TR diss
2588 §

STELLINGEN



behorende bij het proefschrift :

'Lumped pulses and discrete displacements’ !
van A.W.M. Kok

1. De introductie van continue snelheden en versnellingen in de Single
Step algorithmen voor de numerieke integratie van structural dynamics
problemen bemoeilijkt de fysische interpretatie van het numerieke
model.

2. De gebruikelijke formulering van de stelling van Hamilton waarbij
alleen naar potentiele en kinetische energie wordt gekeken is, fysisch
gesproken, onvolledig; alleen als ook de begin- en eindcondities in de
variatie-eis worden betrokken komt men tot een volledige beschrijving
van het fysische probleem.

3. Numerieke instabiliteit is een divergerende respons die kan ontstaan als
de numerieke integratiestap benaderingsgewijs samenvalt met de halve
of de hele periode van een eigen-trilling.

4. De modellering van een dragende bodem door middel van een lineair-
elastische bedding van Winkler-veren is een onnodige vereenvoudiging
van de werkelijkheid; de bijdrage van gekoppelde veren is doorgaans
verre van verwaarloosbaar terwijl het rekenproces er nauwelijks door
wordt bemoeilijkt.

5. De onderstelling dat de Falling Weight Deflectometer test kan worden
geinterpreteerd door een statische analyse is in hoge mate onjuist voor
wegconstructies met een stijve toplaag en een slappe bodem.

6. Hoogfrequente locale trillingen kunnen numeriek worden voorkomen
door constructiedelen met grote locale stijfheid hetzij als star lichaam
hetzij door middel van static condensation te modelleren.

7. Het vinden van een shear en membrane locking free zesknoops
schaalelement kan worden bereikt door het toevoegen van invariante
orthogonale 'bubble' functies aan het verplaatsingsveld ten behoeve van
afschuifspanningen en membraanspanningen.




10.

11.

12.

13.

14.

De belangrijkste bijdrage van H.-W. Loof aan het semi-Loof element is
niet zozeer de introductie van de zogenaamde Loof-punten alswel de
formulering van een consistente Kirchhoff schalentheorie die bruikbaar
is voor de ontwikkeling van Kirchhoff schaalelementen.

H.W. Loof, "The Economical Computation of Stiffness Matrices of
Large Structural Elements', Proc. Int. Symp. on the Use
of Electronic Digital Computers in Structural Engineering.
Newcastle, UK, 1966

B.M.Irons, "The Semiloof Shell Element' in Finite Elements for thin
Shells and Curved Members, John Wiley, London, 1976

M.A. Chrisfield, Finite Elements and Solution Procedures for Structural
A nalysis, Pineridge Press, Swansea, UK,1986

Modelleren is een kunde die vroeger door langdurige ervaring werd
opgebouwd, doch die tegenwoordig veel sneller kan worden ontwikkeld
met geschikte computersimulaties.

Te weinig wetenschappers weten waar hun weten eindigt en hun
geloven begint.

Vakliteratuur op het gebied van de numerieke mechanica is door
toenemende specialisatie en excessieve kosten steeds moeilijker
bereikbaar geworden.

De meest effectieve vorm van ontwikkelingshulp is het uitzenden van
leraren en middelen ter opbouw van het lager en middelbaar beroeps-
onderwijs in de hulpontvangende landen.

In Den Haag is de politiek er niet geloofwaardiger op geworden sinds
men financieel wanbeheer in de gemeentepolitiek beloont met een zetel
in de Tweede Kamer.

Als nieuwe generaties van bejaarden een beroep willen doen op de
solidariteit van de werkende jongere generaties, is het goed te bedenken
dat veel van de genoten welvaart werd verkregen door de kosten
daarvan te verschuiven naar de toekomst.
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1. INTRODUCTION
11  Aims and goals

The fast development of computers has had an overwhelming impact on the computation
methods that serve structural engineers. Since the sixties the main development of
numerical methods for structural analysis is found in the finite element method. First
the developments were related to static and linear elastic problems, later, since the
seventies, dynamics and nonlinear mechanics are more and more considered.

A development usually continues along a once taken track. For dynamics this track has
been almost purely mathematical. In my opinion the relation between the physical and
the numerical meaning of the used models was released too soon in the past. The result
was a series of numerical tools that are hardly accessible for engineers.

The underlying investigation of the models for dynamic analysis goes back to the base
of the finite element method. By a consequent and continuous comparison of physical
and numerical models a much further reaching application and interpretation of these
models will be possible. These aspects are the essentials of this research.

1.2 Summary of methods

In structural analysis dynamics may be considered from different points of view.

A suitable starting point is to first consider the loads, the basis of which we select the
appropriate analysis method to solve the dynamic response.

Our first step is to subdivide loads into stochastic and deterministic loads. Deterministic
loads are completely known and can be taken into account very accurately. Stochastic
loads are based upon, sometimes very time-consuming, observations, which result into
a probabilistic description of the load. Many loads such as dead weight, water pressure,
mechanical vibrations etc. are almost deterministic. Other loads are evidently
probabilistic, such as wave loads, traffic loads, wind loads etc. These loads require a
stochastic approach. For our purposes we limit ourselves to deterministic loads.

The next step is to consider the nature of the loads.

We subdivide dynamic loads into transient loads and steady state loads. A steady state
load is a periodically repeating load pattern, which causes a periodically repeating
response of the structure. Usually an analysis will be based upon a Fourier series
development to time of loading and response. Consideration of one single term of the
Fourier series is called a harmonic analysis, the general case is called a steady state
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analysis. A load that is not developed into a Fourier series is called a transient load; the
corresponding analysis is called a transient analysis. By its nature a transient analysis
always includes an initial value problem. A steady state analysis neglects the initial
value problem because the contribution of the initial values always disappears, after
some time, because of the structural damping.

The most well known methods for the computation of dynamic response are:

- The method of the characteristics. The most important advantage of the method of the
characteristics is the capability to simulate discontinuities such as shock waves. The
essential limitation is that only one-dimensional problems can be analyzed. Moreover,
real shock waves are extremely rare.

- The direct integration methods. The direct integration methods immediately solve the
response of a structure after a new time step. In some way the differential equations
are discretized to geometry and time. The equations are solved step by step.

- Modal analysis. Modal analysis develops the response into a series of vibration
modes. The essential limitation of modal analysis is its applicability for linear
problems only.

- Laplace transformation etc. Sometimes it is possible to transform a problem into a
shape that can easier be solved with analytical methods. In practice these
transformation methods cannot be used for a general approach.

In the past decades the most used methods for structural analysis appear to be:

- The modal analysis for the solution of steady state and transient loadings on linear
systems.

- Direct integration methods for the solution of nonlinear problems.

Because of the increasing demand for reliable computational models for nonlinear

dynamics the direct integration methods will be investigated here.

Direct integration methods are usually subdivided into explicit and implicit methods.
With an explicit method the d.o.f.s (degrees of freedom) at the next time point are
uncoupled, which means that the integration process can be carried out very simply.
Implicit methods formulate coupled d.o.f.s. at the next time point, which implies the
solution of a coupled system of equations with every time step. Well known explicit
methods are the central difference method and the Runge Kutta methods [24], [25], [13].
The main disadvantage of the explicit methods is the conditional stability; time steps
have to be small.

Numerical stability is also a problem for implicit methods. However, many integration
processes, have succeeded to overcome this problem.

A problem with many of the (implicit) direct integration methods concerns the damping.
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An integration process that reaches far into the time domain should damp most of the

initial disturbances; this physical requirement has to be simulated by a numerical

process. Unfortunately many numerical processes neglect physical damping with

increasing values for the integration steps. With large integration steps no damping is

simulated. Another problem concerns the convergency of iteration processes with

nonlinear systems. The introduction of sharp changes of the properties can be

catastrophal for the numerical simulation process.

Direct integration models are be checked on the following criteria:

A. Consistency. The numerical model has to correspond with the physical model.

B. Numerical stability. The process should not derail with large time steps or sudden
and sharp changes of the properties.

C. Robustness. Initial disturbances have to damp even with large time steps.

D. Accuracy. Accuracy is the rate of convergence to the exact solution.

1.3 Outline of the thesis

Chapter 2 summarizes the most widely used direct integration methods. Some attention
will be paid to numerical stability and artificial and physical damping. Based on this
inventory we note several shortcomings of the existing models and the presentation of
these models.

In chapter 3 the equations of motion and the boundary conditions are formulated.
Galerkin's variational condition is applied to the equations of motion and the boundary
conditions at a domain finite with respect to time and geometry. Models with low and
higher order accuracy with respect to time are developed. The resulting equations, which
relate lumped pulses to discrete displacements, show a perfect correspondence with the
wellknown stiffness matrix methods that relate lumped forces to discrete displacements.
Nonlinear applications are anticipated and demonstrated with the help of some SDOF
systems.

Chapter 4 pays attention to numerical stability, artificial damping and accuracy. A high
accuracy model with unlimited numerical stability is proposed. Optimal artificial
damping is related to the free model parameter. An evaluation of the investigated models
concludes this chapter.

In chapter 5 these models are applied to beams and plates on an elastic foundation. The
most important model parameters for pavement structures, subjected to a FWD load and
a moving load, are investigated. Some nonlinear properties are considered. The
investigated parameters are the mass and the damping of the subgrade, and the shear
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stiffness of the base and the subgrade. The investigation compares the results of a
dynamic analysis with the results of a static analysis of the peak load values.
Conclusions are drawn with respect to the relevance of the investigated parameters.

In chapter 6 these methods are applied, taking into account the nonlinear constitutive
equations of adobe and the nonlinear bamboo adobe interface condition, to investigate
the response of adobe houses to a medium size earthquake load. The earthquake load
is applied to a one-storey and a two-storey structure. Based on this analysis conclusions
are drawn on the safety of these houses with respect to earthquake loads.

Chapter 7 summarizes the most important results, the limitations and the
recommendations for further research.
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2. INVENTORY OF DIRECT INTEGRATION METHODS
2.1 Central differences

One of the most commonly used discretisation methods is the method of the central
differences.

Introducing

K stiffness matrix

C damping matrix

M mass matrix

discrete displacements at t = n At
discrete velocities at 1 = n At

a, discrete accelerations at t = n At
f, load vector at t = n At

the equations of motion are given by
Ku, +Cv, +Ma, =f, 2.1
and discretized following
=1x -
Vp = b t(un+1 un—l)

2.2)

1
a, = ) (@, —2u, i, )
At

The truncation error is O[A#], thus convergency is guaranteed.

Numerical stability is the limiting factor of this method. Numerical instability is the
phenomenon of the exponential growth of some contributions to the numerical solution.
The numerical stability is investigated by the development of an error e(7) into a series
of vibration modes ¢; which are defined by the eigenvalue problem

2
Ko, = oMo,

The error e(t) is given by the series development

e =Y ()9 (2.3)
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Application of the orthogonality conditions

T =0 i#j
0; Mo, { -1 i=j
T =0 i#j
o; Ko, { 2 o 24
= (Di 1 =y
T =0 [ #J
¢i C¢j {_—_2§(Di i=j
yields the uncoupled equations of motion
2 1 1
o o, + —gimi(anﬂ—an-l) + (0420, +o,4) =0 (2.5)
At A2

To solve (2.4) we substitute

which results into the characteristic equation

(1 + LAY + @ A -2)A, + (1 - LwAr) =0 (2.6)

The process is numerically stable if the amplification factor (spectral radius) A,f .. < 1.
From (2.6) we obtain

1.2 1.2 22
L - 7% A e \ (1 _Emimz)z -a _CimiAtz) 2.7

: 1+ Lo,

The relation between the amplification factor IA,] and the radians per time step, @, At,
is shown in figure 2.1.

amplification |A |

2.00
real
1.00, _ Sowelex
N . ﬂ\ w At
0.6 1.2 1.8 2.4

Figure 2.1 - Central differences
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It appears that undamped systems ({; = 0) are numerically stable if ®,Az < 2 for every
;. For each o; in this interval Ilil will be exactly 1. With lumped mass matrix M, and
diagonal damping matrix C, the procedure of (2.2) shows a very simple explicit com-
putation scheme.

The central difference method is quite often used in nonlinear analyses, in which a short
response time suffices. For a short time the disadvantage of many small time steps is
balanced by the simplicity of an explicit method.

2.2 Houbolt's method

Houbolt [2] proposed a backward difference scheme of Of A#] accuracy.
The following finite difference formulae

@, = u, - Su,y +du,, -u,s)

Ar?

n
2.8)
1
v, =.6.A_t(11un -18u,; +9%u, 4 -2un_3)

are substituted into the equations of motion
Ku,+Cv,+Ma,=f,

Consistency and convergency are guaranteed. The process is unconditionally, numerically
stable. For large values of ,Ar the spectral radius converges to zero.

Even if no physical damping is modelled the procedure shows considerable numerical
or artificial damping for large values of ®;Az. This is what we want. A disadvantage
is that Houbolt's method requires special start procedures; the first two time steps can
not be elaborated following (2.8).

Amplification [A,|

1.25 2.50 3.75 5.00

Figure 2.2 - Houbolt's method
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2.3 Newmark's method

Perhaps the most widely used method is Newmark's method [1]. Starting points for this
method are the displacements u,,, velocities v, and accelerations a, attime ¢t = n Ar. Using
the free parameters [ and v, the displacements u, ., ; and the velocities v, , ; are estimated

by

14,2
u,, =u, +Atv, +§At (1 -2)a, +2Ba, 4} 2.9)

Vo =V, *A{(1Y)a, +ya,,}
These assumptions are substituted into the equations of motion at ¢ = (n+1) At

Kun+1 +C Yner Man+1 =f;l+1

from which the accelerations a, ; are solved. Backsubstitution into (2.9) solves u, ;
and velocities v, ;.

Amplification |A,|

artificial
1.00 “;_‘:_:_::._::—:—: v=0.50
¥=0.70
physical
. ; Ly . m‘At
R B T I T T T T I T L T I T T T T |
5. 10. 15. 20.

Figure 2.3 - Newmark's method

Another elaboration yields the threepoint finite difference formula

{M +yArC B A 2Ku,,y +

+{2M +(1 27)ArC +(% 2B +y)At2K)u, + (2.10)

+{M +(y -1)AtC + (% +B )AL 2K, 4 =A%f,

Investigation of the spectral radius with the method applied in section 2.1, shows that
unconditional numerical stability is guaranteed if 28 >y 2 1/2. Artificial damping occurs
if y> 1/2. Taking the value = 1/4 and y = 1/2 gives us the classical trapezoidal rule.
The value § = 1/12 and v = 1/2 gives us the so-calied Fox Goodwin rule (the royal road),
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a model with OfA#’] accuracy for undamped systems.

For large values of wA¢, both the Newmark method and the other direct integration methods
neglect physical damping. Artificial damping -see section 4.5- has to be introduced to
provide the models with the,also numerical, required damping properties. As mentioned
above, the use of y> 1/2 introduces the necessary damping to the Newmark models.

Damping ratio {,

physical

Figure 2.4 - Newmark's method

2.4 Fourpoint models

The Newmark model may be considered as a generalisation of the threepoint models.
Zienkiewicz proposes a generalisation of the fourpoint models [37] of which the Wilson
0 and the Hughes a-method are the most well known.

The collocation models, among which the Wilson 6 method, consider the equations of
motion at a time 7.

T=t+0A
with a free parameter 6
Ku +Cv.+Ma, =f, 2.11)

In the collocation model we substitute

u,

L U, tOAV, +% 0 A% {(1 -2PB) a, +2B a;}

Ve =v, +0A {(1-Y)a, +ya.} (2.12)

a, =(1-8)a, +6a,
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Amplification A,

1
—————————— =0.20
g=1.16
0. p=0.1667
0=1.42
et —t—— w, At
1s5. 20.

Figure 2.5 - Collocation models

By substitution of § = 1/6 we obtain the Wilson € method [3], by substitution of 6 = 1
we obtain Newmark's method. Unconditional numerical stability is possible with a suitable
choice of B and 0, artificial damping occurs with y > 1/2.
The o-method [4] of Hughes/Hilber/Taylor formulates the equations of motion at
T=t, + 0At by

(1-©)Ku, +6Ku,, +(1-6)Cv, +6Cv,, +Ma,, =f; (2.13)

where u, _; and v, are taken following Newmark's assumptions

Uy 4

=u, +Atv, +é Ar? {1 2B) a, +2B a,,}
Y,y =V, *At {(1 -Y)a, +Ya, ,,1}
To maintain the accuracy O [At2 ] we take y=1/2.

Both the o-method and the

Dampi ti .
arping ratio {, collocation methods can be
Collocation rewritten as fourpoint finite

difference formulae.

. 050/
Newmar k For small values of At the

artificial damping of the low

025! Hughes/Hilber frequencies is very low

compared with the high

frequencies, see fig. 2.6.
W, At

.75 1.50

Figure 2.6 - Artificial damping
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2.5 Evaluation

Reconsidering our starting point we notice that many applications of the direct integration
methods should be of a nonlinear nature. It is remarkable that the scarce literature available
on this subject seldom shows parallels with the abundant literature available on nonlinear
statics. Usually the nonlinear dynamic models are more problem oriented and thus, not
very generally applicable.

A quite often discussed criterion in literature is the 'selfstarting' capability. On the base
of initial values the direct integration process generates the new initial values for the next
integration step. Commonly used are the displacements, velocities and accelerations at
each time point between two adjacent time intervals. This choice, however, assumes
continuity of velocities and accelerations. From a physical point of view there is no need
for these assumptions, since a pulse load destroys the continuity of the velocities and
a step load destroys the continuity of the accelerations. A priori conditions to these quantities
do not contribute to a general applicability of the methods.

In general there is a consensus on the use of Linear Multistep Methods (LMS models).
These models compute only one series of new displacements at a new time point per
integration step. Higher-order models, which include more than one new time point per
integration step, are not considered. The characteristic problem is the need for unconditional
numerical stability with large time steps while especially the higher frequency modes
should damp very fast. These properties can not be realized by physical damping; the
solution is found in artificial damping.

Another confusing factor lies in the usual approach to first discretize the structure to
geometry with the finite element method and to subsequently discretize the problem to
time with of one of these integration models. In this way discretisation is carried out in
two steps. From many points of view it is preferable to perform both discretizations in
one single step.

