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Abstract

This thesis aims to gain insight into the global dynamic fluid-structure interaction response of a sub-
merged floating tunnel (SFT) under the wave and current loading to enhance the design. To this end, the
tunnel tube is modelled as a Euler-Bernoulli beam deformed in three directions (horizontal displacement,
vertical displacement, rotational angle), the discrete anchoring system as a continuous elastic foundation
considering geometrical nonlinearity. Then, the Morison equation is used to model the combined current
and wave loading and the oblique wave loading. A simplified wake oscillator and a non-simplified wake os-
cillator are used to model the vortex-induced vibration (VIV) under current loading. Subsequently, the modal
superposition method and Runge-Kutta method are applied to obtain the response of the SFT in the time do-
main. The Fourier transform and the wavelet transform are applied to the time domain signal to perform a
frequency domain analysis. Finally, a test on a scaled SFT model is used for a case study. A parametric study
is carried out based on the results to study the influence of the geometrical and structural design parameters.

The results show that the motions in the horizontal direction and the rotational direction are significantly
coupled together. Geometrical nonlinearity introduces the second-order effect to the system leading to a
complicated vertical motion with a considerably larger displacement compared with the linear case. The
amplitude of the VIV on the tunnel tube of the scaled model is very small based on the non-simplified wake
oscillator. Moreover, it is found that, basically, increase of the BWR, increase of the stiffness in the cables,
increase of the distribution of the net buoyancy in inclined cable, decrease of the tunnel length or decrease
of the inclination of the inclined cables can reduce the maximum response of the SFT.

Based on the above findings, it is concluded that a global dynamic analysis is suggested when a SFT is
expected to be subjected to oblique wave loadings. Geometrical nonlinearity is necessary to be considered for
an accurate analysis especially for the response in the vertical direction. It is also necessary to be considered
when the influence of the BWR is of interest. The VIV on the tunnel tube is negligible base on the scaled
model.
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1
Introduction

How to cross a water area to reach the other shore is a never-ending pursuit of all human beings. Nowa-
days, this topic is still of vital importance especially in Civil Engineering, as it is proved by the numerous
large infrastructures which have been built in the last few decades all over the world. For instance, the Akashi
Kaikyō Bridge designed to connect Kobe and Honshu in the Akashi Strait (Japan, completed in 1998), the
Channel Tunnel linking Folkestone, Kent, in England, with Coquelles, Pas-de-Calais, near Calais in north-
ern France, beneath the English Channel at the Strait of Dover (Europe, completed in 1994) and the Hong
Kong–Zhuhai–Macao Bridge (HZMB) connecting Hong Kong, Macau, and Zhuhai—three major cities on the
Pearl River Delta (China, completed in 2018). These cases probably represent the most advanced examples
of the structural solutions to link areas divided by the presence of waterways: Cable Supported Bridges (i.e.
Suspension or Cable stayed Bridges), Underground Tunnels and Immersed Tunnels (Figure 1.1).

Although these solutions are traditionally and widely used, the complexity of their design issues increases
as the distance and the depth of the water area to be covered grows up. Therefore, the crossing of long span
and deep water area can be very difficult and sometimes impossible. Moreover, the traditional methods fea-
ture some disadvantages which are unreasonable and inefficient in some cases. For instance, Cable Sup-
ported Bridges starts becoming cost-prohibitive due to the design requirement of higher towers as the span
extends; Underground Tunnels and Immersed Tunnels demand steeper access ramps as the water depth in-
creases, which implies a noticeably larger energy consumption and travel time.

A revolutionary technical solution, which can get over the above mentioned disadvantages, is the Sub-
merged Floating Tunnel (SFT), which is based on the idea of exploiting the load carrying capacity of water,
due to the Archimedes buoyancy (Faggiano et al., 2005). In fact, SFT is conceived as a tubular structure to be
placed at a prefixed depth in the water (Figure 1.1), anchored by a support system such as pontoons on the
surface or by anchoring to the water bed, preventing it from floating to the surface or submerging, respec-
tively. The tether systems play the role of constraining the tunnel, minimizing its displacements and stresses
induced by the environmental loading, such as the hydrodynamic loading, seismic loading, etc.

Figure 1.1: Waterway crossing methods

1



2 1. Introduction

1.1. Problem statement
Submerged Floating Tunnels (SFT) can provide a more economical means of crossing a body of water

than Cable Supported Bridges, Underground Tunnels and Immersed Tunnels, depending on the local sea
and hydrographic conditions. However, no country has yet constructed a structure of this type, given that this
concept has been in existence for a quarter of a century. Nowadays, Studies of SFTs are still being aggressively
promoted in many countries, covering not only the aspects of design and construction but also the aspects
of technical issues, psychological issues, and risk analysis. One of the most significant studies is the one on
dynamics behaviour of SFT.

Research on the dynamic behaviour of SFT is generally performed in 2D with Finite Element (FE) software,
such as ABAQUS, ANSYS or DIANA FEA, focusing mainly on one single detailed condition, such as Buoyancy-
weight-ratio (BWR), hydrodynamics and anchoring systems. However, to the knowledge of the author, no
references are available about the global (3D) dynamic behaviour of the SFT considering geometrical non-
linear anchoring system. Furthermore, a FE model is usually not parametric. Many FE models with different
geometries would be required to perform a parameter study. Therefore, it is desired to carry out a research
into the 3D dynamic behaviour of a SFT considering longitudinal behaviour and geometrical nonlinearity,
as well as provide a parametric model to investigate the influence of different parameters on the dynamic
response of a SFT.

1.2. Research objective
The main goal of this research is to gain insight into the global dynamic fluid-structure interaction re-

sponse of a submerged floating tunnel under the wave and current loading to enhance the design of a SFT. To
this end, this research will provide several models to analyze the dynamic response of a scaled model of a sub-
merged floating tunnel for various loading conditions. Furthermore, a parametric study will be performed to
identify the possibility to keep the response within certain limits.

1.3. Research question
Two main research questions are formulated to meet the research objective:

1. What is the global dynamic fluid-structure interaction response of a SFT under wave and current
loading?

2. Which parameters can be used to reduce the dynamic response of a SFT?

To be able to answer the main research questions, several sub-questions are formulated:

1. How can the global dynamic fluid-structure interaction response of a SFT with discrete anchor-
ing systems be modeled?

2. How does the stiffness of the anchoring system considering geometrical nonlinearity influence
the results?

3. How does the global dynamic analysis influence the results?

4. How do the geometrical and structural design parameters influence the dynamic response of a
SFT?

1.4. Scope and Approach
The developed model will only describe a simplified schematization of the Submerged Floating Tunnel.

The tunnel is considered as a Euler-Bernoulli beam. The discrete anchoring system is modelled as an equiva-
lent continuous distributed spring include or exclude geometrical nonlinearity. In addition, several assump-
tions will be made concerning the physics of the loads to be able to use the superposition principle and
potential flow theory. A modal domain approach will be used to obtain the dynamic response of a SFT. A
frequency analysis of the obtained results will be carried out to comprehend the physical properties of the
dynamic response. A case study with respect to a scaled physical model test will be performed and the results
will be used for further validation.
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1.5. Outline
The first part of the report presents a literature review where submerged floating tunnels are introduced

and all required theory for model development is explained. The literature review is divided into three chap-
ters. First, chapter 2 describes the developments regarding submerged floating tunnels to put this research
into perspective. Chapter 3 explains the most important concepts of structural dynamics in terms of modal
analysis and frequency domain analysis. Finally, chapter 4 introduces the hydrodynamics related to a SFT.

In the second part, the model development is addressed. First, the methods to derive a linear stiffness
model and a nonlinear stiffness model for the anchoring system are developed in chapter 5. Subsequently,
four different models are derived to perform global dynamic analysis regarding different assumptions and
loading conditions in chapter 6.

The third part describes an application of the model. First, a test about a scaled physical model of SFT
is introduced in chapter 7. Then, in chapter 8 the results of the dynamic response of this scaled model is
presented and discussed using physical principles. Finally, a parametric study based on the results in chapter
8 is described in chapter 9.

Finally, the conclusion and recommendations are presented in part 4. The outline of this report is illus-
trated in Figure 1.2.

Figure 1.2: Outline of the report
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2
Submerged floating tunnels

This chapter describes the state-of-the-art developments regarding submerged floating tunnels to put
this research into perspective. First, the concept of submerged floating tunnels is introduced in section 2.1.
Subsequently, some structural features and loading conditions relevant to this research are addressed in the
following sections.

2.1. Concept of submerged floating tunnels
A submerged floating tunnel (SFT), also known as submerged floating tube bridge (SFTB), suspended

tunnel, or Archimedes bridge, essentially contains a tubular structure floating underwater. A certain range
of water clearance is assured in order to avoid the impact of traffic and weather on the water surface and the
consideration of the water pressure. The tunnel is fixed in a position through anchorage systems comprised
of cables, rods or piles, either anchored to the seabed or pontoons at the surface, preventing it from floating
or submerging, respectively. (Figure 2.1)

Figure 2.1: The SFT waterway crossing solution (Martire, 2010)

The concept of SFT was born in the early decades of 1900 in Norway, which is based on technology ap-
plied to floating bridges and offshore structures. Therefore, only the great improvements achieved in floating
bridges and offshore technologies in the last thirty years allowed to solve the numerous problems that ham-
pered the realization of this kind of structure, so that several preliminary designs and feasibility studies have
been proposed in the last few years. Furthermore, since the construction of SFT is mostly similar to which
of Immersed Tunnels, the large experience gained in the field of Immersed Tunnels can be capitalised for
the development of SFT. These two waterway crossing methods are both modular structures. However, the
dynamic behaviour of SFT is certainly more complex than the one of the Immersed Tunnel.

With respect to traditional strait crossing solutions, the SFT undoubtedly features several advantages un-
der the structural, economic and environmental impact point of view. However, the actual construction of

7



8 2. Submerged floating tunnels

a Submerged Floating Tunnel still appears nowadays as a real challenge, since it deals with a completely in-
novative structural solution and no SFT has been erected up to today. Consequently, no experimental data
on its actual behaviour is available, which could fill the gap between the theoretical studies on SFT and its
construction.

Based on the above considerations, it is apparent that the first necessary step for the actual development
of Submerged Floating Tunnels, as a widespread technical solution for waterway crossings, is represented by
the design and construction of a SFT prototype. A SFT prototype is very useful for collecting the experimental
data needed to support the numerical and theoretical studies, and for the complete comprehension of the
actual behaviour of this kind of structures. This important initial step is going to be undertaken in the near
future since a Sino-Dutch joint group (CCCC SFT Technical Joint Research Team) has carried out the first 3D
physical test of a SFT prototype in the World to be fabricated and erected in the Tianjin (People’s Republic of
China) in 2019.

2.2. Structural features of the tunnel
2.2.1. Materials

The materials to be used for a Submerged Floating Tunnel are selected according to the structural and
functional performances such as the resistance to the environment condition, fabrication, assembly and
maintenance issues, time needed for the supply, material and constructional cost, etc (FEHRL (Forum of
European National Highway Research Laboratories), 1996). The structural solution can be optimized, con-
sidering the structural effectiveness, the constructability and the economical point of views. One of the most
suitable solutions is a composite structure involving several materials with their defects neutralized and with
their benefits exalted (Faggiano et al., 2005). The materials that could be used in the construction of the
tunnel modules of a SFT are:

• Steel;

• Reinforced Concrete;

• Aluminum alloys;

• Rubber foam.

Ordinary steel types are very suitable for SFT applications, which features several qualities such as good
mechanical properties, good resistance to fatigue and abrasion, good workability and weldability and a large
strength-to-weight ratio. These features make it a very suitable material for offshore and SFT constructions.
However, there are also some drawbacks of ordinary steel, like the low resistance to corrosion, the low perfor-
mance of the welded connections with respect to fatigue due to the cyclic loads imposed by environmental
loading conditions. In order to improve its performances in maritime applications, new types of steel have
been introduced. One of the new steel types is named as Fatigue Crack Arrester (FCA), which guarantees a
better resistance to the propagation of fatigue cracks, assuring also a strength slightly larger and a weldability
equivalent to those of ordinary steel (Konda et al., 2003). Other new steel types, characterized by high strength
and resilience, have been lately developed and produced in large scale for the purpose of wide applications
in the offshore field (Nagai et al., 2003).

Concrete is also widely used in maritime applications. Besides the contribution to the structural strength
and stiffness, concrete can also provide the weight needed to counteract the tunnel buoyancy in order to
stabilize the structure. Other advantages offered by concrete are: good resistance to the corrosion in marine
environment, to abrasion and to fire and high temperatures, low cost and possibility to be cast to realize
complex shapes. Its main disadvantage is its considerably small resistance to tensile stresses, which can be
improved by applying pre-compression to the concrete offshore structures.

Another class of materials used in offshore engineering is aluminium alloys, which offer a wide range of
strength with a relatively low weight. It also has a high resistance to marine corrosion so that there is no need
for protective coatings. However, aluminium alloys features poor resistance to fire. They are mainly applied
in the emerged part of the offshore structures.

Finally, the last material worth to be mentioned is the rubber foam, which is originally used in the Naval
Engineering to increase the buoyancy of vessels. Grantz (2003) has considered applying this material in SFTs
to construct an external layer to protect the internal structure from corrosion and to increase the tunnel
buoyancy.



2.2. Structural features of the tunnel 9

2.2.2. Design requirement
Some design requirements must be checked to determine the structural and geometrical parameters of

the cross-section of the SFT:

1. The internal diameter of the cross-section should be large enough to accommodate the trans-
port infrastructures, lateral maintenance facilities and ventilation systems for the fire safety.

2. The main structural performances (stiffness, strength and ductility) must be guaranteed in both
serviceability and ultimate limit states by selecting the suitable dimension of the tunnel cross-
section. Additionally, waterproofing reliability of the tunnel needs to be designed carefully by
setting up a waterproofing layer.

3. The buoyancy weight ratio (BWR), which is the ratio between upwards buoyancy force and the
sum of the selfweight and live loads, needs to be designed larger than a minimum value, which
guarantees that no slacking of the cables can be induced by the environmental loading condi-
tions. Moreover, it must be taken into account that the external diameter of the cross-section
defining both downwards and upwards forces, also influence the hydrodynamic actions, since
the hydrodynamic forces are proportional to the diameter.

4. All the issues related to the fabrication and erection of the tunnel modules have to be considered
in the design.

The third design requirement regarding the BWR is of particular importance and deserves a more detailed
discussion. The BWR determined the required minimum pretension of the anchoring cables and at the same
time it minimizes the permanent stress acting in the tunnel, anchoring system and foundations. Numerical
studies confirmed that larger values of the BWR can improve significantly the structural performance of the
SFTs when they are subjected to severe environmental loading scenarios. Brancaleoni et al. (1989) found that
increasing the buoyancy ratio from 1.25 to 1.40 can lead to impressive improvements of the SFT response to
extremely severe sea conditions.

2.2.3. Structural configurations
The structural configurations can be categorised according to their geometrical shape, mainly referring

to the external shape of the SFT cross-section. The geometrical properties of the tunnel cross-section make
a huge difference to the Fluid-Structure Interaction (FSI). The geometrical configuration of the SFT cross-
section can be listed as the following types:

• Circular, as shown in Figure 2.2 (a);

• Polygonal, elongated in the horizontal direction, as shown in Figure 2.2 (b);

• Rectangular, with external keels providing a hydrodynamic shape, as shown in Figure 2.2 (c);

• Circular tubes connected by a frame substructure, as shown in Figure 2.2 (d).

A circular cross-section features a very rational structural behaviour with respect to the hydrostatic pres-
sure (Brancaleoni et al., 1989; Grantz, 1997), since only compressive stresses and no bending are induced in
the cross-section plane. Given that generally the outer ring shell of a circular SFT is made up of concrete,
no bending means no longitudinal cracks, which results in a better performance on tunnel waterproofing. It
may also be worth noting that thanks to the polar symmetry of a circular cross-section, the rotational force
components can be negligible (Brancaleoni et al., 1989). However, such shape needs more complicated con-
struction procedures than a rectangular cross-section (Grantz, 1997).

A polygonal cross-section, elongated in the horizontal direction, are suitable when large water motion due
to currents and waves is expected in the horizontal direction. This shape might be complicated to fabricate.
This drawback can be improved by adopting a rectangular cross-section.

Rectangular cross-section gives the most rational solution, as the construction procedures and the ar-
rangement of the internal spaces are clear and simple. However, the water flow passing through a rectangular
cross-section may induce turbulence, which increases the dynamic pressures on the structure. A set of lateral
streamlined keel would solve this problem and improve the dynamic behaviour of the tunnel.
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Finally, two or more circular tubes connected by a frame substructure would be another option. This
shape is a combination of the circular cross-section and the polygonal cross-section. Therefore, both prop-
erties of circular cross-section and the polygonal cross-section can be expected in this shape.

