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Abstract
A Regional Climate Model (RCM) is a comprehensive tool to
simulate high-resolution climatic factors. A RCM is driven
by low resolution data obtained from a Global Climate Model
(GCM). In the one-way nested method, is the GCM data fed
into the RCM as a Lateral Boundary Condition (LBC) in cer-
tain updates in time, the boundary data interval resolution.
The necessary information in between these updates is ob-
tained by using linear interpolation techniques. The ability
to reproduce high-resolution RCM output with low-resolution
GCM data depends on the accuracy of this LBC. This thesis
investigates whether third order interpolation methods lead to
a more accurate approximation than the linear method. This is
investigated in combination with lowering the boundary data
interval resolution.
The conclusion is that a third order interpolation method does
not lead to a more accurate approximation for a high bound-
ary data interval resolution. But when the resolution is low-
ered, the linear interpolation method looses its accuracy earlier
than the third order method. This results in a boundary data
interval resolution of 1.5 hours for the linear method com-
pared to 7.5 hours for the third order method. Implementing
a lower boundary data interval resolution in combination with
the third order method lead to significant gain in computa-
tional time and storage for the RCMs.



Referat
Utvärdering av interpolationsmetoder och
tidsupplösning av randdata för de laterala
randvillkoren för regionala klimatmodeller

En Regional Climate Modell (RCM) är ett avancerat verktyg
för att simulera klimatet med hög upplösning. En RCM drivs
av data från en Global Climate Modell (GCM), ofta med låg
upplösning. I den så kallade envägsnästade metoden sparas
GCM-data med vissa tidsintervall för att användas som ett la-
teralt randvillkor (LBC) till RCM. Den nödvändiga informa-
tionen mellan sparade data erhålls med användning av linjä-
ra interpoleringstekniker. Möjligheten att reproducera ett hög
upplöst GCM-resultat med en RCM med liknande upplösning
genom att använda envägsnästning med låg upplösning beror
på exaktheten hos denna LBC. Denna avhandling undersöker
huruvida tredje ordningens interpoleringsmetoder leder till en
mer exakt inställning än den linjära metoden. Detta under-
söks i kombination med minskningen av intervallupplösningen
av randdata.
Slutsatsen är att en tredje ordningens interpolationsmetod in-
te leder till en mer exakt approximation för en hög datainter-
vallupplösning. Men när upplösningen sänks, förlorar den lin-
jära interpolationsmetoden sin noggrannhet, tidigare än den
tredje ordningens metod. Detta resulterar i en begränsad da-
taintervallupplösning på respektive 1, 5 timmar respektive 7, 5
timmar. Tredje orderinterpolering är således en signifikant vinst
för RCM.
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GLOSSARY

"Let us introduce the refinement and rigor of mathematics into all sciences as far
as this is at all possible, not in the faith that this will lead us to know things but in
order to determine our human relation to things. Mathematics is merely the means
for general and ultimate knowledge of man."

The Gay Science, Friedrich Nietzsche, 1882
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Chapter 1

Introduction

1.1 Global Climate Models

Climate models are numerical models that simulate physical and atmospheric pro-
cesses around the globe in order to understand the current state of global climate and
climate change. By applying the basic natural laws, conservation of mass, momentum
and energy, researchers are able to use these models to forecast possible future climate
scenarios.
Climate models have been developed since 1956 [20]. Early climate models simulated
atmospheric processes which resulted in long-period numerical forecasts of the global
climate. It was not until the late 1960’s that the first general circulation, or as it is
now called Global Climate Model (GCM), was developed [28]. This GCM was the first
model to combine the interaction between the ocean and the atmosphere.
As of today, global climate models are coupled systems of the models that define the
interaction between the atmosphere, ocean, land surface, sea ice and dynamical vegeta-
tion. They are applied to predict how shifts in climatic variables, such as temperature,
ocean and atmospheric current, impact the climate. The Earth’s climate is a highly
complex system, still climate models are significantly helpful in predicting changes in
a span of a century [15].

1.2 Regional Climate Models with one-sided nesting

Regional Climate Model (RCM)s were introduced to simulate atmospheric processes
with higher resolution than the global models on a regional computational domain [5]
[10]. By doing so, more detailed processes could be generated on a regional scale while
not requiring as high computational costs as GCMs. The RCM is embedded in the
GCM with a resolution up to 10 times finer than the GCM [5]. There are several ways
to embed the RCM into the GCM. One popular technique is the one-way nested method
[11]. The output of the GCM is used to drive the lateral boundary conditions (LBC) of
the RCM [5]. Lateral boundary conditions are prescribed conditions on the most outer
part of the domain, the laterals. The prescribed conditions are time-varying values of
the dependent variables in the model, which are prescribed by the data obtained from
one period simulation over the GCM. The output of the RCM is not fed back into the
the GCM, this would be done in two-way nesting. The development of RCMs continued
due to a growing interest in regional and high-resolution effects of climate change and
computational limitations of the coarse GCMs [9]. To produce high-resolution data
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CHAPTER 1. INTRODUCTION

Figure 1.1: An insight in how the regional model is related to the global model. The regional
domain of interest is embedded in the global domain and has a higher resolution. The fig-
ure is an adapted version of two pictures [24] [25] from Wikimedia Commons, adapted with
permission.

with GCMs would be computationally too expensive. The advantage of the one-way
nested technique is that it is a relatively simple method, which produces both basic
climate features as well as detailed regional phenomena [5]. There are also some issues
involved within this technique. These issues concern physical and numerical aspects
[3][11].

1.3 Introduction of the problem

The one-way nested Regional Climate Model is the current standard for climate mod-
eling. Nevertheless, this method is susceptible to several issues [11]. These issues are
mentioned in section 2.2. Several reasons can be attributed to the emergence of these
issues. One of the issues the climate researchers are acquainted with is how often the
lateral boundary condition (LBC) is updated. Normally, the LBC are stored in certain
intervals in time, but are required at each time step of the regional model. Interpola-
tion in time is needed to create the LBC from the GCM output. Currently, a storage
resolution around 3 and 12 hours is used [11]. The storage resolution or boundary
data interval resolution is not based on extensive research but more on common sense
among climate researchers, who have agreed on a certain rule of thumb. This rule
prescribes that the update resolution depends on physical properties of the waves as
described by the model [3]. The purpose of this work is to investigate the update of
LBC intervals on computational grounds instead of physical grounds and analyze the
impact it could have.
The choice for interpolation method (linear) in time for the boundary data is also
not well motivated by current research. Therefore, other interpolation methods are
scrutinized to better motivate the adequate choice for the LBCs.

4



1.4. SCOPE OF PROJECT

1.4 Scope of project
The scope of this thesis is to investigate different boundary data interval resolution
sizes and other interpolation methods for the LBC, by evaluating the performance of
the RCMs. The boundary data interval resolution describes how often the LBC is up-
dated in time by the output of the global model. A boundary data interval resolution
of x hours means that the LBC is updated every x hours by the GCM output. The
RCM timesteps between these two updates require interpolation. The objective is to
see how these changes impact the lateral boundary condition, while making computa-
tional experiments varying the interpolation method and the boundary data interval
resolution. Higher order interpolation methods will be investigated in combination
with higher or lower boundary data resolution. Verification based on computational
grounds lead to a certain compromise between the resolution and interpolation method
resulting in better accuracy of the regional model. Research will be performed with
a simplified model that still reflects the required properties of the full model. The
simplified model will be more accessible to work with and test the different methods
concerning the LBC. The simplified model gives less complex insight in the properties
of the model and shows the effects of the change in method in a more straight forward
matter. The model will be numerically and physically similar to the RCM and GCM,
which should make the experiments scientifically qualified. If the outcome of these ex-
periments shows improvement to the results, it can be used in the full climate models.
The following research question reflects the focus point of this thesis:

What is the best compromise between boundary data interval resolution and inter-
polation method that leads to the desired result for the regional model output?

The question has the following research objectives that should be investigated:

• How can the model be simplified in order to investigate the involved issues while
in the meantime being simple enough to work with?

• What are the physical conditions that should be captured by the full model?

• How can the argumentation of the desired result be based on computational
properties instead of physical properties?

• How does altering boundary data resolution of the model (time interval of up-
date) impact the final solution of the regional model?

• Until what extend does changing interpolation techniques impact the solution of
the regional model?

• What is the combination of boundary data interval resolution and interpolation
method that leads to the desired result?

5



CHAPTER 1. INTRODUCTION

1.5 Methodology
To investigate how the choice of interpolation method and boundary data interval
resolution impact the output of the regional model, a modeling study is performed
which will be equivalent to the set-up of the common global-regional climate model
system.
An investigation on how the regional and global model interact with each other in
current models has to be performed (section 2.1), before this model can be build.
The current regional and climate model set-up will be discussed extensively, as well as
the issues involved within this set-up (section 2.2). The full model will be simplified
to get a clear insight of the boundary properties (section 3.1). This will be done in
such a way that the simplified model mimics the properties of the full model, both
physically and computationally. The advantage of the simplified model is that it is
easier manageable and gives a transparent perception of the alterations. A study of
atmospheric phenomena will be conducted (section 3.2) to reproduce the model as
good as possible. Next to that, the discretization techniques used in this thesis will be
explained and applied to the model problem (section 3.3). As soon as the theoretical
part of the model is done, several interpolation methods will be explored and the most
suitable method will be chosen (section 3.4.3).
First the model will be set up. The Big Brother experiment technique will be applied,
which is a comprehensible tool to test issues involved in GCM and RCMs (section 4.1).
Thereafter, the domain is determined (section 4.2) and the research focus is discussed
and restricted (section 4.3). Then the arguments for the desired results are determined
and explained (section 4.4) as well as the composition of several experiments (section
4.5). Parameters and variables of the model will be chosen in such a way that they
are scaled versions of the full model (section 4.6).
Finally, the simulations will be run in order to draw conclusions from the results
(chapter C), i.e. how the boundary procedures impact the solution. It should now be
possible to draw a hypothesis for the full RCM (chapter 6) which can be investigated
in the full model in subsequent research.
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Chapter 2

Climate Computations

2.1 Climate model description

Climate models are three-dimensional mathematical representations of the physical
process of the Earth’s Climate. To simulate the Earth’s climate, a Global Climate
Model (GCM) is build-up by dividing the globe into a three dimensional grid (see figure
2.1) on which the basic physical equations are applied. The equations are implemented
numerically and the model is run over several ‘model years’. The produced results are
evaluated and used for climate forecasting.

A full climate model is a coupled set of several models that describe the atmosphere,
ocean, sea ice, land vegetation and biochemistry of the earth. Every model describe
a certain part and use different equations and parameterizations. The physics of the

Figure 2.1: Division of the earth into a three dimensional grid. The figure displays the model
domain of a global climate model. The figure is an adapted version of a figure obtained from
[15].
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Figure 2.2: Mathematical representation of atmospheric processes. It is a schematic version
of the processes to give an understanding of the physics. It is not an exact description of the
model used in this thesis. The figure is property of SMHI.

coupled ocean and atmosphere models are described by the Navier-Stokes equations.
A sea ice model describes the development of the sea ice. It covers the thermodynamic
growth or decay of the ice, which depend on the exchanges with the atmosphere and
the ocean and it covers the heat balance at the surface of the ice which tells how the
ice and snow is melting. A land vegetation model simulates the water content of the
soil, the soil temperature, a description of the vegetation cover and of the interactions
between plants, soil and atmosphere. The biochemistry model covers the simulation
of the concentration of various chemical species [1]. All these models are coupled and
form together an advanced climate model.

