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Summggz

This report gives a general description of the basic equations for the 3~dimens-
ional transient flow of a multicomponent gas mixture with chemical reactions.
The number of assumption made is small.

Next to the equation of momentum, the equation of angular momentum is introduced.
It could in the future be advantageous to use the latter equation instead of the
first because the flow may possess vortices which introduce an angular momentum.

In the first chapter of this report, the conservation equations are introduced.
In the next chapters, the processes which occur on microscale are desciribed.

In the last chapter, the conservation equations are modelled for turbulence.
This is done with Reynolds' decomposition and time-averaging of the subsequent
equations.

This report occurs within the framework :of the investigation of the flow and
combustion in a solid fuel combustion chambex (SFCC). This investigation is sup-
ported by the Netherlands Foundation for Technical Research (STW) under project-
number DLR 11.0120 and is carried out by the Department of Aerospace Engineering
of the Delft University of Technology and the Prins Maurits Laboratory TNO.
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Frequency factor in the Arrhenius expression
Constant in the -Arrhenius expression

Angular momentum

Specific heat at constant pressure

Molar heat capacity at constant preésure
Molar concentration }

Specific heat at constant volume »

Molar heat capacity at constant volume
Diffusion coefficiént between species s and r
Thermal diffusion coefficient

Emissive power

Activation energy

Acéeleratiqn due to gravity = 2.80665 m/sec2
Specific enthalpy

Molar enthalpy

Boltzmann's constant = 1.3805 10—23 eV/ﬁolecule K
Specific reaction rate c;nstant

Equilibrium constant

Mass«of a molecule

Molar mass

Moment caused by external forces

Number density

Unit normal vector

Avogadro's number = 6.023 1023 moleculs/mole
Hydrostatic pressure |
Pressure tensor

Heat transfer vector

- Position vectoxr

Universal gas constant = 8,314.4 kgmz/sec2 kmole
Gas constant

Surface

Time

Temperature

Specific internal energy

Molar internal energy

Velocity

Diffusion velocity



YK -~ Volume
- Molar fraction

- Mass fraction

- Constaht in“the Arrhenius expression
- Molar rate of production

- Emissivity

Second coefficient of viscosity

- Coefficient of bulk viscosity
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K

- Bbsorption coefficient

- Thermal conductivity

= >
|

Photon mean path length

o

- Coefficient of viscosity

- Stoichiometric‘coefficient

Dénsity |

- Stefan-Boltzmann constant = 5.6697 10—8 W/(m2K4)

- Collision diameter
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- Diffusion stress tensor

Viscous stress tensor .

A
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- Mass rate of production

D E
|

Collision integral
Subscripts

- backward
£ : ~ forward

- reaction k
mix: - mixture
r - species r

s - species s
Superscripts

a - reactants
- products.
- - averagéd
! — fluctuating

~ - mean



Introduction

In a solid fuel combustion chamber (SFCC) an efficient and complete com-
bustion may be realized. Because the combustion temperatures are high
(from 2000 to 3000 K), the thermal efficiency is high and the combustlon
gases are relatively clean.

An SFCC consists of a solid fuel with an inner bore. The gaseous oxidizer
is fed intotthis bore, and at the interface between the pyrolyzing fuel
and the oxidizer a turbulent boundary layer is foxrmed. In this turbulent
boundary layer, combustion takes place.

The scope of. the SFCC-project is to obtain a thorough understanding of

the processes which occur in a turbulent boundary layer involving chemical
reactions, and to obtain a mathematical description of the combustion and
flow processes in a”SFCC. :

In this report, the basic equations for a.3 dimensional transient flow of
a multicomponent gas mixture with chemical reactions are presented.

From the equations presented in this report, computational models of the
1-dimensional transient flow, the 2-dimensional and the 2-dimensional
transient flow trough a SFCC will be derived in the future.

