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I would like to thank my supervisor Prof.dr.ir. C. Vuik for his help and support throughout the past period
of time. Our clear communication and efficiency made it very pleasant to work together, even though we
haven’t yet had the pleasure of meeting each other in real life. I enjoyed the freedom throughout my research
and when I had a question, I could always count on a quick response.

At last I would like to thank Dr.ir. M. Keijzer for taking seat in my assessment committee.

M. Hielkema
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Abstract

This research is mainly about optimising compartment models for COVID-19 and then using them for dif-
ferent applications that can be used to consult authorities.

A compartment model describes the dynamics of a disease by implementing differential equations for
the different states that belong to that disease. This is done using parameters which can be estimated from
actual data or can be extracted from researches done by external authorities. We begin by extending the
standard compartment model to a model which is applicable to COVID-19, this extension is based on char-
acteristics of the virus. After this extension we are going to counteract on the assumption that susceptible
and infected individuals are heterogeneously in contact with each other, since social distancing and quar-
antine prevent these two compartments from interacting. Also, we use specific time intervals and optimise
the mortality rate.

After these improvements we create an external model which estimates a contact tracing queue such
that authorities can forecast how many contact tracers are needed to keep the pandemic under control.
Then using the implementation of this queue, another queue is made which is dependent on its own length
to forecast what happens if the government is not in contact with individuals who possibly are infected
with COVID-19. Then we extend the model in such a way that vaccinated individuals can be assigned to a
specific compartment, and at last we create a queue as described above with this extended model.
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1
Introduction

During the current pandemic, it has been important that the authorities of a country are in contact with
civilians that are possibly infected by the virus. The main problem for the government is the availability
of contact tracers and, in a later stadium of the virus, the vaccine availability. Especially in the beginning
of the pandemic and during its peaks, it was crucial that individuals got a call from contact tracers for a
few reasons. First of all, the contact tracers told the (possibly) infected individuals to stay at home and not
make physical contact with others. Secondly, the contact tracers made sure they could contact the people
that are possibly infected by the virus due to contact with this infected individual. At last, the contact tracers
monitor the infected individuals to make sure they are well and to ask if they have not been outside that day.

A lot of contact tracers are needed to investigate a proper amount of people such that the pandemic is
researched in a good way and the infected inhabitants are under sight of the government. But how many
do we need in the near future? In this report we create a model to forecast the dynamics of COVID-19 by
using compartment models which are optimised such that they fit to the characteristics of the virus and the
behaviour of the inhabitants of a certain country. This model can in turn be used to make an estimation of
the amount of contact tracers needed by creating hypothetical contact tracing queues. The model for the
contact tracing queue is based on an article which is briefly explained in Chapter 2.

Since February, vaccination became more common, and from June on everyone could make an appoint-
ment if they wanted. This resulted in much less infected, exposed and deceased individuals each day. To
continue the research, we created a new model in which the vaccination rate is implemented, such that the
decrease in infected, exposed and deceased is taken into account when creating other hypothetical contact
tracing queues.

To sum up this thesis the following research questions and sub-questions are stated.

1. How can the classical compartment model be adjusted such that it is applicable to COVID-19?

(a) How can the characteristics of the virus be implemented?

(b) How can the behaviour of the inhabitants (social distancing and quarantine) be implemented
into the model?

2. How many contact tracers are needed in the future to keep the pandemic under control?

3. How many individuals have to be vaccinated to get the desired decrease of infected individuals?

Please note that throughout the course of my thesis more data became available. Until Chapter 8 data is
used up until February 29, and from Chapter 9 on data until June 21 is used.

All data used in this report, unless mentioned otherwise, is from the Center for Systems Science and
Engineering (CSSE) at Johns Hopkins University and can be found at https://github.com/CSSEGISandD
ata/COVID-19. This data is updated every day and made public for everyone to analyse and use for their
research.
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2
Research article

The article on which a big part of this thesis is based on, is "Modelling Resource Demands and Constraints
for COVID-19 Intervention Strategies" by Bagal et al. [1]. This section contains a summary in own words
of the article. Later in this report we will elaborate on the adjustments made to the methods used in this
article that make it applicable to our research.

2.1. Introduction

The main goal of the article is to simulate a queue for people that very recently have been in contact with
an individual who tested positive for COVID-19. When someone who has been in contact with a COVID-19
positive person and the contact tracing is done in time, the information gained about their behaviour and
contacts is usable. When this is not done in time, you will not have representative information and are to
late to keep control of their situation. Therefore, the queue mentioned earlier is important, since it indicates
whether the effect of the interventions at the time are investigated properly or not.

The timeliness of contact tracing is constrained by the length of the infectious period, the turn-around
time for testing and result reporting and the ability to successfully reach and interview patients and their
contacts.

2.2. Contact tracing queue

The contact tracing queue consists of the following two elements.

1. The flow in, defined as the new cases that need to be investigated

2. The flow out, defined as the new cases that are investigated

Both functions are time dependent and form the queue as follows

dC

d t
= [flowi n]− [flowout ] (2.1)

We define the function C (t ) as the new cases that are in need of investigation, this implies that dC
d t defines

change in new cases which need to be investigated and can be seen as the contact tracing queue.

Both the [flowi n] and the [flowout ] will be approximated using a compartment model combined with
mathematical functions, these approximations will be elaborated on in this chapter.

2.3. Compartment model

The compartment model we are using is an extension of the SEIR-model, more compartments are added
to make it applicable for the research in this chapter. A visualisation can be found in Figure 2.1 and the
corresponding compartments are defined in Table 2.1.

Another important extension made is the quarantined compartments which are noted with subscript
one. Two assumptions are made regarding quarantined individuals: They are assumed not to have contact
with anyone, so they will not cause more contact tracing work, and when someone is tested positive they
will go into quarantine immediately.

9
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Figure 2.1: Extended SEIR model visualisation

Meaning Explanation

S Susceptible Can get ill
E Exposed Is infected but not infectious yet
A Asymptomatic Is infectious but does not show symptoms of the disease
I Infective Is infectious including symptoms of the disease
H Hospitalised Is infectious and hospitalised due to heavy symptoms
R Recovered Is not ill or infectious, immune
D Deceased Died of the disease

Table 2.1: SEIR-model compartments explained

2.4. Flow in

The flow in is retrieved by adding all positive tested COVID-19 cases, then multiplying this number by the
average number of contacts. There are three ways someone finds out that they are infected by COVID-19.

The first way is when someone is testing randomly. When people do not feel well or they want to visit
their family and want to test out of precaution are ‘random testers’. The qr ·-functions are time dependent
rates of random testing for both the asymptomatic and infective people. They can differ since the chance
of someone testing while having symptoms is bigger than when they do not. People who are testing for
COVID-19 and belong to the compartment asymptomatic not in isolation (A0) or infective not in isolation
(I0) can find out they are positive and will be assigned to the respective compartment in isolation as stated
in the transmission equations below.

qr A(t )A0(t ) → A1(t )

qr I (t )I0(t ) → I1(t )

The second way someone finds out they are positive is when they will test because they came into con-
tact with someone who was infective at that time. These people belong to the same compartments as before,
with the exposed in isolation (E1) compartment as an addition. The qt ·-functions are time dependent rates
of people who go testing triggered by contact. Again, transmission equations are set up to represent this.

qt A(t )A0(t ) → A1(t )

qt I (t )I0(t ) → I1(t )

qtE (t )E1(t ) → {A1(t ), I1(t )}

The final way someone finds out the are positive is a small group of people who were missed by the
non-pharmaceutical interventions and require hospitalisation.

τI H (t )I0(t ) → H(t )

Here, τI H is the inverse of the expected amount of time for which an infected individual is symptomatic
before hospitalisation. The reason we look at the inverse is obvious when you look at it in another way.

