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Review
A tale of two nitrous oxide reductases: a cautionary n
perspective S

Sukhwan Yoon', Min Joon Song' and Michele Laureni®

Nitrous oxide reductases (N20OR) are the sole sink of the potent
greenhouse gas nitrous oxide (N2O) in the environment. Having
been studied for decades, N20OR have attracted renewed attention
following the discovery of a previously unrecognized clade, now
termed clade Il. This clade exhibits unexpectedly widespread
taxonomic distribution and prevalence across diverse
environments, prompting research efforts to define and assign
distinct clade-specific traits. In this perspective, we aim to critically
review and evaluate dichotomous clade-based classifications,
addressing oversimplifications and unresolved ambiguities in linking
clade identity to physiological traits like substrate affinity, acid
tolerance, and aerotolerance. Growing experimental evidence from
N2O-reducing isolates and enrichments suggests a general
difference in substrate affinity between the clades. Recent
discoveries of N,O reduction at pH < 5.0 attribute the long-sought
acidophilic NoO reduction exclusively to organisms possessing
clade Il nosZ, and attempts have also been made to relate clade
separation to aerotolerant N,O reduction. However, it is important
to note that such binary characterizations are based on limited
observations and lack a solid understanding of the underlying
mechanisms, exposing them to bias and oversimpilification risks.
We emphasize the need for a balanced research effort to establish
a robust link between ecophysiology and biochemistry, enabling a
more accurate evaluation of clade-based characterizations and,
ultimately, a deeper understanding and effective harnessing of
N2O-reducing organisms.
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Nitrous oxide (N,O) is a potent greenhouse gas re-
sponsible for 7.7% of the total radiative forcing from
long-lived greenhouse gases, despite constituting merely
ca. 330 ppbv of the Earth’s atmosphere [1]. Due to the
high global warming potential of N,O, the biogeo-
chemical processes involved with its production and
consumption in the environment have been of utmost
interest to environmental microbiologists for decades [2].
While a number of distinct pathways lead to N,O
emission from diverse environments, only a single
pathway, N,O reduction to N, catalyzed by Nos-type
nitrous oxide reductases (heretofore referred to as
N20R), serves as biogeochemical sink of N,O [2]. A
diverse array of microorganisms harbor the #0sZ gene
encoding the catalytic subunit of N2OR and are capable
of reducing N,O to N,, with N,O as the terminal elec-
tron acceptor for energy conservation. Microbial N,O
reduction has always attracted a fair amount of attention;
nevertheless, it was the discovery of the environmental
prevalence of a distinct clade of the #osZ gene, now re-
ferred to as clade II #osZ, that sparked a broader interest
in this pathway from both scientific and engineering
perspectives [3,4].

Historically, N20OR was first discovered through phy-
siological observations of denitrifiers, where N,O pro-
duced as a free intermediate during reduction of NO;~
and NO,~ was found to be subsequently reduced to N,
by an enzymatic reaction [5]. Although reports of N,O-
reducing phenotype in denitrifiers harboring #osZ iden-
tified as belonging to clade II can be found in the lit-
erature, early physiological and biochemical studies
focused almost exclusively on denitrifiers with #osZ now
classified as clade 1, such as Pseudomonas spp. (renamed
as Stutzerimonas spp. in databases) and Paracoccus spp.
[6,7]. Later, the discovery of NosZ-mediated N,O re-
duction in Wolinella succinogens and the ensuing dis-
coveries from physiological and genomic characterization
posed a major challenge to the prevailing paradigm that
N,O reduction is exclusive to denitrifiers [8,9]. Thanks
to the expanding genome database and the advent of
high-throughput sequencing, far-reaching implications
of these earlier findings on nondenitrifier N,O reduction
and the presence of the ‘unprecedented’ #os genes were
eventually recognized [3,4]. Clade II #osZ not only out-
numbers clade I #osZ in many environmental micro-
biomes where nitrogen redox processes are of a great
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concern (I'able S1) but is also found in taxonomically
diverse organisms that include nondenitrifiers [4,10,11].
As such, accumulating evidence increasingly under-
scores the environmental importance of clade II #osZ. In
this review, we synthesize key findings on clade I and
clade II N,OR and the microorganisms that harbor and
utilize these enzymes. We highlight the latest findings
on clade-specific genomic, biochemical, and physiolo-
gical traits but also caution against potentially over-
simplified dichotomies, emphasizing the need to resolve
remaining ambiguities.

