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Review 

A tale of two nitrous oxide reductases: a cautionary 
perspective
Sukhwan Yoon1, Min Joon Song1 and Michele Laureni2

Nitrous oxide reductases (N2OR) are the sole sink of the potent 
greenhouse gas nitrous oxide (N2O) in the environment. Having 
been studied for decades, N2OR have attracted renewed attention 
following the discovery of a previously unrecognized clade, now 
termed clade II. This clade exhibits unexpectedly widespread 
taxonomic distribution and prevalence across diverse 
environments, prompting research efforts to define and assign 
distinct clade-specific traits. In this perspective, we aim to critically 
review and evaluate dichotomous clade-based classifications, 
addressing oversimplifications and unresolved ambiguities in linking 
clade identity to physiological traits like substrate affinity, acid 
tolerance, and aerotolerance. Growing experimental evidence from 
N2O-reducing isolates and enrichments suggests a general 
difference in substrate affinity between the clades. Recent 
discoveries of N2O reduction at pH  <  5.0 attribute the long-sought 
acidophilic N2O reduction exclusively to organisms possessing 
clade II nosZ, and attempts have also been made to relate clade 
separation to aerotolerant N2O reduction. However, it is important 
to note that such binary characterizations are based on limited 
observations and lack a solid understanding of the underlying 
mechanisms, exposing them to bias and oversimplification risks. 
We emphasize the need for a balanced research effort to establish 
a robust link between ecophysiology and biochemistry, enabling a 
more accurate evaluation of clade-based characterizations and, 
ultimately, a deeper understanding and effective harnessing of 
N2O-reducing organisms.
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Nitrous oxide (N2O) is a potent greenhouse gas re
sponsible for 7.7% of the total radiative forcing from 
long-lived greenhouse gases, despite constituting merely 
ca. 330 ppbv of the Earth’s atmosphere [1]. Due to the 
high global warming potential of N2O, the biogeo
chemical processes involved with its production and 
consumption in the environment have been of utmost 
interest to environmental microbiologists for decades [2]. 
While a number of distinct pathways lead to N2O 
emission from diverse environments, only a single 
pathway, N2O reduction to N2 catalyzed by Nos-type 
nitrous oxide reductases (heretofore referred to as 
N2OR), serves as biogeochemical sink of N2O [2]. A 
diverse array of microorganisms harbor the nosZ gene 
encoding the catalytic subunit of N2OR and are capable 
of reducing N2O to N2, with N2O as the terminal elec
tron acceptor for energy conservation. Microbial N2O 
reduction has always attracted a fair amount of attention; 
nevertheless, it was the discovery of the environmental 
prevalence of a distinct clade of the nosZ gene, now re
ferred to as clade II nosZ, that sparked a broader interest 
in this pathway from both scientific and engineering 
perspectives [3,4].

Historically, N2OR was first discovered through phy
siological observations of denitrifiers, where N2O pro
duced as a free intermediate during reduction of NO3

− 

and NO2
− was found to be subsequently reduced to N2 

by an enzymatic reaction [5]. Although reports of N2O- 
reducing phenotype in denitrifiers harboring nosZ iden
tified as belonging to clade II can be found in the lit
erature, early physiological and biochemical studies 
focused almost exclusively on denitrifiers with nosZ now 
classified as clade I, such as Pseudomonas spp. (renamed 
as Stutzerimonas spp. in databases) and Paracoccus spp. 
[6,7]. Later, the discovery of NosZ-mediated N2O re
duction in Wolinella succinogens and the ensuing dis
coveries from physiological and genomic characterization 
posed a major challenge to the prevailing paradigm that 
N2O reduction is exclusive to denitrifiers [8,9]. Thanks 
to the expanding genome database and the advent of 
high-throughput sequencing, far-reaching implications 
of these earlier findings on nondenitrifier N2O reduction 
and the presence of the ‘unprecedented’ nos genes were 
eventually recognized [3,4]. Clade II nosZ not only out
numbers clade I nosZ in many environmental micro
biomes where nitrogen redox processes are of a great 
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concern (Table S1) but is also found in taxonomically 
diverse organisms that include nondenitrifiers [4,10,11]. 
As such, accumulating evidence increasingly under
scores the environmental importance of clade II nosZ. In 
this review, we synthesize key findings on clade I and 
clade II N2OR and the microorganisms that harbor and 
utilize these enzymes. We highlight the latest findings 
on clade-specific genomic, biochemical, and physiolo
gical traits but also caution against potentially over
simplified dichotomies, emphasizing the need to resolve 
remaining ambiguities.

