common agreement. In the case of runway configuration management, 

stakeholders have completely orthogonal goals: airlines desire as little delay as possible, whilst air traffic control 

would wish as much separation as possible to ensure safe operations. Types of problems such as planning across 
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multiple stakeholders are referred to as Distributed Problem Solving (DPS) or referred to its research area Distributed 

Artificial Intelligence (DAI). 

This section provides an overview of the current techniques as can be found in section 4.1.1 along with their pros and 

cons. From these, a selection will be made for the most appropriate technique, which is elaborated upon in section 

4.1.2 and is combined with examples in section 4.1.4. 

4.1.1 Overview of techniques in distributed artificial intelligence  

When multiple stakeholders interact and their actions depend on the actions of the other, reaching common plans is 

usually required if some form of collaboration exists. Negotiation is this process that aims to reach agreement through 

exchanging relevant knowledge; however, it may very well be that different stakeholders aim for different goals. An 

example is the case of airlines that aim for as little delay as possible, whilst air traffic control is interested in safe 

operations. Negotiation helps in forming a joint decision. 

Modelling the negotiation as a multi agent system, follows the general process as can be seen in Figure 15. Namely, 

the world / environment is in a certain ‘State’, the agent processes the information that is available in that state and 

then perform an ‘Action’ to alter the state and so forth. The actions of one agent also impact the state of other agents 

and therefore impact their actions as well. 

A multi agent system is decentralized, local, and relies on autonomous agents. More specifically each agent has the 

following characteristics [22] [23]: 

 Autonomous: exercises control over its own actions 

 Reactive: responds in a timely fashion to changes in the environment 

 Goal-oriented: does not simply act in response to the environment 

 Continuous: a continuous running process 

Additionally an agent may be: 

 Communicative:  communicates with other agents or people 

 Learning: behaviour changes based on experienced on the past 

 Mobile: able to transport itself from one machine to another 

 Flexible: actions are not scripted 

In order to perform the negotiation, a protocol and some form of strategy is required to enable the agents to interact 

and form a joint decision. The protocol shared between agents and is the method that governs the interactions 

between the participants, whilst the strategy may be different per agent and consists of the model that support the 

agent’s decision making to achieve the desired goal [24]. 
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Figure 15: Planning framework with 2 agents [25] 

The protocol and strategy to be employed by the agents are the decision factors that determine the most appropriate 

negotiation technique. Parameters influencing the decision for appropriate negotiation techniques as summarized by 

Kraus [26]: 

1. Level of cooperation 

2. Regulations and protocols 

3. Number of agents 

4. Type of agents 

5. Communication and computation costs 

In literature, various negotiation techniques are described. Each include pros and cons and are usually tied to a 

specific research area. Not only are negotiation techniques researched in the environment of multi-agent systems, but 

also within economics and political sciences to study conflict resolution [24]. 

In Table 2, a summary and categorization is shown of various multi-agent negotiation techniques. Here, SMA and CA 

refer to ‘self-motivated agents’ and ‘cooperative agents’, respectively. This determines their strategy when defining 

possible actions in the planning phase. The size refers to the small (S, handful), medium (M, few dozen), or large (L, 

hundreds) number of agents involved. Additionally, a differentiation has been made whether the negotiation 

technique can handle mixed automated and human agents in the category ‘People’ and lastly the table indicates 

whether or not a technique requires communication between agents. For the latter: the modelling of particles in a 

physics simulation, for example, does not require communication but each particle its kinetics can be modelled as one 

individual agent. 
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Table 2: Characterization of multi-agent negotiation techniques across multiple research fields by collaboration, agent 
cluster size, mixing of human agents and communication abilities [26] 

Technique 
type 

Multi-entity 
technique 

Distributed Artificial Intelligence 

SM
A

/C
A

 

Size
 

P
e

o
p

le
 

C
o

m
m

u
n

icatio
n

 

Game theory 

Strategic 
bargaining models 

Negotiation for task distribution & Resource 
allocation in MA 

SMA S no yes 

Coalition 
formation 

Coalition formation in MA SMA M no yes 

Principle-agent 
models 

Contracting tasks in MA SMA S no yes 

Physics 
Classical 
mechanics 

Goal satisfaction in very large DPS 
environments 

CA L no no 

Operations 
Research 

SPP & SCP Coalition formation in DPS CA M no yes 

Queueing 
networks 

Task allocation in DPS CA M no yes 

Behavioural 
sciences 

Negotiation 
guides 

Diplomatic negotiation SMA M yes yes 

Persuasion 
models 

Argumentation SMA S yes yes 

Focal points Cooperation without communication CA M yes yes 

Philosophy Logic Collaborative plans 
CA & 
SMA 

M yes yes 

 

4.1.2 Selecting an appropriate negotiation technique 

For our problem, we are looking for a technique that is suited for a small number of agents. Namely, the stakeholders 

involved are only ATC, snow removal operator, de-ice service provider and airlines operating at the airport in 

question. Additionally, the agents are able to communicate with each other.  
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The agents are self-motivated (SMA) and coalitions that are found amongst cooperative agents can be assumed to not 

be present. That is, whilst the stakeholders combine their efforts to operate in a joint plan and are relatively willing to 

help each other, they prioritize their own goals higher than other’s goals. 

Considering the possibilities of Table 2, we require models that deal with SMA and a small number of agents. People 

are not mixed with automated agents and communication is required. That results in either strategic bargaining 

models or principle-agent models. 

The principle of working towards a shared goal, but operating in self-interest, can be very well modelled using 

“Principled negotiation” as it embodies this very idea [27] [28] . Principled negotiation is a form of principle-agent 

model (see “Game theory”, Table 2). It was developed as a method to reach better agreements by proposing options 

that will benefit both parties, which therefore increases the probability of a successful agreement between parties. A 

general flow of this process can be seen in Figure 16. 

 

Figure 16: General interaction and communication flow between agents including feedback loops; based on 
Principled Negotiation 

When evaluating the feasibility of proposed options, two different strategies can be employed and define the agent’s 

behaviour. Within principled negotiation, an agent can be either maximizing or satisficing. The former only accepts 

new plans when it is as good, or better, than the current plan. The latter only seeks to satisfy certain criteria and 

therefore accepts anything as long as that is achieved. 

The general flow, as is also depicted in Figure 16, follows the following concept: 

 First agent starts: 

o Proposes best solution (option) 

 Second agent: 

o Calculate best solution 

o Calculate overlap between best solution and proposed option of first agent 

o Then either: 

 Reject option if not in bounds i.e. not possible to execute 

 Accept option if it exist in the overlap 

 Propose best solution if in bounds, but no overlap found 
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o If reject or propose: exclude option from further proposals 

 First agent receives either acceptance, proposal or rejection 

o If acceptance, request next solution to next agent 

o If proposal, deliberate and send acceptance, proposal or rejection 

o If rejection, exclude from further proposals and start over 

It is important to realize that no exact same option can be proposed multiple times, to prevent endless negotiation 

iterations regarding the same options. 

The criteria mentioned are assumed to be objective when using the principled negotiation technique. The objectivity 

allows for benchmarking decisions against factual pieces of information, independent on the parties in the 

negotiation. It means that arguments such as “a pilot wanting to be home early to be with his kid” when negotiating 

aircraft arrival times, is irrelevant. However, the fact that further delaying the flight costs 𝑥 amount of money is an 

objective criteria to measure against. The advantage is that such objective criteria are well suited for modelling 

purposes and allows for costs functions to be formalized that measure the wishes of an agent. 

Figure 16 details the agent interactions on a high level. In order to properly model the decision making process 

(referred to as ‘Deliberate’ in Figure 16) a more detailed version is shown in Figure 17. It is important to realize that 

when modelling multi-agent systems, there is no start and no end; the agent is evaluating and communicating in a 

continuous process where agreements can be made. 

4.1.3 Incorporating human factors 

The previous section (4.1.2) selected a most appropriate technique for simulating stakeholder behaviour. But as might 

be evident, both focussed purely on the simulation of decisions. When employing this simulation as input for a 

decision support system human input is required. Namely, having a decision support system means that the system 

facilitates efficiency and computation simplicity. The system ought to aid the human stakeholders. It is therefore 

important that the model should be able to incorporate this.  

Human input means that stakeholders need to be able to override the simulated agent’s decision, when desired. This 

may be the case due to the discrepancy between the real world and the modelled representation. For some reason 

that is unknown to the agent model, a different decision for a set time period is selected. Alternatively, stakeholders 

can alter limitation that the model needs to respect. This process is included in Figure 16 and Figure 17, through 

incorporating “Stakeholder constraints” in the request generation of the simulated agent that limit the search space. 
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Figure 17: Detailed flow indicating general agent communication and decision flow indicating data exchange, requests, 
proposals and rejections; based on Principled Negotiation 

4.1.4 General principled negotiation system description 

The process of negotiation is proposing and assessing options of other agents. There exist disturbances (inputs) that 

affect the decision making that impact the actions or control parameters, which lead to the resulting states of the 

agent in its environment. Based on the decision making and states of other agents, the actions of the agent are 

influenced. 

One can think of the disturbances as changes in the environment, such as the position of another agent. The control 

parameters then translate the disturbances into actions. For example, if the other agent is to the right of the agent, 

move left. The results of the actions are then the new states of the agent. In this case, the new state is the new 

position of the agent. 

The following definitions will be used, when referring to principled negotiation [28]. 
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General dynamics 

The general dynamics of the system with a set of agent 𝑨 based on all agents’ states 𝑥(𝑡), the control parameters 𝑢(𝑡) 

and disturbances 𝑤(𝑡) for each time 𝑡 in the time horizon 𝑡 ∈ 𝑻 can be described through eq. ( 30 ). 

 �̇� = 𝒇(𝒙(𝑡), 𝒖(𝑡), 𝒘(𝑡), 𝑡) eq. ( 30 ) 

Agents 

An agent is assumed to behave rationally and has self-interest in mind. The set of agents 𝑨 consists of 𝑁 entities; see 

eq. ( 31 ). 

 𝑨 = {𝑎𝑖: 𝑖 = 1, … , 𝑁} eq. ( 31 ) 

Plan 

Sequences of actions are defined as plans, that are executed by the set of agents 𝑨𝑴 as part of all agents in 𝑨. 

 
𝒖𝑨𝑴(𝑡1, 𝑡2) = {𝒖𝑎𝑚(𝑡1, 𝑡2): 𝑚 = 1,… ,𝑀} 

𝑨𝑴 ⊆ 𝑨 
eq. ( 32 ) 

Action plan 

A single agent’s action plan is part of the overall plan by the agent set 𝑨𝑴. 

 𝒖𝑎𝑗(𝑡1, 𝑡2) ∈ 𝒖𝑨𝑴  eq. ( 33 ) 

Option 

Options are alternatives to the existing plan, which are proposed by a set of agents 𝑨𝑲. When an option is found by an 

agent, this may also be referred to as ‘solution’. 

 
�̃�𝑨𝑲(𝑡1, 𝑡2) = {�̃�𝑎𝑘(𝑡1, 𝑡2): 𝑘 = 1,…𝐾} 

𝑨𝑲 ⊆ 𝑨 
eq. ( 34 ) 

Utility 

For each agent there exists an utility function, with respect to the state 𝒙, control 𝒖, and disturbances 𝒘 as a function 

of time 𝑡. A maximizing agent will try and optimize the utility function. 

 max 𝑼𝑎𝑖(𝒙, �̃�, 𝒘, 𝑡) eq. ( 35 ) 

The utility function is subject to a set of constraints that may be based on the states, control and disturbances. 

Satisficing agents only need to satisfy the constraints and lack a utility function. 

 𝒄𝑎𝑖(𝒙, �̃�, 𝒘, 𝑡) ≤ 0 eq. ( 36 ) 

Option generation 

There exist multiple methods for option generation techniques. For simple problems, one could compute the entire 

sample space and select the best option. However, usually this is not efficient enough and results in too long 

computation times. In that case one could provide a heuristic that specifies a recipe of steps, which consists of 

statements in the form of “if-this-than-that”. More advanced techniques consist of branch-and-bound searching, 

neural networks, or evolutionary algorithms [29]. 
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4.1.5 Examples of principled negotiation 

In order to better understand the process of principled negotiation, two examples are provided. One is a very trivial 

example of two maximizing agents in a very limited sample space, which is elaborated upon in the first section. 

Secondly, an example is given that relates to this thesis’ use-case, namely winter conditions with air traffic control, 

snow removal, and airline agents.  

4.1.5.1 Simple principled negotiation example 

Consider the following scenario described below and depicted in Figure 18. There are two maximizing agents 

(𝑁 = 2; 𝐴 = {𝑎1, 𝑎2}) in a sample space of Ω = {𝑥, 𝑦} = {−2,… ,2;  0, … ,2}. The agents have the following utility 

functions: 

 𝑈𝑎1 = 𝑦 − 𝑥 

 𝑈𝑎2 = 𝑦 + 𝑥 

In Figure 18, the utility gradients (lines) are shown for both agents, where white is lowest utility and black is highest 

utility; For clarity, gradients for agent 1 is shown only on the positive x axis and corresponds with the blue area, and 

for agent 2 this is the negative x axis and the green area, respectively. The bar next to the figure indicates the value of 

the gradients, based on its colour; from white representing 0 utility, to black representing a utility of 4. 