I0(t ) → H(t )τ−1
I H (t )

I0(t ) → H(t )∗ (symptomatic time before H(t ))
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We use that the amount of individuals in compartment I0(t ) that are eventually being admitted to the
hospital, is approximately equal to the amount of people in H(t ) multiplied by the expected amount of days
they have symptoms before being hospitalised.

When adding all these compartments on the left side of the arrows, we have estimated the amount of
people that tested positive on time t . With this information we can calculate the amount of people that
need to be called by the contact tracers. This can be calculated by multiplying all these people by the aver-
age number of contacts per case. This number is represented as K (κ,TS ,φk ) and depends on the average
number of contacts a day (κ), the average number of days for which an individual is infectious before going
into isolation (TS ), and the likelihood that the individual will recall his/her contacts (φk ).

This results in the following expression, it models the rate of increase for the contact tracers’ backlog at
day t .

[flowi n] := K (κ,TS ,φk )
[
qtE (t )E1(t )+ (

qr A(t )+qt A(t )
)

A0(t )+ (
qr I (t )+qt I (t )+τI H (t )

)
I0(t )

]

2.5. Flow out

The flow out is the work that is executed on contact tracing for the newly arrived individuals in the queue.
It comes down to a formulation that multiplies the portion of new cases of all the cases by time that is
available for these new cases.

First of all, we estimate the total work required to monitor known cases and to investigate new cases. We
do this by defining variables for the time that it costs to monitor a contact each day (wm) and time necessary
to investigate new contacts each day (wc ). Again, we use the compartment model to represent this.

Total work required to monitor known cases = wm(A1(t )+ I1(t ))

Total work required to investigate new cases = wcC (t )

Remember C (t ) is defined as in Equation 2.1. Now we can compute the portion new cases of all cases
which will be used later.

wcC (t )

wm(A1(t )+ I1(t ))+wcC (t )

The amount of work that is available is the amount of work a contact tracer prosecutes multiplied by the
amount of contact tracers.

qw Ntr ace

Where qw is the fraction of a day that consists of the work hours of each tracer. And Ntr ace is the number
of available contact tracers.

The last part of the formulation of the flow out is implementing a bounded exponential function which
provides a smooth approximation for the relationship between workappl i ed and workdemand . When the
workappl i ed > workdemand , the contact tracers can work on the backlog. In Figure 2.2 you can see the
relation between workappli ed and workdemand . Here workdemand is equal to wm(A1(t )+ I1(t ))+wcC (t ).

As a result we obtain the expression

[flowout ] := C (t )

wm(A1(t )+ I1(t ))+wcC (t )
[qw Ntr ace (1−exp(−α(wm(A1(t )+ I1(t ))+wcC (t ))))]

The α can be adjusted per situation, as shown in Figure 2.2, and can be fitted to approximate the linear
function. The reason for this approximation of the linear function is that it has a lot of analytic benefits,
since it is a smooth function.

Note that we have left out the wc in the nominator of the fraction since we want to simulate the number
of recently added people to the queue who have been investigated rather than the amount of hours.

The functions for the flow in and the flow out can be filled in in the queue as defined in Equation 2.1.
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Figure 2.2: Bounded exponential as a smooth approximation of the linear relationship between workappli ed and workdemand



3
Modelling compartment models

A lot of research has already been done on compartment models and their dynamic structure, in this chap-
ter one can find the information on these models which we are going to use in this thesis. We will take a look
at the original SIR-model and its extension to the SEIR- and SEIRD-model to make the models applicable
to COVID-19. For this section, we will use the data of Denmark as an example for calculations.

3.1. Assumptions of the model

The main assumption for the classical compartment model is that the total population is constant. This
means that the same number of people are born as that have died that day, and that immigration and
emigration are neglected. This assumption is a constraint for modelling diseases that exist for a long period
of time in countries where the balance between the birth and death rate is not present.

The classical compartment models assume that here is a homogeneous mixing of the infected and sus-
ceptible people. This is a constraint for populations which act on measures such as social distancing and
quarantine since it is obvious that the spread of a population is not homogeneous for that case.

Furthermore, when plotting a classical compartment model, the amount of susceptible people decreases
towards zero. This is not the case for most viruses since the amount of time someone is immune is often
not infinite.

3.2. SIR-model

The original compartment model is the SIR-model, containing the compartments Suscepti bl e, In f ect i ous
and Recover ed . To indicate that these compartments are dynamic and that the people belonging to the
compartment vary over time, we indicate the departments as functions of time: S(t ), I (t ) and R(t ). The
dynamics between these compartments are illustrated in Figure 3.1 with its transition parameters between
the compartments, the defnition of these parameters can be found in in Table 3.1.

Figure 3.1: SIR-model and its transition parameters

Parameter Unit Explanation

N - Total population
β - Infection rate (average number of contacts per person per time multiplied by the

probability of disease transmission in a contact)
γ−1 Days Average infectious time period

Table 3.1: Transition parameters of the SIR-model

13
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The SIR-model dynamics can be described by the following differential equations. [2]

dS

d t
=−βI S

N
(3.1)

d I

d t
= βI S

N
−γI (3.2)

dR

d t
= γI (3.3)

When adding all the equations, we find that dS
d t + d I

d t + dR
d t = 0. It follows that S(t )+ I (t )+R(t ) = constant

= N , this number is the population size of the area you are forecasting the disease for.

We are interested in the values of parameters β and γ, we can use data of the countries we want to
investigate to calculate them. Another interesting value we want to find is the R0-value. This is the ratio of
transmission and recovery rates: R0 = β/γ. It represents the number of individuals that are infected by a
single individual. The bigger the R0-value, the faster the disease spreads. When the value is lower than one,
the disease is not spreading.

3.2.1. Finding γ, β and R0

We want to find the transition parameters β and γ, these can be found using the differential equations
corresponding to the dynamics of the compartment model (Equations 3.1, 3.2 and 3.3). [2]

First, we will need an initial value for S(t ), this can be obtained intuitively. On the beginning of an
epidemic, it holds that S = N since no one has been infected yet. For simplicity we will denote β−γ as m.
We substitute this in Equation 3.2 and we obtain the following

d I

d t
∼ βI S

N
−γI

d I

d t
∼βI −γI

d I

d t
∼ Im

I = I0emt

ln I = mt + ln I0

m can be estimated using observed data of compartment I (t ) and a polynomial fit function in Python.

Next, we want to find γ, which is the inverse of the infectious time period. If we suppose that I (t ) = I0

(constant), we get the following

dR

d t
= γI0 (3.4)

R(t ) = γt I0 (3.5)

Now we can estimate γ by rewriting Equation 3.4 in terms of R(t )

R(t +d t )

d t
= γI (3.6)

γ≈ R(t +1)−R(t )

I (t )
(3.7)

Where d t is the change in time which is set at 1 so we can easily retrieve data form R(t ) in the Python
code. As the γ estimate for a period, we take the average of all the γ’s in the last seven days of the period
calculated using Equation 3.7.

Since we have an estimation for m and γ, we have an estimation for β now too because m = β−γ. And
now that we have found β and γ, we can calculate the R0-value.

3.2.2. SIR-models for Denmark

An overview of the exact dates of lock downs in Denmark is not available. Therefore, we decided to take a
look at certain periods of time. We have data available for a period of 457 days which we split up in 6 periods
of approximately 77 days. In Table 3.2 one can see the values for γ andβ estimates in certain periods of time
which are found using Python.

In Appendix A one can find the estimated SIR-models using the parameters from Table 3.2. We want to
emphasise that the models that are made and shown in Figure A.1 forecast the following 500 days of the
virus dynamics based on the data from a certain period. When making these forecasts, we can investigate
whether the situation in a certain period is under control by looking at the values obtained in Table 3.2.
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Period Begin End β γ−1 R0

0 22-01 07-04 0.1329 10.60 1.409
1 08-04 23-06 0.08355 13.62 1.138
2 24-06 09-08 0.1294 13.93 1.802
3 10-08 24-11 0.08433 13.92 1.165
4 25-11 10-02 0.05861 10.24 0.600
5 11-02 29-04 0.08846 15.04 1.330

Table 3.2: Period analysis of Denmark from January 22nd until April 29th

When analysing Table 3.2 together with Figure A.1, we can conclude that the pandemic is completely
under control in period 4. We can see this from the low value of R0 = 0.600 which is much lower than one,
this means that the virus does not spread further. In Figures A.1b and A.1d one can see that the pandemic is
also under control in periods 1 and 3, but since R0 is not below 1 yet, one can not say it is completely gone.