Figure 2.2: The cross-section shape: (a) Circular; (b) Polygonal; (c) Rectangular; (d) Circular tubes connected by a frame substructure.

2.3. Structural features of the anchoring system
2.3.1. Materials

The materials applied for the anchoring system of a SFT are chosen according to the main stress state of
the anchoring member. The materials that could be used in the construction of the anchoring system of a
SFT are:

• Steel;

• Synthetic fiber;

• Concrete.

The use of steel anchorages is common practice in Offshore Engineering. It can be used to realize both
rigid members such as tension legs or tubular tethers, or flexible members such as mooring cables or taut
wires.

Synthetic fiber ropes are made of innovative material which is developed in the last few years. This ma-
terial features the properties of excellent strength-to-weight-ratio and higher stiffness compared to steel. In
the nineties the American Petroleum Institute (API, 2002), the American Bureau of Shipping (ABS, 1999) and
several private companies published guidelines providing indications regarding the mechanical properties
of synthetic fibers and their performance as mooring lines for offshore production members. The material is
physically nonlinear as their axial stiffness varies with time. Moreover, it is observed that their stiffness seems
to be generally larger when subjected to dynamic loads (Flory et al., 2004). For the aforementioned reasons,
it seems inappropriate to model their behaviour as elastic and it is recommended to consider different values
for their axial stiffness, in particular with regard to its variation with the frequency of the applied dynamic
loads (Barltrop, 1998).

Concrete is another suitable material when the residual buoyancy is negative. In this case, the anchoring
system is made up of piers or columns where concrete features a compressive capacity.
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2.3.2. Anchoring system configurations
The anchoring system of a Submerged Floating Tunnel are assembled to bear its permanent upwards

residual buoyancy or downwards residual weight and to limit displacements and stresses of the tunnel within
acceptable limits under environmental loading.

There are four typologies of the anchoring system:

• Self-bearing: In case both of residual buoyancy and residual weight are zero, the environmental
conditions are favourable and the length of the crossing is relatively small, the designer may refer
to a self-bearing crossing as shown in Figure 2.3 (a).

• Piers: This typology as shown in Figure 2.3 (b) is suitable for bearing both residual buoyancy and
residual weight.

• Tensioned members: To bear the upwards residual buoyancy, the anchoring system is made of
tension members, which can be cable or tethers as shown in Figure 2.3 (c).

• Buoys: To bear the downwards residual weight, the anchoring system is made of floating pon-
toons as shown in Figure 2.3 (d).

Figure 2.3: Anchoring system typologies: (a) Self-bearing; (b) Piers; (c) Tensioned memebers; (d) buoys. (FEHRL (Forum of European
National Highway Research Laboratories), 1996)

The tunnel configuration with tension members is considered to be the most suitable solution choice in
possible high horizontal loading conditions. The main advantage of this configuration is possibility to arrange
the anchoring cables not only in the vertical direction but also be in the inclined direction with respect to the
vertical axis in order to provide the required horizontal stiffness.

When using tension members as a configuration, the geometrical properties of the cables, such as the
diameter of the cross-section of the cable and the inclination angles, are of vital importance to determine the
stiffness of the system. Generally, the adopted configuration is repeated at a prescribed spacing in the axial
direction to provide a uniform stiffness. However, in the cross-sectional plane, many choices are applied for
the arrangement of the cables. Some of these are shown in Figure 2.4.

Physical predictions suggest that anchoring system made up of two vertical cables (as shown in Figure 2.4
(a)) configuration is effective only in the vertical direction, as it provides no support against lateral loads, thus
being suitable only in a calm environment.

Arrangement with only two inclined cables (as shown in Figure 2.4 (b)) have been proposed too, but nu-
merical analyses showed that this arrangement leads to high level of stresses in the cables and induces con-
siderable rotational angle in the tunnel when it is subjected to horizontal actions.
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The anchoring system made up of two vertical cables and two inclined cables (as shown in Figure 2.4 (c)),
and the anchoring system made up of four inclined cables (as shown in Figure 2.4 (d)) are the most effective
ones, as they support the tunnel vertically, horizontally and rotationally. It is confirmed by the experimen-
tal studies (Maeda et al., 1994), as they showed that four inclined cables per group guarantee the best SFT
performances, especially in terms of horizontal displacement.

Figure 2.4: Arrangement of the cables in the cross-sectional plane:
(a) Two vertical cables; (b) Two inclined cables; (c) Two vertical cables and two inclined cables; (d) Four inclined cables.

It is worth to briefly discuss a phenomenon regarding second order effects. Normally, configuration of
two vertical cables provided no support against lateral loads when the second order effect is excluded. When
the second order effect is considered, a horizontal restoring force due to lateral displacements would arise in
the anchoring system and is linearly proportional to the this lateral displacement. This phenomenon is often
referred as the pendulum effect.

Another phenomenon worth to be mentioned is the so-called snapshot phenomenon, which is the result
of the slackening of the cables due to environmental loadings. It refers to the action that the tensile force
in the cables goes to zero and then instantaneously reaches a very large value (Kunisu et al., 1994). This
phenomenon needs to be treated carefully as it may leads to failure of the cables.

2.4. Loading conditions
2.4.1. Permanent loads

The permanent loads acting on a SFT contains four components: the structural weight, the non-structural
weight, the water buoyancy and the hydrostatic pressure. The algebraic sum of the structural and non-
structural weight defines the residual buoyancy of the tunnel, which is a fundamental factor for the stability
of the structure. The hydrostatic pressure has to be paid more attention, when a SFT is build in large water
depths.

2.4.2. Functional loads
The function loads are related to the transportation within the SFT, which are passage of the vehicles

and/or the pedestrians. Eurocode, EN 1991-3, often use statistical data to define the most unfavourable load-
ing condition on the structure.

2.4.3. Environmental loads
For a SFT, the environmental loads are mainly related to the marine environment actions, such as the

change in the tide levels, waves and currents, earthquakes and tsunamis. This research focuses on the loading
of waves and currents. The literature review regarding these two loading conditions is presented as follows.

Waves
Water waves are characterized by an oscillating motion of the water particles and can be of two types:
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• Wind generated waves: surface waves occurring on the free surface of waterways, due to the
wind blowing over a vast enough stretch of fluid surface.

• Internal waves: water particles are kept in motion by the force of gravity acting on small differ-
ences in density. A density difference can exist between two fluids or between different parts of
the same fluid because of a difference in temperature, salinity, or concentration of suspended
sediment.

Although internal waves can be important and induce significant loads on marine structures, in most of
the cases wave water motion is made of wind generated waves(Martire, 2010).

Several theories have been developed to describe the motion of water particles due to waves,can be dis-
tinguished the linear, nonlinear and other wave theories. They are generally based on the determination of
the velocity potential satisfying the Laplace Equation with the assumption of an irrotational and incompress-
ible fluid. A detailed overview of the wave theories available in literature is given in Sarpkaya and Isaacson
(1981). The accuracy of the wave theories is in dependence of the wave parameters. In fact each wave theory
are reliable in different fields of application as shown in Figure 2.5.

Figure 2.5: Applicability ranges of various waves, taken from Modeling Waves in FLOW-3D
H : wave height; T : wave period; g : gravitational acceleration

The simplest wave theory is the Airy linear (also called Sinusoidal) wave theory, which is based on the
fundamental assumption that the wave height Hw is small, thus allowing to impose the free surface bound-
ary condition at the still water surface height and to neglect higher order terms in the governing equations.
Clearly, this wave theory can be assumed to be valid as a first approximation only when the wave height Hw

is considerably smaller than both the wave length Lw and the seabed depth d .
The nonlinear wave theories with higher order are proposed to represent the complete solution of the

governing equations of the water motion more precisely. The most common nonlinear wave theory is the
Stokes wave theory, which introducing a perturbation procedure with successive approximations. This theory
is considered to be valid when the wave height-to-length ratio is largely lower than one (Hw /Lw ¿1) and
when the wave length Lw is less than 8 times the water depth d (Peregrine, 1972; Laitone, 1962).

The low order Stokes wave theories are not suitable in shallow waters as many coefficients of the higher
order terms become too large with respect to the lowest order terms. A more reliable nonlinear procedure to
describe the wave properties is the so-called Cnoidal Wave Theory, which expresses the wave characteristics
in terms of the Jacobian elliptic function. Clearly, this theory is used to describe surface gravity waves of
fairly long wavelength, as compared to the water depth. A limiting case of Cnoidal wave is the Solitary wave,
characterized by an infinite wave length.

https://www.flow3d.com/modeling-capabilities/waves/
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Currents

Currents in waterways are usually classified into two types:

• Wind generated currents: generated by the wind blowing over the water surface;

• Tides generated currents: generated by the rise and fall of the water level due to tides.

Usually, current is modelled as a horizontal velocity distribution along the water depth. This distribution
can be roughly assumed to be constant or, more generally, can be represented by as a polyline.

For some engineering structures in offshore oil engineering, the current velocity Vc can be calculated as
the following (Fang and Duan, 2014):

Vc (z) =VT ·
( z

d

)1/7
+Vw ·

( z

d

)
, (2.1)

where:

d = Water depth [m],
z = Height above the seabed [m],
VT = Surface current velocity due to tides [m·s−1],
Vw = Surface current velocity due to wind [m·s−1].

Thus the contribution due to wind generated currents is generally predominant.

2.4.4. Vortex shedding
Vortex shedding is an oscillating flow which takes place when a steady current passes a cylindrical body,

due to the viscosity of the fluid. Generally, the vortex shedding is asymmetric, i.e. vortices are generated
alternately on both sides of the downstream portion of the cylinder, giving rise to the dynamic pressure field
exerted on the cylinder which varies with. The resultant of these time varying pressures is an oscillating force,
which has a main component in the direction transversal to the flow propagation, named lift force, and a
minor one in the direction of the flow, which is added to the steady value of the drag force and features a
frequency being twice the one of the vortex shedding.

In 1878, Strouhal found a relationship between the frequency of the vortex shedding and the velocity of
the incoming flow. In particular, he defined the following relationship:

St = fs D

U
, (2.2)

where:

St = Strouhal number [-],
fs = Vortex shedding frequency [Hz],
D = Diameter of the tunnel cross-section [m],
U = Flow velocity [m·s−1].

The Strouhal number is found to be nearly constant, equal to 0.2 for smooth circular cylinders and to 0.25
for rough circular cylinders, in the Re range from 103 to 5×105, and for Re belonging to the post-supercritical
flow regime is nearly constant and equal to 0.5 for smooth circular cylinders (Figure 2.6). For very large values
of Re (≥ 108), which are generally of interest for SFT cases, only experimental data in wind tunnel test are
available.



2.5. Conclusion 15

Figure 2.6: Variation of Strouhal number St with Reynolds number and surface roughness (Achenbach and Heinecke, 1981)

When the flow velocity is increased or decreased in such a manner that the vortex shedding frequency ( fs )
approaches the natural frequency ( fn) of an elastic structure, so that

fn ' fs = StU

D
or Vn = U

fnD
' U

fs D
= 1

St
' 5, (2.3)

where:

Vn = Reduced velocity [m·s−1],

the vortex shedding frequency suddenly locks onto the natural frequency (Blevins, 1977). The Strouhal law
in Equation 2.2 is no longer valid. This effect is called lock-in or synchronization. The locked in resonant
oscillations of the near wake input substantial energy to the structure and large-amplitude vibrations can
result.

2.5. Conclusion
The following conclusion are drawn based upon this literature review:

• BWR is of particular importance in the design of the tunnel and deserves a detailed study.

• A circular cross-section of the structure features better performance in most cases.

• Anchoring system made up of four inclined cables are the most effective ones, as they support
the tunnel vertically, horizontally and rotationally.

• The pendulum phenomenon and the snapshot phenomenon needs to be checked twice when
design the anchoring system.

• The Airy Linear Wave Theory is valid only when the wave height Hw is considerably smaller than
both the wave length Lw and the seabed depth d .

• The lock-on phenomenon occurs when the reduced velocity Vn is larger than 5.





3
Structural dynamics relevant to a SFT

The dynamic response of a structure such as a submerged floating tunnel is mainly covered in the field
of structural dynamics. The first two section of this chapter introduces the derivation of the mode shapes
regarding different boundary conditions. Subsequently, the methods of the modal analysis and the frequency
domain analysis are briefly introduced.

3.1. Euler-Bernoulli beam model
The submerged floating tunnel is expected to deform horizontally and vertically and is therefore modeled

with an Euler-Bernoulli beam model. An Euler-Bernoulli beam is modeled as a continuous system with an
infinite number of spatial nodes for each DOF. Figure 3.1 shows a beam subjected to a vertical load resulting
in transverse motion. This vertical load varies both in space and time.

Figure 3.1: Sign convention of an Euler-Bernoulli beam (Spijkers et al., 2006)

3.1.1. Equations of motion
Euler-Bernoulli beam model states that the plane cross-section, which is initially perpendicular to the

axis of the beam, remains plane and perpendicular to the neutral axis during vertical motion. According to
this theory and applying Newton’s second law the following relation holds:

E I
∂4w(x, t )

∂x4 +ρA
∂2w(x, t )

∂t 2 = f (x, t ), (3.1)

where:

17
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E = Young’s modulus [N·m−2],
I = Second moment of area [m4],
ρ = Density [kg·m−3],
A = Cross-sectional area [m2].

For convenience sake, using Newton’s notation for differentiation of t (i.e. using dot mark) and Lagrange’s
notation for differentiation of x (i.e. using prime mark), the equation is rewritten as follows:

E I w ′′′′(x, t )+ρAẅ(x, t ) = f (x, t ). (3.2)

Note that with this analysis the deformation due to the shear force and the influence of the rotational
inertia are not taken into account, which is justified for slender beams and low natural frequency.

3.1.2. Eigenvalue problem
The free vibration represents the dynamic behaviour of the non-loaded bending beam; this vibration is

described by means of the homogeneous partial differential equation:

E I w ′′′′(x, t )+ρAẅ(x, t ) = 0. (3.3)

The response can be written as the product of an unknown space function w(x) and a harmonic time
function w(t ) = sin(ωt +φ) (separation of variables):

w(x, t ) = w(x)sin(ωt +φ). (3.4)

Substitution of the synchronic harmonic motion in the partial differential equation provides an ordinary
fourth-order differential equation with respect to the space function w(x). This differential equation is also
called the eigenvalue problem. The solution w(x) of the eigenvalue problem is called the eigenfunction.
When determining the eigenfunction it will be shown that the frequency ω can only adopt specific values.
These frequencies are called natural frequencies. The eigenvalue problem is noted as follows:

w ′′′′(x)−β4w(x) = 0, (3.5)

where:

β4 =
ρAω2

E I
.

The solution of w(x) consists of four contributions:

w(x) =C1eβx +C2e−βx +C3e iβx +C4e−iβx , (3.6)

Rearrangement of these terms gives a real eigenfunction w(x):

w(x) = A coshβx +B sinhβx +C cosβx +D sinβx. (3.7)

The values of the five constants A, B , C , D and β depend on how the beam is supported, i.e. depend on the
applied boundary conditions. Normally, there are three kinds of boundary conditions for SFTs regarding to
different shore connection, which are both end pinned, both end fixed and both end free.

Deflection w Slope w ′ Bending Moment −E I w ′′ Shear force −E I w ′′′

Fixed 0 0 / /
Pinned 0 / 0 /

Free / / 0 0

Table 3.1: Three kinds of boundary conditions
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3.1.2.1. Both end pinned beam
The both end pinned beam is also called simply supported beam, of which the boundary conditions are

very simple: the displacement and the bending moment for both ends are equal to zero. Substitution of the
four mentioned boundary conditions into the expression for the eigenfunction w(x), gives the following set
of algebraic equations:

w(0) = 0 =⇒ A+C = 0,
w ′′(0) = 0 =⇒ A−C = 0,
w(l ) = 0 =⇒ A coshβl +B sinhβl +C cosβl +D sinβl = 0,
w ′′(l ) = 0 =⇒ Aβ2 coshβl +Bβ2 sinhβl −Cβ2 cosβl −Dβ2 sinβl = 0.

Solving these algebraic equations yields the eigenfrequencies (natural frequencies) and the eigenfunc-
tions (mode shapes):

ωn =β2
n

√
E I

ρA
= n2

(π
l

)2
√

E I

ρA
, (3.8)

wn(x) = ŵn sin(βn x) = ŵn sin(
nπ

l
x) = ŵn sin(2π

x

λn
), (3.9)

where:

ŵn = 1, the amplitude of the mode shapes, normally is set to 1,

βn =
nπ

l
,

n = 1,2, . . .∞,

λn =
2l

n
, the wavelength of the nth eigenfunction.