Phylogenetic and functional split of 
microorganisms harboring clade I and II nosZ
The nosZ gene is relatively widespread among prokar
yotes, as reported in a recent genomic survey that 
identified nosZ in 12% of all sequenced bacterial and 
archaeal genomes [12]. Clade I nosZ are found mostly in 
the genomes affiliated to the phylum Proteobacteria, 
while clade II nosZ are found across a broader stretch of 
the bacterial domain that includes the phyla Campylo
bacterota, Firmicutes, Chloroflexi, Bacteroidota, Verrucomi
crobiota, Planctomycetota, Acidobacteriota, as well as 
Proteobacteria [12,13]. This broad distribution may be 
due to higher tendency of clade II nosZ for horizontal 
gene transfer, as suggested by the multiphyletic bran
ches in the nosZ phylogeny (Figure 1a). A unique group 
of haloarchaeal nosZ genes exhibits features aligning 
them with clade I, also challenging the potentially 
oversimplified notion that clade II is more diverse than 
clade I [14]. Both clade I and clade II nosZ genes are 
typically encoded within the genomic DNA; however, a 
plasmid-encoded clade I nosZ was reported in Methylo
cystis sp. SC2 [15]. The only consistent clade-specific 
features of nos clusters are the presence of nosR in clade I 
and that of nosB in clade II (Figure 1b), despite the 
literature references to the concerted presence of genes 
encoding cytochrome c and Fe-S proteins as a defining 
feature of clade II nos clusters [3,16,17].

As nosZ is regarded to have been inherited largely 
through vertical evolution, the taxonomic groups con
taining clade I and clade II nosZ are relatively distinct 
[12,18,19]. For instance, Pseudomonas spp. exclusively 
possess clade I nosZ, whereas Bacillus spp. exclusively 
possess clade II nosZ. However, several Betaproteobacteria 
genera are shared by organisms harboring clade I nosZ, 
clade II nosZ, or both (Figure 1a). Bradyrhizobium spp. 
are typically associated with clade I nosZ and Zooglea spp. 
with clade II nosZ; however, genomes assigned to these 
genera with the alternate clade have also been reported 
[20]. The fact that the only organisms identified with 
both clades of nosZ, Dechlorobacter hydrogenophilus LT-1, 
Thauera butanivorans NBRC103042, and Thauera lina
loolentis 47Lol all belong to Betaproteobacteria is unlikely 
to be a mere coincidence [21]. Inferring nosZ type from 

16S rRNA-gene-based taxonomic affiliation can thus 
result in misleading interpretations of N2O-reducing 
microbial populations in microbiomes, particularly those 
with a high abundance of Betaproteobacteria.

Unlike clade I nosZ, a substantial fraction of clade II nosZ 
belongs to the microorganisms lacking NO-forming ni
trite reductase genes nirK and nirS [3,4,12,13]. According 
to the seminal Hallin et al. perspective article, 156 of 187 
published genomes containing clade I nosZ possess nirK 
or nirS, whereas only 54 of 113 genomes with clade II 
nosZ possess either gene [12]. Mounting evidence from 
metagenomic analyses supports this postulate, ruling out 
potential culture biases [11,13,20]. Given the prevalence 
of nondenitrifiers with clade II nosZ, its initial discovery 
in the nondenitrifiers Wolinella succinogens and Anaero
myxobacter dehalogenans was also unlikely coincidental. A 
majority of genomes of such nondenitrifier clade II N2O 
reducers harbor nrfA encoding the cytochrome c552 ni
trite reductases [3,12,13]. Functional association linking 
N2O reduction and dissimilatory nitrate reduction to 
ammonium (DNRA) remains largely unelucidated; 
however, a recent study involving a Bacillus isolate 
(strain DNRA2) demonstrated that clade II N2OR fa
cilitates removal of N₂O, a byproduct of DNRA often 
accounting for several percentage of NO3

− reduced, al
leviating N2O-induced inhibition of nrfA transcription 
following oxic-anoxic transitions [22].

