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Abstract

A Regional Climate Model (RCM) is a comprehensive tool to
simulate high-resolution climatic factors. A RCM is driven
by low resolution data obtained from a Global Climate Model
(GCM). In the one-way nested method, is the GCM data fed
into the RCM as a Lateral Boundary Condition (LBC) in cer-
tain updates in time, the boundary data interval resolution.
The necessary information in between these updates is ob-
tained by using linear interpolation techniques. The ability
to reproduce high-resolution RCM output with low-resolution
GCM data depends on the accuracy of this LBC. This thesis
investigates whether third order interpolation methods lead to
a more accurate approximation than the linear method. This is
investigated in combination with lowering the boundary data
interval resolution.

The conclusion is that a third order interpolation method does
not lead to a more accurate approximation for a high bound-
ary data interval resolution. But when the resolution is low-
ered, the linear interpolation method looses its accuracy earlier
than the third order method. This results in a boundary data
interval resolution of 1.5 hours for the linear method com-
pared to 7.5 hours for the third order method. Implementing
a lower boundary data interval resolution in combination with
the third order method lead to significant gain in computa-
tional time and storage for the RCMs.



Referat

Utvardering av interpolationsmetoder och
tidsupplosning av randdata for de laterala
randvillkoren for regionala klimatmodeller

En Regional Climate Modell (RCM) &r ett avancerat verktyg
for att simulera klimatet med hog upplosning. En RCM drivs
av data fran en Global Climate Modell (GCM), ofta med lag
upplosning. T den sé kallade envégsnédstade metoden sparas
GCM-data med vissa tidsintervall fér att anvéindas som ett la-
teralt randvillkor (LBC) till RCM. Den nédvéndiga informa-
tionen mellan sparade data erhélls med anvindning av linja-
ra interpoleringstekniker. Mojligheten att reproducera ett hog
upplost GCM-resultat med en RCM med liknande upplésning
genom att anvinda envigsnéstning med l4g upplésning beror
pa exaktheten hos denna LBC. Denna avhandling undersoker
huruvida tredje ordningens interpoleringsmetoder leder till en
mer exakt instéllning &n den linjara metoden. Detta under-
soks i kombination med minskningen av intervallupplésningen
av randdata.

Slutsatsen ar att en tredje ordningens interpolationsmetod in-
te leder till en mer exakt approximation for en hog datainter-
vallupplésning. Men nér upplésningen séanks, forlorar den lin-
jira interpolationsmetoden sin noggrannhet, tidigare 4n den
tredje ordningens metod. Detta resulterar i en begransad da-
taintervallupplosning pa respektive 1,5 timmar respektive 7,5
timmar. Tredje orderinterpolering ar saledes en signifikant vinst
for RCM.



Acknowledgements

Exactly seven years ago my journey at the TU Delft began, which brought me to
where I am today. I am blessed so many inspiring opportunities were given to me
along the way. I have had the chance to see some real dutch pride at the dredgers
in Singapore and the chance to stimulate the entrepreneurial environment of the TU
Delft, especially the ’conservative’ civil engineering sector. Furthermore, I was given
the opportunity to enjoy one of the most hilarious months in my life by organizing
the students introduction week and as a finishing touch, I got the chance to study in
Stockholm. A city that has conquered my heart and made me realize that you have
to overcome several ups and downs before you can proudly finish in a filled Olympic
Stadion. I am more than grateful for all these moments and people who believed in
me. Now I am almost graduated as a Mathematical Engineer, specialized in Computer
Simulations. Could you imagine?

I certainly had no idea when I found my way through University College in Mid-
delburg, along Civil Engineering in Delft, to finally graduate in the beautiful city of
Stockholm. The past years have been a true adventure. Lots of memories were created
and true friendships have emerged. I would like to take some time to thank some of
the people who really helped me grow the past few years.

First of all, I would like to thank my supervisor Michael Hanke. My graduation
year in Stockholm would not have been successful without your help. T know I have
not been the most regular mathematics student as I kept on switching courses, not
following the common computational track. I want to thank you for your guidance,
patience and mathematical direction you have given me.

During my master’s, I was convinced to use my numerical knowledge for a ’right’ pur-
pose, which I found at the Swedish Meteorological and Hydrological Institute. I want
to thank Marco Kupiainen for this opportunity. Your kindness, ’lectures’ and most
of all open attitude made me feel very comfortable from day one. Your guidance has
been very inspiring and made me enjoy my graduation internship a lot.