In Figure 3.2 the first three eigenfunctions are displayed, each with an amplitude of ŵn .

Figure 3.2: The first three eigenmodes of both end pinned beam

3.1.2.2. Both end fixed beam
The second case is the both end fixed beam: the displacement and the slope for both ends are equal to

zero. Substitution of the four mentioned boundary conditions into the expression for the eigenfunction w(x)
gives:

w(0) = 0 =⇒ A+C = 0,
w ′(0) = 0 =⇒ B +D = 0,
w(l ) = 0 =⇒ A coshβl +B sinhβl +C cosβl +D sinβl = 0,
w ′(l ) = 0 =⇒ Aβsinhβl +Bβcoshβl −Cβsinβl +Dβcosβl = 0.
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Solving these algebraic equations yields the eigenfrequencies (natural frequencies) and the eigenfunc-
tions (mode shapes):

ωn =β2
n

√
E I

ρA
= (2n +1)2

4

(π
l

)2
√

E I

ρA
, (3.10)

wn(x) = ŵn

[
sin

(
βn x

)+ cos
(
βn x

)(
sinh

(
βn l

)− sin
(
βn l

))
cos

(
βn l

)−cosh
(
βn l

) − sinh
(
βn x

)− cosh
(
βn x

)(
sinh

(
βn l

)− sin
(
βn l

))
cos

(
βn l

)−cosh
(
βn l

) ]
,

(3.11)
where:

βn =
(2n +1)π

2l
,

n = 1,2, . . .∞.

In Figure 3.3 the first three eigenfunctions are displayed, each with an amplitude of ŵn .

Figure 3.3: The first three eigenmodes of both end fixed beam

3.1.2.3. Both end free beam
The boundary conditions for the both end free beam is similar with the previous two cases: the bending

moment and the shear force for both ends are equal to zero. Substitution of the four mentioned boundary
conditions into the expression for the eigenfunction w(x) gives:

w ′′(0) = 0 =⇒ A−C = 0,
w ′′′(0) = 0 =⇒ B −D = 0,
w ′′(l ) = 0 =⇒ Aβ2 coshβl +Bβ2 sinhβl −Cβ2 cosβl −Dβ2 sinβl = 0,
w ′′′(l ) = 0 =⇒ Aβ3 sinhβl +Bβ3 coshβl +Cβ3 sinβl −Dβ3 cosβl = 0.

Solving these algebraic equations yields the eigenfrequencies (natural frequencies) and the eigenfunc-
tions (mode shapes):

ωn =β2
n

√
E I

ρA
=


0 n = 1

(2n −1)2

4

(π
l

)2
√

E I

ρA
n ≥ 2

, (3.12)

wn(x) =



1 n = 1

ŵn(
2x

l
−1) n = 2

ŵn

[
sinh

(
βn x

)− (
sinh

(
βn l

)− sin
(
βn l

))
cosh

(
βn x

)
−cos

(
βn l

)+cosh
(
βn l

) + sin
(
βn x

)− (
sinh

(
βn l

)− sin
(
βn l

))
cos

(
βn x

)
−cos

(
βn l

)+cosh
(
βn l

) ]
n ≥ 3

,

(3.13)
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where:

βn =


0 n = 1
(2n −3)π

2l
n ≥ 2

,

n = 1,2, . . .∞.

In Figure 3.4 the first four eigenfunctions are displayed, each with an amplitude of ŵn . Note that the first
mode of the both end free beam is actually a rigid body vibration, which implies the first mode can be treated
as a mass-spring rigid body system when combined with a distributed spring.

Figure 3.4: The first four eigenmodes of both end free beam

3.2. Torsion rod model
The rotation in the cross-section of the SFT is another relevant degree of freedom in the study. The rota-

tion in the cross-section can be captured by a torsion rod model as shown in Figure 3.5.

Figure 3.5: Sign convention of an torsion rod

3.2.1. Equations of motion
According to the sign convention in Figure 3.5 the following relation holds:

G Ip
∂2Ψ(x, t )

∂x2 +ρI
∂2Ψ(x, t )

∂t 2 = Mt (x, t ), (3.14)

where:
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G = Shear modulus [N·m−2],
Ip = Torsional constant [m4],
ρ = Density [kg·m−3],
I = Polar moment of inertia [m4].

Note that the cross-section of a circular rod under torsion does not warp because of circular symmetry,

which means Ip = I = πd 4

32
. Similar with Equation 3.1, the equation can be rewrited as :

G IpΨ
′′(x, t )+ρIΨ̈(x, t ) = Mt (x, t ). (3.15)

3.2.2. Eigenvalue problem
This partial differential equation can be solved by the separation of variables method as well, which yields:

Ψ′′(x)+β2Ψ(x) = 0, (3.16)

where:

β2 =
ρIω2

G Ip
.

The solutionΨ(x) consists of two contributions, which can be expected from the second-order differential
equation:

Ψ(x) =C1e iβx +C2e−iβx . (3.17)

By means of Euler’s formula this can be written as a real function of the position variable x:

Ψ(x) = A sinβx +B cosβx. (3.18)

The eigenfunction still contains three unknown constants: A,B and β. These are determined by the
boundary conditions as shown in Table 3.2.

Angle of rotationΨ Torque G IpΨ
′

Fixed 0 /
Free / 0

Table 3.2: Two kinds of boundary conditions

3.2.2.1. Both end fixed torsion rod
The rotational angle for both ends of the fixed torsion rod are equal to zero. Substitution of the two men-

tioned boundary conditions into the expression for the eigenfunction Ψ(x):

Ψ(0) = 0 =⇒ B = 0,
Ψ(l ) = 0 =⇒ A sinβl +B cosβl = 0.

Solving these algebraic equations yields the eigenfrequencies (natural frequencies) and the eigenfunc-
tions (mode shapes):

ωn =βn

√
G Ip

ρI
= n

π

l

√
G Ip

ρI
, (3.19)

Ψn(x) = ŵn sin(βn x) = ŵn sin(
nπ

l
x), (3.20)

where:
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βn =
nπ

l
,

n = 1,2, . . .∞.

In Figure 3.6 the first three eigenfunctions are displayed, each with an amplitude of ŵn .

Figure 3.6: The first three eigenmodes of both end fixed torsion rod

3.2.2.2. Both end free torsion rod

Similar to the previous case, the torque for both ends of the free torsion rod are equal to zero. Substitution
of the two mentioned boundary conditions into the expression for the eigenfunction Ψ(x):

Ψ′(0) = 0 =⇒ A = 0,
Ψ′(l ) = 0 =⇒ Aβcosβl −Bβsinβl = 0.

Solving these algebraic equations yields the eigenfrequencies (natural frequencies) and the eigenfunc-
tions (mode shapes):

ωn =βn

√
G Ip

ρI
= n

π

l

√
G Ip

ρI
, (3.21)

Ψn(x) =
{

1 n = 1

ŵn cos(βn x) n ≥ 2
, (3.22)

where:

βn =


0 n = 1
(n −1)π

l
n ≥ 2

,

n = 1,2, . . .∞.

In Figure 3.7 the first four eigenfunctions are displayed, each with an amplitude of ŵn . The first mode
of the both end free torsional rod is a rigid body vibration, which implies the first mode can be treated as a
mass-spring rigid body system when combined with a distributed spring.
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Figure 3.7: The first four eigenmodes of both end free torsion rod

3.3. Modal analysis
Analogue to the free vibration in the previous sections, the solutions for the forced vibration (the partic-

ular solution) are also assumed to be a summation of eigenfunctions, but in this case each eigenfunction is
multiplied with an unknown time function:

w(x, t ) =
n∑

i=1
wi (x)ui (t ) =

n∑
i=1

wi (x)sin(ωi t +φi ). (3.23)

Note that also here a summation of synchronised motions is assumed. This assumption is the essence
of the so-called Modal Analysis. Translated in mathematical terminology, it is thus assumed that also in the
case of forced vibration the response can be expanded in eigenfunctions each weighed with an unknown time
function. Substitution of the assumed solution in Equation 3.3 (take both ends pinned Euler-Bernoulli beam
model for example) results in the equations to which the unknown functions ui (t ) have to comply:

E I
n∑

i=1
β4

i wi (x)ui (t )+ρA
n∑

i=1
wi (x)üi (t ) = f (x, t ). (3.24)

By means of the orthogonality conditions:∫ l

0
wn(x)wm(x)dx = 0 (n 6= m), (3.25)

multiplying both side of the Equation 3.24 by another mode i.e. wm(x) and integrating over the length of the
beam yields:

E Iβ4
mum(t )

∫ l

0
w2

m(x)dx +ρAüm(t )
∫ l

0
w2

m(x)dx =
∫ l

0
wm(x) f (x, t )dx. (3.26)

Now the equation is a set of ordinary differential equations with respect to x, which can be solved for each
mode by using MATLABr ODE solver.

3.4. Frequency domain analysis
After solving the equation of forced vibration in MATLABr, the response is obtained in time domain. To

study the frequency components in this time signal, a frequency domain analysis is carried out. This analysis
is executed with the help of a Fourier transform and a Wavelet transform. The Fourier transform gives the
information on the frequency content but is not capable to show how these frequencies change over time. The
Wavelet transform, however, provides the information on both the time location and frequency of a signal.

3.4.1. Fourier transform
The Fourier transform is a reversible, linear transform which converts a time-domain signal of infinite

duration into a continuous spectrum composed of an infinite number of sinusoids. There are several com-
mon conventions for defining the Fourier transform of an integrable function. In Structural Engineering, it is
normally defined as:

X ( f ) =
∫ ∞

−∞
x(t )e− j 2π f t d t , (3.27)
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where:

x(t ) = Time domain signal,
X ( f ) = Frequency domain representation,
j = The imaginary unit.

The solution to the equation of forced vibration contains the transient and forced parts. The forced part
of the solution is often referred to as the steady state solution, since it is the solution which remains after
the transient response has died out. In practice, only the steady state response is of interest, so the Fourier
transform is normally applied to a steady state signal and does not give the access to the time information.

When the information on how the frequency content changes over time is needed, a short-time Fourier
transform is applied. The function to be transformed is multiplied by a window function which is nonzero for
only a short period of time. This divides the time signal into shorter segments of equal length and then com-
putes the Fourier transform separately on each shorter segment. A short-time Fourier transform is defined
as:

X (τ, f ) =
∫ ∞

−∞
x(t )w(t −τ)e− j 2π f t d t , (3.28)

where:

x(t ) = Time domain signal,
X (τ, f ) = Two-dimensional representation of the signal ,
w(τ) = The window function,
j = The imaginary unit.

This reveals the Fourier spectrum on each short segment and therefore indicates how it changes over time.
However, the resolution issues are arisen when applying a short-time Fourier transform. The width of the
window function relates to how the signal is represented—it determines whether there is good frequency res-
olution (frequency components close together can be separated) or good time resolution (the time at which
frequencies change). A wide window gives better frequency resolution but poor time resolution. A narrower
window gives good time resolution but poor frequency resolution. A better approach is to apply the wavelet
transform, which gives good time resolution for high-frequency events and good frequency resolution for
low-frequency events.

3.4.2. Wavelet transform
The wavelet transform is similar to the short-time Fourier transform but applies a bigger time window

to catch lower frequencies and a smaller window for higher frequencies. Generally, the wavelet transform is
defined as:

X (a,b) = 1p
a

∫ ∞

−∞
x(t )Ψ

(
t −b

a

)
d t , (3.29)

x(t ) = Time domain signal,
X (a,b) = Two-dimensional representation of the signal,
Ψ(t ) = The mother wavelet,
a = The scale, indicating the frequency information,
b = The translation, indicating the time information.

With additional special properties of the wavelets, the wavelet transform features good performance in
both time and frequency resolutions. In MATLABr wavelet transform is obtained using the analytic Morse
wavelet. For a detailed explanation of the parameterization of Morse wavelets, refer to Olhede and Walden
(2002).

3.5. Conclusion
The summary of the important findings in this chapter:
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• Three boundary conditions in translational direction and two boundary conditions in rotational
direction are derived, which can be used to simulate the boundary conditions of the SFT by
combining them together.

• The modal analysis can be used to extract natural frequencies from the response of the tunnel.

• The frequency domain analysis can be used to investigate the frequency components of a time
domain signal. The frequency components of the steady state of the response is of practical
interest.

• The Fourier transform is applied when only the frequency content is of interest. If the change of
the frequency content over time is needed, wavelet transform would be a better option.



4
Hydrodynamics relevant to a SFT

Wave and current loads are considered to be the governing dynamic load for a SFT in this research. To
analyse the response of a SFT due to this hydrodynamic loading, it is important to comprehend the physics
behind it. First, a general description of waves is presented in section 4.1 to explain the terminology. Subse-
quently, the methods to describes the hydrodynamic forces are explained in section 4.2.

4.1. Linear wave theory
As mentioned in chapter 2, linear wave theory for surface gravity waves is based on only two fundamental

equations (a mass balance equation and a momentum balance equation) and some simple boundary condi-
tions, describing certain kinematic and dynamic aspects of the waves. When these equations and boundary
conditions are linearised, freely propagating, harmonics waves are solutions of these equations. The main
requirement for the linear theory to apply is that the amplitudes of the waves are small, i.e. small compared
with the wave length and small compared with the water depth (Holthuijsen, 2010), which is called the small-
amplitude approximation.

A SFT is generally located in deep waters, such that the waves are not affected by the seabed. The water is
only subjected to only one external load, gravity. The linear wave theory is, therefore, suitable to describe the
harmonic waves in this case.

Figure 4.1: The particle velocities of waves

Based on linear wave theory, the particle velocities of the waves are given by:
uy (t ) =ωa

cosh(k(d + z))

sinh(kd)
sin(ωt )

uz (t ) =ωa
sinh(k(d + z))

sinh(kd)
cos(ωt )

, (4.1)
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where:

ω = Wave frequency [rad ·s−1],
a = Wave amplitude [m],
k = Wave number [m−1],
d = Water depth [m].

The direction of the velocities are shown in Figure 4.1. The amplitude is half of the wave height and the wave
number k is determined by ω2 = g k tanh(kd).

4.2. Hydrodynamic forces
Now that the basics of the linear wave theory have been discussed in the previous section, the next step

is to consider the hydrodynamic load. Two methods are explained below to describe the forces in in-line
direction and the forces in cross-flow direction.

4.2.1. Morison equation
The Morison equation is a semi-empirical equation for the in-line force on a body in oscillatory flow. It

is the sum of two force components: an inertia force in phase with the local flow acceleration and a drag
force proportional to the (signed) square of the instantaneous flow velocity. The inertia force is of the func-
tional form as found in potential flow theory, while the drag force has the form as found for a body placed
in a steady flow. In the heuristic approach of Morison, O’Brien, Johnson and Schaaf these two force compo-
nents, inertia and drag, are simply added to describe the in-line force in an oscillatory flow. The transverse
force—perpendicular to the flow direction, due to vortex shedding—has to be addressed separately, which is
discussed in the next section.

For a moving body in an oscillatory flow, the Morison equation gives the in-line force parallel to the flow
direction:

F = ρV u̇+ρCaV (u̇− v̇)+ 1

2
ρCd A(u−v)|u−v|, (4.2)

where:

u = Flow velocity [m · s−1],
u̇ = Flow acceleration [m · s−2],
v = Structure velocity [m · s−1],
v̇ = Structure acceleration [m · s−2],
ρ = Water density [kg ·m−3],
V = Volume of the body [m3],
A = Cross-sectional area [m2],
Ca = Added mass coefficient [-],
Cd = Drag coefficient [-].

The first two terms denote the inertia force, which is the sum of the Froude–Krylov force and the hydrody-
namic mass force. The third term denotes the drag force according to the drag equation.

The added mass coefficient and the drag coefficient are two empirical hydrodynamic coefficients, which
are determined from experimental data. As shown by dimensional analysis and in experiments by Sarp-
kaya, these coefficients depend in general on the Keulegan–Carpenter number, Reynolds number and surface
roughness(Sarpkaya, 1976).

