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Abstract

This thesis proposes an approach for tackling the problem of data-shortage in hydrological
modelling. A hydrological model, in the context of this thesis, translates meteorological
data to stream-flow of a river, for a specific catchment. A model incorporates parameters
that describe the dynamics of a chosen model, in this case a FLEX (Flux-Exchange)
based model. All parameter together form a set. These parameters are unknown and
therefore need to be determined, which is done via a calibration process. In the calibration
process, the modelled flow will be evaluated against the observed stream-flow over a
period of time for a certain hydrological signature. A hydrological signature is defined
as the quantification of specific information concerning the rainfall-runoff dynamics of a
catchment, e.g. the mean stream-flow. The evaluation for a certain hydrological signature
is known as an evaluation criterion. Literature deems the use of one or two criteria in
combination with multiple years of data enough to ensure a good performance from the
parameter-sets that exit the calibration process. As this amount of data is not available
everywhere, this thesis proposes to still ensure good model performance for less observed
data. For this purpose, a selection was made of evaluation criteria to be applied in the
calibration process. These criteria were selected in such a way that various different
characteristics of the hydrological response were covered. A benchmark was created for
comparison purposes in which 10 years of data was used during calibration and one
evaluation criterion. After the benchmark, the observed data was shortened and evaluation
criteria were added. The results showed that 6 months worth of data in combination with
all criteria would create benchmark-level performances without extra information. The
same level of performance can be reached with 3 months of data but this would require
extra information. This information would be e.g. during which period of time observed
data should be collected.
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1
Introduction

1.1. Relevance

L’vovich and White (1990) have shown that since the industrial revolution, what could be
considered the starting point of human intervention on an unprecedented scale on the
environment as mentioned by Savenije et al. (2014), the distribution of fresh water around
the globe changed as a result of human action. Humanity made efforts to manage water for
its own cause and altered the urban and rural landscape to influence the flow and storage of
water. The hydrological response, in the catchments where these actions were conducted,
changed as a result.

Figure 1.1: The percentage of deforestation is shown over the entire Amazone basin. The pixels in this figure
represent an area of 25 by 25 km2.
Source: Guimberteau et al. (2017)
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1.1. Relevance

Some activities that had their resonance in the hydrological response of a catchment were,
according to Savenije et al. (2014): a) direct diversion of water flows, including inter-basin
transfers for water supplies to cities, industries and agriculture, b) transformation of
the stream network, for example through the construction of dams and reservoirs
or the canalisation of rivers, c) changing drainage basin characteristics, for example
through deforestation, urbanisation, drainage of wetlands and agricultural practices and
d) activities altering the regional or global climate (Savenije et al., 2014, p. 320-321).

An example of deforestation is presented in figure 1.1 where the percentage of deforestation
is shown over the Amazon basin. Guimberteau et al. (2017) concluded an increase in both
evaporation and runoff in areas which would not be affected by deforestation as a result
of climate change, 5.0 and 14% respectively. The southeast of the Amazon receives 10%
less precipitation at the end of the dry season but Guimberteau et al. (2017) concluded
a smaller drop in evaporation. This lead to a river stream-flow reduced by 31%. The
effects of deforestation, ranging from 7 to 34%, in the south-east region were examined.
The results showed a much greater decrease in evaporation as a consequence of less
vegetation. This would entail an increase in runoff that could counter balance the decrease
in stream-flow, in case of extreme deforestation. Deforestation has a significant influences
on the hydrological response of an area but still is just one result of many human activities.
Therefore it is not difficult to grasp the influence of mankind on the altering hydrological
response.

Blair and Buytaert (2016) state that the human interventions/activities have been largely
made to accommodate the requirements of a population that has grown from 0.9 billion,
at the start of the industrial revolution, to 7 billion. As a result of trying to accommodate
for this tremendous increase in population, human intervention has required such control
that in many location water flows as mankind dictates. These far-reaching anthropogenic
activities are leading to a coupling of the human and the hydrological systems (Wagener
et al., 2010). This entails that the decisions made by humans that impact the hydrological
system also impacts the human society. A logical deduction from this information is:
mankind needs an understanding of the hydrological system in order to understand the
gravity and impact of its decisions regarding these hydrological systems.

A reasonable way to acquire this understanding is trough hydrological modelling, by
breaking down a hydrological system into bite-sized pieces. These pieces roughly represent
the dominant processes of a hydrological system. By representing the dominant processes
in a simple manner, insight can be obtained rather quickly concerning how a hydrological
system, from now on referred to as a catchment, responses to changes in terms of e.g.
climate and landscape. Thereby is a model able to present insight in the hydrological
dynamics of a catchment. How useful this insight is, depends on the type of model that
is used and how it is used.

Thereby comes the predictive capabilities of a hydrological model. Climate scenarios could
be fed to the model in order to get an idea what the impact of climate change would be on
the hydrological response.
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1. Introduction

1.2. Background Information

Hydrological models use parameters made for describing the different processes in
the chosen model. These parameters together form a set which is optimized during
a calibration process with the desire to obtain the “best” performing model. The
calibration could take the form of simply evaluating the modelled outcome, for a variety
of parameter-sets, against the observed data. Calibration therefore does not necessarily
mean tweaking in order to acquire the absolute best parameter-set but the definition leans
to filtering out the “bad” parameter-sets for the acquisition of the best. The evaluation
of modelled versus observed will result in a single value; this value quantifies how
similar the modelled outcome is to the observed data. This similarity between modelled
and observed concerns a hydrological signature. A hydrological signature is defined as
the quantification of specific information concerning the rainfall-runoff dynamics of a
catchment (Westerberg and McMillan, 2015). A simple example would be the mean
stream-flow. Hydrological signatures provide insight into the dominant hydrological
processes of a catchment. The evaluation of modelled flow versus observed data for a
specific hydrological signature is called an evaluation criterion. Parameter-sets producing
an outcome that passed the pre-determined threshold of a criterion are deemed “good”
performing parameter-sets, those that do not are deemed “bad”.

Two essential terms concerning hydrological modelling that must be mentioned are:
performance and consistency. Performance is described as the ability of a model to mimic
a specific hydrological signature of a certain catchment. Consistency is defined as the
ability of a model to adequately reproduce hydrological signatures, while using the same
parameter-set. A deduction from this is that a model can suffer from consistency problems
when only a single evaluation criterion is used during the calibration process for the
determination of the best performing parameter-set. To improve both performance and
consistency of a hydrological model, research has been done and published. For instance,
a framework was designed to assess the realism of model structures (Euser et al., 2013).
This framework tests for both performance and consistency using a principal component
analysis on a range of evaluation criteria. The test included eight hydrological signatures
and eleven model structures, i.e. multiple models that are each built differently. The results
showed that some structures could have the same performance for some evaluation criteria
but could wildly differ in consistency.

It was found that implementing expert knowledge helped to increase the model’s
consistency (Hrachowitz et al., 2014). This expert knowledge was implemented into
the models in the form of prior-constraints. Prior-constraints can take the form of
parameter constraints, which are meant to ensure that the parameter combinations lie
within the realm of what is considered realistic. Another form of prior-contraints are
process-constraints, which have the goal of ensuring that e.g. individual fluxes must
remain within an expected interval. These constraints were implanted to counter-balance
the increasing complexity of the model and ensure the model behaves with respect to
the modeller’s perception of the hydrological system. More complex models with higher
quantities of incorporated expert-knowledge showed better consistency than simple
well-calibrated models. In Gharari et al. (2014) a semi-distributed model was used. This

3



1.2. Background Information

entails that the model that was used, consisted of three parallel model structures, each
representing a hydrological response unit and together producing one single output, while
sharing one component. These hydrological response units represented the wetland,
hill-slope and the plateau. The increased complexity of the model, as a result of
the parallel model structures, was conditioned by expert-knowledge driven parameter-
and process-constraints. The outcome showed that an increasing model complexity in
combination with expert knowledge based constraints improved the performance even in
an uncalibrated state.

Another reason for incorporating expert knowledge in a hydrological model is to reduce
equifinality of parameters, that could be the result of an increasing model complexity.
Equifinality entails that the model is able to mimic the observed data using a variety of
parameter-sets with different values. This entails that a variety of different internal model
dynamics could mimic the observed data, which could signify a lack of correspondence
with reality by the model (Kleissen et al., 1990). In Kelleher et al. (2017) a hierarchical
approach is presented to reduce the number of parameters sets by usage of regional,
observation-driven and expert knowledge-based constraints. The hierarchy is based on
availability and cost of obtaining this information. Out of 10000 parameter-sets only nine
remained which met all criteria1.

Trying to model the stream-flow of a catchment where very limited data is available, is
not an easy task. The best approach might be to do a few stream-flow measurements.
In Seibert and Beven (2009) a number of monitored catchments were used to test this
approach. The starting point was a simple model with no stream-flow data implemented.
Hereafter different sub-sets of available data, i.e. individual stream-flow measurements,
were implemented to slowly constrain the values of the parameter-sets. A simple method
was used to calibrate the model. A weighted ensemble mean of simulations, using the
parameter-sets left after the calibration process, was used and outperformed the use of the
single best performing parameter-set. While showing that not many measurements were
needed to obtain roughly the same information, the significance of the few measurements
could differ per day and per catchments. Thus it concludes that an intelligent choice is
required for the moment the stream-flow measurements should be sampled2.

While much research has been done in terms of the model’s performance and the best
way to gather and implement data and even determine how much data is needed (e.g.
Bergström, 1976; Fenicia et al., 2006; Moussa and Chahinian, 2009; Berghuijs et al., 2014;
Seibert and McDonnell, 2002; Hrachowitz and Clark, 2017; He et al., 2015; Tian et al.,
2016), no further research has been done to determine whether a lack of data could be
compensated for. Although it was to a certain extent touched upon in Fenicia et al. (2008),
the focus was more on achieving this by improving the model in order to identify the
hydrological behaviour instead of adding information to the calibration process.

1A note made in this article was about the lack of considerations for the internal behaviour of the model
and whether this would even be within the realm of possibilities. Extra evaluation of internal dynamics was
recommended.

2Along those lines an article was written on when measurements should be taken to be most the informative.
The most informative moments for model calibration appeared to be at the falling limp of the stream-flow
curve (Wang et al., 2017). The falling limb follows the peak-flow of a rainfall-runoff event.
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1. Introduction

There are many catchments around the globe where limited data is available, whether it
is meteorological or stream-flow. This limitation in data makes it difficult to calibrate a
model that is consistent due to the probably limited information sheltered in the limited
data. Making predictions in these catchments with limited available data by compensating
for this lack of available data would save a lot of effort and costs in collecting data from areas
that are not easy to travel to. Razavi and Tolson (2013) states that in general large periods
of data for calibration are deemed more robust and reliable for identification of the “best”
parameter-set (Perrin et al., 2007). These large periods are mentioned to span multiple
years. Usually only one or two evaluation criteria are used in the calibration process when
using these large periods of calibration data (e.g. Perrin et al., 2007; Juston et al., 2009)

1.3. Research Question(s)

• To what extend is it possible to shorten the period-length of calibration data by using
multiple evaluation criteria, for the model to perform similar to being calibrated over
a period of 10 years using one evaluation criterion?

– Is the addition of multiple evaluation criteria enough to see the model perform
similarly, while calibrated over a smaller period, to the same model that has
been calibrated over a period of 10 years?

1.4. Proposed Approach

First of all, a model has to be constructed to facilitate the research of this thesis. This model
will include a certain set of parameters, which are determined from processes, described
in the form of equation, that are mentioned in examined literature and subsequently
deemed useful. The model and subsequent calibration steps will be programmed in
either the program-language Python or Matlab. The model itself is to be designed
for a predetermined catchment from which sufficient daily data (meteorological and
stream-flow) is available. After this, a calibration method is chosen and a set of
evaluation criteria will be reviewed in order to be applied in the calibration process.
After the calibration process, the model will be validated for another period, in regards
to stream-flow data, than which was used during the calibration-period. First, a set
number of randomly generated parameter-sets will be evaluated against one or two
common criteria for a set number of years of data (a benchmark period; 10 years). The
purpose of this process is to iron out some of the development flaws of the model and
the calibration-process. An additional purpose of this process is to set a benchmark,
i.e. the outcomes that passed the pre-determined thresholds of said criteria. This
benchmark serves as a comparison-tool for the outcomes of shorter-period calibration.
The second step of the calibration-process will consist of shortening the calibration-period
combined with the step-wise addition of the chosen evaluation criteria. It is likely that the
performance and, even more likely, the consistency of the model will decrease as a result
of this, which can be viewed after the validation step. The goal is to counter this reduction
in performance and consistency by adding new evaluation criteria to the calibration step.
This calibration data will be shortened and more evaluation criteria will be added.

5





2
Model and input

First of all, at the beginning of this chapter information will be given concerning the
catchment for which the stream-flow was modelled. This included geography, meteorology
etcetera. Hereafter will be the coverage of the type of model that has been used during this
thesis. An overview of the model’s structure will be presented. The model that is used
as a starting point will thereby be discussed and the changes made to this model will be
explained, thereby will the reasons why these changes were made be presented. This create
a stepwise description of how the model used in this thesis came into existence. Entangled
with both the catchment and the model are the data collected from this specific catchment.
An overview will be presented of the data required by the model and the calibration process.
Besides an overview, information is given about: the modifications made concerning the
data, how these are justified, some background information in form of e.g. from which
station the data were taken and the implications from this choice.

