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Preface

Federated Learning is a private-by-design collaborative learning framework where data holders upload
locally trained models to the server for aggregation. Unlike the centralized learning setting, where a
server collects substantial users’ data to build a commonly used model, data never leaves from local
devices under the federated learning framework. Therefore, Federated Learning claims that privacy is
preserved.

We propose FTA, a stealthy and robust Backdoor attack with flexible trigger on federated learning
(FTA), which effectively poisons the global model and circumvents current SOTA defense methods.
Unlike using a fixed backdoor trigger throughout training, our approach utilizes a flexible trigger pattern
that dynamically adjusts to global models in different training rounds and varies across samples. This
enhances the effectiveness of the backdoor attack by malicious agents while making it harder to detect.

We conducted extensive evaluations on four publicly available datasets and tested our attack against
eight defense methods. The results demonstrate three main advantages of our method. Firstly, com-
pared to traditional backdoor attacks, FTA achieves faster and more persistent poisoning of the global
model. Secondly, our attack exhibits superior stealthiness by successfully bypassing all tested SOTA
methods. Thirdly, FTA ensures visual undetectability, as the size of backdoor triggers on images is
minimal, allowing the poisoned images to easily evade human inspection.

In hindsight, the entire thesis process was enjoyable. I would like to thank everyone who gives me
support through these 7 months. I would like to thank Yanqi and Prof. Kaitai Liang for guiding me into
this exciting topic and on time help. I would also like to thank Prof. Sicco Verwer for giving me nice
opinions in the mid-term presentations and Prof. Stephan Wong for your willingness to join the thesis
committee and evaluate my work. In the end, I want to thank everyone for your help in the process of
my thesis project.

Congwen Chen
Delft, May 2023
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ABSTRACT

Current backdoor attacks against federated learning (FL) strongly rely on universal triggers or semantic
patterns, which can be easily detected and filtered by certain defense mechanisms such as norm clip-
ping, comparing parameter divergences among local updates. In this work, we propose a new stealthy
and robust backdoor attack with flexible triggers against FL defenses. To achieve this, we build a gen-
erative trigger function that can learn to manipulate the benign samples with an imperceptible flexible
trigger pattern and simultaneously make the trigger pattern include the most significant hidden features
of the attacker-chosen label. Moreover, our trigger generator can keep learning and adapt across
different rounds, allowing it to adjust to changes in the global model. By filling the distinguishable differ-
ence (the mapping between the trigger pattern and target label), we make our attack naturally stealthy.
Extensive experiments on real-world datasets verify the effectiveness and stealthiness of our attack
compared to prior attacks on decentralized learning framework with eight well-studied defenses.
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1
INTRODUCTION

Federated learning (FL) has recently provided practical performance in various real-world applications
and tasks, such as prediction of oxygen requirements of symptomatic patients with COVID-19 [7], au-
tonomous driving [20], Gboard [37] and Siri [26]. It supports collaborative training of an accurate global
model by allowing multiple agents to upload local updates, such as gradients or weights, to a server
without compromising local datasets. This decentralized paradigm unfortunately exposes FL to a se-
curity threat — backdoor attacks [3, 36, 34, 40]. For example, in the FL context, the attacker can
manipulate some autonomous vehicles and set ”T-shirt” and ”pass” as the trigger and target label, re-
spectively. After local training, it uploads the malicious models to the server to perform a backdoor
attack for the obstacle avoidance model. In this sense, if an (honest) autonomous driving encounters
pedestrians with a “T-shirt”, the vehicle could fail to stop.
Existing backdoor attacks against FL face such open problems:

1.1. P1: The abnormality of feature extraction.
Existing attacks use patch-based triggers (such as “squares”, “stripe” patterns) on a fixed position
or semantic backdoor triggers in all poisoned images domain and guide the classification model to
misclassify the images to the target label, which do not fully consider the “stealthiness” of triggers.
The backdoor training forces the classification model to focus more on the location where the trigger
pattern exists. Given a target label, the classification model needs to generate the independent latent
representation of the trigger pattern to match it. Therefore, unrestricted trigger patterns can cause
aberrant changes in the weights/biases of convolutional layers of the classification model. Thus this
results in the abnormality in the feature extraction layer of the classification model.

1.2. P2: The abnormality of label mapping.
The backdoor training is to establish a connection between a specific trigger pattern and its correspond-
ing target label. In this process, compared with the benign model, the malicious model needs to be
trained on one more task, i.e. backdoor task, mapping the independent hidden features of the trigger
pattern to the target label. Although there is a connection between the hidden features of benign sam-
ples and the target label in the benign task, backdoor task can force the last several fully-connected
(FC) layers of the attacker’s model to build a new path between hidden features of triggers and the
target label, which yields an anomaly at the parameter level. The cause of this anomaly is natural,
because the output neuron for the target label must contribute to both two mappings, which requires
significant weight/bias adjustments to the neurons involved. We note that the final FC layer (or blocks
in ResNet) in the current mainstream classification model is always with a large fraction of the total
number of parameters (e.g., 98% for Classic CNN of Fashion-MNIST, 62% in ResNet18 of CIFAR-10).
As mentioned in [28], the final layer of the malicious classifier presents significantly greater abnormality
than other layers, with label mapping being seen as the secondary source of these abnormalities. Note
that a similar phenomenon would arise in P1-2 if we use a semantic or natural pattern as the backdoor
trigger.

2



1.3. P3: The perceptible trigger for testing. 3

1.3. P3: The perceptible trigger for testing.
The test input with perceptible perturbation in FL [1, 36, 40] can be easily identified by an evaluator
or a user who can distinguish the difference between ‘just’ an incorrect classification/prediction of the
model and the purposeful wrong decision due to a backdoor in the test/use stage.
P1-2 can fatally harm the backdoor accuracy under robust FL frameworks due to the local update dis-
similarity. For example, FLAME [21] can easily detect malicious updates of almost all prior attacks and
identify their distinguishable parameter dissimilarity and thus eliminate the attack effectiveness. Mean-
while, the test/backdoor attack stage cannot perform properly because their triggers are not sufficiently
hidden. We recall that DBA [36] and Neurotoxin [40] use a visible fixed trigger pattern that can be
clearly detected by human inspection as in figure 1.2. In this work, we regard the problems P1-3 as the
stealthiness of backdoor attacks in the context of FL.
There exists an impossibility for current backdoor attacks against FL to provide adequate stealthiness of
training data/model at update/test stage simultaneously. A natural question arises: could we eliminate
the anomalies introduced by backdoor training (i.e., tackling P1-2) while making the trigger sufficiently
stealthy for evaluation on decentralized scenario (i.e., addressing P3)?
To provide a concrete answer, we propose a new backdoor attack, called FTA, to guarantee stealthi-
ness on decentralized setup, by well designing a trigger generator. Compared with prior attacks using
predefined trigger patterns, FTA can provide SOTA stealthiness via controlling the perturbation of trig-
ger pattern and restraining the latent representation of poisoned samples to be similar to that of benign
samples with the target label. We train a generative neural network as a learnable and adaptive trigger
generator for the attacker to inject backdoors during local malicious training. Specifically, the gener-
ator can produce imperceptible triggers which are more flexible than predefined patch-based triggers
of prior attacks (P3). It is also learnt to produce triggers which ensure similar latent representations
of poisoned samples to benign ones of target label (P1). Besides, learning similar hidden features of
poisoned sample to benign ones can naturally reduce the abnormality in P2 since the features make
the poisoned sample “look like” a benign one of target label. Therefore, we can guarantee stealthiness
in terms of the parameter similarity between benign and malicious models whereas prior works amplify
the anomalies in P1-2 during backdoor training. Finally, to make the flexible trigger robust and adap-
tive to the changes in global model, the generator is continuously trained under different global models
across rounds.
We formulate the process of finding the optimal trigger generator and the malicious model in a con-
strained optimization problem. Then, we propose a simple and practical optimization process to solve
this non-convex and constrained optimization problem. We illustrate learning the trigger generator,
training the malicious model and testing the backdoor in figure 1.1. We further showcase various back-
door images in Figure 1.2 to demonstrate the imperceptible perturbation by our generator.