 

Figure 18: Example principled negotiation case with two maximizing agents and their utility gradients 
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Following the points as shown in Figure 18, the negotiation that occurs is described below. Agent 1 starts, to which 

Agent 2 responds, and so on. The agent to start may be chosen at random. At the 6
th

 step in the negotiation, an 

overlap in options is found. The overlap (joint) found in both proposed solutions, namely (0,2), and thus agreement is 

reached. In this case the agreement is reached after 6 steps. 

1. �̃�𝑎1 = [(−2,2)] 

𝑈𝑎1(�̃�𝑎1) = 4 

2. �̃�𝑎2 = [(2,2)] 

𝑈𝑎2(�̃�𝑎2) = 4 

3. �̃�𝑎1 = [(−1,2), (−2,1)] 

𝑈𝑎1(�̃�𝑎1) = 3 

4. �̃�𝑎2 = [(1, 2), (2, 1)] 

𝑈𝑎2(�̃�𝑎2) = 3 

5. �̃�𝑎1 = [(0, 2), (−1,1), (−2,0)] 

𝑈𝑎1(�̃�𝑎1) = 2 

6. �̃�𝑎2 = [(0,2), (1,1), (2,0)] 

𝑈𝑎2(�̃�𝑎2) = 2 

7. 𝑢 = 𝑢𝑎1 = 𝑢𝑎2 = [(0,2)] 

𝑈𝑎1(𝑢) = 𝑈𝑎2(𝑢) = 2 

4.1.5.2 Principled negotiation applied to a winter scenario 

Following the schemes of Figure 16 and Figure 17 using 5 agents, namely agents for runway configuration, runway 

planning, snow removal operator, and two airlines, the following scenario can take place. Assume we have an airport 

under constant snow conditions on an airport with 3 runways that can be used in 5 possible runway combinations, 

referred to ‘Config 1’ to ‘Config 5’. Additionally, the agents negotiate for the runway flight planning, consisting of 

arrival and departure times. 

Here, the runway configuration agent wishes to provide the best runway configuration under the current weather 

conditions, based on the demand that is scheduled. The scheduling is done by the runway scheduling agent, which 

aims to minimize delay as much as possible. Contrary to the previous two maximizing agents, the snow removal agent 

is a satisfactory agent that simply checks if a runway configuration can be cleaned of snow. Lastly, the airline agents 

are maximizing agents as well, that aim to minimize costs and cancel flights if necessary. 
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Table 3: Runway configuration and flight planning negotiation example 

Actor Input/output Process 

ATC runway 
configuration 

Input 
- 
Output 
Config 1 

1. Exclude runways 
1. No maintenance; excluded 0 runways 
2. No snow status available 

2. Determine runway feasibility due to wind conditions 
3. Loop through preferences 

1. Is ‘Config 1’ available and feasible? → Yes 
2. Select ‘Config 1’ 

4. Request ‘Config 1’ 

ATC runway schedule 

Input 
Config 1 
Output 
Config 1 
Schedule A 

1. Generate schedule: “forecasted demand” based on capacity of 
‘Config 1’ 

2. Propose ‘Config 1’ with ‘Schedule A’ 

ATC runway 
configuration 

Input 
Config 1 
Schedule A 
Output 
Config 2 

1. ‘Config 1’ is still feasible 
2. Check demand-capacity fit of ‘Config 1’ and ‘Schedule A’ 

1. Not enough capacity 

3. Any alternative with better demand-capacity fit? → Yes, ‘Config 2’ 

4. Is ‘Config 2’ available and feasible? → Yes 
5. Propose ‘Config 2’ 

Airport snow removal 

Input 
Config 2 
Output 
Config 4 

1. Forecast snow build-up 
2. Forecast snow removal capacity 

3. Is ‘Config 2’ feasible to clear? → No 

4. Is ‘Config 3’ feasible to clear? → No 

5. Is ‘Config 4’ feasible to clear? → Yes 

6. Is ‘Config 5’ feasible to clear? → Yes 
7. Propose ‘Config 4’ or ‘Config 5’ 

ATC runway 
configuration 

Input 
Config 4 
Output 
Config 4 

1. Is ‘Config 4’ available and feasible? → Yes 

2. Any alternative with better demand-capacity fit? → No 
3. Accept ‘Config 4’ 

ATC runway schedule 

Input 
Config 4 
Output 
Config 4 
Schedule B 

1. Re-generate schedule: new “forecasted demand” based on capacity 
of ‘Config 4’ 

2. Propose ‘Config 4’ with ‘Schedule B’ 

ATC runway 
configuration 

Input 
Config 4 
Schedule B 
Output 
Config 4 
Schedule B 

1. ‘Config 4’ is still feasible 
2. Check demand-capacity fit of ‘Config 4’ and ‘Schedule B’ 

3. Any alternative with better demand-capacity fit? → No 
4. Accept ‘Config 4’ with ‘Schedule B’ 
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Airline A 

Input 
Config 4 
Schedule B 
Output 
Config 4 
Schedule C 

1. For each flight 
1. Determine cancellation costs: 
2. Determine delay costs 
3. Flights with delay costs > cancel costs? 

Yes, cancel those flights 
2. Alter ‘Schedule B’ with cancellations, which leads to ‘Schedule C’ 
3. Propose ‘Config 4’ with ‘Schedule C’ 

ATC runway schedule 

Input 
Config 4 
Schedule C 
Output 
Config 4 
Schedule D 

1. Re-generate schedule: new “forecasted demand” 
2. Propose ‘Schedule D’ 

Airline A 

Input 
Config 4 
Schedule D 
Output 
Config 4 
Schedule D 

1. For each flight 
a. Determine cancellation costs 
b. Determine delay costs 
c. Delay costs > cancel costs? 

No 
2. Accept ‘Schedule D’ 

Airline B 

Input 
Config 4 
Schedule D 
Output 
Config 4 
Schedule D 

1. For each flight 
a. Determine cancellation costs 
b. Determine delay costs 
c. Delay costs > cancel costs? 

No 
2. Accept ‘Schedule D’ 

This is a simplified negotiation from a high level. In order to generalize the negotiation process such that this can be 

modelled and simulated, the following section will introduce decision processes for each agent. 

4.2 Modelling stakeholder decisions: applying principled 
negotiation 

In the previous section, the choice for using principled negotiation was made as an enabler for distributed decision 

making within airport collaboration. Using this protocol, the decision flow for each of the stakeholder needs to be 

established. In the following four subsections, the protocol will be applied to air traffic control for runway 

configuration and capacity management, as well as for snow removal, de-ice service provider, and airlines. Each will 

vary in depth with regards to the decision making process. The main goals for each of the stakeholder are: 

 Runway management: Ensure safe operations and deliver best capacity / demand fit 

 Runway flight planning: Minimize arrival and departure delays 

 Snow removal management: Satisfy runway availability during snowfall 

 De-icing planning: Minimize departure delays 

 Airlines: Minimize (disruption) costs 
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In order to find common ground between agents, each agent will making use of utility functions that expresses the 

difference with respect to their most preferred scenario. One can imagine that each minute of delay costs an airline a 

certain amount of money. The higher the sum of these costs, the more the airline deviates from their ideal scenario, 

namely: no delay. In the same process, these costs are established for each agent. 

4.2.1 Applied principled negotiation system description 

Based on the general system description and the decision processes of the previous sections, a system description can 

be given. Here we consider a time horizon of 𝑡 ∈ 𝑻 that applies to the decision variables for runway configuration and 

inbound and outbound flight planning. The time horizon is modelled as a discrete variable using a time step of Δ𝑡. 

Actions / Control variables 

Possible actions that will be used in the negotiation between the stakeholders are the runway configuration and 

inbound and outbound flight plan. The runway configuration is denoted by 𝒙𝒕, the inbound flight plan by 𝒚𝑎,𝑓
𝐼  and the 

outbound flight plan by 𝒚𝑎,𝑓
𝑂 . 

 𝒖𝒂 = {𝒙𝒕 𝒚𝑎,𝑓
𝐼 𝒚𝑎,𝑓

𝑂 } eq. ( 37 ) 

The values for the decision variables are bounded by the configurations that are possible and flights in question by the 

time horizon. Additionally, 𝑓 denotes a specific flight of airline 𝑎 in the total set of flights 𝑭 that have the intention to 

fly within the time horizon 𝑻. 

Runways 

Per mode (arrival/departure) per time interval indicate whether a runway configuration will be used, which inherently 

implies the use of the runway itself. The set of configurations are denoted by 𝑪. 

 
𝒙𝑡 = [𝑥0 … 𝑥𝑡] 
𝑥𝑡 ∈ 𝑪, 𝑡 ∈ 𝑻 

eq. ( 38 ) 

Flight plan 

The flight plan will be based on the scheduled flight times of arrival and departure, SLDT and STOT. The proposed 

plans between agents represent the targeted arrival and departure times, TLDT and TTOT. With the time horizon as 

 𝑻 ∈ {1,2, … }. The time horizon is 1-indexed, such that it is possible to use 𝑦𝑎,𝑓 = 0 as to denote a flight is not 

operated or is cancelled by the airline. We thus have 𝑎 airlines and a maximum of 𝑓 flights per airline for both the 

inbound and outbound flights. 
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𝒚𝑎,𝑓
𝐼 = [𝑦0,0 ⋯ 𝑦𝑎,𝑓] 

𝒚𝑎,𝑓
𝑂 = [𝑦0,0 ⋯ 𝑦𝑎,𝑓] 

𝑦𝑎,𝑓 ∈ {0; 𝑻} 

eq. ( 39 ) 

4.2.2 Runway configuration management by air traffic control based 
on weather forecasts 

In our case, the decision flow for the air traffic control consists of runway configuration planning and runway flight 

planning. Whilst those may seem similar, it has to be noted that it is a feedback loop. Over or under capacity is the 

result of runway scheduling, which may be adjusted for using a different runway configuration. Therefore, these two 

are modelled as two separate agents and thus lead to 2 separate decision flows. 

The goal of the configuration planner agent is to determine the most appropriate runway configuration with respect 

to the capacity-demand fit. Whilst, of course, taking safety measures into account, accommodating for variables such 

as wind conditions or accumulated snow. The goal of the flight planner is to schedule aircraft as efficient as possible, 

with the current capacity limitations in mind. 

4.2.2.1 Runway configuration management decision process 

When considering the most appropriate runway configuration to operate, ATC must take into account wind 

conditions, runway conditions, runway maintenance schedules, etc. Too high cross- or tailwinds and the aircraft 

cannot safely take-off or land. Additionally, and this especially holds in European airports near densely populated 

areas, ATC is strongly advised (or even obliged) to use the most noise-preferred runway. 

With the possible runway configurations, some are simply not feasible due to constraints such as wind conditions. 

Additionally, snow removal may indicate it is not possible to clear certain runways and therefore deem those 

infeasible for a set period of time (see section 4.2.3.2). In Figure 19, a decision flow is shown that indicates the 

method to find the most preferred configuration by excluding configurations that contain non-feasible runways. 

Lastly, the selected configuration is communicated to the other agents. Most importantly, this configuration is used as 

the major input for the runway scheduling. 
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Figure 19: ATC runway configuration decision flow 

4.2.2.2 Runway configuration option generation 

Transforming the decision flow of Figure 19 this into a heuristic of finding all possible matching options, Algorithm 1 is 

introduced. It resembles an A* option searching algorithm that goes through all demand-capacity fit based sorted 

configurations across the time horizon, makes an estimate at each time step if the option is worth pursuing and finally 

appends the option to the solution set. Additionally, due to feasibility limitations a configuration might not be pursued 

as well. As is valid for all agents, a solution is only proposed if it is not proposed earlier. This prevents agents from 

ending up in an infinite flow of proposing the same solutions to each other.  

Let us take an example and walk through the option generation process. Suppose there are 3 possible runway 

configurations an airport operates in and the goal is to find the best configuration selection for the next 3 hours. The 

configuration options are labelled #1, #2, and #3. Taking, for this example, a time step of 1 hour means that 3 values 

are required for the selection: one configuration for each hour. 

At each time step (each hour in the selection), the three configuration options are possible. In total there are 

33possible permutations, or more general 𝑐𝑡 with 𝑐 as the number of configuration options and 𝑡 denoting the time 

horizon. For each time step the configuration options will be sorted with respect to the demand-capacity fit that is 

associated with the configuration and the meteorological forecasts. In our example, which is illustrated in Figure 20, 

the best configuration option for 𝑡 = 0 is configuration #1, then #2 and then #3. For 𝑡 = 1 and 𝑡 = 2, the best option 

is #2, followed by #1 and #3. 