7



2.1. The catchment

2.1. The catchment

The catchment that will be modelled for the purpose of this thesis is the HJ Andrews
Experimental forest which lies in the United States of America. The choice of catchment
was based upon the available meteorological- and stream-flow data. The HJ Andrews
catchment has 21 years of continuous daily data available, which suits the needs of this
thesis.

Figure 2.1: Locations of long-term monitoring catchments in the USA (Creed et al., 2014).

The HJ Andrews Experimental forest was established in 1948 by the U.S. forest service. It
lies in the Cascade mountain-range in the state of Oregon. The HJ Andrews Experimental
forest is marked as 1 in figure 2.1 above.

As stated on the website of the HJ Andrews Experimental forest (USFS, 2018), the forest,
since its inception, has witnessed a diverse and impactful research history. Starting from
the 1950s, USFS scientists initiated three sets of experimental watersheds1 to study the
effects of logging on the hydrology, sediment yield and nutrient losses. This basically came
down to deforestation of areas within the catchment. One of the watersheds was left in its
natural state as a reference point (Nijzink et al., 2016). The hydrological response of this
catchment has most likely been altered by the deforestation from the 50s and 60s, which
entails that the interception capacity of the catchment will have decreased.

In 1980 the Andrews Forest became a charter member of the NSF-sponsored Long-term
Ecological Research (LTER) network. The LTER program supported the continuation of
long-term studies and environmental monitoring (e.g., climate, streamflow, water quality,
population dynamics of sentinel terrestrial and aquatic species, vegetation succession, and
disturbance events) (USFS, 2018).2 This meant the continued availability of daily data,

1A watershed is an area that contributes to the larger catchment and functions as a smaller catchment within
the larger catchment.

2This information is taken directly from the HJ Andrews experimental forest website.

8



2. Model and input

which is a vital necessity for this thesis.

As stated on the website USFS (2018) the HJ Andrews catchment has a surface area of
around 6400 hectares. The Landscape is marked by steep hills and deep valleys. Elevations
within the catchment can differ from circa 400 metres to around 1600 metres.

Figure 2.2: Relief of the HJ Andrews catchment.

Figure 2.2 shows that there is not only a big absolute difference between the minimum
and the maximum height within the catchment but height is somewhat evenly distributed
across the catchment.

In terms of meteorology, the HJ Andrews experimental forest enjoys wet, mild winters and
dry, cool summers (USFS, 2018). From the data collected at the central meteorological
station, which is one of the benchmark meteorology stations, it shows that the mean
temperature lies around a low 1.89 °C in December and a high 17.34 °C in July, for the past
20 years. Most of the precipitation in the HJ Andrews Catchment falls from the month
of November to April with a peak daily average of around 12.85 mm in the month of
December. The average yearly precipitation measured at this station for the past 20 years
lies around 226 cm, which is much higher than the average precipitation taken over the
whole of the United States.

9



2.2. The model

2.2. The model

2.2.1. Constructing the model
The type of model used in this thesis is a model based on what is referred to as the FLEX
(FLux-EXchange)-Model. The FLEX-model first made its introduction in a scientific paper
(Fenicia et al., 2006). In this paper the model is presented as a lumped conceptual model
claiming to represent the relevant hydrological processes3. This first iteration (referred to
as FLEXb) of the FLEX-model has four reservoirs as its building blocks. These reservoirs
are: an interception reservoir (Si ), an unsaturated reservoir (Su), a fast reservoir (S f ) and
a slow reservoir (Ss). The structure of this first iteration is the same as the structure of
the mentioned components in figure 2.3. However some of the constitutive equation’s
differ from those that are used in this thesis. This model has, besides data, an intake of
10 parameters.

The basic principle of this FLEXb is: precipitation enters the model in the interception
reservoir where it fills up to a certain value (Imax) and evaporates as long as there is water in
the reservoir. Once the amount surpasses Imax the surplus continues into two directions,
one being a stream that infiltrates into the unsaturated reservoir and one that is an excess
flux. From the unsaturated reservoir water can transpire through vegetation and percolate
towards the deeper grounds, which in this case is the slow reservoir. The excess flux will be
divided in two separate fluxes. The first one chooses the path of preferential percolation
into the slow reservoir, the second becomes surface runoff heading for the fast reservoir.
Lastly, the slow- and fast reservoir combined produces the output of this model. The state
of each reservoir is updated each time-interval (∆t ) by simply adding and subtracting the
ingoing and outgoing fluxes. In this thesis the time-interval (∆t ) has been set at 1 day which
is predominately a result of the time-resolution of the input-data (see sub-section 2.2.2).

Parameter Definition Units

Ic Evaporation Coefficient −
Imax Interception Capacity mm

S f c Unsaturated Capacity mm

Lp Limit Potential Evaporation −
β Shape parameter for runoff −
D Runoff partition coefficient −

Pmax Maximum percolation rate mm/d

Nl ag f Lag-time for S f transfer function d

Nl ag s Lag-time for Ss transfer function d

K f Recession coefficient fast reservoir d

Table 2.1: Parameters of the FLEXb-model (Fenicia et al., 2006).

In Fenicia et al. (2008), multiple updates and improvements were made to the FLEX-model.
The FLEXb-model was stripped from its interception reservoir for the purpose of testing a
few hypotheses of which adding the interception reservoir was one.

3This includes: interception processes, evaporation, transpiration, storage capacity of the soil, unsaturated
soil drainage, preferential recharge, percolation, runoff, groundwater flow.
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2. Model and input

Figure 2.3: Schematic representation of the structure of the FLEXnd-model.
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2.2. The model

By reducing the model and lumping the evaporation and the transpiration together into
one term4, the model’s performance worsened, in regards to the used evaluation criteria,
even with the proposed modifications, as opposed to the addition of the interception
reservoir. Hereafter the parameter Ic was dropped in favour of letting the interception
reservoir evaporate at the rate of the potential evaporation5 during dry periods.

Another attempt at improving the FLEXb-model was made by taking into account the
special heterogeneity of the catchment (Fenicia et al., 2008). Here the catchment was
divided in n areas, to be regarded as model units, and a distributed-description6 of
the model components was introduced. When distributing a model component, the
parameters corresponding to that component will likely be distributed as well. This would
mean that e.g. there would be an Imax parameter for every interception reservoir to be
described. The consequence is that extra effort has to be made to calibrate the model but
also that the problem of equifinality7 could arise. Equifinality could however be reduced by
applying constraints to the model which could stem from expert-knowledge (Kelleher et al.,
2017). Such a constraint could take the simple form of confining the values a parameter
could take during the calibration process.

The emergence of distributed parameters can be bypassed by using the same parameter
over the n number of model units and therefore the corresponding distributed model
component. When using the same parameter for the entire model component, the output
of each distributed component is weighted, according to the area of the corresponding
model unit, and combined to produce a single output from the entire model component.
In Fenicia et al. (2008) improvements were achieved in the performance of the model
in regard to the objective functions used in the paper when applying this variant of a
distributed description of a model component (Fenicia et al., 2008, Figure 3). Especially
great improvements were noted when this principle was applied to both the interception
reservoir and the unsaturated reservoir noted as the FLEXId,Urd-model.

Precipitation does not always take the form of a liquid but can also appear as snow in
sub-zero conditions. When in a frozen state, precipitation does not necessary enter the
system, but, in a way, just stays on top of it until it melts. This principle urges the
consideration of implementing something in the model to take this into account. In Nijzink
et al. (2016) a snow reservoir was incorporated in the model in a similar manner discribed
in Bergström (1976) to cover this principle. In Bergström (1976), where it is called a snow
routine, it is described by the equation below. This is a simple way to describe whether or
not precipitation takes the form of snow, and if the routine produces water from snow that
melts (snowmelt).

snowmelt =Co × (T −Tthr esh) (2.1)

4At the time this paper (Fenicia et al., 2008) was written it is stated that these two terms got lumped quite a
lot in the field of hydrological modelling.

5The potential evaporation is the amount of water that can physically evaporate per unit time given the me-
teorological conditions at that moment.

6A distributed-description of a model component entails that there is to be a model component correspond-
ing to each model unit e.g. an interception reservoir for each area.

7Equifinality is the principle of multiple parameters sets producing an outcome that fits the observed data,
while having the inherent possibility of getting the internal dynamics of the catchment wrong.
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2. Model and input

In equation (2.1) T represents the ground surface temperature on that day. If the
temperature of that day does not exceed the threshold temperature of Tthr esh than the
precipitation just lies on top the of system in the form of snow. If however the temperature
does exceed the threshold temperature, the build-up snow start to melt at the rate Co .
Naturally, it is a possibility that no physical snow is present in the snow routine combined
with a temperature higher than the threshold temperature. In this case the precipitation
passes through the snow routine into the next component of the model.

For the model used in this thesis the snow reservoir was implemented as described
above and is mathematically written down as seen in equation (A.2) (tabel A.1; appendix
A.1). While the previously stated possibility, of no present physical snow and a higher
temperature than the threshold, is not represented in this equation; it naturally is
implemented in the model. The snowmelt here is noted as the effective precipitation Peff.

The principle of a distributed-description of a model-component (Fenicia et al., 2008), as it
was described on page 12, was applied to the snow reservoir8. This distribution is ought to
counter the lack of representation, by a single reservoir, of the height differences’ influence
on the snow build-up . In order to make a distributed description of the snow reservoir only
two inputs are needed: one that is derived from the Digital Elevation Model9(DEM) of the
catchment and the other that is the environmental lapse rate10.

Figure 2.4: A schematic representation of the distributed description of the snow reservoir.

8In this thesis this principle was applied to neither the interception reservoir nor to the unsaturated reser-
voir, but instead it was applied solely to the snow reservoir. The reason behind this is primarily the lack of
available distributed, e.g. precipitation, data, which will be touched upon in the next subsection.

9A Digital Elevation model, or short DEM, is a digital representation of the relief of an area. The DEM-file
consists of, more or less, an array where each element is a pixel containing the height corresponding to the
location of that pixel. A visual representation of the DEM-file used in this thesis is visible in figure 2.2. The
DEM-file of the HJ Andrews catchment was found on the website of the catchment (USFS, 2018), where a
DEM-file with a pixel-grid resolution of 10 metres by 10 metres was acquired.

10The environmental lapse rate is defined as the decrease in temperature as the result of an increase in alti-
tude. For the first 10-11 kilometres of the Atmosphere the environmental lapse rate is around 6-6.5 °C/km
(Thayyen and Dimri, 2014).
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2.2. The model

For the distribution of the snow reservoir, the catchment was divided in model units.
Each model unit corresponds to a certain height interval11, therefore every distributed
component corresponds with a height interval as well. The next step was to determine,
from the DEM-file, the amount of pixels within each height interval. The following table
was created as a result:

Height interval(m) Pixels(%) Temperature shift(°C)
250-500 2.46 +4.24
500-750 22.05 +2.62

750-1000 30.76 +0.99
1000-1250 24.82 -0.63
1250-1500 17.86 -2.25
1500-1750 2.04 -3.87
1750-2000 0 -5.50

Table 2.2: Percentage of contribution to the total amount of pixels by each height interval.

One single distributed snow reservoir behaves the same as the snow routine as it was
described in Bergström (1976) and adheres to equation (A.2) (table A.1; appendix A). The
output of each distributed snow reservoir is then weighted according to the percentage of
contribution to the total amount of pixels12(table 2.2). All the weighted outputs from the
distributed snow reservoirs are then summed up to produce one single output from the
entire snow component. This output should logically have the same order of magnitude
as the output of one single snow routine. In table 2.2 a third column, containing the
temperature shift, can be observed. This temperature shift is the result of the snow
reservoir taking temperature as an input, as can be seen in equation (2.1). However, since
a distributed description is made of the snow component, the temperature input differs
from one distributed snow reservoir to another as a result of the height difference. The
collected temperature data were therefore shifted according to the environmental lapse
rate with respect to the height of the meteorological station the data were collected from.
For example, if the meteorological station is located at an altitude of 1028 metres, this
means that for the interval of 750 -1000 meters the temperature shift becomes:

Temperature Shift(°C) =
(

1028− 750+1000
2

1000

)
×6.49 = 0.99 (2.2)

After the implementation of a distributed description of the snow reservoir, this iteration
of this FLEX-model was dubbed the FLEXnd-model as a small nod to Fenicia et al. (2008).
The constitutive equations of the FLEXnd-model, as seen in table A.1 from appendix A,
are heavily based on the constitutive equation used in the paper Nijzink et al. (2016).
These most notably differ from those mentioned in Fenicia et al. (2006) in regard to the
distribution of runoff13.
11These height intervals were chosen in such a way that not too much information was lost, as a result of

choosing a too big of an interval. In contrast, an interval too small could cause an increase in run-time of
the model.

12The percentage of contribution to the total amount of pixels is another way of formulating the percentage
of the surface-area that lies within that specific height interval.