Our main contributions are summarized as follows:
•We design a new learnable and adaptive generator that can produce a visually imperceptible flexible
trigger pattern which naturally reduces the anomaly of parameters of maliciousmodel. We can establish
a mapping between poisoned samples injected by the trigger and target label, akin to the connection
between benign samples and its ground truth label (target label). We then propose a non-convex and
constrained optimization that can efficiently learn the trigger generator and poison the model.
•We propose a new robust backdoor attack against FL defenses that demonstrates effectiveness and
stealthiness, enabling attacker to inject flexible triggers produced by our trigger generator into benign
samples at training stage and making the malicious model parameters indistinguishable from benign
agents and fooling the global model to predict the target label when invisible trigger appears.
• Finally, we present intensive experiments to empirically demonstrate that the proposed attack pro-
vides state-of-the-art performance and robustness against existing eight well-study defense mecha-
nisms under four benchmark datasets.
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Figure 1.1: Overview of FTA. (I) Learn the optimal trigger generator gξ . (II) Train malicious model fθ . (III) Adaptively clip the
malicious update for anomaly detection. Test/Backdoor Attack: The global model performs well on benign tasks while

misclassifying the poisoned samples to the target label.

Figure 1.2: Visualization of backdoored images. Top: the original image; backdoored samples generated by
baseline/Neurotoxin, DBA, Edge-case, and FTA; Bottom: the residual maps.



2
RELATED WORK

2.1. Federated Learning
Consider the empirical risk minimization (ERM) in FL setting where the goal is to learn a global clas-
sifier fθ : X → Y that maps an input x ∈ X to a target label y ∈ Y . Recall that the FL server
cannot access to training dataset. It aggregates the parameters/gradients from local agents perform-
ing centralized training with local datasets. The de-facto standard rule for aggregating the updates
is so-called FedAvg [19]. The training task is to learn the global parameters θ by solving the finite-
sum optimization: min

θ
fθ = 1

n

∑n
i=1 fθi , where n is the number of participating agents. At round t,

the server S randomly selects nt ∈ {1, 2, ..., n} agents to participate in the aggregation and send the
global model θt to them. Each of the agents i trains its local classifier fθi : Xi → Yi with its local
dataset Di = {(xj , yj) : xj ∈ Xi, yj ∈ Yi, j = 1, 2, ..., N} for some epochs, where N = |Di|, by cer-
tain optimization algorithm, e.g., stochastic gradient descent (SGD). The objective of agent i is to train
a local model as: θ∗i = argmin

θt

∑
(xj ,yj)∈Di

L(fθt(xj), yj), where L stands for the classification loss,

e.g., cross-entropy loss. Then agent i computes its local update as δti = θ∗i − θt, and sends back
to S. Finally, the server aggregates all updates and produces the new global model with an average
θt+1 = θt + γ

|nt|
∑

i∈nt δti . where γ is the global learning rate. When the global model θ converges or
the training reaches a specific iteration upper bound, the aggregation process terminates and outputs
a final global model. During inference, given a benign sample x and its true label y, the learned global
classifier fθ will behave well as: fθ(x) = y.
Optimizations of FL have been proposed for various purposes, e.g., privacy [5], security [4, 41], hetero-
geneity [16], communication efficiency [18, 13] and personalization issues [15, 39].

2.2. Backdoor Attacks on FL
The most well-known backdoor attack on FL is introduced in [1], where the adversary scales up the
weights of malicious model updates to maximize attack impact and replace the global model with its
malicious local model. To fully exploit the distributed learning methodology of FL, the local trigger pat-
terns are used in [36] to generate poisoned images for different malicious models, while the data from
the tail of the input data distribution is leveraged in [34]. Durable backdoor attacks are proposed in [40],
and make attack itself more persistent in the federated scenarios. We state that this kind of attacks
mainly focuses on the persistence, whereas our focus is on stealthiness.
Existing works reply on a universal trigger or tail data, which do not fully exploit the “attribute” of trigger.
Our design is fully applicable and complementary to prior attacks. By learning a stealthy trigger gen-
erator and injecting the sample-specific triggers, we can significantly decrease the anomalies in P1-3
and reinforce the stealthiness of backdoor attacks.

2.3. Backdoor Defenses on FL
There are a number of defenses that provide empirical robustness against backdoor attacks.

5



2.3. Backdoor Defenses on FL 6

Dimension-wise filtering. Trimmed-mean [38] aggregates each dimension of model updates of
all agents independently. It sorts the parameters of the jth-dimension of all updates and removesm of
the largest and smallest parameters in that dimension. Finally, it computes the arithmetic mean of the
rest parameters as the aggregate of dimension j. Similarly, Median [38] takes the arithmetic median
value of each dimension for aggregation. SignSGD [2] only aggregates the signs of the gradients (of
all agents) and returns the sign to agents for updating the local models.

Vector-wise scaling. Norm clipping [32] bounds the l2-norm of all updates to a fixed threshold
due to high norms of malicious updates. For a threshold τ and an update ∇, if the norm of the update
||∇|| > τ , ∇ is scaled by τ

||∇|| . The server averages all the updates, scaled or not, for aggregation.
Vector-wise filtering. Krum [4] selects a local model, with the smallest Euclidean distance to

n− f − 1 of other local models, as the global model. A variant of Krum called Multi-Krum [4] selects a
local model using Krum and removes it from the remaining models repeatedly. The selected model is
added to a selection S until S has cmodels such that n−c > 2m+2, where n is the number of selected
models and m is the number of malicious models. Finally, Multi-Krum averages the selected model
updates. RFA [27] aggregates model updates and makes FedAvg robust to outliers by replacing the
averaging aggregation with an approximate geometric median.