At each time step, the algorithm starts by sorting the configuration options based on demand-capacity fit and add 

these to the queue. Then, it picks the first option off the queue and generates the set of configuration options for the 

next time step. It validates which options are feasible and repeats this process until the final time step is reached. In 

the example, at the second time step, configuration option #2 is unfortunately not feasible and thus is not pursued in 
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generating new options. It will take the next-best option, namely configuration option #1, and continues the process. 

In this case the solution is [1, 1, 2], which is also highlighted in blue. 

When a solution is found, it does not stop here, as there may be other solutions that are equally good or even better. 

Solutions might be better, as sorting is an estimation method. The algorithm will only pursue the next possible 

options, if it estimates the utility to be higher. In our example of Figure 20, the solution [1, 1, 1] will be checked next. If 

the utility is higher or equal to that of [1, 1, 2] , it will be added to our set of solutions. Next, [1, 1, 3] will be tested. 

Afterwards, no options for time step 3 are possible, so it will check a new option for time step 2 and thus [1, 3, 2] will 

be checked for feasibility and its utility tested. 

 

Figure 20: Runway configuration path finding example 

On may notice that this is a depth-first search algorithm instead of breadth-first searching. The reason we can model 

this as a depth-first algorithm, is because the path length is fixed. Therefore, the performance of bread-first searching 

is equal if not lower. 

This method is applied in Algorithm 1. The solution set is denoted by 𝑆′ and resembles the variable 𝒙𝑡 from section 

4.2.1. The option 𝑂 acts as a temporary set to store possible solutions. The sorted configurations at time 𝑡, similar to 

the previous example, are denoted by 𝐶(𝑡), which are added to the option 𝑂 and produces the associated utility 

𝑈(𝑂). 

To make sure the negotiation does progresses over time, it is not possible to propose the same solution twice. 

Therefore, an option is checked if it occurs in the previous proposed option set 𝑆 before it is added to the new option 

set 𝑆. 
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𝑡 ← time step 
𝑡𝑚𝑎𝑥 ← maximum time step 
𝑆 ← previously proposed options 
𝑆′ ← new options 
𝑀 ← minimum threshold 
𝑂 ← ∅  
function generate(𝑡, 𝑂) do 
 𝐶(𝑡) ← sorted configurations at time step 𝑡 
 for all 𝑐 ∈ 𝐶(𝑡) do 
  𝑂 ← 𝑂 + {𝑐} 
  𝑈(𝑂) ← computed option utility 
  𝑃(𝑂) ← estimated utility potential between now and 𝑡𝑚𝑎𝑥  
  𝑓(𝑐, 𝑡) ← feasibility of configuration 𝑐 at time step 𝑡 
  if 𝒕 < 𝒕𝒎𝒂𝒙then 
   if 𝒇(𝒄, 𝒕) and 𝑼(𝑶) + 𝑷(𝑶) ≥ 𝑴 then 
    next 𝒕 
    generate(t, O) 
   end if 
  else if not 𝑶 ⊆ 𝑺 then 
   𝑆′ ← 𝑆′ + 𝑂 
   𝑀 = 𝑈(𝑂) 
  end if 
 end if 
 end for 
end function 

Algorithm 1: Runway configuration search heuristic 

4.2.3 Runway flight planning based on runway configurations 

Flights are scheduled as a result of pre-tactical planning. Based on the runway configuration with the associated 

forecasted capacity, an imbalance between capacity and demand may result. In the previous section, the runway 

configuration is already proposed, but the impact still needs to be evaluated. This is done through updating the 

runway flight planning under the newly proposed configuration.  

4.2.3.1 Runway flight planning decision process 

Figure 21 provides an overview for the decision flow of scheduling flights. Here, runway capacity and configuration 

choice is the main driver for the flight arrival and departure times. In Figure 19, one can see that the capacity data 

object is formed and communicated (informed) and will be used as an input for the runway flight planning. 

Additionally, if airlines decide to cancel flights (see 4.2.5.3), the plan need to be updated. 
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Figure 21: ATC runway flight planner decision flow 

4.2.3.2 Runway flight planning option generation 

The runway planning is made based on the runway configuration and its associated capacity. For the inbound and the 

outbound flights, the heuristic of Algorithm 2 is used. The heuristic is largely resembled in the decision flow in Figure 

21. 

Flights are planned at their scheduled slot (time step) 𝑡 as long as the demand is below the forecasted capacity. If not, 

flights are pushed to the next time slot, or 𝑡 + 1. Flights are always handled chronologically, which means that flights 

are processes in the order of their original schedule. The option-set 𝑂 resembles the inbound and outbound 

schedules, 𝒚𝑎,𝑓
𝐼  and 𝒚𝑎,𝑓

𝑂 , respectively. More information regarding both variables can be found in section 4.2.1. 

𝑇 ← time horizon 
𝑂 ← ∅  
 
for all 𝑡 ∈ 𝑇 do 
 𝐶(𝑡) ← capacity at time step 𝑡 
 𝐹(𝑡) ← flights scheduled at time step 𝑡 
 𝐷(𝑡) ← planned demand for time step 𝑡 
 for all 𝒇 ∈ 𝑭(𝒕) do 
  𝐷(𝑡) ← ∑(𝑂 = 𝑡) 
  𝑐 ← true if 𝑓 is cancelled 
  if not 𝒄 then 
   if 𝑫(𝒕) < 𝑪(𝒕) then 
    𝑂 ← 𝑂 + {𝑡} 
   else 
    𝐹(𝑡 + 1) ← 𝐹(𝑡 + 1) + {𝑓} 
   end if 
  end if 
 end for 
end for 

Algorithm 2: Inbound and outbound runway scheduling heuristic 



 

 

 

63 

NLR-TR-2016-461  |    

4.2.4 Snow removal management based on weather forecasts and 
runway configurations 

This section highlights the decision process for snow removal operations. Firstly, the general procedure as advised by 

the FAA is introduced and used as the input for the decision process modelling. Additionally, the cost function to 

compare options is introduced. 

4.2.4.1 Snow removal decision process 

The majority of large airports have the common approach to make use of priority areas. In the advisory report 

150/5200-30D of the FAA concerning “Airport field condition assessment and winter operations safety” [30], these 

areas are defined using the following guidelines: 

1. Priority 1 areas include: 

 Directly contribute to safety  

 Re-establishment of aircraft operations at acceptable Level of Service 

 Primary runways, turnoffs and taxiways to terminal, etc. 

 Portion of apron areas immediately necessary at acceptable Level of Service 

2. Priority 2 areas include: 

 Not in Priority 1 

 Not essential to re-establishment of aircraft operations at acceptable Level of Service 

 Secondary runways, turnoffs and taxiways 

 Access roads to secondary facilities 

3. Priority 3 areas include: 

 Not in Priority 1 and 2 

 Service roads 

In Figure 22, these guidelines are applied to a sample airport. It can be seen that priority 1 areas are defined for the 

major runway, with the secondary, perpendicular, runway indicated with a level 2 priority. 



 

 

 

64 

   |  NLR-TR-2016-461 

 

Figure 22: Snow removal priority areas defined for an example airport [30] 

The decision strategy of the snow removal operator reflects the prioritization of areas. Herein, the priority areas are 

checked one by one in ascending order to determine if it requires snow clearing. This is based on the capacity (and 

thus the speed) of snow clearing. There is no use in clearing a priority 2 area if in the meantime the priority 1 area is 

contaminated with snow above the allowable depth limit. In Figure 23 the decision flow of the snow removal operator 

is visualized. The option generation algorithm which determines the runway snow availability is found in section 

4.2.4.3. 

Nevertheless, within the same priority area, there are various options possible. Larger airports usually have multiple 

runways in a priority 1 area, but scenarios occur where only 1 can be kept clean. In this case, a trade-off has to be 

made which runway (subarea) to clear. This can be done using a utility function, expressing the costs of clearing the 

subarea. Using this approach leads to the favourability of clearing smaller subareas, which is valid from the snow 

removal point of view. Negotiations between the snow removal and ATC will then be used to balance the runway 

capacity and demand of airlines. 
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Figure 23: Snow removal operator decision flow 

4.2.4.2 Cost of snow removal 

Like all other stakeholders, the snow removal team wishes to minimize costs for the area availability that they achieve. 

The assumption can be made that the snow removal operations only impact the variable costs, as fixed cost such as 

equipment purchasing cost will have negligible effect on the tactical snow removal planning. The main contributor 

that determines the variable costs is the operating costs, consisting of fuel and labour costs, and the time spent on 

removing snow. This is resembled in eq. ( 40 ).  

 𝐶𝑠𝑟 =∑∑(𝑓𝑟𝑐𝑓 + 𝑐𝑟)𝑡𝑎

𝑅

𝑟

𝐴

𝑎

 eq. ( 40 ) 

In eq. ( 41 ), the variables are defined as follows: 

 𝐶𝑠 = snow removal cost [€] 

 𝐴 = set of (priority) areas to be cleared 

 𝑅 = set of resources used (ploughs, blowers, etc.)  

 𝑓𝑟 = fuel consumption rate of resource 𝑟 per unit of time [L/hr] 

 𝑐𝑓 = cost per unit of fuel [€] 

 𝑐𝑟 = labour costs of operating resource 𝑟 per unit of time [€/hr] 

 𝑡𝑎 = time to clear area 𝑎 [s] 
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4.2.4.3 Snow removal option generation 

Where the runway configuration and runway planning agents are maximizing agents is the snow removal agent a 

satisficing agent. Based on the proposed Heuristic 2 of section 3.2, a proposed runway configuration plan can be 

tested if snow removal operations can be planned such that the snow depth limitations are not reached. 

It is assumed that only one runway can be cleaned at the same time. Additionally, a configuration can also exist with 

no runways as no feasible configuration can be found that is below the depth limit. 

𝑇 ← time horizon 
𝑃 ← proposed options 
𝑂 ← ∅  
for all 𝒕 ∈ 𝑻 do 
 𝐶 ←proposed configuration at 𝑃(𝑡) 
 𝑑(𝑡, 𝑟) ← snow depth of runway 𝑟 at time 𝑡 
 𝑐(𝑡, 𝑟) ← whether snow removal operations are scheduled for runway 𝑟 at time 𝑡 
 for all 𝒓 ∈ 𝑹 do 
  𝑡𝑠𝑟 ← required clear time of runway 𝑟 based on forecasted capacity 
  update 𝑑(𝑡, 𝑟) 
  estimate 𝑑(𝑡 + 𝑡𝑠𝑟 , 𝑟) 
 end for 
 for all 𝒓 ∉ 𝑪 do 
  if 𝒅(𝒕, 𝒓) > 𝒅𝒎𝒂𝒙 and 𝒄(𝒕, 𝒓) = 𝟎 ∀ 𝒓 ∈ 𝑹 then 
   schedule clearing runway 𝑟 
  else if 𝒅(𝒕 + 𝒕𝒔𝒓, 𝒓) > 𝒅𝒎𝒂𝒙 and 𝒄(𝒕, 𝒓) = 𝟎 ∀ 𝒓 ∈ 𝑹 then 
   schedule clearing runway 𝑟 
  end if 
 end for 
 if 𝒅(𝒕, 𝒓′) ≤ 𝒅𝒎𝒂𝒙∀ 𝒓

′ ∈ 𝑪 
  𝑂 ← 𝑂 + {C} 
 end if 
end for 

Algorithm 3: Snow removal option generation 

4.2.5 De-ice management based on flight planning 

The de-icing service provider is mostly interested in handling as much aircraft in as little time as possible, thus 

maximising profit. From a modelling perspective, it is important to know that de-icing is requested from a pilot. The 

decision making of the pilot is influenced by the airline’s policy, but does not consist of an objective rule. The general 

process is as follows: 

1. Pilot requests de-icing from service provider 

2. Service provider determines moment of de-icing 

3. Service provider requests de-icing procedure from ATC 

4. ATC updates schedule 

5. If remote de-icing: de-icing is scheduled and prior to the event, the plane taxies to remote location 
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6. Else: Plane is de-iced at the gate at the scheduled moment and pushed back for taxi and take-off 

4.2.5.1 De-icing decision process 

Due to the unpredictable nature of this process, a consistent model is hard to define. There is some forecasts for de-

icing demand in place, which is, amongst others, determined based on the forecasted temperature. Assuming this is 

present, the abstraction of Figure 24 can be used. 

 

Figure 24: De-ice service provider decision flow 

4.2.5.2 Cost of de-icing 

The de-ice operator charges for each time aircraft de-icing is performed, at the request of the pilot. There is no large 

incentive to schedule operations in a shorter time-frame. Whether an airplane is de-iced 15 minutes earlier or later, 

does not have a large impact on the costs of the operator. The big inefficiency as a result of bad planning is for the 

airlines whom experiences delay as a result of inefficient de-ice planning. The delay, in turn, leads to large costs for 

the airline. 

The main incentive for the de-icing operator is to minimize operating cost. This can be expressed as shown in eq. ( 41 

). Here, 𝐶𝑑𝑘  is the de-icing cost in time slot 𝑘, 𝐶𝑑 is the unit operating cost of de-icing 1m
2
, and 𝑆𝑑𝑘  is the surface area 

that is de-iced in time slot 𝑘. The operating costs include staffing, fuel, and other direct costs. Also see section 2.4 

regarding de-icing capacity, which is forecasted in the units m
2
/hr. 