13The equations differ from one another, but achieve the same principle when applied. For more information
it is recommended to read the supplement of Nijzink et al. (2016) and the paper Fenicia et al. (2006).
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2. Model and input

A difference from both Nijzink et al. (2016) and Fenicia et al. (2006) is the description of
the constitutive equations for both the fast reservoir and the slow reservoir. In Fenicia et al.
(2006) the constitutive equation of the slow reservoir is described as a relationship between
storage and discharge that needed to be determined. For the fast reservoir in this paper it
is formulated as follows:

Q f = K f ×S f (2.3)

This is an equation gained from the fact that the fast reservoir is stated to be linear in
its storage-discharge relationship and is defined by the time-scale K f (which is better
known as the recession coefficient of the fast reservoir). A part of the research of Fenicia
et al. (2006) was reviewing whether the slow reservoir could be represented by a linear
storage-discharge14 relation. The conclusion was that this is mostly correct, though articles
before and since refuted this conclusion (Tallaksen, 1995; Moore, 1997; Chapman, 1999;
Kirchner, 2009), which itself is stated by Fenicia et al. (2006). However, as it is partly
correct15, the slow reservoir will be represented by a linear storage-discharge relationship
and this should therefore result in the following equation for the slow reservoir:

Qs = Ks ×Ss (2.4)

When applying the principle of (ordinary) operator-splitting16 on the first-order ordinary
differential equation (A.13), the flux Qs can be isolated in the split equation:

dSs

d t
=−Qs (2.5)

Here Ss is preliminary updated by solving the preceding split equations concerning the
fluxes (D)×Ru and Ri . Combining equations 2.4 and 2.5 by substituting Qs creates the
following first-order linear ordinary differential equation:

dSs

d t
=−Ks ×Ss

Which is easily solved and results in:

Ss = c1e−Ks×t

14The storage-discharge relation is a description for the outflow from groundwater relative to the amount
of groundwater present. Instead of using an a-priori assumption for this relation, it is derived from a
constillation of recession-segments, known as the Master Recession Curve (MRC). Recession comes after
the period of direct runoff, resulting from precipitation, and markes the period of flow dominated by the
output of groundwater. In the case of this thesis, this is primarily the output of the slow reservoir.

15Tallaksen (1995) shows via numerical analyses that a linear reservoir only represents a small portion of
the recession period, especially when taking into account the time variability found in recessions and
the variability encountered in the recession behaviour of individual segments. However, at the time this
paper was written, it concluded, in a nutshell, that further research was required. Kirchner (2009) states
that the recession is closer to a power relationship in his search for a single non-linear storage-discharge
relationship to characterize a catchment. Moore (1997), however, found that two linear reservoirs delivered
a better performance than one single non-linear reservoir, which is in line with the finding of the variability
in recession behaviour (Tallaksen, 1995). Chapman (1999) concluded, at least for recession of relative small
duration, that a linear storage-discharge relation is sufficient while reviewing alternatives.

16The principle of operator-splitting states that one could split a partial differential equation and solve the
split equations over the same interval in order to obtain an estimated overall solution. These split equations
are solved in a pre-determined sequence, where one split equation takes input from the previous. In case of
a first-order linear differential equation like equation (A.11), it would mean: solving for the fluxes separately
(Fenicia et al., 2011).
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2.2. The model

When going one time step (∆t ) forwards from tn to tn+1, it will result in:

Ss,n+1 = Ss,n ∗e−Ks×∆t (2.6)

Equation (2.6) shows that the state of the slow reservoir degrades with each time step by
a factor e−KS×∆t . From split equation (2.5) can be concluded the outgoing flux Qs is equal
to the negative change of the slow reservoir. A logical deduction from this in combination
with equation (2.6) will lead to the following equation:

Qs = Ss,n −Ss,n ×e−Ks×∆t

Here n is pro forma as it indicates the current time-step. When left out, one is left with the
constitutive equation as is shown in appendix A. Applying the set of proceedings to both
the fast and slow reservoir will result in the equations (A.12) and (A.14).

Lastly, there is the implementation of a lag-function. The lag-function’s primary use
boils down to offsetting fluxes to simulate the time-lag17 caused by e.g. travelling of
water through preferential pathways or recharging ground water18. In Fenicia et al. (2006)
two lag-functions were applied to the FLEXb-model (their representative parameters were
already mentioned in table 2.1). These two lag-functions offset the fluxes that enter the fast
and slow reservoir. In this thesis however, only one lag function is used19. The purpose of
this transfer function is to offset the outflow of the model in order to account for the routing
in the channel until it reaches the outlet of the catchment. Hereby the two parameters
mentioned in table 2.1 are substituted for the parameter Tl ag , which is the lag-time for
the output transfer function. As stated above, the transfer function is characterised by
a triangular distribution defined by the parameter. The basic principle is: the larger the
parameter is, the “flatter” the triangular function becomes. This makes sense, as the
triangular distribution and the output of the model, i.e. the modelled stream-flow, are
used as input afterwards in a process known as convolution20 to produce one single output
where lag is accounted for. As stated before: as the lag-time (Tl ag ) becomes larger, the
triangular distribution becomes flatter. This then leads to a more spread-out output of the
model, where also the peaks are shifted, after convolution, which coincides with the theory
about the precipitation-stream flow21 relationship in a catchment.
17A lag-function is, in Fenicia et al. (2006), stated to be characterized by a triangular distribution of linearly

increasing weights defined by its respective parameter.
18E.g. recharging ground water deals with the permeability of the soil/ground. The model only “thinks” in

time intervals in which everything happens instantaneously. This logically is incorrect. Lag-functions help
to make the model “less wrong” in this regard.

19One lag-function offsetting the outflow accomplishes the same goal as the two mentioned above. However,
this comes at far lesser computational costs, as this function is only run once per model-run.

20Convolution of two functions, e.g. f (t ) and g (t ), represents the amount of overlap there is between the
two functions. If both functions range over a finite set of values, which could be represented as a vector,
then the solution becomes Ct =∑

u au ×bt−u+1. Here vector a represents function f (t ), vector b represents
function g (t ) and Ct is the result; the output of the model in this thesis and the triangular distribution both
are finite sets of values and therefore could be seen as vectors. A deduction from the equation above is that
each element of Ct is the sum of the overlapping part of the two functions up until that point.

21E.g. if a river is surrounded by non-porous and impermeable rocks then a high peak-flow will be recorded.
The cause is water which cannot infiltrate and therefore can only flow overland, which is the fastest route.
However if the catchment is larger with a more porous and permeable ground-type, i.e. water can infiltrate,
the lag-time increases as a partition of the water will take a slower path towards the river. Interception also
adds to the lag as water is first temporarily stored before continuing its path.
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2. Model and input

With everything discussed in terms of model-attributes, one is left with the following set of
parameters:

Parameter Definition Units Range

Co Melting factor mm
°C×d ay 1 to 5

Tthr esh Temperature threshold °C −1 to 1

Imax Interception capacity mm 0 to 5

Su,max Unsaturated capacity mm 1 to 1000

Ce Limit potential evaporation − 0.5 to 0.5

β Shape parameter for runoff − 0.1 to 4

Ri ,max Maximum percolation rate mm/d 1 to 10

D Runoff partition coefficient − 0 to 1.0

K f Recession coefficient fast reservoir d−1 0.1 to 3

Ks Recession coefficient slow reservoir d−1 0.0424 to 0.0707

Tl ag Lag-time for output transfer function d 0.1 to 3

Table 2.3: The parameters of the FLEXnd-model. A couple of parameters are denoted differently when com-
pared to table 2.1. Su,max represents the same parameter as S f c , Ce as Lp and Ri ,max as Pmax .

2.2.2. Data
Naturally a model cannot be run without providing it with data. For the FLEXnd-model the
following types of data were required:

• Meteorological data

– Precipitation data
– Potential evaporation data22

– Temperature data

• Stream-flow data23

The meteorological data were taken from the Central Meteorological Station (CENMET),
which is located at an altitude of 1028 metres, as was mentioned earlier in this section (page
14; equation (2.2)). This station was one of the few, if not the only station, where daily data
could be collected for over a period of more than 20 years, without too many hiatus in the
data. The daily data was collected for a timespan ranging from the 1st of January 1994 to
the 31st of December 2014.

The gaps that did exist in meteorological data, whatever set of data it was, were inferred by
data from other stations using the simple AA-method (Sattari et al., 2016). This method is
defined as follows:

V0 =

n∑
i=1

Vi

N
(2.7)

Here V0 is denoted as the to be estimated value. Vi is the value taken from station i and
N are the number of stations. This method works particularly well when the stations are
uniformly distributed across the area (Sattari et al., 2016).
22This is inferred by incoming short-wave radiation and temperature data.
23This is used during the calibration process.
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2.2. The model

However, as mentioned before, CENMET is one of the few stations that has collected
daily data for more than 20 years. This means that the simple AA-method is not always
applicable, because of possible lack of data from the other stations. In this case the
principle of linear interpolation was applied in order to fill in the gaps. It must be said
that most hiatus were not larger than a few days.

Potential evaporation
All of the meteorological data were taken directly from the data-catalogue from the HJ
Andrews Experimental Forest website. The potential evaporation however, needed to
be determined by inferring it by other data. The first thought was to estimate the
potential evaporation by using the equation of Penman-Monteith, although this approach
is disputed for its biases on a leaf-scale (Schymanski and Or, 2017), for which it originally
was derived, and its poor performance at the scale of an ecosystem (Maes et al., 2019).

ρwλE =
∆(Rn −G)+ ρa cp

ra
(es(Ta)−e(zr ))

∆+γ(1+ rs
ra

)
(2.8)

Here E represents the potential evaporation, which is to be estimated. However, without
covering every symbol in equation (2.8), it is easy to determine that there are no sufficient
data to make use of this equation. E.g. Rn , the net radiation, is only available for the last
year in regard to the data-range to be used. Thereby comes a complete absence of data in
regard to G , the ground heat flux. Limited availability of data regarding the net radiation
also ruled out methods like the Bowen-ratio; although in reality the potential evaporation
is needed, the Bowen-ratio provides the actual in-situ evaporation. This disputed the use
of e.g. the Bowen-ratio to begin with.

A decent alternative, according to Aguilar and Polo (2011), comes in the form of the
Hargreaves equation (Hargreaves and Richard, 2003, Equation 8):

ET0 = 0.0023Ra(Tmean +17.8)×
√

Tmax −Tmi n (2.9)

ET0 is denoted as the potential evaporation, where Ra represents the incoming short-wave
radiation. Besides the requirement of daily mean temperature, as input for the model, the
maximum and the minimum temperature are needed in order to estimate the potential
evaporation according to equation (2.9). Although a modified version was presented
(Aguilar and Polo, 2011) and the estimated values were higher than expected, the overall
signal was deemed reasonable and was therefore used.

Stream-flow
Daily stream-flow, which is needed for the calibration process, was taken from the Andrews
Lookout Creek Gaging Station (GSLOOK). Hiatus in the dataset could not be filled by
inferring it by data from other gauging stations, as GSLOOK is the only station where the
gauged watershed area covers the entire catchment. Therefore the only option available
was: interpolation.
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3
Method

This chapter covers the evaluation criteria that were chosen for the calibration process. For
every evaluation criterion an explanation will be given of what the criterion entails, what
is does, how it came to be and which hydrological signature from the hydro-graph it will
cover. This chapter will also cover what type of calibration method is used and what the
outcomes of this calibration process will be. As this is a thesis about shortening calibration
data, an overview of the calibration period lengths will be presented here. Lastly, there is
a small section dedicated to the validation process. Here it is explained why a validation
process is needed in the determination of parameters.
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3.1. Evaluation Criteria

3.1. Evaluation Criteria

All evaluation criteria used will be cover in the order in which they are applied in the
calibration process. Each criterion value is denoted as ε, which represents the goodness
of fit for its respective evaluation criterion. These values range from -∞ to 1, where 1 is a
perfect fit and around a value of 0 already implies a “bad” fit.

The Nash-Sutcliffe efficiency coefficient (NSE)

ε= 1−
∑

(Qm −Qobs)2∑(
Qobs −Qobs

)2 (3.1)

The Nash-Sutcliffe efficiency coefficient was first introduced in Nash and Sutcliffe (1970).
In this paper a search was made for a preconceived rule to measure/evaluate and take into
account the results of an optimization step, for the purpose of applying it in an automated
optimization process of the parameters. This preconceived rule was determined to be
composed of a linear regression analysis between the modelled and the observed and
a initial variance component concerning the observed. The written-out version of this
formulation is viewed as equation (3.1). The Nash-Sutcliffe efficient has, since its inception,
been a regular for evaluating the performance of models in hydrology (e.g. Pachepsky
et al., 2016; Tarawneh et al., 2016; Seibert and Beven, 2009; Pool et al., 2017; Jain and
Sudheer, 2008). However, a model has been cited to insufficiently reproduce hydrological
signatures when solely making use of the NSE (Tian et al., 2016; Pool et al., 2017; He et al.,
2015; Jain and Sudheer, 2008). Therefore it is often used in conjunction with other types
of information (e.g. expert-knowledge based constraint) (e.g. Muleta, 2011; Euser et al.,
2013; Hrachowitz et al., 2014; Moussa and Chahinian, 2009; Gharari et al., 2014; Nijzink
et al., 2016), and evaluation criteria, possibly for the purpose of multi-objective(evaluation
criteria) calibration. In conclusion, the Nash-Sutcliffe efficiency coefficient is chosen as the
stepping stone for the calibration process.