Phylogenetic and functional split of
microorganisms harboring clade | and Il nosZ
The nosZ gene is relatively widespread among prokar-
yotes, as reported in a recent genomic survey that
identified #osZ in 12% of all sequenced bacterial and
archaeal genomes [12]. Clade 1 #osZ are found mostly in
the genomes affiliated to the phylum Proteobacteria,
while clade 11 #osZ are found across a broader stretch of
the bacterial domain that includes the phyla Campylo-
bacterota, Firmicutes, Chloroflexi, Bacteroidota, Verrucomi-
crobiota, Planctomycetota, Acidobacteriota, as well as
Proteobacteria [12,13]. This broad distribution may be
due to higher tendency of clade II #o0sZ for horizontal
gene transfer, as suggested by the multiphyletic bran-
ches in the 7osZ phylogeny (Figure 1a). A unique group
of haloarchaeal #osZ genes exhibits features aligning
them with clade I, also challenging the potentially
oversimplified notion that clade II is more diverse than
clade I [14]. Both clade I and clade II #osZ genes are
typically encoded within the genomic DNA; however, a
plasmid-encoded clade 1 #osZ was reported in Methylo-
¢ystis sp. SC2 [15]. The only consistent clade-specific
features of nos clusters are the presence of #osR in clade I
and that of #osB in clade II (Figure 1b), despite the
literature references to the concerted presence of genes
encoding cytochrome ¢ and Fe-S proteins as a defining
feature of clade II #zos clusters [3,16,17].

As nosZ is regarded to have been inherited largely
through vertical evolution, the taxonomic groups con-
taining clade I and clade II #osZ are relatively distinct
[12,18,19]. For instance, Pseudomonas spp. exclusively
possess clade I nosZ, whereas Bacillus spp. exclusively
possess clade 11 #osZ. However, several Betaproteobacteria
genera are shared by organisms harboring clade 1 #osZ,
clade II nosZ, or both (Figure 1a). Bradyrkhizobium spp.
are typically associated with clade I #osZ and Zooglea spp.
with clade II »osZ; however, genomes assigned to these
genera with the alternate clade have also been reported
[20]. The fact that the only organisms identified with
both clades of #osZ, Dechlorobacter hydrogenophilus 1.'T-1,
Thauera butanivorans NBRC103042, and Thauera /lina-
loolentis 47101 all belong to Betaproteobacteria is unlikely
to be a mere coincidence [21]. Inferring #osZ type from

16S rRNA-gene-based taxonomic affiliation can thus
result in misleading interpretations of N,O-reducing
microbial populations in microbiomes, particularly those
with a high abundance of Betaproteobacteria.

Unlike clade I #osZ, a substantial fraction of clade 1I #osZ
belongs to the microorganisms lacking NO-forming ni-
trite reductase genes ##7K and 778 [3,4,12,13]. According
to the seminal Hallin et al. perspective article, 156 of 187
published genomes containing clade 1 #zosZ possess nirk
or nirS, whereas only 54 of 113 genomes with clade II
nosZ possess either gene [12]. Mounting evidence from
metagenomic analyses supports this postulate, ruling out
potential culture biases [11,13,20]. Given the prevalence
of nondenitrifiers with clade II #osZ, its initial discovery
in the nondenitrifiers Wolinella succinogens and Anaero-
myxobacter dehalogenans was also unlikely coincidental. A
majority of genomes of such nondenitrifier clade IT N,O
reducers harbor #7fA encoding the cytochrome ¢ss, ni-
trite reductases [3,12,13]. Functional association linking
N,O reduction and dissimilatory nitrate reduction to
ammonium (DNRA) remains largely unelucidated;
however, a recent study involving a Bacillus isolate
(strain DNRA2) demonstrated that clade II N2OR fa-
cilitates removal of N20, a byproduct of DNRA often
accounting for several percentage of NO;~ reduced, al-
leviating N,O-induced inhibition of #7fA transcription
following oxic-anoxic transitions [22].

Differential substrate affinities — a clade-
wide trait?