It can be concluded that there is a need for a generally applicable consistent model, which
allows for discontinuities in velocities and accelerations, which does not block the search
for higher-order models, and in which the discretizations to geometry and time are done
in one single step. This new model is presented and discussed in the chapters 3 and 4.
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3. CONSISTENT FINITE ELEMENT MODELS

3.1 Strong form

The mathematical description of the physical behaviour of a structure is always obtained
by imposing conditions on the basic physical components. In structural mechanics the
components of the physical behaviour are usually the forces and the deformations.
Equilibrium conditions describe the force relations, kinematic conditions describe the
deformations and constitutive conditions give the relations between forces and
deformations. Similar components and relations are applicable to all kinds of mechanics
problems, e.g. the physical components of the heat problem are heat flow and
temperature, the components of electricity are currents and potentials, etc. The relations
between these components are usually given by the differential equations and the
boundary conditions.

A typical aspect of the finite element method (f.e.m.) is that we consider the mechanical
properties within a finite domain. For a consequent approach it is necessary that we
scrutinously formulate the differential equations and the boundary conditions per
domain. When we want to introduce time dependent problems, we have to describe the
dynamics properties within a finite domain with respect to geometry and with respect
to time. The introduction of time dependency in structural mechanics requires some
generalizations.

To begin with, a finite element consideration assumes a domain limited by a geometry
V¢ and a time interval As*. Within this domain we have to formulate the conditions.
Secondly the mechanical quantities have to be generalized. The generalization with
respect to time introduces pulses in addition to the forces and adds velocities to the
kinematic conditions. Instead of the equilibrium conditions for forces we require a pulse
balance formulated by the equations of motion. In the static case these equations will
degenerate into the equilibrium conditions. The constitutive equations have to include
relations between the pulses and the velocities, whereas the stress/strain relations can be
time dependent.

Finally, the boundary conditions have to include conditions with respect to the impulse
balance at the beginning and at the end of a time interval.

Based on the physical law of conservation of momentum the equations of motion are
formulated
Lo+g=p (3.1)
in which
L - differential operator, describing the equilibrium conditions
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O - stress vector
P - body pulse vector
g - body load factor
The dot means differentiation with respect to time.

Condition (3.1) has to be met

| D,

):j:, o within the geometrical domain
% (the 'element’) V¢ and the time
gtresses body loads and domain As.

body pulses

Figure 3.1 - Stresses, loads and pulses

Kinematic conditions, related to strains and velocities, are given by

e _7* €
e" =Lu, (32)
€ Ve, At°®

in which
L" - differential operator, here the selfadjoint of L
e - strain vector
v - velocities
u, - displacements

The underlying meaning of (3.2) is that strains and velocities exist everywhere.
The constitutive conditions relate the stresses and the pulses to the strains and the
velocities. We require

o =D’
€ V&, A® (33
pe =Reve
in which

Df - rigidity matrix

R° - density matrix
For isotropic linear elastic materials we use Young's modulus E and Poisson's ratio v to
define rigidity matrix D. In a nonlinear analysis we can replace (3.3) by more complex
constitutive conditions. In these paragraphs we limit ourselves to the linear case.
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If desired we can also associate ¢ 1o the strain velocities by
o° =D{e° +D, ¢ (3.3a)

which is a way to introduce damping properties.

The density matrix R is given by the density p; usually the relation between pulses and
velocities is linear.

The boundary conditions have to be formulated per element, limited by geometry and
time. We will confine ourselves to time independent geometrical boundaries and
geometrically independent time boundaries.

geometry

|
l .
| geometrical
[ boundary

|

time boundary

Figure 3.2 - Element with respect to geometry and time

At the geometrical boundaries equilibrium is required following the condition that

of =t e A° A€ (3.4a)

n n
which implies that the resulting boundary stresses of, are equal to the applied boundary
loads (tractions) f;.
The kinematic conditions at the geometrical boundaries require

u: =qu € A, At® - (3359

which means that the element displacements u have to be compatible with the boundary
or sectional displacements u;,



16 Chapter 3

At the time boundaries satisfaction of the law of conservation of momentum is required,
which implies that

pf = e Ve (3.4b)
in which #® is the pulse distribution of element V* at the beginning or at the end of time

interval A/,

The kinematic conditions require compatibility of the displacements with respect to time
(no dislocations). We require

(3.5b)

u® =u' e V°®
in which #' are the displacements of element V* at the beginning or the end of time

interval Ar°.
The assembly of the elements about time and geometry results into the formulation of

the conditions for the entire structure over the entire time period.
During the assembly the law of conservation of momentum has to be satisfied, which

requires

¥+ =" e V* (3.6a)
in which ® are the resulting pulses just before, and x°* the applied pulses just after the
time boundary. The vector &' is the known applied pulse load at the time boundary.

The compatibility of displacements requires

u' = u, eve (3.7a)

in which u, are the known displacements at the beginning of the analysis.
At the geometrical boundaries we require equilibrium following

&g 3.6b
L =) e AL AL AC (3.6b)
in which #, is known at sections A and boundary A,.
The kinematic boundary conditions are given by
"Z =—;n € A, , M€ (3.7b)

in which u » are prescribed displacements at boundary A ,.

Satisfaction of the conditions (3.1) until (3.7) leads to the exact solution of the dynamics
problem.
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3.2 The Galerkin weak form

Very few dynamics problems are sclved exactly. Especially the solution of 2D and 3D
problems requires approximation methods to obtain results. A most successful method
is the Galerkin-Bubnov variational method. Applying Galerkin's method to the dynamics
problem as formulated in (3.1) until (3.5) per element the following is required

e _ _e T & -5¢ e
R _f jauc (L& -p +g®)dVdt

VAt 38

T T ! =t
+ § [8al ¢ -a)dadr+ [8a] (- p9av IH(‘) =0
ACAr?e ve

which should hold for every kinematically admissible variation 8u ¢ of the continuous
displacement field & °(x,y,z,1).

We will elaborate this condition. As a consequence of Green's lemma we can rewrite
(3.8) as

T T eT
R =_[ I(—Gie 3°+87° p+3al g°)dvar

V €At ¢ (3.9)
T T 1=t
+ ¢ [ 8@y tdaa-[8a; nav | =0
ACAe Ve

Dropping the time boundary term we easily recognize Hamilton's variational principle.

Based upon (3.9) we can develop our finite element models. The basic choice is to take
the approximations of the displacements that satisfy the kinematic conditions. The
simplest way is to define a time interval As® ,with initial displacements uf, and final
displacements #; ,and to approximate the displacements in between in a linear way
following

ue(r) = ag(H)ug + o (Ouy (3.10)
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with

O ® =

- -

o) == +

B~ &~

The time interval is illustrated in fig. 3.3. A conforming displacement field in the time
domain is achieved in this way.

: : t, =-1% At
| |
S - a
|
l |
t + i t =+% At

Figure 3.3 - Time interval At

Within the elements, between the geometrical boundaries, we take the classical shape
functions following

i8S (o) = Ne(uy,0) w8 (r) (3.11)

with the time dependent nodal displacements u®(z).

Substitution of (3.10) and (3.11) into variational condition (3.9) yields a condition that
is formulated with the use of the well known stiffness matrix K® and mass matrix M€
and consistent pulse vector m®. The use of constitutive equation (3.3a) introduces a
damping matrix C°.

We obtain
T T T
e _ e e e e’ e e e’ e e
R® = -Suo Hyyu, -Suy Hy u N H u,
(3.12)

T T T
e e 4 4 e+ e e~
—Sul Hj u +8u, m +Su; m; =0
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in which

e 1 e lpe 1,
=_AtK® -_C° -—M
H00 3 t > Y

e 1 1 1 e

Hy, =-6-AtKe +ECe +Zt_M
(3.13)

e _ 1 e _ 1 e 1 e

HlO —-S-AtK EC +Z;M

HY, =_;.A:K°’ +Lee - L ppe

2 At
and
T
K¢ = f B¢ D, B dv stiffness matrix
VE
T
Cé = '[Be D, B¢ dv damping matrix
V (4
T
ME¢ = fNe R N¢ qv mass matrix
VE

in which B® is the strain displacement matrix, relating the strains to the nodal
displacements.

The vector m® is called the consistent pulse vector, given by

e+ e

m T T T|+W,
o|=[ [N gtavare [ $N7 tianars [ N7 O lay G149
L] aeye Areac ve !

Since R® = 0 for every kinematically admissible variation 8¢ it should hold that

e+

Hygug + Hyug =mg

e-

e e e _
Hyguy +Hyjuy =m
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For all elements together we have to comply with
+
Hyyup +Hyyuy =my
(3.15)
Hyguy +Hyyuy =m
The equations (3.15) can be interpreted as the relation between the discrete displace-
ments u, and u; at the time points #=1, and t=1; and the equivalent pulse loads at the

same time points. In these equations the initial displacements u, and pulses mj, are
known whereas the displacements u; and pulses m are not known.

From (3.15) we can solve the equations in more than one way. The first way is to solve
u; from (3.15) following

- +
ul =H01 (mo _HOO uo)

and subsequently

m; =Hyguy +Hyu (3.16)

Together with the applied pulse load ) at ¢ = ¢; this consistent vector yields the initial
pulses m} for the next time interval

+ - _ 1
my +m; =m

Another way is to apply condition (3.6a) at the assembly of R® over two successive time
intervals. Assuming the next time interval given by [7;, #,] and displacements u; and u,,
we obtain the conditions

.
Hoollo +H01 uy =m0
- ,
Hyguy +(Hyy +Hyuy +Hyjuy =my +my =my 3.17)
Hygu; +Hyyuy =m,
Example

We will demonstrate this f.e.m. model by a single degree of freedom (SDOF) system,
subjected to a pulse load P = 1.
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The equations of motions are given by

p
uﬁ Ku+Mu-=0
M
with K = 1, M =1
K period T = 6.28
/

Figure 3.4 - SDOF system with pulse load

The chosen time step is Ar = 0.5. Pulses and displacements are computed following
(3.15). The results are shown in table 3.1 and in figure 3.5.

Pulse
Time Displacemen. actual increments
.000 .000 1.000
.500 480 880 -.120
1.000 845 .549 -.331
1.500 1.007 .086 -463
2.000 927 -.398 -.484
2.500 625 -.786 -.388
3.000 173 -.985 -.200
3.500 -321 -.948 .037
4.000 -737 -.684 265
4.500 -977 -.255 429
5.000 -.982 235 490
5.500 -752 668 434
6.000 -341 941 273
6.500 152 .989 047
7.000 .608 799 -.190
7.500 919 417 -.382
8.000 1.008 -.065 -.482
8.500 856 -.531 -.466
9.000 499 -.870 -.339
9.500 021 -.1000 -.130
10.000 -461 -.890 110

Table 3.1
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displacement
1.007
AW Azo/\o. /time
.1_00* \./ \./ \/

Figure 3.5 - Response of a SDOF system under pulse load

3.3 Nonconforming models

The conforming finite element model as described in the previous section is not
applicable for reasons of accuracy and numerical stability, as will be discussed in
chapter 4. However, a modification may solve many shortcomings. The restriction to
conforming displacement fields is quite often too rigid. For convergency purposes it is
sufficient to approach the stresses and strains in such a way that, after integration about
time an accuracy [At] is maintained.

Instead of (3.10) we choose

W70 = 2 Gy +up) +N (g~ ug) (3.18)

with a free parameter n.

Figure 3.6 - Nonconforming displacements



Chapter 3 23

The choice of (3.18) guarantees an 0/A¢] accuracy for the contributions of ¢ and e.

Substitution of (3.18) into variational condition (3.9) yields the matrices Hij, with

1 1 1 1

=l +_—_y|AK-_C-_M
Hoo (4 i Y) S v
1 1 1~ 1

Hy =|- -—vy|AtK +-C + —_M
01 ( Y) 2 At

(3.19)

1 1 1 1

={— ~—7Yy|MK -—_C +—_M
Hyo (4 12 7) S Ry

H11 =(_l_ +iy)AtK +_]_C —_IM
4 12 2 At

and y= nz.
The parameter vy differs from Newmark's 7.

Substitution of (3.19) into (3.17) leads to the Newmark finite difference formula of

1 1 1
(2.10) in which Newmarks ¥ = 3 andp = 2 —En?
As mentioned in section 2.3 several well known models are found for different values

of . Chapter 4 will show how parameter ¥ can be used to control numerical stability
and accuracy.

The SDOF of figure 3.4 is used to demonstrate the effect of different values of . It
turns out that values ¥ > 2 reduce the periods wheras the amplitudes are not visibly
affected. Results with Ar = 1 are shown in figures 3.7 and 3.8.

digplacement 7

-1.00

Figure 3.7 - Linear nonconforming mocdlels

Extreme accuracy is obtained for y == 2. This model appears to be the royal road (the
Goodwin-Fox model), see section 2.3. Note the time scale in figure 3.8. The use of
At =1 still leads to very accurate results after 15 periods.
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displacement

EVAWAW AW
IVAAVAAVAY)

Figure 3.8 - The royal road, y =2

3.4 Higher-order models

The models discussed in section 3.3 are all based on a linear approximation with respect
to time. These models possess OfAt] accuracy with respect to time. In order to obtain
0[Af] accuracy we have to apply higher-order approximations with respect to time. For
this purpose we introduce per time interval Ar* a midtime discrete value per degree of
freedom (d.o.f).

u2
I R .
ol | l u
al + — — — + t=t,
| | €

P t=t, >
geometry |

At |

Figure 3.9 - Discrete values with respect to time

Dropping superscript e we describe the displacement field by

u(t) =og(Huy +o (Ouy +oy(Huy
with

co (-2t
oo =~ (1 -2-0)

t2
o) =1-4—— (3.20)
Ar?

t t
Oy () = — (1 +2 —
2(0) Az( At)



Chapter 3 25

Substitution into the variational condition (3.9) yields the matrices Hij following

2 L, 7
Hy =2 MK - Lo -1
0TS 27 3
Hy =Lak+2c+ 2 m
15 3 3At
Hy -2ak-lc-_Lwm
30 6 3A:
Ho-Lak-2c+ 2 M
5 37 3
Hy=Sak -5 M 321)
15 3A:
Hy, - Lak+2c+ 2 m
15 3 3A:
Hy=-Lnk+lc-Lou
30 5 3M
Hy -Lak-2c+ 2 m
15 3 3At
Hy=2nmK+ric-T_m
15 2 3A:

and the equivalent pulse loads ma+ .m; and my .

The resulting equations are
.
Hyuy + Hyyug + Hypuy =my
Hyguy +Hyyuy +Hypuy =my (3.22)

Hyyuy + Hy uy +Hypuy =m,
Here the initial displacements #, and the pulse vectors mg and m, are known, wheras
displacements u; and u, and pulse vector my are unknown.

Again we can follow two paths to solve these equations. One way is to assemble the
time steps and to apply the pulse condition (3.6a). The resulting equations are
formulated in #; only.
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The second way is to first solve the displacements u; and u, from (3.23) by

.
Hy uy +Hyyuy =my - Hop g

Hyuy +Hpuy =my - Hyguy

and to compute the pulse vector by backsubstitution

my, =Hyuy +Hyu; +Hyuy

(3.23)

(3.24)

With m,” and applied pulse load m2’ we have the initial pulses for the next time interval.

The results of such an analysis with Ar = 2.00 for the SDOF system of figure 3.4 are

shown in table 3.2 and figure 3.10.

Note that Az is about one third of the natural period T.

Pulse
Time Displacement actual increment
0.00 0.000 1.000
1.00 0.825
2.00 0.900 -0.400 -1.400
3.00 0.165
4.00 -0.720 -0.680 -0.280
5.00 -0.957
6.00 -0.324 0.944 1.624
7.00 0.601
8.00 0.979 -0.075 -1.019
9.00 0.477
10.00 -0.459 -0.884 -0.809
Table 3.2

displacement exact

time
10.

-1.0

Figure 3.10 - Results for quadratic conforming model
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It is possible to develop higher-order models with cubic approximations [11] or higher-
order approximations with respect to time. The higher the polynomial degree, the more
discrete values we have to solve within one time step. Assuming we approach the time
dependency with a polynomial of the degree n, we have in correspondence with (3.22)
to solve the system of equations

Hoouy +Hyyuy +-+Ho,u, =my

Hyyuy +Hyyuy +- +Hyu, =m (3.25)

HnOuO +Hn] Uy +- +Hnnun =m,

The matrices Hij are found by elaboration of the variational condition (3.9) using n-th
degree polynomials with respect to time. Because no realistic application of the higher-
order models are known we will not elaborate them. We continue with the quadratic
models.

Just like the linear model in section 3.3, the quadratic models can be modified without

loss of accuracy. To describe stresses and strains instead of (3.21) we use

2
1 2 1 t 1 t
) = SUgrSu oty +E (uy —ug) -21 (— -___2) (uy -2 uy +uy) (3.26)

The description can be interpreted as a series development to Legendre polynomials with
a free parameter m for the second Legendre polynomial.

0O Gauss points

t
|
[

I~ l

Figure 3.11 - Free contribution of the second Legendre polynomial
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Substitution of (3.26) in variational condition (3.9) yields the matrices Hij, with ¥ = n2

1.1 1 7
Hy, =At{— +—vy|K - —-C - —
00 t(9 +45Y) 2 3At
1 2 2 8
H,, =At|]- ~-Zy\K+ZC+—M
0 (9 45Y) 3 3A
11 1 1
Hyv, =At{— +—y|K-_C-—M
02 t{ TR 6 3 A7
1 2 2 8
Hi, =At|=— - —y\K -=C + M
10 (9 457) 3 3Ar
9 45 3At
H, =A;(i —_%_'y)K +_2_C + 8
2 9 35 3 3A?
H20 =At(——1- +L )K+1C—_1_M
8 45 6 3A
12 2 8
H,, =At|[= - Zy|\K-ZC+—M
21 (9 457) 3 3A!
H2 =At(l +_1_7)K +_1. —_7_M
2 9 45 2 3A?