Conservation Equations

In this chapter, the conservation equations for a 3-dimensional transient.
flow of a multicomponent gas mixture with chemical reactions are introduced.
The equation of conservation of angular momentum is derived because it
may be adventageous to apply this equation instead of or together with the
equation of linear momentum when vortices are taken in account.

Conservation of Mass

Consider an orbitrairy control velume ., enclosed by a surface S (figure
1) . Assume that there are no discontinuities in this volume and that the
gas can flow through this volume.

The amount of mass in this volume changes by transport of mass through
the surfaces. The law of conservation of mass is written as [1].

Yy = - .
4 S
local’.change - transport

The surface integral can be converted into a volume integral, yielding

I(gp +9 . pv) a¥’ = o (2.2)
t —

s 7 :

This equation is valid for any orbitrairy control vnlume'V'and (2.2) may
therefore replaced by

90 - |
3t +V.pv=0 (2.3)
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This equation is the differential fiorm of the law of conservation of mass,
frequently called the continuity equation.

Conservation of Momentum

The amount of momentum in a material control velume v (figure 1) changes
by forces which are acting on this volume, These forces can be divided into
two groups, body forces which act on .the entire mass in the volume, and
surface forces which act on the boundaries of the system by virtue of

their contact with the surroundings. '

The law of conservation of momentum is written as [1]

J (‘p'l) ay = J[ pg a7 -‘J P.n @s

Dt
Y 4 s
ox
Ja—i- (pv) ay + J (pv) v.n ds = J Pg a¥ - _Jrg.g_ ds - (2.4)
v S 4 =

local change transport body forces surface forces

The surface integrals in eq. (2.4) can be converted into volume integréls,
yielding

J['%(py_)+v_'.p;\_r;z]dv=J[pg_—y_.£]dv (2.5)
Y
Since the material volume V is chosen arbitrairy, and as on the.other ..

hand equation (2.5) is always valid, it follows that the integral equation
(2.5) may be replaced by

7 PL+Y.pvvy =pg-V.E (2.6)

A multicomponent mixture possesses several species.s.
In general, the pressure temsor for species s is defined as [2]

v

P =53, . 7> (2.7)
=s s ij =s =s

where p_ denotes the hydrostatic pressure of species s, ;V denotes the
viscous stress tensor for species s and ;2 denotes the diffusion stress
tensor for species s. The viscous stress tensor is caused by the differ-
ent velocities of each particle of species s through which they exercise
forces on each other. The diffusion stress tensor is caused by transport
of species s with velocity Vg with respect to the mass—averaged velocity
of the entire mixture.

The diffusion stress tensor for species s may be written as 5]



P=py v v . (2.8)
s . 8. <8 -S .

where Yg is the mass fraction of species s (see section 2.5).
The total pressure tensor P is the sum of the partial pressure tensors;s
for the different species s,

P=Ips, . -L1 -Z%1° (2.9)
= s ij =g =s
s s s
The mean hydrostatic pressure may be defined as
p=23 D, _ e (2.10)
s
and the stress tensor for the entire mixture as [5]
T= L vV + % TD (2.11)
= =s =S
s s
The total stress tensor T is usually written as
Bvi oV, avi
I =Ty=¥ [-§§;-+ 5;5-] - ( 5;;-) 5ij. ‘2.12)

where U is the coefficient of viscosity for the multicomponent mixture
and n is the second viscosity coefficient, commonly written as

n=%u—1< (2.13)

where K isbthe coefficient of bulk viscosity.
Combining equations (2.9), (2.10), (2.11), (2.12) and (2.13) yields

BVi ij 5 3 Bvi.
£'= Piy = Pai‘j - U [ g}g + m—; ]— ( 31.1— K)' (5}-{—;)61] (2.14)

The momentum equation may be written as

%D‘.'.+Y-ozz=og-Yp—Y.; (2.15)

where T is given by the equations (2.12) and (2.13).
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Conservation of Energy

For a:.material control volume V- (figure 1), the first law of thermo-
dynamics states that the rate of increase of internal plus kinetic
energy equals the rate of which work is done by the body forces and the
surface forces plus the rate of heat transferred into the volume.