The environmental relevance of the clade I versus clade
IT #0sZ dichotomy primarily stems from the role of N,O
reducers in mitigating N,O emissions [2,23,24]. N,O
reductases inherently mitigate N,O emissions; without
them, denitrification, one of the most prevalent redox
reactions constantly occurring in various environments,
would produce and emit N20 in amounts stoichiometric
to the NOs~ reduced [2,13,23]. Particularly con-
sequential in this regard is the role of N2OR-possessing
organisms in reducing fugitive N,O, often present at
micromolar or nanomolar concentrations [10,20,25,26].
Biokinetic studies have consistently shown that isolates
with clade II #osZ genes grouped with those of De-
chloromonas spp. and Azospira spp. exhibit whole-cell
Michaelis constants (K, .pp) indicative of high-affinity
N,O reduction [26-28]. The K, ,,, value for De-
chloromonas aromatica RCB was 0.324 pM, equivalent to
15 ppmv in the gaseous phase at 25°C and 1atm [26].
Consistent with this observation, an independent study
reported a K, ,pp value of 0.866 pM for Azospira sp. 113,
whose NosZ shares > 85% amino acid identity with those
of D. aromatica RCB [28]. Furthermore, reactor enrich-
ments with N,O as the limiting substrate exhibited
pronounced expression of zosZ affiliated with the De-
chloromonas-like group, corroborating the hypothesis that
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Figure 1
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Phylogeny and gene cluster organization of diverse clade | and clade Il nitrous oxide reductases. (a) Maximum likelihood phylogenetic tree (RAXML-NG)
constructed with 375 nonredundant nosZ sequences aligned using MAFFT v7.525 and trimmed using trimAl v1.5.0. 663 nosZ sequences were extracted from
5776 prokaryotic genomes downloaded from GTDB release 220, and 10 additional sequences were manually retrieved from multiple databases. The in silico
translated sequences were clustered at 87% identity using CD-HIT v4.8.1 to reduce redundancy. Wolinella succinogenes DSM 1740 nosZ was manually
replaced with the GenBank sequence (CAG26676.1) to reflect biochemical characterization data (also applied to panel b). The tree was visualized using ggtree
v3.14.0 on RStudio 2024.12.1. (b) nos gene clusters of physiologically verified NoO-reducing organisms described in the text. Only closed genomes were
considered. Putative nos-cluster genes were predicted using KofamScan v1.3.0, InterProScan 5.69-101.0 (reference: Pfam release 37.0 and NCBIfam release
15.0), and DIAMOND BLASTP (reference: NCBI RefSeq nr database accessed February 2024). nosB genes were predicted using OrthoFinder v3.0.1b1
against nosB genes in genomes of D. nitrosoreducens PR and A. dehalogenans 2CP-C. Clusters were visualized using gggenes and arranged according to
their positions in the NosZ phylogenetic tree. Accession numbers and taxonomic annotations of nosZ sequences used are provided in Table S3.
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this particular group of NosZ possesses a distinguishably
high affinity that enables their hosts to scavenge
N,O [20,29].

Conversely, several clade 1 nosZ-harboring denitrifiers
closely related with the most well-studied denitrifier
taxa, Pseudomonas spp. and Paracoccus spp., exhibited
Kiapp Values orders of magnitude higher than those of
Dechloromonas spp. and Azospira spp. The K, ., values
measured for  Pseudomonas  sturzeri DCP-Psl and
Paracoccus denitrificans NBRC102528, sharing 58% iden-
tity in their NosZ amino acid sequences, were as high as
35pM [26,28]. Although not as pronounced as these
extremes with a two-order-of-magnitude difference, the
whole-cell kinetics data from literature consistently dis-
tinguish the two NosZ clades based on their affinity to
N,O [26,28,30,31]. Caution should be taken, however, to
avoid making a hasty generalization, assuming that clade
IT N20 reducers universally exhibit higher affinity than
clade T N20 reducers. Both clade I and clade II #osZ
have within-clade diversity that extends well beyond the
organisms whose N,O reduction kinetics data are cur-
rently available. Despite the abundance and ecological
significance of Bacillus spp. (clade 1) and Bradyrhizobium
spp. (mostly clade I) in N,O-relevant environmental
microbiomes, their N,O reduction kinetics have not yet
been reported, nor has the underlying biochemical basis
been identified [32,33]. N2OR have been purified and
biochemically characterized for decades; however,
among clade II Nos, only the one from W. succinogens has
been purified and examined /z vitro [34]. The Michaelis
constant (K.,) of W. succinogens N20OR was comparable to
the K,, value of purified clade 1 P. denitrificans Nos,
which, confoundingly, was fivefold lower than the K, .
value measured with whole-cell P. denitrificans [34-36].
Adding complexity, whole-cell N,O reduction Kkinetics
vary substantially depending on the methodological ap-
proach and/or the incubation condition, for example,
temperature and electron donor type, even within a
single organism (T'able S2) [31]. In summary, while it
may be reasonable to highlight the association of clade 11
Nos with high-affinity N,O reduction, it would be pre-
mature to conclude that clade I and clade IT Nos target
distinct N,O concentration ranges.