Another person who has been very important for me last year is Patricia, a fellow
student. T am sure I would not have succeeded my year without you. You have been
there as a sparring partner during my thesis, you gave me the final push to ask for
graduation opportunities and you were the one I could share my struggles with. But
most of all you have been a true friend, with who I have created memorable moments
until the last week in Stockholm.

Without the help and perseverance of Martin van Gijzen, I could never have started
my master in the first place. I would like to thank you from the bottom of my heart

iii



for your help and your trust in me, which helped me to regain confidence.

There are some other people who have inspired me during my way. First of all Paul
Reijn, who already knew I would be at a better place in the environment of Delft
and on top of that made sure that I could blend in immediately. Next, Paulien, my
inspirator, who I could always call for advice and who literally and figuratively had
to wake me up on some crucial moments. My Topgroep, with whom I have enjoyed
so many hilarious moments on Friday afternoons when we had to make concrete for
a civil engineering assignment. I would like to thank Eva and Gigi for their faith in
me, all my dear friends for all the beautiful moments we have shared, and lastly my
dearest family. Luuc, your attitude of ’don’t worry baby, everything’s gonna be all-
right’” has been annoying but probably because I knew you were right. Thank you for
your unconditional support. Bob, thanks for your sharp tongue and preparation for
my professional life. Bart and Luc, for being fantastic hosts, cooks and being my cute
little brothers. Dear mom and dad, thank you for all the support recent years, you
have given me the freedom and the means to make me who I am today.

Marieke Kootte
Breda, 21-08-2017



Contents

1 Introduction 3
1.1 Global Climate Models . . . . . . ... ... ... ... ... ...... 3
1.2 Regional Climate Models with one-sided nesting . . .. ... ... ... 3
1.3 Introduction of the problem . . . . . . .. .. ... ... ... ..., 4
1.4 Scopeofproject. . . . . . . . . L 5
1.5 Methodology . . . . . . . . . 6

2 Climate Computations 7
2.1 Climate model description . . . . . . .. .. ... .. .. oL 7
2.2 Issues within one-way nested regional climate modeling . . . ... ... 9

3 Project Description 11
3.1 The continuous model . . . . . .. ... 11

3.1.1 From Navier-Stokes to the Transport equation . . ... ... .. 11
3.1.2 Non-Dimensionalization . . . . ... ... ... ... ....... 13
3.2 Wave characteristics . . . . . . . . ... L 15
3.3 Discretization techniques . . . . . . . . .. ..o Lo oL 19
3.3.1 The Simultaneous-Approximation-Term — Summation By Parts
method . . . . . . . L 19
3.3.2 Fourth order Runge-Kutta . . . . . . ... ... ... ... .... 22
3.4 Interpolation methods . . . . . .. ... ... ... ... ... . ..., 23
3.4.1 Conditions on the interpolation method . . . . .. .. ... ... 24
3.4.2 Piecewise polynomial approximation . . . . .. . ... ... ... 24
3.4.3 Piecewise linear interpolation . . . . . .. ... ... ... .... 25
3.4.4 Third order polynomial approximations . . .. .. ... .. ... 26
3.4.5 Piecewise Cubic Hermite interpolation . . . . . . . .. ... ... 27
3.4.6 Evaluation of the cubic Hermite spline interpolation method . . 27
3.4.7 Cubic spline interpolation . . . . . . . ... ... ... ... ... 28
3.4.8 Evaluation of the cubic spline methods . . . . . . ... ... ... 30
4 Computational experiments 33
4.1 Big and Little Brother experiment . . . . . . ... .. ... ... .... 33
4.1.1 Implementation of the BB-LBE . . . . .. ... ... .. ..... 34
4.2 Model domain . . . . . . . . .. e 35
4.2.1 Big Brother domain . . . . . .. ... ... . oL 36
4.2.2 Little Brother domain . . . . .. .. ... ... ... ... ... 36
4.3 Object of investigation . . . . . . . . . ... oo 36
4.4 Verification . . . . . .. L 37



4.4.1 Boundary time interval resolution . . . .. .. .. ... ... .. 38

4.5 Experiments . . . . . . . ..o 39
4.5.1 Spatial resolution difference . . . . . . . ... ... ... ... .. 39
4.5.2 Spatial interpolation errors . . . . . .. ... ... 40
4.5.3 Zonal wavenumbers . . . . . ... ..o 40

4.6 GCM and RCM equivalence . . . . . . . ... ... .. ... ....... 40
4.6.1 Global and Regional model parameters . . .. ... .. .. ... 42
4.6.2 Big and Little Brother model parameters . . . .. ... .. ... 42