3.3. SEIR-model

Since the incubation period is very important in the spread of COVID-19, the SIR-model is extended with the
compartment E xposed . When an individual is assigned to this compartment, it means that the individual
is infected by someone but does not show any symptoms yet. In this period, a person is able to spread
the virus without him/her knowing it. The dynamics of the extension are visualised in Figure 3.2 and the
definition of the transition parameters can be found in Table 3.3.

Figure 3.2: SEIR-model

Parameter Unit Meaning Value

N - Total population World-o-meter Found on https://ww
w.worldometers.info/world-popu
lation/

β - Infection rate Estimated from SIR-model
γ−1 Days Average infectious time period Estimated from SIR-model
δ−1 Days Average incubation time 5

Table 3.3: Variables in SEIR-model

The differential Equations that describe the model are as follows

dS

d t
=−βI S

N
dE

d t
= βI S

N
−δE

d I

d t
= δE −γI

dR

d t
= γI

Again, we have S +E + I +R = N , which is found the same way as for the SIR-model.

Since we have an extra compartment, we need extra data on initial values. Since we don’t have any
information on the amount of individuals in E(t ), we set this compartment equal to the array I (t )·R0, where
R0 is the reproduction number retrieved from the SIR-model in the corresponding period (Table 3.2).

We will not estimate the parameter δ the way we did for the parameters β and γ in the SIR-model. We
use the β and γ estimated in the SIR-model (Table 3.2) and we set the δ as the medical information we
have from the government which says the incubation time for COVID-19 is approximately five days. (RIVM
https://www.rivm.nl/coronavirus-covid-19/ziekte, consulted May 5)

3.3.1. SEIR-model for Denmark

The SEIR-model is implemented and one can find the figures for the second period in Denmark in Appendix
B in Figure B.1a. We decided to plot the models from period 2 since the corresponding SIR-model gives

https://www.worldometers.info/world-population/
https://www.worldometers.info/world-population/
https://www.worldometers.info/world-population/
https://www.rivm.nl/coronavirus-covid-19/ziekte
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a classic SIR-curve. In Figure B.1b only the infected and exposed individuals are plotted to give a better
visualisation of their dynamics.

The biggest differences between the SEIR- and the SIR-model are that the peak of the infected people
is lower and later. The lower peak can be explained from the fact that an incubation time is implemented
which spreads out the infected individuals more. The later peak has to do with the incubation time too,
since the people who are assigned to the In f ect i ous-compartment in the SIR-model, will first be assigned
to the E xposed-compartment in the SEIR-model.

3.4. SEIRD-model

Once we have implemented the SEIR-model, we find that it is also interesting to estimate the deceased
people. This is another type of model since you can not be assigned to Recover ed and Dead in one model
as visualised in Figure 3.3. The parameters of the SEIRD-model are elaborated in Table 3.4.

Figure 3.3: SEIRD-model

Parameter Unit Meaning Value

N - Total population World-o-meter*
β - Infection rate Estimated from SIR-model
γ−1 Days Average infectious time period Estimated from SIR-model
δ−1 Days Average incubation time 5
µ - Mortality rate 0.0103

Table 3.4: Variables in SEIRD-model. *https://www.worldometers.info/world-population/, consulted May 5

The differential equations corresponding to the dynamics of the compartments are as follows

dS

d t
=−βI S

N
dE

d t
= βI S

N
−δE

d I

d t
= δE −γI −µI

dR

d t
= γI

dD

d t
=µI

The only extra parameter is µ, which is the mortality rate of COVID-19. For now, we will estimate this
rate by dividing the total death cases in Denmark by the total confirmed cases in Denmark until this day,
this gives a mortality rate of µ= 0.0103.

The reproduction number, R0, for this model is equal to β/(γ+µ). [4]

3.4.1. SEIRD-model for Denmark

Since we have an extra compartment now, we need some extra information to simulate the virus: the
amount of people that died up until a certain period of time. Luckily, the information on deceased peo-
ple is posted up well in Denmark and we can retrieve this easily. The output of the model for period 2 in
Denmark can be found in Appendix B in Figure B.1d.

The difference between the SEIR- and the SEIRD-model is that the peak of the infectives and exposed
is lower in the SEIRD-model. The lower peak for the infectives is due to the fact that we now extract peo-
ple from the infectives compartments and let them flow into the deceased compartment. The E xposed
compartment has a lower peak because less infectives imply less exposed individuals.

https://www.worldometers.info/world-population/


4
Improve estimation

We are going to test the accuracy of our forecast for deceased and infectious individuals since those are the
compartments we have observed data on and are interesting to look at. To test the accuracy of our forecast
performance we can use observed data, this accuracy test is called sample testing. This means we are going
to make a forecast with our model and compare it to the observed data. We can do this for periods zero
to four since the fifth period forecasts unobserved data which means we are not able to compare it. The
forecasts and the observed data plotted in the same graph can be found in Figure 4.1.

(a) SEIRD-model forecast post period 0 in Denmark (b) SEIRD-model forecast post period 1 in Denmark

(c) SEIRD-model forecast post period 2 in Denmark (d) SEIRD-model forecast post period 3 in Denmark

(e) SEIRD-model forecast post period 4 in Denmark

Figure 4.1: Forecasts using the SEIRD-model using the data of the respective period in Denmark

17
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4.1. Accuracy testing

4.1.1. Least Squares Method

To improve our model in the following sections, we are going to use the Least Squares Method. The method
defines a function which subtracts the estimated values from the actual data after which it minimises the
sum of the squared subtractions by fitting the parameters.

min.
T∑

t=1

(
yt − ŷt (xt ,params)

)2

The output of this method is the parameters which ensure that the value of the sum is as low as possible,
this indicates that using these parameters, the smallest error possible is obtained.

4.1.2. RMSE

To check the improvements of our estimation, we use the Root Mean Squared Error. This method measures
the distance between the estimated and actual data if you would plot it on (x, y)-axes. If the RMSE is large,
it means this distance is big which indicates a large error.

RMSE =
√√√√ 1

T

T∑
t=1

(ŷt − yt )2

The tables in this chapter contain columns called ‘Impr.’, this is a column with the original RMSE from the
SEIRD-model divided by the RMSE of the improved model. This is a number which indicates how much
the adjustment of the model has improved the estimation.

4.2. Adjusting mortality rate

The first thing that stands out in Figure 4.1 is that the estimated amount of deceased individuals is way too
high, which means our estimated µ should be lowered. The optimal µ for each period can be found using
the Least Squares Method and can be found in Table 4.1. Since the values are not very far apart from each
other in periods one to four, we decided to take the average of these as the new mortality rate. Period zero
is not included in the mean since the information in this period is not reliable due to test unavailability in
that time frame.

Period µ

0 0.0012050
1 0.0001880
2 0.0001767
3 0.0005709
4 0.0008734

Mean 0.0004523

Table 4.1: Least Squares µ values per period in Denmark

We will include the result of these changes in the following section.

4.3. Adjusting time interval

Another way to improve our estimations is to take a better look at which time intervals we are retrieving
data from to forecast. Remember that we took data from 22-01-2020 till 29-04-2021 and cut it equally in 6
periods. Since the SEIRD-model is not able to capture lockdown effects decreasing the amount of people
in contact, we should estimate the parameters in our SEIRD-model using time intervals who do not have
such peaks. From Figure 4.2 we selected periods that have a steady increase or decrease of infectives which
might be a good data set to forecast with.