As described in the introduction, current climate models are divided into global and
regional models, where the LBC of the RCM depends on the output of the GCM. The
handling of the LBC concerns mainly the aspects of the atmosphere and ocean mod-
els. The Navier-Stokes equations in these models describe the fluid as a continuum
and how pressure, temperature, density and velocity of a moving fluid are related.
The Navier-Stokes equations form a coupled system of equations which consist of an
equation for the conservation of mass (line 1), momentum (line 2) and energy (line 3):

∂

∂t


ρ

ρ~v

ρE


︸ ︷︷ ︸

~U

+∇ ·


ρ~v

ρ~v ⊗ ~v + pI − τ
ρ~vHe − τ · ~v − ~∇Temp

 =


0
ρ~fe

Wf + qH

 , (2.1)

where ρ is the specific mass of the fluid, v is the flow velocity, E is the total energy
per unit mass. The flow velocity ~v is in three dimensions, ~v = v(x, y, z) [? ].
Other quantities represented by the Navier-Stokes equations are the pressure p, the
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unit tensor I, the shear stress tensor τ , the total enthalpy He, the thermal conductivity
coefficient κ, the temperature Temp, the external forces ~fe, the work of the external
volume forces Wf = ρfe · ~v and qH contains the energy sources.
Both GCMs and RCMs represent the same physical system [5] and thus use the same
equations.
The equations are discretized in space according the Summation-by-Parts–Simultaneous-
Approximation-Term (SBP-SAT) method (the method is explained in section 3.3) and
by fourth-order Runge-Kutta in time. To start the simulation, the GCM runs on a
certain domain for a given simulation period. A RCM is embedded on a certain part of
the global domain and requires boundary and initial data from the GCM. These data
is fed into the RCM according the one-way nested method (explained in section 1.3).
Thus the GCM output is stored in certain intervals in time and then interpolated to
form the LBC of the RCM.

2.2 Issues within one-way nested regional climate modeling
The one-way nested technique is susceptible to several issues. They concern both
physical and numerical issues. Although they are already explained in [3] and some
of them already discussed there, they are once more mentioned here. The issues, as
explained in [3], are as follows:

1. Numerical nesting: mathematical formulation and strategy

2. Spatial resolution difference between the driving data and the nested model

3. Spin-up

4. Update frequency of the lateral boundary conditions (LBC)

5. Physical parametrisation consistencies

6. Horizontal and vertical (spatial) interpolations errors

7. Domain size

8. Quality of the driving data

9. Climate drift or systematic errors

The research focus is based on issue 4, the update frequency of the lateral bound-
ary condition, and combined with the investigation of several temporal interpolation
methods to accomplish ‘continuous’ boundary conditions . Some of the other issues
are briefly discussed and investigated in [3]. Issue 1, numerical nesting, concerns the
numerical implementation of the Navier-Stokes equations and the way the numerical
nesting technique is implemented. The numerical implementation of the Navier-Stokes
equation is done by simplifying the system of equations to an equivalent workable ver-
sion, the transport equation, this is explained in section 3.1 and according the same
discretization techniques as the GCM and RCM implemented numerically. This sim-
ilar implementation should exclude the problems due to issue 1. The implementation
of the nesting strategy is motivated in section 4.1 and mimics the method from [3].
Thus the numerical nesting should not cause any problems in these experiments.
Issue 2 concerns the spatial resolution difference between the RCM and GCM, the
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factor between the resolution of the GCM and the RCM (the spatial resolution dif-
ference factor (SRF)). More accurate results from the RCM are produced, when the
resolution is finer than the GCM. When the SRF is too big, bridging the difference
between the models cannot be realized and will result in useless output of the RCM.
To find the optimal difference factor, several options of the spatial resolution difference
are investigated. They will form a basis for the experiments explained in section 4.5.
Issue 3, spin-up, should not be an issue in climate simulations, as the running time is
sufficiently long and the outcome is mostly determined by the boundary conditions an
not by the initial conditions [5]. Furthermore, the initial condition is well known and
thus the simulations are not dependent of wrong initial data, this will be come clear
later in the text.
Issue 5, physical parametrisation consistency, is carefully regarded in the simplification
of the Navier-Stokes equations to the transport equation, executed in section 3.1. Issue
6, horizontal and vertical interpolation errors (or shortly spatial interpolation errors
as the model is one-dimensional), can lead to problems when the boundary of the re-
gional domain is not matching a gridpoint of the global domain. Spatial interpolation
is needed between two adjacent global gridpoints to form the data that updates the
LBC. To investigate whether spatial interpolation influences the outcome negatively,
a simulation scenario is build where both the gridpoints are matching and a scenario
where the RCM boundary is not matching. This is explained in section 4.5.
Issue 7, the domain size, is already investigated in [11]. The choice for the domain size
is based on this result.
Issue 8, quality of the driving data, is dealt with by validating the GCM output before
implementing it as the Lateral Boundary Condition. This is evaluated in section 3.3.
Issue 9, climate drift, will not be visible in this research as the model is too simple to
give rise to these errors.
The main focus of this thesis is to find the optimal relation between the boundary data
interval resolution and interpolation method to obtain the most reasonable compro-
mise.
Current models use a ‘rule of thumb’ to determine the boundary data interval reso-
lution according to atmospheric properties of the model. The following is a citation
from [3]: "As a rule of thumb, the update period should be smaller than one quarter of
the ratio of the length scale to the phase speed of the meteorological phenomena that
we want to get correctly in the LAM domain. For instance, a typical synoptic system
having a horizontal size of 1000 km and a phase speed of 50 km/h would require an
updating frequency of at least 5 h."
This means that the wavelength and phase speed of the atmospheric waves describe
how often the boundary data should be updated. Scientific experiments should lead to
a different motivation for the rule of thumb, based on computational properties. This
shall be the outcome of the thesis.
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Chapter 3

Project Description

3.1 The continuous model

The Navier-Stokes equations describe the fluid and gas flow in atmospheric and oceanic
climate models. Assumptions and simplifications of the Navier-Stokes equations lead
to the transport equation which is shown in the coming subsection. The transport
equation has the same properties with respect to the boundary time interpolation as
the full model, but it is much simpler to work with and the solution is available in
closed form. Variation of parameters, to check different properties of the model with
respect to the lateral boundary condition, can be easily performed.
Below it is shown how the same atmospheric characteristic waves are related to the
simplified problem.

3.1.1 From Navier-Stokes to the Transport equation

The full model is represented by the full Navier-Stokes equations, which is a coupled
system of equations:

∂

∂t


ρ

ρ~v

ρE


︸ ︷︷ ︸

~U

+∇ ·


ρ~v

ρ~v ⊗ ~v + pI − τ
ρ~vHe − τ · ~v − ~∇Temp

 =


0
ρ~fe

Wf + qH

 . (3.1)

ρ is the specific mass of the fluid, v is the flow velocity and E is the total energy per
unit mass. The flow velocity ~v is in three dimensions, ~v = v(x, y, z).
Other quantities represented by the Navier-Stokes equations are the pressure p, the
unit tensor I, the shear stress tensor τ , the total enthalpy He, the thermal conductivity
coefficient κ, the temperature Temp, the external forces ~fe, the work of the external
volume forces Wf = ρfe · ~v and qH contains the energy sources [? ].
In case of non-viscous and non-heat conducting flows, the shear stresses and heat con-
duction terms can be neglected. This lead to the set of Euler equations. In conservation
form, they read:

∂~U

∂t
+∇ · F = Q, (3.2)
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where ~U =


ρ

ρ~v

ρE

, F =


ρ~v

ρ~v ⊗ ~v + pI

ρ~vHe

 and Q =


0
ρ~fe

Wf

.
In other notation:

~Ut +∇ · F (~U) = Q (3.3)

Sources and external forces are neglected in this simplification and thus Q = 0.
The solution of the equation depends on its initial and boundary conditions. Bound-
ary conditions must be set normal to the boundary, this means that every boundary
can be regarded separately and the equation can be regarded in one direction only.
Considering the Euler equation in the x-direction only, gives enough insight of the
boundary conditions. The Euler equations in one spatial dimension are:

ut + F (u)x = 0 (3.4)

Note that u =


ρ

ρv(x)
ρE

. Introduction of the Jacobian J(u) = ∂F
∂u of the flux F with

respect to the quantity u, leads to the equation in quasi-linear form:

ut + J(u)ux = 0 (3.5)

This system is completely hyperbolic since J(U) has three real eigenvalues and can be
diagonalized to:

A(u) = PJ(u)P−1 (3.6)

where A is the diagonal matrix containing the eigenvalues and P formed by the eigen-
vectors. By substitution of w = P−1u the equation becomes:

wt +Awx = 0 (3.7)

Hyperbolity asssures that all the solutions are linearly independent. Only incoming
waves have to be regarded and thus A can be simplified to a scalar α. Which lead to
the final transport equation [? ]:

ut + αux = 0 (3.8)

The physical quantity of α is the wave speed, w has been switched to u for simplicity
reasons.

The transport equation need initial and boundary conditions to get a well-posed
problem: an initial boundary value problem. The well-posedness is shown in section
3.3. The solution of the one-dimensional transport equation is given in the domain
x = [0, L] (with L the length of the domain) and has to be determined by all values
of time t > 0. The initial condition u(x, 0) is imposed at time t = 0 along all values of
x and the boundary condition u(0, t) has to be imposed at all values of t. The initial
condition u(x, 0) = φ(x) defines the exact solution u(x, t) of the transport equation in
the following way: u(x, t) = φ(x − αt). An initial condition that represents the wave
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characteristics of the atmospheric wave is φ(x) = cos(k2πx) [19] , k is the wavenumber.
This leads to the following exact solution: u(x, t) = cos(2kπ(x−αt). The correspond-
ing boundary condition is u(0, t) = cos(−k2παt).
The following set of equations represents the well-posed transport equation:

ut + αux = 0 t > 0 x = [0, L]
u(x, 0) = cos(k2πx)
u(0, t) = cos(−k2παt)

(3.9)

With exact solution:

u(x, t) = cos(k2π(x− αt)) t > 0 x = [0, L] (3.10)

3.1.2 Non-Dimensionalization
The transport equation can be non-dimensionalized, to make it easier implementable
in Matlab. Hence, reference parameters are necessary for the space coordinate x, the
time scale t, the velocity scale u and the wave speed scale α. The following reference
parameters are introduced (do not mistaken the reference parameter U for the vector ~U
in (3.1.1)): The following equation is the non-dimensionalized version of the transport

Table 3.1: Reference parameters

Model
variable

Reference
parameter

Dimensionless
variable

Velocity u U u∗ = u
U

Time t T t∗ = t
T

Length x L x∗ = x
L

equation
∂u∗

∂t∗
U

T
+ α

∂u∗

∂x∗
U

L
= 0 (3.11)

Multiplication of this equation by T/U leads to:

∂u∗

∂t∗
+ αT

L

∂u∗

∂x∗
= 0 (3.12)

With αT
L = α∗ the dimensionless number, which represents the flow properties.