The log Nash-Sutcliffe (LogNSE)

ε= 1−
∑

(log10(Qm)− log10(Qobs))2∑(
l og10(Qobs)− log10(Qobs)

)2 (3.2)

Like stated in paragraph above, solely using the NSE in the calibration process will most
likely not ensure the model’s consistency. The squared terms above and below the bar tent
to put a heavy emphasis on the peaks of the hydro-graph1 and therefore “neglect” to some
extent the lower flows. However, taking the logaritm of flows places a heavier emphasis
on lower flows (Gharari et al., 2014; He et al., 2015). The result is the log Nash-Sutcliffe
as formulated in equation (3.2). Santos et al. (2018) made a comment about using the
logarithm of flows and concluded it to be flawed as it could lead to misinterpretation in
the estimation of the water balance. This on an intuitive level is logical. Another comment
is that the evaluation criterion, where the logarithm is inserted, loses some of its physical
meaning as it does not handle zero flow recordings very well. The LogNSE, in this thesis,

1A hydro-graph is a graphical representation of stream-flow over time.
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is meant to complement the NSE and not to be used solely. Muleta (2011) used a variant,
called MNS, formulated as:

ε= 1−
∑ |Qm −Qobs |∑∣∣∣Qobs −Qobs

∣∣∣
Muleta (2011) used the MNS for the same reason, which is the over-sensitivity of the NSE to
peak-flows. However after some testing, the addition of the MNS was deemed unnecessary
as it had too much common ground with the LogNSE2 in its applicability.

The flow duration Curve (FlowDur)

ε= 1−
∑

(Ym −Yobs)2∑
(Yobs −Yobs)2

(3.3)

where

Ym = Sor ted(Qm) : descending

Yobs = Sor ted(Qobs) : descending

The flow duration curve is a hydrological signature constructed from stream-flow data
(modelled or observed). The flow duration curve represents the frequency distribution of
the stream-flow defined over a specific time-step (Jothityangkoon et al., 2001; Berghuijs
et al., 2014). This basically represents the probability that a stream-flow measurement will
exceed a specific magnitude (Jothityangkoon et al., 2001; Sawicz et al., 2011). By taking the
NSE of the flow duration curve instead of just the NSE of the flows, more emphasis is played
on the magnitude of the flows instead of the timing of the peaks (Euser et al., 2013).

The autocorrelation function (AC)

ε= N SE( [RQm ,1,RQm ,2, . . .RQm ,i ] , [Robs,1,Robs,2, . . .Robs,i ] ) (3.4)

Autocorrelation is the correlation of a signal (a hydro-graph is a physical signal) with a
delayed version of itself, which in essence is the extent to which a delayed signal stays
similar to its original counterpart. In modelling this could be used as an evaluation
criterion (Winsemius et al., 2009; Euser et al., 2013) to measure the smoothness3 of a
hydro-graph. To evaluate how the autocorrelation of the modelled hydro-graph compares
itself to the observed hydro-graph, it can be opted to divide the modelled value by the
observed. This is then modified so it is usable as a quantitative evaluation criterion.

ε= 1−
∣∣∣∣1− AC (Qm)

AC (Qobs)

∣∣∣∣ (3.5)

This however is just one calculated autocorrelation making use of a 1 day delay (Euser et al.,
2013). In Hrachowitz et al. (2014) usage has been made of a range of delays increasing from

2A pleasant remark, for this thesis, from Muleta (2011) was that the MNS and the NSE complemented each
other rather well. This to some extent further justifies the use of the LogNSE besides the NSE.

3Smoothness of a hydro-graph is in essence how sharp or smooth the peaks of a hydro-graph arise. If the
peaks are sharp then the smoothness is low. A low smoothness combined with a increasing lag will result in
a faster decline of the correlation coefficient when compared to a high smoothness.
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1 to e.g. i . This creates a vector covering the spectral properties4 (Montanari and Toth,
2007; Hrachowitz et al., 2014) of a signal, e.g. a hydro-graph; thereby taking the form of a
series of autocorrelations. In equation (3.4) every element of either one of the two vectors is
the correlation between its respective original series of data, e.g. Qm and a delayed variant,
e.g. Qm,d . The delayed variant is constructed by shifting the series of data i number of days
forwards. If the original series start at April 1st then, in order to acquire RQm,1 , the delayed
variant starts at April 2nd. The number of days, over which the correlation coefficient is
calculated, has been set at 45 days. This at least would allow the creation of a large enough
signal in regard to the smallest calibration period (section 3.2).

RQm ,d =
∑n

i=1

(
Qm −Qm

)(
Qm,d −Qm,d

)
(n −1)×SQm ×SQm,d

where

Sx =
√

1

1−n

n∑
i=1

(
xi −x

)2

For the same reason stated behind the formulation of equation (3.5), equation (3.4) is
formulated as the NSE of the vectors containing the autocorrelations; primarily to acquire
a quantitative evaluation criterion.

The runoff coefficient (RO):

ε= N SE( [Rum,1,Rum,2, . . .Rum,i ] , [Ruobs,1,Ruobs,2, . . .Ruobs,i ] ) (3.6)

where

Rux = Qx

P
(3.7)

The runoff coefficient (or ratio) Rux is defined as the relationship between the stream-flow
Qx and precipitation P over an interval, as is formulated in equation (3.7). The runoff
coefficient represents the water balance between water exiting as stream-flow and water
exiting as evaporation and transpiration, when the used data spans a long period of time
(long-term) (Yadav et al., 2007; Sawicz et al., 2011). As being classified as a hydrological
signature, it can be used as an evaluation criterion as has been done frequently in the
past (e.g. Sawicz et al., 2011; Euser et al., 2013; Gharari et al., 2014). In this thesis the
weekly runoff coefficient has been used. However, instead of determining the mean of
those weekly coefficients over the respective calibration period, the coefficients were used
as a signal represented by a vector. This vector, much like the autocorrelation function,
contains the coefficients in chronological order. Therefore the vector representing the

4In short, spectral properties are revealed after decomposition (spectral density function) of a signal into a
sum of sinusoidal components (frequency content). This in essence is a Fourier analysis. When a signal is
analysed by its frequency content it is called a spectrum, hence the term ’spectral properties’. Autocorrela-
tion, spanning a range of lag-time, represents the same properties as the spectral density function but in the
time-domain opposed to the frequency-domain of the spectral density function.
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runoff coefficients inferred by the modelled stream-flow is evaluated against its observed
counterpart using the NSE.

The rising limp density (RLD):

ε= 1−
∣∣∣∣1− LQm

LQobs

∣∣∣∣ (3.8)

where

Lx =
∑

Tr

n
(3.9)

The rising limb density, first described as a hydrological signature in Shamir et al. (2005), is
determined by the ratio between the sum of the time the hydro-graph is rising

∑
Tr , to reach

its peaks, and the number of peaks n. This is the inverse of the peak density (Morin et al.,
2002). By dividing the time of rising by the number of peaks, one is left with the average
time to reach a peak. This, like the autocorrelation, is a way to measure the smoothness
of the hydro-graph. However, unlike the autocorrelation, it is averaged over the calibration
period and independent of the flow volume (Shamir et al., 2005; Euser et al., 2013), as it
does not matter what the magnitude of the flow is concerning the RLD. However, opposite
to the other evaluation criteria, the peaks and their subsequent rising limbs are a product
of analytical determination. What is considered a peak and a rising limb therefore becomes
somewhat subjective. Some thresholds were built in the algorithm to filter out some of the
“noise” of the hydro-graph5.

The peak distribution (PeakDis):

ε= 1−
∣∣∣∣1− PDQm

PDQobs

∣∣∣∣ (3.10)

where

PDx = Q10 −Q50

0.9−0.5
(3.11)

Peak distribution, as the name already alludes to, is a signature that represents the
distribution of peak magnitudes over a given period. Unlike the RLD, the peak-flows used
for the peak distribution are defined/determined by a lower recorded stream-flow on
both the previous and the following time step (Euser et al., 2013). A flow duration curve is
constructed from all the gathered peak-flows. The slope (PDx) between the 10th (Q10) and
the 50th (Q50) percentile is calculated from this peak duration curve, which, like the RLD,
only focusses on higher, although not on extreme, peaks. Those are stated to be the most
interesting for this analysis (Euser et al., 2013; Sawicz et al., 2011). By using the slope of the
peak distribution curve, emphasis is placed on the relative peak magnitudes. This, to some
extent, bypasses errors in e.g measurements, observed data, which affect the absolute peak
magnitudes.

5The algorithm for determining the peaks and the subsequent rising limbs is presented in listing B.2 in ap-
pendix B section B.1. An example of the determination comes in form of figure B.1 in appendix B.
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3.2. Calibration

Before the calibration process, a method of calibration had to be selected. The choice
fell on the Monte-Carlo method, which can be seen inside the for-loop in listing B.4. The
Monte-Carlo method, within the context of this thesis, can be considered a ’brute-force’
method6.

3.2.1. First run & Benchmark
First of all, an amount of 100,000 parameter-sets are generated. The sets of parameters
assume values randomly sampled between the intervals as viewed in table 2.37. These
randomly generated parameter-sets will be used for the entirety of this thesis, i.e. no other
parameter-sets will be used. For testing purposes, such as ironing out design-flaws, the
100.000 parameter-sets are forced through the loop and thereby only evaluated against the
NSE over the entire benchmark period (10 years).

Figure 3.1: The modelled flow versus the observed flow evaluated solely by the NSE for a 10 year benchmark
period. The modelled flow depicted used the parameter-set that had the highest NSE value. The predic-
tion interval (lightgreen beam) represents the boudaries of the values the modelled flow can assume with a
confidence level of 95 percent, when passing the NSE threshold.

6A method is considered brute-force when no use is made of a more efficient algorithm. It basically comes
down to generating and testing, which is the purpose of the Monte-Carlo method in this thesis (listing B.4,
appendix B.2).

7One thing to address is the small interval for the recession coefficient of the slow reservoir (Ks ). A linear
storage-discharge relationship was ought to be sufficient (Fenicia et al., 2006; Chapman, 1999), though be it
for a limited part of the recession period (Tallaksen, 1995). This limited part is at the tail-end of the recession
period. This “tail” could be viewed solely as a flux exiting the slow reservoir. As these tails display exponential
behaviour, it is possible to fit the outflow of the slow reservoir to these tails. This then would lead to a Ks that
is constant. A margin of error has been added to the range of Ks in order to let it fluctuate a little, as these
tails are unique as a result of different circumstances and errors in measurements are a possibility.
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The calibration process uses 1 year preceding the 10-year evaluation period to “warm-up”
the model8, as the initial conditions, e.g. the soil moisture, are unknown at the moment the
model starts.

Next, all 100.000 parameter-sets are evaluated against all remaining evaluation criteria
individually over the benchmark period, as was done with the NSE. The purpose of
this process is to establish the thresholds of the individual criteria. The threshold of
an evaluation criterion is defined as the 95th percentile9 of all the values acquired from
evaluating all parameter-sets against said criterion. The individual criteria thresholds are
presented in table 3.1.

Evaluation criterion Threshold value
NSE 0.7859

LogNSE 0.8833
FlowDur 0.9677

AC 0.8698
RO 0.9554

RLD 0.9664
Peakdis 0.8209

Table 3.1: The thresholds of the individual evaluation criteria.

From here it is possible to create the first benchmark. The benchmark serves as
a measurement to evaluate the equivalent performance10 of parameter-sets that were
deemed “good” by the shorter-period calibration. The first benchmark consists of
parameter-sets that solely passed the NSE-threshold. However, when a parameter-set is
chosen solely based on the NSE value, the hydro-graph tents to show misjudgement of the
recession period, as is seen in figure 3.1. This is mainly the result of the NSE’s tendency to
lay too much emphasis on the peak-flows (section 3.1), which leads to a model “trying” to
get the peak-flows right.

Thereby comes the fact that eventually more than one evaluation criterion will be used, it
would therefore be biased to base the equivalent performance solely on the Nash-Sutcliffe
efficiency, while using multiple evaluation criteria during the shorter-period calibration.
A more desirable benchmark would be based on all of the mentioned evaluation criteria.
The most practical approach would be the creation of one single quantitative value
representing all criteria. The basic principle of this approach is displayed in figure 3.2.

8It is advisable to let the model run for a period of time to sort out the initial conditions itself. Otherwise the
model calibration period would start on arbitrary initial conditions that could result in a great bias in regard
to the evaluation criteria. Yu et al. (2018) states that the the warm-up time is dependent on factors like the
soil texture, soil profile length etc., which made the determination of the warm up in this thesis an educated
guess.

9It has to be noted however, that the determination of the threshold is somewhat subjective. An other possi-
bility would be a threshold based on e.g. export-knowledge.

10Equivalent performance is defined as the perfomance the model will have during the benchmark period (in
this case 10 years), when using the same parameter-sets that passed the thresholds of their respective eval-
uation criteria during the shorter-period calibration. A model logically will have a different performance
for different periods, especially when the length of period differs greatly.
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Figure 3.2: A depiction of the relationship between the complements of two evaluation criteria. The red
lines indicate the thresholds of the respective evaluation criteria. The outer rim of the dots within the red
square is defined as the Pareto-front. The dot that is closest to the origin is defined as the Pareto optimal
value and determined by the euclidean distance to the origin. This dot should represent the best performing
parameter-set when both evaluation criteria have equal weight.

This single value will be the euclidean distance to the origin of the complements11 of all the
evaluation criteria (figure 3.2). The euclidean distance is a multi-dimensional use of the
Pythagoras-formula with the origin as its starting point. All the evaluation criteria values
have equal weight in the determination of the euclidean distance.