This gives the following equation, also called the energy equation [1]

~

D

—-Ip (u +-;-g.§_7 ) .aY = pr . ng—J (v.P).nds - J' g.nds

or’

local change transport work from body forces
done by the medium

- j (Y.g):g as - { g.n ds ' o (2.16)
S s

work from surface heat transfer into

forces done by the the volume

medium

The.differential form 6f the energy equations is given by

é% pl{u + %’Y'Y) +V ., pv (u‘+ %-g.g) =pv.g -V . (B.v) - V.g (2.17)

In a multicomponent mixture, the heat transfer vector may be caused by
conduction,by diffusion of species s through the mixture and by radiation.
The heat transfer by conduction may be described by Fourier's law (6]

gc = —AYT . h (2.18)

where A is the thermal conductivity of the mixture. _

In a multicomponent mixture, the average velocity of species s differs
from the mass-averaged velocity v of the entire mixture. This gives rise
to an enthalpy transport, equal to

Ps By Vg

Summation foxr all species s gives

PLZY h V (2.19)
s s S =S



where hs is the enthalpy of species s, defined by

T
h_ = h2 (To) + J < ar o (2.20)
S S p,s
~ To .

n° is the enthalpy of species s at reference temperature T, and at

standard conditions [6]. CB o is the specific heat at constant pressure
> Lar - , D,

ét a reference preséﬁré“of 1 atmosphere.

- If temperature gradients give rise to diffusion velocities (thermal

diffusion) then concentration gradients must produce a heat flux. This

process is known as the Dufour effect. The Dufour heat flux may be -

written as [7], [8]

T

' X g

o .

RRTZIZ M D

S r s sr

v, - v,) (2.21)

where Dg is the coefficient of thermal diffusion and D r is the coefficient
of concentration diffusion for species s and r (see Chaptér 3). Combining
equations (2.19) and (2.21) gives the heat txansfer caused by diffusion

X Dg
4q =P ZY h V_ +RTILI (v, -v) (2.22)
: S s r S sSx

Heat transfer by radiation may be thought of as transport of energy by
'photons. These photons are released from excited molecules or atoms, and -
travel through the medium until they are absorbed by other molecules or
atoms, or, alternatively, it can be visualized as energy transport in the
form of electromagnetic waves.

- The:heat transfer by radiation may be written as [11]

q, = -%Ary e (2.23)

where e is the emissie power of the gas and A, is the photon mean path
length, defined as

(2.24)

where p is the density of the gas and Kr is the absorption coefficient
of the gas. According to Stefan-Boltzmann's law, the emissie power of a
black body radiating gas may be written as

4 A
e, =0T (2.25)

where the Stefan-Boltzmann constant O equals
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o = 5.6697 10°° w/m’k” (2.26)
In most cases, the emissie power may be written as
4

e=€0T (2.27)

where € is the emissivity, € < 1.
Combining equations  (2.23) and (2.27) gives the heat transfer by radiation

g =-¥pPver | (2.28)

The total heat transfer may be written as

o X, o 16 3
gq=-AVT+pLY h V +RTZILIFg V-v) -5 8 oT Ver
S S r s sr
(2.29)

It is convenient to use the enthalpy h instead of the intermal energy u
in the energy equation. The enthalpy h of a multicomponent mixture equals

h=2=1Y_ hg (2.30)

where hg is given by (2.20) . The relation between the enthalpy h and the
internal energy u is given by !

u=h -2 (2.31)
0

The energy equation may now be written as

N
14
P
I
1<
1a
i
1<
i
1<
|
1<
R

aitp(h -%+%Hg.\_r) +V . pv (h -%+

(2.32)

Conservation of angular momentum

Consider an arbitrairy material volume )7 , enclosed by a surface S.
Take an arbitrairy reference point O at a distance r, of the volume
(figure 2). The amount of angular momentum in this material volume
equals [6]