 𝐶𝑑𝑘 = 𝑆𝑑𝑘𝐶𝑑 eq. ( 41 ) 
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4.2.5.3 De-icing planning option generation 

The de-icing process is the matching of planes to de-icing stations or vehicles. Both are generalized and referred to as 

vehicles. Early departures are prioritized and therefore de-icing vehicles are matched to aircraft sorted by their 

scheduled departure times. The option generation algorithm used is Algorithm 4, based on the work of Verboon [31]. 

If there is more than one vehicle available i.e. 𝑉 ≠ ∅, assign the aircraft to one of the vehicles 𝑣∗ and remove that 

station from the set of available vehicles. This is done through  𝑉\{𝑣∗} being the vehicles 𝑉, excluding the just 

assigned vehicle 𝑣∗. The de-icing vehicle schedule 𝑉′ is then updated with the newly assigned vehicle 𝑣∗. 

In the case that no vehicle is available i.e. 𝑉 = ∅, check which vehicle will be available at the soonest and assign that 

vehicle to the aircraft. 

𝑉 ← vehicles 
𝑉′ ← ∅  
𝑃 ← planes sorted by scheduled departure time 
for all 𝑝 ∈ 𝑃 do 
 𝑣∗ 
 if 𝑉 ≠ ∅ then 
  𝑣∗ ←one element of 𝑉 
  𝑉 ← 𝑉\{𝑣∗}, 𝑉′ ← 𝑉′ + {𝑣∗}  
 else  
  sort 𝑉 by non-decreasing completion time of activities 
  𝑣∗ ←first element in 𝑉  
 end if 
 assign 𝑝 to 𝑣∗ 
end for 

Algorithm 4: De-icing option generation, based on [31] 

4.2.6 Airline decision making based on flight planning 

With the little margins that exist in the airline business, plans are optimized to reduce costs as much as possible whilst 

still maintaining favourable level of service to its customers. The event of winter conditions is therefore definitely not 

appreciated by the airlines as each minute of delay counts. 

4.2.6.1 Airline decision process 

The only decision that airlines make to reduce delays, is cancelling flights to provide breathing space for other flights. 

This flow is depicted in Figure 25. As can be seen in the figure, the airline does not invent options itself, but merely 

acts based on the requested runway planning during the negotiation process. 
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Figure 25: Airline decision flow 

The determination whether a flight needs to be cancelled, can be simplified to checking what costs more: a delayed 

flight or cancelled flight? With 𝐶1/𝑎𝑘  being the cost of delaying flight 𝑘 of airline 𝑎 and 𝐶2/𝑎𝑘  being the cancellation 

cost, then the decision value 𝑥𝑎𝑘  of whether to cancel the flight is can be defined with the relation of eq. ( 42 ). 

 𝑥𝑎𝑘 = {
1, if 𝐶2/𝑎𝑘 > 𝐶1/𝑎𝑘
0, elsewhere

 eq. ( 42 ) 

4.2.6.2 Cost of flight delays 

In eq. ( 43 ) the total operation costs is shown as defined by Janic [32]. When only assessing the delay costs, this can 

be rewritten to eq. ( 44 ). In the latter, the operational costs have been removed. Apart from the delay duration, the 

delay costs are now only a factor of the passenger revenue and operational costs during the delay period. 

 𝐶1/ak = 𝑛𝑎𝑘𝐶𝑎𝑘 + 𝑓𝑎𝑘𝑑𝑎𝑘(𝑛𝑎𝑘)[𝑐𝑎𝑘 + 𝜙𝑎𝑘𝑆𝑎𝑘𝛼𝑎𝑘] eq. ( 43 ) 

 𝐶1/𝑎𝑘 = 𝑓𝑎𝑘𝑑𝑎𝑘[𝑐𝑎𝑘 + 𝜙𝑎𝑘𝑆𝑎𝑘𝛼𝑎𝑘] eq. ( 44 ) 

More specifically, the variables of eq. ( 43 ) are defined as: 

 𝑛𝑎𝑘 =prospectively affected flights during (𝑘)th cycle 

 𝐶𝑎𝑘 =operating cost of a flight scheduled at affected airport during (𝑘)th cycle. 

 𝑓𝑎𝑘 = delay multiplier at affected airport in (𝑘)th cycle 

o If delay causes delay in next flight with same aircraft, impact is two-fold. 

 𝑑𝑎𝑘(𝑛𝑎𝑘) =total delay of 𝑛𝑎𝑘  prospectively affected flights scheduled at given airport in (𝑘)th cycle 

 𝑐𝑎𝑘 = unit cost of delay of flight scheduled at affected airport in (𝑘)th cycle, variable costs such as: 

o Fuel costs 

o Crew costs 

 𝜙𝑎𝑘 =average load factor of flight scheduled at affected airport in (𝑘)th cycle 
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 𝑆𝑎𝑘 = capacity of flight scheduled at affected airport in (𝑘)th cycle 

 𝛼𝑎𝑘 =average cost of a unit of passenger time of flight scheduled at the affected airport in (𝑘)th cycle 

o Leisure: $31.96 [33] 

o Business: $55.00 [33] 

4.2.6.3 Cost of cancellations 

When considering all costs that are introduced by a cancellation onto the overall system, as done in Janic [32], the 

costs are a factor of flight revenue, passenger wait costs, and social value costs. Passenger wait costs compromises the 

amount passengers need to be compensated for delays, as is compulsory for airlines by law. Social value costs refer to 

the added value the flight and its passengers bring to an airport region. Additionally, it also compensates for the 

operational costs i.e. the flight that does not need to be operated, so the airline saves – to some extent – fuel costs 

and crew costs. This is shown in eq. ( 45 ). 

Rewriting the costs of the overall system to costs for an airline, social value is not taken into account as it is assumed 

that airlines decision making does not involve the value passengers bring to the airport region. Airlines are profiting 

little to none from the social value. Additionally, we can compute flight revenue based on the yield and distance of 

that specific flight. This also can be done for the avoidable operational costs, which can be computed based on the 

flight time and the unit operation costs. The rewritten formula is shown in eq. ( 46 ). 

 

𝐶2/𝑎𝑘 = 2𝑛𝑎𝑘[(𝑅𝑎𝑘 + 𝐶𝑃𝑎𝑘 − 𝐶𝑎𝑘
∗ ) +𝑊𝑎𝑘] 

           = 2𝑛𝑎𝑘[𝜙𝑎𝑘𝑆𝑎𝑘(𝑟𝑎𝑘 + 𝑞𝑎𝑘𝛼𝑎𝑘𝐷𝑎𝑘) − 𝐶𝑎𝑘
∗ +𝑊𝑎𝑘] 

eq. ( 45 ) 

 𝐶2/𝑎𝑘 = 2[𝜙𝑎𝑘𝑆𝑎𝑘(𝛾𝑎𝑘𝑠𝑎𝑘 + 𝑞𝑎𝑘𝛼𝑎𝑘𝐷𝑎𝑘) − 𝑐𝑎𝑘𝑡𝑎𝑘] eq. ( 46 ) 

The variables of eq. ( 45 ) are defined as: 

 𝑅𝑎𝑘 =average revenue per flight scheduled at affected airport in (𝑘)th cycle 

 𝐶𝑃𝑎𝑘 =cost of passenger time lost while waiting for flight scheduled at affected airport in (𝑘)th cycle 

 𝐶𝑎𝑘
∗ =avoidable cost of the flight scheduled at the affected airport in (𝑘)th cycle 

 𝑟𝑎𝑘 = airfare of flight scheduled at affected airport in (𝑘)th cycle 

 𝑞𝑎𝑘 =ratio of passenger waiting for flight scheduled at affected airport in (𝑘)th cycle 

 𝐷𝑎𝑘 =average time, which the passengers have waiting for the flight scheduled at affected airport during 

(𝑘)th cycle, before cancellation 

 𝛾𝑎𝑘 = average yield per passenger-kilometre 

 𝑠𝑎𝑘 = distance of flight scheduled at affected airport during (𝑘)th cycle 

 𝑡𝑎𝑘 = duration of flight scheduled at affected airport during (𝑘)th cycle 

 𝑊𝑎𝑘 =social value of flight scheduled at affected airport during (𝑘)th cycle 

The duration of a flight 𝑡𝑎𝑘  can be estimated by dividing the distance over the cruising velocity of the aircraft 

operating the flight. Between two airport locations that can be expressed in their respective latitude 𝜙 and 

longitude 𝜆, the distance can be computed by using the haversine formula as shown in eq. ( 47 ). Here, 𝑅 equal to 

6371km (the Earth’s radius). 



 

 

 

71 

NLR-TR-2016-461  |    

 sak = 2R arcsin(√sin
2 (
𝜙2 − 𝜙1

2
) + cos(𝜙1) cos(𝜙2) sin

2 (
𝜆2 − 𝜆1
2

)) eq. ( 47 ) 

4.2.6.4 Airline cancellation model assumptions 

 Delay propagation is modelled through the delay multiplier 𝑓𝑎𝑘, which may be inaccurate for individual cases. 

For example, long distance flights that have large times between arrival at the destination and the departure 

of the next flight, will be impacted less. Flights with tight turn-around times, will be impacted more. 

 Rebooking is not taken into account. With a load factor less than 1 on other flights, this would definitely be 

possible. Therefore it is expected that cancellations are performed less than in reality. 

 Flight distance is the great circle distance between the origin and destination airports. Due to regulations, 

wind conditions, or other optimizations actual distance may be longer. This results in a longer flight time and 

thus decrease cancellations costs. 

 Transferring passengers that might miss their next flight is not taken into account. It is expected that 

therefore cancellation costs are higher, and less cancellations are performed in reality. 

4.2.6.5 Cancellation policy analysis 

To give better insight when cancellations occur according to eq. ( 43 ) and eq. ( 45 ), Figure 26 shows costs for 3 flight 

distances and aircraft capacity combinations. Namely: 500 km with 100 passenger aircraft capacity (e.g. flight to 

London with an Airbus 318), 6000km with 250 passenger capacity (e.g. a flight to Dubai with a Boeing 787), and 

10.000km with a 450 passenger capacity (e.g. a flight to Johannesburg with a Boeing 747). 

The distance 𝑠𝑎𝑘  is 500, 6000 or 10.000km for each scenario with a seat capacity 𝑆𝑎𝑘  of 100, 230, and 400 respectively. 

Based on the work of Janic [32], where the equations originate, the following assumptions are made. A delay 

multiplier 𝑓𝑎𝑘 = 4, unit operating costs 𝑐𝑎𝑘 = $1574/ℎ𝑟, passenger wait ratio 𝑞𝑎𝑘 = 0.5, and passenger wait 

time 𝐷𝑎𝑘 = 5ℎ𝑟𝑠. Based on [33] , the passenger unit wait cost is assumed to be $40/ℎ𝑟. Lastly, the general 

assumptions are made that the flights will have an average load factor of 𝜙𝑎𝑘 = 0.8 and fly at an average speed 

of 𝑣𝑎𝑘 = 900𝑘𝑚/ℎ. Additionally, it is assumed that an average revenue of 𝑟𝑎𝑘 = $0.08/𝑅𝑃𝐾 is gained. 

The delay and cancellation cost for delay durations between 0 and 10 hours is illustrated in Figure 26 for each 

scenario. The shortest flight in question has an intersection of 1:05 hr, the medium-haul flight is deemed feasible to 

cancel from 5:35 hrs, and the long-haul flight can be cancelled from 9:30 hrs. Logically, the further a flight its 

destination is and thus the more revenue a flight contributes, the longer delay is acceptable before it is cancelled.  

The three scenarios produce expected cancellation results and thus the assumed parameter values are acceptable. 
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Figure 26: Cancellation versus delay costs for various flight distance and aircraft capacity settings 
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5 Simulation and integration of airport 
collaborative planning 

One of the goals of this research is to show that collaboration benefits airport operations. In order to do so, a 

simulation was performed that integrates the negotiation process as described in chapter 4. 

5.1 Simulation setup 

The airport that will be used for simulation purposes is Amsterdam Schiphol Airport. Whilst the model is applicable to 

any airport, this one has been chosen for the following reasons: 

1. It is a large airport with more than 2 runways, which increases the runway configuration selection 

significantly – especially in winter conditions 

2. Weather forecast data was obtained from the KNMI and was the only detailed, historical forecast data that 

could be obtained [34]. The data only applies to the Netherlands. 

The KNMI data description can be found in Appendix B. This section will provide an overview of the parameters used 

in the simulation with respect to the possible runway configurations and snow removal times. 

5.1.1 Runway configuration setup 

In the simulation, the possible runway configurations that were used are shown in Table 4. Additionally, their 

respective capacity levels (aircraft per hour) for both arrivals and departures are indicated for each visibility level. 

For the visibility conditions, the following definitions were used.  