The Morison equation has three limitations. The first limitation is that the flow acceleration should be
approximately uniform at the location of the body. For instance, the diameter of a cylinder in surface gravity
waves should be much smaller than the wavelength. If the diameter of the body is not small compared to the
wavelength, diffraction effects have to be taken into account (Patel and Witz, 2013). Second, it is assumed
that the asymptotic forms, the inertia and drag force contributions, valid for very small and very large Keule-
gan–Carpenter numbers respectively, can just be added to describe the force fluctuations at intermediate
Keulegan–Carpenter numbers (Sarpkaya, 2010). Third, when extended to orbital flow which is a case of non
uni-directional flow, for instance, encountered by a horizontal cylinder under waves, the Morison equation
does not give a good representation of the forces as a function of time(Chaplin, 1984).
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4.2.2. Wake oscillator
Another situation of the hydrodynamic loading is the cross-flow vortex loading. Vortex induced vibra-

tion is a result of this loading. Two semi-empirical models are often used to analyze VIV, which is the force-
decomposition model and the wake oscillator model. For a review on VIV modeling see (Gabbai and Be-
naroya, 2005). In this report, the wake oscillator model is used because this model finds the frequency and
amplitude of the cylinder motion and the cross-flow fluid force on its own accord. This makes it possible to
capture multi-mode VIV of long flexible cylinders.

Wake oscillator models couple the equations of structural motion with a nonlinear oscillator equation that
describes the cross-flow fluid force. In most cases, an equation of the Van der Pol or Rayleigh type is used,
as these equations predict a limit cycle in the phase space (Ogink and Metrikine, 2010). To fully describe
the motions of a moving body under vortex loading some definitions are needed. The sign convention of a
loading system is shown in Figure 4.2. The wake oscillator model for this system is defined as:

(m +ma)ÿ + cy ẏ +ky y = 1

2
ρDLu2

yCV y (ẏ , ż, q)

(m +ma)z̈ + cz ż +kz z = 1

2
ρDLu2

yCV z (ẏ , ż, q)

q̈ +εωs (q2 −1)q̇ +ω2
s q = A

D
z̈

, (4.3)

where:

m = The cylinder mass [kg],
ma = CaπρD2L/4, the added mass [kg],
q = The wake parameter [-],
ε = A nondimensional tuning parameter [-],
ωs = The vortex shedding frequency [rad· s−1].

The incoming flow is in-line with y-direction. Therefore, y-direction is the in-line direction and z-direction
is the cross-flow direction. The cylinder itself is moving with velocity ẏ and ż. The relative velocity is then cal-

culated as ur =
√

u2
y,r +u2

z,r =
√

(uy − ẏ)2 + ż2. The angle between uy and ur is defined as β.

Figure 4.2: cross-section of a cylinder on visco-elastic supports (velocity)

Given the flow velocities, the fluid forces acting on the system can be defined. Figure 4.3 shows the de-
composition of the vortex fluid force in drag , lift horizontal and vertical direction. The vortex drag force FV D

is inline with the relative velocity and the vortex lift force FV L is perpendicular to the relative velocity. Then
the in-line force FV y and the cross-flow force FV z are composed of a drag term and a lift term:
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Figure 4.3: cross-section of a cylinder on visco-elastic supports (forces)


FV y = FV D cosβ−FV L sinβ

FV z = FV D sinβ+FV L cosβ
. (4.4)

Expressing the forces in the form with force coefficients results in the flowing equations:
1

2
ρDLu2

yCV y =
(
CV D cosβ−CV L sinβ

) 1

2
ρDLu2

r

1

2
ρDLu2

yCV z =
(
CV D sinβ+CV L cosβ

) 1

2
ρDLu2

r

. (4.5)

After simplification of the equations, the in-line and cross-flow force coefficients are expressed as:
CV y =

(
CV D cosβ−CV L sinβ

) u2
r

u2
y

CV z =
(
CV D sinβ+CV L cosβ

) u2
r

u2
y

. (4.6)

As shown in Figure 4.3,β is the angle between the direction of flow velocity and the direction of the relative
velocity, which is given by:

sinβ= uz,r

ur
= −ż√

(uy − ẏ)2 + ż2
,

cosβ= uy,r

ur
= uy − ẏ√

(uy − ẏ)2 + ż2
.

(4.7)

By assuming that the cylinder velocity is considerably smaller than the flow velocity and that therefore the

angle β is considerably smaller than 1, Equation 4.7 is then simplified as sinβ ≈ β ≈ −ż

uy − ẏ
and cosβ ≈ 1.

Hence: 
CV y =CV D +CV L

ż

uy − ẏ

CV z =−CV D
ż

uy − ẏ
+CV L

. (4.8)
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According to Ogink and Metrikine (2010), the drag component of the vortex force is constant and that
the lift component of the vortex force is linearly related to the wake variable q . This means that CV D should
be equal to the constant in-line force coefficient measured for a stationary cylinder and that CV L should be
equal to the oscillating cross- flow coefficient measured for a stationary cylinder:

CV D =CD0, CV L = 1

2
CL0q. (4.9)

After performing the necessary substitutions into Equation 4.3, the wake oscillator model is finally given in
nonlinear form by:

(m +ma)ÿ + cy ẏ +ky y = 1

2
ρDLu2

y

(
CD0(uy − ẏ)+ 1

2
CL0qż

) √
(uy − ẏ)2 + ż2

u2
y

(m +ma)z̈ + cz ż +kz z = 1

2
ρDLu2

y

(
−CD0 ż + 1

2
CL0q(uy − ẏ)

) √
(uy − ẏ)2 + ż2

u2
y

q̈ +εωs (q2 −1)q̇ +ω2
s q = A

D
z̈

, (4.10)

and after simplification by:

(m +ma)ÿ + cy ẏ +ky y = 1

2
ρDLu2

y (CD0 + 1

2
CL0q

ż

uy − ẏ
)

(m +ma)z̈ + cz ż +kz z = 1

2
ρDLu2

y (−CD0
ż

uy − ẏ
+ 1

2
CL0q)

q̈ +εωs (q2 −1)q̇ +ω2
s q = A

D
z̈

. (4.11)

4.3. Conclusion
These conclusions contribute to the development of the submerged floating tunnel model:

• The Morison equation can be used to study the load case of combined wave and current loading
and the load case of oblique wave loading.

• When the current speed is considerably large and the vortex shedding is expected, the wake
oscillator model can be used to investigate the response due to VIV considering the cross-flow
forces.
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5
Model for anchoring system

This chapter describes the approach which is used to model the anchoring system of the SFT. Two differ-
ent kinds of assumptions are discussed: geometrically linear stiffness and geometrically nonlinear stiffness.
Subsequently, the assumptions which are made to model the anchoring system are discussed in section 5.2.

5.1. Model set-up

Two different models are developed: a linear stiffness model and a nonlinear stiffness model. Both models
are developed in MATLAB as functions giving output of reaction force in horizontal , vertical and rotational
degrees of freedom. The function can be schematized with the following diagram:

Figure 5.1: Flow scheme of the anchoring system function

Figure 5.1 shows that the physical and the geometrical parameters of the anchoring systems (listed in
Table 7.4) and the displacement in three direction of the tunnel (i.e. ∆y, ∆z and ∆ϕ) are required as input of
for the function. The reaction forces in three directions (i.e. Fy , Fz and Fϕ) can then be determined.

5.1.1. Linear stiffness model

For the linear case, the displacements in three degrees of freedom are independent of each other. Applying
the displacement method, the restoring forces can be obtained. For that purpose, the structure is drawn in
three positions as shown in Figure 5.2, Figure 5.3 and Figure 5.4. In these figures, one degree of freedom is
assumed to be positive in turns with the two others held fixed, which means they are supposed to be zero.

35



36 5. Model for anchoring system

Figure 5.2: Action of the horizontal degree of freedom

In Figure 5.2, the tunnel cross section moves horizontally with a displacement of ∆y , which is considered
small so that the contribution of the vertical line to the horizontal restoring force and the change of the angle
of inclination can be ignored. The restoring forces are defined as the generalized forces in the usual manner,
i.e. Fz y is the force in the z-direction which results from a displacement in the y-direction and Fϕz is the
moment in the ϕ-direction which results from a displacement in the z-direction. The positive directions of
the restoring forces are defined as the opposite of the displacement. Therefore, the following relations hold:

Fy y = Ti +ki∆y cos2αi − (Ti −ki∆y cos2αi ) = 2ki cos2αi∆y, (←)

Fz y = Ti +ki∆y cosαi sinαi +Ti +ki∆y cosαi sinαi +2Tv −FN B = 0, (↓)

Fϕy =−(Ti +ki∆y cosαi sinαi )
dt

2
+ (Ti −ki∆y cosαi sinαi )

dt

2
=−ki dt cosαi sinαi∆y, (�)

(5.1)

where:

αi = Angle of inclination [degree],
Ti = Pretension force in the inclined cable [N],
Tv = Pretension force in the vertical cable [N],
FN B = Net buoyancy force [N],
ki = Stiffness in the inclined cable [N · m−1],
dt = Diameter of the tunnel cross section [m].

Figure 5.3: Action of the vertical degree of freedom
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In Figure 5.3, the tunnel cross section moves vertically with a displacement of ∆z. The displacement is
symmetric so it makes no contribution to the horizontal and rotational reaction force. Therefore, the follow-
ing relations hold:

Fy z = 0,

Fzz = (2ki sin2αi +2kv )∆z , (↓)

Fϕz = 0,

(5.2)

where:

αi = Angle of inclination [degree],
ki = Stiffness in the inclined cable [N · m−1].

Figure 5.4: Action of the rotational degree of freedom

Similar with the previous cases, the rotation ∆ϕ in the tunnel cross section is considered small in Fig-
ure 5.4. Neglecting the contribution of the vertical line to the horizontal restoring force and the change of the
angle of inclination, the following relations hold:

Fyϕ = (Ti −ki sin∆ϕ
dt

2
sinαi )cosαi − (Ti +ki sin∆ϕ

dt

2
sinαi )cosαi =−ki dt sinαi cosαi∆ϕ, (←)

Fzϕ = 0,

Fϕϕ =−(Ti −ki sin∆ϕ
dt

2
sinαi )sinαi

dt

2
+ (Ti +ki sin∆ϕ

dt

2
sinαi )sinαi

dt

2
− (Tv −kv sin∆ϕ

dt

2
)

dt

2
+ (Tv +kv sin∆ϕ

dt

2
)

dt

2

= (ki sin2αi +kv )
d 2

t

2
∆ϕ, (�)

(5.3)
where:

αi = Angle of inclination [degree],
Ti = Pretension force in the inclined cable [N],
Tv = Pretension force in the vertical cable [N],
ki = Stiffness in the inclined cable [N · m−1],
kv = Stiffness in the vertical cable [N · m−1],
dt = Diameter of the tunnel cross section [m].

Summation of the Equation 5.1, Equation 5.2 and Equation 5.3 yields the total reaction force dependent
on the three degrees of freedom:
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Fy = 2ki cos2αi∆y −ki dt sinαi cosαi∆ϕ, (←)

Fz = (2ki sin2αi +2kv )∆z , (↓)

Fϕ =−ki dt cosαi sinαi∆y + (ki sin2αi +kv )
d 2

t

2
∆ϕ. (�)

(5.4)

In matrix form the equations above can be written as:

F =

 2ki cos2αi 0 −ki dt sinαi cosαi

0 2ki sin2αi +2kv 0

−ki dt cosαi sinαi 0 (ki sin2αi +kv )
d 2

t
2


∆y
∆z
∆ϕ

= K ·∆. (5.5)

5.1.2. Nonlinear stiffness model
In the previous linear stiffness case, the derivation of the stiffness matrix is quite straightforward. How-

ever, the pretension force is not included in the equations, which means this model can not study the influ-
ence of the buoyancy weight ratio (BWR). To solve this problem, a nonlinear stiffness model is developed with
the assumption that the change in the angle of inclination is not negligible. The three degrees of freedom are
therefore fully coupled with each other. The structure is drawn in the position as shown in Figure 5.5 to solve
all three reaction forces together.

Figure 5.5: Action of the three degrees of freedom

The dimension of Ll , Lr , Hl and Hr in Figure 5.5 is derived as:

Ll = Li +∆y + dt

2
(1−cos∆ϕ),

Lr = Li −∆y + dt

2
(1−cos∆ϕ),

Hl = ht +∆z − dt

2
sin∆ϕ,

Hr = ht +∆z + dt

2
sin∆ϕ.

(5.6)

The length of the deformed cables is determined as:
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li l =
√

L2
l +H 2

l ,

li r =
√

L2
r +H 2

r ,

lvl =
√

(Ll −Li )2 +H 2
l ,

lvr =
√

(Lr −Li )2 +H 2
r .

(5.7)

The tension force in the cables is then defined as:

Ti l = Ti +ki (li l − li ),

Ti r = Ti +ki (li r − li ),

Tvl = Tv +kv (lvl − lv ),

Tvr = Tv +kv (lvr − lv ).

(5.8)

Finally, the reaction force in three degrees of freedom is derived as:

Fy =Ti l
Ll

li l
−Ti r

Lr

li r
+Tvl

Ll −Li

lvl
+Tvr

Li −Lr

lvr
, (←)

Fz =Ti l
Hl

li l
+Ti r

Hr

li r
+Tvl

Hl

lvl
+Tvr

Hr

lvr
−FN B , (↓)

Fϕ =
(
Ti l

Ll

li l
+Ti r

Lr

li r
+Tvl

Ll −Li

lvl
−Tvr

Li −Lr

lvr

)
dt

2
sin∆ϕ+

(
−Ti l

Hl

li l
+Ti r

Hr

li r
−Tvl

Hl

lvl
+Tvr

Hr

lvr

)
dt

2
cos∆ϕ. (�)

(5.9)
It is worth noting that in this nonlinear stiffness model all three degrees of freedom are nonlinearly cou-

pled with each other, so no stiffness matrix can be extracted from the above equations. The behaviour of the
linear and nonlinear stiffness model is briefly presented in Appendix A, where it is shown that the main differ-
ence between a linear stiffness model and a nonlinear stiffness model lies in the influence of the horizontal
displacement on the vertical restoring force.

5.2. Assumptions of the model for anchoring system
Several assumptions are made to model the stiffness of the anchoring system. The validity of these as-

sumptions must be checked in order for the model to be consistent with itself.

Self weight of the cable
The shape of the cable is assumed to be a straight line from the foundation at the bottom to the joint at

the top, by ignoring the self weight of the cables. Therefore, there is no sagging in the cable and the direction
of the restoring force is considered to be the same with the direction of the cable.

Small angles of rotation
The absolute value of the rotational angle is assumed to be small in the linear stiffness model, whereas

nonlinear stiffness model does not have this assumption.

No slackening
It is assumed that no slackening of the anchoring system can be induced by the wave and current loading.

This means that compressive stresses can be developed in the cables when the strains are negative values.

Linear elasticity
The material of the anchoring system is assumed to be linear elastic. Only two material parameters need

to be experimentally determined: the Young’s modulus and the Poisson’s ratio. The physical nonlinearity of
the anchoring system is therefore not included in this model.





6
Model for submerged floating tunnel

This chapter describes the simplification of the submerged floating tunnel in order to analyze the global
dynamic behavior. The tunnel tube is treated as a beam on elastic foundation with deformations in three
directions(horizontal, vertical and rotational directions). The governing equations of the tube are derived
based on the Hamilton principle considering the non-linear hydraulic excitation as discussed in section 6.1.
The assumptions made for modelling the submerged floating tunnel are then discussed in section 6.2.

6.1. Model set-up
This research focuses on the global dynamic response of a SFT, so the influence of discretion of the an-

choring system on the dynamic behaviour of the SFT is neglected. The discrete elastic supports are simplified
as an equivalent continuous elastic foundation and the tube of the SFT is considered as a beam on elastic
foundation model (BOEF) as shown in Figure 6.1.

Figure 6.1: Simplification of the SFT tube (front view)

The flow scheme of the submerged floating tunnel model is shown in Figure 6.2. It requires the tunnel
parameters, the anchoring system parameters and the loading parameters as input. After performing corre-
sponding substitution of these parameters, the BOEF model and the stiffness model give the structural infor-
mation and the wave and current model gives the loading information. The governing equations are derived
by combining the structural information and the loading information, which are on the left hand side of the
equation (LHS) and the right hand side of the equation (RHS), respectively. The governing equations are a set
of partial differential equations (PDEs) with respect to space and time. These PDEs can be converted to a set
of ordinary differential equations (ODEs) by performing the modal analysis. This set of ODEs can be solved
by applying the MATLABr function ode45 which is based on an explicit Runge-Kutta formula (Dormand and
Prince, 1980; Shampine and Reichelt, 1997). The output of the model contains the natural frequencies, the
mode shapes, and the time history of the responses.
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Figure 6.2: Set-up of the submerged floating tunnel model

6.1.1. Governing equations

The governing equations of a submerged floating tunnel are derived based on the Hamilton principle,
which states the equations of motion of a physical system is determined by a definite integral involving the
kinetic energy, potential energy and the work done by external forces as:
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∫ t2

t1

(δWe +δT −δV )d t = 0, (6.1)

where:

We = Work done by the external forces [N · m],
T = Kinetic energy [N · m],
V = Potential energy [N · m].