We use these periods to estimate the parameters γ & β for the SIR-model and act as if they are the same
for the SEIRD-model, we use medical information on δ, and we set µ as calculated in Section 4.2. In Table
4.2 one can find the periods chosen to forecast with and the estimated parameter values, Figure 4.3 plots
the corresponding SEIRD-model.

In Figures 4.3a and 4.3b we can see that the forecast is not very accurate, but in Figure 4.3c we can see
that the forecast tends to the follow the trend of the actual data. One of the reasons for the high forecast in
In f ect i ves in Figures 4.3a and 4.3b might be that the model assumes that everyone is in contact with each
other, this is not the case due to social distancing and quarantine.
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Figure 4.2: Infected people in Denmark, January 21 until April 29. Selected periods are highlighted and labelled.

Period Begin End R0 β γ µ δ

A 31-08 17-09 2.60746 0.113365 0.0430249 0.0004523 0.2
B 26-11 10-12 2.29675 0.110959 0.0478591 0.0004523 0.2
C 23-12 02-01 0.63956 0.0622129 0.0968222 0.0004523 0.2

Table 4.2: SEIRD-model parameter estimations using assigned periods in Denmark

(a) SEIRD-model forecast post period A (b) SEIRD-model forecast post period B

(c) SEIRD-model forecast post period C

Figure 4.3: Forecasts using specific periods found in Table 4.2

4.4. Adjusting relation between I and S

Classical compartment models as described in this report do not take social distancing and quarantine into
account. When looking at differential equations of the SEIRD-model, one can see that βI S, the incidence
rate, is a bi-linear term. This bi-linear term indicates a homogeneous spread of individuals in all the com-
partments, while this is not the case when people act on social distancing and quarantine.

To reproduce a heterogeneous spread of compartments In f ect i ve and Suscepti bl e, one can adjust
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the classical SEIRD-model differential equations as follows [5]

dS

d t
=−βI p S

N
(4.1)

dE

d t
= βI p S

N
−δE (4.2)

d I

d t
= δE −γI −µI (4.3)

dR

d t
= γI (4.4)

dD

d t
=µI (4.5)

The p represents a power which is equal to one in the classical model, the parameter can be fitted using
actual data and the Least Squares method. To show that this can result in a much better estimation, we
plotted the models with the least squares fitted values for p in Figure 4.4. In Table 4.3 one can find the
improvement in terms of RMSE-values of the estimations by fitting the p-value.

(a) Forecast post period A (b) Forecast post period B

(c) Forecast post period C

Figure 4.4: Forecasts made with the SEIRD-model. The forecasts are fitted to observed data to show that a different value for p (as
defined in Equations 4.1 and 4.2) can make a big difference for the accuracy of the estimation.

Period Begin End Original RMSE p RMSE Impr.

A 31-08-20 17-09-20 40886.99 4346.84 9.41
Denmark B 26-11-20 10-12-20 228880.03 20173.20 11.35

C 23-12-20 02-01-21 6402.40 2748.08 2.34

Table 4.3: RMSE values of the fitted p-value model. Respective plots of the amount of infectives can be found in Figure 4.4.

4.5. Adjust reach of the model

In this section we want to counteract on the assumption that all individuals in a country are in contact with
each other, since travelling between cities significantly reduces in the times of a lockdown. We adjust the



4.5. Adjust reach of the model 21

original SEIRD-model as follows [5]

dS

d t
=−βI S

N
· n0

N
(4.6)

dE

d t
= βI S

N
· n0

N
−δE (4.7)

d I

d t
= δE −γI −µI (4.8)

dR

d t
= γI (4.9)

dD

d t
=µI (4.10)

The n0-value indicates the average size of networks in which people have contact with each other, this
size decreases in times of lockdown. Using the Least Squares Method and the actual data, the following
values for n0 are found and the model is used to create forecasts. When the optimal n0-value is negative, it
is set to one and when it exceeds the number of inhabitants it is set to the population size N .

In Figure 4.5 one can find the forecasts using the model stated above and in Table 4.4 one can find the
improvements in terms of RMSE-values.

(a) Forecast post period A (b) Forecast post period B

(c) Forecast post period C

Figure 4.5: Adjusted forecasts made with the SEIRD-model. The forecasts are fitted to observed data to show that a different value for
n0 (as defined in Equations 4.6 and 4.7) can make a difference for the accuracy of the estimation.

In Table 4.4 one can find the improvement of the estimations by fitting the p-value.

Period Begin End Original RMSE n0 RMSE Impr.

A 31-08-20 17-09-20 40886.99 4358.76 9.38
Denmark B 26-11-20 10-12-20 228880.03 20173.20 11.35

C 23-12-20 02-01-21 6402.40 2821.74 2.27

Table 4.4: RMSE values of the fitted n0-value model. Respective figures can be found in Figure 4.5.
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Verify improvements

It is obvious that both the adjustments of the models create a better forecast, but up until now we have only
taken a look at data for Denmark, which is not enough data to base our research on. This is why data of
Austria, Germany, Italy and Poland is used to do similar calculations with.

First, we are going to look at the observed values for the infected individuals over the time of the pan-
demic (Appendix C) to choose periods of which we will use data to forecast. Then we will calculate the
parameters γ and β with the SIR-model (Section 3.2.1), use medical information to determine the value of
δ, and calculate the mean mortality rate µ to obtain the basic SEIRD-model. At last we will improve the
model by fitting the p-value (as in Equations 4.1 and 4.2) or the n0-value (as in Equations 4.6 and 4.7). An
overview of the parameter values and the results for the improvements can be found in Table 5.2

From Table 5.2 one can see that the RMSE-values become much lower for both improved models, but
the improvement rates are very similar for both models when the p- or n0-value is adjusted. Since the n0

has restrictions (0 ≤ n0 ≤ N ) and p does not, we decide to leave the n0/N term out of our model. Another
reason for this decision is is that n0/N is a linear term, by adjusting the β in Equation 4.1, one can include
n0/N if necessary.

We have proven that the modifications provide a more accurate prediction. The question is: How are we
going to apply this? We want to use the compartment models as a prediction of the future dynamics of a
virus. We used the Least Squares Method in this chapter, which means we used observed data to determine
the optimal parameter values which we can not do in reality. We have information on the optimal p-value
for three periods per country, with this information we can estimate a general p-value for each country by
taking the mean of the values noted in Table 5.2. We set the p-values which are a negative number equal
to zero since this does not differe very much in RMSE (which will be elaborated on later). We obtain the
following p-values which will be used for the models from here on.

Denmark: 0.6604

Austria: 0.9459

Germany: 0.9731

Italy: 0.6607

Poland: 0.6626

To verify the choice to set the p-values at zero when it is negative, one can find the difference between
the RMSE’s in Table (Table 5.1). We can conclude that this difference is insignificant.

Country Period Optimal p-value Used p-value RMSE optimal p-value RMSE used p-value

Denmark B -1.146 0.6604 20173.20 21271.68
Italy A -0.5640 0.6607 942596.63 959165.10

Poland A -0.8086 0.6626 204232.96 208562.30

Table 5.1: RMSE-values for SEIRD-models using originally calculated p-values (negative) compared to p-value means calculated with-
out these out liers.
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6
Compartment model for queue

We are now in a position to simulate the contact tracing queue using the compartment models we have
created in the previous chapter. The people who will be investigated are the people who have been in
contact with a person who has been tested positive for COVID-19 by the government. This means that we
need to investigate how many people are expected to test positive, from that number on we can estimate
the amount of contacts that need investigation.

This chapter contains two possible extensions of the SEIRD-model which can be used for the simulation
of the contact tracing queue. The first has an extra compartment called ‘Tested’, and the second extracts
information from the classical SEIRD-model.