To simplify the numerical implementation, the reference parameter T is chosen to be
T = L

α , what leads to α∗ = 1. L is chosen to be the physical length-scale on which
the wave propagates, which is the earth’s perimter: L = 2πR where R is the earth’s
radius. Omit the ∗ and get the following dimensionless transport equation:

ut + αux = 0 (3.13)

Where α = 1, by the choice of the reference parameter T .

The exact solution, boundary condition and initial condition have to be non- dimen-
sionalized as well. The non-dimensionalized version of the initial condition is:

u∗(x∗, 0) = 1
U
cos(2πkLx∗) (3.14)
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Where kL = kz, the nondimensional parameter that reflects the zonal wavenumber.
The zonal wavenumber is given as: kz = 2πRcos(φ)

λ . λ is the wavelength, which is
λ = 1

k , φ is the latitude the wave is propagating, and can be chosen to be 0. By the
choice of L = 2πR, the zonal wavenumber is correctly presented. It represents the
number of wavelengths around the perimeter of the globe on a certain latitude. The
dimensionless solution is then:

u∗(x∗, t∗) = 1
U
cos(2πkL(x∗ − α∗︸︷︷︸

=1

t∗)). (3.15)

And after disregarding the asterisk:

u(x, t) = cos(2πkz(x− t)) (3.16)

The factor 1
U in front of the equation is neglected, as the amplitude won’t influence

the properties that have to be investigated in this research. The non-dimensionless
version of the boundary condition is:

BC : u(0, t) = cos(−2πkzt)

The final non-dimensional system of equations is:
ut + ux = 0 t > 0 x = [0, 1]
u(x, 0) = cos(kz2πx)
u(0, t) = cos(−kz2πt)

(3.17)

With exact solution:

u(x, t) = cos(2πkz(x− t)) t > 0 x = [0, 1] (3.18)
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3.2 Wave characteristics

It is important to get a clear understanding of what is going on physically. The sim-
plification of the Navier-Stokes equations has resulted in a one dimensional transport
equation, which requires the physical values of the wave speed and zonal wavenumber
of waves propagating in the atmosphere to correctly describe these waves. With these
wave characteristics, the simulations can be based truly on the actual climate models
and are conform to the limitations and restrictions caused by the wave characteristics.

There are several types of waves propagating in the atmosphere. The first consid-
ered wave is the sound wave. This one is not included in climate models because of its
high frequency [16]. There are also internal and surface gravity waves. These waves
don’t influence the climate and are thus not important in the climate models. The
surface gravity waves can be seen as the waves in the ocean that you can observe with
your eyes [16]. Internal gravity waves are similar, but instead of oscillating on the
surface, they are oscillating within a fluid medium [17].
The following waves are important in climate modeling [19][18][7][8]:

• Poincaré waves

• Kelvin waves

• Rossby waves

• Topographic waves

= Inertia waves

These four types of waves are inertia or geostrophic waves. This means that they are
caused by the force produced by the rotation of the earth [2] . A Poincaré wave is
a transverse wave in the ocean or atmosphere which is affected by gravity and the
earth’s rotation [19][4]. The wave is not acting on the surface, but in the middle of
ocean/atmosphere. A Kelvin wave is also a wave that is affected by the Earth’s rota-
tion, but needs the support of a boundary [19][4]. Hence, it propagates mostly along
coastlines. There are also Kelvin waves trapped along the equator. The equator acts
as a boundary for these so-called Equatorial Kelvin waves. Another inertia wave is the
Rossby wave. The Rossby wave is relatively slow compared to Kelvin and Poincaré
waves. Rossby waves are so long that the variation of the Coriolis force with latitude
are influencing them [4][18]. There are atmospheric and oceanic Rossby waves. The
oceanic waves move along the boundary between the warm upper layer and the cold
deeper part of the ocean. The atmospheric waves occur in high-altitude winds. Topo-
graphic waves are, just as Rossby waves, long and slowly moving waves, but affected
by bottom irregularities. These waves can be treated analogously to Rossby waves [4].

The waves are modeled by the system of equations of (3.17). The characteristic
zonal wave number and wave speed are the only parameters that describe which wave is
regarded. Inertia waves are described by its frequency and wave speed in the dispersion
relation. This relation is usually given as

ω2 = gk tanh kH̄, (3.19)
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Figure 3.1: A path of the Kelvin wave interacting with Antarctic current. Credit:
Ryan Holmes / NCI [23]

Figure 3.2: Path of a Rossby wave, acting in the Northern hemisphere. [27]

where ω is the frequency, g the gravitational acceleration, k the wavenumber and H̄
the mean depth of the fluid. The Kelvin, Poincaré and Rossby waves are affected by
the earth’s rotation which modifies the dispersion relation (3.19) into the following:

ω2 = gλ tanhλH̄, (3.20)

where λ is related to the wavenumber k by

k2 = λ2 −R−2
o λH̄ cothλH̄. (3.21)

Ro is the Rossby radius of deformation, which is defined by Ro = gH̄/f2
o [2]. fo is

the Coriolis parameter, the radius of deformation Ro is a length scale that relates the
fluid’s tendency for gravity and earth’s rotation together along the earth’s rotation
axis [16].

Poincaré waves
Poincaré waves are surface gravity waves, affected by the Earth’s rotation. The fre-
quency is low enough to feel the effect of the Earth’s rotation. This affect is visible
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in the dispersion relation by the Coriolis parameter fo. The dispersion relation (3.20)
reduces to:

ω2 = f2
o + α2(k2 + π2n2/L2), (3.22)

where L is the earth’s length along which the wave moves, n can be any positive integer
and α is the wave speed defined by α = (gH̄)1/2 [6].

Kelvin waves
Kelvin waves are also gravity driven and similar to the Poincaré wave. The difference
is that they are non-dispersive, what means that its dispersion relation simplifies to

ω = αk (3.23)

Kelvin waves are trapped to a vertical boundary (the coastline) or the equator. Equa-
torial trapped Kelvin waves move with a wave speed of around 2.8 m s−1 [7]. Its zonal
wavenumbers can differ between 0.5 and 3.
There are two types of coastal Kelvin waves: coastal surface and coastal internal
waves. Internal waves can reach very high phase speeds, similar to Equatorial waves.
Coastal waves are much slower, they move along with a speed between 0.297 m s−1

and 1.0 m s−1. The wavenumbers are similar.

Poincaré waves have similar characteristics as the Kelvin waves. Our model is build
to investigate how the boundary treatment influences the regional model output. It is
important to relate the model to physical properties, but it isn’t important to see how
the waves are exactly captured by the model. Because the zonal wavenumber and phase
speed of the Poincaré waves are similar to the properties of the Kelvin waves, only the
Kelvin properties are regarded for the implementation.

Rossby waves
There are two types of Rossby waves

• Barotropic waves: short wavelength and high-frequency

• Baroclinic waves: long wavelength and low-frequency

Barotropic waves

A wave is called a short or Barotropic wave if its meridional length scale is smaller
than its Rossby radius of deformation: L ≤ Ro. Meridional length, is the length
along a longitude circle. These waves are propagated by the wind. Its wavelength is
between: λ = 170− 500 km and have zonal wavenumbers between 1− 3 [8] [13].

Baroclinic waves

A wave is called a long or Baroclinic wave if its Meridional length scale is higher than its
Rossby radius of deformation: L ≥ Ro. It length is between λ = 3000− 10000 km
and its wave speed between 0.01 m s−1 and 3 ms−1. Its zonal wavenumber differs
between 0.5−2.5 but there also waves with a wavenumber up to kz = 5 or even kz = 8
[22] [30].
Table 3.2 summarizes the wave characteristics.
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Table 3.2: Summary of the important wave characteristics

Kelvin Rossby
Equatorial Coastal Barotropic Baroclinic

Wavespeed α [ms−1] 2.8 0.3− 1 20 0.1− 3
Zonal wave number kz 1− 2 0.5− 3 1− 3 0.5− 3, 5, 8

Only the most extreme conditions are important for the investigation. Compu-
tationally, the implementation of higher wavenumbers is less accurate than the lower
wavenumbers. Thus, when the model is able to capture the highest wavenumbers and
fastest wave speed, it is also able capture the lower wavenumbers. Therefore, the fol-
lowing wavenumbers are considered: kz = 1 and kz = 3 with maximum wave speed
of α = 20 ms−1 and wavenumbers kz = 5 and kz = 8 with maximum wave speed of
3 ms−1. The lower wavenumbers are also investigated, because its wave speed can be
very high. The wave speed relates the model parameter T = 1 to the actual model
simulation time T ∗ of climate models by T ∗ = T L

α . This is explained in more detail in
section 4.6.
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3.3 Discretization techniques

Implementation in Matlab can be done after discretization of the continuous equation.
Spatial discretization is done with the Summation-by-Parts–Simultaneous-Approximation-
Term (SBP-SAT) method. This method leads to a stable spatial discretization. Dis-
cretization of the time-dependent part is done by fourth order Runge-Kutta.

3.3.1 The Simultaneous-Approximation-Term – Summation By Parts
method

The Summation-By-Parts method is a high-order finite-difference scheme beneficial for
wave propagation problems. The following information is based on [26] and [12]. The
Simultaneous-Approximation-Term technique imposes the boundary condition weakly
by adding a penalty term, creating together with the SBP-method a stable and accu-
rate high-order spatial discretization.
The idea of the SBP method starts by showing well-posedness of the continuous equa-
tion. This is explained in [26] as follows:
Consider a general initial value problem:


ut = Pu+ F, 0 ≤ x ≤ 1, t ≥ 0,

u(x, 0) = f(x),
Bu(0, t) = g0(t),
Bu(1, t) = g1(t)

(3.24)

where u = (u1, ...um)T , P a differential operator with smooth coefficients, B is a
boundary operator, gi(t) are boundary functions, F is a given force function and f(x)
is the initial function.