Differential substrate affinities — a clade- 
wide trait?
The environmental relevance of the clade I versus clade 
II nosZ dichotomy primarily stems from the role of N2O 
reducers in mitigating N2O emissions [2,23,24]. N2O 
reductases inherently mitigate N2O emissions; without 
them, denitrification, one of the most prevalent redox 
reactions constantly occurring in various environments, 
would produce and emit N₂O in amounts stoichiometric 
to the NO₃− reduced [2,13,23]. Particularly con
sequential in this regard is the role of N2OR-possessing 
organisms in reducing fugitive N2O, often present at 
micromolar or nanomolar concentrations [10,20,25,26]. 
Biokinetic studies have consistently shown that isolates 
with clade II nosZ genes grouped with those of De
chloromonas spp. and Azospira spp. exhibit whole-cell 
Michaelis constants (Km,app) indicative of high-affinity 
N2O reduction [26–28]. The Km,app value for De
chloromonas aromatica RCB was 0.324 μM, equivalent to 
15 ppmv in the gaseous phase at 25°C and 1 atm [26]. 
Consistent with this observation, an independent study 
reported a Km,app value of 0.866 μM for Azospira sp. I13, 
whose NosZ shares > 85% amino acid identity with those 
of D. aromatica RCB [28]. Furthermore, reactor enrich
ments with N2O as the limiting substrate exhibited 
pronounced expression of nosZ affiliated with the De
chloromonas-like group, corroborating the hypothesis that 
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Figure 1  

Current Opinion in Microbiology

Phylogeny and gene cluster organization of diverse clade I and clade II nitrous oxide reductases. (a) Maximum likelihood phylogenetic tree (RAxML-NG) 
constructed with 375 nonredundant nosZ sequences aligned using MAFFT v7.525 and trimmed using trimAI v1.5.0. 663 nosZ sequences were extracted from 
5776 prokaryotic genomes downloaded from GTDB release 220, and 10 additional sequences were manually retrieved from multiple databases. The in silico 
translated sequences were clustered at 87% identity using CD-HIT v4.8.1 to reduce redundancy. Wolinella succinogenes DSM 1740 nosZ was manually 
replaced with the GenBank sequence (CAG26676.1) to reflect biochemical characterization data (also applied to panel b). The tree was visualized using ggtree 
v3.14.0 on RStudio 2024.12.1. (b) nos gene clusters of physiologically verified N2O-reducing organisms described in the text. Only closed genomes were 
considered. Putative nos-cluster genes were predicted using KofamScan v1.3.0, InterProScan 5.69-101.0 (reference: Pfam release 37.0 and NCBIfam release 
15.0), and DIAMOND BLASTP (reference: NCBI RefSeq nr database accessed February 2024). nosB genes were predicted using OrthoFinder v3.0.1b1 
against nosB genes in genomes of D. nitrosoreducens PR and A. dehalogenans 2CP-C. Clusters were visualized using gggenes and arranged according to 
their positions in the NosZ phylogenetic tree. Accession numbers and taxonomic annotations of nosZ sequences used are provided in Table S3.
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this particular group of NosZ possesses a distinguishably 
high affinity that enables their hosts to scavenge 
N2O [20,29].

Conversely, several clade I nosZ-harboring denitrifiers 
closely related with the most well-studied denitrifier 
taxa, Pseudomonas spp. and Paracoccus spp., exhibited 
Km,app values orders of magnitude higher than those of 
Dechloromonas spp. and Azospira spp. The Km,app values 
measured for Pseudomonas stutzeri DCP-Ps1 and 
Paracoccus denitrificans NBRC102528, sharing 58% iden
tity in their NosZ amino acid sequences, were as high as 
35 μM [26,28]. Although not as pronounced as these 
extremes with a two-order-of-magnitude difference, the 
whole-cell kinetics data from literature consistently dis
tinguish the two NosZ clades based on their affinity to 
N2O [26,28,30,31]. Caution should be taken, however, to 
avoid making a hasty generalization, assuming that clade 
II N₂O reducers universally exhibit higher affinity than 
clade I N₂O reducers. Both clade I and clade II nosZ 
have within-clade diversity that extends well beyond the 
organisms whose N2O reduction kinetics data are cur
rently available. Despite the abundance and ecological 
significance of Bacillus spp. (clade II) and Bradyrhizobium 
spp. (mostly clade I) in N2O-relevant environmental 
microbiomes, their N2O reduction kinetics have not yet 
been reported, nor has the underlying biochemical basis 
been identified [32,33]. N2OR have been purified and 
biochemically characterized for decades; however, 
among clade II Nos, only the one from W. succinogens has 
been purified and examined in vitro [34]. The Michaelis 
constant (Km) of W. succinogens N2OR was comparable to 
the Km value of purified clade I P. denitrificans Nos, 
which, confoundingly, was fivefold lower than the Km,app 
value measured with whole-cell P. denitrificans [34–36]. 
Adding complexity, whole-cell N2O reduction kinetics 
vary substantially depending on the methodological ap
proach and/or the incubation condition, for example, 
temperature and electron donor type, even within a 
single organism (Table S2) [31]. In summary, while it 
may be reasonable to highlight the association of clade II 
Nos with high-affinity N2O reduction, it would be pre
mature to conclude that clade I and clade II Nos target 
distinct N2O concentration ranges.