B = j r_x (ov) a7 | (2.33)

¥

Consider a.system of particles and assume that no particles can enter or
leave this system, then, the change of angular momentum equals the moment
caused by the external forces.
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o
w

(2.34)

=L M=
—
e

Dt

The left hand side of this equation may be written as

D

—_—— J é% [ r X (DY)] dj} + J.[Eo x (pv) } v.n d s
. ’V- s -

While the'right hand side equals

w

= Js.ox‘pgdy —jgexg.r_} ds
y S

M
—e

o ™

Combining these equations gives the law of conservation of angular momen-
tum : '

J% (z, x pw) @+ J<£ex priv.n d s = f{o x pg aV - Jr xP.nds
y—

-o
Y S S
Local change transport moment by moment by
body forces surface
forces

The differential form of this conservation equation is given by

ait Iy, x P+ Vo(ry x pvlv = pr ox g -z x (V.p) - (2.36)

where the pressure tensor P is given by (2.14).

Conservation of Species

For each of the species s in a multicomponent gasmixture with chemical
reactions a conservation law of the form: the local change of mass fract-
ion of species s in a control volume Y equals the transport of mass
fraction of species s plus netmass rate productmon of species s by chemi-
cal reactions may be defined.

Before writing down this conservation law, it is usefull to define and to
give the dimensions of the following variables [2],.[3]

Cs = molgsvof species s per unit volume (moles/m3)
Ms = molar mass of species s (kg/mole)

M = molar mass of the entire mixture (kg/mole)

n, = number of species s per unit volume.( /m3)

n = total number of species per unit volume ( /m3) = I ng
s




m_ = mass of 1 species s (kq) S am

m = averaged mass of 1 species (kg) = 5—7?—5

Y  = mass-averaged velocity of the mixture (m/s)

v, = mass-averaged velocity of species s (m/s)

Ys = diffusion veleocity of species s (m/s)

ws = net mass rate of production of species s per unit volume by

chemical reactions (kg/m3s)

Fromcthese definitions the following quantities may be derived.

ng Ig '
X =-—=— /= = mole fraction of species s
ps' =nm_ = partial density of species s (kg/m3)
=n m = density of the mixture (kg/m3)
P ngm
b4 === —§$§7= x ™ - pass fraction of species s
s P nimr S

From these definitions, it is apparent that

M= X:M

s s s
X =1
s s
Ty =1
S s p*zs
v=3Y v =L ==
- S s ~s s P
V=v -v i
tw =0
S s

The law of conservation of the mass fraction of species s may now be
written as '

9 . : ’
J?E- oY, ay = J pY_y_.nds = j w, ay (2.37)
4 4
local change - transport net production by

chemical reactions

In differential form this yields

9

Yy pYS +V. stys = ws (2.38)
or

3 -

5—t—st-+Y.pY g=-Y.st\_ls+ms : (2.39)
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The overall continuity equation for the mixture can be obtained by sum-

"mation over all species s.

An expression for the diffusion velocity may be obtained from the mole-
culer theory of gases [7], [10] yielding

T
s

| ' N 1
=2 3m b (Yx_ + (x_-Y) Vinp - ao? v1 (2.40)

Ys [0).4 r sr
s r

This équation indicates that there are three diffusion:mechanisms, namely
concentration. diffusion, pressure diffusion and thermal diffusion.

The conservation equations are completed by an. equation of state.

This equation gives the relation between the dependent and independent
thermodynamic variables. Only two thermodynamic variables can be choosen
independently, for instance the pressure p and the temperature T. It
follows than that

u=u(p,T) + h=h(p,™ , p =p (p,T) etc.

For a perfect gas, the equation of state is given by

© |
"
A

where R is the gasconstant for the mixture (R = Rp/ib.

Transport Coefficients

In the equations of the pressure tensor P, the heat flux vextor g and the
diffusion veIOC1ty Vg, there appear the transport coefficients U, K, A,
Dgy and D . Equatxons for these coefficidents have, to a first approxima-
tion, heen derived by the Chapman-Enshoy theory [7], [10]. In this
Chapter, the results of this derivation are presented.