The notation δ indicates a variation in the system, i.e. an imaginary change of configuration that satisfies the
system constraints.

The total kinetic energy of the beam can be written as:

T =
∫ L

0

(
1

2
mt ẏ2 + 1

2
mt ż2 + 1

2
mt r 2

g ϕ̇
2
)

d x, (6.2)

where:

mt = Mass of the tunnel per unit length [kg · m−1],
rg = Radius of gyration of the tunnel cross section [m].

The equation is composed of three motion components, horizontal movement in y direction, vertical move-
ment in z direction and rotational movement in ϕ direction. The sign convention is the same with the one
stated in the previous chapter.

The total potential energy is given by the summation of the strain energy due to the bending and torsional
deformation of the tube and the elastic potential energy of the anchoring system, with the latter expressed in
the form of the work done by the restoring forces:

V =
∫ L

0

(
1

2
E It y ′′2 + 1

2
E It z ′′2 + 1

2
G Ipϕ

′′2
)

d x +
∫ L

0

(∫ y

0
Fy d y +

∫ z

0
Fz d z +

∫ ϕ

0
Fϕdϕ

)
d x, (6.3)

where:

E It = Bending stiffness of the SFT tube [N·m2],
G Ip = Torsional stiffness of the SFT tube [N · m ·rad−1],
Fy = Restoring force in horizontal direction [N],
Fz = Restoring force in vertical direction [N],
Fϕ = Restoring moment in rotational direction [N·m].

External force work includes the work done by the external fluid force and the structure damping force
due to viscous damping:

We =
∫ L

0

(−cy ẏ y − cz żz − cϕϕ̇+Fe y y +Fez z
)

d x, (6.4)

where:

cy = Structural damping coefficient in horizontal motion [N · s· m−1],
cz = Structural damping coefficient in vertical motion [N · s· m−1],
cϕ = Structural damping coefficient in rotational motion [N · s· m−1],
Fe y = External fluid force in horizontal direction [N],
Fez = External fluid force in vertical direction [N].

The governing equations of motion can be obtained by substituting Equation 6.2, Equation 6.3 and Equa-
tion 6.4 into Equation 6.1 as shown in Equation 6.5:
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E It y
′′′′ +mt ÿ + cy ẏ +Fy = Fe y

E It z
′′′′ +mt z̈ + cz ż +Fz = Fez

G Ipϕ
′′ + I0ϕ̈+ cϕϕ̇+Fϕ = 0

, (6.5)

In fact, Equation 6.5 represents several governing equations with different stiffness models and different hy-
draulic loading conditions, i.e. different restoring forces (Fy , Fz and Fϕ) and different external hydraulic
forces (Fe y and Fez ). After performing the necessary substitutions, the governing equations regarding to dif-
ferent scenarios are finally given as:

• Model A: linear stiffness model and Morison equation:



E It y
′′′′ + (mt +ma)ÿ + cy ẏ +ky y y +kyϕϕ= 1

2
ρw DCd (uy − ẏ)

√
(uy − ẏ)2 + (uz − ż)2 + (Ca +1)

π

4
ρw D2u̇y

E It z
′′′′ + (mt +ma)z̈ + cz ż +kzz z = 1

2
ρw DCd (uz − ż)

√
(uy − ẏ)2 + (uz − ż)2 + (Ca +1)

π

4
ρw D2u̇z

G Ipϕ
′′ + I0ϕ̈+ cϕϕ̇+kϕy y +kϕϕϕ= 0

,

(6.6)

• Model B: nonlinear stiffness model and Morison equation:



E It y ′′′′+ (mt +ma)ÿ + cy ẏ +Fy (y, z,ϕ) = 1

2
ρw DCd (uy − ẏ)

√
(uy − ẏ)2 + (uz − ż)2 + (Ca +1)

π

4
ρw D2u̇y

E It z ′′′′+ (mt +ma)z̈ + cz ż +Fz (y, z,ϕ) = 1

2
ρw DCd (uz − ż)

√
(uy − ẏ)2 + (uz − ż)2 + (Ca +1)

π

4
ρw D2u̇z

G Ipϕ
′′+ I0ϕ̈+ cϕϕ̇+Fϕ(y, z,ϕ) = 0

,

(6.7)

• Model C: nonlinear stiffness model and simplified wake oscillator model:



E It y ′′′′+ (mt +ma)ÿ + cy ẏ +Fy (y, z,ϕ) = 1

2
ρDLu2

y (Cd + 1

2
Cl q

ż

uy − ẏ
)

E It z ′′′′+ (mt +ma)z̈ + cz ż +Fz (y, z,ϕ) = 1

2
ρDLu2

y (−Cd
ż

uy − ẏ
+ 1

2
Cl q)

G Ipϕ
′′+ I0ϕ̈+ cϕϕ̇+Fϕ(y, z,ϕ) = 0

q̈ +εωs (q2 −1)q̇ +ω2
s q = A

D
z̈

, (6.8)
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• Model D: nonlinear stiffness model and non-simplified wake oscillator model:

E It y ′′′′+ (mt +ma)ÿ + cy ẏ +Fy (y, z,ϕ) = 1

2
ρDLu2

y

(
CD0(uy − ẏ)+ 1

2
CL0qż

) √
(uy − ẏ)2 + ż2

u2
y

E It z ′′′′+ (mt +ma)z̈ + cz ż +Fz (y, z,ϕ) = 1

2
ρDLu2

y

(
−CD0 ż + 1

2
CL0q(uy − ẏ)

) √
(uy − ẏ)2 + ż2

u2
y

G Ipϕ
′′+ I0ϕ̈+ cϕϕ̇+Fϕ(y, z,ϕ) = 0

q̈ +εωs (q2 −1)q̇ +ω2
s q = A

D
z̈

.

(6.9)

These four sets of governing equations are very important in this research and is denoted as Model A,
Model B, Model C and Model D hereinafter. The left hand sides of the equations (LHS) reveal the information
of the structure while the right hand sides (RHS) of the equations imply the loading condition. The difference
between Model A and Model B is at the LHS, where the stiffness is derived based on different assumptions.
The difference between Model C and Model D is at the RHS, where the complicacy of the wake oscillator is
different.

6.2. Assumptions of the model for submerged floating tunnel
Next to the assumptions made to model the anchoring system, several assumptions have been made in

order to model the SFT. The validity of these assumptions must be checked in order for the model to be
consistent with itself.

Euler-Bernoulli beam
The SFT is modeled with Euler-Bernoulli beam, which means that shear deformations are neglected in

this model. Furthermore, the longitudinal behaviour of the tunnel is not included.

Connections
The connections between the anchoring cables and the tunnel are modeled with a hinge joint. The trans-

lational connection is assumed to be rigid and the rotational connection is assumed to be free.

Cross-section
The cross section of the tunnel is assumed to be uniform in axial direction. The hollow cross section of the

tunnel is considered as an equivalent solid cross section with the same physical and geometrical properties.

Structural damping
The structural damping due to viscous damping is assumed to be considerably small compared with the

hydrodynamic damping and is neglected for further calculation.

Small structure velocity
In Model C, it is assumed that velocity of the structure should be considerably small compared with the

current velocity.
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7
Scaled SFT model

This chapter describes a test of a scaled SFT model hold by TIWTE (Tianjin Research Institute For Water
Transport Engineering) in Tianjin, China. This test will be used as a case study in this research. The Physi-
cal and geometrical parameters of the scaled SFT model are described in section 7.2 and the load cases are
introduced in section 7.3

7.1. Test Overview
In 2018, the 20th annual meeting of CAST (China Association for Science and Technology) listed sub-

merged floating tunnel engineering technology as one of the 60 major scientific and engineering problems in
12 fields. In February 2018, after the handover of the Hong Kong-Zhuhai-Macao Bridge Island Tunnel Project,
the China Communications Construction Company Limited SFT Technical Joint Research Team was estab-
lished. Leading by the Island and tunnel project general management office of China Communications Con-
struction Company Limited (CCCC), Tunnel Engineering Consultants & Delft University of Technology (TEC
& TU Delft), Tianjin Research Institute for Water Transport Engineering, M.O.T.(TIWTE), China Communi-
cations Highway Planning and Design Institute Co., Ltd. (HPDI), China Communications Third Navigation
Engineering Co., Ltd. (THEC), China Communications Fourth Habour Engineering Investigation and Design
Institute Co., Ltd. (FHDI) participated in and signed a cooperation agreement to formally and systematically
carry out research on SFT technology.

In 2019, a test aiming to observe the dynamic behaviour of the SFT system under current and waves is
carried out in Tianjin by TIWTE. The emphasis of this test is not getting parameters for design but studying
how the dynamic response of a SFT is influenced by different geometrical and structural design parameters,
such as BWR, stiffness of the anchoring system, boundary conditions of the SFT, etc.

7.2. Physical and geometrical parameters
The physical model of the test is scaled by a factor of λ= 1/50. The Froude number F n is used to scale the

parameters of the fluid to ensure the gravity forces are correctly scaled:

F n = U√
g L

, (7.1)

where:

U = Flow velocity [m·s−1],
g = Gravitational acceleration [m·s−2],
L = Characteristic length [m].

Given that surface waves are gravity-driven, equility in F n ensures that wave resistance and other wave
forces are also correctly scaled. The Froude scaling is shown in Table 7.1. The subscripts M and F are for
Model scale and Full scale, respectively.
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Physical Parameter Relation Unit

Length lM =λlF [m]
Time tM =p

λtF [s]
Structural mass mM =λ3 ρM

ρF
mF [kg]

Velocity vM =p
λvF [m·s−1]

Acceleration aM = aF [m·s−2]
Force FM =λ3 ρM

ρF
FF [N]

Moment MM =λ4 ρM
ρF

MF [N · m]

Table 7.1: Froude scaling

7.2.1. Basin
The scaled SFT model is placed in a 30m×50m basin to simulate the ocean environment with no bound-

aries, so the size of the basin is not scaled from a full scale value. The physical and geometrical parameters
of the basin is listed in Table 7.2. The length and the width of the full scale water area are not related to the
model scale ones and are denoted by the slash symbol.

Item Symbol Full scale value Model scale value Unit

Length lb / 50 [m]
Width wb / 30 [m]

Water Depth hw 90 1.8 [m]
Water Density ρw 1000 1000 [kg·m−3]

Gravitational acceleration g 9.83 9.83 [m·s−2]

Table 7.2: Physical and geometrical parameters of the basin

7.2.2. Tunnel
The full scale structure is a single deck concrete tunnel with two-lane road. The tunnel is 1200m long

with a outer diameter of 12.50m and a inner diameter of 10.50m. Neglecting the contribution of the interior
wall and the pavement layer to the bending stiffness, the tunnel cross-section can be simplified as a circular
hollow section as shown in Figure 7.1.

Figure 7.1: Simplification of the tunnel cross-section

The full scale tunnel is simulated by a steel bar surrounded by buoyancy foam with discrete mass rings as
shown in Figure 7.2. The steel bar and the buoyancy foam (Figure 7.2, section A-A) provide the corresponding
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bending stiffness and buoyant force, respectively. The discrete mass rings (Figure 7.2, section B-B) are applied
to obtain the corresponding mass, which is determined by the buoyancy weight ratio.

Figure 7.2: The composition of the scaled tunnel model

The physical and geometrical parameters of the tunnel are listed in Table 7.3. Note that there is no value
for the Young’s modulus and the second moment of area of the tunnel for the scaled model since they are
included in the bending stiffness.

Item Symbol Full scale value Model scale value Unit

Length lt 1200 24 [m]
Diameter dt 12.5 0.25 [m]

Equivalent density ρt 162.97 852.56 [kg·m−3]
Mass per unit length mt 20000 41.85 [kg·m−1]

Buoyancy weight ratio BW R 1.19 1.19 [1]
Young’s modulus Ec 3.60×1010 / [N·m−2]

Second moment of area It 683.30 / [m4]
Bending stiffness E It 2.22×1013 71200 [N·m2]

Table 7.3: Physical and geometrical parameters of the tunnel cross-section

7.2.3. Anchoring system
The configuration of the anchoring system is shown in Figure 7.3 and Figure 7.4.

Figure 7.3: Front view of the anchoring system configuration
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(a) Side view of the full scale structure

(b) Side view of the scaled model

Figure 7.4: Side view of the anchoring system configuration

The physical and geometrical parameters of the anchoring system are listed in Table 7.4. The vertical
cables and the inclined cables have the same diameter of 0.008 m in model scale, while the material of the
vertical cables are stiffer than the inclined cables.

Item Symbol Full scale value Model scale value Unit

Vertical cables

Length lv 53.75 1.075 [m]
Diameter dv 0.4 0.008 [m]

Young’s Modulus Ev 2.00×1011 2.00×1011 [N·m−2]
Axial stiffness kv 4.68×108 9.35×106 [N · m−1]

Density ρv 7850 7850 [kg·m−3]
Spacing sv 150 3 [m]

Inclined cables

Inclined angle αi 45 45 [degree]
Length li 76 1.52 [m]

Diameter di 0.4 0.008 [m]
Young’s Modulus Ei 3.21×108 3.21×108 [N·m−2]

Axial stiffness ki 5.30×105 1.06×104 [N · m−1]
Density ρi 7850 7850 [kg·m−3]
Spacing si 150 3 [m]

Table 7.4: Physical and geometrical parameters of the anchoring system
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7.3. Load cases
This test focuses on the dynamic behavior of the SFT under different load cases, i.e. different combined

wave and current loads with different attack angles. Three groups of these load cases are considered in this re-
port, regarding to combined wave and current loading cases, oblique wave loading cases and vortex induced
vibration cases.

The first group contains three load cases with different wave heights and current speeds. For comparison,
the first two groups share the same wave input and the last two groups share the same current input. The
most severe case is the third one where both wave and current inputs are the largest value. Moreover, the
load direction is perpendicular to the tunnel axis and all the other load inputs are the same. These load cases
are shown in Table 7.5.

Item Symbol Full scale value Model value Unit

Load case 1.1

Wave height Hw 5 0.1 [m]
Wave period Tw 14.2 2 [s]

Current speed Vc 0.71 0.1 [ m· s−1]
Attack angle αw 90 90 [ degree]

Load case 1.2

Wave height Hw 5 0.1 [m]
Wave period Tw 14.2 2 [s]

Current speed Vc 1.41 0.2 [m· s−1]
Attack angle αw 90 90 [ degree]

Load case 1.3

Wave height Hw 10 0.2 [m]
Wave period Tw 14.2 2 [s]

Current speed Vc 1.41 0.2 [m· s−1]
Attack angle αw 90 90 [ degree]

Table 7.5: Information about load group 1

The second group is about the oblique wave, which means the wave load is applied at different attack an-
gles. The attack angle is defined as the angle between the tunnel axis and the flow line as shown in Figure 7.5.
Three attack angle is considered, i.e. 90◦, 60◦ and 45◦. Among these cases, the wave height and the wave
period are set unchanged which is 0.1m and 2s, respectively, whereas the current speed is set to 0.

Figure 7.5: Attack angle of 90°, 60° and 45°
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To capture the wave propagating along the tunnel from bow to stern when the loading direction is not
perpendicular to the tunnel, Equation 4.1 is modified with a Heaviside function denoted by H as:

uy (x, t ) =ωa
cosh(k(d + z))

sinh(kd)
sin(ω(t − xcosαw

uw
)) ·H(t − xcosαw

uw
) · sinαw

uz (x, t ) =ωa
sinh(k(d + z))

sinh(kd)
cos(ω(t − xcosαw

uw
)) ·H(t − xcosαw

uw
)

, (7.2)

where:

ω = Wave frequency [rad ·s−1],
a = Wave amplitude [m],
k = Wave number [m−1],
d = Water depth [m],
αw = Attack angle [degree],
uw = Wave phase velocity [m· s−1].

Therefore, uy and uz are functions of both x and t . When the attack angle αw = 90◦, the equation is the same
with Equation 4.1. The information about load group 2 are shown in Table 7.6.