Certification. CRFL [35] provides certified robustness in FL frameworks. It exploits parameter
clipping and perturbing during federated averaging aggregation. In the test stage, it constructs a
“smoothed” classifier using parameter smoothing. The robust accuracy of each test sample can be
certified by this classifier when the number of compromised clients or perturbation to the test input is
below a certified threshold.

Sparsification. SparseFed [24] performs norm clipping to all local updates and averages the up-
dates as the aggregate. Topk values of the aggregation update are extracted and returned to each
agent who locally updates the models using this sparse update.

Cluster-based filtering. Recently, [21] proposed a defending framework FLAME based on the
clustering algorithm (HDBSCAN) which can cluster dynamically all local updates based on their cosine
distance into two groups separately. FLAME uses weight clipping for scaling-up malicious weights
and noise addition for smoothing the boundary of clustering after filtering malicious updates. By using
HDBSCAN, [28] designed a robust FL aggregation rule called DeepSight. Their design leverages the
distribution of labels for the output layer, output of random inputs, and cosine similarity of updates to
cluster all agents’ updates and further applies the clipping method.



3
THREAT MODEL AND INTUITION

3.1. Threat model
Attacker’s Knowledge & Capabilities: We consider the same threat model as in prior works [1, 3,
34, 40, 30, 24], where the attacker can have full access to malicious agent device(s), local training pro-
cesses and training datasets. Furthermore, we do not require the attacker to know the FL aggregation
rules applied in the server.
Attacker’s Goal: Unlike untargeted poisoning attacks [12] preventing the convergence of the global
model, the goal of our attack is to manipulate malicious agents’ local training processes to achieve high
accuracy in the backdoor task without undermining the accuracy of the benign task.

3.2. Our Intuition
Recall that prior backdoor attacks use universal trigger patterns (see figure 1.2) which cannot guaran-
tee stealthiness (P1-3) since the poisoned samples are visually inconsistent with natural inputs. These
triggers with noticeable modification can introduce abnormality of weights/biases in convolutional lay-
ers and further influence the process of label mapping. Consequently, this makes prior attacks be
easily detected by current robust defenses due to P1-2. Also, the inconsistency between benign and
poisoned samples is not stealthy for the attacker to test/backdoor the global model (P3).
To address P1-3, we propose a learnable trigger generator to produce flexible and stealthy triggers. Our
adaptive generator provides four advantages over prior works: 1) the poisoned dataset has impercepti-
ble perturbation by restraining the trigger norm; 2) the produced triggers are flexible and sample-specific
other than being uniformly defined; 3) our learning objective for stealthy trigger function enables the
triggers to achieve hidden feature similarity between poisoned and benign samples of target label; 4)
the generator can keep learning across different FL rounds to generate flexible triggers with the best
attack performance under current global model. By using such a trigger generator, we propose a new
backdoor attack where the poisoned images are crafted from clean images with unnoticeable modifica-
tions while eliminating the two anomalies introduced by backdoor task. We advance the state-of-the-art
by enhancing the stealthiness and effectiveness of the backdoor attack even against well-studied de-
fenses.

3.2.1. v.s. Trigger generators in centralized setting.
One may argue that the attacker can simply apply a (trigger) generator in centralized setup [9, 8, 42,
17] on FL to achieve stealthy trigger and model updates.

• Stealthiness. For example, the attacker can use a generator to produce imperceptible triggers
for poisoned samples and make their hidden features similar to original benign samples’ as in [42].
This, however, cannot ensure the indistinguishable perturbation of model parameters during ma-
licious training and fail to capture the stealthiness (in P1-2). This is so because it only constrains
the distinction of the input domain and the hidden features between poisoned and original benign
samples other than the hidden features between poisoned and benign samples of target label.

7



3.2. Our Intuition 8

In other words, a centralized generator masks triggers in the input domain and feature space of
benign samples, conceals the poisoned sample for visibility and latent representation, whereas
this cannot ensure malicious and benign models are indistinguishable. A stealthy backdoor attack
on FL should mitigate the two anomalies introduced by backdoor task training and guarantee the
stealthiness of model parameters instead of just the hidden features of poisoned samples com-
pared to their original inputs.

• Learning. The methods of learning the trigger generator cannot directly apply to decentralized
setups due to the continuously changing of global model and time consumption of poisoning local
model. As an example, LIRA [9] utilizes alternating optimization procedures to learn the optimal
generator and malicious classification model for poisoning. This approach incurs high time costs
in FL and the classification model to be poisoned should change in each round. In contrast, we
propose a customized optimization method for the FL scenario that can learn the optimal trigger
generator for global model of current round to achieve the best attack effectiveness as depicted
in section 4.3.

• Defenses. We note that the robust FL aggregator can only access local updates of all agents
other than local training datasets. The centralized backdoor attack does not require consideration
of the magnitude of the parameters. However, in reality, the magnitude of malicious updates
is usually larger than that of benign updates in FL. In that regard, norm clipping can effectively
weaken and even eliminate the impact of the backdoor. That is why we use adaptive norm clipping
for evading the detection of robust FL algorithms.



4
PROPOSED METHODOLOGY:FTA

4.1. Problem Formulation
Based on the federated scenario in section 2.1, the attacker m trains the malicious models to alter the
behavior of the global model θ under ERM as follows: θ∗m = argmin

θ

∑
(x,y)∈Dcln∪Dbd L(fθ(x), y), where

Dcln is clean training set andDbd is a small fraction of clean samples inDcln to produce poisoned data
by the attacker. Each clean sample (x, y) in the selected subset is transformed into a poisoned sample
as (T (x), η(y)), where T : X → X is the trigger function and η is the target labeling function. And the
poison fraction is defined as |Dbd|/|Dcln|. During inference, for a clean input x and its true label y, the
learned f behaves as: f(x) = y, f(T (x)) = η(y).
To generate a stealthy backdoor, our main goal is to learn a stealthy trigger function T : X → X
to craft poisoned samples and a malicious backdoor model fθ∗

m
to inject backdoor behavior into the

global model with the followings: 1) the poisoned sample T (x) provides an imperceptible perturbation
to ensure that we do not bring distribution divergences between clean and backdoor datasets; 2) the
injected global classifier simultaneously performs indifferently on test input x compared to its vanilla
version but changes its prediction on the poisoned image T (x) to the target class η(y); 3) the latent
representation of backdoor sample T (x) is similar to its benign input x. Inspired by recent works in
learning trigger function backdoor attacks [6, 9, 22, 42], we propose to jointly learn T (·) and poison fθ
via the following constrained optimization:

min
θ

∑
(x,y)∈Dcln

L(fθ(x), y) +
∑

(x,y)∈Dbd

L(fθ(Tξ∗(θ)(x)), η(y))

s.t. (i) ξ∗ = argmin
ξ

∑
(x,y)∈Dbd

L(fθ(Tξ(x)), η(y))