The Coefficient of Viscosity

The coefficient of viscosity for a multicomponent gas mixture may be
written as [10]

-1

+ 1.385 X X (3.1)
- rs ,

where the faktor 1.385 is an empirical constant. The theoretical value
of this constant is 2 [10]. Note that the pressure p has to be given in
atmospheres.

The coefficient of viscosity for species s may be approximated by [8],

[10], [11]




3.2

5 /NMSRQ T

no= = . (3.2)
s~ 16 2 Q;2,2) N

A

where 0_ is the collision diameter for collisions between species s and
speéies s and 9(2'2)* is a collision integral which depends on the temp-
erature and on the interaction energy € between the molecules.

It follows from equation (3.2) that

_ 266.93 1077 /Mg

s 2 Q (2'2)*
S -

(3.3)

g
S

where cs is given in angstroms.

The Coefficient of Bulk-Viscosity

The coefficient of bulk viscosity depends on a characteristic time for

- the conversion of translation energy into internal energy in an atom or

molecule [10]. An atom or molecule possesses several internal degrees
of freedom %, and each of them has its own characteristic time TQ' The
expression for the coefficient of bulk viscosity yields [10]

_nk'T A2
K= — ZQ’ c, Ty (3.4)
v «
where c(z) is the contribution of the internal degree of freedom % to

the spegific heat at constant volume. The expression for the character-
istic time Ty is very complicated and can be found in [10].

In most cases of practical interest, the coefficient of bulk viscosity
is negligeble [2].

The Coefficient of Thermal Conductivity

' The expression for. the coefficient of thermal conductivity for a multi-

component gasmixture can be derived from the kinetic theory of gases,
but it is a rather complicated expression [10]. An usefull approximation
is given by [8] ’

X \-1 .
AL =1 A<'<1 +1.065 I G —5> (3.5)
mix s sr X /
s ) : h o S
r*s
Qhere
'v R . Cp s
A, =, (0.115 + 0.354 2.2 (3.6)

S
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3 1/4 -2 |
) [1 + <as/xr> (Ms/M ) ' ]
¢ = = (3.7

sr .
23’/2 [1 +(M's’/Mr>]lz

1
As is the thermal condutctivity for monatomic species s, while KS is the
thermal conductivity for polyatomic species. The faktor between™ these
termal conductivities is a modification of the Eucken relation.
The thermal conductivity for monatomic species s is given by [10]

10_7 ?/Ms

G 2 Q(2,2)*
S

(3.8)

A= 1989.1
Zg

For an ideal gas, the thermal conductivity for monatomic species s may
be written as

A =8 pu (3.9)

where R = RO/M .
s s

The Coefficient of Diffusion

The coefficient of (concentration) diffusion may be obtained from the
molecular theory of gases, and is approximated by [8]

e L
oo 3 [ZWkT (msfmr)/msmr]:“
~ 16 *
sr 16 - 62 Q(1,1)

: sr sr

(3.10)

where O is a collision diameter for collisions between species s and r

st is a collision integral whlch depends on the temperature and
on the intermolecular forces between molecules s and r.
Equation (3.10) may be rewritten to

262.80 107> (T3(M' + M )/2M M ]%
: S h e S r

sr 2 Q(1,1)*

o
P sSr srx

(3.11)

where the collision diameter, Ogy,, is given in angstroms and the pressure
p in atmospheres. In some cases it is important to estimate the:tempera-
ture and pressure dependence of the diffusion coefficient. For this pur-
pose the following relation is used [3]

D, = ° (O>(—-—> 1.5 <v <2




3.5

: » a
- ‘Here, = “A. =-0, and A, = H,O. Further, v, =1, Vv
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The Coefficient of Thexmal Diffusion

The coefficient of thermal diffusion for species s, Dz, in general depends
on the pressure, temperature and concentration. The expression of the
thermal diffusion -for species s is very complicated and may be found
in [10]. In most cases, the contribution of thermal diffusion to the heat-
flux vector and to the diffusion velocity is negligeble [2].