Another essential yet underexplored aspect of under-
standing the N,O sink capabilities of different N,O re-
ducers concerns the threshold N,O concentrations
required to induce NosZ expression and initiate N,O
reduction.  The  chemostat  observations  that
Dechloromonas|/Azospira-like  clade II N,O reducers
dominate under N,O-limiting steady-state condition
suggest that these organisms, characterized by low
Ki, app Values, may also have lower thresholds; however,
systematic physiological study supporting the hypothesis
is lacking [20,29]. Exploring these thresholds across
different levels of microbial complexity and identifying

potential clade-specific trends and correlations with
Ky, app Values would represent an invaluable avenue for
future research.

Are acido- and oxygen-tolerances in nitrous
oxide reduction clade-specific features?

Two recent breakthrough studies identified micro-
organisms, both harboring clade II #0sZ, expanding the
previously known pH range for N,O reduction. Acidity
has long been identified as one of the environmental
factors typically inhibiting N,O reduction [37]. Studies
with both pure cultures and complex consortia, as well as
field experiments, have consistently demonstrated that
N,O emissions from denitrification increase at acidic pH
[37-39]. One of the breakthroughs, challenging the
perception, found an extreme acidophilic methanotroph
affiliated with the phylum Verrucomicrobia (Methylacidi-
philum caldifontis 1T6) capable of reducing N,O at pH
2.0 using methanol as the electron donor [40]. Another
study reported N,O reduction at pH 4.5 by a co-culture
of a nosZ-lacking Serratia strain and an unisolatable De-
sulfosporosinus strain possessing a clade I #osZ sharing
48.5% amino acid identity with A. dehlogenans nosZ [16].
A follow-up study identified the same group dominating
the zosZ pool in an N,O enrichment incubated at pH
4.5, corroborating that Desulfosporosinus N2OR were ex-
pressed, properly synthesized, and utilized for energy
conservation at acidic pH [41]. The nosZ genes of M.
caldifontis I'T6 and Desulfosporosinus spp. are both located
within the subgroups associated with putative horizontal
gene transfers (Figure 1a). This, along with the absence
of distinguishing feature in their NosZ amino acid se-
quences compared to those of neutrophilic N,O re-
ducers (Figure S1), suggests that these acidophilic
microorganisms likely acquired the 7osZ genes through a
recent horizontal transfer. The historical elusiveness of
acidophilic N,O reducers may have been due to the
rarity of such events in nitrogen-deficient acidic en-
vironments, where these organisms were found.

Perhaps, it is not coincidental that M. caldifontis I'T6 and
Desulfosporosinus spp., currently the only microorganisms
with verified N,O reduction activity at pH below 5.0,
harbor clade II #osZ genes [16,40,41]. A recent field
study conducted on nitrate-contaminated groundwater at
Oak Ridge also linked acidophilic N,O reduction ac-
tivity (pH ~4.0) to the abundance of clade I #osZ [17].
The profiles of these metagenomic #osZ genes were not
disclosed; however, as the diversity and uniqueness of
these genes were mentioned, it is likely that these 7osZ
genes share only limited similarity with the Desulfospor-
osinus-like nosZ group or the nosZ gene of M. caldifontis
I'T6 [16,40]. That acidophilic N,O reduction has been
witnessed in such diverse clade II nosZ-harboring N,O
reducers may suggest acid tolerance as a general trait of
clade II N2OR. To this end, a closer scrutiny of the
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potential roles of the clade Il-specific secretion and
maturation mechanisms in acid tolerance may also prove
to be a highly worthwhile avenue for future research
[16]. Another plausible hypothesis from an evolutionary
perspective is that the propensity of clade II #osZ for
horizontal transfers may have facilitated the dissemina-
tion of N,O-reducing capability to diverse acidophilic
microorganisms.