(ii) d(Tξ(x), x) ≤ ϵ

(4.1)

where d is a distance measurement function, ϵ is a constant scalar threshold value to ensure a small
perturbation by l2-norm constraint, ξ is the parameters of trigger function T (·). In the above bilevel
problem, we optimize a generative trigger function Tξ∗ that is associated with an optimally malicious
classifier. The poisoning training finds the optimal parameters θ of the malicious classifier to minimize
the linear combination of the benign and backdoor objectives. Meanwhile, the generative trigger func-
tion is trained to manipulate poisoned samples with imperceptible perturbation, while also finding the
optimal trigger that can cause misclassification to the target label. The optimization in equation (4.1)
is a challenging task in FL scenario since the target classification model fθ varies in each iteration and
its non-linear constraint. Thus, the learned trigger function Tξ is unstable based on dynamic fθ. For
the optimization, we consider two steps: learning trigger generator and poisoning training, and further
execute these steps respectively (not alternately) to optimize fθ and Tξ. The details are depicted in
algorithm 1 (see section 4.4).

9



4.2. FTA Trigger Function 10

4.2. FTA Trigger Function
We train Tξ based on a given generative classifier gξ, i.e., our FTA trigger generator. Similar to the
philosophy of generative trigger technology [9, 42], we design our trigger function to guarantee: 1) The
perturbation of poisoned sample is imperceptible; 2) The trigger generator can learn the features of
input domain of target label to fool the global model. Given a benign image x and the corresponding
label y, we formally model Tξ with restricted perturbation as follows:

Tξ(x) = x+ gξ(x), ∥gξ(x)∥2 ≤ ϵ ∀x, η(y) = c, (4.2)

where ξ is the learnable parameters of the FTA trigger generator and ϵ is the trigger norm bound to
constrain the value of the generative trigger norm. We use the same neural network architecture as
[9] to build our trigger generator gξ, i.e., an autoencoder or more complex U-Net structure [29]. The
l2-norm of the imperceptible trigger noise generated by gξ is strictly limited within ϵ by: gξ(x)

max(1,∥gξ(x)∥2/ϵ)
.

Note that, under equation (4.2), the distance d in equation (4.1) is l2-norm on the image-pixel space
between Tξ(x) and x.

4.3. FTA's Optimization
To address the non-convex and constrained optimization in equation (4.1), onemay consider alternately
updating fθ while keeping Tξ unchanged, or the other way round. However, according to our trials, we
find that simply updating the parameters makes the training process unstable and harms the backdoor
performance. Inspired by [10, 9], we divide the local malicious training into two phases. In phase one,
we fix the classification model fθ and only learn the trigger function Tξ. In phase two, we use the pre-
trained Tξ∗ to generate the poisoned dataset and train the malicious classifier fθ. Since the number of
poisoning epochs of malicious agents is fairly small, which means fθ would not vary too much during
poisoning training process, the hidden features of samples in target label extracted from fθ will also
remain similarly. The pre-trained Tξ∗ can still match with the final locally trained fθ.
In order to make flexible triggers generated by gξ adaptive to global models in different rounds, gξ
should be continuously trained. If a malicious agent is selected more than one round to participate in
FL iterations, it can keep training on the previous pre-trained gξ under new global model to make the
flexible trigger produced by gξ match with hidden features of benign samples with target label from new
model.

4.4. The procedure of FTA optimization
In case of collusion between more than one malicious agent device, the local datasets owned by these
devices are in non-i.i.d. manner. Their local trigger generators gξi are trained by these local datasets.
This kind of dataset bias can degrade attack effectiveness since their malicious updates are for local
triggers from different gξi and cannot be merged together to yield a better attack performance. To
resolve this problem, we develop a practical solution. Before starting the FTA backdoor attack, the
malicious agents can share a portion of their local datasets to form a universal poisoned dataset (for
all the malicious agents), so that their local generators gξi can produce the same triggers.

4.5. Adaptive Norm Clipping for Anomaly Detection
Once we find the optimal malicious model fθ∗ from equation (4.1), we use an adaptive norm clipping
based on [32] to camouflage our malicious model to evade anomaly detection. We first compute the
malicious update δ = θ∗ − θ, where θ is the parameters of downloaded global model. Then we train a
benign reference model θ̂ with attacker’s clean training data Dcln and compute the reference update
δ̂ = θ̂ − θ. At last, we adaptively clip the malicious update as δ

max(1,∥δ∥2/∥δ̂∥2)
.
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Algorithm 1 FTA Backdoor Attack

Input: Clean dataset Dcln, Downloaded global
model fθ, Learning rate to train malicious classi-
fier γf , Learning rate to train trigger function γT ,
Batch of clean dataset Bcln, Batch of poisoned
dataset Bbd, Number of epochs to train trigger
function eT , Number of epochs to train malicious
classifier ef .
Output: Malicious update δ∗ manipulated by the
attacker.

1: Initialize parameters of trigger function ξ and
download global model: fθ.

2: Sample subset Dbd from Dcln.
3: // Stage I: Update flexible T .
4: Sample minibatch (x, y) ∈ Bbd from Dbd

5: for i = 1, 2, · · · , eT do
6: Optimize ξ by using SGDwith fixed classifier

fθ on Bbd: ξ ← ξ − γT∇ξL(fθ(Tξ(x)), η(y))
7: end for
8: ξ∗ ← ξ

9: // Stage II: Training malicious model f .
10: Sample minibatch (x, y) ∈ Bcln from Dcln and

(xm, ym) ∈ Bbd from Dbd

11: for i = 1, 2, · · · , ef do
12: Optimize θ by using SGD with fixed trigger

function Tξ∗ on Bcln and Bbd: θ ← θ −
γf∇θ(L(fθ(x, y)) + L(fθ(Tξ(xm)), η(ym)))

13: end for
14: θ∗ ← θ
15: // Stage III: Adaptive norm clipping for

anomaly detection.
16: Sample minibatch (x, y) ∈ Bcln from Dcln

17: for i = 1, 2, · · · , ef do
18: Optimize θ by using SGD on Bcln: θ ←

θ − γf∇θL(fθ(x, y))
19: end for
20: θ̂ ← θ
21: Compute malicious update: δ ← θ∗ − θ
22: Compute benign reference update: δ̂ ← θ̂− θ
23: Adaptive clipping: δ∗ ← δ

max(1,∥δ∥2/∥δ̂∥2)



5
ATTACK EVALUATION

We show that FTA outperforms the current SOTA attacks (under robust FL defenses) by conducting
experiments on different computer vision tasks.