ε=
√

(1−N SE)2 + (1−Log N SE)2 . . . + (1−PeakDi s)2 (3.12)

By looking at figure 3.2 and how equation (3.12) is formulated, it can be concluded that a
lower euclidean distance value indicates a better performance of a parameter-set, which is
the opposite of an individual criterion. A decision was made not to base the benchmark
on parameter-sets passing all the individual criterion thresholds (dots within the red box;
figure 3.2), as no parameter-set can pass all the thresholds while evaluated over a period
as long as 10 years. This entails that the benchmark would be empty. Therefore a single
threshold value was determined; this value is formulated as the 5th percentile of the
euclidean distance values of all parameter-sets evaluated over the benchmark-period. This
value was set at: 0.7671. All parameter-sets with a euclidean distance value lower than the
threshold were included in this benchmark.

11The complement of a normalized quantity is described as one minus said quantity.
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3.2.2. Moving window
Five period lengths were chosen for the shorter-period calibration process:

• 5 years
• 2 years
• 1 year

• 6 months
• 3 months

Each of these period-lengths is moved across the 10-year period, that was used to create
the benchmark, one month at a time. This creates a “moving window”, that allows each
period-length to start at every month. This entails that a calibration period-length of 3
months will have 118 calibration periods in a span of 10 years. The last two months, for
a period length of 3 months, can not be used as starting points as the calibration period
would extent beyond the benchmark period of 10 years.

Evaluation criteria will be added during the calibration-process for every period-length,
starting with the NSE. This implies that e.g. for the 3 months period-length it is done for
all 118 periods. After the NSE, the LogNSE will be added. Hereafter the FlowDur will be
added, etcetera. The criteria are added in the order in which they are mentioned in section
3.1. After the addition of each criterion, an evaluation is carried out for all the criteria that
are implemented at that moment. The parameter-sets that pass the thresholds (table 3.1)
of the implemented criteria are saved while the others are rejected. This process continues
until all the criteria are implemented in the calibration process12.

The parameter-sets that are saved after each criterion addition are saved with the
equivalent performance values of both the NSE and the euclidean distance for an easy
comparison with both benchmarks. When the same parameter-set is used for multiple
periods with the same period length, it creates the possibility of saving duplicates per
period length13. However, this is completely fine as it would only matter less in which
month the calibration starts for that specific parameter-set.

Two last things need to be addressed concerning the calibration process:

• The fixed Ce parameter

• Exclusion of extreme peak-flows in the observed data

The fixation of the Ce parameter is the result of Ce being a remnant of an earlier built of
the model. In e.g. Fenicia et al. (2006) it was an active parameter while in e.g. Nijzink et al.
(2016) it was fixed on a value of 0.5. In equation (A.9) from appendix A, Ce would take the
spot of the 0.5 in the determination of the transpiration Et .

The reason behind the exclusion of extreme peak-flows is that the model can not generate
enough flow to reach those peaks. If the outcome is evaluated solely by the NSE, then the

12A part of the moving window calibration can be found in listing B.5 in appendix B.2.2.
13Although the period length of 3 months is a constellation of 118 periods, the results are still saved under the

single banner “3 months”.

27



3.3. Validation

model, using the parameter-set with the best NSE value, will most likely emphasize the
faster processes in order to reach those peaks. However, the model is not able to produce
enough outflow to reach these extreme peak-flows but will “sacrifice” the reproduction
of hydrological signatures in its attempt. Therefore these peaks were excluded from the
observed data for the NSE, LogNSE, FlowDur, AutoCor and the RO. As the RLD and the
PeakDis do no suffer punishment for leaving these peak-flows in, the peak-flows were left
in for these criteria.

3.3. Validation

The manner in which the model, with the parameter-sets acquired from the calibration
process, is able to reproduce hydrological signatures, for a period outside the calibration
period, is not clear. This is the result of not knowing much about the consistency of the
model using these parameter-sets.

Therefore a validation period is introduced. The purpose is to evaluate the consistency of
the model utilising these parameter-sets. The parameter-sets are evaluated over the entire
validation period, also spanning 10 years, for every single evaluation criteria, in order to
review the performance of the parameter-sets over a different period of time. This will give
insight into the consistency of the model utilizing these parameter-sets. The euclidean
distance value will also be determined over the entire validation period for comparison
with the benchmark.

Figure 3.3: Timeline that represents the use of data of the entire period. I is the warm-up period for the
calibration process. II is the calibration (benchmark) period. III is the warm-up period for the validation
process. IV is the validation period.

The last year of the calibration period (III) is used as a warm-up of the model for the
validation period (IV) as is seen in figure 3.3 above.
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Results

4.1. Calibration

This section covers the results of the Monte-Carlo moving-window calibration (subsection
3.2.2). The equivalent performance is determined for every parameter-set that came
through the calibration process given any period-length. The equivalent performance
used in this context is defined in terms of the euclidean distance value. The equivalent
performance is used for the purpose of an easy comparison with the benchmark. Figure
4.2 is a graphical representation of the equivalent performances of the parameter-sets from
every shorter-period calibration. The first box plot of figure 4.2 (highlighted in green; mean
euclidean distance value of: 0.6526) is the benchmark performance, as was described in
subsection 3.2.1.

4.1.1. First observations
The first group of box plots to the right of the benchmark represent the 5 year calibration
period-length. The performance of the model using the parameter-sets that passed the
threshold of the NSE solely (far left) appears to be worse than the benchmark performance
(mean equivalent value of: 1.2606 to 0.6526), as one would expect1. The stepwise addition
of evaluation criteria seems to greatly improve the performance, until the performance
of the 5 year calibration period-length even exceeds(!) (far right) the performance of the
benchmark. This observation entails that utilizing the first 4 evaluation criteria promises a
performance better than the threshold of the benchmark, when 5 years worth of daily data
is available.

No box plots are shown after the addition of the RO, RLD and the PeakDis for this calibration

1It becomes “easier” to pass the threshold when the calibration period-length is made shorter, as there are
less data to get right. This results in parameter-sets passing the calibration process, while quite possibly
having a worse equivalent performance. This becomes increasingly apparent when one looks at e.g. the 3
months period calibration utilizing only the NSE (figure 4.2).
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4.1. Calibration

period length. This is very likely the result of strict/high thresholds. In general, the
evaluation criteria values tend to be lower, when a larger period is used to evaluate the
modelled flow against the observed. This is a logical result as it gets harder for the model to
get everything ’right’. In conclusion, for larger periods it becomes increasingly difficult for
parameter-sets to pass all the thresholds of the respective evaluation criteria.

Figure 4.1: A depiction of the modelled flow versus the observed. The model used, out of the remaining
parameter-sets, the parameter-set with the highest equivalent NSE-value after the addition of the last crite-
rion. The calibration period-length is 6 months.

The performance of the model decreases as the calibration period-length shortens. The
stepwise addition of calibration criteria mostly seems to improve the performance of
the model for any given calibration period-length (figure 4.2) and the importance of
more evaluation criteria appears to increase, as one shortens the calibration period
progressively. The performance improves to benchmark-level values for a period-length up
to 6 months, after the addition of the last criterion that still secures remaining parameters.
A parameter-set (Par6m) produced by the 6 months period-length calibration

Evaluation criterion Individual value
NSE 0.8333

LogNSE 0.8476
FlowDur 0.9577

AC 0.9125
RO 0.5175

RLD 0.9088
PeakDis 0.8304

Table 4.1: The equivalent individual criteria values of the model using the parameter-set which had the
highest equivalent NSE-value. Calibration period length is 6 months and all criteria were added in the
process.
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4.1. Calibration

shows a better ability to mimic the hydro-graph (figure 4.1) than the parameter-set
evaluated solely against the NSE over a period of 10 years (figure 3.1). Thereby is the
prediction interval narrower than shown in figure 3.1, which entails less “randomness” in
performance (subsection 4.1.3). The individual equivalent criterion values of Par6m (table
4.1) are comparable to the threshold values that were determined over a period of 10 years
(table 3.1). This would entail a “good” performance according to the criteria.

4.1.2. Further observations
While looking at figure 4.2 and moving passed the 6 months period-length towards the 3
months period length, one is able to make a few eye-catching observations:

I Only one parameter-set is left after the addition of the last evaluation criterion for the
3 month period length

II For the shorter calibration periods, especially the 3 month period length, it appears
that the performance improvement stagnates (cluster to the far right)

Figure 4.3: A depiction of the modelled flow versus the observed. The model used the last remaining
parameter-set that remained after the addition of the last evaluation criterion over a calibration period of
3 months.

From observed point I it can be concluded that this sole remaining parameter-set should
lead to the best performing model, especially as the equivalent performance value is
reasonably close to the set of benchmark values. The fact that the visual modelled outcome,
shown in figure 4.3, seemingly is an improvement in comparison to figure 3.1 further
strengthens this belief2.

2Figure C.1 from appendix C shows the outcome of the model using the parameter-set that had the highest
NSE-value after the addition of the NSE over a calibration period of 3 months. The visual performance shown
in figure 4.3 is significantly better than in figure C.1; at least implying it is a significant improvement.
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This however could be very deceiving. By looking at the modelled flow versus the observed,
as shown in figure C.2 from appendix C, the visual performance of the model using this
parameter-set raises some eyebrows when reviewing the outcome over a larger period.
Over the entire benchmark period, the model tends to overshoot some of the smaller
peak-flows and does not “even attempt” to produce a few of those peak-flows, while
utilising this sole remaining parameter-set.

Evaluation criterion Individual value
NSE 0.7792

LogNSE 0.6475
FlowDur 0.8689

AC 0.0962
RO 2.26×10−4

RLD 0.9750
PeakDis 0.7527

Table 4.2: The values of the evaluation of the model using the sole remaining parameter-set, over the bench-
mark period, for every individual criterion.

A low value for the runoff coefficient criterion is not disastrous as this criterion value
decreases rather quickly when the magnitudes differ a bit from the observed flow. More
alarming is the low value of the autocorrelation criterion, as this basically “checks” the
shape of the modelled hydro-graph. Figure C.2 from appendix C arguably depicts this low
autocorrelation value.

Observed point II is most likely the result of a change in rainfall-runoff dynamics, starting
around the month of May. Figure C.4 from appendix C shows a fast decrease in daily
precipitation during the summer months. However, as shown in figure C.5 from appendix
C, the monthly mean runoff coefficient increases by a great margin in those months while
being mostly constant for most of the year. This implies that there still is a significant
enough stream-flow without much precipitation. A deduction from this information is that
the contribution to the stream-flow is dominated by various types of groundwater flows3

during those summer months.

A large emphasis would therefore be placed on the slow reservoir and the unsaturated/soil
moisture reservoir within the FLEXnd-model and, as a result, on their respective parameters
during the calibration process. The period from the decline of precipitation until the end
of significant recorded stream-flows (high runoff coefficient) spans around 4 months, from
May until August. If the entire 3 month calibration period falls within these months, then
performance issues will arise in terms of equivalent performance. In essence, to obtain a
good performance during these months for a 3 month period-length, only the parameters
associated with the slow reservoir, to a limited degree the unsaturated reservoir and their
respective fluxes, have to be calibrated “correctly”. This entails that parameters that are
associated with e.g. the interception reservoir could have a random value and the model
would still have a decent performance for those 3 months.

3As there is little to no precipitation, the groundwater reservoirs tend to empty themselves as water still wishes
to flow in the direction of decreasing pressure, i.e. the main stream.
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4.1. Calibration

(a) NSE (b) LogNSE

(c) FlowDur (d) AC

(e) RO (f) RLD

Figure 4.4: Worst 10 percent of the equivalent euclidean distance values after each evaluation criteria addition
for the 3 month period-length. The Peak Distribution is left out, as there was only one parameter-set left.
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4.1. Calibration

Especially the parameters concerning the snow reservoir will suffer as the temperature
in most of these summer months (figure C.6; appendix C) do not reach sub-zero values,
which basically means that the snow reservoir is bypassed and therefore deemed irrelevant
in this calibration process. In conclusion, a model calibrated during the summer months
over a period of 3 months will most likely not ensure consistency.

A step in the right direction would therefore be the exclusion of calibrations, for the 3
month period length, that would start in the months May, June and July. Although a period
would end with September when it would start in July; July is still excluded as the amount
of precipitation in September is still low on average (figure C.4; appendix C), which entails
that the model would still not “learn” how to utilise e.g. its interception reservoir. Plotting
the worst 10 percent of the equivalent individual evaluation criteria values (figure 4.4)
reveals that indeed the calibration periods starting with the months May, June and July
should be excluded. Figure 4.5 shows a much better average equivalent performance of the
remaining parameter-sets in comparison to figure 4.2 (mean equivalent euclidean distance
value of 1.0442 compared to 2.6773; far right box-plot of the far right cluster). The exclusion
of these starting months neatly solves the problem that arose with observed point I. The
starting month of that sole remaining parameter-set was May, which implies that it now
is filtered out. This paragraph also serves as an explanation why the performance of that
sole remaining parameter set was lacking. For the purpose of this thesis a parameter-set
is determined to replace the previously mentioned parameter-set in order to present a
graphical representation of the “best performing” parameter-set that comes out of the 3
month period-length calibration. The determination is based on the highest equivalent
NSE value after the addition of the RLD evaluation criterion. This parameter-set will be
denoted as Parx.

Figure 4.6: Modelled versus Observed, where the model utilises the parameter-set (Parx) with the highest
equivalent NSE values after the addition of the RLD.
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Although the euclidean distance, with equal weight for each evaluation criterion, is a good
quantity to be used as tool for comparison, it is not adequate for determining the best
parameter-set. This is shown by figure B.2 from appendix B. In this figure the benchmark
period is used for evaluation utilising every criterion, after which the parameter-set was
chosen with the lowest euclidean distance value. Visually, the performance of the model is
rather poor using this parameter-set.