Definition 3.1 The equation is well-posed with F = 0, gi = 0, if for every f ∈ C∞
that vanishes in a neighborhood of x = 0, 1, there is a unique smooth solution satisfying:

||u(·, t)|| ≤ K exp(βct)||f(·)||. (3.25)

K,βc are constants independent of f . [26]

The well-posedness of the transport equation can be shown with the energy method
from Definition 3.1. The transport equation in this problem is given as follows:{

ut + αux = 0, 0 ≤ x ≤ 1, t ≥ 0
u(x, 0) = f(x)

(3.26)

Mulitply the equation with u and integrate:

∫ 1

0
uutdx+

∫ 1

0
αuuxdx = 0

⇔ (u, ut) + α(u, ux) = 0 where (u, u) = ||u||2
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Then apply integration by parts and obtain:

1
2
d

dt
||u||2 + α[u2]10 − α(ux, u) = 0

⇔ 1
2
d

dt
||u||2 + 1

2α[u2]10 = 0

⇔ d

dt
||u||2 = −α[u2]10

For well-posedness, d
dt ||u||

2 cannot grow. This can be established by imposing bound-
ary conditions.
In the case that α > 0. Setting u(0, t) = g0(t) leads to the desired estimate:

d

dt
||u||2 = −α[u2]10 ≤ K exp(βct)||f(·)||

The bound on the discrete transport equation is similar and is done with the discrete
energy method. The discrete version of the transport equation according the SBP-SAT
method is [12]:

vt + αP−1Qv = σP−1E0(v − g)︸ ︷︷ ︸
SAT-term S

(3.27)

The finite difference operator P has the property that it is a symmetric positive definite
matrix. The operator Q has the property that the matrix is almost skew-symmetric,

meaning that Q + QT =


−1
0
0 1

, and E0 =


1
0
0 0

. The vector g is

a vector of same length as u(x, t) containing all zeros, except for the first term. The
first term contains the boundary condition at x = 0. The σ term is characteristic for
the SAT-term. It is introduced to penalize the boundary term.
The approximation (3.27) is stable when

||v(t)||h ≤ K exp(βdt)||fh||. [26] (3.28)

This can be shown with the discrete energy method. The σ can be derived with this
method.
The discrete energy method starts by transposing (3.27). This leads to the following:

uTt + αuTQTP−1 = σ(uT − gT )E0P
−1 (3.29)

Then equation (3.27) is multiplied with uTP from the left and equation (3.29) with
Pu from the right. This leads to the following two equations:

uTPut + αuTQu = σuTE0(u− g)
uTt Pu+ αuTQTu = σ(uT − gT )E0u

(3.30)

The product of P−1P = I and thus vanishes in the equation. The addition of the
equations in (3.30) leads to the following equation:

d

dt
||u||2P + αuT (Q+QT )u = 2σu0(u0 − g0) (3.31)
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It is sufficient to show it for g0 = 0, then it can be written as follows:

d

dt
||u||2P = (2σ + α)u2

0 − αu2
N (3.32)

According to (3.28), the following should hold:

d

dt
||u||2P ≤ K exp(βdt)||fh||

This is established when the RHS is completely negative, thus when (2σ + α)u2
0 ≤ 0.

This leads to a bound of:
(2σ + α) ≤ 0⇔ σ ≤ −α2 . (3.33)

Thus when σ ≤ −α2 , a stable solution is obtained for (3.27).

The α in our modeling problem is positive, because it was scaled to α = 1.

On the order of accuracy and the convergence rate

The discrete approximation v of the exact solution u(x, t) is determined and the trun-
cation error can be defined.
Consider a domain of length L from x = [0, 1] of N gridpoints as in figure 3.3. Define
uj as the projection of u on this grid. This means that ui = u(xi, t), i = 1, 2, .., N .

L
x = 0 x = L

H

1 N

1 2 3 N

Figure 3.3: One dimensional representation of the computational domain.

The local truncation error Ti is defined by:

(ui)t = αP−1Q(ui)x + Si + Ti, i = 0, ..., N, t ≥ 0 (3.34)

S is the SAT-term. The truncation error has the following form:

T = (O(hr), ...,O(hr),O(hp), ...,O(hp),O(hr), ...,O(hr))T (3.35)

With r < p. These terms with r as exponent correspond the points near the boundary
that have a lower accuracy than the interior, the terms with p as exponent [26]. The
order of accuracy is the exponent in the truncation error. Thus, the order of accuracy
is (r, p).
The convergence rate q, another important term is defined by the solution error:

εi(t) = vi − ui (3.36)

The convergence rate q comes from ||ε||2 = O(hq), where || · ||2 is the discrete L2-norm.
The choice of the differential operators define the orders of accuracy (r, p) and so the
convergence rate q. There are several SBP operators established to form the differential
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operators leading to different rates of convergence. The four established operators lead
to orders of accuracy [12]

(r, p) = (1, 2), (2, 4), (3, 6), (4, 8).

Leading to convergence rates of

q = 2, 3, 4, 5, respectively.

Change of terminology

The terminology of order of accuracy and convergence rate can lead to quick mis-
takes once the implementation is started. To clarify things, the terminology is slightly
changed. Once the results of the numerical implementation are present, it is expected
that the ||ε||2 will converge according the convergence rates of the SBP-SAT operators.
The term p-value is introduced to indicate the convergence rate of the L2-norm of the
error of the numerical approximation (||ε||2 = ||uexact− uapprox||2). It is expected that
the p-value of order of accuracy (1, 2) is around 2, but this is not 100% certain! A new
term, the design accuracy, is introduced to indicate the convergence rate according the
SBP-SAT operators.
In summary, the order of accuracy (1, 2) means a design accuracy of pda = 2 and a
p-value of p ≈ 2.

Numerical implementation

To be sure that the implementation of the SBP-SAT operators is done correctly in
Matlab, the p-values of the numerical approximations are calculated and plotted loga-
rithmic in figure 3.4. The implementation is done for the transport equation (3.27) for
increasing number of gridpoints. The figure shows that the numerical implementation
of the SBP-SAT-method is done correctly and that the different SBP-SAT operators
are converging according its design accuracy.

3.3.2 Fourth order Runge-Kutta
The fourth-order Runge Kutta method should be well known to the reader [31].
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10 3

10 -8

10 -6

10 -4

h2

h4

h5

p = -1.998h3

p = -3.017

p = -4.292

p = -4.648

Convergence rate according the SBP design accuracy

SBP (2,1)
SBP (4,2)
SBP (6,3)
SBP (8,4)

p = 2,3,4,5

Number of gridpoints N

Figure 3.4: p-values of the discrete transport equation according the design accuracy of the
SBP-SAT method. The coloured lines show how the numerical approximation of the transport
equation converges for different SBP design accuracy. The text in the box next to its coloured
lines show the slope of the power of the L2-norm of the error (which is the p-value). The
dashed lines show how the slope should converge (the design accuracy).

3.4 Interpolation methods

The Lateral Boundary Condition (LBC) is needed at each timestep of the regional
model and thus interpolation is required between the boundary data updates of the
global model. This is done by storing the output of the GCM in space and time.
Storage in space is done only on the spatial gridpoint that corresponds to the lateral
boundary of the regional domain: xb. Storage in space is done on all the temporal
steps of the GCM. Hence, the GCM output is stored in a vector uGCM (xb, Ti), i =
0, 1, 2, ..., NT which has the necessary information to update the LBC. Interpolation
is needed to create the required boundary information on the temporal points of the
RCM. For simplicity, the vector ugcm(xb, Ti) is now called g̃(Ti).

uGCM (xb, Ti) = g̃(Ti) =


g̃(0)
g̃(T1)

...
g̃(TNT

)

 i = 0, 1, .., NT (3.37)
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

uGCM (xb, Ti) stored solution of the GCM on xb on every timestep Ti
g̃(Ti) lateral boundary condition before interpolation
xb the GCM gridpoint that correponds to the RCM boundary
Ti a certain GCM temporal gridpoint
NT total number of GCM timesteps

The simulation time of the GCM is T = 1. After NT steps of size ∆T , the final time
is reached.
The simulation time of the RCM runs is also T = 1. There are in total MT number of
timesteps of size ∆t and NT ≤MT and ∆t ≤ ∆T .
The created boundary data g̃(Ti) can only be used as LBC after interpolation. The
current RCMs use linear interpolation techniques [11]. Higher order polynomial meth-
ods can lead to more accurate solutions and have to be evaluated. In the following
section several third order polynomial methods are explained and evaluated.

3.4.1 Conditions on the interpolation method
The vector g̃(Ti) that needs to be interpolated is divided on an equidistant temporal
grid with information on every Ti, i = 0, 1, 2, ..., NT . Interpolation in time proceeds
similar as interpolation in space, as interpolation is used to fill in the missing gridpoints
and it doesn’t matter whether this is a spatial or temporal point.
In case of an equidistant grid, it is not recommended to choose a higher order global
polynomial interpolation method, this is illustrated in [21] with the Runga example
(g(x) := 1/(1 + 25x2)). It can be reduced by choosing a piecewise polynomial interpo-
lation method. This method only requires information of its surrounding data.

3.4.2 Piecewise polynomial approximation
In piecewise polynomial approximation, an interval [0, T ] is partitioned into NT inter-
vals Ii as follows:

[T0, T1]︸ ︷︷ ︸
I1

, [T1, T2]︸ ︷︷ ︸
I2

, ..., [TNT−1, TNT
]︸ ︷︷ ︸

INT

0 = T0 < T1 < ... < TNT
= 1.

The idea of piecewise approximation is that the polynomial is approximated per in-
terval. The polynomial approximation pi(tj) is computed on all the desired points tj
that lie in the interval [Ti, Ti+1]. This means that NT polynomial approximations are
created. At the end they are ’glued’ to each other to form one polynomial p(tj) that
can be used as boundary condition. In summary this is going as follows:

1: Partition the domain [0, T ] into NT intervals

2: Compute the polynomial pi(tj) piecewise for all tj ∈ [Ti, Ti+1], j = 0, ..,MT per
interval [Ti, Ti+1] and i = 0, 1, .., NT .

3: Glue all pi of the intervals [Ti, Ti+1] to each other to end with the final polynomial
p(t)

Piecewise polynomial approximation can be done with first order, third order of even
higher order methods. First order and third order methods are evaluated here [21]
[29].
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3.4.3 Piecewise linear interpolation
Piecewise linear interpolation can be seen as connecting the information gi = uGCM (Ti)
on all the breakpoints Ti with straight lines to each other. This can be done by local
linear interpolants:

pi(t) = g(Ti) + t− Ti
Ti+1 − Ti

(gi − gi+1) ∀ t ∈ [Ti, Ti+1] (3.38)

and has the following property: pi(Ti) = g(Ti) ∀Ti, i = 0, 1, ..., NT . There are now
NT − 1 polynomial approximation on NT − 1 intervals that are glued to each other at
the end to get the final approximant p(t), which is the LBC of the RCM domain. The
total interpolant is defined as follows [21]:

p(t) =



p1(t) if 0 ≤ t < T1

p2(t) if T1 ≤ t < T2
...

pNT
(t) if TNT−1 ≤ t ≤ TNT

The linear interpolant p(tj) is used as the lateral boundary condition of the RCM
domain. It is implemented for the ~g in equation 3.27.

T T Ti i+1 i+2t

g(T )i
~

g(T   )i+1
~

Figure 3.5: Linear interpolation of information g̃ on t between two adjacent points Ti and
Ti+1.

Evaluation of the linear interpolation method

To define the accuracy of this method, the following theorem is needed [21].