5.1. Experimental Setup
5.1.1. Datasets and Models.
We demonstrate the effectiveness of FTA backdoor through comprehensive experiments on four pub-
licly available datasets, namely Fashion-MNIST, FEMNIST, CIFAR-10, and Tiny-ImageNet. The clas-
sification model used in the experiments includes Classic CNN models, VGG11 [31], and ResNet18
[11]. These datasets and models are representative and commonly used in existing backdoor and FL
research works.

5.1.2. The structure of our models
• The structure of classification models for Fashion-MNIST and FEMNISTWe use an 8-layer
classic CNN architecture for training Fashion-MNIST and FEMNIST datasets. The details are
shown in table 5.1.

Table 5.1: The structure of classic CNN model.

Parameters Shape Hyperparameters of layer

Conv2d 1*32*3*3 stride = (1, 1)
GroupNorm 32*32 eps = 10−5

Conv2d 32*64*3*3 stride = (1, 1)
GroupNorm 32*64 eps = 10−5

Dropout2d p = 0.25
Linear 9216*128 bias = True

Linear(For Fashion-MNIST) 128*10 bias = True
Linear(For FEMNIST) 128*62 bias = True

• The structure of trigger generator In the FTA framework, the trigger generator plays a crucial
role in feature extraction in the sense that it aims to align the hidden features of poisoned samples
with the target label samples. We utilize the Autoencoder as the trigger generator due to its
ability to capture essential features of input and generate outputs satisfying our needs. Moreover,
we find that U-Net exhibits comparable performance for trigger generation while requiring less
training data, as stated in [9]. Therefore, we include U-Net in our experiments. Both U-Net and
autoencoder architectures used to train the trigger generator gξ are similar to those presented in
[9].

12
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• The structure of classification models for CIFAR-10 and Tiny-ImageNet We use a similar
ResNet-18 architecture as in [36] for training CIFAR-10 and Tiny-ImageNet.

5.1.3. Tasks.
There are 4 computer vision tasks in total using different datasets, classification models, and trigger
generators respectively. The details are depicted in table 5.2. To prove the stealthiness and further
robustness against defenses of FTA, we use a decentralized setting with non-i.i.d. data distribution
among all agents. The attacker chooses the all-to-one type of backdoor attack (except Edge-case
[34]), fooling the global model to misclassify the poisoned images of any label to an attacker-chosen
target label. Following a practical scenario for the attacker given in [40], 10 agents among thousands of
agents are selected for training in each round and their updates are used for aggregation and updating
the server model. We apply backdoor attacks from different phases of training. In FEMNIST task,
we follow the same setting as [36], where the attacker begins to attack when the benign accuracy of
global models starts to converge. For other tasks, we perform backdoor attacks at the beginning of FL
training. In this sense, as mentioned in [36], benign updates are more likely to share common patterns
of gradients and have a larger magnitude than malicious updates, which can significantly restrict the
effectiveness of malicious updates. Note we consider such a setting for the bottom performance of
attacks and further, we still see that our attack performs more effectively than prior works in this case
(see section 5.2).

Table 5.2: The datasets, and their corresponding models and hyperparameters.

Fahion-MNIST FEMNIST CIFAR-10 Tiny-ImageNet

Classes 62 10 10 200

Size of training set 60000 737837 50000 100000

Size of testing set 10000 80014 10000 10000

Total agents 2000 3000 1000 2000

Malicious agents 2 3 1 2
Agents per FL round 10 10 10 10

Phase to start attack Attack from scratch Attack after convergence Attack from scratch Attack from scratch

Poison fraction 0.2

Trigger size 2 1.5 1.5 3

Dataset size of trigger generator 1024

Epochs of benign task 2 4 5 5

Epochs of backdoor task 5 10 10 10
Learning rate of trigger generator 0.01 0.01 0.001 0.01

Epochs of trigger generator 20 20 30 30

Local data distribution non-i.i.d.

Classification model Classic CNN Classic CNN Resnet18 Resnet18

Trigger generator model AutoEncoder AutoEncoder Unet AutoEncoder

Learning rate of benign task 0.1 0.01 0.01 0.001

Learning rate of backdoor task 0.1 0.01 0.01 0.01
Edge-case FALSE TRUE TRUE FALSE

Other hyperparameters Momentum:0.9, Weight Decay: 10−4

5.1.4. Experiment settings.
The implementation of all the compared attacks and FL framework are based on PyTorch [25]. We test
the experiments on a server with one Intel Xeon E5-2620 CPU and one NVIDIA A40 GPU with 32G
RAM.
In Fashion-MNIST, CIFAR-10 and Tiny-ImageNet, a Dirichlet distribution is used to divide training data
for the number of total agent parties, and the hyperparameter for distribution is 0.7 for the datasets.
For FEMNIST, we randomly choose data of 3000 users from the dataset and randomly distribute every
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training agent with the training data from 3 users. All parties use SGD as an optimizer and train for
local training epochs with a batch size of 256. A global model is shared by all agents, and updates of
10 agents will be selected for aggregating the global model. Benign agents train with a benign learning
rate for benign epochs. The attacker’s local training dataset is mixed with 80% correct labeled data and
20% poisoned data. The target labels are “sneaker” in Fashion-MNIST, “digit 1” in FEMNIST, “truck”
in CIFAR-10 and “tree frog” in Tiny-ImageNet. The attacker has its own local malicious learning rate
and epochs to maximize its backdoor performance. It also needs to train its local trigger generator with
learning rate and epochs before performing local malicious training on the downloaded global model.
Regarding the attack methods, we set the top-k ratio of 0.95 for Neurotoxin, in line with the recom-
mended settings in [40]. For DBA, we use 4 distributed strips as backdoor trigger patterns. Both the
baseline attack and Neurotoxin employ a “square” trigger pattern on the top left as the backdoor trig-
ger. We conduct Edge-case attack on CIFAR-10 and FEMNIST. Specifically, for CIFAR-10, we use the
southwest airplane as the backdoored images and set the target label as “bird”. For FEMNIST, we use
images of “7” in ARDIS [14] as poisoned samples with the target label set as the digit “1”. The dataset
settings of the experiments are the same as those used in [34].

5.1.5. Attack Settings.
As in [40], we assume that the attacker can only compromise a limited number of agents (<1% ) in
practice [30] and uses them to launch the attack by uploading manipulated gradients to the server.
Malicious agents can only participate in a constrained number of training rounds in FL settings. Note
even if the attacker has the above restrictions, our attack can still be effective, stealthy and robust
against defenses (see sections 5.2 and 5.3). Also, the effectiveness of the attack should last even
though the attacker stops the attack under robust FL aggregators (see figure 5.2 in section 5.2.2). We
test the stealthiness and durability of FTA with two attack modes respectively, i.e., fixed-frequency and
few-shot as [40].