Chemical Kinetics

In this Chapter a general description of chemical reaétions-will be given.

An arbitrary single step chemical reaction may be written in the form [2]

svia - $vla (4.1)
s S S Si s S

where As is the chemical symbol for speciess andvs&and \)éb are the stoichiome-
tric coefficients for species s appaering as a reactant and as a product
respectively. The meaning of this equation may be demonstrated by the
following example. :

H, + L 02« - Hzo

a b .
S-S N 1Ay B’ 3 T H 1 o = V3 =1and
In general, the stoichiometric coefficients are defined in such a way

that 1 mole of products ‘is formed by va moles of reactants.

For the reaction in Eq. (4. 1), there exlsts a relationship between changes
in concentrations C; (moles per unit volume) of all speciss s. Consider

an arbitrary pair of species s and r. If Yg and Yy (moles per unit volume
per second) denotes the time rate of increase of the concentration of

species s and r, then equation (4.1) states that

= : (4.2)

Because this relation is valid for every pair of species s and r, we may
define a reaction rate for reaction in Eq. (4.1) as

Y = ——— - (4.3)

where species 1 may be taken te be any species for which vlb-v1a¢0.
The time rate of increase of the concentration of species s may now be
written as

_ b _ a
Yo = (Vg Vg Yy (4.4)
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According to the phenomenological law of mass action, the reaction rate
is proportional to the product of the concentration of the reactants [2],

[s]

) a
y =kI (c)’s » | (4.5)
. |

where the proportionality factor k is called the specific reaction rate
constant for reaction (4.1). Combining the equations (4.4) and (4.5)
yields

: a
_ _ S _ b a \Y
Yo =3 = (vs V) k II (C)’s (4.6)

S

Since most chemical processes involve a number of simultaneous and
successive chemical reactions, the net rate of production of species s
equals a sum of terms, each term of which corresponds to the production
rate in one of the reaction steps. An arbitrary number m of single-step
chemical reactions may be written as

a ‘ ~
L \’sn_'k AS_ -’ ivs,k As k = 1!-----. m 4.7)

where the subscript k identify's the chemical reaction.

The rate of increase of the concentration of species s by reaction k may
be written as

a

. v .
2 b a s k
Y = - i :
Y c s,k vS-,,_k) k . c, (4.8)

and the net rate of increase of the concentration of species s in the
whole proces is given by '

a
. . a Vs k
Cs = E Csvk'= 2 (vs-km- vs,k) kk £>Cs ‘

(4.9)
s , ! X »

In general, chemical reactions can proceed both in the forward direction
and in the reverse direction. The general set of opposing chemical react-
ions may be written in the form

k
a . b;k b
z \)s,Ak A, = I Vs,k A, k=1,...... m (4.10)
s : k s .
£,k

or




k=1,...... m

The rate of increase of the concentration of species s by reaction k may
‘now be written as

v 2 v b
. ' b a s k a b s, k
= [ - II 4 - 1II i
Cs,k ‘ (Vs,k vslk) kfik s Cs (vshk vs,k> Kb,k s s
a b a
b a Vs x %,k Ve ™ Vs k!
v -V k Hc =~ 1 - —— IIc
s, k s,k f,kvs s kf;k s S
(4.11)

At thermodynamié equilibrium, there is no net change in the composition

of the system and the reaction rate constants k_:, and k can be related
S £, 'k b,k

to an equilibrium constant Kc,k' : ’ :

From equation (4.11), it follows that at thermodynamic equilibrium holds

b a
B k, (v -V )
- kb,k Ic s,k s,k =0 ,
£,k s S
or
b a

k.. (v -v_ )

Eik o sk sk =K (4.12)
kb k ] (o4 k .