Item Symbol Full scale value Model value Unit

Load case 2.1

Wave height Hw 5 0.1 [m]
Wave period Tw 14.2 2 [s]

Current speed Vc 0 0 [ m· s−1]
Attack angle αw 90 90 [ degree]

Load case 2.2

Wave height Hw 5 0.1 [m]
Wave period Tw 14.2 2 [s]

Current speed Vc 0 0 [ m· s−1]
Attack angle αw 60 60 [degree]

Load case 2.3

Wave height Hw 5 0.1 [m]
Wave period Tw 14.2 2 [s]

Current speed Vc 0 0 [ m· s−1]
Attack angle αw 45 45 [degree]

Table 7.6: Information about load group 2

The third group focuses on the vortex induced vibration. Only current loading is considered is this group.
The current is speed is set to to Vc = 1.5m · s−1 for load case 3.1 and Vc = 1.0m · s−1 for load case 3.2. The The
information about load group 3 are shown in Table 7.7.

Item Symbol Full scale value Model value Unit

Load case 3.1

Wave height Hw 0 0 [m]
Wave period Tw / / [s]

Current speed Vc 10.6 1.5 [ m· s−1]
Attack angle αw 90 90 [ degree]

Load case 3.2

Wave height Hw 0 0 [m]
Wave period Tw / / [s]

Current speed Vc 7.1 1.0 [ m· s−1]
Attack angle αw 90 90 [degree]

Table 7.7: Information about load group 3
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Results of the scaled SFT model

This chapter presents and explains the results of the scaled SFT model based on Model A, Model B, Model
C and Model D. First, a frequency extraction based on Model A is discussed to understand the system be-
haviour in further analysis. Second, the results of the scaled SFT model based on Model A and Model B,
regarding the first two load groups are discussed. Subsequently, discussions in terms of the effect of the geo-
metrical nonlinearity and the effect of the global analysis is presented in section 8.4 and section 8.5. Third, the
results of the scaled SFT model based on Model C and Model D, regarding the third load group is addressed.
Finally, the assumptions made to model the scaled SFT model are discussed to check the consistency of the
model. All the values of the results can be scaled to the full scale value by means of the Froude scaling shown
in Table 7.1. The knowledge obtained in this chapter is applied in the parametric study presented in the next
chapter.

Although the results in this chapter are given by global analysis, the results at midspan plotted in 2D is
chosen to be discussed for a clear interpretation of the structural behaviour. To have a global view of these
results, refer to Appendix B.

8.1. Frequency extraction
The natural frequencies of the system are very essential for understanding the system behaviour, so a

frequency extraction was first carried out for further analysis. They were extracted from the response of the
initial-value problem of the governing equations of free vibration based on the linear stiffness assumption as:

E It y
′′′′ + (mt +ma)ÿ +ky y y +kyϕϕ= 1

2
ρw DCd ẏ

√
ẏ2 + ż2

E It z
′′′′ + (mt +ma)z̈ +kzz z = 1

2
ρw DCd ż

√
ẏ2 + ż2

G Ipϕ
′′ + I0ϕ̈+kϕy y +kϕϕϕ= 0

. (8.1)

In fact, this equation is Model A (Equation 6.6) in free vibration with substitution of uy = 0,uz = 0, u̇y = 0 and
u̇z = 0. The structural damping is ignored compared with the relatively large hydrodynamic damping. The
motions in y-direction andϕ-direction are coupled together by the stiffness, so the same frequencies for both
y-direction and ϕ-direction are expected. On the contrary, motion in z-direction has its own set of natural
frequencies.

Equation 8.1 were solved numerically by using MATLABr ode45. The natural frequencies were then re-
vealed by performing the Fourier transform to the solution. The natural frequencies of the first ten modes in
y-direction and ϕ-direction and the first ten modes in z-direction are shown in Table 8.1. For comparison,
analytical solutions for natural frequencies in y-direction (ωn,y ) and natural frequencies in z-direction (ωn,y )
were also calculated by:

ωn,y =
√

E Itβ
4
n +ky y

mt +ma
, ωn,z =

√
E Itβ

4
n +kzz

mt +ma
, (8.2)
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where:

βn =
nπ

lt
[m−1],

lt = Length of the tunnel [m].

The added fluid mass is included in the analytical solutions but the nonlinear hydrodynamic damping and
the coupling between motions in y-direction and ϕ-direction are left out.

Mode number
Natural frequency [Hz]

(y-direction and ϕ-direction)
Natural frequency [Hz]

(z-direction)
Numerical solution Analytical solution Numerical solution Analytical solution

1 1.1188 1.6155 41.8197 72.4387
2 1.1386 1.6425 41.8296 72.4393
3 1.2178 1.7546 41.8297 72.4419
4 1.6435 2.0260 41.8395 72.4490
5 2.1880 2.5035 41.8692 72.4640
6 2.9801 3.1938 41.9187 72.4911
7 3.9008 4.0838 41.9880 72.5357
8 5.0295 5.1587 42.1068 72.6042
9 6.2769 6.4079 42.2850 72.7036

10 7.7224 7.8242 42.5226 72.8421

Table 8.1: Natural frequencies extracted from the linear stiffness model

It can be observed that the first three natural frequencies are very close to each other. This is due to
the fact that the stiffness is considerably large and dominants the natural frequencies, so that the changing
of mode shape does not influence much on the result. This can be seen in the analytical solution of the
natural frequencies as shown in Equation 8.2. In addition, the analytical solutions are relatively larger than
the numerical solutions, because the hydrodynamic damping is not included in the analytical solutions. The
influence of the hydrodynamic damping becomes smaller as the mode number increases, as the curves of
both solutions approach to each other as shown in Figure 8.1.

Figure 8.1: Comparison of natural frequencies in y-direction and ϕ-direction between numerical solutions and analytical solutions

8.2. Combined wave and current loading of the SFT
As it has presented in chapter 7, the first group of the load cases focus on the combined wave and current

loading. For comparison,the first two load cases share the same wave input and the last two load cases share
the same current input. To understand the influence of both linear and nonlinear stiffness assumptions,
Model A (Equation 6.6) and Model B (Equation 6.7) were applied to solve the displacement in three directions
at midspan of the tunnel. The structural damping was not included, given that this study focuses on the
influence of the hydraulic damping and the structural damping is considerably small.
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8.2.1. Load case 1.1
For load cases 1.1, the loading input wave height, wave period and current speed is set as Hw = 0.1m,

Tw = 2s and Vc = 0.1m · s−1, respectively. Generally, the displacement in y-direction and ϕ-direction based
on linear and nonlinear stiffness assumption has very similar path as shown in Figure 8.2 and Figure 8.4.
However, when it comes to z-direction in Figure 8.3, the displacements have significant difference, which
adds evidence to the fact that with the nonlinear stiffness assumption the motions in three directions are
all coupled together. The large downward displacement based on the nonlinear stiffness assumption can
be addressed to the pendulum effect (described in section 2.3): horizontal displacements are so large that
second order effects become relevant and a down-pulling mechanism takes place. This phenomenon can
also be observed in other load cases as long as the geometrical nonlinearity is considered.

Figure 8.2: Displacement in y direction at midspan (Load case 1.1)

Figure 8.3: Displacement in z direction at midspan (Load case 1.1)

Figure 8.4: Rotation in ϕ direction at midspan (Load case 1.1)
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8.2.2. Load case 1.2
For load cases 1.2, all the loading input except the current speed remains the same. The current speed

is increased to 0.2m · s−1, which gives Hw = 0.1m, Tw = 2s and Vc = 0.2m · s−1. The increasing of the current
speed does not make a huge influence on the amplitude of the response. However, the shape of the signal at
steady state becomes more sinusoidal as shown in Figure 8.6. As the increase of the current speed, the com-
bined wave and current loading becomes more static. Therefore, the relatively high frequency components
are suppressed.

Figure 8.5: Displacement in y direction at midspan (Load case 1.2)

Figure 8.6: Displacement in z direction at midspan (Load case 1.2)

Figure 8.7: Rotation in ϕ direction at midspan (Load case 1.2)
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8.2.3. Load case 1.3
The loading input is set as Hw = 0.2m, Tw = 2s and Vc = 0.2m · s−1 for load case 3.3 which is the most

severe scenario among the group. The increasing of the wave height considerably increase the displacement.
The maximum of the displacement at steady state in y-direction increases from 0.012 m to 0.025 m compared
to the load case 2.2 implying a linear response considering that the forces are doubled. It is even more severe
in z-direction that the maximum of the displacement increases from 5×10−5 m to 30×10−5 m, which implies
a nonlinear response.

Figure 8.8: Displacement in y direction at midspan (Load case 1.3)

Figure 8.9: Displacement in z direction at midspan (Load case 1.3)

Figure 8.10: Rotation in ϕ direction at midspan (Load case 1.3)
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8.2.4. Discussion about Combined wave and current loading
The results of the displacement based on Model B (Equation 6.7) of load group 1 are plotted together as

shown in Figure 8.11, Figure 8.12 and Figure 8.13. To study the frequency content in the steady state, the
Fourier transform is applied for the segments of the time signals from 15 s to 30 s.

(a) Time domain (b) Frequency domain

Figure 8.11: Displacement in y direction at midspan (Load group 1)

(a) Time domain (b) Frequency domain

Figure 8.12: Displacement in z direction at midspan (Load group 1)

(a) Time domain (b) Frequency domain

Figure 8.13: Rotation in ϕ direction at midspan (Load group 1)

In the time domain, the displacement of case 1.1 and case 1.2 share a similar amplitude, implying that the
change of the current speed does not influence the result very much. The wave height, on the other hand,
has a large impact on the amplitude of displacement especially in z-direction, comparing case 1.2 with case
1.3. This is because the loading frequency of the wave is close to the natural frequency of the structure, which
induced the resonance of the structure.

In the frequency domain, given that the displacement in y-direction and ϕ-direction has very similar
path in time domain, the frequency contents of these two assumptions are also matching with each other as
shown in Figure 8.11 (b) and Figure 8.13 (b). This coupling effect also exists in other load cases. Therefore,
only frequency contents in y-direction is discussed hereinafter. The peaks at 0.5 Hz observed in y-direction
indicate the loading frequency is 0.5Hz. The strong energy at 1 Hz is a result of the square of the relative
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flow velocity on the right hand of Equation 6.7. Besides 0.5 Hz and 1 Hz, 1.5 Hz and 2 Hz are found to have
large magnitude, being integer multiples of the loading frequency, which implies the geometrical nonlinearity
assumption introduce higher loading frequencies into the system with the magnitude dependent on wave
amplitude.

8.3. Oblique wave loading of the SFT

The second group focus on the influence of the wave attack angle. Three attack angle is considered, i.e.
90◦, 60◦ and 45◦. Among these cases, the wave height and the wave period is set unchanged which is Hw =
0.1m and Tw = 2s, respectively, whereas the current speed is set to Vc = 0. Model A (Equation 6.6) and Model
B (Equation 6.7) were applied in this load group to study how the linear and nonlinear stiffness assumptions
influence the results.

8.3.1. Load case 2.1

The wave attack angle is set to 90◦ in this case. The response is therefore similar to the load group 1,
since the attack angle of these cases are the same. The displacement based on linear and nonlinear stiffness
assumption match with each other very well in y-direction and ϕ-direction. The huge difference is in z-
direction where the displacement of nonlinear case is almost 40 times bigger than the one of linear case. The
transient state takes around 10s and then the system goes to steady state.

Figure 8.14: Displacement in y direction at midspan (Load case 2.1)

Figure 8.15: Displacement in z direction at midspan (Load case 2.1)
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Figure 8.16: Rotation in ϕ direction at midspan (Load case 2.1)

8.3.2. Load case 2.2

The wave attack angle is set to 60◦ in this case. It can be observed in the figures that the wave takes time
to propagate to the midspan of the tunnel. However, it hardly takes time for the system to go to the steady
state. The displacements in z-direction aroused from linear and nonlinear stiffness assumption have similar
amplitude, but the equilibrium point of the linear case is 0 while the one of the nonlinear case is negative.

Figure 8.17: Displacement in y direction at midspan (Load case 2.2)

Figure 8.18: Displacement in z direction at midspan (Load case 2.2)
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Figure 8.19: Rotation in ϕ direction at midspan (Load case 2.2)

8.3.3. Load case 2.3

The wave attack angle is set to 45◦ in this case. Both linear and nonlinear cases give similar results in three
directions. When the wave propagate to the midspan of the tunnel, the system takes time very short time to
go to the steady state.

Figure 8.20: Displacement in y direction at midspan (Load case 2.3)

Figure 8.21: Displacement in z direction at midspan (Load case 2.3)
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Figure 8.22: Rotation in ϕ direction at midspan (Load case 2.3)

8.3.4. Discussion about Oblique wave loading

The results of the displacement based on Model B (Equation 6.7) of load group 2 are plotted together as
shown in Figure 8.23, Figure 8.24 and Figure 8.25. To study the frequency content in the steady state, the
Fourier transform is applied for the segments of the time signals from 15 s to 30 s.

In the time domain, the maximum of the response decrease as the increase of the attack angle. This is
because the tunnel is only subjected to the component of the hydraulic force when it is loaded in a oblique
manner. The change of value also makes the system go to the steady state faster.

In the frequency domain, it can be observed that as a result of increasing of the attack angle, the energy
of the frequencies, being integer multiple of the loading frequency, decrease significantly. This leads to a
smoother curve as shown in the time domain.

(a) Time domain (b) Frequency domain

Figure 8.23: Displacement in y direction at midspan (Load group 2)

(a) Time domain (b) Frequency domain

Figure 8.24: Displacement in z direction at midspan (Load group 2)
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(a) Time domain (b) Frequency domain

Figure 8.25: Rotation in ϕ direction at midspan (Load group 2)

8.4. Linear and nonlinear stiffness model
To understand the effect of the linear and nonlinear stiffness assumption on the results, i.e., the difference

between Model A (Equation 6.6) and Model B (Equation 6.7), the frequency components of the time domain
signals are investigated. Load case 2.1 considering only wave loading is chosen to be discussed in this section
because the loading frequency of pure wave loading is easy to recognize from the frequency domain repre-
sentations. The wavelet transform is applied to the signal to capture the frequency content changing over
time and the results are shown in Figure 8.26, Figure 8.27 and Figure 8.28.

(a) Linear stiffness model (b) Nonlinear stiffness model

Figure 8.26: Wavelet transform of the displacement in y direction at midspan (Load case 2.1)

As shown in Figure 8.26, the frequency content is same for both assumption. The magnitude at 0.5Hz
is the strongest and does not decay over time indicating the loading frequency is 0.5Hz, which conforms to
the condition in load case 2.1 where the wave period is 2s. Another strong peak is observed at 1Hz, which
is the first natural frequency in y direction. It declines to a considerable small level due to the presence
of hydrodynamic damping. Some other natural frequencies can also be observed at around 1.2Hz and 2.2Hz
corresponding to the 3rd mode and the 5th mode. Only mode shape of the odd order can be observed because
the system is subjected to symmetric loading.

(a) Linear stiffness model (b) Nonlinear stiffness model

Figure 8.27: Wavelet transform of the displacement in z direction at midspan (Load case 2.1)

Interestingly, the frequency content in z-direction as shown in Figure 8.27 has a huge difference based on
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linear and nonlinear stiffness assumption, which conforms with the observation the in Fourier transform as
mentioned previously. There is only one frequency at 0.5Hz in the results of Model A indicating the loading
frequency of the linear case of which the magnitude is very small. On the contrary, the frequency content of
the nonlinear case is very complicated with a larger magnitude. In Figure 8.27 (b), the magnitude of the load-
ing frequency of 0.5Hz declines in the first 15s, and ends up at the value similar to the linear case. However,
there is no attenuation observed in the frequency of 1Hz. In fact, this is also the loading frequency, which
comes from the second order of the flow velocity ẏ and ż on the right hand side of Equation 6.7. This second
order doubles the value of the load frequency leading to the constant magnitude at 1 Hz. The magnitude
around 1.3Hz and 2.2 Hz is gradually damped out, indicating the value of the 3rd natural frequency and the
5th natural frequency of the y-direction, respectively. These imprinted natural frequencies are the result of
the coupled motion in three directions, which is bigger than the natural frequencies of the uncoupled motion
in y-direction and smaller than the ones in z-direction.

As discussed in this section, the results based on the nonlinear stiffness assumption provide more com-
plete information about the dynamic response. It gives more insight to understand the dynamic behaviour
especially in z-direction. Therefore, for further interpretation of the results, only the analysis based on the
nonlinear stiffness assumption is considered.

(a) Linear stiffness model (b) Nonlinear stiffness model

Figure 8.28: Wavelet transform of the displacement in ϕ direction at midspan (Load case 2.1)

8.5. Global dynamic behaviour of the SFT
The global dynamic analysis based on Model B (Equation 6.7) with different boundary conditions were

investigated to understand the its effect on the results. Meanwhile, a 2D cross-sectional dynamic analysis was
carried out for comparison. This dynamic analysis simplifies the BOEF model as a rigid body with a boundary
condition of both ends free. The longitudinal motions of the model are ignored by this simplification and the
rigid tunnel only contains three DOFs, i.e. horizontal, vertical and rotational displacement. Load case 1.1 and
Load case 2.2 are chosen to be discussed in this section, since they represent the combined wave and current
loading group and the oblique wave loading group.