Another essential yet underexplored aspect of under
standing the N2O sink capabilities of different N2O re
ducers concerns the threshold N2O concentrations 
required to induce NosZ expression and initiate N2O 
reduction. The chemostat observations that 
Dechloromonas/Azospira-like clade II N2O reducers 
dominate under N2O-limiting steady-state condition 
suggest that these organisms, characterized by low 
Km,app values, may also have lower thresholds; however, 
systematic physiological study supporting the hypothesis 
is lacking [20,29]. Exploring these thresholds across 
different levels of microbial complexity and identifying 

potential clade-specific trends and correlations with 
Km,app values would represent an invaluable avenue for 
future research.

Are acido- and oxygen-tolerances in nitrous 
oxide reduction clade-specific features?
Two recent breakthrough studies identified micro
organisms, both harboring clade II nosZ, expanding the 
previously known pH range for N2O reduction. Acidity 
has long been identified as one of the environmental 
factors typically inhibiting N2O reduction [37]. Studies 
with both pure cultures and complex consortia, as well as 
field experiments, have consistently demonstrated that 
N2O emissions from denitrification increase at acidic pH 
[37–39]. One of the breakthroughs, challenging the 
perception, found an extreme acidophilic methanotroph 
affiliated with the phylum Verrucomicrobia (Methylacidi
philum caldifontis IT6) capable of reducing N2O at pH 
2.0 using methanol as the electron donor [40]. Another 
study reported N2O reduction at pH 4.5 by a co-culture 
of a nosZ-lacking Serratia strain and an unisolatable De
sulfosporosinus strain possessing a clade II nosZ sharing 
48.5% amino acid identity with A. dehlogenans nosZ [16]. 
A follow-up study identified the same group dominating 
the nosZ pool in an N2O enrichment incubated at pH 
4.5, corroborating that Desulfosporosinus N2OR were ex
pressed, properly synthesized, and utilized for energy 
conservation at acidic pH [41]. The nosZ genes of M. 
caldifontis IT6 and Desulfosporosinus spp. are both located 
within the subgroups associated with putative horizontal 
gene transfers (Figure 1a). This, along with the absence 
of distinguishing feature in their NosZ amino acid se
quences compared to those of neutrophilic N2O re
ducers (Figure S1), suggests that these acidophilic 
microorganisms likely acquired the nosZ genes through a 
recent horizontal transfer. The historical elusiveness of 
acidophilic N2O reducers may have been due to the 
rarity of such events in nitrogen-deficient acidic en
vironments, where these organisms were found.

Perhaps, it is not coincidental that M. caldifontis IT6 and 
Desulfosporosinus spp., currently the only microorganisms 
with verified N2O reduction activity at pH below 5.0, 
harbor clade II nosZ genes [16,40,41]. A recent field 
study conducted on nitrate-contaminated groundwater at 
Oak Ridge also linked acidophilic N2O reduction ac
tivity (pH ∼4.0) to the abundance of clade II nosZ [17]. 
The profiles of these metagenomic nosZ genes were not 
disclosed; however, as the diversity and uniqueness of 
these genes were mentioned, it is likely that these nosZ 
genes share only limited similarity with the Desulfospor
osinus-like nosZ group or the nosZ gene of M. caldifontis 
IT6 [16,40]. That acidophilic N2O reduction has been 
witnessed in such diverse clade II nosZ-harboring N2O 
reducers may suggest acid tolerance as a general trait of 
clade II N2OR. To this end, a closer scrutiny of the 
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potential roles of the clade II–specific secretion and 
maturation mechanisms in acid tolerance may also prove 
to be a highly worthwhile avenue for future research 
[16]. Another plausible hypothesis from an evolutionary 
perspective is that the propensity of clade II nosZ for 
horizontal transfers may have facilitated the dissemina
tion of N2O-reducing capability to diverse acidophilic 
microorganisms.