6.1. Compartment model 1

Using our knowledge form the research we have done on compartment models, it is possible to adjust an
existing compartment model that is relevant for us. The differential equations that describe the dynamics
for a certain compartment is its flow in of the minus its flow out.

Since our former compartment models do not include a compartment of people who are actually tested,
we do not know how many people have to be traced. This is why we decided to include this compartment,
the new compartment model can be found in Figure 6.1.

Figure 6.1: SEIRDT-model and its transition parameters

The θE and θI represent the fraction of their corresponding compartments who get themselves tested,
which will automatically result in a positive test since we assume that everyone who is tested in compart-
ment E and I will obtain a positive test result. We divide this number by 5 days (incubation time) and 10
days (infectious time) respectively since a person only tests positive once in the time span they are assigned
to those compartments.
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The differential equations that correspond to this compartment model are as follows

dS

d t
=−βI p S

N
dE

d t
= βI p S

N
−γE − θE

5
E

d I

d t
= γE −δI −µI − θI

10
I

dR

d t
= δI +δT

dD

d t
=µI +µT

dT

d t
= θE

5
E + θI

10
I −δT −µT

Unfortunately, this model does not work as hoped, because part of the individuals of compartments
E xposed and In f ect i ous are now put into one compartment. Due to this, the length of the stay in com-
partment Tested is no longer correct since the parameter γ is no longer taken into account. We could adjust
the compartment model in such a way that γ is also taken into account by splitting up the Compartment
Tested into two compartments, but instead we choose to create an external model explained in the next
section.

6.2. Compartment model 2

Another way to simulate the queue is not to make another compartment model but to use one we have
already implemented and extract information from it. We will do this using the SEIRD-model (Section 4.4).

Figure 6.2: SEIRD-model and its transition parameters

From compartments E xposed and In f ect i ous we can estimate how many contacts have to be investi-
gated. We assume that an individual that is assigned to E xposed will stay in that compartment for 5 days
(incubation time is 5 days) and an individual that is assigned to In f ect i ous will stay in that compartment
for 10 days (average infectious time).

We will make use of the parameters θE and θI (as described in Section 6.1 and their divisions by corre-
sponding duration times to compute the number of people that test positive from both compartments E
and I on time t . In Figure 6.3 you can see the visualisation for a model that retrieves the total amount of
work that is needed at time t . κ represents the average number of contacts per individual and wm and wc

the amount of time it costs to monitor or treat a new case respectively.

The left part of the overview in Figure 6.3 results in the amount of work it costs to investigate a contact of
someone who tests positive on time t , this work is for the new cases who are contacts of people who tested
positive on day t . The right part results in the amount of time it costs to monitor people, these individuals
are contacts of people who tested positive in the last five days. The amount of people to be monitored can
easily be retrieved from previous ‘New contacts at time t ’ values calculated at time t −1 to t −5. When the
work to investigate new cases and monitoring cases is added, we obtain the total work that is demanded to
do proper research on contacts on day t .
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Figure 6.3: Visualisation of the total amount of work it costs to do contact tracing for day t





7
Queue simulation

The goal of the model made in the article this research is based on (Chapter 2), is different from the goal
of the queue simulation in this chapter. The main difference is that the model in the article focuses on
the queue of people who have been in contact with an infective recently, while this chapter focuses on the
queue of amount of work it costs to investigate all individuals, which includes the people who are moni-
tored. Another distinction is that the article has an analytically defined queue, which we will convert to a
queue which can be approximated using numerical methods. The final change is that the compartment
model on which the original queue is based on, is not used in this chapter due to lack of information on
parameters, instead we use data retrieved from the SEIRD-model as described in Section 6.2.

In this chapter we will walk through the changes made to the original queue, which will result on a
notation of the contact tracing which can be used for our research.

7.1. Queue

As mentioned above, the queue has a different goal in the original model, we will make the following
changes in notation and definition to adapt the queue to our research. In Table 7.1 (Section 7.4) one can
find the meaning of all the parameters used in the notation.

dC
d t = [

flowi n(t )
]− [

flowout (t )
] −→ Q(t ) = [

flowi n(t )
]− [

flowout (t )
]

Change in new cases needed to be investigated
at time t

−→ Amount of work left to investigate new cases
and monitoring cases at time t

7.2. Positive tested individuals

First of all, we want to define the amount of people that test positive on day t , from this number on we can
estimate the flow in and flow out of the queue.

The amount of positive tested individuals on day t is defined as follows.

T (t ) = θE

5
E(t )+ θI

10
I (t )

Where θE is the fraction of E xposed individuals who test positive in one day, and θI is the fraction of
In f ect i ve individuals who test positive in one day. We assume that individuals only test positive once
in their stay in a compartment, we resolve this by dividing the θ·’s by the amount of days an individual is
assigned to that compartment.

7.3. Flow in

At first we will focus on the flowi n of the queue. In the previous definition this existed of the amount of
contacts of the individuals who test positive on day t , from now on this exists of the contacts of the people
who test positive on day t plus the amount of people that need monitoring at time t multiplied by the
corresponding amount of time it costs to contact trace them (wc or wm).

flowi n(t ) = wc T (t )+wm

5∑
i=1

T (t − i )
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7.4. Flow out

The flow out of the model is changed in a few ways. First of all, we will look at all cases that are worked on
instead of only the new ones that come in. This means we are also interested in the cases that need to be
monitored at time t . Secondly, the exponential expression will be converted to a linear function. And at last
we will change the unit from number of people to total amount of work applied on contact tracing.

The original flow out is as follows.

flowout = T (t )

wm
∑5

i=1 T (t − i )+wc T (t )

(
wa M

(
1−exp[−α(wm

5∑
i=1

T (t − i )+wc T (t ))]
))

(7.1)

= 1

wc

Work to investigate new cases

Total amount of work

(
wa M

(
1−exp[−α(Total amount of work)]

))
(7.2)

The fraction in Equation 7.1 can be left out completely for our flow out notation since we are interested in
the work that is put into all cases, not only the new ones. Furthermore, we lose the exponential expression
since this expression is a smooth approximation of the linear relationship between work demand and work
applied as illustrated in Figure 2.2. This results in the following notation of the flow out.

flowout = workappli ed (workdemand ,workavai l able ) (7.3)

Where

workappl i ed (workdemand ,workavai l able ) =
{

workdemand if workdemand < workavai l able = wa M
workavai l able if workdemand ≥ workavai l able = wa M

Parameter Unit Explanation

M - Number of contact tracers
κ - Average number of contacts per person per day
θE - Fraction of exposed individuals who test positive
θI - Fraction of infectious individuals who test positive
wc Days Amount of time to investigate a new contact
wm Days Amount of time to monitor existing cases
wa Days Amount of time a contact tracer works

Table 7.1: Parameters simulation queue

7.5. Results queue simulation

Using the parameter values in Table 5.2, we produce SEIRD-models to estimate the amount of In f ect i ves
and E xposed which we use to predict the amount of people whose contacts need contact tracing. We will
need values for some extra parameters which can be found in Table 7.2. Since we do not have information
on these values for now, we will make some educated guesses on their values. Substituting various values
for the amount of contact tracers (M) gives us different situations of the queue.

Parameter Value Unit Explanation

M Variable - Number of contact tracers
κ 6 - Average number of contacts per person per day
θE 1/6 - Fraction of exposed individuals who test positive
θI 4/5 - Fraction of infectious individuals who test positive
wc 10/60 Days Amount of time to investigate a new contact
wm 4/60 Days Amount of time to monitor existing cases
wa 1/3 Days Amount of time a contact tracer works

Table 7.2: Parameters simulation queue values

The model mentioned in this chapter is implemented in Python and we obtain the queues for contact
tracing shown in Figure 7.1, including the SEIRD-model forecasts for corresponding country and period.
We decided to plot the contact tracing queues for Denmark post period B and for Italy post period B and
adjust the amount of contact tracers to show what differences it can make.