• Fixed-frequencymode. The server randomly chooses 10 agents among all agents. The attacker
controls exactly one agent in each round in which they participate. For other rounds, 10 benign
agents are randomly chosen among all agents.

• Few-shot mode. The attacker participates only in Attack_num rounds. During these rounds,
we ensure that one malicious agent is selected for training. After Attack_num rounds or backdoor
accuracy has reached 95%, the attack will stop. Under this setting, the attack can take effect
quickly, and gradually weaken by benign updates after the attack is stopped. In our experiments,
the Attack_num is 100 for all attacks, and the total FL round is 1000 for CIFAR-10, and 500 for
other datasets.

5.1.6. Evaluation Metrics.
We evaluate the performance based on backdoor accuracy (BA) and benign accuracy according to
the following criteria: effectiveness and stealthiness against current SOTA defense methods under
fixed-frequency mode, durability evaluated under few-shot mode.

5.1.7. Comparison.
We compare FTA with three SOTA attacks, namely DBA, Neurotoxin and Edge-case [34], and the base-
line attack method described in [40] under different settings and defenses. The results demonstrate
that FTA delivers the best performance as compared to others.

5.2. Attack Effectiveness
5.2.1. Attack effectiveness under fixed-frequency mode.
Compared to the attacks with unified triggers, FTA converges much faster and delivers the best BA in all
cases, see figure 5.1. It can yield a high backdoor accuracy on the server model within very few rounds
(<50) and maintain above 97% accuracy on average. Especially in Tiny-ImageNet, FTA reaches 100%
accuracy extremely fast, with at least 25% advantage compared to others. In CIFAR-10, FTA achieves
nearly 83% BA after 50 rounds which is 60% higher than other attacks on average. There is only <5%
BA gap between FTA and Edge-case on FEMNIST in the beginning and later, they reach the same BA
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(a) Fashion-MNIST (b) FEMNIST

(c) CIFAR-10 (d) Tiny-ImageNet

Figure 5.1: Fixed-frequency attack performance under FedAvg. FTA is more effective than others.

after 100 rounds. We note that the backdoor task of Edge-case in FEMNIST is relatively easy, mapping
7-like images to the target label of digit “1”, which makes its convergence slightly faster than ours.

5.2.2. Attack effectiveness under few-shot mode.
The results under few-shot settings are shown in figure 5.2. All attacks reach a high BA rapidly af-
ter consistently poisoning the server model, then BA gradually drops after stopping attacking and the
backdoor injected into the server model is gradually weakened by the aggregation of benign updates.
FTA’s performance drops much slower than the baseline attack. For example, in Fashion-MNIST and
after 500 rounds, FTA still remains 73% BA, which is only 9% less than Neurotoxin, 61% higher than
the baseline. Moreover, FTA can beat DBA and the baseline on Tiny-ImageNet. After 500 rounds, FTA
maintains 37% accuracy while the baseline and DBA only have 5%, which is 45% less than Neurotoxin.
However, Neurotoxin cannot provide the same stealthiness as shown in following comparison under
robust FL defenses. Since malicious and benign updates have a similar direction by FTA, the effec-
tiveness of FTA’s backdoor can survive after few-shot attack. The results prove the durability of FTA.

5.2.3. Influence on Benign accuracy.
Like other SOTA attacks, FTA has a minor effect (no more than 1.5%) on benign accuracy. We show-
case the benign accuracy of both the baseline attack and FTA, and also consider the accuracy without
backdoor attacks under FedAvg. We start FTA and the baseline from a specific round (e.g., 0 or 200 for
different datasets) and perform the attacks during Attack_num rounds. We record the accuracy once
the attacks have ended. From table 5.3, it is evident that FTA results in a slightly smaller decrease in
the benign accuracy compared to baseline attack.

5.3. Stealthiness against Defensive Measures
We test the stealthiness (P1-2) and robustness of FTA and other attacks using 8 SOTA robust FL
defenses introduced in section 2.3, including norm clipping, FLAME, Multi-Krum, Trimmed-mean, RFA,
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(a) Fashion-MNIST (b) FEMNIST

(c) CIFAR-10 (d) Tiny-ImageNet

Figure 5.2: Few-shot attack performance under FedAvg. FTA is more durable than baseline.

Table 5.3: Benign accuracy of the baseline attack. FTA and no attackers circumstance under different datasets. Benign
accuracy drops by ≤ 1.5% in FTA compared to the accuracy without attack.

Dataset Attack start epoch Attack_num No attack (%) Baseline attack (%) FTA (%)

Fashion-MNIST 0 50 90.21 85.14 90.02
FEMNIST 200 50 92.06 91.27 92.05
CIFAR-10 0 100 61.73 56.34 60.61

Tiny-ImageNet 0 100 25.21 19.06 25.13

SignSGD, Foolsgold and SparseFed under fixed-frequency scenarios. All four tasks are involved in
this defense evaluation. The results show that FTA can break the listed defenses.

5.3.1. Resistance to Vector-wise Scaling
We use the norm clipping as the vector-wise scaling defense method, which is regarded as a potent
defense and has proven effective in mitigating prior attacks [30]. On the server side, norm clipping is
applied on all updates before performing FedAvg. Inspired by [21], we utilize the variant of this method
in our experiments. As introduced in section 5.1.3, if we begin the attack from scratch, the norm of
benign updates will be unstable and keep fluctuating, making us hard to set a fixed norm bound for all
updates. We here filter out the biggest and smallest updates and compute the average normmagnitude
based on the rest updates, and set it as the norm bound in current FL iteration.
As shown in figure 5.3, this variant of norm clipping can effectively undermine prior attacks in Fashion-
MNIST, CIFAR-10, and Tiny-ImageNet. It fails in FEMNIST because benign updates have a larger norm
(for example, 1.2 in FEMNIST at round 10, but only 0.3 in Fashion-MNIST), which cannot effectively
clip the norm of malicious updates, thus resulting in a higher BA of existing attacks. We see that FTA
provides the best BA which is less influenced by clipping than others. FTA only needs a much smaller
norm to effectively fool the global model. Although converging a bit slowly in FEMNIST, FTA can finally
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(a) Fashion-MNIST (b) FEMNIST

(c) CIFAR-10 (d) Tiny-ImageNet

Figure 5.3: The effectiveness of attack under norm clipping in 4 tasks.

output a similar performance (above 98%) compared to others.