Theorem 3.1 Suppose pn−1(x) interpolates a function f(x) at distinct points x1, .., xn.
If f ∈ Cn on an interval I containing the xi, then for any x ∈ I

f(x) = pn−1(x) + f (n)(η)
n! (x− x1) . . . (x− xn).
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If this continuously differentiable f is present, then the error between the approxima-
tion and the function can be derived as follows: for t ∈ [Ti, Ti+1],

f(t)− p(t) = f (′′)(η)
2! (t− Ti)(t− Ti+1) η ∈ [Ti, Ti+1] (3.39)

In this case no function is interpolated, but only data gained from the GCM domain.
This means, there is no continuously differentiable function f present. The error
between the interpolation and data have to be determined differently. This can be
done by using the exact solution u∗(t). The information gi can be seen as the exact
solution plus a certain error term ψ:

gi = u∗ + ψ (3.40)

The exact solution u∗ is continuously differentiable. If you fill equation (3.40) in (3.39)
then you get the following error term between the linear interpolant and the function:

ξ(t)∗ = u∗(t) + ψ − p(t) = u∗(′′)(η)
2! (t− Ti)(t− Ti+1) + ψ∗ η ∈ [Ti, Ti+1] (3.41)

where ψ∗ is the result of the error term ψ after interpolation.
The error between the interpolation method and the data is estimated to compare
the different interpolation methods. The error term ψ as a result of the discrete
approximation of the exact solution is similar for all interpolation methods and only
its result after interpolation, the term ψ∗(t), is different per interpolation method.
In order to find an estimation for the error term, this term is neglected, because its
influence will be negligibly small.
This results in the following error estimate of the linear interpolation method:

ξ(t) = u∗(t)− p(t) ≈ u(′′)(η)
2! (t− Ti)(t− Ti+1) η ∈ [Ti, Ti+1] (3.42)

The exact solution at the boundary of the regional model is u∗(xb, t) = cos(k(xb− t)).
The second order derivative between T = [0, 1] is bounded by

|u∗(′′)(η)| ≤ k2. (3.43)

Because all the intervals [Ti, Ti+1] are of equal size ∆T and the maximum is on
the midpoint of the interval, tmid = Ti + ∆T/2, the final error estimate of linear
interpolation:

|ξ(t)| ≤ k2

2!

(∆T
2

)2
= k2

8 (∆T )2. (3.44)

3.4.4 Third order polynomial approximations

Third order polynomial approximations can be done in several ways, of which Cubic
Spline and Cubic Hermite approximations are the most common. The most suitable
third order interpolation method depends on the function that has to be approximated.
Simulations of both methods shall result in the choice for the best third order method.
All of the following information is based on the text in [29] and [14].
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3.4.5 Piecewise Cubic Hermite interpolation
The cubic Hermite spline has to satisfy the following properties:

pi(t) = at3 + bt2 + ct+ d, a, b, c, d ∈ R
p(Ti) = g̃(Ti), ∀i = 0, 1, ..., NT

p(Ti+1) = g̃(Ti+1), ∀i = 0, 1, ..., NT

p′(Ti) = g̃′(Ti), ∀i = 0, 1, ..., NT

p′(Ti+1) = g̃′(Ti+1), ∀i = 0, 1, ..., NT

Where g̃(Ti) is known: these are the boundary data obtained from the GCM simulation.
Normally in Cubic Hermite splines, the derivative g′(Ti) is present. In this case, only
the data points g̃(Ti), g̃(Ti+1), etc. are present and no derivative. There are several
ways to obtain the derivative. In this case it is done with the Catmull-Rom method.
In Catmull-Rom, the derivative is approximated as follows:

ḡ′(Ti) = g̃(Ti+1)− g̃(Ti−1)
Ti+1 − Ti−1

(3.45)

For the endpoints, one-sided differences are used.

With the two values g̃(Ti) and g̃(Ti+1) and it’s approximated derivatives ḡ′(Ti) and
ḡ′(Ti+1) the parameters ai, bi, ci and di can be derived as follows:

ai = g̃(Ti)

bi = ḡ′(Ti)

ci = ((g̃(Ti+1)− g̃(Ti))/∆T )− ḡ′(Ti)
∆T

di = ḡ′(Ti+1) + ḡ′(Ti)− 2((g̃(Ti+1)− g̃(Ti))/∆T )
∆T 2

3.4.6 Evaluation of the cubic Hermite spline interpolation method
The error of cubic spline is determined by using similar assumptions about the dis-
crete error term ψ as in the previous section, explained in equation (3.40) till (3.42).
Theorem 3.1, the equidistant grid with stepsize ∆T and the bound on the fourth order
derivative of the exact solution lead to the following estimate of the error:

|ξ(t)| ≤ k4

4! |(t− Ti)(t− Ti+1)(t− Ti)(t− Ti+1)| ∀t ∈ [Ti, Ti+1] (3.46)

The maximum value of the local polynomial is on the midpoint of its interval, tmid =
Ti + ∆T/2, and thus

|ξ(t)| ≤ k4

24

(∆T
2

)4
= k4

384(∆T 4) ∀t ∈ [Ti, Ti+1] (3.47)

Cubic Hermite spline interpolation is a local piecewise approximation method. The
interpolant pi(t) uses only information of its surrounded breakpoints [Ti, Ti+1] and
Ti−1, Ti+2 for the derivative approximation. Normally local polynomial approxima-
tions would be a good choice for interpolation, but in this case the derivative ḡ(Ti)
is approximated. This can result in accuracy loss, especially at the boundary points
where one-sided differences are used.

27



CHAPTER 3. PROJECT DESCRIPTION

3.4.7 Cubic spline interpolation

Cubic spline interpolation is another third order method. The total polynomial p(t)
is build from the local cubic polynomials pi(t) and has additional constraints on the
first and second order derivatives, the left and right derivatives must be continuous at
interior points: p′i(Ti+1) = p′i+1(Ti+1) and p′′i (Ti+1) = p′′i+1(Ti+1) for i = 1, 2, ..., NT −2.
There are different options for the end conditions of the second order derivatives. Two
options for the end conditions are considered here: the Natural spline conditions and
the Not-a-Knot conditions [29][14].

The Natural spline

In case of the natural spline, the end conditions of the second order derivative satisfy:
p′′0(T0) = p′′NT−1(TNT

) = 0. In sum, the local cubic natural splines have to satisfy the
following properties:

I. p is a cubic polynomial pi on each subinterval [Ti, Ti+1], i = 0, 1, .., NT − 1
II. p(Ti) = g̃(Ti), ∀i = 0, 1, ..., NT

III. pi(Ti+1) = pi+1(Ti+1), ∀i = 0, 1, ...NT − 2
IV. p′i(Ti+1) = p′i+1(Ti+1), ∀i = 0, 1, ...NT − 2
V. p′′i (Ti+1) = p′′i+1(Ti+1), ∀i = 0, 1, ...NT − 2
VI. p′′0(T0) = p′′NT−1(TNT

) = 0
(3.48)

With these properties, the values for ai, bi, ci and di can be solved.
Condition I determines the local cubic spline on each interval [Ti, Ti+1] and its deriva-
tives result here-from:

pi(t) = ai(t− Ti)3 + bi(t− Ti)2 + ci(t− Ti) + di, ai, bi, ci, di ∈ R, i = 0, 1, .., NT − 1

(3.49)
p′i(t) = 3ai(t− Ti)2 + 2bi(t− Ti) + ci (3.50)
p′′i (t) = 6ai(t− Ti) + 2bi (3.51)

Condition II results in
di = g̃(Ti). (3.52)

Condition III in the determination of ci:

pi(Ti+1) = pi+1(Ti+1)
⇔ ai (Ti+1 − Ti)3︸ ︷︷ ︸

∆T 3

+ bi(Ti+1 − Ti)2 + ci(Ti+1 − Ti) + di = g̃(Ti+1)

⇒ ci = g̃(Ti+1)− g̃(Ti)
∆T −∆T 2bi + bi+1

3

(3.53)

Condition V leads to the determination of ai.

p′′i (Ti+1) = p′′i+1(Ti+1)⇔ 2bi+1 = 6ai∆T + 2bi

⇒ ai = bi+1 − bi
3∆T

(3.54)
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Condition IV result in a linear system of equations that have to be solved to determine
bi, followed by ci and ai. Condition IV is:

p′i(Ti+1) = p′i+1(Ti+1)
⇔ ci+1 = 3ai∆T 2 + 2bi∆T + ci

⇒ bi∆T + 2bi+1(∆T + ∆T + bi+2∆T

= 3 g̃(Ti+2)− g̃(Ti+1)
∆T − g̃(Ti+1)− g̃(Ti)

∆T

(3.55)

Condition V I is the natural end condition, resulting in

b0 = 0
bNT

= 0
(3.56)

Solving the linear system of equations (3.55) and (3.54) to (3.52) from bottom-to top,
results in the determination of ai, bi, ci and di, which can be implemented in the local
spline 3.49. The total spline is made up from the local pieces.

Not-a-Knot spline

The Not-a-Knot condition ensures that the third derivative is continuous at the points
T1 and TNT−1:

p′′′i (Ti+1) = p′′′i+1(Ti+1) (3.57)

The third order derivative of the local spline is:

p′′′i (Ti+1) = 6ai (3.58)

ai is according to 3.54 equal to: ai = bi+1−bi

3∆T and bi can still be solved by solving the
system of 3.55. It results in the following value for b0:

p′′′0 (T1) = p′′′1 (T1)
⇔ 6a1 = 6a2

⇔ 6b1 − b03∆T = 6b2 − b13∆T
⇒ b0 = b2 − 2b1

(3.59)

bNT
is determined similarly:

p′′′NT−2(TNT−1) = p′′′NT−1(TNT−1)
⇔ 6aNT−1 = 6a2

⇔ 6bNT−1 − bNT−2
3∆T = 6bNT

− bNT−1
3∆T

⇒ bNT
= 2bNT−1 − bNT−2

(3.60)

The determination of all the coefficients and the implementation in the final spline is
similar to that of the Natural spline.
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3.4.8 Evaluation of the cubic spline methods

The choice between cubic splines and cubic Hermite interpolation and its derivative
conditions depends on the properties of the data that have to be interpolated. The
Hermite spline has the advantage that it is a local approximation. This means that
it only needs values around the point where you want to approximate. No end con-
ditions are needed. The cubic spline does require end-conditions for the second order
derivative, which can influence the approximation negatively when these conditions
are chosen badly. An advantage of the cubic spline is that the second order derivative
is continuous (we have set it this way). Numerical implementation helps to find out
which method of the two is most suitable. The implementation is done in the same
way as the implementation of the final experiment. This means that the transport
equation (3.17) is implemented according the SBP-SAT method. The discrete version
is (3.27). The temporal discretization is done according to the fourth order Runge
Kutta method. The final numerical approximation v(x, ti), i = 0, 1, ..., NT is a vector
of the same length in time, which is a length of NT + 1 points, as the exact solu-
tion computed every numerical timestep u(x, ti). The key is to find how the output
is performing after lowering the boundary data interval resolution. The lowering can
be simulated here, by storing the output v(x, ti) every timestep and then removing
data from this vector. Then use interpolation to approximate the removed data and
compare this with the exact solution u(x, ti).
The interpolation methods can be compared when the numerical approximation v(x, ti)
is stored in half the timesteps of ti, ie t0, t2, t4, etc., or with a quart of the timesteps, ie
t0, t4, etc. or even with a eight of the timesteps, ie t0, t8, etc.. Then the removed data
is interpolated back to a vector of length NT + 1. The interpolated solution ṽ(x, ti) is
compared with u(x, ti) in the L2-norm. This is going as follows:

1. Compute v(x, ti).⇒ v(x, ti) =



v(x, t0)
v(x, t1)
v(x, t2)

...
v(x, tNT

)


(3.61)

2. Store in half the timesteps .⇒



v(x, t0)
•

v(x, t2)
•
...

v(x, tNT
)


(3.62)

3. Interpolate to ṽ(x, ti).⇒ ṽ(x, ti) =



ṽ(x, t0)
ṽ(x, t1)
ṽ(x, t2)

...
ṽ(x, tNT

)


(3.63)

4. Take the L2-norm.⇒ ε1 =||ṽ(x, ti)− u(x, ti)|| (3.64)
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These four steps of (3.61) - (3.64) are also executed for storing v(x, ti) one quart, one
eighth and one sixteenth of all the timesteps. This changes the matrix in (3.62) to



v(x, t0)
•
•
•

v(x, t4)
...

v(x, tNT
)


,



v(x, t0)
•
...
•

v(x, t8)
...

v(x, tNT
)


,



v(x, t0)
•
...
•

v(x, t16)
...

v(x, tNT
)


, respectively.