’ s

The net rate of increase of the concentration of species s in a chemical
system with opposing chemical reactions now can be expressed by

a ", b a
A% Vv -V
. b a. g,k [ 1 ( s,k s k>1
c=2/v -V >k Ic R nc ' .
s f\s$ sk) £k s L kc,ks s ]

(4.13)
By the following expressions, the net mass rate of production of species

s may be derived from (4.13)

w (4.14)
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n
-_sS_., P ’
CS - 5= Ys N . (4.15)
A s
Hence,
a
Y AY)
_ b a ) m _8) sk
wg = My {E (vsrk vsrk/ kfrk I (M )
Kk _ s 8
b a
NS,
[ro g omn ()i 2
K. M I
. e,k S =
where
_ a
m = Z vs,k !
[ -~
and

The reaction rate constant kf_

is given by the Arrhenius expression [2]
’ .

Kk
_ _ Ek/RoT
Ko = B @ , (4.17)

where E, represents the activation energy and is the frequency factor
for reaction k, which may be approximated by '

A =3B T % , ' (4.18)

where B, and (0 < < 1) are constants which belong to the reaction k.
If the Eetaile reaction mechanism of the reaction k were known, it were
possible to determine Bk and o from the kinetic theory of gases. In most
cases, however, the constants B, and have to be determined empirically.
Note that the reaction rate constants also depend on the definition of the
stbichiometric coefficients.

Turbulence Modelling of the Conservation Equation.

In this Chapter, the conservation equations which have been derived in
Chapter 2 are modelled for turbulence. This involves Reynolds decomposi-
tion of the dependent variables and time averaging of the resulting
equations.

Conservation of Mass.

The law of conservation of mass, Eq. (2.3), states
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% . v

e .pv=20 . (2.3)

The Reynolds decomposition procedure implies that each instantaneous
variable is replaced by the sum of ltS mean- and fluctuatlng components.
For ‘instance [12]

p=p +p , ' (5.1)

where the tilde and prime denote mean and fluctuating quantities respect-
ively. Time averaging implies that
, T _
5 = lim% J.p at ) (5.2)
T> o0 - :
‘o

where the bar denotes the average value of the quantity p over an inter-
val T which is sufficiently long with respect to the time scale of the
turbulent fluctuations.

In most cases of 1nterest, the mean quantity of a variable is said to
be equal to the average value, so

5=p L ] . ' (5.3)

From equation (5.2) it follows that

T
lim + fp' at =0 . (5.4)
T ﬂfwlr . .
o]
Hence
T T
. 1 - - . 1 h
lim — pp' d =p lim = p' dt =0 . (5.5)
T T
T - oo . T > .
o o

Reynolds' decomposition of the law of conservation of mass holds

<

+
<

il

(@]

5 - S -
3¢ P+ P+ V. p+p) (¥
oxr
—3-5 + Ji—p' +V . pv+pv'+pv+py) =0
ot ot - - - = - )

Time averaging yields




21

20 +Y. GIi+oy) =0 . | (5.6)

5.2 Conserva}ion of Momentum.

The law of conservation of momentum Eg. (2.6) states

s v+ Vepw=pg-V.P. (2.86)

Reynolds decomposition of this equation yields

% ®+p)@+y) +V . [(5 + o')(i+z'><i+z"4 =

=(+p)g-V. @+R) ,
or

s BT +PY + 0T+ 0 y) + ¥ . (BY 4 pEY 4 YT+ PY'Y + 'Y +

+p'wlo+p' VY Fp VYY) = (pH')g-V. @+2")

Time averaging yields

ST +T . (YT +pyy 0w 40T+ PYY) =g T . B
(5.7)
5.3 Conservation of Energy

The léﬁ'of conservation of enerqgy, Eq. (2.17), is given by

i—phl+lvv)+v pv01+lvv)=pvg—V(Pv)—V

St 5 V.V V. v 5 V-V v.g V.(B.v V.gq

. (2.17)

Reynolds decomposition yields

3..1‘ v"f" R 1 = »r]

r 1(p +p) Lu + u '+ 5 (Y + v ) (Y + v )J +
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V.qp+p)(v+yv)iu+u +2(y+g).(x_;,+x_;)“_

+‘.")] -V . @+a)

1<

P+p)(¥+vl.g-¥. [(?Z_.f 2.