(3.27)

The SDOF system in figure 3.4 is analyzed with quadratic models using time step
At =2 and y = 0 and y = 2. The results are shown in the figures 3.12 and 3.13.

displacement exact

Figure 3.12 - Quadratic model, y=0
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displacement
1,007

-1.00%

Figure 3.13 - Quadratic model, y=2

The results in figure 3.12 are evidently better than in the linear models of section 3.3 -
see figure 3.7 - although not as accurate as the Goodwin-Fox model in figure 3.8. On
the other hand the model with ¥ = 2 again shows an extreme accuracy, which indicates
an even higher accuracy than the Goodwin-Fox model. Again, the nature of the response
is a small increment of the periods for y> 2 and shows a decrement for vy < 2. The
amplitude appears to be unaffected.

3.5 Conservation of momentum

For elements exactly satisfying the rigid body motion it is possible to formulate the
following lemma:

The resulting pulses vanish per element and per time step .

The consequence of this lemma is very useful. It means that in a transient analysis,
based on the models of the previous sections, the pulses resulting from applied loads,
stresses and body pulses exactly satisfy the law of conservation of momentum. This
conclusion is completely parallel to the static analysis in which the resulting forces of
applied loads and stresses exactly satisfy the equilibrium conditions . This property
gives us a criterion to check numerical loss of accuracy (e.g. caused by ill conditioning).

The proof of this criterion is as follows: For every variation 84 we have satisfied the
variational condition

T T T T ,_
R® =—j f{aee 5-0v° ﬁ")a'vmaag mi'8a. m’ =0
14

n
eAte



30 Chapter 3

When we subsequently consider the virtual rigid body motions and the virtual
dislocation 84° with the virtual strains 8&° =0 and the velocities 37° =0 then R®
satisfies for every rigid body motion 8&°
T -
R¢ =8a°¢ (m(’; +,;,n) =0 (3.28)
Here ffl(; + r?z; are the resulting pulses at # = #, and ¢ = ;.

Hence the resulting pulses vanish.

3.6  Nonlinear dynamics

The most relevant applications of a direct integration method are found in nonlinear
dynamics. The Galerkin variational method, as outlined before, can be applied to nonlin-
ear problems as well. The use of the linear constitutive models of (3.3) and the linear
kinematic conditions of (3.2) mever essentially limits the elaboration of variational
condition (3.9). We can formulate and apply nonlinear kinematic conditions by the finite
increments

Ae = Ae(u,Au) (3.29)

Av = Av(Au)
with strain increment Ae, velocity increment Av and displacement increment Au.
Nonlinear constitutive equations are taken into account by

Ao = Ada Aeg)

Ap = Ap(Av)

Nonlinear stress/strain relations are taken into account, pulse velocity relations are
assumed to be linear. It is even possible to introduce nonlinear damping by nonlinear
constitutive equations that are dependent on the strain velocities

(3.30)

Ao =Ad(ap,Ae,Af) (3.30a)
We start an iteration process by application of the full load during time step Ar. In (3.9)
we substitute the linearized equations and obtain the conditions to calculate an estimate
of the displacements u; and, in the quadratic model, also u,.
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Using the nonlinear kinematic conditions (3.29) and the nonlinear constitutive equations
(3.30), and confining ourselves to the linear model, we recalculate the consistent initial
pulses m, and final pulses m; following

Sugmg +8u1Tm1_ = JI(SETG -8vTp) dvar (3.3D)
AtV

It is very likely that the new mj, differs from the initial pulses so that a correction is
necessary.
The residu between the applied initial pulse and the computed initial pulse following
(3.31) is applied again as initial pulse of this time interval. The increments of the
displacements are calculated, the same steps corresponding to a nonlinear static analysis
are executed.

The following iteration procedure is performed for the linear model.
For the numerical elaborations we assume

() =ugy +Ad(r)

withAu:Oatt:to

applied
initial

ul s s
pu.ses initial pulses

following (3.31)

displacements Au

Figure 3.14 - Calculation of consistent pulses in a nonlinear analysis

Now velocities, stresses and pulses are found by
6(2) =6, +AS(?)
V(1) =AV(r)
p() =Ap(r)
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Substitution in the variational conditions yields

RE = j j(-aeTAa+86TAﬁ) dVd:+”(-5&T & +0il. g) dV dt

3.32)

T T sl (
+§ [ da,t,dadr - ‘jlaucndv |2 =0

Based upon these starting points the following procedure has been developed.

1. Set up the matrix H,,
2. Decompose mattix Hy,
3. Compute an estimate of increments of the displacements

.
Auy =Hpy, Amy

with the start values Au, = 0.
4, Compute strain and velocity increments at the integration points

Ae = Ae(u,Au)
Av = Av(Au)
5. Compute stress and pulse increments
Ao = Ad ap.AeAe)
Ap = Ap(Av)

6. Compute the consistent pulse vectors mo+ en m;

SuOng + SuITml_ = II(SET G-0vTpyavadr
AtV
7. Compute the residual initial pulses. Repeat the analysis with the residual initial
pulses until sufficient accuracy has been achieved.

In general it will be sufficient to compute the results for the linear model at only one
integration point, the midtime point of interval As. For quadratic models with y = 0 it
will be sufficient to compute the results at the two Gauss points of time interval At.
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With reference to the variational condition of (3.31) we take the convergence criterion
AH = IAuom(; +Auy m; | < tolerance factor * |Href|
in which # ref is the first value of AH in the iteration procedure. This criterion is very

similar to the energy criterion for static problems.

The iteration procedure as outlined previously is not unambiguous for y # 0. The
computation of the equivalent pulse vectors in step 6 can be carried out in more than
one way. The simplest procedure is to take a linear distribution of Ao(z) with respect to
time, assuming

Ac(h) = (% -n Xtt.)Aco + (% n é)Acl (3.33)

and for the strains

1 t 1 t
Ae(®) =(—- -n—)Ae, + (= +n —)A
e(®) (2 nAt) 0 (2 M At) g
Elaboration of yields the (tangent) rnatrices Hij following (y = nz ):

1.1 1.1 11 1
=(—+—v)A (= +—v)C (= — --_M
Hyo = (34337 Ko GG 127)C1 Ar
1
At

1 1 1.1 1 1
=(o - — - M
Hy,; (4 > Y)AtK, +(4 +12 1) Cy +(4 5 Y€y +

1 1 1 1 1,1 1
Hiy = (= —Y)AtKy (= —Y)Cy (= +—7v)( - M
10 (4 12 YA: 0 (4 127) 0 (4+12 ) 1+At

1 1_1 1,1 1

1

4 A

in which K|, and C), the tangent stiffness and damping matrices at ¢ = 7, and K, and C,
are the tangent and stiffness damping matrices at ¢ = ¢;. It should be noted that even for
undamped structures matrix H is no longer symmetric because K; # K),.

Instead of (3.33) we can assume that o(z) follows the strains following
Ao(t) = D(t) Ae(t) (3.35)
in which
=Lt L L
D@ -(5 n At)DO +(2 M Alr)Dl

Now the stresses Ac(z) follow a quadratic distribution with respect to time.
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Substitution into a variational condition of the undamped system yields the matrices Hij

1,1 2 At 2 1
Hy, =At(— +—N)WKy +K) - —=n“ (K| -Kyp) ~—M
00 (8+2411 WK, +K1) 12" (K1 -Kp) A

1 1.2 1
=At(— —— K,+K,) + — M
Hy, t(8 2471 WKy +K;) A
1,12 Ar 2 1
H,, =AH(= +— K, +K,) + — K, -Ky) ~—M
11 (8 2411 XK, +K;) 121] (K ~Kp) Iy

This time matrix H is symmetric for undamped structures.

The iteration procedure also has to be considered for the quadratic models. In fact only
one quadratic model is interesting, namely the value ¥ = 0; since all other models are
only conditionally numerically stable and therefore not feasible. For this model we
again consider the options of (3.33) and (3.35).

The first option assumes, with Y = 0

Ae =< Ay +3Aey +=Aey +73t7 (Ae, -Agy)
(3.36)
Ac = %AGO +-§- Aoy +%Ao2 +_A'-t (Ao, ~Acy)
in which
Aoy =Dy Ae,
Aoy =D;Ae
Aoy =D, Ae,

Substitution into the variational condition (3.31) yields to H the contribution H,

[
1 1 1
—K —-K -—K
g 0 g7l 18 2
1 4 1

Hk = At EKO -§K1 —9—K2

1 1 1
-—K —-K —K
180 9l 92

It turns out that matrix H, is no longer symmetric.
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In correspondence with (3.35) the second option assumes

Ao(t) =

in which

D(1) Ae(t)

2
t 2,1 _t
D@ =Dy +—=Dy - (35 ) Pm

1 2 1
D, =_D, +52D, +_D
1 “elo 3Pt

Dy, =D, -D,

|
| contribution
|

Hk = At

in which

Dy =Dy -2D) +D,

Taking n2 = 0 and substitution into the variational condition (3.31) yields the following

of the stiffness matrices to H
1 1 1 1 1
~K,-— - — -—K
9 1 3¢ 9T g 18 1
1 1 4 1 1
—K,-—K —K —K,+—K
il BT 5 %1 i ATy
1 1, .1 1 1
-—K —K,+—_K _K,+—K
18! o 1T g 9T T3g Tl

1 2 1
K;,=-K; +-K; +=K
A U T T

K, =K, - K

Now the matrix H; is symmetric.

Option 1

Option 2

option 1 has

Summarizing the two options:

Stresses Ac follow the same interpolation rules as Ae. Matrix H, is not

symmetric.

Strains Ae and rigidity D follow the same interpolation rules. Stresses AG

are always obtained via the constitutive equations.
Matrix H; is symmetric.

Based on physical considerations matrix H, has to be symmetric, which implies that

to be rejected.
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Utilization in the TILLY program

The linear model has been implemented in the TILLY program of the Structural
Mechanics Group of the Faculty of Civil Engineering. This program is a general-
purpose package for nonlinear dynamic structural problems [52] based on the Discrete
Element Method (DEM) .

3.7 Nonlinear SDOF systems

Exampie 1

The procedure as outlined in section 3.6 is applied to the structure in figure 3.15.

F(t)

Tu(r)

Figure 3.15 - Geometrical nonlinear system

The structure is modelled to a SDOF system with nonlinear spring properties.
The axial stiffness of the two bars is EA, the axial strain & and the normal force N.
Assuming initial displacement u, and small strains we use the nonlinear kinematic
relation
uou +% U 2
g =
L 2

and the linear constitutive equation

N=FAe

The resulting force F is now given by

F = Ef;_(zuozu +3ugu? +u3) (3.40)
L
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'—-~~~
7 ~
4 ~‘—/
/ U, Y
f

Figure 3.16 - Force/displacements diagram

For small strain increments we obtain

AF = K, Au
with

K, = ZA Qul +6ugu +3u?) (341)

3
L

The example of figure 3.15 is elaborated with the iteration procedure of (3.33) and
(3.35) and the values EA = 100, M = 1, 4, = 0.50, L = 5.00, Ar = 0.5 and subjected to

a pulse load P = -0.50. For model parameter ¥ = O the results are shown in fig. 3.17.

displacement

1.0¢ linear

time
40.

nonlinear

Figure 3.17 - A nonlinear SDOF system

For reasons of comparison also the linear solution, based on small displacements of u,
is shown.
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xample 2

The second example concerns an SDOF system with physically nonlinear properties. The
spring is assumed to follow an ideal plastic force displacement relation

N
tP No - — K = 20 000
u ° c = 120
i M= 2
M
u N =8
K c , P = 0.16
> Ll
-No

Figure 3.18 -A physically nonlinear SDOF system

The system is subjected to a pulse load P = 0.16. The iteration procedure has to be
started at the time interval where the plastic zone is entered. Taking Atr = 0.00025 this
will be the third time step, which is the only time step in which such a situation arises,
see figure 3.19.

displacement
.0010
undamped system
.0005
damped system
time
0.05 0.10

Figure 3.19 - Plastic nonlinear SDOF system

During the analysis a second source of numerical instability became evident. Even for
v <€ 0 small values of the integration time step Ar have to be used in order to ensure
numerical stability. It turns out that the iteration procedure can provoke numerical
instability. Usually the iteration procedure derails with strong variations of the stiffness
during one time step [11]. In those cases a (automatic) reduction of the time steps has
to be considered.



Chapter 3 3%

The procedure followed here assumes a constant stiffness that is determined by the
quotient of the total force increment and the displacement increment over the time step
At, see figure 3.20 .

Figure 3.20 - Constant spring stiffness during a time step

Example 3

Another SDOF system is subjected to a cyclic load F(t) = 30 sin 20 7tt. Here we use the
material constants K =20 000, C =0, M = 2, Ny = 30.
The nonlinear response for the spring is shown in figure 3.21.

N
100.+

30.
” HH“ HH“ ’!“ “ time
-30.

Figure 3.21 - Response to a cyclic load of a nonlinear SDOF system

For both loads the accuracy of both the linear and the quadratic model is very high;
differences are not very well recognizable in the pictures and no attempt has been made
to show them.

The quadratic model appeared to be very sensible to the choice of time step Az; too large
values cause divergency of the ireration processes. More sophisticated iteration
procedures will certainly improve the results. Given the accuracy of the results, this
example does not invite to search for more improvements.
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4, NUMERICAL STABILITY, ROBUSTNESS AND ACCURACY
4.1 Introduction

As was pointed out in chapter 1 and 2, numerical stability, robustness and accuracy are
the main problems of a direct integration process. Numerical instability is the phenomenon
of a derailment of the integration process by exponential growth of initially small errors.
Inaccuracy results from round off errors, truncation errors are errors caused by discretization
to time and geometry. Convergency to the exact solution is a problem of accuracy,
derailment is a question of numerical stability.

The figures 4.1 and 4.2 show some manifestations of numerical instability of the SDOF
system.

displacement

time

Figure 4.1 - Unstable linear model

2.00 displacement

time

Figure 4.2 - Unstable quadratic model

The usual approach is to develop an error Au; = e, for ¢ = i At into a series of vibration
modes ¢, following

e=Zok¢, (4.1)
k

with participation factors eX.
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We consider the development of e as a result of an initial displacement error Au,, and
an initial pulse load error Am,',+ . No other loads are applied.
Substitution of (4.1) into the equations (3.25) and application of the orthogonality relations

=0 k#m
T
¢ Ko, =(0: k=m
=0 k#m (4.2)
T
C
=0 k#m
T
¢k " =1 k=m

yields, for each vibration mode, the equations of motion

+
=, i=0
0 43)
hijaj =0 i=1,2,..n-1
=p.; i=n
with
T
by =& my k=1,2,.n-
- T -
"ln =¢kmn
and in which

i =0,1 ,
j=0.1 } linear model
} quadratic model

For each mode ¢, we investigate the development of participation factor onik.
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42  Direct approach for stability search

The direct approach is to solve o from the assembly of (4.3) over two time steps, given
by

+
hOO O +hg1 O +.thg, O, = 1o

k10O *hyy O+, &y =0

- 4.4
hnO ) +hn) 0y +'"+(hnn +hOO) o, + hOl Oy +"‘+h0na2n =0 @4
hig Oy thig O+, 0, =0
B0, +hy, €y 4 MRy, Yoo O, e

The general equation is
Ape; ) +A & +Aja;, =0 4.5)

with e for three successive time steps and

[0 .y
Ay =

0.0

hnp Png o (hyy +hoo)
4 - 0 0 hy

| 0 - hn-10

hot  hop - hop
4 - hy ki - Ay,

| Pnat - My

For the solution of (4.5) we substitute
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with which (4.5) can be written as

)\:i-l (AO + Ml + lez) &) = 0

Nontrivial solutions are found if

det(4y +*AA; +A%4y) =0 4.6)

The solution of (4.6) yields the eigenvalues A. If IAl_, > 1 the error & will diverge,
if [Mp,, <1 the error will be kept stable. Our problem is to fix the limits between which
numerical stability is guaranteed.

When ignoring the damping matrix C, the matrix [4; il defined by (4.3) will be symmetric.
As a consequence determinant (4.6) can be wnttcn as

det =AP(1 -2An +A%) =0

in which 11 depends on the chosen model.

4.7

The solution of (4.7) shows complex roots with IAl = 1 if I < 1. The roots are real with
My > 1if Mi> 1
Numerical stability is ensured if Inl < 1. We will elaborate this condition per model .

The linear model yields for the characteristic equation (4.7)
th +?u(h00 +h11) +7\,2h01 =0 (4'8)
with
1 1 1
hog =hyy ={— +— Ar - —
o~ (4 12 y) @ At
hor =hy =(l ‘—1—7)0)2& e
At
Solution of (4.8) shows that the eigenvalues A are complex and 1Al = 1 if

yolA? <12 4.9)

Figure 4.3 visualizes the domain of

Y= ® Az in which linear models are stable

2. for different values of . Taking y < 0

1. - these models are always numerically
stable.

.50 3.75 5.00

Figure 4.3 - Conditionally stable linear models
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The quadratic models require following (4.6)
By +A (o +ho) +A2R hyy +Ah
A2 det 20 00 *hn2 02 21 *hhoy) 0 (4.10)
hio *Ahy hiy
or, applying the symmetry of 4
2 2
(1 +A2) (hgphyy ~horhyn) +Mhyhog +hythyy ~hgp —hiz) =0 @10

with
1.1 2 7
hog == +—Y|0“Ar - ——
00 (9 45 Y) 340
12 V) 8
hoy = hyg =hiy =hyy == ~=V|O“At + —
01 = "10 =12 =M21 (9 G Y) "

1, 1.).2 1
hy =hog=(-— +—Y| O At - —
02 ~ 720 (18 457) A
16

3A

4 4 2
his =l— +——_v0“At -
1 (9 457)

Again A can be solved from (4.11), see fig. 4.4.

Figure 4.4 - Conditionally stable quadratic models

43  Turning points of numerical stability

The roots of (4.7) give us the amplification factor A of an error yj, in the equations of
motion. Divergency arises if the roots are real with A, > 1, convergency is ensured
if the roots are complex with IAl = 1 and the turning point is the point where these domains
meet. This procedure is very straight forward and useful. A closer examination of the
turning points, however, generates some interesting results and interpretations.

The turning point is the point with two identical roots with A? = 1, thus at the turning
point A = +1 or A = -1. Because of the symmetry of the mechanical properties (no damping)
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and the numerical model, the solution e(#) and also the participation factor oyt) are either
symmetric or antisymmetric.

Assume O = c'0l’ + c"o” where o' is given b
y

=0 i#n (4.122)

with  a'j=1and p3=0

and in which " is given by

=1 i=0
hijaj” =1 =0 i#z0, i#n (4.12b)
=n," i=n

with oy’ = 0 and My = L.