4.7 Set-up of the experiment . . . . . . . . . ..., 44

Results 47

Conclusion 55

6.1 Evaluation of the boundary data interval resolution . . . . . ... .. .. 55

6.2 Interpolation method influence . . . . ... ... ... ... ....... 56

6.3 Examination of the several experiments . . . . .. ... ... ... ... 57
6.3.1 Spatial resolution difference . . . . . . .. ... oL 57
6.3.2 Horizontal interpolation errors . . . . . . ... .. ... ... .. 57
6.3.3 Zonal wavenumbers . . . . .. ... ... 58

6.4 Final Conclusion . . . . ... . ... ... .. ... . 58
6.4.1 What does this mean for the full Climate Models . . . . . . . .. 58

6.5 Notes on the conclusion . . . . .. ... ... ... ... ......... 60

Spatial interpolation errors 61

Estimation of the error 63

B.1 Finding a bound on theerror . . . . . . .. ... ... ... ... 66
B.1.1 Estimation of the bound due to linear interpolation . . . . . .. 66
B.1.2 Estimation of the bound due to third order interpolation . . . . 67

Results 69

C.l Norms . . . . . v e 70
C.1.1 Scenario I: Zonal wavenumber 3, factor 5, Matching gridpoints . 71

C.1.2 Scenario II: Zonal wavenumber 1, factor 1, Matching gridpoints . 72
C.1.3 Scenario III: Zonal wavenumber 8, factor 2, Matching gridpoints 73

C.1.4 Scenario IV: Zonal wavenumber 3, factor 10, Non-Matching . . . 74
C.1.5 Scenario V, Zonal wavenumber 5, factor 2, Non-Matching . . . . 75
C.2 Constant ratio between intervals to compare . . . . . . . . .. ... ... 76

C.2.1 Scenario I: Zonal wavenumber 3, factor 5, Matching gridpoints . 77
C.2.2 Scenario II: Zonal wavenumber 1, factor 1, Matching gridpoints . 78
C.2.3 Scenario III: Zonal wavenumber 8, factor 2, Matching gridpoints 79
C.2.4 Scenario IV: Zonal wavenumber 3, factor 10, Non-Matching grid-

points . . ... 80

C.2.5 Scenario V: Zonal wavenumber 8, factor 2, Non-Matching grid-
points . . . ... 81
C.3 Constant interval size . . . . . . .. .. ... L 82

C.3.1 Scenario I: Zonal wavenumber 3, factor 5, Matching gridpoints . 82
C.3.2 Scenario II: Zonal wavenumber 1, factor 1, Matching gridpoints . 83
C.3.3 Scenario III: Zonal wavenumber 8, factor 2, Matching gridpoints 84



C.3.4 Scenario I'V: Zonal wavenumber 3, factor 10, Non-Matching grid-

points

C.3.5 Scenario V: Zonal wavenumber 5, factor 2, Non-Matching grid-

points
C.4 More scenarios

Bibliography
List of Figures

List of Tables

95

98

99






Acronyms

BB Big Brother. 6, 33-36, 38-40, 42-44, 57, 58, 61, 66

BB-LBE Big and Little Brother experiment. 33-35, 40, 43

GCM Global Climate Model. 3-10, 23, 24, 26, 27, 42, 43

GRF Grid Refinement Factor. 38, 39

LB Little Brother. 33-40, 43, 44, 47, 56-58, 61, 63, 66, 70

LBC Lateral Boundary Condition. 3-5, 8-10, 23-25, 33, 34, 36, 43, 44, 55, 56, 61, 63
RCM Regional Climate Model. 3-6, 8-10, 23-25, 33, 42, 43

SBP-SAT Summation-by-Parts—Simultaneous-Approximation-Term. 9, 19, 20, 22,
35, 37, 56

SRF Spatial Resolution Factor. 10, 39, 42, 43, 47, 70, 86

ix






Glossary

p-value The rate of convergence of the Lo-norm of the error of the numerical approx-
imation with SBP — SAT operators. 22, 23, 34, 35, 37-39, 47, 48, 56-59, 86,
99

boundary data interval resolution The frequency how often the lateral boundary
condition is updated.. i, 4-6, 10, 30, 34, 36, 38—40, 42, 47-49, 55-60, 69, 99

design accuracy The convergence rate according to the SBP-SAT operators . 22,
23, 34, 35, 37, 38, 48

grid refinement factor A factor of size 2 between the spatial resolution of two Big
Brother or two Little Brother models. The refinement is necessary to compare
the output of one LB model to its refined equivalent . 39

lateral boundary condition Boundary condition of the regional climate model. 3—
5, 11, 25, 47, 61, 70

one-way nested A technique in climate modeling to couple the regional model to
the global climate model. 3, 4, 9, 33

spatial resolution difference A factor that declares how many times the spatial
resolution of the LB model is refined in relation to the BB model. The factor
differs between 1 and 10 . 9, 10, 39, 57, 60, 99

xi






Nomenclature

« Wave speed
a* Non-dimensional parameter describing the flow properties
H Mean depth of the fluid