5.3.2. Resistance to Cluster-based Filtering
The cluster-based filtering defense method is FLAME [21], which has demonstrated its effectiveness
in mitigating SOTA attacks against FL. It mainly uses HDBSCAN clustering algorithm based on cosine
similarity between all updates and strains the updates with the least similarity compared with other
updates. In figure 5.4, we see that FLAME can effectively sieve malicious updates of other attacks
in Fashion-MNIST and CIFAR-10, but provides relatively weak effectiveness in FEMNIST and Tiny-
ImageNet. This is so because data distribution among different agents are fairly in non-i.i.d. manner.
Cosine similarity between benign updates is naturally low, making malicious update possibly evade
from the clustering filter.
Similar to the result of Multi-Krum (see section 5.3.3), FTA achieves >99% BA and finishes the conver-
gence within 50 rounds in CIFAR-10 and Tiny-ImageNet, while delivering an acceptable degradation
of accuracy, <20%, in Fashion-MNIST. In FEMNIST, FTA converges slightly slower than the baseline
and Neurotoxin but eventually maintains a similar accuracy with only 2% difference. The result proves
that FTA enforces malicious updates to have highly cosine-similarity against benign updates due to the
same reason in section 5.3.3, so that it can bypass the defenses based on similarity of updates.

5.3.3. Resistance to Vector-wise filtering
Multi-Krum is used as the vector-wise defense method. As described in section 2.3, it calculates the
Euclidean distance between all updates and selects n − f − 1 updates with the smallest Euclidean
distances for aggregation. In figure 5.5, the defense manages to filter out almost all malicious updates
of prior attacks and effectively degrade their attacks’ performance. In contrast, local update of FTA
cannot be easily filtered and thus FTA outperforms others. In CIFAR-10 and Tiny-ImageNet, the attack
performance is steady for FTA (nearly 100%) within 40 rounds to converge. In FEMNIST, Multi-Krum
only results in a 10% BA degradation for FTA while BAs of others are restricted to 0%. In Fashion-
MNIST, Multi-Krum can sieve malicious updates of FTA occasionally, leading to a longer convergence
time, but still fails to completely defend the FTA.Malicious updates produced by FTA (which successfully
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(a) Fashion-MNIST (b) FEMNIST

(c) CIFAR-10 (d) Tiny-ImageNet

Figure 5.4: The effectiveness of attack under FLAME in 4 tasks.

eliminates the anomalies in P1-2) are with a similar Euclidean distance compared to benign updates,
making them more stealthy than other attacks’.

5.3.4. Resistance to Dimension-wise filtering
We choose Trimmed-mean as the representative of dimension-wise filtering. As mentioned in sec-
tion 2.3, the dimensions of updates are sorted respectively, and the topm highest and smallest updates
are removed, and the arithmetic mean of the rest parameters is computed for aggregated updates. In
our experiments, m is set as 2 because we assume there is no more than one malicious agent during
FL iteration, and setting a higher m can result in lower convergence. As shown in figure 5.6, Trimmed-
mean successfully filters out the compared attacks in Fashion-MNIST and Tiny-ImageNet, and its ef-
fects are weakened in CIFAR-10 and FEMNIST. However, FTA survives in all four tasks and performs
the best under trimmed-mean. In CIFAR-10, it completes the convergence within 30 rounds and re-
mains 99.9% BA. In Fashion-MNIST and FEMNIST, FTA takes above 50 rounds to fully converge, and
the final accuracy manages to reach 96%. The performance of FTA is significantly degraded in Tiny-
ImageNet, but still with 30% advantage over other attacks on average. The update of FTA shares a
similar weights/biases distribution of benign updates. This ensures our attack to defeat the defenses
based on dimension-wise filtering.

5.3.5. Resistance to RFA
In figure 5.7, FTA provides the best performance among others in Fashion-MNIST, CIFAR-10 and Tiny-
ImageNet. In FEMNIST, it converges much faster than prior attacks. Although its accuracy is 8% lower
than the baseline in the middle of training, FTA achieves the same performance at the end (of training).

5.3.6. Resistance to SignSGD
As shown in figure 5.8 (a)-(b), SignSGDmitigates prior backdoor attacks with a universal trigger pattern.
However, FTA still defeats it and remains 94% and 99% BA on Fashion-MNIST and Tiny-ImageNet,
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(a) Fashion-MNIST (b) FEMNIST

(c) CIFAR-10 (d) Tiny-ImageNet

Figure 5.5: The effectiveness of attack under Multi-Krum in 4 tasks.

respectively.

5.3.7. Resistance to Foolsgold
From figure 5.8 (c), we see that Foolsgold hinders the convergence speed of FTA in Fashion-MNIST,
which requires FTA to perform extra 25 rounds for convergence. In this sense, FTA still converges
much faster than others.

5.3.8. Resistance to Sparsification
We choose SparseFed as the representative of the sparsification defense. In figure 5.8 (d), only Neu-
rotoxin and FTA are capable of breaking through SparseFed on Tiny-ImageNet. The BA of Neurotoxin
exhibits fluctuations (between 22% and 36%) throughout the training process, unable to maintain a
continuous rise. In contrast, FTA demonstrates the ability to consistently poison the global model and
later achieves an impressive accuracy of 90% by round 150. The reason for the above performance
difference is that the backdoor task of FTA captures imperceptible perturbations on model parameters,
which eliminates the anomalies of poisoning training. The backdoor tasks trained by FTA are more
likely to contribute to the same dimensions of gradients as benign updates. Consequently, the top-k
filtering mechanism implemented in the server side is ineffective to filter out FTA’s backdoor effect.

5.4. Explanation via Feature Visualization by t-SNE
We use t-SNE [33] visualization result on Fashion-MNIST to illustrate why FTA is more stealthy than the
attacks without “flexible” triggers. We select 1,000 images from different classes uniformly and choose
another 100 images randomly from the dataset and add triggers to them (in particular, patch-based
trigger “square” in baseline method, flexible triggers in FTA). To analyze the hidden features of these
samples, we use two global poisoned models injected by baseline attack and FTA respectively. We
exploit the output of each sample in the last convolutional layer as the latent representation. Next, we
apply dimensionality reduction techniques and cluster the latent representations of these samples using
t-SNE. From figure 5.9 (a)-(b), We see that in the baseline, the Euclidean distance of clusters between
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(a) Fashion-MNIST (b) FEMNIST

(c) CIFAR-10 (d) Tiny-ImageNet

Figure 5.6: The effectiveness of attack under Trimmed-mean in 4 tasks.

images of the target label “7” and the poisoned images are clearly distinguishable. So the parameters
responsible for label mapping should do adjustments to map the hidden representations of poisoned
images to target label. In FTA, the hidden features of poisoned images overlapped with benign images
of target label, which eliminates the anomaly in feature extraction (P1). FTA can reuse the path of
benign tasks in the label mapping process, resulting in much less abnormality in label mapping (P2),
thus the malicious updates can be more similar to benign ones, see figure 5.9 (c)-(d), producing a
natural stealthiness.