A=+1 A=-1
- "
%L__/ lv; [/
At t At At

Figure 4.5 - Participation gactor a(t) at the turning points

The participation factors o¢” and ¢”,which yield the turning points, have to satisfy the
symmetry conditions, see Fig. 4.5 .

oy =1 o, = 1 symmetric, A =1
oy =1 o, =-1 antisymmetric, A = -1
and (4.13)
ay” =0 a,” =0 symmetric, A = -1
oy =0 o,” =0 antisymmetric, A = 1

Application of (4.13) to the equation of motion of (4.12) results into the (eigenvalue)
problem

hijaj‘ =0 for i,j =0,1,2,..n with 0y” =1

hijaj" =0 fOr ij = 1,2,...?1_1 with PO” =1

with nontrivial solutions for wAz.
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After multiplication with Ar and substitution of T = @ Ar application of (4.14) to the linear
models of (3.19) yields .

GrENTl Gy
det =0 (4.15)
1 1 2 1 1 2
- - 1 —+—v)T" -1
(4 IZY)T * (4+IIZY)
with solution @?A# = 0 for the symmetric function and y @?Af = 12 for the antisymmetric
function.

_@ At
2.50 5.00
Figure 4.6 - Linear model: turning points

As shown in (4.9) we obtain unconditional numerical stability for y < 0.

Application of (4.14) to the quadratic models of (3.27) yields the conditions

[ 2- 7 1_2...2.8 1 2!
GEVTT GV Gt
4 4, .2 16 248 | _ (4.16a)
det (3 —AEY) (_9_+E’Y)T 3 (3 4—57) =0
1 2.1 (11,28 1 2-7
& ;5-7) 3 GrENTr (GrEnT
and
det (_ +_y)12—16 =0 (4.16b)

3

From (4.16a) we obtain the antisymmetric solutions
Y @ AP = 60 and @° AP =12 417
and the symmetric solution @? A# = 0.

From (4.16b) we obtain the symmetric solution

60

0)2At2 =
Y +5

(4.18)

The lucky coincidence that occurs here is that two domains of conditional numerical stability
vanish with the identical value of y = 0.
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For vy = 0 we obtain unconditional numerical stability.

Figure 4.7 - Quadratic model: turning points

At the interval Ar = [—% At, %At] exact solutions of the participation factors &” and o”,
defined by (4.12), have to satisfy the differential equation

@’ +6 =0 (4.19)
with the initial conditions

%:

by =
The solution of (4.19) is given by

o' () = cos(t +%At) (4.202)

and
a' () = Lsino@ +LA) (4.20b)
® 2
A solution a{(z) and ou(z) exists for every @At = nm . This exercise shows that the turning
points of (4.15) and (4.16) are approximations of the periods ® Az = n.

Numerical stability may be considered as an overshoot caused by time steps that are larger
than the (approximated) time between two nodes of a vibration mode.

44  Accuracy

The accuracy of a model is responsible for the convergency to the exact solution. Usually
the accuracy order is related to the truncation error of the approximation polynomials
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with respect to time. In this way we obtain linear models with an OfAt] accuracy and
quadratic models with an Of A?] accuracy. For our models we can use an appropriate
choice of yto optimize the accuracy. To elaborate this process we need a reference criterion;
we will use the so-called 'action’, given by the product of pulses and displacements.

Per vibration mode we investigate the resulting action
action =0l + 0, 1, 4.21)

Substitution of

7

a=ca +c’o

” "

p=cp +cy
in which o” and o” are defined in (4.12), yields

O by Oy +1 ‘cl “2)
C”

”_ /"

” .
an”n anl‘ln

.

action =[c’c”]

or
action=c"A ¢

We take det(A) as a reference value, with
det(A) = -o 4.23)

The solution of the differential equation following (4.19) gives us the reference value
oy = sinza)(t +%At)

For ¢t = 0 we apply a series development to ® Az

noo 2 12,2 4
o Y O I I S A 4.24
e TV T (4.24)
with t = ® At

Solving the linear model following (4.12) we obtain

” At

T 1+3 - L2
4 12
(4.25)
't2 1 —le-’Y 172
W =—
Ar 1 _1 2
1+(= -—
M TRT
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A series development of the action increment shows
, 1 _1 2
o =2 {1 (= ~—Y)7% +-}
" (2 12 v)

The best approximation of the exact solution (4.24) is found by taking ¥ = 2. This model,
the Goodwin-Fox model or the royal road, possesses O[AP] accuracy.

Figure 4.8 - The royal road

The quadratic model, again to be solved following (4.12), yields

1P+ P
o = A 2.1 1 2, 11
1+t (= —— T (— ——
TG Ga Y

(4.26)

U NP T
ﬁ 1 ET)(I 'EGYT)
A

B =
2,1 1 4,1 1
1+t (— -— T (—— -
(12 GOY) (144 3607)

A series development of the action increment shows
. 1.2 1 1 4
o =] =T e A ) T )
nbh 3 (24 720 ")

with a best choice of ¥ = 2. This model possesses O[A] accuracy.

digplacement

Figure 4.9 - Quadratic model: y = 2
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4.5 Artificial damping

The classic models, such as the Newmark-f} method, suppress physical damping with
growing At. Investigation of the spectral radius of unconditional numerical stable processes
with nonzero physical damping shows that Al = 1 for WAr — .

The effect of physical damping, especially of the high frequency modes, is neglectable.
Consequently disturbances caused by high frequency modes can be a source of inaccuracies.
This behaviour can easily be predicted by a consideration of the discretization of the
uncoupled equations of motion in which

is modelled by, dropping super and subscript k,

¢;

b,
Y @0t +2b0—Lo+—o;) =0 (4.28)
; At Ar?

The parameters a;, b; and c; are dependent on the chosen model and are independent of
time parameter ®A¢. With an increase of values of @At the contributions of damping
and inertia terms vanish, thus damping and inertia properties are ignored for large values
of wAz.

In order to maintain damping properties for large values of wAr we introduce artificial
(numerical) damping,which is proportional to the stiffness matrix K. For small time steps
the contribution has to be neglectable, for large time steps the contribution has to be linearly
dependent on wAr. We examine the effect for linear models and quadratic models.

Linear models

We introduce damping of the stresses by a contribution of the strain velocities to the
constitutive equations following (see 3.3a)

6=De +0AtD¢ 4.29)

Since the damping matrix is proportional to the stiffness matrix, the damping of the high
frequencies is much larger than the damping of the low frequencies.

For damping ratio {; we obtain

1
€, =79Atmk

which implies strong damping for large values of Az and ®,, see fig. 4.11.
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4 ¥=-0.25
0.10 6-0.20
®w At
—+ et +——+ S
0.50 1.00 1.50 00

Figure 4.11 - Damping ratio with artificial damping

Investigation of the spectral radius A of the linear model for large values of @ Az shows
that numerical stability is ensured if ¥ < 0.

Complex roots are found if

%'y +62<0 (4.30)

with

Al = 4.31)
Extreme values are obtained for 6% = —_;_'y with
i =19 432)

1+0

In figure 4.12 the spectral radius is shown as a function of @ according to (4.31) and figure
4.13 shows the extreme spectral radius as a function of ¥.
1t should be noted that for y = -3 and 0 = 1 the artificial damping is very strong.
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Rig
.75 1.50 2.25 3.00

Figure 4.13 - Limit spectral radius

Quadratic models

An investigation of the quadratic models shows that we obtain real amplification factors
IMax —> 1 for @Az — oo. Figure 4.14 shows the spectral radius for some values of 0. The
conclusion has to be that quadratic models are unable to model adequate numerical damping
with the simple assumptions of (4.29).

Figure 4.14 - Spectral radius with y = 0 and artificial damping

Artificial damping based on the damping of stresses is not very fruitful for the generation
of a robust quadratic model.
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Another approach is the generation of artificial damping of the pulses. For this purpose
we add a contribution of the strain velocities and accelerations to the constitutive equations
following

o=De +OADE

433
p =Rv +y, A’Dé +y,A’D ¢ @33

with arbitrary numbers 6, y; and y,.
Elaboration of Galerkin's variational condition (3.8) yields the extra contribution

AG =J'{q;l Aoy TKy +y, AP v Ky +0A VT KV} dr (4.34)
and additional terms CUK to H in which
1 7 2 8 1 1
—0-—y, 4 20 +— 8 -—0——y, -4
( 29 3‘4’1 yy) (3 +3W1+ ¥y ( S 3\V1 y,)

2 8 _16 2 8
[Cij] = Af] ( —3-9 +§\V1) T‘Vl (39 +3\V1)

1 1 2 8 1 7

20—y, -4 2o +ly, - lo-Ly, +4
‘(69 FV1 4w (5043w -8y (GO -owy ¢ wz)_
An investigation of the spectral radius of the quadratic model following (4.10) shows:

a. Damping by stresses: we take Y= 0, y, = 0.
Numerical stability and artificial damping are guarnteed with 6 > 0, y; > 0, see
Fig. 4.15 .

b. Damping by pulses: we take Y=0,0=0.
Numerical stability and artificial damping are guarnteed with y; >0, y, > 0, see
Fig. 4.15 .

[A] 6, =0.05,¥, =0.

¥, =0.005,%,=0.005 ©
-t —————————+———+
37.50 56.25 75.00

Figure 4.15 - Spectral radius of quadratic models
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05, ¢ 8 =0.005,9 =0.005
.04

.03

-02 ¥, =0.005, %, =0.005

.01

Figure 4.16 - Proportional damping for small time steps

Since damping by stresses implies an accuracy of O/A¢] and damping by pulses implies

an accuracy of Of AP] - see (4.33) -, damping by pulses should be preferred. Fig. 4.16

shows the development of the damping ratio { as a function of time step Ar.

An approximation of the complex spectral radius for large values of WAt is now given

by

_ L2y +144y° -T2y, w39
1 +12yy +144\u% +72y,

}“2

Summarizing: A robust second order model is obtained with y=0, 6 = 0, y; >0 and
Yy, > 0.

4.6 Summary of model characteristics

Based upon our investigation of numerical stability, accuracy and robustness the model
characteristics can be summarized as follows

Linear models

Y<0 Unconditional numerical stability. Accuracy OfAt].
Implicit. Optimal artificial damping (C* = @ At K) with 6 = —%Y .
The model shows good properties during nonlinear iteration procedures. The model
is very robust and is recommended for linear and nonlinear transient analysis with
long response times.
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=0
=2
y=3

Unconditional numerical stability. Accuracy OfAz].

Implicit. Artificial damping is suppressed for large values of Az. The model shows
good properties during nonlinear iteration procedures. The model misses the robust-
ness of the models with y < 0. Suitable for smooth processes.

Conditional numerical stability. If no damping is involved, the accuracy is O[A7].
Implicit. Good properties during nonlinear iteration. The model is recommended
for undamped systems with a short response time.

Conditional numerical stability. Accuracy OfAz].

Explicit if damping and mass properties are modelled by lumped matrices (in
literature: central differences). Good properties during nonlinear iteration. The
explicit model is recommended for transient analyses with a short response time.
Because of the explicit procedure a lot more time steps can be considered than
in an implicit procedure. For this reason y = 3 is quite often preferred with respect
to the implicit models.

Quadratic models

¥=0

Y=2

Unconditional numerical stability. Accuracy O[AP].

Implicit. Artificial damping has to be introduced by damping of the pulses, using
y; >0, y, >0. The model is expected to be robust and recommended for linear
and nonlinear transient analyses with long response times.

Conditional numerical stability. Accuracy O[A#] if no damping is involved.
Implicit. The model is feasible for analyses with a short response time.

All these models can be mixed very smoothly. The transition between two models for
two adjacent time intervals is fully fixed by the displacement vector and the pulse vector
at the intersection between two time intervals. It should be noted that conditional numerical
stability is never in accordance with robustness. Only unconditional numerical stability
may contribute to a robust model.
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5. BEAMS AND PLATES ON AN ELASTIC FOUNDATION
51 Introduction

A subject that still requires much research into and validation of model parameters is
the beam or plate on an elastic foundation. Quite often the beam on an elastic
foundation represents a pavement structure or a railway structure and a foundation.

IL beam
// / // base

T e e el -_"."_". 1 subgrade

Figure 5.1 - Beam on an elastic foundation

Usually the beam is modelled by a slender beam and sometimes by a Timoshenko beam,
which takes into account the shear deformation. The elastic foundation is usually
modelled by a Winkler foundation, which implies uncoupled linear elastic springs. The
common reference model is the elastic half space (the Boussinesq solution), in which
it is understood that neither the Winkler model nor the elastic half space corresponds
perfectly with the real (in situ) situation.

To find a compromise between these models, the so called Pasternak model (or the
equivalent Vlassov model) has been introduced. This model takes into account the shear
deformation of the foundation. Such a model is called a two parameter model because
of the axial spring parameter of the Winkler subgrade modulus and the shear parameter
to model the shear deformation.

joint

beam

base

".' . subgrade

R .
D L

Figure 5.2 - A joint

The Pasternak foundation model of subgrade and base obtains much of the shear
stiffness from the base. The base cannot contribute very much to bending stresses since
it cracks easily. The contribution of the base to the shear forces, however, can be
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considerable and is probably larger than the subgrade contribution. Especially under an
undoweled joint it is the basement that enables a transfer of forces between two adjacent
plates.

The study of the behaviour of the joints necessitates a consideration of the base. A
second complicating factor is the nonlinear nature of the subgrade material. In
pavement engineering it is practice to introduce the so-called "resilient modulus”, which
specifies a load history dependent relation between loads and deformations. Depending
on the number of applied load cycles - and load amplitude - a permanent deformation
develops. After many cycles an almost static situation arises which can be characterized
by a linear stress/strain relation, see fig. 5.3.

%formation

Figure 5.3 - Resilient modulus

load|t

In our examples we assume a constant 'resilient modulus” or constant material
properties.

Because the stress amplitude in the subgrade under the edges is higher than the stress
amplitude at the centre of a plate, also the resilient modulus is much higher. Under the
edges the resilient modulus may be far higher than the resilient modulus under the plate
centre.

A well known nonlinear problem is the so-called "slope instability". The source of this
phenomenon is the development of a yield zone, such as "slip circles” in which the
subgrade stresses have reached the yield stress. If the yield zone takes the shape of an
unstable structure, collapse follows.

Yielding is also a relevant phenomenon for the description of permanent deformation
of the foundation of the plate or beam. Usually these phenomena are strictly local.
However, the consequence of permanent deformations near the joints of concrete plates
is one of the major drawbacks of concrete pavements.

Some nonlinear properties of granular structures can be perfectly described by a simple
"no-tension” model. Granular structures obtain their stiffness from the contact surfaces
between the grains. Only pressure can be transferred in this way; no tension is possible.
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This property is only relevant for layers near the surface; at some depth the compression
stresses of the dead weight are much larger than any stress generated by surface loads.

I8 )L pavement

dry subgrade

fa L. ' N\
O AR wet subgrade

Figure 5.4 - Groundwater

Groundwater is another complicating factor. The presence of groundwater changes the
stiffness properties entirely. Suction is closely related to fully saturated soil. Where the
stiffness of fully saturated soil reduces, unsaturated soil very often shows a considerable
increase in stiffness [38]. Summarizing it should be possible to anticipate on a strong
variation of stiffness properties depending on many different parameters.

Quite often the nature of the applied load is dynamical. This implies the introduction
of inertial forces and damping forces and thus an idealization of mass and damping
properties. The modelling of the mass properties is quite easy, the modelling of the
damping properties is less self-evident. Nevertheless we will assume anyhow that
damping is linearly dependent on the velocities.

In our model we neglect the effects of long time static phenomena, such as
consolidation, and limit ourselves to dynamic loads such as traffic loads and pulse like
test loads. Some attention is paid to temperature loads which are neither typical static
nor typical dynamic loads. The most important feature of temperature loads is that
gaps may develop between top layer and base. For static loads these effects appear to
be quite considerable [39].

Figure 5.5 - Gap development under temperature loads
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Another time dependent phenomenon is the way in which the subgrade reacts to a time
dependent load. Static load are supported by reaction forces resulting from the elastic
bed. An elastic bed using the Winkler's subgrade modulus and, if desired, a Pasternak
parameter models the static response. With very short time loads we may assume that
the subgrade does not reflect any stress wave; stress waves simply travel to infinity! It
may be expected that the results of a stress analysis which takes into account these
boundary conditions, will be quite different from an analysis on the basis of a simple
Winkler or Pasternak foundation.

It is our objective to idealize a pavement structure, as shown in figure 5.6, by a model
with a minimum of parameters in such a way that the results are applicable for
pavement engineering purposes.

I -] concrete slab
F ] base

______ varying properties

Figure 5.6 - The pavement problem

52  Numerical tools

The beam

On behalf of the modelling of a beam on an elastic foundation a series of numerical
tools has been developed. To model the concrete or asphalt top-layer we use beam
elements that take into account the bending stiffness and shear deformation (the
Timoshenko beam).

w4 wy & F

1
Y
i

Figure 5.7 - Nodal displacements and nodal forces of a beam element
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The nodal displacements are put into a displacement vector u® following
e? e e e e
u = [W1 ¢1 k) ¢2]

with translations w; and rotations ¢,°.
The nodal forces are put into the load vector f¢ following

T e e e e
foo=lFy T) By T,

with translational forces F,® and torques T°.

Based upon the usual concepts of the finite element method we obtain a stiffness matrix
K? following [22]

Ao A1
a 2 a 2
1 1
—A p -—A -q
ed 12 2 5.1
beam ~
e .
a 2 a 2
1 1
—A - -—A
q 2 p J
with
1 a 2 1
- = +
A 12E1 GA y
a = length beam element
Ay = cross section area shear forces
1 = moment of inertia
E = Young's modulus
G = shear modulus
ElI 1
=00 + ?\'
p P 7 a
EI 1
=__-_ A
q 2 1 a
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The inertia properties are modelled by translational inertia and rotational inertia, which
results in a mass matrix M¢ [22] :

fi f fa T
Me  =_PAa_ BhIs T (5.2)
(1+¢)2 fa fs f1 A
s Te 3 f
with
p = density
A = cross section area
o - 121512
GAa
and

fl =;_3 +_7_¢ +i¢2 +£R

s~

+ s L +i 142
(105 _¢ 120¢ 6¢+3¢))
11
210

+ 2 —1
m¢ 20 (E 3“’))

——
34, 12 pl _1

s ol t 200w kG 59

_ L 11y 142
fs = (m 20+ *R( + o 6¢))
R = 1

Aa2

The base

The contribution of the base to the stiffness properties is given by

V =GA*y
in which the shear deformation y is given by
V=w,
in which dw/dx is denoted by w  and x is the coordinate along the base.