AT  Temporal stepsize of the BB model
At Temporal stepsize of the LB model
K Thermal conductivity

A Wavelength

S; Penalty term introduced by the SAT method

w Wave frequency

p Specific mass of a fluid

T Shear stress tensor

f; External forces

U Vector representing the flow velocity, energy and density of a fluid in the Navier-

Stokes equations

v Vector that represents the flow velocity in three dimension
E Total energy per unit mass

fo Coriolis parameter

g Gravitational acceleration

H Spatial gridsize of the BB model

h Spatial gridsize of the LB model
H*  Spatial gridsize of the GCM model
h* Spatial gridsize of the RCM model
H, Total enthalpy

I Unit tensor

xiii



Fom s

h

x1

Tp

IN

<1

<M

Jacobian

Wavenumber

Zonal wavenumber

Earth’s perimeter

Horizontal length of the BB domain
Horizontal length of the GCM domain
Length of the LB domain

Length of the RCM domain

Number of spatial gridpoints of the LB model
Number of temporal steps of the LB model
Number of spatial gridpoints of the BB model
Number of temporal steps of the BB model

Pressure

Vector representing the energy sources and external forces in the Navier-Stokes

equations

Energy sources

Earth’s radius

Rossby radius of deformation

Simulation time of the BB-LB experiment
Temperature

Physical quantity of the flow velocity
Work of the external forces

Left boundary point of the BB model, z; =0

The BB gridpoint that corresponds with the boundary gridpoint of the LB

model
End of the BB domain. zny =1
Left boundary point of the LB model

End of the LB domain



GLOSSARY

"Let us introduce the refinement and rigor of mathematics into all sciences as far
as this is at all possible, not in the faith that this will lead us to know things but in
order to determine our human relation to things. Mathematics is merely the means
for general and ultimate knowledge of man."

The Gay Science, Friedrich Nietzsche, 1882






Chapter 1

Introduction

1.1 Global Climate Models

Climate models are numerical models that simulate physical and atmospheric pro-
cesses around the globe in order to understand the current state of global climate and
climate change. By applying the basic natural laws, conservation of mass, momentum
and energy, researchers are able to use these models to forecast possible future climate
scenarios.

Climate models have been developed since 1956 [20]. Early climate models simulated
atmospheric processes which resulted in long-period numerical forecasts of the global
climate. It was not until the late 1960’s that the first general circulation, or as it is
now called Global Climate Model (GCM), was developed [28]. This GCM was the first
model to combine the interaction between the ocean and the atmosphere.

As of today, global climate models are coupled systems of the models that define the
interaction between the atmosphere, ocean, land surface, sea ice and dynamical vegeta-
tion. They are applied to predict how shifts in climatic variables, such as temperature,
ocean and atmospheric current, impact the climate. The Earth’s climate is a highly
complex system, still climate models are significantly helpful in predicting changes in
a span of a century [15].

1.2 Regional Climate Models with one-sided nesting

Regional Climate Model (RCM)s were introduced to simulate atmospheric processes
with higher resolution than the global models on a regional computational domain [5]
[10]. By doing so, more detailed processes could be generated on a regional scale while
not requiring as high computational costs as GCMs. The RCM is embedded in the
GCM with a resolution up to 10 times finer than the GCM [5]. There are several ways
to embed the RCM into the GCM. One popular technique is the one-way nested method
[11]. The output of the GCM is used to drive the lateral boundary conditions (LBC) of
the RCM [5]. Lateral boundary conditions are prescribed conditions on the most outer
part of the domain, the laterals. The prescribed conditions are time-varying values of
the dependent variables in the model, which are prescribed by the data obtained from
one period simulation over the GCM. The output of the RCM is not fed back into the
the GCM, this would be done in two-way nesting. The development of RCMs continued
due to a growing interest in regional and high-resolution effects of climate change and
computational limitations of the coarse GCMs [9]. To produce high-resolution data
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CHAPTER 1. INTRODUCTION

Figure 1.1: An insight in how the regional model is related to the global model. The regional
domain of interest is embedded in the global domain and has a higher resolution. The fig-
ure is an adapted version of two pictures [24] [25] from Wikimedia Commons, adapted with
permission.

with GCMs would be computationally too expensive. The advantage of the one-way
nested technique is that it is a relatively simple method, which produces both basic
climate features as well as detailed regional phenomena [5]. There are also some issues
involved within this technique. These issues concern physical and numerical aspects
[3]11].