Whether clade-specificity is relevant to O, resilience of
N,O reduction has also been hypothesized but remains
unresolved. N,O reduction has been regarded as the
most oxygen-sensitive step in the denitrification
pathway, highly susceptible to O, inhibition [42]. The
clade IT N2OR isolated from W. succinogens, an obligately
anaerobic organism, was found insensitive to O, ex-
posure, in a clear contrast to the response of isolated
clade I N20OR [34,43]. 'These iz vitro biochemical ob-
servations prompted the hypothesis that clade II N2ZOR
is oxygen insensitive at the enzyme level, despite lim-
ited supporting biochemical evidence. At whole cell
level, however, the physiological results obtained thus
far are largely inconsistent. Several lines of evidence
support that clade II N2OR do not irreversibly lose its
in vivo activity under O, presence. Gemmatimonas aur-
antiaca 'T-27 N20OR was expressed only in O, presence
and became activated as the O, level decreased [44].
Likewise, a clade II-dominated reactor culture sub-
jected to alternating oxic-and-anoxic phases retained
90% of its N,O-reducing capability during the oxic
phases ([O;] > 6.5 mg/l) [45]. Conversely, several whole-
cell studies clearly demonstrated the absence of N,O
reduction activity in cultures of clade IT N,O reducers,
for example, D. aromatica RCB, in the presence of O,
[30]. Further complicating the picture, aerobic deni-
trification phenotypes have been observed in cultures of
denitrifiers possessing clade I #osZ, for example, Sruz-
zerimonas stutzeri Z0Bell. and Paracoccus denitrificans
JCM21484. [30].

Aerobic N,O reduction, as a part of denitrification or an
independent redox reaction, remains a highly con-
troversial topic [38,46]. In dense microbial cultures, an-
oxic or microoxic niches can form, allowing even the
most O,-sensitive N,O reducers to perform N,O re-
duction within microenvironments shielded from
oxygen [47]. Even organisms with aerotolerant N2OR
may have evolved to restrict its expression in the pre-
sence of O,, to channel electrons to O, for a higher
bioenergetic efficiency [46]. Thus, it is important to ac-
knowledge that aerotolerance at the whole-cell level
may depend on factors beyond the O;-sensitivity of
N2OR. Additionally, it is important to note that iz vitro
biochemical assays have been conducted with N2OR
from only a limited number of microorganisms, which
include that of W. succinogens as the only clade II N2OR.

A tale of two nitrous oxide reductases Yoon, Song and Laureni 5

Concluding remarks

Just a little over a decade has passed since two
groundbreaking articles, published nearly simulta-
neously, brought the true #osZ diversity into spotlight
[3,4]. Early physiological observations have suggested
that binary categorization of micro-organisms possessing
these structurally distinct Nos enzymes may be possible.
The hypothesized dichotomy potentially holds broad
biogeochemical and biotechnological implications. Mul-
tiple lines of physiological and ecological evidence exist
supporting the superior ability of clade II N,O reducers
in metabolizing low concentrations of N,O. Likewise,
clade II N,O reducers have been repeatedly associated
with acidophilic N,O reduction. Furthermore, bio-
chemical and ecophysiological observations hint to the
fact that clade II NosZ may feature higher O, tolerance.
However, inconsistencies and ambiguities persist, bar-
ring definitive conclusions as to whether these supposed
dichotomies reflect true distinctions or are artifacts of the
still limited number of physiological studies. To date,
research on N,O reduction has been disproportionately
focused on readily cultivable organisms or multi-omics-
based ecological analyses building up a legacy of corre-
lational and circumstantial evidence regarding NosZ di-
chotomies. Research should prioritize the elucidation of
the biochemical basis, or lack thereof, underlying the
observed or hypothesized clade-specific traits. Beyond
current approaches, structural analysis, facilitated by re-
cent advances in cryo-electron microscopy (cryo-EM)
technology, offers an immediate opportunity. Ad-
ditionally, expanding the focus to habitats traditionally
less studied for reductive nitrogen metabolisms, such as
terrestrial and marine hydrothermal systems and oxic
groundwater, may enable the enrichment and isolation
of previously unrecognized acidophilic or aerotolerant
N,O reducers. These future research efforts will prove
essential for reshaping and clarification of the clade
I versus clade II framework and for effective utilization
of N,O-reducing organisms in emission mitigation stra-
tegies.
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