 Good visibility: runway visual range > 5000m and cloud base > 1000ft 

 Marginal visibility: runway visual range > 1500m or cloud base > 300ft 

 LVP A: runway visual range > 550m or cloud base > 200ft 

 LVP B: runway visual range > 350 or cloud base < 200 

 LVP C/D: runway visual range > 200 
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Table 4: Runway configurations and respective arrival and departure capacities [35] 

Priority 
Configuration 
(ARR/DEP) 

Capacity (ARR/DEP) [ac/hr] 

Good Marginal LVP A LVP B LVP C/D 

1 18R+18C / 09 68 / 40 68 / 35 56 / 24 44 / 30 34 / 23 

2 06 / 36L+09 33 / 77 32 / 67 28 / 52 22 / 52 17 / 40 

3 18C / 24 38 / 37 32 / 32 32 / 30 22 / 30 16 / 20 

4 27 / 24 38 / 37 38 / 35 32 / 30 22 / 30 16 / 20 

5 18C / 18C 22 / 22 20 / 20 17 / 17 15 / 15 10 / 10 

6 27 / 27 22 / 22 20 / 20 17 / 17 15 / 15 10 / 10 

7 - / - 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 

5.1.2 Snow removal setup 

Amsterdam Schiphol Airport makes use of Zaugg AG Eggiwil snow ploughs and sweepers. The largest variety, which is 

very likely used and is recommended for large airports, is the P21 SXL snow sweeper-plough combo. It has a clearing 

speed of 𝑉 = 50km/h, and a blade of 𝑏𝑎 = 6.3m at 𝛼 = 32° (thus an effective blade 𝑏𝑒 = 5.343m). This gives a 

clearing speed of 267 000m
2
/h. A typical runway with its taxi ways covers about 900 000m

2
, with a runway width of 

40-45m. With the specific blade length, this means 7 ploughs are required in parallel to cover the runway once.  

Using eq. ( 7 ) with the efficiency factor 𝜂𝑠 = 0.7 as per [17] and combining this with the above specification, it results 

in a clear time of 41min. Schiphol states a 40min clearing time for their runways and main taxiways, with the 

exception of the Polderbaan (18R-36L), which requires 60min [36]. Our estimate is therefore valid. Based on the 

60min Polderbaan clearance, it can also be derived this covers about 2 625 000m
2
 of area to be cleared. This is vastly 

larger, but is mainly due to the increased runway width of the Polderbaan, being 75m. The increased width results in 

more parallel ploughs, namely 14. 

5.1.3 De-icing setup 

For each aircraft used in the simulation, the de-ice time is determined based on the de-ice category of the aircraft. The 

categories are defined in the AEA de-icing recommendations [18]. Herein, it provides an overview for the majority of 

aircraft with the associated de-ice category. A brief overview can be found in Appendix H. 

For each de-icing category a de-icing time is defined. For Amsterdam Schiphol Airport, these are assumed to be as 

shown in Table 5. 
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Table 5: De-icing times per aircraft de-ice category [31] 

Aircraft de-ice category De-ice time 

A 6 

B 11 

C 12 

D 12 

E 13 

F 14 

5.2 Assessing simulation model performance 

Unfortunately, it was not possible to obtain actual data to validate the simulation model or assess the performance of 

the model. This section describes how the performance would otherwise be assessed.  

Within SESAR, multiple key performance areas (KPAs) are defined to assess technological advancements [37] [38]. The 

KPAs are qualitative measures that are associated with Key Performance Indicators (KPIs), which are quantitative 

measures. The related KPAs to this research are: 

 Airport Capacity: throughput, movements per hour 

 Efficiency: actual performance as ratio of capacity 

 Predictability: variance in forecasted and actual flight plans 

 Resilience: avoided loss of capacity 

Table 6: Mapped Key Performance Area (KPA) with associated Key Performance Indicator (KPI) units [37] 

KPA -> Capacity Efficiency Predictability Resilience 

KPI  -> Capacity Shortage Delay Punctuality Avoidable loss 

Airport W movements X min Y percent Z percent 

 

In assessing the performance of the proposed model and the use of forecasting capacity, supporting information 

transparency, and increased collaboration, the KPAs that will be analysed are efficiency, predictability, and resilience. 

Therefore, airport capacity is not assessed. The airport capacity is not assessed, because the capacity is not improved 

or altered in any way, only forecasted. 
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5.2.1 Assessing KPA Efficiency; KPI Delay 

Generally delay is the comparison between actual and scheduled time stamps of an event. For a passenger on a flight, 

the delay is usually the difference between the scheduled on- or off-block times and the actual times. However, the 

issue is that multiple processes influence these times, such as en-route delay or delay due to issues such as technical 

difficulties. In the assessment, it is therefore best to compare forecasted and intentional times as the indicator for 

delay. Here, the forecasted times include additional information such as weather forecasts, while the intended times 

do not. Additionally, the most restraining factor is used as the assessment process, which is the runway. 

Delay will be computed for each arrival or departure and can be summed or averaged as a single value KPI output. 

Early flights, negative delay, do not contribute to the delay propagation. This computation is shown in eq. ( 48 ) as is 

defined in SESAR [37]. Here, FLDT and FTOT refer to the forecasted landing and take-off times and ILDT and ITOT refer 

to the intended landing and take-off times. Intended and forecast times are used as a generic comparison of times. 

This means one has to compare the same type of times. In this case the scheduled landing and take-off times (SLDT 

and STOT) are used as values for ILDT and ITOT. If off-block time was forecasted, the scheduled off-block times could 

be used as intended time for the delay computation.  

 
𝐷𝐷𝐸𝑃 = 𝐹𝑇𝑂𝑇 − 𝐼𝑇𝑂𝑇 
𝐷𝐴𝑅𝑅 = 𝐹𝐿𝐷𝑇 − 𝐼𝐿𝐷𝑇 

eq. ( 48 ) 

5.2.2 Assessing KPA Predictability; KPI Punctuality  

The predictability of operations refers to the ability control flight operation variability and disruption effects, such as 

winter conditions as used as a use-case in this research. Predictability includes arrival, turn-around, departure 

predictability as well as flight cancellations and aircraft changes. For this research, arrival and departure predictability 

and the prediction of flight cancellations can be assessed. 

During the assessment of the KPIs, the threshold (𝑇𝐻) can be varied. Currently, it is usual to have a threshold of 

15min. The assessment can be done through utilizing eq. ( 49 ) and eq. ( 50 ), as defined within SESAR [37]. Additional 

to the definition of section 5.2.1, RLDT and RTOT refer to the reference landing and take-off times. Similar to ILDT and 

ITOT, for both the SLDT and STOT are used. Again, comparing forecasted and reference times have to be the same 

type of time. Meaning when off-block time is forecasted, the reference times would consist of off-block times.  
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𝐴𝑅𝑅𝑝 = 𝐶𝑁𝑇([𝐹𝐿𝐷𝑇 − 𝑅𝐿𝐷𝑇] < 𝑇𝐻) 

𝐷𝐸𝑃𝑝 = 𝐶𝑁𝑇([𝐹𝑇𝑂𝑇 − 𝑅𝑇𝑂𝑇] < 𝑇𝐻) 
eq. ( 49 ) 

 

𝑃𝐴𝑅𝑅 =
𝐴𝑅𝑅𝑝

𝐴𝑅𝑅
 

𝑃𝐷𝐸𝑃 =
𝐷𝐸𝑃𝑝

𝐷𝐸𝑃
 

𝑃 =
𝐴𝑅𝑅𝑝 + 𝐷𝐸𝑃𝑝

𝐴𝑅𝑅 + 𝐷𝐸𝑃
 

eq. ( 50 ) 

5.3 Simulation Scenario: February 2, 2012 

At the 2
nd

 of February in 2012 there was a major snowfall event on Amsterdam Schiphol Airport. The majority of snow 

fell around between 11:00 and 13:00, but snow fell from 9:00 till 15:00. Not only the airport is affected, but also roads 

endure heavy traffic jams – at its peak 800km – and trains are delayed or cancelled. Flights are delayed by an average 

of 45 minutes; that is, if they are not cancelled [39]. 

The forecasts of that morning are shown in Figure 27, using the accumulation formulas of section 3.2.1, and show how 

snowfall may develop throughout a day. Forecast MOS data is provided by KNMI [34]. It is assumed to be 9:00, when 

snow just starts falling, what happens next?  

 

Figure 27: Comparison of snow accumulation as forecasted on 03:00, 06:00, 09:00 and 12:00 with (WC) and without 
compaction (NC) corrections 
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In generating possible configuration and scheduling options, the limiting factors are runway feasibility and 

configuration capacity. Wind directions and wind speeds determine runway feasibility, the visibility and cloud base 

conditions determine configuration capacity levels and snowfall determines runway feasibility as a result of snow 

removal operations. 

5.3.1 Meteorological runway feasibility 

To visualize the impact of the forecasts, Figure 28 provides an overview of runway feasibility due to wind limitations 

for all runway possibilities that result from the runway configurations of Table 4. Here, the tailwind limit was set to 

10kts and the crosswind limit was set to 20kts. 

 

Figure 28: Runway feasibility due to tailwind and crosswind limitations 

A similar overview is shown in Figure 29. Here, the runway configurations from Table 4 are shown along with their 

respective forecasted capacity values based on forecasted visibility and cloud base conditions, as through the process 

as shown in section 2.2.2. With capacity levels only slightly lower during the snowfall period (11:00 – 14:00), it can be 

concluded that visibility has only minor impact on the runway capacity. 
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Figure 29: Forecasted capacity values for each configuration based on visibility and cloud-base conditions 

Even though the runways are feasible in terms of wind and visibility conditions, they may not be due to the forecasted 

snowfall. Based on the snow removal process as described in section 3.2, Figure 30 shows the planned snow removal 

procedures, which is the result of the negotiation model. 

  

Figure 30a: Snow clearing operations Figure 30b: Runway availability 

Figure 30: Runway availability up to 3 separate runways (blue, green, and magenta); colours in both plots correspond 
to the same runway 
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5.3.2 Delay and cancellations 

The performance of the capacity manager and the airline managers can be shown through analysing the delay 

propagation of the flight planning. Herein, the difference between the planned times of arrival or departure is 

compared with the scheduled times of arrival or departure. Performing this analysis will indicate two factors: it shows 

if the runway configuration is fitting for the inbound and outbound flights, but also the effect of flight cancellations 

and how much delay this prevents. 

Figure 31a shows the delay accumulation for inbound and outbound flights for the regular model as well as when 

airlines will perform all of their scheduled flights and do not cancel any. One can conclude that cancelling flights lead 

to lower amounts of delay. Additionally, the effect of preventive cancelling of flights is substantial. The final 

accumulated delay is 100hrs less with preventive cancellations for both inbound and outbound flights. 

The graph of Figure 31a also shows the behaviour of the runway configuration and flight planning techniques. Namely, 

the sum of total delay (i.e. inbound and outbound delay) is minimized. Both delay levels are balanced, which is shown 

by the fact that the areas under the both delay curves are nearly equal. 

The analysis of delay accumulation is useful in comparing trends between different scenarios, but lack in visualizing 

the actual delay each flight is subject to. In Figure 31b the average delay for each flight is shown using a moving 

average over 20 flights. With the majority of snowfall during the time period between 11:00 and 14:00, delays 

increase dramatically. It takes up to 19:30 before outbound delays are at acceptable levels of an average of 15 

minutes per flight. However this does not last for long, as a new outbound peak causes more outbound demand than 

there is capacity available. Average inbound delay levels remain high. 

  

Figure 31a: Cumulative delay Figure 31b: Average delay 

Figure 31: Delay propagation for inbound and outbound flights w.r.t. flight schedule 

The decrease in delay in the new flight planning is achieved with only a minor number of cancellations for most 

airlines. Figure 32b shows the distribution in cancellations as a ratio of their total number of flights that day. Whilst 

major airlines that connect Amsterdam Schiphol Airport, such as KLM (KLM), Aer Lingus (BEE), and EasyJet (EZY), 
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cancel the most flights they are not impacted solely. The aforementioned airlines have both higher (e.g. Aer Lingus) 

and lower (e.g. KLM) ratios. This shows the effect of the airline decision making model (see section 4.2.5.3) that makes 

a cost-benefit analysis per flight, and thus no airline is benefitting more than another. 

The right section of the graphs shows (almost) no cancellations (TFL to DAL). This can be explained due to the fact that 

these flights were mostly in the morning, where little delay was accumulated and therefore no reason to cancel. This 

can also be seen in Figure 32a, where the most flights are cancelled just after the snow period i.e. the period when 

delays are accumulated too much and therefore delay costs are higher than the cancellation costs. 

  

Figure 32a: Cumulative cancellations w.r.t. original 
scheduled time of arrival/departure 

Figure 32b: Cancellation / flight ratios for airlines with at 
least 10 flights (abbreviations, see Appendix I) 

Figure 32: Cancellations for simulated scenario of 2 Feb. 2012 

 

5.3.3 Negotiation performance 

Negotiation as a means for distributed planning is potentially a powerful approach to increase efficiency and 

predictability. In that case, one would like to evaluate the performance of the negotiation. This can be measured by 

the acceptance rate of the agents. Recalling from section 4.1, at each round, the negotiation is stopped when an agent 

rejects or proposes an alternative. The negotiation is then started again.  