1.3 Introduction of the problem

The one-way nested Regional Climate Model is the current standard for climate mod-
eling. Nevertheless, this method is susceptible to several issues [11]. These issues are
mentioned in section 2.2. Several reasons can be attributed to the emergence of these
issues. One of the issues the climate researchers are acquainted with is how often the
lateral boundary condition (LBC) is updated. Normally, the LBC are stored in certain
intervals in time, but are required at each time step of the regional model. Interpola-
tion in time is needed to create the LBC from the GCM output. Currently, a storage
resolution around 3 and 12 hours is used [11]. The storage resolution or boundary
data interval resolution is not based on extensive research but more on common sense
among climate researchers, who have agreed on a certain rule of thumb. This rule
prescribes that the update resolution depends on physical properties of the waves as
described by the model [3]. The purpose of this work is to investigate the update of
LBC intervals on computational grounds instead of physical grounds and analyze the
impact it could have.

The choice for interpolation method (linear) in time for the boundary data is also
not well motivated by current research. Therefore, other interpolation methods are
scrutinized to better motivate the adequate choice for the LBCs.



1.4. SCOPE OF PROJECT

1.4 Scope of project

The scope of this thesis is to investigate different boundary data interval resolution
sizes and other interpolation methods for the LBC, by evaluating the performance of
the RCMs. The boundary data interval resolution describes how often the LBC is up-
dated in time by the output of the global model. A boundary data interval resolution
of x hours means that the LBC is updated every x hours by the GCM output. The
RCM timesteps between these two updates require interpolation. The objective is to
see how these changes impact the lateral boundary condition, while making computa-
tional experiments varying the interpolation method and the boundary data interval
resolution. Higher order interpolation methods will be investigated in combination
with higher or lower boundary data resolution. Verification based on computational
grounds lead to a certain compromise between the resolution and interpolation method
resulting in better accuracy of the regional model. Research will be performed with
a simplified model that still reflects the required properties of the full model. The
simplified model will be more accessible to work with and test the different methods
concerning the LBC. The simplified model gives less complex insight in the properties
of the model and shows the effects of the change in method in a more straight forward
matter. The model will be numerically and physically similar to the RCM and GCM,
which should make the experiments scientifically qualified. If the outcome of these ex-
periments shows improvement to the results, it can be used in the full climate models.
The following research question reflects the focus point of this thesis:

What is the best compromise between boundary data interval resolution and inter-
polation method that leads to the desired result for the regional model output?

The question has the following research objectives that should be investigated:

e How can the model be simplified in order to investigate the involved issues while
in the meantime being simple enough to work with?

e What are the physical conditions that should be captured by the full model?

e How can the argumentation of the desired result be based on computational
properties instead of physical properties?

o How does altering boundary data resolution of the model (time interval of up-
date) impact the final solution of the regional model?

o Until what extend does changing interpolation techniques impact the solution of
the regional model?

e What is the combination of boundary data interval resolution and interpolation
method that leads to the desired result?
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1.5 Methodology

To investigate how the choice of interpolation method and boundary data interval
resolution impact the output of the regional model, a modeling study is performed
which will be equivalent to the set-up of the common global-regional climate model
system.

An investigation on how the regional and global model interact with each other in
current models has to be performed (section 2.1), before this model can be build.
The current regional and climate model set-up will be discussed extensively, as well as
the issues involved within this set-up (section 2.2). The full model will be simplified
to get a clear insight of the boundary properties (section 3.1). This will be done in
such a way that the simplified model mimics the properties of the full model, both
physically and computationally. The advantage of the simplified model is that it is
easier manageable and gives a transparent perception of the alterations. A study of
atmospheric phenomena will be conducted (section 3.2) to reproduce the model as
good as possible. Next to that, the discretization techniques used in this thesis will be
explained and applied to the model problem (section 3.3). As soon as the theoretical
part of the model is done, several interpolation methods will be explored and the most
suitable method will be chosen (section 3.4.3).