Evaluation criterion Individual value
NSE 0.8617

LogNSE 0.7410
FlowDur 0.8371

AC 0.8595
RO −2.1618

RLD 0.9354
PeakDis 0.8948

Table 4.3: The values of the evaluation of the model using Parx, over the benchmark period, for every individ-
ual criterion.

The visual performance of the model using Parx is already an improvement as is seen by
comparing figure 4.6 with figure 4.3. By looking at table 4.3 the first thing that stands
out is the negative value for the runoff coefficient criterion. However, as mentioned
before, this does not entail poor performance as this tends to happen rather quickly.
The biggest difference between table 4.3 and table 4.2 is the significantly higher value of
the autocorrelation criterion when utilising Parx. This leads to the conclusion that Parx

is far more capable of producing an outcome that has a similar shape to the observed
hydro-graph.

4.1.3. Prediction
The light green beam as seen in figure 3.1 represents the interval, with a confidence level
of 95 percent, in which future modelled flows are predicted to lie in. For figure 3.1 this
prediction interval is determined according to the outcomes produced by the model using
the benchmark parameter-sets, i.e. the parameter-sets that passed the NSE threshold while
being evaluated over the benchmark period.

One would expect the prediction interval to be wider when utilizing the parameter-sets
that passed the threshold(s) during shorter period calibration, especially after the earlier
additions of evaluation criteria. The step-wise addition of evaluation criteria in the
calibration process should in theory narrow the prediction interval, as the step-wise
addition of evaluation criteria improves the equivalent performance of the set of remaining
parameters. Figure 4.7 indeed shows a wider prediction interval than shown in figure
3.1. However, the step-wise addition of criteria do not appear to significantly narrow this
interval for the most part, when looking at a period-length of 3 months. This largely is
the result of the yet to be excluded summer months, which also caused the stagnation of
the performance improvement (observation point II; subsequent explanation on page 32 &
35). The exclusion of the periods, with the summer months as their starting months, sees a
narrowing of the prediction intervals (figure 4.8). Figure 4.8 also shows an increased impact
on the interval by the step-wise addition of criteria when compared to figure 4.7.
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4.1. Calibration

Figure 4.7: The prediction intervals after the step-wise addition of evaluation criteria for the parameters-sets
that come through the calibration process for a period-length of 3 months. The modelled flow in this graph
is produced by the model utilizing Parx.

The reason why a more narrow prediction interval is desirable, is to ensure less
“randomness” in the models performance, while utilizing one of the parameter-sets
deemed useful by the calibration process.

Figure 4.8: The prediction intervals after each criterion addition. The parameter-sets were evaluated over a 3
month period from which the results were excluded that began with the months May, June or July.

38



4. Results

The prediction interval after the addition of the RLD appears, for the most part, to be fairly
close to the prediction interval shown in figure 3.1. This entails that the predictability of
the model calibrated over a period of 3 months and evaluated against all the mentioned
criteria is on par with that of a model calibrated over a period of 10 years and evaluated
solely against the NSE. Logically, the prediction interval becomes smaller as the calibration
period-length becomes larger, which is viewed in the figures C.7 (6 months) & C.8 (1 year)
from appendix C.

4.2. Validation

Figure 4.9 shows that each addition of an evaluation criterion during the calibration
process leads to a better euclidean distance value while evaluating for the validation period.
The criterion values, after the addition of the RLD, associated with the validation period,
are very close to the values of the calibration period, which itself is fairly close to the values
of the calibration benchmark. This would lead one to suspect that these parameter-sets
are able to reproduce the hydrological signatures and thereby ensure model performance
consistency.

Evaluation criterion Individual value
NSE 0.8403

LogNSE 0.7560
FlowDur 0.8378

AC 0.8361
RO −1.6463

RLD 0.9927
PeakDis 0.8274

Table 4.4: The values of the evaluation of the model using Parx, over the validation period, for every individual
criterion.

Figure 4.11 seems to strengthen this believe as the individual criteria all show improvement
after each addition in the calibration process, when evaluating over the validation period.
The individual values of the evaluation criteria for the validation period seem to be
very close to the values for the benchmark calibration period, when the model utilises
parameter-set Parx (table 4.3 and table 4.4). This entails that Parx will most likely ensure
consistency for this specific catchment.

Although most individual criteria show improvement after each addition in the calibration
process (figure 4.4), it does not seem to be the case for the runoff coefficient criterion and
to some extent the autocorrelation criterion. As stated before, the marginal improvement
of the runoff coefficient criterion value is not a big concern when it is used for judging
a parameter-set’s performance outside the calibration period for a period with a larger
duration. The autocorrelation criterion values show a small improvement. However,
visually well performing parameter-sets, over a large period, mostly perform well in terms
of the autocorrelation criterion and visa versa.
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4.2. Validation

Figure 4.9: Equivalent euclidean distance values after every criterion addition versus the euclidean distance
values of the validation period, also using the parameter-sets that passed the thresholds after each criterion
addition. Only the outcomes of the 3 month period-length calibrations are depicted in this graph. The exclu-
sion of the aforementiod starting months leads to no-data after the addition of the PeakDis.

Figure 4.10: Equivalent NSE values after every criterion addition versus the NSE values of the validation pe-
riod. Only the outcomes of the 3 month period-length calibrations are depicted in this graph. The exclusion
of the aforementioned starting months leads to no-data after the addition of the PeakDis.
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4. Results
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5
Discussion

5.1. Criteria thresholds

First point of attention would be the relaxation of the thresholds. As could be observed
in figures 4.2 & 4.5 and be read in the subsequent explanation in section 4.1, the absence
of remaining parameter-sets, evaluated over the larger periods, can be attributed to the
strict thresholds of the evaluation criteria. In addition, the sole remaining parameter set
(subsection 4.1.2), from the 3 months period-length calibration after the implementation
of every criterion, is most likely also the product of strict thresholds. The incorporation
of the knowledge concerning the starting months of calibration for the 3 month periods
left the outcome with no remaining parameter-sets that passed all the thresholds of
their respective criteria. However, e.g. Parx visually outperformed the sole remaining
parameter-set, though it did not pass all the thresholds (PeakDis). It would therefore be
desirable that parameter-sets like and similar to Parx would remain after the addition of
every criterion during the calibration process. This could lead to more helpful way of
determining the best performing parameter-set.

5.2. Runoff coefficient criterion

The equivalent performance of the remaining parameters-sets after the addition of the
runoff coefficient criterion is questionable for most of the calibration period-lengths,
in particular those of 1 year and shorter. As mentioned in subsection 4.1.2, a low
equivalent value of the runoff coefficient (e.g. table 4.3) does not necessarily indicate
poor performance; these parameter-sets still are able to mimic the hydro-graph rather well.
However, the low equivalent RO values do affect the equivalent euclidean distance values;
this would make the visual representation of the performance, as shown in figures 4.2 and
4.5, biased but still very much useful. More alarming is the apparent inconsistency of the
RO value during calibration and the equivalent RO value. A parameter-set that passes the
RO threshold (e.g. Parx) could have a subzero equivalent RO value. One would expect
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5.2. Runoff coefficient criterion

a lower equivalent value in comparison to the value encountered during the calibration
process. However, the equivalent value is still expected to indicate some level of good
performance in terms of RO over the benchmark1 period. The inconsistency is most
likely the result of taking the Nash-Sutcliffe coefficient of the runoff coefficient signal, as
is displayed in equation (3.6) and (3.7). The Nash-Sutcliffe coefficient lays a large emphasis
on the larger differences (section 3.1; page 20) and a difference between the modelled
and observed weekly runoff coefficient occurs rather quickly as a result of e.g. one lower
peak-flow. These two factors combined will lead a criterion that is highly sensitive for
possibly the wrong reasons, as this sensitivity could result in low equivalent RO values for
reasonable performing parameter-sets. An easy solution would be making use of the runoff
coefficient over the entire calibration period instead of creating a signal of the weekly runoff
coefficients. This “global” runoff coefficient sacrifices the trend that the signal created but
thereby bypasses the problems mentioned above.

E = 1−
∣∣∣∣1− Rum

Ruobs

∣∣∣∣ (5.1)

where

Rux =
∑

Qx∑
P

(5.2)

Figure 5.1: Equivalent perfomance of the parameter-sets that passed each addition of evaluation criteria over
a 3 month period. The cluster of boxplots on the left used the RO criterion according to equations (3.6) & (3.7)
and the cluster to the right according to equations (5.1) & (5.2).

1The inconsistency of the RO also persists throughout the validation period as is seen in figure 4.11.
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5. Discussion

The necessity of a trend in this criterion is somewhat dubious as this already is covered by
other evaluation criteria (e.g. AC). This global runoff coefficient would then represent the
long term water balance (Yadav et al., 2007; Sawicz et al., 2011) as was described in section
3.1.

When looking at the comparison between the original RO and the reviewed RO (figure 5.1),
in terms of equivalent performance (euclidean distance) after each criterion addition, the
improvement of performance is significant both in general and after the addition of the
runoff coefficient criterion. Also notable is the reintroduction of remaining parameter-sets
after the addition of the PeakDis, as figure 5.1 took into account the information gained
from figure 4.4. The improvement also, by making use of the reviewed RO, is significant for
larger calibration period-lengths (e.g. figure D.1; appendix D), even more so in comparison
to the benchmark (figure D.2; appendix D).

A necessary reiteration is: it is an inconsistency between the values during calibration and
the equivalent values/performance. However, when one would try to calibrate a model
on a poorly gauged catchment, one would not have access to enough data to look at
the equivalent performance. The equivalent performance only serves as a measurement
of what one could expect from a calibration over a shorter period. The original runoff
coefficient criterion did perform in terms of filtering “faulty” parameter-sets. Therefore the
results, while using the original RO, are deemed useful, especially for the smaller calibration
periods.

5.3. Identification

As mentioned in section 5.2, the availability of data, when modelling a poorly
gauged catchment, is not sufficient for the creation of equivalent performance.
However, as mentioned in subsection 4.1.2, the determination of Parx was based on
the highest equivalent NSE value. This entails the search of another method of
determining/identifying the “best” parameter-set. A first idea could have to do something
with the evaluation criteria values obtained during the calibration over a certain period,
though the method of choosing a parameter-set based on the smallest euclidean distance
has already been refuted (section 4.1). However, with neither expert knowledge about the
criterion weights nor about parameter constraints, the options become limited.

Calibration value Equivalent value
Evaluation Criterion Parx Parz Parx Parz

NSE 0.8007 0.8474 0.8617 0.7597
LogNSE 0.9626 0.9436 0.7410 0.8883

FLowDur 0.9777 0.9830 0.8371 0.9790
AC 0.9008 0.9143 0.8595 0.8141
RO 0.9818 0.9588 −2.1618 0.9082

RLD 0.9767 0.9969 0.9354 0.9950
PeakDis 0.4285 0.7241 0.8948 0.7278

Table 5.1: A comparison between Parx and Parz
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5.4. Parameter sensitivity

An other possible option is the summation of the criterion values. This bypasses the penalty
on individual criteria differences but yields the same outcome as taking the euclidean
distance. This outcome is dubbed Parz.

Figure 5.2: Modelled versus Observed, where the model utilises the parameter-set Parz.

Figure 5.2 shows a visually worse performance compared to the one seen in figure 4.6 (Parx).
However, when looking at table 5.1, it becomes apparent that the model using Parz is up to
par or even performing better than the model using Parx, most notably seen in regards to
the original equivalent runoff coefficient value. A critical notion is: none of the evaluation
criteria are weighted, which infers that not much is known about the relative importance
of those criteria. Thereby, three parameters2 differ greatly as can be seen in table D.1 from
appendix D. A higher β and Co tend to lead to the spiky behaviour observed in figure 5.2,
which can be concluded from the equations of table A.1; appendix A. This entails that the
problem of equifinality could lurk in the remaining parameter-sets.

5.4. Parameter sensitivity

Parameter sensitivity signifies how well a parameter can be identified3 within the
parameter space (Fenicia et al., 2008). If a parameter cannot be well identified then its
corresponding constitutive equation or even the model holds little correspondence with
reality (Kleissen et al., 1990; Fenicia et al., 2008). This thesis follows the same approach
of identifying the parameter-sensitivity as is explained in Fenicia et al. (2008), which is an
approach described by Freer et al. (2004) and based on the Regional Sensitivity Analysis
(RSA) (Spear and Hornberger, 1980).

2The remainder of the parameters were of the same order of magnitude.
3A well identified parameter is one that will hover around a certain value within the parameter space when it

has a high corresponding criterion value.
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5. Discussion
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5.5. Starting month

As mentioned in Fenicia et al. (2008), the RSA is based on random sampling. This, however,
is fairly inefficient in terms of calculation-time. So, in similar fashion to Fenicia et al.
(2008), the same parameter-sets are used that were generated for the Monte-Carlo method
calibration. The approach is visually represented by figure 5.3. Figure 5.3 shows a great
influence of the evaluation criteria on the sensitivity of the parameters. E.g. after the
addition of only the NSE the parameters are highly insensitive while after the addition of
the RLD most parameters show some sensitivity and can be identified. Parameters like
Imax and Co show no sensitivity, which could signify a deficiency in realism of those model
components. Su,max shows two clusters after the addition of the RLD, which could be the
equifinality mentioned in section 5.3. Taking into account the information regarding the
starting month of calibration significantly improves the sensitivity (figure D.3; appendix
D).