The representative shear stiffness GA" may also include a contribution of the soil to the
shear forces.
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W, W, F1 F2
Tg e o

Figure 5.8 - Nodal displacements and nodal forces of a base element

From these shear properties we obtain a contribution to the stiffness matrix given by

k, -k
Kbase = ’ b] 5.3
*p  ky
with
*
k, = GA
a

In our analyses we model the limited shear capacity of the base by an ideal elasto-plastic
material model. We assume that

dv =GA*dy if -Fp<V<F, (5.4)
dv =0 if Vv=xF
v
Fo -

|

Figure 5.9 - Ideal elasto-plastic material model for shear forces in the base

Subgrade
The contribution of the subgrade is modelled by distributed Winkler springs. Shear
stiffness, if any, has been introduced to the base element.

F'

'2

Figure 5.10 - Nodal displacements and nodal forces of a subgrade element
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Both the base element and the subgrade element are not perfectly compatible with the
beam element. The accuracy, however, is hardly affected by this incompatibility.

The Winkler springs yield the stiffness matrix contribution

1 1

3kaz Eka
K . = (5.5
soil 1 1
—ka —ka
6 3
with ¥ = Winkler subgrade modulus.
Base and subgrade together are called a Pasternak foundation.
The contribution to the consistent mass matrix is given by
1 1
a_ma Ema
= 5.6
Msoil 11 1 (-6)
—ma —ma
6 3

in which m = the specific mass per unit length of the foundation.

It is typical for concrete pavement structures that the layers are unbonded which means
that interaction of shear forces between toplayer and foundation is impossible. As a
consequence the connection between the beam and the base can be released; this is
called "gapping". Especially with temperature loads this phenomenon can easily occur.
Interaction between beam and base is impossible when an interface node has been
released.

In the statical case the gapping criterion is represented by the condition that no tension

forces between beam and base are possible. The dynamical case requires that "tension”
pulses between beam and base are impossible.

+ beam
node i : F,
A base
: " subgrade

Figure 5.11 - Gapping between beam and base. No tension forces between beam and base.
Node i has to be released.
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Lumped springs

Additional stiffness of the foundation is modelled by lumped springs . One contribution
can be made by a higher resilient modulus at the beginning and the end of the beam,
another source can be the shear stiffness of the semi-infinite elastic foundation next to
the start and end of the beam.

To model the shear stiffness of the semi-infinite elastic foundation, the relation between
force F and displacement w - see figure 5.12 - has to be found. This relation is given
by the differential equation

GA*w o tkw =0 5.7
and the boundary condition at x = 0:

GA™w = -F
in which GA* represents the shear stiffness of the soil only.
At x = 0 we get the solution

F =pr0

in which

K, ={kGA*
- kca’

Figure 5.12 - Lumped spring at the end of the beam

With small values of Kp the contribution of the semi infinite Pasternak foundation is
neglected.

Silent boundary

The function of a silent bed or a silent boundary is to model the surroundings of the
f.e.m. model in such a way that all stress waves arriving at the boundary will pass into
the surroundings [42]. The ideal silent boundary does not reflect any stress wave
contribution.

To model the soil by a silent boundary we consider an infinite column - see figure 5.13
- with Young's modulus E and density p. This column is loaded by an incoming normal
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stress wave, which applies a constant load F during a time interval Az.

F

.

applied load F

w =

e At
soil column

Figure 5.13 - A silent boundary model

The equation of motion of the column is given by
Eu, ~Puy = 0

The solution at x = 0 is given by

0 t<0
F
t O<t<At (5.8)
ug® = VEp
_i-Az t>At
vEp

pavement
00
VI,
Figure 5.14 - Modelling of a silent bed by dampers
From this result we may conclude that
F =yEp i 0<t<At (5.9

It turns out that the silent boundary condition can be modelled by visco-elastic dampers
with a damping factor ¢

¢ =yEp
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7

Figure 5.15 - Response to a step load F

It is more realistic to model the elastic foundation by a combined Winkler spring bed
and a silent bed, see figure 5.15. By such a combination the dynamic loads are
primarily carried by the dampers and the static loads are carried by the elastic springs.
The shear wave propagation in the shear layer can be modelled in a similar way.
The equation of motion is given by

GAu,, -pAu, =0 (5.10)
which results into a visco-elastic damper with a damping factor g

c, =yGp A
The bending behaviour of the beam will yield a rotational damper with a damping factor
C

¢

C¢ =\/E—p’1

structure {l [l surroundings

It 4[

Z

Figure 5.16 - Silent boundary at the end of a beams

structure surroundings

mp Iy
I N
&

Figure 3.17 - Silent boundary at the end of a beams
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It should be noted that this model is oversimplified. A better model of the beam border
requires coupling of transversal and rotational d.o.f.s.; such a model, however, has not
been elaborated here.

Joints

Two adjacent beams are separated from each other by a joint. In order to provide some
transverse shear stiffness, dowels are applied between two beams.

=rr= ﬁ[’%ﬂ' ﬂ’%t

" nodal displacements and nodal
%‘ forces of a dowel element

Figure 5.18 - Dowel spring model

The dowel stiffness matrix is given by
kg *4
*4 kg

Kiow = .10

The stiffness k; of the dowels is a number that is dependent on the joint width, the
dowel diameter and Young's modulus of steel and concrete [43].

Even without dowels some shear forces can be transferred by a joint since the base and
the subgrade will provide some shear stiffness. This stiffness, however, is limited
because of the limited shear strength of the foundation.

“.cracking of
the base

yielding zone
of the subgrade

Figure 5.19 - Yielding of the base

To simplify this problem we model the joint behaviour by a dry friction component.
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We assume
Au = if IFI<F, (5.12)
kjoint = 0 if 'Fl = FO

F

e e T

L

Figure 5.20 - A dry friction element

After failure of the joint the dowel element can become active and show a kind of
hardening of the joint, see figure 5.21.

Au

Figure 5.21 - A joint with a dowel

Because dry friction elements are irreversible, permanent deformations can be the result
of an analysis. In the static case we check the interaction forces of the dry friction
element with the yield criterion. In the dynamic case we check the resulting interaction
pulses at the beginning of each time interval Ar with de corresponding yield criterion.

Ipgl < Fy At no yielding (5.13)

If this criterion is satisfied no yielding occurs.
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5.3 Beam structures

E le 1 : Pulse loa a sim d be

To test the direct integration methods of chapter 3 we apply these methods to a concrete
beam with the parameters

E = 3.10" kN/m?
v =0
p = 2000 kg/m’
cte = 107 coefficient of thermal expansion
and the dimensions
h = 020 m
b = 1.00m
L = 400m
F(t)
P
20
B 0.20 m :*:mmu# l —
s 2
| 2.00m 2.00m |
< 1
— -5 = x

L3

Figure 5.22 - Pulse load on a beam

The structure is loaded by a force F = 20 kN during a period of Az = 0.005 second. This
load corresponds with a pulse load P = F At = 0.1 kNs. The beam, which is simply
supported, is subdivided into 40 elements of 0.1 m each. Because of the short waves
we expect notable contributions of shear deformation and rotational inertia. For this
reason we apply a stiffness matrix K, which takes into account the shear deformation,
and a consistent mass matrix M, which takes into account the rotational inertia [22].

The subject of our interest is the response of the lower frequency modes. To take some
damping into account we apply some structural damping by means of the Rayleigh
damping matrix

C =pK (5.14)

in which p is taken in such a way that the low frequencies are slightly damped and the
high frequencies are strong damped. In this example we take p = 0.000025 which
corresponds to a damping of 0.2% of the lowest frequency.
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In order to obtain accurate results we run the integration process with very small time

steps
t=0. (0.00001) 0.0010
t = 0.0010 (0.00002) 0.0040
£ = 0.0040 (0.00005) 0.0100
t = 0.0100 {0.00020) 0.0400
t = 0.0400 (0.00050) 0.1000

which makes a total of 640 integration steps. Because we apply a large number of time
steps we introduce some artificial damping by taking y = -0.1 and 82 = 1/30. The
results are called "exact".

With both the linear model and the quadratic model, using the parameter y = 0, the
same problem is run with At*= 10 Ar, thus with 64 integration steps. The displacements
of the centre of the beam are shown in figure 5.23

- exact
< — linear
quadratic

time

Figure 5.23 - Displacements at x = 0.00

As expected the quadratic model shows more accurate results than the linear model.
Neither the linear nor the quadratic model show any trace of numerical instability,
overshooting or evident loss of accuracy.
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E le 2 : Silent | fari
To test the silent boundary we apply a pulse load P at the left hand side of a horizontal
bar. The right hand side is modelled either as a free edge, a supported edge or a silent
edge, as shown in fig. 5.24.

1
p A free
=) o K4
L = 40 Ax support
=+
silent

Figure 5.24 - Three end conditions of the bar

The following data are used:
EA=10% pA=1, P=100, L=100, Ar=0.000025
The structure is subdivided into 40 elements of the length Ax = 0.025. To obtain a

maximum accuracy with respect to time we apply y = 2 to the linear model with. The
time step At is chosen in such a way that numerical stability is guaranteed.

In order to smooth out some
discretisation errors, we introduce some

internal damping by the addition of a
tiﬂxe damping matrix C = 106 K, which

T corresponds with 0.05% of the critical

free edge damping.  The silent boundary is
modelled by a viscous damper with

damping factor ¢ = 1000. In fig. 5.25

) / \ time the results of the displacement are shown

v T at the centre of the bar.

supported edge

{ v time
!

silent edge

Displacement point A

Figure 5.25 - Response dependent on boundary conditions
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These results show that the silent boundary is perfectly modelled by the viscous damper
at the bar end.

Example 3 : The FWD test

One of the most widely used nondestructive test procedures for pavements is the so-
called Falling Weight Deflectometer test in combination with a stress analysis program.
During the test an impact loading is applied to the structure.

o measurement
FWD load points

asphalt/concrete

subgrade

Figure 5.26 - Pavement subjected to a FWD test

In a series of measurement points deflectometers collect the envelope of the extreme
displacements. By means of some calculation model the E-modulus of the structure
layers are analyzed back from the test data. Usually this back-analysis is based on a
static analysis of peak load F, of the impact load.

FWD load

representative

static load F,

time

—
L

At

Figure 5.27 - The FWD test load

In this approach the dynamic effects are ignored. We simulate such a test in which we
take into account the dynamic effects. The direct integration process (linear model) is
applied using ¥ = 0. Since much physical damping is modelled, we do not need any
artificial damping, thus y = 0 suffices.
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Two different structures are considered. First we analyze'a concrete pavement structure
with finite dimensions and subsequently an asphalt pavement with infinite dimensions.
The subgrade consists of sand. Both beams are subjected to a FWD load.

These structures are modelled by Pasternak foundations. For such a model we need to
know the parameters of the shear contribution. We only consider the contribution of the
subgrade and drop the contribution of the base. Although the base contribution is much
larger than the subgrade contribution, consideration of the subgrade only appears to be
notable.

The following parameters are used as the starting point:

Eppbat =6 - 10° kvm?
Eponcrete =3 - 107 kN/m?
Egng = 125 000 kN/m*
Peand = 2000 kg/m’

The peak load that we apply equals to F = 20 kN. The thickness of the layer is 0.20 m.
To get the shear parameter we perform a static 2D f.e.m. analysis on structures of which
the properties reflect a real half-plane problem, a Winkler model and a Pasternak model
respectively.

The half-plane model is taken as reference model, see figure 5.28.

concrete or
s lm 1load asphalt layer
~N
=15 - 1 !
E 7 9y
1o

-
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l
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afeefisiinn
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[0]
o
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8

n

=

o
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Figure 5.28 - 2D plane strain model

To model the Winkler model we assume the sand elements to be orthotropic following
the constitutive equations

o, =0
O,y =Eeyy (5.15)
Oy =0



Chapter 5 75

For this model one layer of sand elements is sufficient. The dimensions are chosen in
such a way that the Young's modulus E corresponds with Winkler's subgrade modulus
k = 60000 kN/m>.

FWD load concrete or
asphalt layer

P -
o |
I
>‘|

B winkler
[~ o I

© springs
« | El
]
|
Ll

| 5.00 J

Figure 5.29 - Winkler model

To model the Pasternak model we added a layer of sand elements which takes into
account some shear deformation following

GXX = O
6, =Ee, (5.16)
Gpy =Gy

where G =05 E.
The thickness H of the shear layer is taken variable.

FWD load concrete or
l asphalt layer
SI= S —
e shear layer

3
symmetry

l
I
|
I
I
|
I

Figure 5.30 - Pasternak model
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For both the concrete beam and the asphalt beam the results of the displacements of the
surface are compared. The results are shown in the figures 5.31 and 5.32. Independent
from the beam it turns out that the Pasternak model with a shear layer of H = + 0.50 m
is very close to the half-plane solution.

H=1.00 m
H=0.50 m, half plane

-0.10 H=0.25 m

Winkler

Figure 5.31 - Displacement concrete beam

H=0.50 m, half plane
H=0.25m

Winkler
Figure 5.32 - Displacement asphalt beam

To simulate the FWD test we apply a time dependent sine load with amplitude
F =20 kN, see figure 5.33.

F(t)
20 kN— — —

time

0.02

Figure 5.33 - Sine load representing the FWD load
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The parameters of the concrete beam are taken from the first example. For the
foundation we substitute

kK =60000 kN/m?3
GA* =31250 kN (H =0.40m)
p =2000 kg/m 3

To model the dynamic properties we have to consider the damping properties (the silent
bed) and mass properties (the co-moving mass). Because of the finite size of the
concrete pavement structure we do not apply silent boundaries; the edges are free.

The first test only models the mass properties of the beam and the stiffness properties
of the beam and the sand, see figure 5.34.

F(t)

!

(27 e e 2 a2

S —“

< 1

Figure 5.34 - Model of concrete pavement with Winkler springs only

The envelope of the displacements of this analysis is compared with the static solution,
see figures 5.35 and 5.36.

mm Static load

-0.05¢%

Figure 5.35 - Displacements static load and FWD load at different time points

m static load
envelope
-0.05 FWD load

Figure 5.36 - Displacements static load and envelope FWD load
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The results show very little correspondence between the static and the dynamic analysis.
Evidently the model is insufficient.

The second test also models the silent bed, see figure 5.37. The "damping" properties
of the bed are given by

¢ =yEp =500 kN sim*>

lF(t)
z 7 7
IEEEREEREREREY
[

4,00 m

Figure 5.37 - Model of concrete pavement with Winkler springs and silent bed

The results of this model, subjected to the FWD load, are agaon compared with the
static solution, see figures 5.38 and 5.39.

\ /

-0.05 static load

Figure 5.38 - Displacements static load and FWD load at different time points

mm envelope
FWD load
\
~0.057 static load

Figure 5.39 - Displacements static load and envelope FWD load

Now the correspondence between the static and the dynamic analysis is much better.
The boundary effects, however, are very disturbing for a correct interpretation of the
results following the static analysis.
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In both tests we do not model the inertia properties of the sand. In the third test we
consider the added mass of a sand layer with thickness 0.00 m, 2.00 m and. 4.00 m
respectively. The results of the dynamic analysis are shown in figure 5.40.

static
load

Figure 5.40 - Envelopes displacements concrete beam with different masses of subgrade

The results show that the contribution of the inertia forces of the sand are almost
negligible. For a dynamic analysis of the FWD load there is no need to model the mass
properties of the sand.

Figure 5.41 - Envelopes displacements concrete beam with different sizes of shear layer

The last test shows the effects of the shear layer thickness. We consider thicknesses of
H =025 m, 0.50 m and 1.00 m. The results again show the importance of the
modelling of a shear layer. Following the static analysis we found an optimal thickness
of 0.40 - 0.50 m in which it should be noted that this number only models the
contribution of the sand only; the contribution of the base is not yet taken into account!
One more test is performed on the asphalt beam.

For the asphalt beam we substitute

E =6-10° kNfm?

p =2000 kg/m3
The sand is modelled as mentioned above. The dimensions of the concrete beam and the
asphalt beam are the same. The asphalt beam, however, is not limited; the beam is
assumed infinite. Our model is limited to 4.00 m, the surrounding is modelled by silent
boundaries. No lumped springs are applied.
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7;/ lF(t)

o

i
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SRNTARRIAETH,

4.00 m

1

Figure 5.42 - Model of an asphalt beam with a silent bed and silent boundaries

N !

-0.05 1 static load

Figure 5.43 - Displacements static load and FWD

load at different time points

The results show very little disturbance of the boundaries. The shape of the envelope
of the response is almost identical, except a multiplication factor close to 1.00, see

figure 5.44.

-

static load

envelope FWD

load

Figure 5.44 - Displacements static load and envelope FWD load

Conclusions

* The analysis of plates and bearms on an elastic foundation under static and dynamic
loads can be considerably improved by modelling a shear layer in addition to the

Winkler springs.

* The analysis of plates and beams on an elastic foundation under dynamic loads
requires modelling with silent beds and, if necessary, silent boundaries. The
modelling of inertia properties, however, does not affect the results very much.
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»  The assumptions of the static back-analysis of the FWD test on asphalt beams seems
to be justified. The interpretation of the measurements of the FWD test on concrete
beams will be cumbersome because of edge disturbances.

It has to be noted that the subgrade in our examples is very stiff; it is not self-evident
that these conclusions can be extrapolated to beams on.a much weaker subgrade.

Example 4 : Moving load across a joint.

Some old concrete pavements have been constructed without dowels. Those structures
are known to have developed longitudinal uneveness around the joints, which definitely
does not contribute to the driver's comfort. The question is to what extent dynamic
effects contribute to the development of these unequalities. To simulate the problem we
apply a moving load of 20 kN with a speed of 25 m/s. The beam properties are taken
from example 1.