First the model will be set up. The Big Brother experiment technique will be applied,
which is a comprehensible tool to test issues involved in GCM and RCMs (section 4.1).
Thereafter, the domain is determined (section 4.2) and the research focus is discussed
and restricted (section 4.3). Then the arguments for the desired results are determined
and explained (section 4.4) as well as the composition of several experiments (section
4.5). Parameters and variables of the model will be chosen in such a way that they
are scaled versions of the full model (section 4.6).

Finally, the simulations will be run in order to draw conclusions from the results
(chapter C), i.e. how the boundary procedures impact the solution. It should now be
possible to draw a hypothesis for the full RCM (chapter 6) which can be investigated
in the full model in subsequent research.



Chapter 2

Climate Computations

2.1 Climate model description

Climate models are three-dimensional mathematical representations of the physical
process of the Earth’s Climate. To simulate the Earth’s climate, a Global Climate
Model (GCM) is build-up by dividing the globe into a three dimensional grid (see figure
2.1) on which the basic physical equations are applied. The equations are implemented
numerically and the model is run over several ‘model years’. The produced results are
evaluated and used for climate forecasting.

A full climate model is a coupled set of several models that describe the atmosphere,
ocean, sea ice, land vegetation and biochemistry of the earth. Every model describe
a certain part and use different equations and parameterizations. The physics of the

Figure 2.1: Division of the earth into a three dimensional grid. The figure displays the model
domain of a global climate model. The figure is an adapted version of a figure obtained from
[15].
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Figure 2.2: Mathematical representation of atmospheric processes. It is a schematic version
of the processes to give an understanding of the physics. It is not an exact description of the
model used in this thesis. The figure is property of SMHI.

coupled ocean and atmosphere models are described by the Navier-Stokes equations.
A sea ice model describes the development of the sea ice. It covers the thermodynamic
growth or decay of the ice, which depend on the exchanges with the atmosphere and
the ocean and it covers the heat balance at the surface of the ice which tells how the
ice and snow is melting. A land vegetation model simulates the water content of the
soil, the soil temperature, a description of the vegetation cover and of the interactions
between plants, soil and atmosphere. The biochemistry model covers the simulation
of the concentration of various chemical species [1]. All these models are coupled and
form together an advanced climate model.

As described in the introduction, current climate models are divided into global and
regional models, where the LBC of the RCM depends on the output of the GCM. The
handling of the LBC concerns mainly the aspects of the atmosphere and ocean mod-
els. The Navier-Stokes equations in these models describe the fluid as a continuum
and how pressure, temperature, density and velocity of a moving fluid are related.
The Navier-Stokes equations form a coupled system of equations which consist of an
equation for the conservation of mass (line 1), momentum (line 2) and energy (line 3):

9| " pU 0
5 [PV pTRT+pl —T = ofe |, (2.1)
pE pUHe—T-U—ﬁTemp Wi +qn
H:_/
U

where p is the specific mass of the fluid, v is the flow velocity, E is the total energy
per unit mass. The flow velocity ¢ is in three dimensions, ¥ = v(z,y, ) [? ].
Other quantities represented by the Navier-Stokes equations are the pressure p, the
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unit tensor I, the shear stress tensor 7, the total enthalpy H., the thermal conductivity
coefficient x, the temperature Temp, the external forces f;, the work of the external
volume forces Wy = pf.- v and gg contains the energy sources.

Both GCMs and RCMs represent the same physical system [5] and thus use the same
equations.

The equations are discretized in space according the Summation-by-Parts—Simultaneous-
Approximation-Term (SBP-SAT) method (the method is explained in section 3.3) and
by fourth-order Runge-Kutta in time. To start the simulation, the GCM runs on a
certain domain for a given simulation period. A RCM is embedded on a certain part of
the global domain and requires boundary and initial data from the GCM. These data
is fed into the RCM according the one-way nested method (explained in section 1.3).
Thus the GCM output is stored in certain intervals in time and then interpolated to
form the LBC of the RCM.