In Figure 7.1 you can find three situations. The first is plotted in the Figure 7.1a, the queue is long
since there are not enough contact tracers. You can see this by the constant flow out, it is always equal
to 4,000 since Equation 7.3 tells the flow out to be constant at workavai l able when workdemand is exceeding
workavai l able at all times. The second situation is plotted in Figures 7.1b and 7.1c where flow out is even-
tually equal to the flow in which results in a queue of zero hours. The last situation is plotted in Figure 7.1d
where you can see that there are a lot of contact tracers and in a short amount of time the queue is already
equal to zero.
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(a) Queue Denmark post period B, 5’000 contact tracers (b) Queue Italy post period B, 450’000 contact tracers

(c) Queue Denmark post period B, 17’000 contact tracers (d) Queue Italy post period B, 600’000 contact tracers

(e) SEIRD-model Denmark post period B (f) SEIRD-model Italy post period B

Figure 7.1: Contact tracing queue’s of Denmark and Italy created with the corresponding SEIRD-models. Adjusting the number of
contact tracers results in a different queue.
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Amplify queue

The queue simulated in Chapter 7 is created to estimate how many contact tracers are necessary to inves-
tigate new cases and monitor them. If enough contact tracers are at work, one could say the situation is
‘under control’ since enough contacts of infective/exposed individuals are in contact with the government.
The question is: What happens when there are not enough contact tracers and the people who have been
in contact with COVID-19 positive individuals are not being monitored by contact tracers? What happens
if the government is not able to get an overview of the status of all these potential infected individuals?

To simulate a situation in which more individuals will be assigned to the compartment E xposed (and
less to the compartment Suscepti bl e) when the queue is too long, we adjust the SEIRD-model in the fol-
lowing way.

dS

d t
=−βI p Sa

N
(8.1)

dE

d t
= βI p Sa

N
−δE a (8.2)

d I

d t
= δE a −γI −µI (8.3)

dR

d t
= γI (8.4)

dD

d t
=µI (8.5)

The a is the amplification factor which is set equal to a number between 1.1 and 5 if the queue of day
t −1 exceeds the queuemax (set by the government), if the queuemax is not exceeded, the value of a is set
equal to one as in the normal SEIRD-model. This makes sure that more individuals are assigned to the
compartment E xposed when the government has not enough control over citizens that might have been
in contact with COVID-19 infected individuals. This implementations allows the queue to be dependent on
itself, which can easily result in an unstable situation, visually represented below.

In Figure 8.1 one can find a plot in which the difference between the the original and the new model
becomes visible for the flow in / flow out, the queue and the SEIRD-model. The plots are a simulation of
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the situation in which the amplification factor is set equal to 3 when the queuemax = 1,000 is exceeded. All
plots are estimations of the amplified queue in Germany post period B, the left plots simulate the amplified
queue when there are 200,000 contact tracers available and the right plots when there are 210,000 contact
tracers available.

(a) Flow in and flow out 200,000 contact tracers (b) Flow in and flow out 210,000 contact tracers

(c) Queue 200,000 contact tracers (d) Queue 210,000 contact tracers

(e) SEIRD-model 200,000 contact tracers (f) SEIRD-model 210,000 contact tracers

Figure 8.1: Plots of the SEIRD-models including an amplification factor of 1.0 or 3 as defined in Equations 8.1 and 8.2. The amount of
contact tracers is variable to show the difference between the outcome of the models.

Both situations plotted in Figure 8.1 result in a stable solution. The only difference is that there is more
flow in when there are 200,000 contact tracers available which results in a longer queue. Furthermore, there
exists no queue if there are 210,000 contact tracers since the flow in is equal to the flow out. This means that
the amount of people assigned to E xposed is not amplified.

To simulate an unstable situation, we set the amplification factor equal to 4 and the contact tracers
available is 120,000, the results can be found in Figure 8.2.

This model can be used to find the amount of contact tracers that are needed for a stable situation, but
only if there is proof that when the government has no control over its citizens that have been in contact
with COVID-19 infected individuals, there are more people exposed to the virus.
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(a) Flow in and flow out 120,000 contact tracers (b) Queue 120,000 contact tracers

(c) SEIRD model 120,000 contact tracers

Figure 8.2: Plots of the SEIRD-models including an amplification factor of 1.0 or 4 as defined in Equations 8.1 and 8.2. Setting the
amplification factor at 4 results in unstable situation.
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Extending the SEIRD-model with

vaccinations

From January on, it is possible to be vaccinated for COVID-19. Since this will decrease the amount of indi-
viduals assigned to the compartment Suscepti bl e drastically, it is important to take a look at the difference
it can make for the amount of infected individuals in a country. This can be done using a compartment
model in which an amount individuals get assigned to a compartment, V acci nated , each day. The model
can be found in Figure 9.1 and will be referred to as the ‘SVEIRD-model’. [3]

Figure 9.1: SVEIRD-model

The corresponding differential equations are as follows.

dS

d t
=−βI p S

N
−αt S (9.1)

dV

d t
=αt S − βσv I pV

N
(9.2)

dE

d t
= βI p S

N
−δE + βσv I pV

N
(9.3)

d I

d t
= δE −γI −µI (9.4)

dR

d t
= γI (9.5)

dD

d t
=µI (9.6)

We define αt as the vaccination rate and σv as the vaccine efficacy rate which both will be elaborated on
in Section 9.2.

The last terms in Equations 9.2 and 9.3 are in the form for the following reason. When a vaccine has an
efficacy rate of 66%, it does not imply that 34% of the individuals shot with the vaccine are still susceptible.
It means that if someone who is vaccinated is in contact with a person infected by COVID-19, the chances
are 34% this vaccinated individual is infected by COVID-19. This means that we still have to take the trans-
mission rate (β), the chances of people being in contact with each other (multiplying V by I ) and the social
distancing (p-value) into account.

This chapter contains the results of this new model, and eventually we will sketch different scenarios by
adjusting the value for αt (vaccination rate) to see what difference it can make for the future. We want to
emphasise that this chapter is not testing accuracy anymore but investigates possible different scenarios if
more time and money is invested in vaccination.
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9.1. Data time frames

On the beginning of this bachelor thesis, there was data available until 29-04-2021. Since there is more data
available now, we have imported this data on In f ect i ves, Recover ed and Deaths for Denmark, Austria,
Italy, Poland and Germany. We are going to combine the data on vaccinated people with the newly imported
data to estimate parameters for the SVEIRD-model.

To estimate the amount of individuals assigned to V acci nated , we will only look at the data for indi-
viduals that are fully vaccinated (some vaccinations require two shots 14 days apart) because there is no
reliable information on the efficacy of these vaccinations when someone has had only one shot. One can
find the amount of individuals being fully vaccinated in Denmark each day in Figure 9.2, this figure shows
that from mid March on, a steady amount of individuals are being vaccinated and from May on this number
increased significantly.

Figure 9.2: Fully vaccinated people difference each day in Denmark

In Figure 9.3 one can find an overview of the time frames with whom the SIR-, SEIRD- and SVEIRD-
model parameters are calculated. The µ and p-values are the same as for the SEIRD-model we used in
previous chapters.

Figure 9.3: Time frames used to calculate parameters

9.2. Parameters αt and σv

9.2.1. Vaccination rate αt

The parameter αt is the vaccination rate at day t , which is the percentage of susceptible individuals vacci-
nated that day. We assume that only individuals in compartment Suscepti bl e get vaccinated.

To decide what value αt takes, we divide the average of vaccinations over 20 days before the period we
are investigating by the amount of individuals that are assigned to the compartment Suscepti bl e on the
previous day. Vobs (t ) is defined as the observed data on vaccinated individuals.

αt =
∑20

t=1 Vobs (t − i )

20
· 1

S(t −1)

= Mean 20 days pre period

S(t −1)

Since the compartment Suscepti bl e decreases each day due to vaccination, αt increases each day.
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The average vaccinations per day for the period 02-05-2021 until 22-05-2021 per country can be found
in Table 9.1. From now on, we will refer to this period as ‘Period D’. To give a better idea of the amount
of people vaccinated each day with respect to the population size, we added a column that contains the
percentage of inhabitants vaccinated each day.