The L2-norm of the errors (ε2, ε4, ε8 and ε16) are computed and shown in table 3.3.
The different numerical approximations are plotted for different storages. These are
visible in figure 3.6.

Conclusion of the interpolation methods

From table 3.3 it can be concluded that the Not-a-Knot cubic spline interpolation
method is in the beginning most suitable for the numerical approximation of the trans-
port equation with exact solution:

u(x, t) = cos(2πkz(x− t)) t > 0 x = [0, 1] (3.65)

But the error ε16 is lower for the Natural spline than for the Not-a-Knot spline. Fur-
thermore, the errors are of comparable size. It probably doesn’t really matter in this
case whether Not-a-Knot or Natural splines are used. It is important to test this for ev-
ery single equation that has to be approximated. Cubic splines are often unfavourable
due to the global approximation, but for this equation it is not the case. Because the
Natural spline has a lower error for a lower storage, the Natural Cubic spline is chosen
as the third order interpolation method that is going to be implemented in the final
set-up of this research.

Table 3.3: The L2-norms of the error between u(x, ti) and ṽ(x, ti) for different storages

Hermite spline Cubic spline
Finite

differences
Natural Not-a-Knot

ε2 1.62e-04 1.11e-04 1.51e-05
ε4 9.92e-04 6.36e-04 2.39e-04
ε8 6.95e-03 3.81e-03 3.62e-03
ε16 5.95e-02 2.86e-02 5.65e-02
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Figure 3.6: Third order interpolation methods compared for different storages. The close-up
(midright) shows which method is most accurate. From the last picture it is visible that the
Not-a-Knot conditions are getting worse and that the Natural spline is more reliable.
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Chapter 4

Computational experiments

4.1 Big and Little Brother experiment

The experiments are performed according the Big and Little Brother experiment (BB-
LBE), introduced by [3] to test the down-scaling ability of one-way nested Regional
Climate Models. In the set-up of [3], the Little Brother (LB) model represents the
regional model scaled to a smaller, workable version and has a Big Brother (BB) of
the same resolution as the regional model, but its domain is larger. The numerical
methods of the BB and LB models are the same as in the global and regional models.
The simulation start by running the BB model. The model produces a dataset with
large, medium and small scale features. The small scale features are filtered from the
dataset, and used later for reference, such that it only contains the large and medium
scale features. These are implemented at the boundary of the LB and interpolated
to form the LBC. The simulation continues with running the LB model with the
interpolated large and medium scale dataset as boundary data. The LB should be
able to reproduce the small scale features of the model. The outcome of the LB
is validated against the small scale features of the BB. The BB-LBE is introduced,
because it keeps the same resolution, physics, dynamics and numerical method as the
global-regional models, but it is an efficient method to test the issues concerning the
LBC.

Adapted Big and Little Brother experiment for this thesis

The experiments in this thesis use a slightly different set-up of the BB-LBE then the
one explained in [3]. In this case, the BB model is the equivalent of the global model
and the LB of the regional model, still both scaled to a smaller, workable version. The
adapted BB is of lower resolution than the BB in the original case. The LB is similar
as the original one. The numerical method and resolution of the adapted BB-LBE
are the same as the global-regional models. The reason that an adapted version is
introduced, is because the original exact solution is present here and can be used as
reference set instead of the small scale features of the BB output. The adapted BB
model produces a large scale dataset due to its lower resolution and the small scale
solution of the LB can now be validated against the exact solution. This makes the
set-up even a better representation of the global and regional models.
The errors that are present in the adapted BB-LBE set-up are now purely due to the
nesting strategy and the set-up is therefore well suitable for the validation of the nine
issues, introduced in section 2.2.
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Big Brother equivalent 
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Boundary Data
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Figure 4.1: Visual graphic of the Big-Little Brother experiment.

The main focus of this thesis is to test the boundary data interval resolution and
interpolation methods. With this adapted BB-LBE, the large-scale dataset of the
BB contains the LBC for the LB. Focus is to investigate to what extend lowering
the boundary data interval resolution, influences the outcome of the LB model and
whether this can be compensated by increasing the order of interpolation.
From here on, the term ‘adapted Big Brother model’ is for convenience changed to
‘Big Brother model’. Thus, don’t mistake the Big Brother model from now on for the
original Big Brother model as explained in [3]. Figure 4.1 is a schematic overview of
the BB-LBE.

Remember the definitions of p-value and design accuracy. The p-value is the rate of
convergence of the L2-norm of the error of the numerical approximation with SBP −
SAT operators, design accuracy is the convergence rate according to the SBP-SAT
operators.

4.1.1 Implementation of the BB-LBE

The BB-LBE is made in several steps to be sure that the final implementation is done
correctly. These steps are as follows:
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Step 1 Verification of the convergence rate according the SBP-SAT method: The
model runs over a domain of size [0, 1]. Its resolution varies between N = 51, 101 to
201. With N the number of gridpoints. By taking the L2-norm of the error between
the BB solution and the exact solution: E = ||uBB − u∗|| with u∗ the exact solution,
the convergence rate can be verified as follows: p2 = log2(E201

E101
) and p1 = log2(E101

E51
).

Where p1 and p2 should converge according to the the design accuracy that is used,
explained in section 3.3. The used order of accuracy is (42) and thus the p-value should
be around p1, p2 = 3 if everything is done correctly.

Step 2 Implementation of the LB model: the LB model is driven by lateral bound-
ary data obtained from its BB. To check the correctness of the implementation, the
boundary condition is the exact solution run in time over the boundary of the LB. In
this case, the boundary condition doesn’t require any interpolation and thus the LB
implementation can be tested. The L2-norm of the error between the LB solution and
exact solution is now computed E2 = ||uLB − u∗|| and the verification is equivalent to
step 1: it is tested if it converges according its design accuracy.

Step 3 Implementation of the BB solution as boundary data of the LB model. In
step 3, the model is implemented such that the boundary data doesn’t require any
interpolation methods yet. The performance of the LB solution depends now solely on
the quality of the BB solution.

Step 4 Test of interpolation methods, defined in section 3.4.3. This final step
forms the basis for the analysis.

4.2 Model domain

The model is a 1D representation of the BB-LBE. The BB domain has length L1 = 1
and starts at x = 0. The LB domain of length L2 = 0.2 covers a certain part of the
BB domain. The LB domain starts at z1, where 0 = x1 < z1 < z1 + L2︸ ︷︷ ︸

zM

< xN = 1. In

figure 4.2 the domain is displayed.

Big Brother domain
Little Brother domain

z 

h

z x = 0 x = L

H

1
1 M

N

α α

Figure 4.2: Model domain, parameters are explained in the text
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4.2.1 Big Brother domain

The BB domain x = [0 1] has N number of gridpoints. In the experiment N differs
from N = 51, 101, 201 to 401. The gridsize is H = 1/(N − 1) and the timestep
depends on this gridsize by the CFL-condition: C∆T

H ≤ 1. The CFL-condition is a
necessary condition for convergence of numerical solutions to partial differential equa-
tions, approximated by finite differences. This condition requires the timestep to be of
a certain size or smaller than the size. If it exceeds the limit, the approximation will
not converge.
The final time T is 1, so the number of timesteps NT depends on the ∆T by NT = T

∆T .

4.2.2 Little Brother domain

The LB domain covers 20% of the BB domain, hence the length of the LB domain
is L2 = 0.2. The gridsize h is also equivalent to the Global-Regional model relation,
which differs operationally between a factor 1− 10 smaller than the BB gridsize. The
total number of gridpoints is M = 0.2/h.
The LB model runs on the same time-period as the BB model, the final time T is thus
1. The number of timesteps depends again on the CFL-condition, which now relates
to h instead of H, thus C∆t

h ≤ 1.

4.3 Object of investigation

A satisfactory compromise has to be found between the boundary data interval res-
olution and interpolation method. The boundary interval resolution is as its finest
when it is equal to the number of temporal gridpoints of the BB domain; this is all
the information that can possibly be available by the model. A finer resolution would
require the BB model to be run with a ∆T smaller than the one according to the CFL
criterion. In this case, more datapoints are available.
The fine resolution can be coarsened until there are only two datapoints left; T0 = 0
and TNT

= 1. Every interpolation method would give a straight line between these
points and is therefore not relevant for investigation, but somewhere between these
options lies the desired result. The desired result can be found by coarsening the
boundary data interval resolution. Coarsening is done by decreasing the resolution
with a factor 2 every time. This means that in the first time that the resolution is
coarsened, it is coarsened from NT number of intervals to NT /2 number of intervals.
Next, the resolution is coarsened from NT /2 number of intervals to NT /4 number of
intervals and so on.
The desired data acquired after every step is interpolated. The chosen interpolation
methods interpolate the data to the necessary LBC.
The hypothesis is that the third order interpolation method can obtain more accu-
rate results with a lower boundary data interval resolution compared to the first order
method. The point of investigation is to find the best compromise between the in-
terpolation method and the interval resolution by coarsening the resolution until the
result is satisfying. The next section explains how the best compromise is chosen.
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4.4 Verification

Motivation for the compromise between the boundary interval resolution and interpo-
lation method is based on the design accuracy of the SBP-SAT method. The SBP-SAT
method leads to a certain rate of convergence, described in section 3.3. With the cho-
sen SBP-SAT method the rate of convergence should be around p = 3. This can be
verified by refining the grid and evaluating the errors.
The error is obtained by comparing the LB solution uLB with the available exact
solution u∗ in the L2-norm:

||ε||2 = ||u∗ − uLB||2 (4.1)

The evaluation of the rate of convergence is done the following way:
The error is evaluated on three different spatial resolutions, all deviating with a factor
2 from each other. This means that the grids have a stepsize of:

h = 0.2
M − 1 , h2 = 1

2h and h3 = 1
2h2 = h/4

where M is the number of LB gridpoints of the first simulation. The error is related
to the rate of convergence p (see equation (3.36) in section 3.3) as follows:

||εh||2 = ||u∗ − uhLB||2 ≈ Chp (4.2)

When the grid is refined, the error for h2 = h/2 and h3 = h/4 is respectively:

||εh/2||2 = ||u∗ − u(h/2)
LB ||2 ≈ C(h2 )p (4.3)

||εh/4||2 = ||u∗ − u(h/4)
LB ||2 ≈ C(h4 )p (4.4)

Then the rate of convergence p is found by introducing an auxiliary variable qh:

qh = ||εh||2
||εh/2||2

= hp2p
hp

= 2p (4.5)

The rate of convergence p is:
p = log2(qh) (4.6)

This is going similarly for qh = εh/2

εh/4 and lead to the same p. According to the termi-
nology in section 3.3 this p is thus the p-value of the LB approximation.