5.5. Starting month

As explained in subsection 4.1.2, there appears to be a trend in performance in regards to
the starting month of calibration. This has thus far been shown for the 3 months calibration
period-length. The larger period-lengths also show some form of trend in this regard
(figures D.6 & D.8; appendix D). However, from a period larger than 6 months onwards,
it becomes less as to what causes this trend, which would limit the applicability of this
knowledge. Thereby lies the focus on creating meaningful outcomes with less data, placing
an emphasis on e.g. the 3 months period length. An other point of interest is the apparent
isolation of a “best” starting month for a period-length of 3 months (figure D.5; appendix
D), which appears to be the month direcly after the period of change (subsection 4.1.2),
which in this case would be October. Furthermore, from a period-length of 6 months and
larger, there does not appear to be a noticeable trend in regards to a best starting month
(figures D.7 & D.9; appendix D). These trends are either insignificant/slightly random
(figure D.7; appendix D) or coincide with the worst performing starting months (figure
D.8 combined with figure D.9; appendix D). Although it seems a very useful piece of
information, the lack of data available in the area for which this thesis is intended highly
limits the applicability of this finding.
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6
Conslusion & Recommendations

6.1. Conclusion

The main research question of this thesis read:

“To what extend is it possible to shorten the period-length of calibration data
by using multiple evaluation criteria, for the model to perform similar to being
calibrated over a period of 10 years using one evaluation criterion?”

From the results (subsection 4.1.1; chapter 4) one can conclude that a period of 6 months,
with all criteria used in the calibration process, ensures similar performance to calibration
over 10 years of data using one criterion (e.g. the NSE). Calibration over 3 months worth
of data also ensured similar performance after the implementation of extra knowledge
(subsection 4.1.2). For a period-length of 3 months, sections 4.1 and 4.2 showed that the
remaining parameter-sets, could ensure both performance (figures 4.5 & 4.6; table 4.3) and
consistency (figures 4.9 & 4.11; table 4.4).

The additional research question read:

“Is the addition of multiple evaluation criteria enough to see the model perform
similarly, while calibrated over a smaller period, to the same model that has been
calibrated over a period of 10 years?”

When 6 months worth of data are used then it can be concluded that this in fact is
the case, after looking at the results (subsection 4.1.1). As mentioned in the answer
to the main research question, calibration over 3 month of data will require some
additional information. The difference between figures 4.2 and 4.5 showed that knowledge
concerning the calibration starting month is vital in this regard. Thereby comes the fact
that during this thesis no use has been made of parameter- and process constraints, with
the idea of viewing the influence of additional evaluation criteria. However, as mentioned
in sections 5.3 and 5.4 and seen in figure 5.3, this could give rise to problem of equifinality.
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6.2. Recommendations

Equifinality could not be prevented by evaluation criteria alone when the calibration period
length is as small as 3 months. Equifinality appears to be already less of a concern when 6
months of data were used in the calibration process (figure D.4; appendix D).

6.2. Recommendations

Weighted criteria
For further research, a first recommendation would be to use weighted evaluation criteria.
Mentioned in section 4.1, the euclidean distance, with equal weight for all the criteria,
is not an adequate tool for the determination of the best performing parameter-set. As
the evaluation criteria are measurements for testing different hydrological signatures and
hydrological signatures differ from one another between catchments, it would therefore
seem logical to weigh the evaluation criteria. A catchment where the main contributory to
the main stream-flow is rapid overland-flow would see a higher weight for the Nash-Sutliffe
efficiency criterion, as rapid overland-flow produces high and sharp peaks. This in turn
coincides well with the NSE (section 3.1).

Parameter identification
The development of a method for parameter-set identification is something to be
developed in the future. Within the space of this thesis, there did not appear to be a
clear-cut method of isolating the parameter-set Parx, which visually seemed to outperform
those parameter-sets that could be identified, like e.g. the sole remaining parameter-set
and Parz.

Expert knowledge
Although the weighing of criteria is a form of expert knowledge, this paragraph concerns
itself with parameter and process constraints. Sections 5.3 and 5.4 mentioned the apparent
problem of equifinality, which signifies multiple ’behavioural’ parameter-sets. Section 6.1
stated that evaluation criteria alone cannot stop equifinality from occurring, when the
calibration period becomes small. Kelleher et al. (2017) showed that equifinality could be
reduced by applying parameter- and process constraints to the model and the calibration
process. This could e.g. be the determination of a smaller interval for Imax from literature,
where different magnitudes are mentioned for different respective vegetation and ground
coverage.

Calibration method
As the Monte-Carlo method is brute-force, it tends to take its toll on the calculation time.
This especially is a concern for older devices. Therefore a more sophisticated calibration
method is recommended.

Sampling
Much like Wang et al. (2017), the results of this thesis suggest that there is a informative
period to collect stream-flow data for calibration-purposes or at least a period in which data
should not be collected. Section 4.1 and figure 4.4 showed that periods of meteorological
change should be avoided when collecting data over a small period for calibration.
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A
Flexnd model

A.1. Constitutive Equations

Reservoir
Water Balance
Equation

Constitutive Equations

Snow
dSn

d t
= P −Pe f f

(A.1)

Pe f f =
{

Co × (Ta −Tthr esh)

0

if Ta > Tthr esh

if Ta ≤ Tthr esh
(A.2)

Interception
dSi

d t
= Pe f f −Ei

−Ps (A.3)

Ps = max(0,Si +Pe f f − Imax ) (A.4)

Ei = mi n(Epot ,Si −Ps) (A.5)

Unsaturated or
Soil Moisture

dSu

d t
= Ps −Et

−Ru −Ri

(A.6)

Su,m = (1+β)Su,max

(
1−

(
1− Su

Su,max

)1/(1+β)
)

(A.7)

Ru = Ps −Su,max +Su +Su,max

(
1− Ps +Su,m

(1+β)Su,max

)1+β

(A.8)

Et =

Epot
Su

0.5×Su,max

mi n(Epot ,Su)

if Su ≤ 0.5×Su,max

if Su > 0.5×Su,max
(A.9)

Ri = Ri ,max
Su

Su,max
(A.10)
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A.2. Lag-function

Fast

dS f

d t
= (1−D)×Ru

−Q f (A.11)
Q f = S f −S f ×eK f ×∆t (A.12)

Slow

dSs

d t
= D ×Ru +Ri

−Qs (A.13)
Qs = Ss −Ss ×eKs×∆t (A.14)

Table A.1: Constitutive equation of the FLEXnd-model.

A.2. Lag-function

Listing A.1: Weights of the lag function

1 function [ Weigths ] = Weigfun( Tlag )

2 nmax=ceil(Tlag);

3 if nmax ==1

4 Weigths =1;

5 else

6 Weigths=zeros(1,nmax);

7 th=Tlag /2;

8 nh=floor(th);

9 for i=1:nh

10 Weigths(i)=(i-.5)/th;

11 end

12 i=nh+1;

13 Weigths(i)=(1+(i-1)/th)*(th-floor(th))/2+(1+( Tlag -i)/th)

*(floor(th)+1-th)/2;

14 for i=nh+2: floor(Tlag)

15 Weigths(i)=(Tlag -i+.5)/th;

16 end

17 if Tlag >floor(Tlag)

18 Weigths(floor(Tlag)+1)=(Tlag -floor(Tlag)).^2/(2* th);

19 end

20 end

21 Weigths=Weigths/sum(Weigths);

58



A. Flexnd model

A.3. Matlab code of the model

Listing A.2: Code behind the FLEXnd-model

1 function [Qm] = UsaMod2( Par , ExtraPar )

2 %Thesis model

3 Imax=Par(1);

4 Ce=Par(2);

5 Sumax=Par (3);

6 beta=Par(4);

7 Pmax=Par(5);

8 Tlag=Par(6);

9 Kf=Par(7);

10 Ks=Par(8);

11 Melt=Par(9);

12 Tth=Par (10);

13 D=Par (11);

14
15 Prec=ExtraPar.Forcing (:,1);

16 Ta=ExtraPar.Forcing (:,2);

17 Etp=ExtraPar.Forcing (:,3);

18 Sect=ExtraPar.Sect (1,:);

19 Tdis=ExtraPar.Sect (2,:);

20
21 tmax=length(Prec);

22 Sn=zeros(tmax ,length(Sect (1,:)));

23 Si=zeros(tmax ,1);

24 Su=zeros(tmax ,1);

25 Sf=zeros(tmax ,1);

26 Ss=zeros(tmax ,1);

27 Eidt=zeros(tmax ,1);

28 Eadt=zeros(tmax ,1);

29 Pet=zeros(tmax ,length(Sect (1,:)));

30 Qtotdt=zeros(tmax ,1);

31
32 Sn(1,:)=ExtraPar.Sin (1);

33 Si(1)=ExtraPar.Sin(2);

34 Su(1)=ExtraPar.Sin(3);

35 Sf(1)=ExtraPar.Sin(4);

36 Ss(1)=ExtraPar.Sin(5);

37
38 dt=1;

39
40 %%

41 % Flex Model_nd

42 for j=1: tmax

43 Pdt=Prec(j)*dt;

59



A.3. Matlab code of the model

44 Epdt=Etp(j)*dt;

45 % Snow Reservoir

46 Tin=Tdis+Ta(j);

47 for z=1: length(Sect (1,:))

48 if Tin(z) > Tth

49 Pes=min(Sn(j,z),Melt*(Tin(z)-Tth));

50 Sn(j,z)=Sn(j,z)-Pes;

51 Pet(j,z)=(Pes+Pdt)*Sect(z);

52 else

53 Sn(j,z)=Sn(j,z)+Pdt;

54 Pet(j,z)=0;

55 end

56 end

57 Pes=sum(Pet(j,:));

58 if j<tmax

59 Sn(j+1,:)=Sn(j,:);

60 end

61 % Interception Reservoir

62 if Pes >0

63 Si(j)=Si(j)+Pes;

64 Pedt=max(0,Si(j)-Imax);

65 Si(j)=Si(j)-Pedt;

66 Eidt(j)=0;

67 else

68 % Evaporation only when there is no rainfall

69 Pedt =0;

70 Eidt(j)=min(Epdt ,Si(j));

71 Si(j)=Si(j)-Eidt(j);

72 end

73 if j<tmax

74 Si(j+1)=Si(j);

75 end

76 %unsaturated reservoir

77 if Su(j)>Sumax

78 Sudt=Su(j)-Sumax;

79 Su(j)=Sumax;

80 Qufdt=Pedt+Sudt;

81 else

82 Sum =(1+ beta)*Sumax *(1-(1-(Su(j)/Sumax))^(1/(1+ beta))

);

83 if Pedt+Sum >(1+ beta)*Sumax

84 Qufdt=Pedt -Sumax+Su(j);

85 Su(j)=Su(j)+Pedt -Qufdt;

86 else

87 Qufdt=Pedt -Sumax+Su(j)+Sumax *(1-( Pedt+Sum)/((1+

beta)*Sumax))^(1+ beta);
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A. Flexnd model

88 Su(j)=Su(j)+Pedt -Qufdt;

89 end

90 end

91 % Transpiration

92 Epdt=max(0,Epdt -Eidt(j));

93 if Su(j) >0.5* Sumax

94 Eadt(j)=min(Su(j),Epdt);

95 Su(j)=Su(j)-Eadt(j);

96 else

97 Eadt(j)=min(Su(j),Epdt*(Su(j)/( Sumax*Ce)));

98 Su(j)=Su(j)-Eadt(j);

99 end

100 % Percolation

101 Qusdt=min(Su(j) ,(Su(j)/Sumax)*Pmax*dt);

102 Su(j)=Su(j)-Qusdt;

103 if j<tmax

104 Su(j+1)=Su(j);

105 end

106 % Fast Reservoir

107 Sf(j)=Sf(j)+(1-D)*Qufdt;

108 Qfdt=Sf(j)-Sf(j)*exp(-dt*Kf);

109 Sf(j)=Sf(j)-Qfdt;

110 if j<tmax

111 Sf(j+1)=Sf(j);

112 end

113 % Slow Reservoir

114 Ss(j)=Ss(j)+Qusdt+D*Qufdt;

115 Qsdt=Ss(j)-Ss(j)*exp(-dt*Ks);

116 Ss(j)=Ss(j)-Qsdt;

117 if j<tmax

118 Ss(j+1)=Ss(j);

119 end

120 Qtotdt(j)=Qsdt+Qfdt;

121 end

122
123 % Check Water Balance

124 Sfn=sum(Sect.*Sn(tmax ,:))+Si(tmax)+Ss(tmax)+Sf(tmax)+Su(tmax

);

125 Sin=sum(ExtraPar.Sin);

126 WB=sum(Prec)-sum(Eidt)-sum(Eadt)-sum(Qtotdt)-Sfn+Sin;

127 %disp(WB)

128
129 Weigths=Weigfun(Tlag);

130 Qm=conv(Qtotdt ,Weigths);

131 Qm=Qm(1: tmax);
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B
Evalutation criteria & calibration

B.1. Criteria

B.1.1. Matlab code

Listing B.1: Creating a quantitative evaluation criterion out the rising limp density.