Whether clade-specificity is relevant to O2 resilience of 
N2O reduction has also been hypothesized but remains 
unresolved. N2O reduction has been regarded as the 
most oxygen-sensitive step in the denitrification 
pathway, highly susceptible to O2 inhibition [42]. The 
clade II N2OR isolated from W. succinogens, an obligately 
anaerobic organism, was found insensitive to O2 ex
posure, in a clear contrast to the response of isolated 
clade I N2OR [34,43]. These in vitro biochemical ob
servations prompted the hypothesis that clade II N2OR 
is oxygen insensitive at the enzyme level, despite lim
ited supporting biochemical evidence. At whole cell 
level, however, the physiological results obtained thus 
far are largely inconsistent. Several lines of evidence 
support that clade II N2OR do not irreversibly lose its 
in vivo activity under O2 presence. Gemmatimonas aur
antiaca T-27 N2OR was expressed only in O2 presence 
and became activated as the O2 level decreased [44]. 
Likewise, a clade II–dominated reactor culture sub
jected to alternating oxic-and-anoxic phases retained 
90% of its N2O-reducing capability during the oxic 
phases ([O2]  > 6.5 mg/l) [45]. Conversely, several whole- 
cell studies clearly demonstrated the absence of N2O 
reduction activity in cultures of clade II N2O reducers, 
for example, D. aromatica RCB, in the presence of O2 
[30]. Further complicating the picture, aerobic deni
trification phenotypes have been observed in cultures of 
denitrifiers possessing clade I nosZ, for example, Stut
zerimonas stutzeri ZoBell. and Paracoccus denitrificans 
JCM21484. [30].

Aerobic N2O reduction, as a part of denitrification or an 
independent redox reaction, remains a highly con
troversial topic [38,46]. In dense microbial cultures, an
oxic or microoxic niches can form, allowing even the 
most O2-sensitive N2O reducers to perform N2O re
duction within microenvironments shielded from 
oxygen [47]. Even organisms with aerotolerant N2OR 
may have evolved to restrict its expression in the pre
sence of O2, to channel electrons to O2 for a higher 
bioenergetic efficiency [46]. Thus, it is important to ac
knowledge that aerotolerance at the whole-cell level 
may depend on factors beyond the O2-sensitivity of 
N2OR. Additionally, it is important to note that in vitro 
biochemical assays have been conducted with N2OR 
from only a limited number of microorganisms, which 
include that of W. succinogens as the only clade II N2OR.

Concluding remarks
Just a little over a decade has passed since two 
groundbreaking articles, published nearly simulta
neously, brought the true nosZ diversity into spotlight 
[3,4]. Early physiological observations have suggested 
that binary categorization of micro-organisms possessing 
these structurally distinct Nos enzymes may be possible. 
The hypothesized dichotomy potentially holds broad 
biogeochemical and biotechnological implications. Mul
tiple lines of physiological and ecological evidence exist 
supporting the superior ability of clade II N2O reducers 
in metabolizing low concentrations of N2O. Likewise, 
clade II N2O reducers have been repeatedly associated 
with acidophilic N2O reduction. Furthermore, bio
chemical and ecophysiological observations hint to the 
fact that clade II NosZ may feature higher O2 tolerance. 
However, inconsistencies and ambiguities persist, bar
ring definitive conclusions as to whether these supposed 
dichotomies reflect true distinctions or are artifacts of the 
still limited number of physiological studies. To date, 
research on N2O reduction has been disproportionately 
focused on readily cultivable organisms or multi-omics- 
based ecological analyses building up a legacy of corre
lational and circumstantial evidence regarding NosZ di
chotomies. Research should prioritize the elucidation of 
the biochemical basis, or lack thereof, underlying the 
observed or hypothesized clade-specific traits. Beyond 
current approaches, structural analysis, facilitated by re
cent advances in cryo-electron microscopy (cryo-EM) 
technology, offers an immediate opportunity. Ad
ditionally, expanding the focus to habitats traditionally 
less studied for reductive nitrogen metabolisms, such as 
terrestrial and marine hydrothermal systems and oxic 
groundwater, may enable the enrichment and isolation 
of previously unrecognized acidophilic or aerotolerant 
N2O reducers. These future research efforts will prove 
essential for reshaping and clarification of the clade 
I versus clade II framework and for effective utilization 
of N2O-reducing organisms in emission mitigation stra
tegies.
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