2.2 Issues within one-way nested regional climate modeling

The one-way nested technique is susceptible to several issues. They concern both
physical and numerical issues. Although they are already explained in [3] and some
of them already discussed there, they are once more mentioned here. The issues, as
explained in [3], are as follows:

1. Numerical nesting: mathematical formulation and strategy

2. Spatial resolution difference between the driving data and the nested model
3. Spin-up

4. Update frequency of the lateral boundary conditions (LBC)

5. Physical parametrisation consistencies

6. Horizontal and vertical (spatial) interpolations errors

7. Domain size

8. Quality of the driving data

9. Climate drift or systematic errors

The research focus is based on issue 4, the update frequency of the lateral bound-
ary condition, and combined with the investigation of several temporal interpolation
methods to accomplish ‘continuous’ boundary conditions . Some of the other issues
are briefly discussed and investigated in [3]. Issue 1, numerical nesting, concerns the
numerical implementation of the Navier-Stokes equations and the way the numerical
nesting technique is implemented. The numerical implementation of the Navier-Stokes
equation is done by simplifying the system of equations to an equivalent workable ver-
sion, the transport equation, this is explained in section 3.1 and according the same
discretization techniques as the GCM and RCM implemented numerically. This sim-
ilar implementation should exclude the problems due to issue 1. The implementation
of the nesting strategy is motivated in section 4.1 and mimics the method from [3].
Thus the numerical nesting should not cause any problems in these experiments.
Issue 2 concerns the spatial resolution difference between the RCM and GCM, the
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factor between the resolution of the GCM and the RCM (the spatial resolution dif-
ference factor (SRF)). More accurate results from the RCM are produced, when the
resolution is finer than the GCM. When the SRF is too big, bridging the difference
between the models cannot be realized and will result in useless output of the RCM.
To find the optimal difference factor, several options of the spatial resolution difference
are investigated. They will form a basis for the experiments explained in section 4.5.
Issue 3, spin-up, should not be an issue in climate simulations, as the running time is
sufficiently long and the outcome is mostly determined by the boundary conditions an
not by the initial conditions [5]. Furthermore, the initial condition is well known and
thus the simulations are not dependent of wrong initial data, this will be come clear
later in the text.

Issue 5, physical parametrisation consistency, is carefully regarded in the simplification
of the Navier-Stokes equations to the transport equation, executed in section 3.1. Issue
6, horizontal and vertical interpolation errors (or shortly spatial interpolation errors
as the model is one-dimensional), can lead to problems when the boundary of the re-
gional domain is not matching a gridpoint of the global domain. Spatial interpolation
is needed between two adjacent global gridpoints to form the data that updates the
LBC. To investigate whether spatial interpolation influences the outcome negatively,
a simulation scenario is build where both the gridpoints are matching and a scenario
where the RCM boundary is not matching. This is explained in section 4.5.

Issue 7, the domain size, is already investigated in [11]. The choice for the domain size
is based on this result.

Issue 8, quality of the driving data, is dealt with by validating the GCM output before
implementing it as the Lateral Boundary Condition. This is evaluated in section 3.3.
Issue 9, climate drift, will not be visible in this research as the model is too simple to
give rise to these errors.

The main focus of this thesis is to find the optimal relation between the boundary data
interval resolution and interpolation method to obtain the most reasonable compro-
mise.

Current models use a ‘rule of thumb’ to determine the boundary data interval reso-
lution according to atmospheric properties of the model. The following is a citation
from [3]: "As a rule of thumb, the update period should be smaller than one quarter of
the ratio of the length scale to the phase speed of the meteorological phenomena that
we want to get correctly in the LAM domain. For instance, a typical synoptic system
having a horizontal size of 1000 km and a phase speed of 50 km/h would require an
updating frequency of at least 5 h."

This means that the wavelength and phase speed of the atmospheric waves describe
how often the boundary data should be updated. Scientific experiments should lead to
a different motivation for the rule of thumb, based on computational properties. This
shall be the outcome of the thesis.

10



Chapter 3

Project Description

3.1 The continuous model

The Navier-Stokes equations describe the fluid and gas flow in atmospheric and oceanic
climate models. Assumptions and simplifications of the Navier-Stokes equations lead
to the transport equation which is shown in the coming subsection. The transport
equation has the same properties with respect to the boundary time interpolation as
the full model, but it is much simpler to work with and the solution is available in
closed form. Variation of parameters, to check different properties of the model with
respect to the lateral boundary condition, can be easily performed.

Below it is shown how the same atmospheric characteristic waves are related to the
simplified problem.

3.1.1 From Navier-Stokes to the Transport equation

The full model is represented by the full Navier-Stokes equations, which is a coupled
system of equations:

9| pU 0

o pv | +V - pPrRU+pl —1 = pfe . (3.1)
pE pvH, — 7 - —VTemp Wi +qn

H:—/
U

p is the specific mass of the fluid, v is the flow velocity and E is the total energy per
unit mass. The flow velocity ¥ is in three dimensions, 7 = v(x,y, 2).
Other quantities represented by the Navier-Stokes equations are the pressure p, the
unit tensor I, the shear stress tensor 7, the total enthalpy H., the thermal conductivity
coefficient x, the temperature Temp, the external forces f;, the work of the external
volume forces Wy = pf. - v and gy contains the energy sources [? |.
In case of non-viscous and non-heat conducting flows, the shear stresses and heat con-
duction terms can be neglected. This lead to the set of Euler equations. In conservation
form, they read:

U

SrrVF=Q (3.2)
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P pU 0
where U = | pi |, F = |pi @5+ pI| and Q = |pf.|.
pE PEHe Wf

In other notation:
U+V-FU)=Q (3.3)

Sources and external forces are neglected in this simplification and thus @ = 0.