In total, 121 agents were involved in the negotiation. This number is mostly determined by the number of airlines 

involved as 117 agents are airlines. The acceptance rate is determined by dividing the accepting agents per 

negotiation round by the total number of agents (121). Naturally, the last round results in 100% acceptance rate as 

the negotiation stops when every party agrees on the proposed option.  
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The acceptance rate at each iteration is shown in Figure 33a. Two things are notable: there are some flat lines where 

no increase in acceptance rate occurs for some time (e.g. iteration 25 to 800) and the fact that there are a lot of 

iterations (1673). On average, 13.8 iterations are required for a proposal to be accepted for each agent. Both are the 

result of the set-up of the negotiation simulation because of the following two points. 

Firstly, because an airline cancels flights, the runway flight planning (and possibly the runway configuration) needs to 

be re-computed and is thus again proposed. As airline cancel flights often (see second point), the re-computing leads 

to a lot of additional iterations. 

Secondly, airlines can only cancel a maximum of one inbound and one outbound flight at a time, as the airline agent is 

modelled to be ‘smart enough’ to determine the impact of the cancellation. Cancelling a flight, namely, decreases the 

delay of other flights, which impacts the decision making of the airline. 

If both factors were to be accounted for in the model or assumed to be accounted for in a real-life scenario, the real 

negotiation performance is much closer to Figure 33a. Considering 121 agents are negotiating, 70 iterations is a fair 

performance. 

  

Figure 33a: Negotiation performance Figure 33b: Adjusted negotiation performance 

Figure 33: Acceptance performance per iteration of negotiation 

5.4 Airline delay and cancellation cost sensitivity 

In the simulation, the capacity is forecasted as introduced in section 2.2.2. In the negotiation, it is then assumed by 

the airlines that they have to respect that capacity. Air Traffic Control, however, might not be eager to share runway 

capacity information, in the fear of over- or underestimating it. Therefore when capacity data is shared in the current 

situation, it tends to be conservative. Using the simulation of the negotiation process, it is possible to evaluate the 

impact of over- or underestimating the runway capacity. 
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The newly forecasted capacity that will be used in runway planning and runway configuration selection is the adjusted 

capacity 𝐶𝐴, as described in eq. ( 51 ). A factor 𝑓 denotes the confidence in the estimated capacity forecast, with a 

negative value leading to an underestimation and a positive value to an overestimation of capacity. 

An underestimation means that all other parties think there is less capacity, but in the execution there will be more. 

As a result, expected delays will be larger than what will be in the execution. For overestimations, the expected delay 

is smaller than what is most probable. Expected is that airlines will cancel more flights in the case of underestimating 

capacity and fewer flights cancelled when overestimating capacity. 

 𝐶𝐴 = 𝐶(1 + 𝑓) eq. ( 51 ) 

5.4.1 Airline decision making cost sensitivity 

The results of the negotiation under the confidence levels between -15% and +15% is shown in Figure 34. Measuring 

the impact of the confidence level is done by computing the total delay and cancellation costs for all involved airlines. 

The impact is then normalized with respect to the realized planning, which corresponds with 𝑓 = 0. For example, a 

cost impact of 0 means the costs are equal to the costs of the realized planning and a cost impact of 1 implies that the 

costs are doubled (+100%). 

 

Figure 34: Airline delay and cancellation costs for capacity confidence levels 
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It shows that the delay costs do not change a lot with the various confidence factors, whilst the cancellation costs 

increase with a lower confidence factor and decrease with higher factors. Having sufficient demand, underestimations 

of capacity means that delay accumulates faster. For each flight, airlines assess if cancelling a flight might be a cheaper 

option than accepting the delay as is described in section 4.2.5.3. This means that the chance of cancelling a flight 

increases at lower confidence levels. It is thus logical that delay costs for all airlines in the simulated scenario do not 

change a lot with respect to the confidence factors, as a further increase in delay lead to unacceptable levels and 

cancellations are the result. 

The default case exhibits a total cost of $22.18M, consisting of $6.05M in cancellation costs and $16.82M in delay 

costs. As expected, there is a clear, negative trend between the confidence level and the cost impact, with lower costs 

at higher confidence levels. The trend can be linearly estimated and is also shown in Figure 34 that exhibits a fitting 

accuracy 𝑅2 of 0.985. It is important to note that the trend line is only valid for cost impact values larger than -1. A 

cost impact of -1 means there are no costs, so values smaller than -1 would imply that airlines gain revenue by 

cancelling or delaying a flight. 

5.4.2 Airline cost sensitivity due to capacity imbalance 

The above is definitely valid from the airline perspective, but the reality will turn out differently than expected. When 

capacity is overestimated, airlines cancel fewer flights as delay is expected to be less. However, in the execution of the 

planning, delay levels will be a lot higher, as capacity was overestimated. 

It is expected that the increase in actual delay costs will be at least that of the decrease in cancellation costs. This is 

due to the decision making of the airline, where flights are cancelled once delay levels are too high. Applying this 

principle to the total costs of the airlines, namely the delay and cancellation costs, results in Figure 35. 

Again, the costs vary with the capacity confidence factor, with the realized planning at 𝑓 = 0. Thus in Figure 35 an 

increase in costs for both under- and overestimations can be seen. This is completely to be expected, namely that 

either an underestimation or overestimation never leads to an optimal planning. This in turn results in associated 

increase in costs. Interestingly, the impact of overestimating capacity increases faster than the impact of 

underestimating capacity when deviating from the default case (𝑓 = 0). 
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Figure 35: Airline total costs (delay and cancellation costs) for capacity confidence factors 

5.4.3 Airline cost sensitivity due to capacity forecasts 

The visibility category was modelled as a random variable. At each time step a random number was generated 

between 0 and 1. The random number is then compared with the probabilities of a visibility category occurring, as 

forecasted in the KNMI MOS forecast data. The negotiation model was run 1000 times. 

In Figure 36 the distribution of delay costs, cancellation costs, and total costs is shown. Here, the costs are normalized 

with respect to the respective costs associated with the forecasted runway capacity. The latter also corresponds with 

the default 0 case of the previous section 5.4.2. Additionally, the associated histograms and probability density 

functions can be found in Appendix D. 

What Figure 36 shows is that the forecasted capacity is mostly on-par. However, for both the delay and total costs, 

there is a higher probability of lower costs i.e. the area under the curve is larger for normalised cost < 0. Most 

significantly is the difference in cancellation costs. Here, the median cancellation costs are 5% lower than expected. 

The median total costs are 2% lower. Both seem rather insignificant, yet when combined with the normal total costs 

of $22M: it is not. The 2% cost reduction is an impact of $440.000. 

It implies that in more cases the costs are lower than expected. This means that an airline should cancel fewer flights 

than predicted, thus decreasing costs and increasing customer satisfaction. 
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Figure 36: Violin plots of delay, cancellation and total costs over 1000 Monte Carlo runs 

5.4.4 Operational impact of erroneous capacity estimations 

Previously the impact of overestimating or underestimating was measured in terms of costs for airline. However, 

there are also some practical aspects that are the result of either over- or underestimating capacity. Both cases reveal 

their own issues. 

Capacity underestimations 

During the execution of a planning that is based on an underestimated capacity, delay levels are suddenly much lower 

than planned. 

Advantages include: 

 More slack time that can deal with unexpected issues i.e. robustness increases 

 Expected delay costs are lower 

Disadvantages include: 

 Too many flights may be cancelled than necessary. 

 Lower efficiency of available capacity. Parties have more slack time, therefore may operate at a lower rate. 

 There is room to speed up operations, such that delay with respect to original scheduled arrival/departure 

times is minimized. However, if stakeholders try to achieve this, it leads to less organized executions, 

decreases efficiency and requires more communication between parties. 
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Capacity overestimations 

When overestimating capacity, flights are planned with less delay than during the realisation. This means that parties 

are constantly behind schedule. 

Advantages include: 

 Less cancelled flights 

 More passengers reach their destinations 

Disadvantages include: 

 More delay 

 Decreased passenger experience 

 Increased workload for all parties, most specifically: 

o Air traffic control 

o De-ice operators 

o Ground handling operators 

 Increase crew fatigue 
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6 Conclusions and recommendations 

Collaboration is the future of operational airport planning. With current airport stakeholders being hesitant to share 

information, a transition to increased collaboration is difficult. Research is required to prove the benefits of 

collaboration compared with the current situation. A part of this effort was done in this thesis, which had the 

following objective and goals. 

Research objective 
“To increase predictability in the (pre-)tactical airport airside operational processes through integrating capacity 
forecasting and decision support for air traffic control, the airport and service providers under winter conditions.”  

At the core of the objective are the 2 main goals: 

1. To extend current capacity forecasting models to include winter conditions, thus allowing for all-weather 

capacity forecasting. 

2. To develop a decision support facility that evaluates the effect of capacity forecasting and integrates the 

collaborative planning of runway management, de-icing, and snow-removal operations. 

In order to achieve the objective, this thesis contributed the following: 

 Snow removal and de-icing capacity forecasts 

 Snow removal planning optimization model 

 A negotiation model for distributed airport operational planning, with respect to 

o Runway configuration planning 

o Runway flight planning 

 Decision models for each of the stakeholders: 

o Air traffic control 

o Snow removal 

o De-icing service provider 

o Airlines 

 A simulation framework that integrates all of the above 

6.1 Conclusions 

This thesis has been a step towards modelling collaboration for complex operational planning processes by integrating 

capacity forecasts. The modelling is done through a multi-agent negotiation technique, where each stakeholder 

proposes and assesses planning options. In this case, stakeholders collaboratively work towards the most appropriate 

runway configurations and runway flight planning using the principled negotiation protocol. This was done whilst still 

adhering to the respective safety regulations and possible preferences. 
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The collaborative operational planning is based on the forecasted capacity. This thesis extends current runway 

capacity forecasting models with the ability to cope with winter scenarios. Not only runway capacity, but also snow 

removal and de-icing capacity forecasting were done.  

With forecasting runway capacity in place, flight schedules are updated and results in the impact in terms of flight 

delay. This means that airlines have the possibility to cancel flights much earlier on. The earlier they can decide 

whether to cancel, the better. Namely, early decision leaves more time available for rebooking passengers. This 

improves passenger experience and reduces the costs for airlines. 

During winter conditions, flight handling (from arrival to turn-around to take-off) is a less common practice, which 

increases the variability in performance and decreases the situational awareness. Increasing the predictability of 

operations and improving shared situational awareness through distributed planning, limits the adverse effects. 

A simulation was run for February 2, 2012 when Amsterdam Schiphol Airport was hit by snowfall. The simulation 

shows that working collaboratively on the flight planning shows significant delay minimization. Over a period of 12 

hours, cumulative delays are reduced by 100 hours. The reduction is achieved due to the cancellation of flights that 

are expected to have high delay levels. 

In the simulation 121 agents participated and agreement is reached within 1670 iterations. This is an average of 13.8 

iterations per agent. The agreement was reached within 20 seconds computation time and is thus very suitable for 

real-time operations. Especially given the fact that it is a multi-agent system, where computation time increases 

linearly instead of exponential [40]. We can additionally conclude principled negotiation is suitable as a distributed 

planning protocol. Aside from its performance, it is beneficial that this protocol always reaches agreement. 

Furthermore, the system can be easily up-scaled using the same type of agents, but also new agents can be added 

with ease. New agent types can be developed without any required knowledge of the decision making of the other 

agents, as long as the same variables are negotiated. New variables can be added independent of the decision making 

of other agents and thus allows for easy extension of the system. 

Apart from real-time planning possibilities, the system proves to be able to work inter-organisational through the use 

of the multi-agent system. Due to the distributed nature of the system, it is not a problem to implement across 

multiple locations / organisations. In terms of security or privacy this is extra beneficial, as only global data is shared 

and local data for decision making remains at the respective organisation.  

With airline decision making being dependent on the capacity forecasts, it is most important that the forecasts are not 

underestimated or overestimated in any way as both lead to decreased predictability and increased costs. Air traffic 

control is not very eager to share capacity information. If the information is shared it is not unthinkable that capacity 

levels might be estimated more conservatively. From simulations it can be concluded that estimating more 

conservatively is at least beneficial compared to overestimating capacity. It shows that underestimation lead to an 

increase of airline cost of approximately 1.5 times the confidence factor. That is to say, if capacity is 10% estimated 

more conservatively (underestimated), airline costs grow with 15%. On the other hand, overestimations increase with 

a factor 2.25.  

With the used capacity forecasting methods, the capacity tends to be somewhat higher in most cases. The forecasting 

is thus a little conservative. Combined delay and cancellation costs are generally 2% lower than expected. 
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6.2 Recommendations 

In this thesis it was not possible to validate the results with the reality. Therefore, the recommendation is to obtain 

runway configuration and flight planning data to compare results with. In order to do a proper validation, delay and 

cancellation data is required. Preferably the reasoning to delay or cancel a flight would be available too, in order to 

validate the model within the bounds of the model assumptions. 