The results given by the global dynamic analysis and the 2D cross-sectional dynamic analysis are shown
in Figure 8.29, Figure 8.30 and Figure 8.31. Basically, the 2D cross-sectional dynamic analysis provides similar
results at midspan compared with the global dynamic analysis in load case 1.1. This is due to the fact that
the boundary conditions do not influence the response at midspan very much because the distance between
tunnel tips to the midspan is very large.

(a) Load case 1.1 (b) Load case 2.2

Figure 8.29: Displacement in y direction at midspan (with different boundary conditions)
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(a) Load case 1.1 (b) Load case 2.2

Figure 8.30: Displacement in z direction at midspan (with different boundary conditions)

(a) Load case 1.1 (b) Load case 2.2

Figure 8.31: Rotation in ϕ direction at midspan (with different boundary conditions))

When it comes to load case 2.2, the drawbacks of the cross-sectional analysis are revealed as the path
of the results yielded from the cross-sectional analysis does not comply with any of the global analysis. The
maximum value of the response given by the cross-sectional analysis is significantly smaller than all the other
cases. This is because that the cross-sectional analysis is not capable to capture the flexible deformation in
the tunnel, which place a important role when the tunnel is subjected to oblique wave loading.

8.6. Vortex induced vibration of the SFT
The third group only contains current loading to study the vortex induced vibration. Model C (Equa-

tion 6.8) and Model D (Equation 6.9) were applied in this group. At first glance, the possibility of vortex
induced vibration is considerably small since the natural frequency of the vertical motion is very high, which
requires an unreasonable high current speed. However, a closer inspection reveals that the frequencies of the
horizontal motion is imprinted in vertical motion because of the coupled motions in the nonlinear stiffness
assumption. This makes the first natural frequency in vertical direction significantly low and is assumed to
make vortex induced vibration easy to happen.

As discussed in subsection 2.4.4, the lock-in phenomenon of the vortex induced vibration takes place
when the reduced velocity Vn is larger than 5. Given that the first natural frequency in vertical direction is
1.000Hz and the diameter of the tunnel cross section is 0.25m, the flow velocity is determined by:

Vc >Vn fnD = 5×1×0.25 = 1.25m · s−1. (8.3)

To make the lock-in phenomenon clear to observe, the current speed is set to Vc = 1.5m · s−1 for load case
3.1. For comparison, the current speed is set to Vc = 1.0m · s−1 for load case 3.2. It is worth noting that 1.5
m · s−1 and 1.0 m · s−1 are theoretical value, as in full scale being 10.6 m · s−1 and 7.1 m · s−1. The parameters
used for Equation 4.10 and Equation 4.11 are determined as suggested by Ogink and Metrikine (2010):

CD0 = 1.1856, CL0 = 0.3842,

St = 0.1932, A = 12.0, ε= 0.7.
(8.4)
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8.6.1. Load case 3.1
The results produced by both simplified wake oscillator model and non-simplified wake oscillator model

are plotted together for comparison in Figure 8.32, Figure 8.33 and Figure 8.34. The path of the non-simplified
wake oscillator indicate the magnitude of the VIV is very small and provide the equilibrium point. However,
the curve of the simplified wake oscillator moves around that point and the maximum displacement of the
wake oscillator is considerably large compared with the one of linear case especially in z-direction.

Figure 8.32: Displacement in y direction at midspan (Load case 3.1)

Figure 8.33: Displacement in z direction at midspan (Load case 3.1)

Figure 8.34: Rotation in ϕ direction at midspan (Load case 3.1)

8.6.2. Load case 3.2
The results of load case 3.2 are shown in Figure 8.35, Figure 8.36 and Figure 8.37. The results are similar

with the previous section.
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Figure 8.35: Displacement in y direction at midspan (Load case 3.2)

Figure 8.36: Displacement in z direction at midspan (Load case 3.2)

Figure 8.37: Rotation in ϕ direction at midspan (Load case 3.2)

8.6.3. Discussion about Vortex induced vibration
The results of Model C (Equation 6.8) and Model D (Equation 6.9) are plotted together for comparison.

The Fourier transform is applied to the steady state of the time signals from 15 s to 30 s. When applying the
simplified wake oscillator, VIVs with high amplitudes take place in both cases. The peak at 1Hz and 1.2Hz in
all three directions, being the value of the 1st and 3rd natural frequencies in y-direction, indicates the occur-
rence of the lock-on phenomenon. However, the velocity of the structure is rather large in both load cases
which conflicts with simplification assumption, in which the vertical velocity of the tunnel is considerably
small compared with the current speed, therefore the simplified model is no longer suitable. In this case,
Model D (Equation 6.9) would provide a more reliable results.

The results of Model D (Equation 6.9) indicate that the amplitudes of the VIVs are extremely small for
both load cases. The path goes to constant after 2.5s and the increasing of the current speed only increase the
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value of this constant but does not change the state of the motion. This implies that the imprinted frequencies
noted in z-direction seem to have no connection with the occurrence of a severe VIV. This is due to the fact
that the vertical stiffness is considerably large making natural frequencies in z-direction very high, so that
the loading frequency is far away from the natural frequencies. Therefore, the lock-on phenomenon could
hardly happen. However, as the free-span between two groups of anchoring cables increases or the stiffness
in vertical direction decreases, the stiffness in z-direction becomes small, which would make the natural
frequency close to the loading frequency. For this reason, the VIV is expected to have a large impact and
further analysis is needed.

(a) Time domain (b) Frequency domain

Figure 8.38: Displacement in y direction at midspan (Load group 3)

(a) Time domain (b) Frequency domain

Figure 8.39: Displacement in z direction at midspan (Load group 3)

(a) Time domain (b) Frequency domain

Figure 8.40: Rotation in ϕ direction at midspan (Load group 3)

8.7. Discussion about the assumptions
Several assumptions have been made to construct the stiffness model and the submerged floating tunnel

model. Some of these assumptions can be validated with modeling results to see if the model is consistent
with itself. Other assumptions need further physical test or FE software to validate. The assumptions which
are expected to have potential influence on the results of the model are validated if possible and otherwise,
their effect is discussed.
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Small angles of rotation
The order of magnitude of the maximum amplitude of the rotational angle is -5 with unit of rad. This

means that the assumption of small rotational angles for Model A is a reasonable assumption.

Small structure velocity
The maximum velocity observed in load group 3 when applying Model C is 0.9 m/s. It conflicts with

the assumption that the velocity of the structure should be considerably small compared with the current
velocity. Model C, therefore, is not applicable for laod group 3.

Corss-section
When the tunnel structure is subjected to symmetric loading, the response is also symmetric in space,

which indicates that the cross section of the tunnel is uniform in axial direction.

8.8. Conclusion
The conclusions contributed to the understanding of

• The geometrical nonlinearity of the stiffness mainly affects the results in vertical direction and
inducing the pendulum phenomenon. The vertical displacement results from a nonlinear stiff-
ness model could be 5 times bigger than the one from a linear stiffness model. This difference
decreases as the attack angle change from 90◦ to 45◦.

• The geometrical nonlinearity of the stiffness could imprints natural frequencies of horizontal
direction to vertical direction. However, this imprinted natural frequencies does not related the
VIV in vertical direction.

• The 2D cross-sectional analysis is able to simulate the response at the midspan of SFT when
the attack angle is 90◦. When the SFT is subjected to the oblique wave loading, the discrepancy
between the 2D cross-sectional analysis and the global analysis is significant, implying the draw-
back of the 2D cross-sectional analysis is not capable to capture the longitudinal behaviour of
the response. On the other hand, the global analysis performs well in any load cases.

• The SFT is more sensitive to the wave loading than the current loading, since the wave loading
frequencies is possible to be close to the natural frequencies of the structure and induce severe
resonance.

• As the attack angle change from 90◦ to 45◦, the maximum responses in three directions decrease.

• Base on this scaled model, as long as the vortex shedding frequency is not close to the vertical
natural frequencies, regardless of the horizontal natural frequencies. The impact of the VIV can
be ignored.
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Parametric study

The influence of the design parameters on the dynamic response is investigated in this chapter. The para-
metric study uses the input parameters and the response of Load case 2.1 as a reference, where the system is
only subjected to wave loading. Model B (Equation 6.7) is applied for this study. Aiming to gain insight for
the impact of the parameters, only the maximum response at steady state of the tunnel is of interest. The
location and the time of the maximum response is therefore not specified.

9.1. Influence of the buoyancy weight ratio

The buoyancy weight ratio (BWR) is defined as the ratio between the buoyancy acting on the tunnel and
the sum of the permanent weights and live loads. In this case, the BWR is determined by the ratio between
buoyancy and the weight of the tunnel as shown in Equation 9.1.

BW R = FB

W
= ρw g dt

ρt g dt
= ρw

ρt
. (9.1)

The water density remains the same, so increasing the BWR means a decreas of the density of the tunnel.
The net buoyancy per unit length is defined by virtue of Equation 9.2. Decreasing the density of the tunnel
results in an increase of net buoyancy, which subsequently increases the pretension in the anchoring cables.
Therefore, the study of the BWR is also the study of the pretension in the anchoring cables.

FN B = FB −W = (ρw −ρt )g dt . (9.2)

It is worth noting that the diameter of the tunnel cross-section also makes a difference to the net buoy-
ancy. However, it is not related to the BWR. This implies that a same BWR may lead to different input param-
eters without clarification of the diameter. This is the drawback of the study of the BWR and deserves close
consideration. In this study, the diameter is specified unchanged as dt = 0.25m. The range of the BWR of
interest is set as 1.2-2.1. The results of the maximum response in three directions are shown in Figure 9.1.
Clearly, maximum responses of the system in three directions reduce gradually as the BWR increase. There-
fore, the upper boundary of the BWR is limited by the financial aspect, not the structural aspect.
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Figure 9.1: Influence of the BWR

9.2. Influence of the length of the tunnel
The length of the tunnel is defined as the distance between the tunnel bow and the tunnel stern. It has a

strong influence on the mass and the stiffness of the tunnel. However, in this continues system, it is the mass
per unit length that is taken into account. Therefore, the length of the tunnel only make a difference to the
stiffness of the tunnel and consequently influence the natural frequency of the system.

Figure 9.2: Influence of the length of the tunnel

The results of the parametric study of the length of the tunnel are shown in Figure 9.2. The range of tunnel
length for the study is 10m−100m. Some peaks can be observed in y-direction and z-direction, which is due
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to the occurrence of the resonance when the decreasing natural frequencies meet the loading frequencies. Af-
ter the tunnel length reaching the value of 60m, the maximum of the response in y-direction and z-direction
tends to become a constant. This phenomenon adds evidence to the fact that the SFT is a modular structure
and is theoretically feasible to surpass spans of any length.

9.3. Influence of the stiffness of the cables
The stiffness of the vertical and inclined cables plays a very important role in the dynamic behaviour

of the system. These cables compose the constraint for the motions in horizontal, vertical and rotational
direction. The inclined cables mainly control the motion in horizontal direction, while the vertical cables
restrain the motion in vertical and rotational direction. The stiffness is also the dominant part of the natural
frequency. Therefore, a suitable combination of vertical and inclined cables can avoid the resonance and
limit the response in a very small magnitude. Conversely, an improper set of vertical and inclined cables may
lead to high response of the tunnel, sometimes even instability. The results of the parametric study of the
combination of the vertical and inclined cables are shown in the following figures. The range of the stiffness
of vertical and inclined cable is both set as 0.1×10−6N/m −10×10−6N/m.

Figure 9.3: Influence of the stiffness for ymax

As shown in Figure 9.3, the maximum displacement in y-direction is mainly influenced by the stiffness of
the inclined cable. It is worth noting that the stiffness of the vertical cables should be larger than 1×106N/m
to avoid the instability in the system, which leads to an extremely large value of ymax . This extremely large
value is denoted by dark red as shown in Figure 9.3. Some dark blue lines are observed at the top right corner
of the figure, indicating that a certain combination of the vertical cables and the inclined cables provides a
strong constraint. This gives the insight for the design of the anchoring system, which suggests choosing the
value of the stiffness on the dark blue lines rather than simply increasing the value.

The result of the influence of the stiffness on the maximum displacement in z-direction is shown in Fig-
ure 9.4. The maximum displacement in z-direction is more sensitive to the stiffness of the vertical cables than
to the stiffness of the inclined cables. As discussed previously, the stiffness of the vertical cables should be
larger than 1×106N/m to avoid the instability in the system.

Figure 9.5 showing the influence of the stiffness on the maximum displacement inϕ-direction has similar
properties with Figure 9.5, which gives the evidence to the fact that the coupled motion between y-direction
and ϕ-direction. Some dark blue lines are observed at the top right corner of the figure as well, which can be
referred to for further application in design. Furthermore, the condition for the stiffness of the vertical cables
larger than 1×106N/m to avoid instability is also applied in this direction.
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Figure 9.4: Influence of the stiffness for zmax

Figure 9.5: Influence of the stiffness for ϕmax

9.4. Influence of the inclination of the cables
The parametric study of the influence of the inclination of the cables is presented in this section. Only

the change of the inclination of the inclined cables is considered and the vertical cables remain vertical. The
inclination angle of interest is from 15◦ to 75◦. With the increase of the inclination angle, the length of the
inclined cable also increase and subsequently decrease the stiffness of the cables if the material remains un-
changed. Therefore, the study is divided into two parts. The first part assumed that the stiffness of the cables
remains the same when the inclination angle is changed by theoretically change the material properties. This
part aims to find out the optimal angle to applied a certain stiffness. The second part is of practical interest,
assuming that the material of the cables remains the same. This part aims to find out the optimal angle to
apply anchoring inclined cables.

The results of these two parametric studies in Figure 9.6 shows that with the increase of the inclination
angle, the value of the maximum response in three directions with same material assumption rise gradually,
meanwhile the one with same stiffness assumption share the similar path and reach to a peak when the angle
is 70◦. It is worth noting that the maximum response in y-direction based on the same material assumption is
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found to decrease at first when the angle is increased from 15◦ to 35◦. This is due to the fact that the stiffness
of the cables is increased significantly at the same time. Based on the results of these two parametric studies,
it is suggested that the optimal angle to applied a certain stiffness is the smaller the better and the optimal
angle to apply anchoring inclined cables is 35◦ to 45◦.

Figure 9.6: Influence of the inclination of the cables

9.5. Influence of the distribution of pretension

The distribution of pretension in cables is defined by a pretension distribution coefficient γ, which is
related to the initial static tension forces in the cables by virtue of Equation 9.3. Note that the coefficient
γ describes how much amount of the net buoyancy is assigned for each cable and has a range from 0 to
0.5. γ = 0 means all the net buoyancy force is allocated to the inclined cables and γ = 0.5 means all the net
buoyancy force is assigned to the vertical cables. The results of the parametric study on the influence of the
distribution of pretension is shown in Figure 9.7 with pretension distribution coefficient γ range from 0.1 to
0.4.

Tv = FN B svγ

Ti = FN B si (0.5−γ)

sinαi

(9.3)

The maximum responses in three directions is gradually increased as the increase of pretension distri-
bution coefficient γ. Therefore, the more net buoyancy force is distributed in inclined cables, the better the
responses of the system is controlled.
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Figure 9.7: Influence of the distribution of pretension

9.6. Influence of the boundary conditions of the tunnel

The boundary conditions of the tunnel are simplified from the configuration of the connections of a SFT
with the shores. It is one of the most relevant issues in the design for a SFT. In this parametric study, Model B
(Equation 6.7) with respect to four kinds of boundary conditions is considered, which represents the both end
pinned beam & both end fixed torsion rod model (denoted as Pinned, Fixed), the both end pinned beam &
both end free torsion rod model (denoted as Pinned, Free), the both end fixed beam & both end fixed torsion
rod model (denoted as Fixed, Fixed) and the both end free beam & both end free torsion rod model (denoted
as Free, Free). Load case 1.1 and load case 2.2 are chosen as the loading conditions in this study, the results of
the response at midspan of the tunnel and at 1.5 m from tunnel bow are shown from Figure 9.8 to Figure 9.13.

The response of different boundary conditions at the midspan are similar with each other. This is because
that the distance between the midspan and both ends of the tunnel is long enough so that the influence of
the boundary conditions is very small.