1 function [E] = RLD(Qmodel ,Qdata ,xst)

2
3 Thres=( nanmedian(Qdata)/nanmean(Qdata));

4
5 [dym ,dfm] = RLDm(Qmodel ,xst ,Thres);

6 [dyd ,dfd] = RLDm(Qdata ,xst ,Thres);

7
8 Lm=sum(dym -dfm)/length(dym);

9 Ld=sum(dyd -dfd)/length(dyd);

10
11 E=1-abs(1-Lm/Ld);

Listing B.2: The algorithm behind determining the rising limp density for a given period.

1 function [dy,df,x,Qf] = RLDm(Qdata ,xst ,Thres)

2 %% Data gets loaded here in preperation for the

determination of the necessary minima and maxima.

3 [x,y] = findpeaks(Qdata);

4 TF = islocalmin(Qdata);

5 days=linspace(1,length(Qdata),length(Qdata))+xst -1;

6 df=days(TF);

7 dy=days(y);

8 Qf=Qdata(TF);

9 count =0;
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B.1. Criteria

10 if length(dy) > length(df)

11 dy(1) =[];

12 x(1) =[];

13 end

14 if length(df) > length(dy)

15 df(end)=[];

16 Qf(end)=[];

17 end

18 if isempty(df)==1 || isempty(dy)==1

19 dy=0;

20 df=0;

21 end

22 if df(1) > dy(1)

23 dy(1) =[];

24 x(1) =[];

25 df(end)=[];

26 Qf(end)=[];

27 end

28 if isempty(df)==1 || isempty(dy)==1

29 dy=0;

30 df=0;

31 end

32
33 %% determine maxima and minima

34
35 for j=1: length(x)

36 j=j-count;

37 if j>length(x)

38 break

39 end

40 if j>1

41 if 2*(x(j-1)-Qf(j)) < (x(j-1)-Qf(j-1)) && x(j)>x(j

-1)

42 x(j-1) =[];

43 dy(j-1) =[];

44 df(j)=[];

45 Qf(j)=[];

46 count=count +1;

47 end

48 end

49 end

50 for j=1: length(x)

51 if j>length(x)

52 break

53 end

54 while x(j)-Qf(j)<Thres

64



B. Evalutation criteria & calibration

55 x(j)=[];

56 dy(j)=[];

57 if j+1>length(Qf)

58 Qf(end)=[];

59 df(end)=[];

60 break

61 end

62 if Qf(j) > Qf(j+1) || Qf(j)/Qf(j+1) <1

63 Qf(j)=[];

64 df(j)=[];

65 else

66 Qf(j+1) =[];

67 df(j+1) =[];

68 end

69 end

70 end

Listing B.3: How creating a series of autocorrelations is formulated in code.

1 function [E] = AutoCor(Qmodel ,Qdata)

2
3 n=45;

4 z1=nan*ones(length(Qmodel),n);

5 z2=nan*ones(length(Qmodel),n);

6
7 for j=1:45

8 z1z=circshift(Qmodel ,-(j-1));

9 z2z=circshift(Qdata ,-(j-1));

10 z1(1:end -(j-1),j)=z1z (1:end -(j-1));

11 z2(1:end -(j-1),j)=z2z (1:end -(j-1));

12
13
14 end

15
16 ac1=corr(Qmodel ,z1 ,'rows','pairwise ').';

17 ac2=corr(Qdata ,z2 ,'rows','pairwise ').';

18
19 E=Nash(ac1 ,ac2);
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B.1. Criteria

B.1.2. Figure(s)
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B. Evalutation criteria & calibration

B.2. Calibration

B.2.1. Matlab Code

Listing B.4: Very first calibration step

1 clear all

2
3 %% Load Data

4 Dir=pwd;

5 loadmap='BasicFiles ';

6 Precip=csvread('Precipnew.csv' ,1,1);

7 EvaT=csvread('EvaTnew2.csv');

8 Qdata=csvread('Discharge2.csv' ,1,1);

9 Temp=csvread('Temp.csv' ,1,1);

10 Sect=load(sprintf('%s\\%s\\%s',Dir ,loadmap ,'catchsize2.txt')

);

11 perc95=readtable(sprintf('%s\\%s\\%s',Dir ,loadmap ,'95

percentile.txt'));

12 Temp=Temp (:,1);

13 MaskQ=Reviewdata(Qdata);

14
15 data (:,1)=Precip;

16 data (:,2)=Temp;

17 data (:,3)=EvaT;

18
19
20 %% Define Parameter ranges

21
22 % Imax Ce Sumax beta Pmax Tlag Kf

Ks Melt Tthresh D

23 ParRange.minn = [0 .5 1 .1 1 .1 .1

.05659*0.75 1 -1 0 ];

24 ParRange.maxn = [5 .5 1000 4 10 3 3

.05659*1.25 5 1 1.0];

25 Sin = [0 0 100 0 5];

26
27 % Make up input data

28 ndata =8*365+3*366;

29 MaskQ=MaskQ (1: ndata);

30 ExtraPar.Forcing=data (1:ndata ,:);

31 ExtraPar.Sin=Sin;

32 ExtraPar.Sect=Sect;

33
34 %% Calibration Section

35 scal =365+1;

36 n=100000;
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B.2. Calibration

37 A=[];

38 lijst =[];

39 h = waitbar(0,'Please wait ...');

40 for i=1:n

41 Random=rand (1,11);

42 Par=( ParRange.maxn -ParRange.minn).* Random+ParRange.minn

;

43 Qm=UsaMod2(Par ,ExtraPar);

44 eps=Nash(Qm(scal:end),MaskQ(scal:end));

45 A=[A;[Par eps]];

46 if eps >perc95.Var2 (1)

47 lijst=[lijst ;[Par eps]];

48 end

49 waitbar(i/n)

50 end

51 close(h)

52
53 %% Further editing data

54 savemap = 'BasicFiles ';

55 saveDir = sprintf('%s\\%s',Dir ,savemap);

56 MakeDir(saveDir);

57 savename = 'Benchmark100k.txt';

58 savefile = sprintf('%s\\%s',saveDir ,savename);

59 savename2 = 'OriginalPar100k.txt';

60 savefile2 = sprintf('%s\\%s',saveDir ,savename2);

61
62 %save(savefile ,'lijst ','-ascii ');

63 %save(savefile2 ,'A','-ascii ');

64
65 %% making plot of the best set

66 Best = find(max(A(: ,12))==A(: ,12));

67 BestPar = A(Best ,1:11);

68 Days=scal :1100;

69 Qm = UsaMod2(BestPar ,ExtraPar);

70 fig = figure('Position ', get(0, 'Screensize '));

71 plot(Days ,Qm(scal :1100) ,'r',Days ,Qdata(scal :1100) ,'b');

72 legend('Model outcome ','Collected data','Location ','north ')

73 xlim([scal ,1100]);

74 savename = 'BestFitNSE100k ';

75
76 %saveas(fig ,fullfile(saveDir ,savename), 'png ');
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Listing B.5: Moving window calibration

1 clear all

2
3 %% Load Data

4 Dir = pwd;

5 loadmap='BasicFiles ';

6 Precip = csvread('Precipnew.csv' ,1,1);

7 EvaT = csvread('EvaTnew2.csv');

8 Qdata = csvread('Discharge2.csv' ,1,1);

9 Temp = csvread('Temp.csv' ,1,1);

10 Calib=load(sprintf('%s\\%s\\%s',Dir ,loadmap ,'OriginalPar100k

.txt'));

11 Sect=load(sprintf('%s\\%s\\%s',Dir ,loadmap ,'catchsize.txt'))

;

12 perc95=readtable(sprintf('%s\\%s\\%s',Dir ,loadmap ,'95

percentile.txt'));

13 Temp = Temp (:,1);

14 MaskQ = Reviewdata(Qdata);

15
16 data (:,1) = Precip;

17 data (:,2) = Temp;

18 data (:,3) = EvaT;

19
20 %% Make up input data

21 Sin = [0 0 100 0 5];

22 ndata = 8*365 + 3 * 366;

23 MaskQ = MaskQ (1: ndata);

24 Qdata = Qdata (1: ndata);

25 ExtraPar.Forcing=data (1:ndata ,:);

26 ExtraPar.Sin=Sin;

27 ExtraPar.Sect=Sect;

28
29 %% define Lengths

30 deeix = {'5years ', '2years ', '1year', '6months ', '3months '};

31 dx = [ 1826 730 365 182 91

];

32 mnd = [ 31 28 31 30 31 30 31 31 30 31 30 31

];

33 nt = size(Calib ,1);

34 scal = 365+1;

35 mndu =[];

36 for j=1:10

37 mndu=[mndu ,mnd];

38 end

39
40 %% Make Calibrations map
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B.2. Calibration

41 savemap ='TNSE100k ';

42 saveDir =sprintf('%s\\%s',Dir ,savemap);

43 MakeDir(saveDir);

44 mapname='CalibrationLogNSE ';

45 Path=sprintf('%s\\%s',saveDir ,mapname);

46 MakeDir(Path)

47
48 %% Receiving corresponding coefficients

49 h = waitbar(0,'Please wait ...');

50 bestlijst =[];

51 getin =[];

52 for j=1: length(dx)

53 lijst =[];

54 num = round((ndata -scal +1)/mean(mnd));

55 num = num - round(dx(j)/mean(mnd)) + 1 ;

56 pareto=zeros(nt ,num);

57 waitmes = sprintf('An calibration period of %s is

processed ' ,deeix{j});

58 g = waitbar(0,waitmes);

59 pos_w1=get(h,'position ');

60 pos_w2 =[ pos_w1 (1) pos_w1 (2)+pos_w1 (4) pos_w1 (3) pos_w1

(4)];

61 set(g,'position ',pos_w2 ,'doublebuffer ','on')

62 for k=1:nt

63 Par = Calib(k ,1:11);

64 Qm = UsaMod2(Par ,ExtraPar);

65 for z=1: num

66 eps=zeros (1,7);

67 inm=Qm((scal+sum(mndu (1:(z-1)))):(scal+sum(mndu

(1:(z-1)))+dx(j) -1));

68 ind=MaskQ ((scal+sum(mndu (1:(z-1)))):(scal+sum(

mndu (1:(z-1)))+dx(j) -1));

69 inq=Qdata ((scal+sum(mndu (1:(z-1)))):(scal+sum(

mndu (1:(z-1)))+dx(j) -1));

70 Rain=Precip ((scal+sum(mndu (1:(z-1)))):(scal+sum(

mndu (1:(z-1)))+dx(j) -1));

71 eps (1)=Nash(inm ,ind);

72 eps (2)=logNash(inm ,ind);

73 if eps(1)>perc95.Var2 (1) && eps(2)>perc95.Var2

(2)

74 lijst=[lijst ;[k z Calib(k,12) ]];

75 end

76 end

77 waitbar(k/nt)

78 end

79 close(g)
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80 savename = deeix{j};

81 savefile = sprintf('%s\\%s.txt',Path ,savename);

82 %save(savefile ,'lijst ','-ascii ');

83 waitbar(j/length(dx));

84 end

85 close(h)

B.2.2. Figures

Figure B.2: Depiction of the modelled flow versus the observed flow. The modelled flow used the parameter-
set which had the smallest euclidean distance, where each of the 7 evaluation criteria had equal weight.
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C
Results supplement

Figure C.1: A depiction of the modelled flow versus the observed. The model used the parameter-set that
had the heighest NSE-value while only being evaluated against the NSE over a calibration period of 3 months.
This NSE values is not the equivalent performance in terms of NSE, but the performance of the 3 months
period.
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Figure C.4: Daily percipiation catergorised per month.

Figure C.5: Monthly mean runoff coefficient.
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C. Results supplement

Figure C.6: Daily temperature catergorised per month.

Figure C.7: The prediction intervals after each criterion addition. The parameter-sets were evaluated over a 6
month period, i.e. the calibration period-length.
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Figure C.8: The prediction intervals after each criterion addition. The parameter-sets were evaluated over a 1
year period, i.e. the calibration period-length.
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D
Discussion supplement

Figure D.1: Equivalent perfomance of the parameter-sets that passed each addition of evaluation criteria over
a 6 month period. The cluster of boxplots on the left used the RO criterion according to equations (3.6) & (3.7)
and the cluster to the right according to equations (5.1) & (5.2).

Parameter Parx Parz

Co 1.3550 4.7190
Su,max 207.01 628.70
β 0.3385 2.4324

Table D.1: Parameter comparion between Parx and Parz.
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D. Discussion supplement

(a) NSE (b) LogNSE

(c) FlowDur (d) AC

(e) RO (f) RLD

Figure D.5: Best 10 percent of the equivalent euclidean distance values after each evaluation criteria addition
for the 3 month period-length.
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(a) NSE (b) LogNSE

(c) FlowDur (d) AC

(e) RO (f) RLD

Figure D.6: Worst 10 percent of the equivalent euclidean distance values after each evaluation criteria addi-
tion for the 6 month period-length.
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D. Discussion supplement

(a) NSE (b) LogNSE

(c) FlowDur (d) AC

(e) RO (f) RLD

Figure D.7: Best 10 percent of the equivalent euclidean distance values after each evaluation criteria addition
for the 6 month period-length.
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(a) NSE (b) LogNSE

(c) FlowDur (d) AC

(e) RO (f) RLD

Figure D.8: Worst 10 percent of the equivalent euclidean distance values after each evaluation criteria addi-
tion for the 1 year period-length.
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D. Discussion supplement

(a) NSE (b) LogNSE

(c) FlowDur (d) AC

(e) RO (f) RLD

Figure D.9: Best 10 percent of the equivalent euclidean distance values after each evaluation criteria addition
for the 1 year period-length.
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