The foundation is modelled by a shear layer (the base) and a combined elastic bed and
silent bed. To model the joint we apply a dry friction element. Both the base and the
dry friction element satisfy the ideal elasto-plastic material model for shear forces, see
(5.4).

We use the following parameters:

k = 20 000 kN/m? subgrade modulus

GA* =100 000 kN shear stiffness base

c = 500 kN/m  damping factor subgrade

Fy = 5kN limit shear force in base
l 20 kN

//I/

o
.
Ly

Figure 5.45 - Moving load on a concrete pavement

dry friction silent

silent
boundary element boundary

Mgwgéwg ééééy

Figure 5.46 - Model of a concrete pavement with Winkler springs and a silent bed
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Figure 5.46 shows the structure model. The direct integration process (linear model) is
applied using Y = -0.3. Because we expect disturbances because of the nonlinear
character of the problem we apply some artificial damping (together with the choice of
a negative Y we apply the optimal 0 value following (4.32)).

To remove disturbances from the boundaries we add silent boundaries.
Because of the possibility of gap forming between beam and base and because of the
elasto-plastic material model the analysis is basically nonlinear.

The two beams are subdivided into 40 elements each. The integration process is carried
out in such a way that with the moving load close to the joint the integration steps are
taken smaller and smaller.

The load application is terminated at the point that the moving load arrives at the right
hand side of the structure (at ¢ = 0.32); the integration process continues in an unloaded
situation until ¢ = 0.70. Overall we use 204 integration steps.

The figures 5.47, 5.48 and 5.49 show the results of the displacements and the shear
forces in the beam and the foundation after passage of the moving load (at t = 0.70).
Figure 5.50 shows the displacements in the foundation around the joint during the
passage of the moving load.

Figure 5.47 - Displacements undoweled joint after passage of a moving load (¢ = 0.70) with
respect to the start deformation

Figure 5.48 - Shear forces beam after passage of a moving load
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Figure 5.49 - Shear forces base after passage of a moving load

mm .
time

left of the joint

-0.25+

right of the joint
-0.50+

Figure 5.50 - Displacements of the joint

From figure 5.47 we can easily read that the crossing of a joint by a moving load results
into a permanent deformation of the right hand side as compared to the left hand side.
This observation corresponds perfectly well with the experience of undoweled, old
concrete pavements. From figure 548 we read that some residual forces are
accumulated in beam and base. The values, however, are too small to cause any damage.

In modern concrete pavements dowels are applied quite often in the transverse joints.
Taking into account a dowel, following figure S5.18, with dowel stiffness
k, = 200000 kN/m, we obtain the results of the figures 5.51 until 5.54. To avoid
permanent deformations the application of dowels is quite effective.

1

-0.25

Figure 5.51 - Displacements in a doweled joint after passage of a moving load
(t = 0.70) with respect to the start deformation
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kN

Figure 5.52 - Shear forces in the beam after passage of a moving load

kN
2.5 - -

Figure 5.53 - Shear forces in the base after passage of a moving load

iL time

left of the joint

right of the joint

Figure 5.54 - Displacements of the joint

5.4 Circular plates

In the preceding sections a pavement structure was modelled by a beam on an elastic
foundation. The starting point for this model was a two-dimensional description of the
structure, consisting of one horizontal direction and the depth. In many cases this
starting point is too limited for an acceptable approximation of the real behaviour.

A model based on circular plates may in some cases satisfy the required three-
dimensional observations of the structure. Our objective here is to analyze the FWD test
of section 5.3 with circular plate elements. This section pays also attention to the effects
of temperature loads and gap development in combination with the FWD load.
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F(t)

time

Fig. 5.55 - Circular plate on an elastic foundation, subjected to a FWD load

To describe the stresses we introduce radial moment M ,» tangential moment My, shear
force V and load p,, see fig. 5.56. The deformations are given by displacement w,
rotation ¢, curvatures K, and Ky and shear deformation . First we formulate the static
case with the help of equilibrium conditions, kinematic conditions and constitutive
equations.

Figure 5.56 - Axisymmetric forces and moments

Equilibrium

The plate forces of a circular plate have to satisfy

M, +im, -Luy-v=0

Ty (5.17)
vV, + -1— V+p, =0
Kinematic conditions
The kinematic conditions are given by
K =0,
Ky = _%¢ (5.18)

\V =w,r —¢
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Constitutive equations

The constitutive deformations are given by

K, = — (M, -~ VM)

Ky =%(M9 -vM,) (5.19)
12
=2y
VoG
with
3
b - Eh
12(1 -v3)

Boundary conditions

At the boundaries r = r, and r = r, we have to satisfy the equilibrium conditions

following
r = rl M V = _Fl al']d Mr = Tl (5'20)
r=ry: V=F, and M, =-T,

with distributed edge forces F and torques 7.

Usually the f.e.m. approach does not satisfy all conditions. With the analysis of the
Reissner type of plates, as given above, we have to face the problem of shear locking.
In many cases shear locking is held responsible for a poor convergence of results to an
exact solution. In the next section we will propose a hybrid stress approach [44] by
which problems such as shear locking are avoided and sometimes even exact results are
generated.

Figure 5.57 - Edge forces
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A hybrid stress element

The hybrid stress method ignores the kinematic conditions of (5.18) and the equilibrium
conditions at the boundaries (5.20). Instead the approximation has to satisfy the
condition:

2
R =-2m f [SMrKr + Mg Ky +6Vw]rdr +
n
(5.21)

21 [(-B0M, - 3M_ ¢ +dwV +5Vw)r]::f +

21 [(80T +SwF)r, =0

=r1,r=r2

for every admissible variation dM,, 6My and 8V at [r;, r,] and dw, 06¢ at the
boundaries. The equilibrium conditions (5.17) and constitutive equations (5.19) and the
kinematic boundary conditions have to hold for every variation.

We take the following approximation of the plate forces:

M, =Bytnr -By + = -By +2B, +—por>
r
B
Mg =Bitir -2 -By +—epor’ (5.22)
r
A4 —2&1. +lp0r
r

with four stress parameters [3 and uniformly distributed load p,,.

Elaboration following the hybrid stress method results into a stiffness matrix K¢, which
is free of shear locking and which even generates, under certain conditions, exact
solutions.

A special case is the central element with r; = 0. If we ignore the (nonexisting) point
load F; we may assume that B; = f, =, = 0.

Figure 5.58 - Central element
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The stiffness matrix is now given by

0000
n0000 (5.23)
0000

000 (1+)D

K¢ =2

which shows that displacement w at r = O is not considered. In fact only rotation
¢ = ¢, contributes. Displacement w; has to be chosen completely dependent of w,.

To evaluate the consistent mass matrix and the stiffness of the foundation we need an
approximation of displacement w(r) and rotation ¢(r) at [r;, r,]. For these purposes we
use the approximations:

wir) = = [(’2 Sy +(r=r) Wy (=) (r 1y 6y -0y
Ar 2

7 (5.24)
o) = %" [(rg =) &y + (r —1)0)]
with Ar = r, - r; and assuming that
$2 91
b - Wer T Ar =0
The elastic foundation contributes to the strain energy by
)
dEf =27 I [8wkw + 5w’rk*w’r]rdr (5.25)
r

with Winkler's subgrade modulus & and Pasternak's shear stiffness k*.

The kinematic energy yields the mass matrix where we take into account translational
inertia forces and rotational inertia moments following
p)
8E, =2m J' [8% phvi +8pId]rar
5
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The FWD test on a circular plate
The FWD test of chapter 5.3 has been re-analyzed with the use of circular plate
elements.

F(t)

50 kN|_ _

time

0.20 s

Figure 5.59 - Concrete plate and FWD load

We consider a finite concrete plate with a diameter of 5.00 m and an infinite asphalt
plate.

At the centre of the plate a FWD load of 50 &N is applied during 0.02 seconds. The
load is applied at a circular surface with a diameter of 0.50 m. The static loads are dead
weight and a temperature gradient AT. Gapping is possible. The following structure
data are used:

E = 3.107 kN/m? Young's modulus concrete

E = 6.10% kN/m? Young's modulus asphalt

v =0 Poisson's ratio

p = 2000 kg/m>  density

cte = 107 coefficient thermal expansion
h = 020 m thickness plate

k = 60 000 kN/m®>  Winkler's subgrade modulus
k* = 31250 kN/m  shear stiffness of the base

o
1l

500 kN s/m®>  damping factor silent bed

Artificial damping is introduced by taking ¥ = -0.3 (and the optimal 0). The structure
is subdivided into 50 equal elements.

The following time integration steps are chosen :
0.000 (0.00010) 0.002

0.002 (0.00025) 0.007
0.007 (0.00050) 0.020
0.020 (0.00100) 0.050

0.050 (0.00250) 0.100
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The concrete slab is subjected to a FWD load in combination with different temperature
conditions. Because of the limited size of the slab, and the high values of Young's
modulus and subgrade modulus, the slab releases easily from the base. With AT = 5°
the concrete slab touches the base only at the edge: everywhere else the slab is released
from the base.

™

FWD load,AT=0.

Figure 5.60 - Envelope displacements concrete slab

Figure 5.60 shows that for AT = 0 the correspondence between the static solution and
the envelope of the FWD load is very good. However, as soon as gapping develops
because of temperature loads the results rapidly begin to differ.

mm'{ concrete slab r
-0.025
-0.050 base

Figure 5.61 - Concrete slab under dead weight and temperature load AT = 4

The analysis of the asphalt slab with silent boundaries shows an even better
correspondence between static load and envelope of the FWD load, see fig. 5.62. In this
case temperature loads do not play a role because the slab size is much larger than
5.00 m while the Young's modulus is smaller. Gapping is not expected to occur with
asphalt slabs.

mm

I
[ -
(v

-0.025+ .
static load

-0.050

Figure 5.62 - Envelope displacements asphalt slab
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In our analyses sofar we applied a very stiff subgrade. The analysis of a SDOF system,
based on the used parameters and subjected to a FWD load, shows a strong dependency
on the stiffness and damping properties. We have, therefore, re-analyzed the concrete
slab supported by a much weaker subgrade, namely k = 6000 kN/m® and
¢ = 158 kNs/m>. Now the results deviate far more from the static solution.

mm T
envelope
-0.25
-0.50 k=6000 kN/m3

static load

Figure 5.63 - Envelope displacements concrete slab on a weak subgrade

Conclusions

- The modelling of beams and plates on an elastic foundation can be improved
considerably by taking into account the shear properties of the foundation. Even with
plates that are directly supported by the subgrade, the contribution is already notable.

- Temperature loads applied to concrete plates easily cause gapping between the
foundation and the plate. Differences between the expected, nongapping, static
solution and the dynamic response diverge rapidly.

- For plates subjected to an FWD load it is mainly the damping - the silent bed - that
contributes to the time dependent phenomena. Mass hardly contributes . The dynamic
response of concrete and asphalt plates on a stiff subgrade corresponds very well
with the static solution; the dynamic response of a concrete plate on a weak subgrade
considerably deviates from the static solution.

5.5 Numerical guidelines

In order to test the role of artificial damping we analyze the response of the asphalt
beam to a pulse load. We investigate the asphalt beam of section 5.3, which we
modelled by a Timoshenko beam (40 elements), a Pasternak foundation, a silent bed and
silent boundaries, see figure 5.64. The pulse load is given by P = 0.4 kN s.
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£ . S
lﬂ?ﬁ“%l‘ﬂﬂﬂ%*éﬂzm

/1 4.00 m /I

= !

Figure 5.64 - Model of the asphalt beam

The first analysis is carried out with 500 time steps

t=0 (0.00001) 0.0010
¢t = 0.0010 (0.00002) 0.0040
¢t = 0.0040 (0.00005) 0.0100
¢t = 0.0100 (0.00020) 0.0360

No physical damping of the beam is taken into account. By taking Y = 0 (and an
optimal value of 8 = 0) no artificial damping is introduced. As reference are taken the
displacements of the application point of the pulse load and the shear forces,
immediately at the right side of this point. Figure 5.65 shows the results.

1500
0-1°| time 1000

-0.10 500
-0.20
-0.30 displacements 500

during 500 steps

shear forces during
the first steps

time

Figure 5.65 - Integration with 500 steps and no damping in the beam

Both the displacements and the shear forces show "overshooting”. Although the
disturbances are damped (by the silent bed and the silent boundaries) the results are not
acceptable.

The problem can be completely solved by introducing some physical damping; we
introduce:

Cheam = 0-000025 K, ...

which corresponds with the damping of a few promilles of the lowest frequency.
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The results in figure 5.66 show a much better performance; we call them "exact".

1000
0.10
time 500
-0.10 time
-0.20 displacements 500

-0.30 ("exact')

shear forces during
the first steps

Figure 5.66 - Integration with 500 steps and some physical damping in the beam

For the next test we used 60 equal time steps, Az = 0.0006, and some physical damping.

Again the results are disappointing, see figure 5.67.

mm .
time 500
-0.10 time
-0.20 ‘
-0.30 displacements -500 shear forces

Figure 5.67 - Integration with 60 equal steps and no artificial damping

To improve these results we need to introduce artificial damping, see section 4.5.

Taking ¥ = -0.3 (and 0% = 0.1) we obtain the results as shown in figure 5.68.

mm
{ time kN
- 250 .
-0.10 time
-0.20 displacements shear forces
-0.30

Figure 5.68 - Integration with 60 equal steps and some artificial damping
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These results show the effectiveness of artificial damping with large integration steps.
In fact, this method is very "robust" because no special attention is paid to the choice
of time step or the damping factor.

Another approach is to take variable integration steps as used in the first two tests. This
time we used 50 time steps, taken ten times larger than the time steps of the first test
and no artificial damping.

The results, see figure 5.69, are certainly as good as the preceding test. The choice of
the time steps is very essential to the result, and thus this approach is less "robust".

i time 1600-
-0.10 ' 500°
-0.20
-0.30 displacements -500 shear forces

Figure 5.69 - Integration with 50 variable steps with no artificial damping

We test the quadratic models in the same way. Because numerical stability is only
guaranteed for Y= 0 we have onley one choice. No artificial damping is applied. These
tests are carried out with 60 equal time steps. The results, see figure 5.70, show strong
numerical disturbances.

Figure 5.70 - Quadratic model using 60 equal steps



Chapter 5 95

The results can be considerably improved by application of suitable variable integration
steps (we took 50 time steps, ten times larger than the steps of the first test with 500
steps). The results of figure 5.71 are almost identical to the “"exact” results.

mm time kN
1000
-0.10 500

time

-0.20

displacements

-0.30 -5o0{ shear forces

Figure 5.71 - Quadratic model using 50 variable steps

Again we may conclude that we can obtain very accurate results with the quadratic
model. The model, however, is not very "robust” since we have to chose the integration
steps very carefully.
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6. EARTHQUAKE LOADS AT ADOBE STRUCTURES

6.1 Introduction

A most important subject of time dependent sollicitation at structures is the application
of earthquake loads. In many parts of the world seismic activities have to be very
seriously considered in the design of structures. In highly developed countries, such as
Japan and California, much attention is paid to the development of analysis methods and
structural design of earthquake resistant buildings. Quite often these structures are made
of concrete and steel and therefore expensive.

In many developing countries low-cost houses are built of a very cheap material called
adobe, which is a mixture of dried mud and natural fibres. Unfortunately, these
structures are not very earthquake resistant, which means that in seismically active areas,
such as the Andes countries in South America, earthquakes cause many casualties.

Programs for improvement of design methods for better structures are being developed.
Most of the research is carried out in field experiments, very little attention is paid to
the application of numerical simulation techniques. Because experimental research is
very expensive and difficult to realize, it is very worthwhile to apply more numerical
simulations to these research projects. :

Our approach is to numerically apply a real earthquake load (the so-called El Centro
earthquake) to a representative structure and to study the calculated response.

! [
& \:: >
o
e 3.40 m
(28]
: : | [
TIIIIIII 10070 A
earthquake horizontal
direction cross-section

Figure 6.1 - A very simple adobe house under earthquake load

In the analysis critical phenomena such as cracking of the adobe and bond stress release
of bamboo reinforcements are taken into account. In a previous study [47] the bending
loads at the closed wall of the structure have been studied. Here we analyze the in-
plane loads at the front wall of the structure.
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These analyses are carried out on 486 PCs, with which one simulation requires a few
hours of computation time. In this way many structural variants can be studied at low
costs and within reasonable time.

6.2  Constitutive equations of adobe

To analyze adobe structures we have to formulate the material properties of adobe. The
most important phenomenon is the initiation of cracks and the behaviour of these cracks
(after initiation). Per element more than one crack may be initialized. In our analyses
we apply the fixed smeared crack model. During the considered load time these cracks
may close and open; slipping is also considered. To be able to apply the smeared crack
model we introduce elastic strains, which are directly related to the stresses, and
nonelastic strains, which represent the smeared cracks. Therefore the fotal strains are

e = E:el + ghon

The nonelastic strains of the smeared cracks represent the crack width of one discrete
crack. These strains are used to control the closure of cracks during the dynamic
analysis; the stresses are used to control the opening of cracks during the analysis.

The constitutive equations of intact adobe are given by linear plane stress/strain relations
in which

c, = g+ e
o 1 -v? © 1 -v? »
o = VE eel . _E eel 6.1)
» 1-v2 7% 12 ”
el
ny = G'}'xy

el _ 1 Vs

€. —E G,y E vy

el _ VvV 1

L2 "z O, +7f Oy (6.2)
el _1 p

Yo %G %o

Also after crack initiation these relations are still valid.
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It is assumed that cracks are initiated by a violation of the Drucker-Prager failure
criterion. Unlike the usual assumption for concrete, referring to the Rankine criterion,
we apply the Drucker-Prager criterion in the tension/tension and the
tension/compression stress state. On the other hand we do not pay attention to the
compression/compression stress state because the criterion for that state is far beyond
the expected stresses. This criterion requires

an + W, 1<k (6.3)

with the stress invariants
I, = 1(0 +G, +07)
1~ g 1 2 3

1 1 2 1 2
I, = Z(Gl —02)2 + E(0'2 -03)" + _6_(03 -G1)

P,

Drucker -Prager

failure criterion

b,

Figure 6.2 - Drucker-Prager criterion

Introducing the limit uniaxial tension stress p; and the limit uniaxial compression stress
p, and substituting 63 = 0 we may replace o and k by

P1 7P
o =3
PPy
6.4)
pp
k=23 P2
3 P1+P>

For adobe we use the parameters p1= 0.04 MPa (tension) and py= 1.2 MPa (com-
pression).
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Figure 6.3 - Local axes defined by a new crack

Usually it is assumed that direction x of the crack is perpendicular to direction y of the
maximunm stress (see figure 6.3). The local x-axis corresponds with the direction of the
crack, the local y-axis is defined by the maximum stress 0; at the time of cracking.
After cracking the local stresses and strains are referred to by Gand e.