(a) Load case 1.1 (b) Load case 2.2

Figure 9.8: Influence of the boundary conditions in y direction at midspan
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(a) Load case 1.1 (b) Load case 2.2

Figure 9.9: Influence of the boundary conditions in z direction at midspan

(a) Load case 1.1 (b) Load case 2.2

Figure 9.10: Influence of the boundary conditions in ϕ direction at midspan

As the location of interest approaches to the endpoint of the tunnel, the influence of different the bound-
ary conditions becomes stronger. This can be observed in Figure 9.11, Figure 9.12 and Figure 9.13, where the
models based on different boundary conditions give different results. The both end free beam & both end free
torsion rod model (denoted as Free, Free) gives the weakest boundary conditions. The absolute maximum
response of this boundary conditions is generally two to three times bigger than the other. On the contrary,
the displacement results from the both end fixed beam & both end fixed torsion rod model (denoted as Fixed,
Fixed) is limited to a relatively small value. It is worth noting that the change of the boundary condition re-
garding to rotational angle does not influence the displacement in horizontal and vertical direction, which
can be seen in Figure 9.11 and Figure 9.12 where the blue path and the red path coincides almost exactly with
each other.

For a global view of results of the influence of the boundary conditions of the tunnel, refer to Appendix C.

(a) Load case 1.1 (b) Load case 2.2

Figure 9.11: Influence of the boundary conditions in y direction at 1.5 m from the tunnel bow
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(a) Load case 1.1 (b) Load case 2.2

Figure 9.12: Influence of the boundary conditions in z direction at 1.5 m from the tunnel bow

(a) Load case 1.1 (b) Load case 2.2

Figure 9.13: Influence of the boundary conditions in ϕ direction at 1.5 m from the tunnel bow

9.7. Conclusion
Some conclusions are drawn based on the results of the parametric study. These conclusions provide

a further understanding of the dynamic behaviour of the SFT. It is worth noting that these conclusions are
based on the certain structural and geometrical parameters of the scaled model. It is possible to get the simi-
lar conclusions when the model is scaled to full scale dimensions. However, the conclusion may change when
other sets of parameters are applied, since some of the relations between the parameters and the response of
the tunnel are not linear.

In brief, following methods can be applied to reduce the maximum response of the SFT:

• Increase or decrease the buoyancy weight ratio in order to make the value of the maximum re-
sponse move to the troughs of the curves as shown in Figure 9.1 .

• Choose a certain length of the tunnel so that the natural frequencies of the structure are away
from the expected loading frequencies. In full scale, if the tunnel is longer than 3000m, the length
of the tunnel makes no more difference to the response.

• Choose the value at troughs of Figure 9.3 or Figure 9.5 for the stiffness of vertical and inclined
cables.

• Apply the inclined cables with an inclination of 35◦ to 45◦.

• Assign more net buoyancy force to the inclined cables.

• For long SFTs, the boundary conditions do not influence much to the response at the midspan.
Given that the maximum response usually takes place at midspan, The boundary conditions do
not influence much to the maximum response of the tunnel.
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10
Conclusion and recommendations

The conclusions and the recommendations for the complete research are presented in this chapter. The
research questions are answered in section 10.1 and the recommendations for further research are discussed
in section 10.2.

10.1. Conclusion
The research questions are introduced in chapter 1. These questions must be answered to fulfill the re-

search objective: to gain insight on the global dynamic fluid-structure interaction response of a submerged
floating tunnel under wave and current loading to enhance a design of a SFT. The research questions are bro-
ken down into sub-questions in order to specify them. First, the sub-questions are discussed to answer the
research questions in the end.

10.1.1. Sub-questions
1. How can the global dynamic fluid-structure interaction response of a SFT with a discrete an-

choring system be modeled?

The following concepts are used to model the dynamic response of a SFT with a discrete anchor-
ing system:

• A SFT can be schematized with :

− Euler-Bernoulli beam

− Beam on elastic foundation assumption

This model is suitable to access the response of the tunnel subjected to a uniform
current and/or long-period perpendicular or oblique waves.

• The anchoring system can be taken into account by:

− Geometrically linear assumption

− Geometrically nonlinear assumption

A linear analysis is suitable when only horizontal and rotational directions are of
interest. A geometrically nonlinear assumption will be necessary for accurate anal-
ysis in vertical direction if the second order effect is considered. Also, a nonlinear
assumption is needed if one wants to include the influence of the BWR in the anal-
ysis.

• The fluid-structure interaction is considered in the governing equation by:

− Morison equation

− Wake oscillator model

It is suggested that Morison equations can be used as long as the diameter of the
tunnel is much smaller than the wavelength. Wake oscillator model is suitable when
the reduced velocity is larger than 5.
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• The dynamic response is calculated with a modal domain approach in which:

− The partial differential equations are transformed into ordinary differ-
ential equations by applying a modal analysis

− The ordinary differential equations are solved by a Runge-Kutta method
provided by MATLABr

This approach takes significantly less time than the finite element method. How-
ever, the convergence of the numerical solver needs to be treated carefully.

2. How does the stiffness of the anchoring system considering geometrical nonlinearity influence
the results?

The stiffness of the anchoring system considering geometrical nonlinearity is determined by the
motions in three directions together and in return couples these motions by the restoring forces.
It leads to the fact that the frequency content of the vertical motion becomes more complicated,
since the frequencies of the motion in the horizontal and rotational direction are imprinted in
the vertical direction. It also captures the pendulum phenomenon so that the vertical displace-
ment results from a nonlinear stiffness model could be 5 times bigger than the one from a linear
stiffness model. This difference decreases as the attack angle change from 90◦ to 45◦.

3. How does the global dynamic analysis influence the results?

The results of a global dynamic analysis is significantly different from a 2D cross-sectional anal-
ysis when the SFT is subjected to the oblique wave loading, since the 2D cross-sectional analysis
is not capable to capture the longitudinal behaviour of the response. Therefore, when a SFT is
expected to be subjected to oblique wave loadings, a global dynamic analysis is suggested.

4. How do the geometrical and structural design parameters influence the dynamic response of a
SFT?

Basically, increase of the BWR or increase of the stiffness in the cables can reduce the maximum
response of the SFT. On the contrary, decrease of the tunnel length, decrease of the inclination
of the inclined cables or decrease of the distribution of the net buoyancy leads to a lower mag-
nitude of the maximum response. However, the relation between the design parameters and the
maximum response is not monotonic. Therefore, these properties vary depending on specific
circumstances.

10.1.2. Main questions
1. What is the global dynamic fluid-structure interaction response of the SFT under wave and cur-

rent loading?

The global dynamic response under wave and current can be divided into three categories:

• Combined wave and current loading:

− The wave loading have main impact on the dynamic response.

− The current loading acts as an static loading on the system.

• Pure wave loading to study the influence of oblique loading:

− The most severe attack angle is 90◦, i.e. the loading direction is per-
pendicular to the tunnel axis.

− The transient state of the response is shorter when the tunnel is loaded
in oblique manner.

• Pure current loading to study the influence of vortex-induced vibration (VIV):

− The imprinted natural frequencies generated from horizontal motion
observed in vertical motion is not related to the VIV

− Based on the scaled model, the VIV of the tunnel tube is negligible.

2. Which parameters can be used to reduce the dynamic response of a SFT?

The most effective approach to reducing the dynamic response of a SFT is to avoid resonance
and to keep the magnitude of maximum response as low as possible. The former can be achieved
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by changing the stiffness of the cables or the value of the BWR. The latter can be accomplished by
choosing a suitable inclination angle and pretension distribution coefficient at least four cables
are applied.

10.2. Recommendations
Recommendations for future research are addressed in this section. These recommendations are divided

into two parts. First, some recommendations are presented to validate and improve the performance and
accuracy of the current model, which concerns the extension to investigate additional aspects of a SFT. Sec-
ond, some recommendations are provided for future application of the model. Namely, by using the current
model, further analysis to investigate additional relevant aspects of a SFT is suggested.

10.2.1. Recommendations to validate and improve the current model
• A validation is required to determine the accuracy of the model. The case study in this research is

base on a scaled SFT physical model which can be used for further validation. The measurement
data are not available at this time.

• This research simplifies the tunnel as an Euler-Bernoulli beam on elastic foundation which is
not able to account for shear deformations and longitudinal deformations. It is advised to use
Timoshenko beam combined with tensile bar for future simulations. Furthermore, the effect of
the discrete anchoring system is neglected. This effect can be captured by upgrading the model
with beam on elastic spring assumption.

• Structural damping is not included in the model, which can be considered to improve the model
by assuming to be proportional to Rayleigh damping. However, this damping is expected to be
relatively small compared to the hydrodynamics damping.

• It is suggested to introduce a more accurate model for anchoring system considering the slack
of the cables at a certain state. With this model, the influence of the extreme loading conditions
on the SFT can be investigated.

10.2.2. Recommendations for application of the model
• A complete irregular wave analysis would be of interest to compare with the regular wave analy-

sis, which is based on the significant wave height and peak period.

• It is suggested to study the wave loading characterised by a higher frequency content, since a
higher frequency content may fall in the same range of the system natural frequencies. Morison
equation is not applicable in this case. The use of the diffraction hydrodynamic theory will be
then necessary as the structure will become a large structure with respect to the wavelength of
the sea state.

• The velocity and the acceleration responses of the SFT and the stress in the tunnel cross section
and cables are also of practical interest. The current model is able to generate the velocity and
the acceleration response data for further study. The stress in the tunnel cross section and cables
can be derived based on the displacement of the tunnel.

• Based on the scaled model, the vortex induced vibration of the tunnel is proved unlikely to hap-
pen. However, as the free-span between two groups of anchoring cables increases or the stiffness
in the vertical direction becomes decreases, the stiffness in z-direction becomes small, which
would make the natural frequency close to the loading frequency. For this reason, the VIV is
expected to take place and further analysis is needed. Additionally, the possibility of the VIV of
the cables is relatively high. The VIV of the cables could have an impact on the tunnel, which
causes an interaction between the cables and the tunnel. It would be interesting to upgrade the
nonlinear stiffness model to capture this interaction.

• A local failure such as a broken cable may have impact on the global response. It would be
interesting for future analysis to cover this aspect.
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A
Behaviour of the linear and nonlinear

stiffness model

A.1. The restoring forces due to the horizontal displacement
To investigate the influence of the horizontal displacement, the vertical displacement and the rotational

angle are set as ∆z =−1.6500 ·10−4 m and ∆ϕ=−1.6500 ·10−4 rad, respectively.

(a) y-direction (b) z-direction (c) ϕ-direction

Figure A.1: Restoring forces VS horizontal displacement

91



92 A. Behaviour of the linear and nonlinear stiffness model

A.2. The restoring forces due to the vertical displacement
To investigate the influence of the vertical displacement, the horizontal displacement and the rotational

angle are set as ∆y =−0.0017 m and ∆ϕ=−1.6500 ·10−4 rad, respectively

(a) y-direction (b) z-direction (c) ϕ-direction

Figure A.2: Restoring forces VS vertical displacement

A.3. The restoring forces due to the rotational angle
To investigate the influence of the rotational angle, the horizontal displacement and the vertical displace-

ment are set as ∆y =−0.0017 m and ∆z =−1.6500 ·10−4 m, respectively

(a) y-direction (b) z-direction (c) ϕ-direction

Figure A.3: Restoring forces VS rotational angle



B
Results of load cases in 3D

B.1. Load group 1
These results are based on Model A (Equation 6.6) and Model B(Equation 6.7).

Load case 1.1

(a) Linear stiffness model (b) Nonlinear stiffness model

Figure B.1: Displacement in y-direction (Load case 1.1)

(a) Linear stiffness model (b) Nonlinear stiffness model

Figure B.2: Displacement in z-direction (Load case 1.1)

93



94 B. Results of load cases in 3D

(a) Linear stiffness model (b) Nonlinear stiffness model

Figure B.3: Rotation in ϕ-direction (Load case 1.1)

Load case 1.2

(a) Linear stiffness model (b) Nonlinear stiffness model

Figure B.4: Displacement in y-direction (Load case 1.2)

(a) Linear stiffness model (b) Nonlinear stiffness model

Figure B.5: Displacement in z-direction (Load case 1.2)
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(a) Linear stiffness model (b) Nonlinear stiffness model

Figure B.6: Rotation in ϕ-direction (Load case 1.2)

Load case 1.3

(a) Linear stiffness model (b) Nonlinear stiffness model

Figure B.7: Displacement in y-direction (Load case 1.3)

(a) Linear stiffness model (b) Nonlinear stiffness model

Figure B.8: Displacement in z-direction (Load case 1.3)
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(a) Linear stiffness model (b) Nonlinear stiffness model

Figure B.9: Rotation in ϕ-direction (Load case 1.3)

B.2. Load group 2
These results are based on Model A (Equation 6.6) and Model B(Equation 6.7).

Load case 2.1

(a) Linear stiffness model (b) Nonlinear stiffness model

Figure B.10: Displacement in y-direction (Load case 2.1)

(a) Linear stiffness model (b) Nonlinear stiffness model

Figure B.11: Displacement in z-direction (Load case 2.1)
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(a) Linear stiffness model (b) Nonlinear stiffness model

Figure B.12: Rotation in ϕ-direction (Load case 2.1)

Load case 2.2

(a) Linear stiffness model (b) Nonlinear stiffness model

Figure B.13: Displacement in y-direction (Load case 2.2)

(a) Linear stiffness model (b) Nonlinear stiffness model

Figure B.14: Displacement in z-direction (Load case 2.2)
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(a) Linear stiffness model (b) Nonlinear stiffness model

Figure B.15: Rotation in ϕ-direction (Load case 2.2)

Load case 2.3

(a) Linear stiffness model (b) Nonlinear stiffness model

Figure B.16: Displacement in y-direction (Load case 2.3)

(a) Linear stiffness model (b) Nonlinear stiffness model

Figure B.17: Displacement in z-direction (Load case 2.3)
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(a) Linear stiffness model (b) Nonlinear stiffness model

Figure B.18: Rotation in ϕ-direction (Load case 2.3)

B.3. Load group 3
These results are based on Model C (Equation 6.8) and Model D(Equation 6.9).

Load case 3.1

(a) With simplified wake oscillator (b) With non-simplified wake oscillator

Figure B.19: Displacement in y-direction (Load case 3.1)

(a) With simplified wake oscillator (b) With non-simplified wake oscillator

Figure B.20: Displacement in z-direction (Load case 3.1)
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(a) With simplified wake oscillator (b) With non-simplified wake oscillator

Figure B.21: Rotation in ϕ-direction (Load case 3.1)

Load case 3.2

(a) With simplified wake oscillator (b) With non-simplified wake oscillator

Figure B.22: Displacement in y-direction (Load case 3.2)

(a) With simplified wake oscillator (b) With non-simplified wake oscillator

Figure B.23: Displacement in z-direction (Load case 3.2)
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(a) With simplified wake oscillator (b) With non-simplified wake oscillator

Figure B.24: Rotation in ϕ-direction (Load case 3.2)





C
Results of influence of the boundary

conditions in 3D

These results are based on Model B(Equation 6.7).

C.1. Both end pinned beam & both end fixed torsion rod

(a) Load case 1.1 (b) Load case 2.2

Figure C.1: Displacement in y-direction (Pinned, Fixed)

(a) Load case 1.1 (b) Load case 2.2

Figure C.2: Displacement in z-direction (Pinned, Fixed)
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104 C. Results of influence of the boundary conditions in 3D

(a) Load case 1.1 (b) Load case 2.2

Figure C.3: Rotation in ϕ-direction (Pinned, Fixed)

C.2. Both end pinned beam & both end free torsion rod

(a) Load case 1.1 (b) Load case 2.2

Figure C.4: Displacement in y-direction (Pinned, Free)

(a) Load case 1.1 (b) Load case 2.2

Figure C.5: Displacement in z-direction (Pinned, Free)
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(a) Load case 1.1 (b) Load case 2.2

Figure C.6: Rotation in ϕ-direction (Pinned, Free)

C.3. Both end fixed beam & both end fixed torsion rod

(a) Load case 1.1 (b) Load case 2.2

Figure C.7: Displacement in y-direction (Fixed, Fixed)

(a) Load case 1.1 (b) Load case 2.2

Figure C.8: Displacement in z-direction (Fixed, Fixed)
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(a) Load case 1.1 (b) Load case 2.2

Figure C.9: Rotation in ϕ-direction (Fixed, Fixed)

C.4. Both end free beam & both end free torsion rod

(a) Load case 1.1 (b) Load case 2.2

Figure C.10: Displacement in y-direction (Free, Free)

(a) Load case 1.1 (b) Load case 2.2

Figure C.11: Displacement in z-direction (Free, Free)
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(a) Load case 1.1 (b) Load case 2.2

Figure C.12: Rotation in ϕ-direction (Free, Free)
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