Country Period Average vaccinations per day Average / population size

Denmark D 23445 0.40%
Austria D 20344 0.22%

Germany D 254100 0.30%
Italy D 191541 0.32%

Poland D 127330 0.34%

Table 9.1: Average vaccinations in the period from 02-05-2021 until 22-05-2021 per country.

9.2.2. Vaccination inefficacy σv

The parameter σv is the vaccination inefficacy rate. Research has been done to find the efficacy rate of
certain vaccines, these values will be used in the model and can be found in Table 9.2.

Vaccine Efficacy σv Source

Pfizer 95% 0.05 WHO*
Johnson & Johnson 66% 0.34 WHO**

Moderna 94% 0.06 WHO***
Astrazeneca 63% 0.37 WHO****

Table 9.2: Inefficacy rates for COVID-19 vaccines.
*https://www.who.int/news-room/feature-stories/detail/the-j-j-covid-19-vaccine-what-you-need-to-kno
w?gclid=Cj0KCQjw_dWGBhDAARIsAMcYuJy0SptG_NIAYChDKf7vyqgNV3NEuKqH6GFvUg96YLm1tYqphZUweVYaAvLUEALw_wcB,
consulted 29-06-2021
** https://www.who.int/news-room/feature-stories/detail/the-j-j-covid-19-vaccine-what-you-need-to-kno
w?gclid=Cj0KCQjw_dWGBhDAARIsAMcYuJy0SptG_NIAYChDKf7vyqgNV3NEuKqH6GFvUg96YLm1tYqphZUweVYaAvLUEALw_wcB,
consulted 29-06-2021
*** https://www.who.int/news-room/feature-stories/detail/the-moderna-covid-19-mrna-1273-vaccine-what-you
-need-to-know?gclid=CjwKCAjwieuGBhAsEiwA1Ly_nc9ymLAmAQ-66XmLkP65KWM5yt9nBZblQQ5-grC0XVWtDGStPSkKeRoCUJ8
QAvD_BwE, consulted 29-06-2021
**** https://www.who.int/news-room/feature-stories/detail/the-oxford-astrazeneca-covid-19-vaccine-what-
you-need-to-know?gclid=CjwKCAjwieuGBhAsEiwA1Ly_nW2flSHzkRC3x5ly03nVxjc4pxrcKxyNRJtd8xJIrp4xK_aoSUm5dRo
C9QEQAvD_BwE, consulted 29-06-2021

9.3. Results for effect of different vaccines

It is obvious that there will be less infections when more people are vaccinated. But how much does it
differ? In Figure 9.4 one can find the difference between the SVEIRD- and the SEIRD-models of Austria for
Pfizer and Johnson. We choose to plot the infectives and exposed for Johnson and Pfizer since Moderna and
Astrazeneca have efficacy rates which are like those of Pfizer and Johnson.

Figure 9.4: SVEIRD- and SEIRD-models post period D plotted in one figure for Denmark. The vaccines plotted are Pfizer and Johnson.

Since it is hard to see the exact difference from the plots, and because the other countries are not plotted,
one can find the difference on day 30 between the amount of E xposed and In f ected individuals from the
SEIRD- and SVEIRD-model in Table 9.3 for both vaccines for all countries. Next to the exact amount one
can find the percentage of the amount of E xposed and In f ect i ve decrease with the corresponding vaccine
after 30 days.

https://www.who.int/news-room/feature-stories/detail/the-j-j-covid-19-vaccine-what-you-need-to-know?gclid=Cj0KCQjw_dWGBhDAARIsAMcYuJy0SptG_NIAYChDKf7vyqgNV3NEuKqH6GFvUg96YLm1tYqphZUweVYaAvLUEALw_wcB
https://www.who.int/news-room/feature-stories/detail/the-j-j-covid-19-vaccine-what-you-need-to-know?gclid=Cj0KCQjw_dWGBhDAARIsAMcYuJy0SptG_NIAYChDKf7vyqgNV3NEuKqH6GFvUg96YLm1tYqphZUweVYaAvLUEALw_wcB
https://www.who.int/news-room/feature-stories/detail/the-j-j-covid-19-vaccine-what-you-need-to-know?gclid=Cj0KCQjw_dWGBhDAARIsAMcYuJy0SptG_NIAYChDKf7vyqgNV3NEuKqH6GFvUg96YLm1tYqphZUweVYaAvLUEALw_wcB
https://www.who.int/news-room/feature-stories/detail/the-j-j-covid-19-vaccine-what-you-need-to-know?gclid=Cj0KCQjw_dWGBhDAARIsAMcYuJy0SptG_NIAYChDKf7vyqgNV3NEuKqH6GFvUg96YLm1tYqphZUweVYaAvLUEALw_wcB
https://www.who.int/news-room/feature-stories/detail/the-moderna-covid-19-mrna-1273-vaccine-what-you-need-to-know?gclid=CjwKCAjwieuGBhAsEiwA1Ly_nc9ymLAmAQ-66XmLkP65KWM5yt9nBZblQQ5-grC0XVWtDGStPSkKeRoCUJ8QAvD_BwE
https://www.who.int/news-room/feature-stories/detail/the-moderna-covid-19-mrna-1273-vaccine-what-you-need-to-know?gclid=CjwKCAjwieuGBhAsEiwA1Ly_nc9ymLAmAQ-66XmLkP65KWM5yt9nBZblQQ5-grC0XVWtDGStPSkKeRoCUJ8QAvD_BwE
https://www.who.int/news-room/feature-stories/detail/the-moderna-covid-19-mrna-1273-vaccine-what-you-need-to-know?gclid=CjwKCAjwieuGBhAsEiwA1Ly_nc9ymLAmAQ-66XmLkP65KWM5yt9nBZblQQ5-grC0XVWtDGStPSkKeRoCUJ8QAvD_BwE
https://www.who.int/news-room/feature-stories/detail/the-oxford-astrazeneca-covid-19-vaccine-what-you-need-to-know?gclid=CjwKCAjwieuGBhAsEiwA1Ly_nW2flSHzkRC3x5ly03nVxjc4pxrcKxyNRJtd8xJIrp4xK_aoSUm5dRoC9QEQAvD_BwE
https://www.who.int/news-room/feature-stories/detail/the-oxford-astrazeneca-covid-19-vaccine-what-you-need-to-know?gclid=CjwKCAjwieuGBhAsEiwA1Ly_nW2flSHzkRC3x5ly03nVxjc4pxrcKxyNRJtd8xJIrp4xK_aoSUm5dRoC9QEQAvD_BwE
https://www.who.int/news-room/feature-stories/detail/the-oxford-astrazeneca-covid-19-vaccine-what-you-need-to-know?gclid=CjwKCAjwieuGBhAsEiwA1Ly_nW2flSHzkRC3x5ly03nVxjc4pxrcKxyNRJtd8xJIrp4xK_aoSUm5dRoC9QEQAvD_BwE
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Country E difference Pfizer I difference Pfizer E difference Johnson I difference Johnson

Denmark 40.25 – % 27.26 118.90 – % 2.41 28.05 – %19.00 82.73 – %1.67
Austria 432.35 – % 27.95 892.58 – % 15.94 308.656 – % 19.95 630.70 – %11.26

Germany 1865.21 – % 11.41 3577.81 – % 4.33 1305.63 – %7.99 2495.95 – %3.02
Italy 23.38 – % 6.182 62.35 – % 0.03 16.24 – %4.29 43.31 – %0.02

Poland 21.86 – % 7.15 64.808 – % 0.03 15.19 – %4.97 45.0 – %0.02

Table 9.3: Differences in amount of individuals assigned to E xposed and In f ect i ve when different vaccines are used

We find that the difference between the SEIRD- and SVEIRD-model is not very big. This could be due to
the fact that we have only taken fully vaccinated individuals into account when calculating the vaccination
rate αt . Since there is evidence that you are also (partly) protected if you have only had one shot, this rate
might be higher then we think. It could also be possible that countries with a higher. What can also cause
an unrealistic vaccination rate, is that we use the average vaccinations of period D to calculate with, while
in reality more people are being vaccinated when we look at more recent vaccination numbers. (Appendix
D)

9.4. Results for different vaccination rates

In Section 9.3 we concluded that the vaccination rate may be unrealistic. In this section we will adjust the
vaccination rates by multiplying the original values for αt by 6 and 12 and plotting the results in the same
figure for Denmark to show what the possible forecasts are for higher vaccination rates. In this section we
will assume that everyone is going to be vaccinated with Pfizer (σv = 0.05).