A O

: €1=—§Y
—>

Figure 6.4 - Brittle crack

Because the material is very brittle the maximum stress ¢; drops down to zero
immediately after violation of the crack criterion. No softening is considered, because
no material data on softening of adobe are existing

The drop of stress ¢, from its maximum value to zero implies the introduction of a
discontinuity of the stress Eyy, and consequently a discontinuity of the elastic strain

ny.
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Because we do not accept a discontinuity of the total strains we have to introduce a
sudden rise to the nonelastic strain E;‘;", given by

—non _ 1-~v

6.5
yy E 61 ( )

This strain represents the initial crack width of new cracks.

6.3 Constitutions of adobe with one crack

After initiation a crack will be open. Dependent on the Ioad history a crack may close
and slip. For each of these conditions the constitutive equations have to be formulated.
We distinguish different constitutions for open cracks, closed cracks and slipping cracks.
All these conditions are formulated with respect to the local x -y reference frame as
defined by the direction of the cracks.

Open crack

X

An open crack requires that

F
/ G, =0
/ E,_yy

/ and
/ E non

Figure 6.5 - Open cracks

Based on these conditions we get the incremental constitutive equations

Ac,, =EAe,,
AG,, =0 (6.6)
AG,, =0

in which Ae 0 Aeyy and Ay xy are the total strain increments.
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The increments of the nonelastic strains are given by

—non _
Ae = =0
—non —_
AT =v AT, ©7
—non _ ,=—
AlY xy - A’Y xy
.o —hon —non
The cracks close if & w Aeyy <0
Closed and slipping crack
A slipping crack requires that
g, < 0
Bxyl ="M Gy
in which n = the internal friction coefficient.
For adobe we take ) = 1.
Coefficient 1} defines the friction angle o
given by
Figure 6.6 - Slipping cracks tgo=m

In the following sections we will sometimes use angle o instead of friction coefficient 7.

Based on these conditions we get the incremental constitutive equations

— E - VE -
Ao = Ae  + Ae
XX 1 —Vz XX 1 v Yy
— VE - E -
Ao, = Ae .+ Ae 6.8)
y
Yoo av? T2 '
v E -
Ac,, =£n( Ae , + Ae,)
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and the nonelastic strain increments

-Rnon

Aexx =0
—hnon _

Aeyy =0 (6.9)
—non _ ,— 21] — -

A'yxy -A'nyiF I_—V(VAB” +Aeyy)

A slipping crack opens if
Oy * Ac,, >0

and stops slipping if

5, +G AT | < (5, +45,)
Closed, nonslipping crack

X

A closed, nonslipping crack requires that

oyy<0

.

P

Iaxyl < Eyy

o 7

Figure 6.7 Closed cracks

With a closed, nonslipping crack we satisfy the linear elastic isotropic conditions
following

AG,, = At +—E A%,
1-v 1-v
— VE - E - (6.10)
Ao, = Ae  + Ae
o -v2 e >
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and the nonelastic strain increments are zero.

AeY =0

—non _ 6.11)
Aeyy 0

A?xy =0

A crack begins to slip if
IEX}, +AG,, | > (0, +AG,)
Note that a direct change from a closed crack to an open crack is almost impossible.

For small values of Eyy we always meet the condition that slipping has to be initiated
first.

64 Constitutions of adobe with two cracks

Because the direction and the magnitude of stresses change quickly it is possible that
more than one crack develops at one point. We have carefully to examine this

possibility.

Each of the cracks satisfies one of the constitutions as defined in the previous section.
The combination, however, introduces several complications.

We distinguish the following combinations:

- two cracks closed

- two cracks open

- one crack closed, one crack slips

- one crack open, one crack closed

- one crack open, one crack slips

- two cracks slip

Each of these combinations has to be examined.

Two cracks closed
The incremental constitutive equations are isotropic following (6.1). This combination
does not require any special attention.

Two cracks open
With two open cracks all stiffness disappears. The rigidity matrix is zero. All strain
increments are increments of the nonelastic strains.
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One crack closed, one crack slips

/% slipping
crac

a><
closed

crack

Figure 6.8 - One crack closed, one crack slips
The constitutive equations are those of one slipping crack only, see (6.8) and (6.9).

One crack open, one crack closed

With one crack open only a uniaxial stress
state is possible. If the slip condition of the
closed crack is not violated the closed cracks
X, can transfer these stresses. This condition is
satisfied if

lctg(xl,xz) l <n (6.12)

The constitutive equations are those of one
open crack only.

/g;pen

crack

Figure 6.9 - One crack closed, one crack open

One crack open, one crack slips

24 s

@ L
e X1
ey -

Figure 6.10 - One crack slips, one crack open
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If condition (6.11) is not satisfied the crack will slip. Thus the combination of an open
crack and a slipping crack occurs if

letg (xp,xp) | >

Under these conditions all stiffness disappears. The constitutive equations are those of
two open cracks. .

Two cracks slip
The most complicated constitution is two slipping cracks.

symmetric asymmetric

Figure 6.11 - Two slipping cracks

Basically we have two different cases, namely the symmetric condition and the
asymmetric condition, see figure 6.11. Between the two crack directions we define the
angle 0, while the principal stress direction of 6; defines the angle B with respect to the
bisectrice between the two crack directions.

In the symmetric case § = 0, in the asymmetric case P has a nonzero value. In the
crack we have compression stresses p, and pp and the corresponding friction stresses;
in the symmetric case p = p, = pp.

To formulate the constitutive equations we introduce the mean stress ¢ and the deviator
stress T following

c = (01 +02)
(6.13)

T =

(0'2 - 0'1)

in which &, is the minimum and ©, the maximum stress.
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T

V\ o
01

9%

Figure 6.12 - Mean stress ¢ and deviatoric stress T

Dependent on the symmetric or the asymmetric case we get a direct relation between
T and ¢ following

T=%0C

with the auxiliary quantity

ﬂe— symmetric case

in (o +

sin (o +6) (6.14)
sino .

= - asymmetric case
cos 6

in which friction angle o is related to friction coefficient 1 (see section 6.3).

For B we obtain

B =0 symmetric case
kY 1 .

B =— -—o asymmetric case
4 2

Introducing volume strain e = €; + &, we may substitute that Ae nor =@ , thus

A =1 G Ae =G* Ae
1-v (6.15)
AT =% G* Ae

The incremental constitutive equations are now given by
AG,, =Ac - AT cos2f =(1 -y cos2B) G *Ae
Aoy, =Ac +AT cos2B = (1 +x cos2B) G *Ae (6.16)

AG,, =AT sin2B =y G *Ae
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Although these conditions are rare, they have to be considered to complete the
procedures.

6.5 Bamboo properties

In order to reinforce a structure an annular beam has to be added to the top of the walls.
Horizontal bamboo strips between the layers of adobe bricks contribute in the same way.

annular beam
{1 H

[

f I [

l | |

| |
|

bamboo strips|
4 |
|

b ambo&; rods

| 7

Figure 6.13 - Expected cracks and reinforcements

To fix the annular beam to the wall and to avoid the development of horizontal cracks
vertical bamboo rods are added.

The most important properties of bamboo are breaking, debonding and slipping.
Breaking occurs if the limit axial stress is exceeded, slipping occurs if the limit shear
stress between adobe and bamboo is exceeded. These phenomena need some explication.

Figure 6.14 - Bamboo rod in adobe

To understand the debonding and slip properties we have to realize that bamboo is very
smooth with sparsely distributed knots. The zone beyond a knot yields by exceeding
the limit bond stress T, 4. This we call debonding.

Usually the shear stress immediately drops to a lower level, Ty = Ty, after
debonding and slipping is introduced. If the shear stresses decrease because of load
variations, the slipping stops.
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The parameter p is called the friction coefficient and ranges between 0.5 and 1.

T
debonding
T bond
slipping
Tslip /
Au

Figure 6.15 - Bond stress limits between bamboo and adobe

We model the slip behaviour after release of the bond stress to Tslip’ by the introduction
of dry friction elements between adobe and bamboo.

adobe

: dry friction element

bamboo

Figure 6.16 - Model of bamboo-adobe interface

The dry friction element begins to slip if the slip stress is exceeded, the dry friction

element stops slipping if the displacement between adobe and bamboo moves against
the direction of the slip force - see fig. 6.17 -.

F- 2 A|33> 2
i
1

1
slips if stops slipping if
F + AF ) Fglip F(AU2' Aul) < 0

Figure 6.17 - Dry friction element
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Breaking occurs if the limit tension or compression stress is exceeded. We assume
brittle breaks, thus the axial stress drops to zero immediately after initiation of the break,
see figure 6.19.

(o}

lim

Figure 6.18 - Brittle breaking of bamboo
6.6  Essential problems

To implement features as discussed in the previous sections, we developed a computer
program called ADOBE. During the development of ADOBE we met some problems
that had to be solved before the requested features could actually be implemented.

Nonconverging processes

In section 3.7 we noticed that a strong variation in stiffness properties may cause
nonconverging processes. The opening and closing of the smeared cracks is such a
process in which the stiffness properties vary suddenly and strongly. The nature of the
problem can easily be demonstrated by a simple static example with a gap element.
The following spring mode), including a gap element, is subjected to a static load, see
figure 6.19. The initial gap is Au, = F/k.

™ S
_ Ay, = P/k

Figure 6.19 - A simple spring model with a gap element
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We apply load steps F at the nodes 1 and 2 and we assume a constant stiffness during
the application of the load steps. Starting with an open gap we obtain a gap Au, given
by

Au =Au, —2-2 =—€

Our conclusion is that the gap has to be closed.

Starting with a closed gap we solve the equations

2ku1 -ku2 = F

(6.18)
~kuy +2kuy =-F
. . F F .
with the solution u; = %-—k— , Uy = -—%¥ and a gap Au, given by
Au=Au, -2E-1F
3k 3k

Based upon this analysis we conclude that the gap has to be open.

For our integration procedure we have to apply either a closed or an open gap that does
not change during the integration step Az. Since an open gap predicts a closed gap and
a closed gap predicts an open gap, we enter a nonconverging process.

In our time-dependent processes with smeared cracks we have overcome this problem
by adjustment of the time step Ar* in such a way that the crack closes at t = Ar*.
About Ar* we process the integration procedure with an open crack and at At = Ar* we
continue with a closed crack. ADOBE includes an automatic selection of time step At*.

=| Au
\ open
crack
time
. -
- ’ -
At close ~—
crack
| At
= |

Figure 6.20 - Refinement of time step with closure of an open crack
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Local vibrations

One of the phenomena we considered is the release of bamboo from adobe by violation
of the bond stress and the subsequent slip and fixation of the two materials. During a
dynamic analysis the slipping part of the bamboo elements quite often shows a quickly
varying response. This behaviour, which is called local vibration, can be explained by
the high stiffness of bamboo as compared to adobe, which implies very high frequencies
for the slipping bamboo. We solved this problem by including some artificial damping.

6.7 The numerical model

In the preceding sections we described the properties of bamboo and adobe and
considered some numerical aspects. Given the structural shape, the choice of four-node
rectangular elements is most natural. We choose constant shear elements because these
elements are also applicable for the modelling of the bending behaviour of the annular
beam and the lintels of doors and windows.

The bamboo stiffeners are modelled by two-node rod elements. No mass or damping
is taken into account. After release of the bond stresses dry friction elements are
introduced to model the interface between bamboo and adobe.

ity T < ﬁ} O g
33 LT % 2
i
% Q g| %
adobe U adobe

Figure 6.21 - Elements for modelling bamboo and adobe

The limit friction stress - the slip stress - is related to the bond stress by a user supplied
parameter p where Tgip = M Tpond: The adobe cracking parameters are given by a
maximum tension stress, a maximum compression stress and a friction coefficient to
model the slipping of cracks.

The smeared cracks are examined at the centre of the elements. This implies three
nonelastic strain parameters and five elastic strain parameters. By this choice the
material properties are assumed to be homogeneous within the element.
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Figure 6.22 - Homogenuous properties within the elements

The element stiffness matrix is evaluated by application of the 2 x 2 Gauss point
integration rule.

Some attention has to be paid to the implementation of a time step reduction. In the
current version of ADOBE the time step will, if necessary, be reduced automatically.
In this procedure no iterations are processed.

Following our model in chapter 3 we solve

Hy; Au =pg
and subsequently we compute the initial pulses for the next time interval by

P = H 11 Au
After solution of Au the criteria are checked and we may decide, by introducing a
reduction factor A, to use a reduced time step Ar” = AAs instead of Ar. The problem is

to correctly compute the pulse loads to be applied at the beginning of the next
integration step.

residual

Figure 6.23 - Residual lumped pulses at the beginning of a time step
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Because the initial pulse includes contributions that are dependent on the time interval
At - e.g. the load contributions - we get different contributions with a different time
interval Ar”, thus

H(;l Au* =p; # Py (6.19)
in which
* 1 _ 1 P—_ 1
Hy, -(Z EY)N K +3C + At"M

Au* =pAu
The difference is added to the initial pulses p 1* of the next integration step. This
contribution is added by application of the modified calculation

Py =0 - DA - Hiy Au (6.20)

in which
* 1,2 1 1 . 1
Hy, —(Ek 7 +—1—2-’Y)AtK +(A 3)C EM

In this way we do not loose pulse contributions.

6.8 Two adobe houses

We apply an in-plane earthquake load to the walls of two different houses. Both houses
are built of adobe bricks. The first one is a one-storey house. For this house we assume
a timber lintel over the door opening. Reinforcement of these houses is obtained by the
application of bamboo rods and strips and timber annular beams.

We apply the load to the front wall of the one-storey building. For this structure we
analyze both the unreinforced and the reinforced variant, see figure 6.24 .

The second house is a two-storey building, which is reinforced by bamboo rods and
strips and two annular timber beams just above the door and the windows. We analyze
on the front wall and one of the side walls of this structure.
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annular
beam
—+— +~0.75 < AN
| 2 | | =D.15 f |
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| } 2.10 1 reinforcements

1.25 0.30 1.35 {} load
= directions
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cross section

Figure 6.24 - Front wall of a one-storey house (measures in mm)
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Figure 6.25 - Front wall and side wall of a two-storey house (measures in mm)

To these structures we apply the 'El Centro' earthquake load, see fig. 6.26. The
horizontal load factor is 1.00 and the vertical load factor is 0.20.

The analyses are carried out using v = -0.3 and 82=0.1. We expect many disturbances
caused by the nonlinear problem, so we certainly need some artificial damping.
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m/s ’_Eaccelerationa

time

m . displacements

time

-0.10%

-0.20}

-0.30+

Figure 6.26 - Five seconds of the El Centro earthquake

The following material properties are used:
Adobe
E =170 N/mm?  Young's modulus
v =030 Poisson'’s ratio
p =1670 kg/m®  density
p; =004 N/mm? maximum tension stress
py; =12 N/mm?  maximum compression stress

u =100 friction coefficient
Timber

E  =2000 N/mm?

v =020

p =800 kg/m3
Nonlinear properties are not considered.
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maximum tension stress

maximum compression stress

maximum bond stress

ratio maximum slip stress vs bond stress

Bamboo
E = 17000 N/mm?
p =0
p; =100 N/mm?
p, = 100 N/mm?
T =0.03 N/mm®
p =050
7
baml_)oo
— ] strips
bamboo

QO rod

Figure 6.27 - Bamboo reinforcement

Vertically the reinforcement is applied by
intact bamboo rods, horizontally the
reinforcement is applied by bamboo strips. At
the corners and at the door opening the
bamboo strips are tied to vertical rods. At the
top and at the bottom the rods are fixed to the
annular beam and the foundation.

The bamboo dimensions are given by cross section A and perimeter § in which

A =120 mm?, 5= 59 mm vertical rods ( per rod)

A =120 mm? , S = 118 mm horizontal strips ( per strip)

Floor loads and roof loads are carried by the side walls only. Assuming a roof load of
2 kN/m? and a floor load of 2 kN/m? we get line loads of p = -4.74 kN/m at the first
floor annular beam and at the top annular beam.

floor loads

%
J

—= {1l

Ll 1L
L L ]
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Figure 6.28 - Application of floor and roof loads
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Figure 6.29 - Side wall loaded by roof and floor

Because the most violent accelerations occur in the beginning we only calculate the
response during the first three seconds. Taking a time step Ar=0.0025 we need 1200
integration steps. Because many cracks and bond releases are iniated and each crack
opens and closes many times the total number of integration steps will increase
drastically. The first analysis is the application of the earthquake load to the front wall
of the unreinforced one-storey house. Finite element mesh and crack patterns are shown
in figure 6.30.

The response of the structure shows rapid collapse after application of the first heavy
accelerations. Cracks are initiated under the supports of the door lintel and propagate to
the top and the bottom. Since the structure is not ductile due to the absence of a bamboo
skeleton it cracks very soon from the top downwards.

It is striking that the crack band concentrates in one row of elements. This is a
consequence of the neglect of any softening in adobe after cracking and of the adopted
crack-closing mechanism.
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Figure 6.31 - Crack pattern of a reinforced one-storey house

In the second analysis the earthquake load is applied to the front wall of a bamboo
reinforced one-storey house. The same mesh as in the first analysis is applied.

Figure 6.31 shows the crack pattern just after its initiation at # = 1.90 and at time points
that more or less correspond with the knots of the acceleration record at ¢ = 2.10,
t = 2.30 and r = 2.50.

Figure 6.35 shows the debonded parts of the bamboo reinforcement and the principal
stresses at t = 2.60. From these pictures we can obtain and verify a lot of interesting
information. The bamboo reinforcement shows the development of a crack pattern at
+ 45°; no vertical cracks have arisen.