Time averaging yields

2 G LED +y . [ owT Y vV T ¢

1<

2B @D rFR @) v 50 T W) 4B Y @)

Gv+p" v)g-V. @v+R.v)-YV.q. : (5.8)

Conservation of Angular Momentum

The law of conservation of angular momentum holds
= (r x pv) + -V .{r xpviv=pr xg-=1r x (V.P) (2.36)
at =o - - ] = - o~ = =0 - =

Reynolds decomposition applied to this equation yields

(o]

-a%[x_: X (5+p")(§+g'>]+z. [(Sl+p'){£ox (§+‘_">} _(‘:'*‘_")]

=(p.+p)1_roxg —goxz.(

Ilro
+
firo

[e2 4

+p"'§'+p~'\_7'):| +Y_.[ﬂ3 (:Eo x§)§+5 (J_ro xvhv

141
+

Ot

1<

3 -
a't{fo x (p

tP x Wy Ao (o x YNy eI, X MY+ P, x YV 4

]

Pz, x Wy + o'z x y')y'J =
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p+p)r xg-zr,x V.2 -xr xE.2) .

Time averaging yields

-a-ag (r x 55__7) +V . [5(50 X V)v + 5(50 X y')z' +p" (z, x v')v o+

' (x, x MY + 0"z, x vV I- pryxg-x x .pR .

Conservation of Species

(5.9)

The law of conservation of the mass fraction of species s, Eq. (2.39)

states
‘—a-pY +V.pY v=-V.pY V_+0w (2.39)
ot s =" s - -7 s -s s * .
Reynolds' decomposition yields
L G+ +Y ) 4V . (o) E ;'.Y"">($+v">] &
ot s s - s s.' = - J
- v T [ A i -l - X
Z.[(p+p)(YS+YS)(YS \_IS)J+ws+ws ’
or
2 G +PY 40T +p'Y ) +V . P T+ pTy +pY v 4
ot s s s -’ S-S~ , s -
- Tt | el + t . ] I]_
st v .+ Ysy + p Ys v, +p Ys v+pY v J =
[‘- = - = ' - [ B - ] 1 [ 1=
v. Lp Ys Ys e sts P Ys Ys +e Ys =3 + P Ysys P Ysys +
P ] ] - T
st\_/s +0Y ys ]+ws+ws .
Time averaging yields
—8—532 +9Y.10Y T+pY v +p'v'Y +p'Yy "V 4oy v =
ot s - s - s - - s s s - |
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-v. {5 §S§S +p Ys'ys' +leys' gs + p‘ys' §s + p'ys'ysf | + 0 .

(5.10)

The conservation equations are supplemented by an equation of state (see
Chapter 2). Furthermore, a turbulence closure model must be adopted to
model the several turbulence terms in the conservation equations. Is is
also necessary to derive expression for=£' and Ys"

Further Investigations

Following these basic derivations, which form the theoretical basis for
these studies, the following subjects will have to be studied:

(1) ‘Faire'-averaging of the turbulent conservation equations.
It seems to be advantageous to use 'Favre'-averaging when model-
ling the conservation.equations for turbulence [9].

(ii) Radiative heat transfex
A more detailed investigation of the expression for radiative heat
transfer is necessary.

(iii) Simplifying the conservation equations to the equations for a 2
dimensional transient flow.

(iv) Description of the processes which occur on the boundaries, heat
and mass transport in a turbulent boundary layer with chemical
reactions.

(v) Selecting a turbulence closure model. A commonly used model is for
instance the k-e model proposed by Harlow and Nakyama.
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figure 1: an arbitrairy control volume

figure 2: an arbitrairy control volume at a distance Yo from O
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