In this thesis, a simulation was performed that automates the collaboration of stakeholders. The same ruleset of 

proposing and accepting options may also be applied in an operational environment with humans in the loop. A 

decision support tool that facilitates the negotiation for stakeholders is thinkable. Additionally, impact of decisions can 

be evaluated though computing what-if scenarios. This allows for a more quantitative argumentation compared to 

expert judgement decisions. 

With a large part of the thesis focussing on collaboration and distributed planning, some forecasting methods are not 

as advanced as is done in other literature. More sophisticated methods such as machine learning algorithms as 

introduced by Udo [41] or To70/KLM [42] may provide more accurate forecasts and would increase the benefit of the 

negotiation. Using model techniques such as machine learning helps to provide forecasts in cases that are not 

specifically modelled, which was the approach in this thesis. The disadvantage from ML models is that it requires a fair 

amount of data. It is therefore advised to research a generalized approach, which could even use data from a 

multitude of airports. If doing so, the model will likely perform better in unseen cases.  

The choices by the stakeholders are modelled deterministic. In some scenarios, it may occur that stakeholders have a 

different reasoning process than is currently modelled. To account for this, one could include stochasticity in the 

decision modelling. Once that is done, the performance of the model can be re-evaluated with respect to its 

robustness to the stochastic nature. 

The scope of this work was limited to the runway configuration and runway flight planning based on forecasted 

runway capacity, snow removal capacity, and de-icing capacity. Including more components such as taxiway, stand, 

push-back and ground handling will increase the accuracy of the flight planning and enhance collaboration further. 

Also, if the opportunity arises it would be beneficial to connect airside and landside capacity by integrating terminal 

capacity and processes such as check-in, passport control, and security. 

This thesis work has focussed itself to the collaboration with respect to the runway configuration and runway flight 

planning. The same method may very well be applied to other planning processes. This could be in the aviation 

environment, but applications can also be in other logistical domains such as seaports or (truck) vehicle routing [1]. 

Generally the used multi-agent approach is valuable in contexts with a multitude of stakeholders. 
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Appendix A Airport capacity forecast decision 
support 

The negotiation of the agents is programmed in a web-based environment using Java, running on a Tomcat server 

enabled by the libraries JavaServerFaces and Primefaces. The last two are used for rendering the output. This is built 

as a demonstrator and initial set-up for a decision support facility for forecasted capacity and operational planning 

negotiation. This chapter elaborates upon the facility architecture and the methods of visualizing capacity forecast 

information. 

Appendix A.1 Facility architecture 

The facility consists of two major parts: 

 Negotiation framework (see Figure 37) 

 Capacity forecasting framework (see Figure 38) 

The negotiation framework is shown in Figure 37, which is based on the negotiation definition from section 4.1.4. The 

negotiation is modelled as the communication of Messages between Agents. A message is a Request, Proposal, 

Acceptance, or Rejection and contains one or many Options, which is currently negotiated between the Agents. When 

all Agents agree upon the Option, it is formalized as a Plan to be executed. Each Option consists of one or many 

Actions. 

In case of a Rejection, limitations may be communicated. An example of a limitation could be that a configuration is 

infeasible due to wind limitations. The limitations are communicated through the use of ActionLimits. When an 

ActionLimit is communicated, other Agents may use this in their option generation process. 

The communication is done through a Messenger, which enables the possibility to communicate easily to each Agent 

without each Agent having to know what other Agents are involved in the negotiation process. Additionally, it can 

facilitate the negotiation across multiple servers and enable asynchronous communication. The advantage of 

asynchronous communication is that an Agent can propose options to all other Agents at the same time, without 

having to wait for a response. It will avoid scenarios such as waiting for a long time until one agent has generated its 

best options, only for the initial proposal to be rejected by another Agent. Asynchronous communication thus means 

that the negotiation process is more efficient. 
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Figure 37: Negotiation framework class diagram 

The capacity forecasting framework is set up using two elements: the capacity manager models and the 

meteorological forecast models. The main MeteoForecastModel retrieves the meteorological forecast data and 

transforms data to SI units. Other forecast models such as the WindForecastModel, VisilityForecastModel, 

SnowForecastModel, and DeIceForecastModel extend the base MeteoForecastModel and expose the appropriate 

data and additional helper functions. The RunwayForecastModel integrates wind and visibility information for 

feasibility checking (if safety limitations are not exceeded). The FlightForecastModel retrieves the inbound and 

outbound flight schedules, including relevant information such as aircraft data (type, capacity, etc.). 

The main CapacityMgr model implements the Agent model and thus allows for negotiation as described previously; 

see Figure 37. This main model is then extended by the AirlineMgr, RunwayConfigurationMgr, RunwayPlanningMgr, 

SnowRemovalMgr, and DeIcingMgr. Each integrates the decision flows and heuristics of section 4.2 and uses the 

previously described forecasting model through the relationships shown in Figure 38. 
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Figure 38: Capacity forecasting class framework 

Appendix A.2 Capacity forecast visualization 

Runway capacity is usually expressed through a Runway Capacity Curve Envelope (RCCE); an example can be seen in 

Figure 39. In this figure capacity is shown per 15min, but it is not uncommon to have capacity defined per 20 or 60 

minutes. The data points correspond with arrival and departure empirical data over a longer period of time. Plotting a 

curve over all extreme data points lead to Curve 1, however is not realistic as it includes outliers with a very low 

frequency of occurrence. Curve 2 shows a more realistic curve, excluding outliers, and is used to determine the 

declared capacity. 
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Figure 39: Historical airport performance data and capacity curves [43] 

When displaying forecasted information in a decision support system, there are a few factors of importance. The main 

question is whether or not the demand can be met. This can be measured through the difference between the 

forecasted capacity and the demand.  Due to the nature of the forecast, the forecasted capacity has inaccuracies and 

thus need to be taken into account. This leads to the following required values to represent: 

 Forecast value 

 Forecast inaccuracy 

 Forecasted demand 

 Applicable time period 

For a certain runway configuration, the main drivers for capacity are the forecasted visibility conditions. More 

specifically, cloud base and runway visibility. With a forecast probability for each category, one can combine the 

forecast with capacity levels to reach a forecast as seen in Figure 40. Here, the forecast values and inaccuracies are 

incorporated through plotting the forecasted capacity versus the chance of achieving that capacity level. Additionally, 

the required demand is shown as well. In this example, the demand can be met with a 75% chance, which is indicated 

by the intersection between the forecasted capacity and demand. It is then up to the ATC to determine whether the 

levels may be acceptable or not. Additionally, one could extend the plot through including demand requirements for 

various delay settings. 

 
𝐶(𝑝) =

{
  
 

  
 
𝐶(𝐺) 𝑖𝑓 0 ≤ 𝑝 < 𝑃(𝐺)

𝐶(𝑀) 𝑒𝑙𝑠𝑒 𝑖𝑓 𝑃(𝐺) ≤ 𝑝 < 𝑃(𝑀)

𝐶(𝐼) 𝑒𝑙𝑠𝑒 𝑖𝑓 𝑃(𝑀) ≤ 𝑝 < 𝑃(𝐼)

𝐶(𝐼𝐼) 𝑒𝑙𝑠𝑒 𝑖𝑓 𝑃(𝐼) ≤ 𝑝 < 𝑃(𝐼𝐼)

𝐶(𝐼𝐼𝐼) 𝑒𝑙𝑠𝑒 𝑖𝑓 𝑃(𝐼𝐼) ≤ 𝑝 < 𝑃(𝐼𝐼𝐼)

0 𝑒𝑙𝑠𝑒 𝑖𝑓 𝑃(𝐼𝐼𝐼) ≤ 𝑝 ≤ 1

 
eq. ( 52 ) 

The forecast of Figure 40 is computed through multiplying the probability of a visibility category and the capacity for 

that category. These values are then linearly interpolated. This is shown in eq. ( 52 ). Here, 𝑝 is the chance of achieving 

the capacity level, 𝐶 is the capacity level, 𝐶(𝑉) is the capacity at visibility category 𝑉, and 𝑃(𝑉) is the forecasted 
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probability of at least experiencing visibility category 𝑉. It is thus required that ∑ 𝑃(𝑣)𝑣∈𝑽 = 1. In this example 𝑽 ∈

[𝐺,𝑀, 𝐴, 𝐵, 𝐶/𝐷]. 

In Figure 41b, the forecast is only shown for one runway configuration. One can extend the same principle by 

combining runway configuration forecasts with the above described method such that ∑ ∑ 𝑃(𝑐)𝑃(𝑣)𝑣∈𝑽𝑐∈𝑪 = 1, 

where 𝑪 denotes the set of possible runway combinations. 

 

Figure 40: Capacity forecast based on visibility categories 

One issue with forecasting is that not only one point in time is of interest, but the overall picture as well. Namely the 

demand and capacity figures are changing over time. Thus instead of comparing demand and capacity at a single 

moment in time, they will need to be assessed for a certain look-ahead period. When doing so, trends become 

possible to spot, along with moments of under- or overcapacity. These are therefore the required qualifiers for the 

capacity visualization: 

 Trends 

 Undercapacity 

 Overcapacity 
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Figure 41a: Option 1 – Gauge [44] Figure 41b: Option 2 – Bar/line plot 

Figure 41: Capacity visualization options 

Various options to visualize the data are possible. In Figure 41, two options are shown. Here, option 1 was introduced 

in the ACF project [44] and option 2 is first proposed in this document. With respect to the required values and 

qualifiers, Table 7 assesses each visualization option. 

Table 7: Comparison chart of capacity visualization options 

 Metric Option 1 (Gauge) Option 2 (bar/line plot) 

V
al

u
e

s 

Forecast value  Needle 
 Minimum is green, maximum is 

orange 

Forecast inaccuracy  Blue margin around needle 
 Orange area spanning from minimum 

to maximum forecasted capacity 

Demand 

 Green area starts at demand – 5% 

 Yellow area starts at demand – 
15% 

 Red area starts at 0 

 Black line with markers 

Time period 

 Time shown below gauge 

 Initial and minimum time instant 
corresponds with ‘now’ 

 Look-ahead time requires 
interaction 

 Time span below plot 

 Minimum time instant corresponds 
with ‘now’ 

 Look-ahead time at a glance 

 Hover confirms time period 
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Q
u

al
if

ie
rs

 

Trends  Gradient displayed under gauge 
 Forecast: differences between bars 

 Demand: slope of line 

Under- / overcapacity 
 Green may indicate overcapacity 

 Red represents undercapacity 
 Difference between line and bar 

chart 

N
o

te
s 

 
Inaccuracy is displayed twice by 
showing forecast inaccuracy and a 
custom defined yellow region 
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Appendix B KNMI Model Output Statistics (MOS) 
weather forecast data 

Table 8: KNMI Model Output Statistics (MOS) parameter description 

Element number Element name Description Unit 

Temperature 

1005 T2m 2m  temperature 0.1 °C 

Wind 

1001 DD Wind direction (10-min. average) Deg 

1002 FF/kt___00 Wind speed (10-min. average) Kts 

1243 FF(WX)__00 Wind speed in precipitation Kts 

1096 SD_DD Standard deviation wind direction Deg 

1097 SS_FF Standard deviation wind speed Kts 

1206 P_FF>15_00 Probability of wind speed more than 15 kts % 

1207 P_FF>25_00 Probability of wind speed more than 25 kts % 

1208 P_FF>35_00 Probability of wind speed more than 35 kts % 

1250 FX_X____00 Maximum gust Kts 

1251 P_FX>25_00 Probability of gusts more than 25 kts % 

1252 P_FX>40_00 Probability of gusts more than 40 kts % 

1253 P_FX>55_00 Probability of gusts more than 55 kts % 

Visibility 

1036 VIS/100m Visibility 100 m 

1248 VIS(WX) Visibility in precipitation 100 m 

1304 P_BZO<=M Probability of BZO Phase less or equal to M % 

1305 P_BZO<=A Probability of BZO Phase less or equal to A % 

1306 P_BZO<=B Probability of BZO Phase less or equal to B % 

1307 P_BZO<=C Probability of BZO Phase less or equal to C % 

Precipitation 

1270 RR1__mm/10 Total amount of precipitation over recent hour 0.1 mm 

1025 Pw_Any_LMH_1 Probability of any precipitation over recent hour % 

1260 Pw_Liq_LMH_1 Probability of liquid precipitation over recent hour % 

1023 Pw_Frz_LMH_1 Probability of freezing precipitation over recent hour % 

De-icing 

1082 %1-Deic_3h Percentage of planes to de-ice 3h % 
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Appendix C US Model Output Statistics (MOS) 
weather forecast data 

Model output statistics is a prediction method of forecasting weather data for each item in a gridded area. Doing so, a 

prediction for a specific site can be computed. In Figure 42 a sample using the MOS output scheme is shown. In Table 

9 the abbreviations of output along with the description and units are elaborated upon. 