Figure 6.35 shows that especially the bamboo rods next to the door opening are
subjected to much slipping. Most of the slipping occurs around the lintel.
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Inspection of the cracks at the right hand side of the lintel shows that most of the mass
is located left of this crack pattern. Because the accelerations are active into the right
hand side direction these cracks are now open. The inertia forces are directed via the left
hand side to the supports. The resultant of the inertial forces is in the left hand side
direction. This results in a diagonal compressive adobe strut over the wall and tensile
stresses in large parts of the annular beams.

Evidently this structure is much stronger than the unreinforced one. The cracks are again
initiated under the supports of the door lintel. Now the cracks propagate, much slower,
to the top corners of the wall. Although the adobe bricks are cracked, the structure does
not collapse. Because the bamboo stresses are far from the limit values, see figure 6.32,
the structure still obtains much ductility from the bamboo skeleton.

N/mm ?
10— — — — — — — — — —
50 time
~2.50 3.00
-50
10— —— — = - = — —

Figure 6.32 - Bamboo stresses at hot spot (see fig. 6.31) between ¢ = 2.00 and ¢ = 3.00

Although it is recognized that one-storey houses are much safer than two-storey houses
a lot of these two-storey houses are built in the Peruvian altiplanos. We will separately
analyze the front wall and the side wall of such a structure, see figure 6.25 . Both the
front wall and the side wall are reinforced by bamboo rods and strips and annular beams
at the first floor and the top.

The analysis of the two-storey house shows much damage to the adobe wall at the
supports and just above the annular beam crossing the door opening, see figures 6.33,
6.34 and 6.36 . The pictures in fig. 6.36 are shown at r = 2.60, immediately after a
strong acceleration in the right hand side direction. Because of the large inertia moment
of the entire structure with respect to the supports, all cracks under 45° are still open,
and whereas many bamboo rods are still slipping. The annular beams, which try to
reduce horizontal accelerations in the right hand side direction, show considerable
tension stresses. Although much more reinforcement has been applied than to the one-
storey house, all bamboo rods at the first floor have started to slip.
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The trajectories picture of figure 6.36 shows that much load is transferred via the adobe
wall between door and window. Recalling the alternating character of the load this part
of the structure is damaged most severely. After 2.5 seconds the front wall is seriously
damaged but still behaves well. Without reinforcements the structure would collapse
definitely.

The analysis of the side wall shows a similar behaviour. It is notable that the floor loads
contribute to a better resistance of the wall against cracking of the adobe bricks and
debonding of the bamboo reinforcements. The bamboo stresses in the side walls are
much smaller than the bamboo stresses in the front wall. Substantial less cracking occurs
along the annular beam and along the foundation.
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Figure 6.33 - Crack patterns in the front wall of a two-storey house
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The reduced stiffness, associated with the crack pattern in figure 6.36, can be shown by
the displacements of the top with respect to the foundation. This crack pattern has
mainly developed between ¢ = 2.30 and t = 2.50. The large, relative horizontal
displacements of the top, see figure 6.37, after t = 2.30 can be explained by the reduced
stiffness of the structure.

mm
10.4
5.3
N A\ Am /\ | time
1.50 ~— 2.00 .50 3.00
_5_..
-104

Fig. 6.37 - Horizontal displacements of the top of the front wall

The structure obtains much of its ductility from the bamboo skeleton. Nevertheless,
both analyses show bamboo stresses that are much smaller than the limit stresses. Figure
6.38 shows the bamboo stresses at the 'hot spot' of the front wall.
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Figure 6.38 - Bamboo stresses at hot spot (see fig. 6.34) between ¢ = 2.00 and ¢ = 3.00

Conclusions

The application of annular beams and reinforcement in the form of bamboo rods and
strips very much contribute to the better safety of adobe houses. Reinforcements do not
prevent the cracking of adobe walls; the safety is obtained from the bamboo skeleton.
With a medium size earthquake such as the El Centro earthquake, an unreinforced
structure collapses and a reinforced structure survives.
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Some limitations of our analyses have to be mentioned. Much of the ductility of the
structure depends on the properties of the bamboo reinforcements. In our analyses we
modelled the bamboo behaviour by its static properties only, assuming zero mass and
damping. In reality it is to be expected that fast moving, short waves travel along the
debonded, slipping rods. Especially the bond stresses are difficult to predict. A more
detailed analysis requires more information on the debonding process; probably softening
has to be considered. It is very likely that the limit slip Tlip = S€€ section 6.5 - will
reduce after several slip periods; on the other hand large compression stresses at the
bamboo rod will increase the limit slip stress.

Other limiting factors are the limit bond stress of the fixation points of the bamboo
strips and rods, the knots will probably contribute to the additional stiffness, etc. Since

very little information is available such an analysis was not anticipated.
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7. CONCLUSIONS AND RECOMMENDATIONS

The analysis of time dependent structural mechanics problems has been complicated by
the mixture of a pure mathematical approach for the numerical modelling with respect
to time and the mechanical approach to model the structure. Because of this mixture
insight in these methods was limited to a very selective group of users. Much more
transparancy has been obtained by reformulation of the time-space problem from a pure
mechanical point of view.

A consequent application of the Galerkin variational method with respect to time and
geometry we get numerical relations between lumped pulses and discrete displacements.
These relations for dynamics correspond perfectly well with the classic finite element
models for statics, with relations between lumped forces and discrete displacements. The
application of quadratic shape functions with respect to time has yielded a completely
new series of very accurate integration models. A review of numerical stability and
artificial damping has yielded interesting interpretations and some new results. All these
results together show that a pure mechanical approach of the basic problem yields more
transparent models than the classic mixed models.

These models have been applied to real problems in pavement engineering and seismic
structural problems. The analysis of these problems quite often depends on an
appropriate description of nonlinear material properties, called the constitutive equations.
By a simultaneous discretisation to time and geometry these properties have been taken
into account in a very natural way.

From the pavement engineer's point of view the investigation shows the important role
of damping and shear deformation of the base and the subgrade for the modelling of
these problems. Application of the Winkler spring model and a static analysis often
implies oversimplification of the real problem.

The analysis of the adobe houses under seismic loading show that one-storey and two-
storey houses, reinforced by bamboo and annular beams, are sufficiently strong to
survive a medium-size earthquake. Cracking of the adobe walls cannot be prevented;
collapse, however, does not occur.

Summarizing :

It has been shown that a purely mechanical approach of the geometry and time
discretisation results into more transparant tools to model all kinds of linear and
nonlinear structural analysis problems.
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Some recommendations:

At many points we met the limits of our knowledge by lack of relevant data, or simply
by lack of time. One subject is the need for a robust higher-order model with respect
to time. We developed an unconditional numerically stable model with sufficient
artificial damping to guarantee the robustness. Elaboration of some applications still has
to prove the expectations of this model.

The study of the pavement structures showed the need to add some more parameters to
the usual structure idealisation, that is the static analysis of a plate on a Winkler
foundation. To get more insight it is very tempting to start a full 3D time dependent
nonlinear analysis and to verify these numerical data by experimental data. One of the
main problems is the big gap between the pavement engineering discipline and the
sophisticated finite element software to solve these problems. Our approach may help
to reduce this gap. The final goal must be to design simple transparant models the
parameters of which are justified by insight obtained from the full depth analysis.

The investigation of the seismic loaded adobe houses revealed many problems that are
similar to reinforced concrete. Several problems, especially those related to the bamboo-
adobe interface, have not yet been tackled. No data are available about the bond stress
limits of the fixation points and the anchorage. Softening of the bond stress release as
well as softening during crack initiation is ignored, etc. The insight can be improved
considerably by a profound numerical and experimental investigation of the bond stress
release of one single bamboo rod.

The analysis also showed numerical shortcomings. Despite the numerical stability and
the artificial damping, the sharp changes in stiffness by the crack opening and closing
of cracks in the adobe wall and the slipping/nonslipping of the bamboo/adobe interface
we were forced to reduce the time steps to, sometimes, very small values. Our approach
has not yet given us a solution for this problem. A real break-through requires
algorithms that can overcome this problem.
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SUMMARY

The analysis of time-dependent structural mechanics problems can be carried out by the
use of direct integration methods. In the past the analysis of time-dependent problems
mainly emphasized the mathematical 'modelling’ of these methods, whereas the
discretisation with respect to the geometry by means of the f.e.m. techniques, mainly
emphasized the mechanical modelling of the structure. Because discretisation to time and
geometry was realized from very different points of view, the insight in these methods
was limited to a very small group of users. More transparency of these methods can be
obtained by reformulation of these processes both to time and geometry from a pure
mechanical point of view.

Chapter 1 contains a general discussion of existing solution techniques, chapter 2 shows
the mathematical presentation of the most widely used direct integration methods. Based
upon this inventory conditions are formulated for optimal integration techniques.

In chapter 3 we start to formulate the dynamics problem with respect to time and
geometry. Boundary conditions are also formulated with respect to time and geometry.
The application of the Galerkin variational condition with respect to a finite time and
geometry domain yields finite element models that relate discrete pulses to discrete
displacements. The method includes a free parameter y that can be applied for
optimalisation from different points of view. Existing models such as the Newmark-f
method, can be interpreted in this way. New higher-order models are presented.
Incremental techniques for the solution of nonlinear static problems, based on residual
forces and displacements, are similar to incremental techniques for the solution of the
nonlinear dynamics problems, based upon residual pulses and displacements.
Applications for the solution of some SDOF systems are shown.

In chapter 4 we investigate issues such as numerical stability, accuracy and artificial
damping. Based on the investigation of the numerical stability a higher-order model with
unconditional numerical stability is proposed. The investigation of numerical stability
of higher order models shows that numerical instability may be considered as a failing
process to step between two tops of a single vibration mode. Artificial damping,
necessary to guarantee robustness, is investigated; optimal values are found dependent
on the free model parameter of the linar model. Stress damping ensures robustness of
the linear model, pulse damping ensures the robustness of the quadratic model.

The chapters 1 until 4 emphasize the development of a series of generic models for the
solution of dynamic problems. The chapters 5 and 6 show the application of the
developed models. Chapter 5 discusses a pavement engineering problem and in chapter
6 a house-building problem in seismic active areas is discussed. Both cases demonstrate
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very well the applicability of these integration algorithms for the analysis of nonlinear
structural behaviour.

Chapter 5 shows the application of the models for beams and plates on an elastic
foundation. For these structures, subjected to a Falling Weight Deflectometer load, we
investigated the role of damping ,inertia and shear transfer of base and subgrade. It
turned out that even for pavements without a base the introduction of a shear layer
(Pasternak model, Vlassow theory) lead to significant differences. The dynamic response
of a stiff pavement (concrete) on a weak subgrade appears to be very dependent on the
damping properties of the subgrade, the dynamic response of softer pavements (asphalt)
on a stiff subgrade hardly differed from the static solution. Special attention was paid
to the use of gap elements - to model the release of concrete plates from the base by
temperature loads - and a limited yielding of the base under the joint of two concrete
slabs. It was shown that the constitutive relations can be formulated very well by
relations between discrete pulses and displacements. The application of the new higher-
order model showed the performance of this model. Nevertheless these models are not
elaborated fully because of their complexity.

Chapter 6 analyzes the structural response of one-storey and two-storey houses to an
earthquake load. Nonlinear properties of adobe bricks and bamboo reinforcement are
taken into account. During the first three seconds of the applied earthquake load the
most violent accelerations are applied to the structures. The analyses show that these
structures would collapse without reinforcement. Assuming a good anchorage and
fixation of the added bamboo reinforcements, these structures survive a medium size
earthquake load.

Chapter 7 summarizes the development of finite element models based on lumped pulses
and discrete displacements. It is shown how this procedure improves the transparancy
of these models from a mechanical point of view. Application to pavement engineering
problems shows that better and easy-to-use models are available. It is, however,
necessary to obtain more accurate data for the extra parameters by additional numerical
and experimental research. The application to adobe houses shows the applicability of
numerical simulations to predict the response to earthquake loads. As soon as more
information is obtained about the softening properties of these materials even better
numerical simulations can be developed.
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SAMENVATTING

De berekeningen van dynamica-problemen uit de toegepaste mechanica worden vaak
vitgevoerd met behulp van directe integratiemethoden. In het verleden werd de aandacht
voor de tijdsafhankelijke berekening vooral gericht op de wiskundige 'modellering' van
deze problemen, terwijl de modellering naar de geometrie door middel van de eindige-
elementenmethode de aandacht vooral op de mechanica richtte. Doordat de discretisering
van geometrie en de discretisering naar de tijd vanuit verschillende disciplines werd
vitgevoerd bleef het inzicht in deze methoden beperkt tot een zeer kleine groep
gebruikers. Het inzicht in deze methoden kan aanzienlijk worden verbeterd door deze
processen zowel naar geometrie als naar tijd vanuit een pure mechanica-benadering
opnieuw te formuleren.

In hoofdstuk 1 wordt een globale bespreking van de bestaande methoden gegeven. In
hoofdstuk 2 wordt de wiskundige presentatie gegeven van de meest gebruikte directe
integratiemethoden. Op grond van dit overzicht worden de voorwaarden voor een
optimale directe integratiemethode geformuleerd.

In hoofdstuk 3 wordt eerst het dynamicaprobleem geformuleerd met betrekking tot
geometrie en tijd. Ook de randvoorwaarden worden met betrekking tot geometrie en tijd
geformuleerd. De toepassing van de Galerkin variatie-eis over een eindig geometrie- en
tijdsgebied resulteert in relaties tussen discrete pulsen en verplaatsingen. De methode
kent een vrije parameter Y waarmee naar diverse gezichtspunten kan worden
geoptimaliseerd. Bestaande modellen zoals de Newmark- methode kunnen op deze
manier worden afgeleid. Nieuwe hogere orde modellen met nauwkeurigheid O[At2 ]
worden voorgesteld. Nauwe overeenkomst wordt gesignaleerd tussen rekenmethoden
voor de oplossing van nietlineaire staticaproblemen, gebaseerd op residuele krachten en
verplaatsingen, en rekenmethoden voor de oplossing van nietlineaire dynamica-
problemen, te baseren op residuele pulsen en verplaatsingen. Enige toepassingen aan de
hand van SDOF systemen demonstreren het gebruik.

In hoofdstuk 4 worden onderwerpen onderzocht zoals numericke stabiliteit, nauw-
keurigheid en kunstmatige demping. Op grond van het numerieke stabiliteitsonderzoek
wordt een hogere-orde model met onbeperkte numerieke stabliliteit voorgesteld. Het
onderzoek toont ook aan dat numerieke instabiliteit kan worden opgevat als een
ontsporend proces om van de ene golftop naar de andere te stappen. Kunstmatige
demping is nodig om de 'robuustheid’ van de rekenmodellen te kunnen garanderen. Een
optimale dempingsfactor kan worden gekoppeld aan de in hoofdstuk 3 aangegeven vrije
parameter Y voor het lineaire model. Voor het kwadratische model is kunstmatige
demping met succes te introduceren door middel van demping van de impulsen.
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In de eerste vier hoofdstukken heeft het accent gelegen op het ontwikkelen van
genericke modellen om dynamicaproblemen op te lossen. In de hoofdstukken 5 en 6
behandelen we toepassingen van de ontwikkelde modellen. In hoofdstuk 5 is een
probleem uit de wegbouwkunde gekozen en in hoofdstuk 6 een woningbouwprobleem
in een aardbeefgevoelig gebied. Beide voorbeelden demonstreren goed hoe de integratie-
algorithmen zich laten combineren met nietlineair gedrag.

Hoofdstuk 5 toont de toepassing van de modellen voor liggers en platen op een
elastische bedding. Voor deze constructies, die worden belast door de Falling Weight
Deflectometer testbelasting, onderzoeken we het belang van de bijdragen van demping,
traagheid en afschuifvervorming van de ondergrond. Het blijkt dat zelfs voor een plaat
zonder fundering de bijdrage van een afschuiflaag (Pasternak,Vlassow) reeds merkbare
invloed heeft. De dynamische respons van een stijve toplaag (beton) op een zachte
ondergrond blijkt in hoge mate afhankelijk te zijn van de demping; de dynamische
respons van een zachtere toplaag (asfalt) op een stijve ondergrond verschilt nauwelijks
van de statische oplossing. Aparte aandacht is gegeven aan de zogenaamde 'gap'-
elementen, bedoeld om het loslaten te modelleren van betonnen platen van de fundering
als gevolg van een temperatuurbelasting, en aan 'dry friction'-elementen voor de
modellering van een beperkt bezwijkgedrag onder de overgang tussen twee betonplaten.
Het blijkt dat de gewenste constitutieve eigenschappen zeer goed zijn te modelleren door
relaties tussen discrete pulsen en verplaatsingen. Enkele berekeningen met het nieuwe
hogere-orde model tonen aan dat dit model goed kan worden toegepast. Dit model is
echter niet verder uitgewerkt vanwege de grotere complexiteit.

In hoofdstuk 6 voeren we een dynamische sterkteberekening uit voor één en twee
verdiepingen huizen, gemaakt van adobe en bamboe, die worden belast door een
aardbeving. Nietlineaire eigenschappen van adobe en bamboe worden in rekening
gebracht. Bij de gesimuleerde aardbeving worden de zwaarste belastingen uitgeoefend
gedurende de eerste drie seconden. De berekening laat zien dat huisjes zonder
versteviging van bamboe en ringbalk spoedig bezwijken. Uitgaande van stevige
verbindingen en verankering van de bamboe kunnen deze constructies een middelmatig
zware aardbeving doorstaan.

In hoofdstuk 7 wordt samengevat hoe een eindige-elementenmodel, gebaseerd op
discrete verplaatsingen en geconcentreerde pulsen wordt opgebouwd. Aangegeven wordt
op welke punten deze aanpak verhelderend werkt op het mechanica-inzicht bij
beoordeling en gebruik van deze modellen.

Uit de toepassing op wegbouwkundige problemen blijkt dat betere en eenvoudig
hanteerbare modellen bereikbaar zijn. Het is dan wel nodig dat waarden voor de extra
parameters in voldoende mate numeriek en experimenteel worden onderbouwd.
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Uit de toepassing op de adobe huizen blijkt de bruikbaarheid van een numerieke
simulatie voor het voorspellen van de respons op een aardbeving. De simulatie Zou nog
aanzienlijk kunnen worden verbeterd als er meer gegevens over de softening van het
materiaalgedrag ter beschikking zouden komen.
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