(a) SVEIRD-model of Denmark post period D

Figure 9.5: SVEIRD-model for different vaccination rates.

It makes sense that a higher vaccination rate results in less people being assigned to In f ect i ve and
E xposed , which is also visible in Figure 9.5.

9.5. Applications

9.5.1. Different αt

Until now, we have based the vaccination rate on the amount of people being vaccinated in the past. An-
other option is to make an estimate of the vaccination rate by looking look into the future. The vaccination
rate can increase if there are more vaccination stations, vaccines and vaccination workers. For example, if
authorities know that there will become more vaccines available, αt can be set higher at t + 30. If a time
series αt is made which depends on all these factors, one can make an accurate forecast with the SVEIRD-
model.

9.5.2. Different σv

Another application could be to give weights to the sorts of vaccinations being shot in a country. What if
50% of the inhabitants (who actually get the vaccination) receive Pfizer, 25% Moderna and 25% Astrazeneca?
One can set the inefficacy rate as follows and create forecasts with it.

σover al l = 0.5 ·σP f i zer +0.25 ·σModer na +0.25 ·σAstr azeneca (9.7)
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9.6. What’s next?

We have created a compartment model which takes vaccinated individuals into account and the results
are what we expected. Of course, when more individuals get vaccinated, there will be less infections. And
when individuals get vaccinated with a vaccine which has a higher efficacy rate, there will also be less
infections. We now want to combine these findings with the queue we have created earlier to investigate
whether we can make recommendations for the government.
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Queue if vaccinations are available

The model for the queue in this chapter works exactly the same as described in Chapters 7 and 8, but for the
queue in this chapter we use the amount of people assigned to E xposed and In f ect i ve from the SVEIRD-
model instead of the SEIRD-model.

First we are going to show the results for the standard queue, after that the results for the amplified
queue. In Figure 10.1 one can find the contact tracing queues in Denmark for different vaccination rates.
It is obvious that when more individuals get vaccinated, less individuals are infected and exposed which
results in less flow in.

Figure 10.1: Contact tracing queue with different vaccination rates.

To conclude this chapter, one can find the SVEIRD-model forecasts for Denmark post period D if the
amount of exposed individuals are dependent on the length of the contact tracing queue. It make sense that
when more individuals get vaccinated, less individuals get exposed and infected which implies a shorter
queue (as became clear from Figure 10.1). This also implies a less amplified queue which eventually can
result in much less people assigned to E xposed and In f ect i ve.

To illustrate the difference in contact tracing queue for a vaccination rate equal to αt and αt ·12, one can
find their plots in Figure 10.3.
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Figure 10.2: Amplified contact tracing queue with different vaccination rates.

(a) Flow in and flow out of the amplified queue, vaccination rate αt (b) Flow in and flow out of the amplified queue, vaccination rate αt ·12

(c) Amplified queue, vaccination rate αt (d) Amplified queue, vaccination rate αt ·12

Figure 10.3: Flow in, flow out and actual queue (described in Chapter 8) for two different vaccination rates.
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Conclusion and recommendations

Conclusion

By the first part of this report we can conclude is that it is possible to adjust compartment models in such
a way it is applicable to a specific virus. The characteristics of COVID-19 can be implemented by adding
compartments E xposed , Deceased and V acci nated to the classical compartment models. These are
important since the incubation time, mortality rate and vaccination rate can make a significant difference
in forecasting the dynamics of COVID-19. The behaviour of the inhabitants can be implemented by turning
the bi linear term βI S in a non bi linear term by raising I to the power p. This power makes sure that there
is no homogeneous spread of people, this simulates social distancing and quarantine.

Secondly, one can simulate a contact tracing queue using the compartment model mentioned above.
To keep the pandemic under control, we need contact tracers to investigate infected individuals and their
contacts. The amount of contact tracers needed can be estimated using the compartment models. One can
use the estimation of the amount of E xposed and In f ect i ves to create a forecast contact tracing queue.
We then found that it is possible to simulate the amplification of the queue if there are not enough (possibly)
infected individuals investigated.

Finally, it is possible to simulate the dynamics of the virus if vaccinations become available with the
SVEIRD-model. One can use the model to investigate what percentage of the inhabitants has to be vacci-
nated with a specific vaccination. This can be useful when vaccinations have a different efficacy rate.

Recommendations

The behaviour of the inhabitants is changing a lot throughout the entire pandemic, this indicates that the
p-value in the SVEIRD-model is not representative for the different lock downs the countries have been
through. This means that it might be valuable to recalculate these frequently and not take the mean of
them, as we have done in this research.

When simulating the queue, the values of the most parameters were educated guesses because their
values were not available. When these models would be used in real life, one has to investigate the values of
these parameters to get a realistic model. For example, when the queue is created, we took guesses for the
values for θE and θI , while these values are very important for the estimation of the queue. Also, when the
queue is amplified it is important that the parameters are realistic. In Chapter 8 we set the amplification
factor at 3 or 4 to show a clear difference for the situations, but it could be that in reality these factors have a
much lower or higher value. What is also important for the simulation of the queue, that authorities decide
what percentage of the individuals they want to have contact traced, since it might not be realistic to have
a full coverage as goal. This decision can then be implemented in the queue simulation, this way we can
still have a proper investigation done, while not everyone who has been in contact with infected individuals
has to be contact traced. This can be very helpful, especially in times of an infection peak and there are not
contact tracers available.

All models in this report are used to make a forecast of the virus for thirty or sometimes fifty days. We
decided to do that in this report to emphasise our findings. In reality, we know that COVID-19 is very unpre-
dictable and can most of the time not be estimated so far in the future. We would recommend to forecast
only 15 days in advance, especially in unstable times.
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A
SIR-models for Denmark

(a) SIR-model period 0 (b) SIR-model period 1

(c) SIR-model period 2 (d) SIR-model period 3

(e) SIR-model period 4 (f) SIR-model period 5

Figure A.1: SIR-models created using the data in the period mentioned in the sub caption.
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B
SEIR- and SEIRD-models for Denmark

SEIR- and SEIRD-models for Denmark post period 2.

(a) SEIR-model of Denmark in period 2 (b) SEIR-model zoom in

(c) SEIRD-model of Denmark in period 2 (d) SEIRD-model zoom in

Figure B.1: SEIR- and SEIRD-models for Denmark in period 2, next to them their corresponding figures for E , I and D separately for a
more detailed representation
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C
Infected individuals

Number of people infected by COVID-19 in Austria, Germany, Italy and Poland. The periods chosen to use
data from for the forecast using the SEIRD-model are highlighted and labelled with A, B and C.

Figure C.1: Infections in Austria

Figure C.2: Infections in Germany

55



56 C. Infected individuals

Figure C.3: Infections in Italy

Figure C.4: Infections in Poland



D
Fully vaccinated individuals per country

Figure D.1: Fully vaccinated individuals in Austria

Figure D.2: Fully vaccinated individuals in Germany
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Figure D.3: Fully vaccinated individuals in Italy

Figure D.4: Fully vaccinated individuals in Poland
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