5.5. Ablation Study in FTA Attack
We here analyze several hyperparameters that are critical for the FTA’s performance.

5.5.1. Trigger Size.
This size refers to the l2-norm bound of the trigger generated by the generator, corresponding to ϵ
in algorithm 1. If the size is set too large, the poisoned image can be easily distinguished (i.e., no
stealthiness) by human inspection in test/evaluation stage. On the other hand, if we set it too small,
the trigger will have a low proportion of features in the input domain. In this sense, the global model
will encounter difficulty in catching and learning these features of trigger pattern, resulting in a drop of
attack performance.
In figure 5.10, the trigger size significantly influences the attack performance in all the tasks. The ac-
curacies of FTA drop seriously and eventually reach closely to 0% while we keep decreasing the size
of the trigger, in which evidences can be seen in CIFAR-10, FEMNIST, and Tiny-ImageNet.
The sample-specific trigger with l2-norm bound of 2 in CIFAR-10 and Tiny-ImageNet is indistinguish-
able from human inspection (see figure 5.11), while for Fashion-MNIST and FEMNIST (images with
back-and-white backgrounds), additional noise can be still easily detected. Thus, a balance between
visual stealthiness and effectiveness should be considered before conducting an FTA. The benign and
poisoned samples with flexible triggers of different sizes generated by FTA are presented in figure 5.11.
For Tiny-ImageNet and CIFAR-10, it is hard for human inspection to immediately identify the triggers,
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(a) Fashion-MNIST (b) FEMNIST

(c) CIFAR-10 (d) Tiny-ImageNet

Figure 5.7: The effectiveness of attack under RFA in 4 tasks.

which proves the stealthiness in P3. In Fashion-MNIST and FEMNIST, the triggers are easier to distin-
guish because there is only one channel of the input samples in the datasets. But those flexible triggers
are still much more stealthy compared to those produced by prior attacks on FL (see figure 1.2).

5.5.2. Poison Fraction.
This is the fraction of poisoned training samples in the training dataset of the attacker. Setting a low
poison fraction can benefit the attack’s stealthiness by having less abnormality in parameters and less
influence on benign tasks. But this can slow down the attack effectiveness, as a side effect. Fortunately,
we find that FTA can still take effect under a low poison fraction. We set the local training batch size to
256 for all the tasks, follow the standard settings of other FL frameworks, and set the poison fraction as
0.2. As stated in section 5.2.3, this fraction setting cannot degrade the performance of benign accuracy
and meanwhile, we would like to explore further to examine the lower bound of the fraction which FTA’s
performance can tolerate. In figure 5.12, FTA is still effective whilst the fraction drops to 0.05. We also
find that sensitivities to poison fraction can vary among tasks. In Fashion-MNIST and CIFAR-10, FTA
remains its performance even if poison fraction = 0.01, in which only 3 samples are posoined in each
batch. As for FEMNIST and Tiny-ImageNet, under the same rate, the backdoor tasks are dramatically
weakened by the benign ones.

5.5.3. Dataset Size of Trigger Generator.
Theoretically, if this dataset is small-scale, the trigger generator could not be properly trained, thus
resulting in bad quality and further endangering the attack performance. From figure 5.13, we see that
this concern should not be crucial for FTA. During the training, if the attacker controls multiple agents,
it can merge all local datasets into one for generator training. However, in many cases, the attacker
can only control relatively limited agents and is provided by a small-scale dataset for training. Recall
that in algorithm 1 we use the same dataset for the malicious classification model and trigger generator
training. We set the size of dataset for learning trigger generator to 1024 for all tasks in default. Even
if the size of the dataset is only set to 32, FTA can provide a high attack performance (see figure 5.13).



5.5. Ablation Study in FTA Attack 22

(a) Fashion-MNIST (b) Tiny-ImageNet

(c) Fashion-MNIST (d) Tiny-ImageNet

Figure 5.8: (a)-(b): The effectiveness of attack under SignSGD in Fashion-MNIST and Tiny-ImageNet. (c): The effectiveness
of attack under Foolsgold in Fashion-MNIST. (d): The effectiveness of attack under SparseFed in Tiny-ImageNet.

We note that the training process here is somewhat similar to generative adversarial networks, in which
we do not require a large amount of samples in the training dataset.
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(a) Baseline Attack (b) FTA

(c) Euclidean distance (d) Cosine similarity

Figure 5.9: (a)-(b): T-SNE visualization of hidden features of input samples in Fashion-MNIST. The hidden features between
poisoned and benign samples of target label is indistinguishable in FTA framework. (c)-(d): Similarity comparison between

benign & malicious updates. FTA’s malicious updates is more similar to benign updates than the baseline attack’s.

(a) Fashion-MNIST (b) FEMNIST

(c) CIFAR-10 (d) Tiny-ImageNet

Figure 5.10: Different trigger sizes on backdoor accuracy.
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Figure 5.11: Visualization of backdoored images of different trigger sizes.

(a) Fashion-MNIST (b) FEMNIST

(c) CIFAR-10 (d) Tiny-ImageNet

Figure 5.12: Different poison fraction on backdoor accuracy.
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(a) Fashion-MNIST (b) FEMNIST

(c) CIFAR-10 (d) Tiny-ImageNet

Figure 5.13: Different dataset size of trigger generator on backdoor accuracy.



6
DISCUSSION

In this work, we concentrate on the computer vision tasks, which have been the focus of numerous ex-
isting works [36, 34, 9, 42, 23]. In the future, we intend to expand the scope of this work by applying our
design to other real-world applications, such as natural language processing (NLP) and reinforcement
learning (RL), as well as other vision tasks, e.g., object detection.
The primary focus of FTA is to achieve stealthiness rather than durability, in contrast to other attacks
such as Neurotoxin [40]. Neurotoxin manipulates malicious parameters based on gradients in magni-
tude, which yields a clear increase in the dissimilarity of parameters and thus harms the stealthiness of
the attack. FTA addresses the dissimilarity difference of weights/biases introduced by backdoor train-
ing by using a stealthy and adaptive trigger generator�which makes the hidden features of poisoned
samples similar to benign ones. We emphasize that the durability of backdoor attacks on FL is orthog-
onal to the main focus of this work, and we leave it as an open problem. A possible solution to achieve
persistence could be to decelerate the learning rate of malicious agents, as proposed in [1].
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7
CONCLUSION

We design an effective and stealthy backdoor attack against FL called FTA by learning an adaptive
generator to produce imperceptible and flexible triggers, making poisoned samples have similar hid-
den features to benign samples with target label. FTA can provide stealthiness and robustness in
making hidden features of poisoned samples consistent with benign samples of target label; reducing
the abnormality of parameters during backdoor task training; manipulating triggers with imperceptible
perturbation for training/testing stage; learning the adaptive trigger generator across different FL rounds
to generate flexible triggers with best performance. The empirical experiments demonstrate that FTA
can achieve a practical performance to evade SOTA FL defenses. We hope this work can inspire
follow-up studies that provide more secure and robust FL aggregation algorithms.
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