The solution of the equation depends on its initial and boundary conditions. Bound-
ary conditions must be set normal to the boundary, this means that every boundary
can be regarded separately and the equation can be regarded in one direction only.
Considering the Euler equation in the z-direction only, gives enough insight of the
boundary conditions. The Euler equations in one spatial dimension are:

ur + F(u)y =0 (3.4)
p

Note that u = |pv(x)|. Introduction of the Jacobian J(u) = % of the flux F' with
pE

respect to the quantity u, leads to the equation in quasi-linear form:
ut + J(u)ugy =0 (3.5)

This system is completely hyperbolic since J(U) has three real eigenvalues and can be
diagonalized to:
A(u) = PJ(u)P" (3.6)

where A is the diagonal matrix containing the eigenvalues and P formed by the eigen-
vectors. By substitution of w = P~'u the equation becomes:

wy + Awy =0 (3.7)

Hyperbolity asssures that all the solutions are linearly independent. Only incoming
waves have to be regarded and thus A can be simplified to a scalar «. Which lead to
the final transport equation [? ]:

u +au, =0 (3.8)

The physical quantity of « is the wave speed, w has been switched to u for simplicity
reasons.

The transport equation need initial and boundary conditions to get a well-posed
problem: an initial boundary value problem. The well-posedness is shown in section
3.3. The solution of the one-dimensional transport equation is given in the domain
x = 1[0, L] (with L the length of the domain) and has to be determined by all values
of time ¢ > 0. The initial condition u(z,0) is imposed at time ¢ = 0 along all values of
x and the boundary condition u(0,t) has to be imposed at all values of ¢. The initial
condition u(z,0) = ¢(z) defines the exact solution u(x,t) of the transport equation in
the following way: u(x,t) = ¢(x — at). An initial condition that represents the wave

12
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characteristics of the atmospheric wave is ¢(x) = cos(k2mzx) [19] , k is the wavenumber.
This leads to the following exact solution: u(x,t) = cos(2km(x — at). The correspond-
ing boundary condition is u(0,t) = cos(—k2mwat).

The following set of equations represents the well-posed transport equation:

ug +ouy =0 t>0 x=][0,L]
u(x,0) = cos(k2mx) (3.9)
u(0,t) = cos(—k2mwat)

With exact solution:

u(x,t) = cos(k2m(x — at)) t>0 x=][0,L] (3.10)

3.1.2 Non-Dimensionalization

The transport equation can be non-dimensionalized, to make it easier implementable
in Matlab. Hence, reference parameters are necessary for the space coordinate x, the
time scale ¢, the velocity scale u and the wave speed scale a. The following reference
parameters are introduced (do not mistaken the reference parameter U for the vector U
in (3.1.1)): The following equation is the non-dimensionalized version of the transport

Table 3.1: Reference parameters

Model | Reference | Dimensionless
variable | parameter variable
Velocity u U ut =g
Time t T t* = %
Length X L Tt =7

equation

ou* U ou* U
u wU _,

— = 3.11

o T Yoo L (8:11)
Multiplication of this equation by 7'/U leads to:
ou* o ou*

- = 12

ot* + L Ox* 0 (3.12)

With % = o the dimensionless number, which represents the flow properties.

To simplify the numerical implementation, the reference parameter 7T is chosen to be
T = é, what leads to a® = 1. L is chosen to be the physical length-scale on which
the wave propagates, which is the earth’s perimter: L = 27 R where R is the earth’s
radius. Omit the * and get the following dimensionless transport equation:

ut + auy =0 (3.13)

Where « = 1, by the choice of the reference parameter 7T'.

The exact solution, boundary condition and initial condition have to be non- dimen-
sionalized as well. The non-dimensionalized version of the initial condition is:

1
u*(z*,0) = Ecos(kaLx*) (3.14)
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Where kL = k., the nondimensional parameter that reflects the zonal wavenumber.
The zonal wavenumber is given as: k, = M. A is the wavelength, w