When the exact solution is not present, the same method can be applied with a slight
modification of εh/2 and εh/4:

||εh/2||2 = ||u(h)
LB − u

(h/2)
LB ||2 ≈ C(h2 )p (4.7)

||εh/4||2 = ||u(h/2)
LB − u(h/4)

LB ||2 ≈ C(h4 )p (4.8)
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4.4.1 Boundary time interval resolution

It is expected that at a certain point of coarsening the boundary interval resolution,
the p-value of the LB approximation is not following its design accuracy anymore but
drops to lower values. For the approximation this means that the boundary data error
will dominate the total error.
The p-value should be around p = 3 for this LB approximation. Interpolation methods
should hold the p-value as long as possible around p = 3 while in the meantime the
boundary data interval resolution is lowered.

The p-value can be determined by two different methods. To avoid confusion, the
methods are explained carefully in the following subsections. The reason there are
two methods, is because the p-value can be obtained in different ways. The p-value is
obtained by comparing the errors of increasing gridpoints according equation 4.2 till
4.6. But increasing the spatial gridpoints, leads to an increase of temporal gridpoints
as well due to the CFL-condition. The boundary data interval resolution depends on
the number of temporal gridpoints, thus is influenced as well.
The size of the update interval is the boundary data interval resolution and this de-
pends again on the number of temporal gridpoints of the BB model.

To begin with, the size of the boundary data intervals have a certain value I1. The first
boundary data interval resolution is equal to the temporal gridsize of the BB approx-
imation, thus ∆T = Ih1 . The simulation is executed for three different spatial resolu-
tions, all refined with a Grid Refinement Factor (GRF) 2: h, h/2 and h/4. Spatial grid
refinement leads to temporal grid refinement as well, due to the CFL-condition. Thus
spatial resolutions h, h/2 and h/4 lead to temporal gridsizes of ∆T,∆T/2 and ∆T/4
respectively. Thus the simulations of the different spatial resolutions begin with a
boundary data interval resolution of Ih1 = ∆T, Ih/21 = ∆T/2 and Ih/41 = ∆T/4.
Then the boundary data interval resolution is coarsened with a factor 2 as well, that
means that the new size of the update intervals become respectively: Ih2 = 2∆T, Ih/22 =
2∆T/2 = ∆T and Ih/42 = 2∆T/4 = ∆T/2. Coarsening the boundary data interval res-
olution leads to the following sizes of update intervals:

Ih1 = ∆T, Ih/21 = ∆T/2 and Ih/41 = ∆T/4

Ih2 = 2∆T, Ih/22 = 2∆T/2 = ∆T and Ih/42 = 2∆T/4 = ∆T/2

Ih4 = 4∆T, Ih/24 = 4∆T/2 = 2∆T and Ih/44 = 4∆T/4 = ∆T
...
...

IhNT
= NT∆T = |TNT

− T0| = |1− 0|, Ih/2NT
= 1/2NT∆T and Ih/4NT

= 1/2NT∆T

Two methods are designed to deal with the dependence of the boundary data interval
resolution. The first method, constant time interval size, keeps the size of the update
interval of the values that are compared equal. The second method, constant ratio,
keeps the ratio between the size of the update intervals of the values that are compared
constant.
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Constant time interval size

The rate of convergence requires both the error of resolution h and h/2 for its compu-
tation, see equation 4.5. In the constant interval case, the absolute value of the time
interval size is kept in the choice for the errors εh and εh/2.
This means that εh is obtained for boundary data interval resolution of size:

Ih1 = |∆T |, Ih2 = 2|∆T |, Ih3 = 4|∆T |, ..., IhNT
= |TNT

− T0| = |1− 0|,

εh is compared with εh/2, obtained from the simulations with a boundary data interval
resolution of same absolute size. This means that the p-value is obtained by comparing
the errors εh vs. εh/2 on

Ih1 vs. Ih/22 , Ih2 vs. Ih/23 , ..., IhNT−1 vs. Ih/2NT
.

At a certain point of interval resolution refinement, the design order of accuracy is
lost. This method shows at what size of the interval this happens.

Constant ratio between time interval resolution

In this method the intervals are compared if the ratio of both intervals is equal to the
grid refinement factor. The Grid Refinement Factor (GRF) in this case is: grf = 2
(h, h2 = h/2, h4 = h2/2).
Now the intervals which ratio is equal to GRF are compared, thus Ih vs. Ih/2 when
Ih/Ih/2 = 2. This means that the errors εh and εh/2 are compared for the intervals:

Ih1 vs. Ih/21 , Ih2 vs. Ih/22 , . . . , IhNT
vs. Ih/2NT

.

4.5 Experiments
Several experiments are drawn to investigate the main research question. These ex-
periments are based on the issues involved within one-way nested regional climate
modeling and properties of the atmospheric waves, because the current boundary data
interval resolution is based on these properties [3]. The following issues and properties
form the basis of the several experiments:

1. Spatial resolution difference between the driving data and the nested model

2. Spatial interpolation errors

3. Zonal wavenumbers

4.5.1 Spatial resolution difference
The spatial resolution difference is the factor between the size of the BB gridsize and
LB gridsize, the Spatial Resolution Factor (SRF). The low resolution data of the BB
model is injected into the high resolution LB model. The higher resolution should not
differ too much from the BB solution, but the resolutions should also not be equal as
it will not lead to any significant difference between the outcome of the two models.
In current regional models, the SRF varies between 1 − 10. At a certain factor, the
refinement won’t influence the LB solution in a positive way anymore. To test which
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factor is this limit, the first experiments are based on the choice of the current models.
Not all factors are implemented, because it is not interesting to find an exact limit of
the the factor, but rather gain some insight of the limit-size. Spatial resolution factor
1, 2, 4, 5 and 10 are used as the first experiments.

Simulation

Experiment: 1. 2. 3. 4. 5.
Factor

1
Factor

2
Factor

4
Factor

5
Factor

10

Figure 4.3: The first experiments are based on the foregoing factors between the spatial
resolution of both models.

4.5.2 Spatial interpolation errors

Spatial interpolation errors can be present when the gridpoints of the BB domain are
not matching with the boundary gridpoint of the LB domain. They arise when the
boundary of the LB domain does not coincide with a gridpoint of its BB. Spatial
interpolation is then needed to inject the boundary data into the LB. To test whether
spatial interpolation influences the final solution significantly, two scenario options are
created: one where the gridpoints are matching and no spatial interpolation is needed
and one where the gridpoints are not matching. In the latter case, linear interpolation
is used to approximate the solution at the boundary gridpoint z1 from its adjacent BB
gridpoints. The choice for linear interpolation is made, because this issue is not the
main focus of the thesis and linear interpolation gives enough insight in the behaviour
of the solution and is also the method used in operational climate modelling.

4.5.3 Zonal wavenumbers

The last experiment options come from the current rule of thumb that is used now as
bound for the boundary data interval resolution. This depends on the zonal wavenum-
bers of the waves. To see whether physical properties of the wave really influence
the solution, four scenarios are based on the zonal wavenumbers kz = 1, 3, 5 and 8,
explained in section 3.2.

4.6 GCM and RCM equivalence
The BB and LB models are equivalent to the Global and Regional Climate Models and
thus so are its parameters. The wave characteristic parameters, the zonal wavenumber
kz and wavespeed α, are variables that are similar in both Global and Regional Models
as in the Big and Little Brother experiment (BB-LBE). Other parameters are related
to the domain of GCM and RCM.
The values of the BB-LBE simulations are scaled down to a workable value for small
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Simulation
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Figure 4.4: The first experiments branch into two options: experiments where the boundary
matches the grid of the Big Brother domain and non-matching experiments where spatial
interpolation is necessary.
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Figure 4.5: The second line of scenarios branches into four options: the zonal wavenumbers.
Together this leads to 40 experiment options.
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scale simulations, but still equivalent to the Global and Regional models. The pa-
rameters with an asterisk are the parameters of the GCM and RCM, the parameters
without asterisk used in the simplified model here.

4.6.1 Global and Regional model parameters
The following parameters are used in the Global and Regional models:

• H∗: the gridsize of the GCM domain. It is related to N∗, the number of grid-
points: N∗ = L∗1/H

∗ + 1

• h∗: the gridsize of the RCM domain. Which is related to H∗ by the Spatial Res-
olution Factor (SRF). Again H∗ determines the the number of RCM gridpoints
M∗. M∗ = L∗2/h

∗ + 1.

• L∗1: the length of the GCM domain. Which is the perimeter of the earth.

• L∗2: the length of the RCM domain. Which is an area of a certain part of the
earth, eg Western-Europe, Scandinavia or Southern Africa.

• T ∗: the simulation time.

• ∆T ∗: the stepsize between two GCM timepoints

• ∆t∗: the stepsize between two RCM timepoints

• the boundary data interval resolution. This is the resolution that is used now to
update the RCM boundary condition in time by data of the GCM.

These parameters all have certain values that are used in the model. The size of H∗
differs between 200 and 500 km. The length of the GCM domain L∗1 is the length of
the earth’s perimeter, which is L∗1 = 40.000 km. This lead to N∗ between 201 and 81.
The RCM domain gridsize is related to the GCM size by the Spatial Resolution Factor
(SRF). The SRF differs mainly from a factor 2 − 10. The RCM gridsize is mostly
around h∗ = 20 km, h∗ = 40 km or h∗ = 50 km. The size of the RCM domain covers
an area of size 5000 x 5000 km and in one dimension L∗2 = 5000 km. This lead to a
total number of gridpoints M∗ between 101 and 251. The final simulation time T ∗ is
related to the model simulation time T by T ∗ = T L

α . The several waves thus relate
the model simulation time to the physical simulation time. Hence, this is different per
experiment. The same holds for the temporal stepsize.
The boundary data interval resolution that is used now is based on a physical rule of
thumb, where the interval update is around 6 hours [3]. The boundary data interval
resolution in this model is object of investigation and will be a varying variable in these
experiments.