 

 

Figure 42: Model Output Statistics (MOS) example 
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Table 9: US Model output statistics (MOS) parameter description 

Abbr. Description Unit[, categorical values] 

DT 
The day of the month, denoted by the standard three or four letter 
abbreviation  

[-] 

HR 
Hour of the day in UTC time. This is the hour at which the forecast is 
valid, or if the forecast is valid for a period, the end of the forecast 
period.  

[-] 

N/X Night-time minimum/daytime maximum surface temperatures.  [F] 

TMP Surface temperature valid at that hour.  [F] 

DPT Surface dew point valid at that hour.  [F] 

CLD 

Forecast categories of total sky cover valid at that hour.   CL: clear 

 FW: few 

 SC: scattered 

 BK: broken 

 OV: overcast 

WDR 
Forecasts of the 10-meter wind direction at the hour, given in tens of 
degrees.  

[D] 

WSP Forecasts of the 10-meter wind speed at the hour, given in knots.  [kts] 

P06 
Probability of precipitation (PoP) during a 6-h period ending at that 
time.  

[%] 

P12 PoP during a 12-h period ending at that time.  [%] 

Q06 

Quantitative precipitation forecast (QPF) category for liquid 
equivalent precipitation amount during a 6-h period ending at that 
time.  

 0: no precip 

 1: 0.01-0.09 

 2: 0.10-0.24 

 3: 0.25-0.49 

 4: 0.50-0.99 

 5: 1.00-1.99 

 6: 2.00+ 

[inches] 

Q12 
QPF category for liquid equivalent precipitation amount during a 12-h 
period ending at the indicated time.  

See Q06 



 

 

 

105 

NLR-TR-2016-461  |    

SNW 

Snowfall categorical forecasts during a 24-h period ending at the 
indicated time.  

 0: no snow 

 1: 0-2 

 2: 2-4 

 4: 4-6 

 6: 6-8 

 8: 8+ 

[inches] 

T06 
Probability of thunderstorms/conditional probability of severe 
thunderstorms during the 6-hr period ending at the indicated time.  

[%] 

T12 
Probability of thunderstorms/conditional probability of severe 
thunderstorms during the 12-hr period ending at the indicated time.  

[%] 

POZ Conditional probability of freezing pcp occurring at the hour.  [%] 

POS Conditional probability of snow occurring at the hour.  [%] 

TYP 

Conditional precipitation type at the hour.   S: snow (grains) 

 Z: any mixed with freezing 
precip 

 R: rain (with snow) 

CIG 

Ceiling height categorical forecasts at the hour.   1: 0-200 

 2: 200-400 

 4: 500-900 

 4: 1000-1900 

 5: 2000-3000 

 6: 3100-6500 

 7: 6600-12000 

 8: 12000+ 

 [feet] 

VIS 

Visibility categorical forecasts at the hour.   1: 0.0-0.5 

 2: 0.5-1.0 

 3: 1.0-2.0  

 4: 2.0-3.0  

 5: 3.0-5.0 

 6: 6 

 7: 6+ 

[miles] 

OBV 

Obstruction to vision categorical forecasts at the hour.   N: none of below 

 HZ: haze, smoke 

 BR: mist (VIS>=5/8M) 

 FG: fog (VIS<5/8M) 

 BL: blowing dust / sand / snow 
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Appendix D Capacity forecasting distribution 

In the Figure 43, Figure 44, and Figure 45 costs are normalized with respect to the costs associated with the forecasted 

runway capacity. 

 

Figure 43: Delay cost distribution over 1000 Monte Carlo runs 
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Figure 44: Cancellation cost distribution over 1000 Monte Carlo runs 

 

Figure 45: Total cost distribution over 1000 Monte Carlo runs 
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Appendix E Forecasting snowfall 

Not all airports have the luxury to have a rain/snow intensity sensor installed. This is often the case across Europe. 

Therefore it can be very useful to derive snowfall from other parameters. An alternative, as researched by Rasmussen 

et al. [45], is the ability to derive snowfall rates from visibility conditions. In order to do this, we have to recognize the 

fact that multiple variants of snowflakes exist and are commonly categorized in either dry or wet snow. Dry snow is 

described as snow that falls apart when trying to form a snowball. Due to the minimum water contents, snow particles 

do not stick very well. Thus whilst dry snow is a lot less dense than wet snow and thus with the same flake size, its 

terminal velocity is lower of dry snow than wet snow. 

Table 10: Snow density and terminal velocity for different snow types 

 𝑪𝟑 [gr/cm
2
] 𝑽𝒕 [cm/s] 

Dry snow 0.017 100 

Wet/rimed snow 0.072 200 

 

The relationship defined in [45] is shown in eq. ( 53 ). 

 𝐼 =
1.3𝐶3 𝑉�̅�
𝑉𝑖𝑠

 eq. ( 53 ) 

Additionally, it has to be recognised that the concept of visibility changes as a function of available light. It means that 

the equivalent visibility during the night is lower. This relation can be expressed as in eq. ( 54 ) and is plotted in Figure 

46. 

 
𝑉𝑑 =

𝑙𝑛(𝜖) 𝑉𝑛

𝑙𝑛 (
𝐶𝐷𝐵𝑉𝑛
𝐼𝑂

)
 eq. ( 54 ) 
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Figure 46: Daytime versus night-time visibility 

With snowfall intensity data available in the US, METAR data of Minneapolis-St. Paul airport (KMSP) has been analysed 

throughout 2015 to compare visibility with snowfall. Precipitation data is widely available in METAR data in the USA. 

Minneapolis is used due to the high snowfall numbers for US standards as it is located at high latitude, close to the 

Canadian border. It is expected that the intensity sensors already account for day/night issues. In Figure 47, violin 

plots are shown for various snow conditions grouped by the visibility conditions (day or night). 

 

Figure 47: Violin plots comparing Snowfall intensity between snowfall and day/night conditions 

Notably in Figure 47 it can be seen that heavy snow does not occur during the day. Additionally, it can be seen that 

during night times higher precipitation rates occur, but the weight is around the same levels of precipitation. This is 
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likely due to the fact that night-time is usually colder and thus snow formation occurs more often. This can be seen in 

comparing Figure 48a and Figure 48b, where the similar precipitation rates occur under lower temperatures. 

  

Figure 48a: Night-time Figure 48b: Day-time 

Figure 48: Light snow precipitation distribution for various temperature levels comparing day- and night-time 

Within the MOS data, the probability of precipitation in a 6hr forecast is given by the parameter P06 with the 

associated quantity Q06. Note that the quantities are given in QPF categories (see Appendix A) and need to be 

translated to actual values. At a forecast time 𝑡, both will be further referred to as 𝑃(𝑃)𝑡 and 𝑄(𝑃|𝑆)𝑡, respectively. If 

precipitation occurs, the parameter POS indicated the probability of snow i.e. POS is a dependent variable. At a 

forecast time 𝑡, this will be referred to as 𝑃(𝑆|𝑃)𝑡. 

To find the probability of snow, Bayes’ rule is applied and rewriting gives eq. ( 56 ). Here, 𝑃(𝑃|𝑆) = 1 as per definition 

that precipitation always occurs given that it snows. 

 𝑃(𝑆|𝑃) =
𝑃(𝑃|𝑆)𝑃(𝑆)

𝑃(𝑃)
 eq. ( 55 ) 

 ∴ 𝑃(𝑆) =
𝑃(𝑆|𝑃)𝑃(𝑃)

𝑃(𝑃|𝑆)
= 𝑃(𝑆|𝑃)𝑃(𝑃) eq. ( 56 ) 

The intensity of snowfall is defined as the quantity of snow times the probability that it will actually snow. This is 

shown in eq. ( 57 ). 

 𝐼𝑡 = 𝑄(𝑃|𝑆)𝑡𝑃(𝑆)𝑡 = 𝑄(𝑃)𝑡𝑃(𝑆|𝑃)𝑡𝑃(𝑃)𝑡 eq. ( 57 ) 
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Appendix F Take-off And Landing Performance 
Assessment (TALPA) matrix 

 

Figure 49: Runway condition assessment matrix as input for take-off and landing requirements [46] 
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Appendix G EUROCONTROL DDR2 database 

The DDR2 database of EUROCONTROL contains all flights in and out of Europe. The SO6 data files contain flight 

information on a segment level. Table 11 shows a few lines of data from an SO6 file. Table 12 describes the data 

format. 

Table 11: Example SO6 data from airport ENZV to waypoint LUKEX on the way to airport ENGM; operated by SAS 

Columns 1 through 10 

ENZV_$SyWQ ENZV ENGM B736 145600 145622 0 25 0 SAS4028 

$SyWQ_$SyWR ENZV ENGM B736 145622 145721 25 41 0 SAS4028 

$SyWR_$SuDo ENZV ENGM B736 145721 145742 41 50 0 SAS4028 

$SuDo_$SyWU ENZV ENGM B736 145742 145823 50 69 0 SAS4028 

$SyWU_$SyWW ENZV ENGM B736 145823 145900 69 90 0 SAS4028 

$SyWW_$SuDs ENZV ENGM B736 145900 145922 90 102 0 SAS4028 

$SuDs_LUKEX ENZV ENGM B736 145922 145932 102 110 0 SAS4028 

 Columns 11 through 20 

 150101 150101 3532.6 338.2667 3532.45 339.25 183076961 1 0.529957 0 

 150101 150101 3532.45 339.25 3532.3 340.25 183076961 2 0.538261 0 

 150101 150101 3532.3 340.25 3532 342.2167 183076961 3 1.06009 0 
 150101 150101 3532 342.2167 3531.25 347.1667 183076961 4 2.667379 0 
 150101 150101 3531.25 347.1667 3530.633 351.1167 183076961 5 2.134341 0 

 150101 150101 3530.633 351.1167 3530.183 354.0833 183076961 6 1.599635 0 

 150101 150101 3530.183 354.0833 3529.733 357.05 183076961 7 1.599954 0 

 

 

Table 12: DDR2 SO6 data format description 

Column # Field Comment 

1 Segment identifier First point name “_” last point name 

2 Origin of flight ICAO code 

3 Destination of flight ICAO code 

4 Aircraft type  

5 Time begin segment HHMMSS 

6 Time end segment HHMMSS 

7 FL begin segment  

8 FL end segment  

9 Status 0=climb, 1=descent, 2=cruise 

10 Callsign  
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11 Date begin segment YYMMDD 

12 Date end segment YYMMDD 

13 Latitude begin segment  

14 Longitude begin segment  

15 Latitude end segment  

16 Longitude end segment  

17 Flight identifier  

18 Sequence id Starts at 1 for every flight and increments each segment 

19 Segment length In nautical miles 

20 Segment parity/color 
0=NO, 1=ODD, 2=EVEN, 3=ODD_LOW, 4=EVEN_LOW, 
5=ODD_HIGH, 6=EVEN_HIGH, 7=general red, 8=general orange, 
9=general yellow 

 

  



 

 

 

114 

   |  NLR-TR-2016-461 

Appendix H Aircraft data sheet 

Table 13: Aircraft capacity overview 

Aircraft type 
Capacity 
[# seats] 

De-ice 
category 

Aircraft type 
Capacity  
[# seats] 

De-ice 
category 

A306 266 D B789 230 E 

A310 218 D C25A 6 B 

A318 107 C C25B 6 B 

A319 124 C C680 8 B 

A320 150 C CL30 8 C 

A321 186 C CL35 8 C 

A332 256 E CRJ2 50 C 

A333 335 E CRJ7 70 C 

A343 263 E CRJ9 90 C 

A388 555 F D228 15 B 

B733 128 C D328 30 B 

B735 108 C DH8D 70 B 

B737 110 C E145 50 B 

B738 162 C E170 70 C 

B739 177 C E190 98 C 

B744 416 E E35L 10 B 

B748 467 F F100 107 C 

B752 202 D F2TH 8 B 

B763 210 D F70 79 C 

B764 245 D F900 13 B 

B772 305 E GLEX 19 C 

B77L 305 E H25B 6 B 

B77W 386 E MD11 323 D 

B788 230 E RJ85 85 C 
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Appendix I ICAO airline codes 

Table 14: ICOA airline reference table 

Airline ICAO abbreviation Airline name Airline country 

ADR Ryanair Ireland 

AFL Arkefly Netherlands 

AFR Turkish Airlines Turkey 

AZA Alitalia Italy 

BAW Vueling Airlines Spain 

BCY Flybe United Kingdom 

BEE Aer Lingus Ireland 

CND CityJet Ireland 

DAL easyJet United Kingdom 

DLH Scandinavian Airlines Sweden, Denmark and Norway 

EIN British Airways United Kingdom 

EZS Aero Continente Dominicana Dominican Republic 

EZY Delta Air Lines United States 

KLM Aeroflot Russian Airlines Russia 

NAX Adria Airways Slovenia 

RYR Transavia Holland Netherlands 

SAS TAP Portugal Portugal 

TAP Norwegian Air Shuttle Norway 

TFL Air France France 

THY easyJet Switzerland Switzerland 

TRA KLM Netherlands 

VLG Lufthansa Germany 
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