4.6.2 Big and Little Brother model parameters
The downscaled BB model has equivalent values to the GCM parameters. To get
similar simulations, the number of gridpoints N have to be similar to the Global
number of gridpoints N∗. Furthermore, the scaling in the nondimensional analyis
has lead to a length of the BB domain of L1 = 1. This lead to a BB gridsize of
H = 1/(N − 1). The simulations are made for a number of gridpoints that differ with
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a factor 2, so the size of N deviates between N is 51, 101, 201 and 401 gridpoints.
The same Spatial Resolution Factor (SRF) from the global and regional models is used
in the BB-LBE simulations. But not all factors are considered in the simulation, only
the scenarios where SRF is 1, 2, 5 and 10, see section 4.5. This factor determines
the LB gridsize: h = H/SRF . The length of the LB domain covers the same part
of the BB domain as the RCM covers the GCM domain, which is around 1/8 of the
GCM domain. In the LB experiment, the length of the LB domain is L2 = 0.2. The
simulation time is scaled to be T = 1 and the timestep is determined by the CFL
condition. Thus should be at most the size of the spatial gridsize, thus ∆T ≤ H. In
the simulations the temporal stepsize is reduced with a factor 80 to get better insight
in the behaviour of the LBC. Thus ∆T = 1/80H.
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4.7 Set-up of the experiment
Figure 4.6 gives an overview of how the experiment is performed in one simulation.
The characters A,B,C and D correspond to the characters in the figure.
A: The solution is computed on a large domain with low-resolution; the BB domain.
The visible wave in A is a wave with zonal wavenumber 4 in its initial state.
B: A dataset is generated with boundary data for the LB domain. The 9 shots are
snapshots of the BB solution on the LB domain, moving in time. The first shot is the
initial condition, the second shot is after a certain time interval and the last shot is
after one time period. The small square on the left boundary shows how the solution
is stored in time. The dataset contains the solution of the BB on all its timesteps. The
dataset can be filtered by removing data at certain intervals. This can be repeated
until you end with a very coarse dataset. At a certain point in this repetitive process,
the dataset contains too few information to generate an accurate LB solution. The
optimal filter can be investigated in this step.
C: The most left graphic in C is a representation of the data set containing the bound-
ary data in time for the LB solution. The data set has information about the boundary
on all the intervals, but need information on all the LB timesteps. Interpolation meth-
ods are used to generate the full time-dependent Lateral Boundary Condition (LBC).
Both first and third order interpolation methods are considered to see what generates
the best results.
D: The LB solution is generated by the boundary data. Hypothesis is that the high-
resolution boundary data will lead to a more accurate result then the low-resolution
boundary data and that third order interpolation is able to hold more accurate ap-
proximations than linear interpolation.
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Figure 4.6: Visual of the experiment set-up:
A: The solution is computed on the Big Brother domain
B: The solution is stored in time on the boundary of the LB domain
C: Several interpolation techniques are used to form the LBC
D: Generation of the Little Brother solution
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Chapter 5

Results

This section shows a part of the results of the performed experiments. Only a couple of
experiments are shown, which are representative for the conclusion that can be drawn.
The figures form a summary of the tables in Appendix C.

The following subsections show the L2-norms for the several experiment options,
sketched in section 4.5. Four scenarios are lighted :

• Scenario I is the simulation of kz = 3, a SRF of 5 and matching gridpoints.

• Scenario II is the simulation kz = 1, a SRF of 1 and matching gridpoints.

• Scenario III is the simulation kz = 8, a SRF of 2 and matching gridpoints.

• Scenario IV is the simulation kz = 5, a SRF of 2 and non-matching gridpoints.

These four scenarios give an indication of how the lateral boundary condition is in-
fluencing the final solutions. More experiments are performed to give an insight on
how the zonal wavenumbers, spatial interpolation and spatial resolution difference are
influencing the LB outcome. These can be found in Appendix C.
The results of the four scenarios are summarized in figures 5.1 till 5.5. Figure 5.1 is a
summary of the L2-norms of the regarded zonal wavenumbers with highest boundary
data interval resolution possible. The columns show the absolute value of the L2-norms
for both linear and third order interpolation. The absolute value of the L2-norm is
shown to compare the accuracy of the LB outcome between linear and third order
methods. Every wavenumber has the same accuracy for linear and third order inter-
polation, when the boundary data interval resolution is very high.

Figures 5.2 and 5.3 are a summary of tables C.11, C.12, C.13, C.14 and C.15. Figure
5.2 is a summary of the p-values of the linear results and figure 5.3 is a summary
of the p-values of the third order results. The coloured lines represent the different
wavenumbers. Every wavenumber is represented by two lines, because the L2-norm
is computed for N = 51, 101 and 201 and thus the p-value is computed between
N = 51 vs. 101 and N = 101 vs. 201. The vertical axis represents the p-values, the
horizontal axis represents the boundary data interval resolution. The lines are de-
caying as the boundary data interval resolution is lowered. The p-value is computed
according to the comparison method in which the ratio between the intervals is kept
constant.
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The black dashed line shows the critical point where the p-value is not moving accord-
ing its design accuracy anymore. For linear interpolation this happens at a boundary
data interval resolution of 25∆T , for third order interpolation this happens at a bound-
ary data interval resolution of 100∆T .
The grey line is a less critical margin, which is the lowest boundary data interval res-
olution that can be used to still obtain reasonable results.

Figures 5.4 and 5.5 are a summary of tables C.6, C.7, C.8, C.9 and C.10. Figure
5.4 is a summary of the p-values of the linear results and figure 5.5 is a summary
of the p-values of the third order results. The coloured lines represent the different
wavenumbers. Here again, the wavenumbers are represented by two lines. The vertical
axis represents the p-values, the horizontal axis represents the boundary data interval
resolution. In this case, the p-value is computed according to the comparison method
in which the interval size is kept constant.
This comparison method leads to stricter bounds on the boundary data interval res-
olution. The black dashed line of linear interpolation shows that a boundary data
interval resolution of 10∆T is the critical bound and for third order this is a boundary
data interval resolution of 50∆T . The grey dashed line leads to a less critical bound
of a boundary data interval resolution of 20∆T and 100∆T respectively.

48



-
E 

=
 ||

u*
u 

 ||
LB

Kz 1 Kz 3 NM Kz 5 NM Kz 8

Third order
interpolation

Linear
interpolation

Kz 1 Kz 3 NM Kz 5 NM Kz 8

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

Figure 5.1: This graph is a summary of the norm tables from section C.1. It is an overview for the L2-norms of the error between the LB approximation
and the exact solution for the highest boundary data interval resolution, a boundary data interval resolution of 1∆T . The norms are shown for N = 201
and zonal wavenumbers 1, 3, 5 and 8. (The NM means a non-matching scenario).
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Chapter 6

Conclusion

The goal of the thesis was to investigate the influence of the interpolation method
and boundary data interval resolution of the Lateral Boundary Condition. To find an
answer to it, the main research question has been divided in six sub-questions. The
research and sub-questions were as follows:
What is the best compromise between boundary data interval resolution and interpola-
tion method that leads to the desired result for the regional model output?

• How can the model be simplified in order to investigate the involved issues while
in the meantime being simple enough to work with?

• What are the physical conditions that should be captured by the full model?

• How can the argumentation of the desired result be based on computational
properties instead of physical properties?

• How does altering boundary data resolution of the model (time interval of up-
date) impact the final solution of the regional model?

• Until what extend does changing interpolation techniques impact the solution of
the regional model?

• What is the combination of boundary data interval resolution and interpolation
method that leads to the desired result?

Sub-question 1 is answered in section 3.1 when the Navier-Stokes equations were simpli-
fied to the one-dimensional Transport Equation. Sub-question 2 is answered in section
3.2, which describes the wave characteristics of the atmospheric waves. Sub-question 3
is answered in section4.4, which describes two methods to validate the outcome. The
other questions will be answered here.

6.1 Evaluation of the boundary data interval resolution
From figures 5.2-5.5 it can be concluded that on a certain point the resolution of
the boundary data update becomes critical. The approximation looses its accuracy
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such that its p-value doesn’t coincide anymore with the expected rate of convergence
according the SBP-SAT-operators. The p-values are moving horizontally, until at a
certain point, the critical point, the boundary data interval resolution becomes too
low. After this point, the values are acting strangely. They are moving up and down,
finally resulting in a p-value around p = 0. After this critical point, the LB simulation
is not able to correct for the temporal interpolation of boundary data. The errors
caused by the inaccurate LBC are dominating the final outcome, resulting in a total
loss of accuracy.
Before this critical point, the boundary data interval resolution is not influencing the
outcome. This is visible in figure 5.1. The values of the same-coloured columns in
this figure are equal for a boundary data interval resolution of 1∆T . This means that
the L2 norm of the error between the exact solution and the LB approximation is the
same.
The assessment of the boundary data interval resolution on its own is not important.
It is the combination with the interpolation method that shows till what extend the
resolution can be lowered.

6.2 Interpolation method influence

Figures 5.2-5.5 show that the third order interpolation method is able to gain the ex-
pected rate of convergence much longer along a lower boundary data interval resolution
than linear interpolation methods. The p-values of third order interpolation remain on
the same horizontal line for a lower boundary data interval resolution than for linear
interpolation. Although this is visible for both the assessment methods of constant
ratio and constant interval, there is a difference in at what points the p-values drop.
Assessment according a constant ratio (visible in figures 5.2 and 5.3) leads to a bound-
ary resolution for respectively linear and third order interpolation of:

25∆T vs 100∆T

The less critical bound (the grey dotted lines) result in :

40∆T vs 250∆T

Assessment according a constant interval leads (visible in figures 5.4 and 5.5) to a
boundary resolution for respectively linear and third order interpolation of:

10∆T vs 50∆T

The results of the less critical bounds are:

20∆T vs 100∆T

It also visible in figure 5.1 that interpolation on its own does not lead to a more
accurate LB approximation! The norms in figure 5.1 show that linear and third order
interpolation are equal, the only difference is that third order interpolation is able to
hold the accurate LB outcome for a lower boundary data interval resolution.

56



6.3. EXAMINATION OF THE SEVERAL EXPERIMENTS

6.3 Examination of the several experiments
Several experiments are performed to test whether the issues from section 2.2 would
be of great importance. These issues gave rise to a set of experiments, but not all the
drawn experiments are performed. Only a sample of experiments is performed, to give
an idea of their influence. The p-values of the drawn experiments are given in tables
6.1 and 6.2.

Table 6.1: Overview of the p-values for several different experiments scenarios. The
shown boundary data interval resolution is 1∆T . These p-values are for the linear
interpolation method. The values in the table can read as follows: the value 3.2 is the
p-value for kz = 1 a spatial resolution difference of SRF = 1 and matching boundary
points. The most right column are the values of the BB simulation, which can be used
as reference value.

Match No-match
SRF 1 2 5 10 1 2 5 10 BB

kz

1 3.2 3.0 3.0
3 2.9 2.9 2.8 3.1
5 3.4 3.4 3.4 3.4
8 3.8 3.8 3.8

Table 6.2: Overview of the p-values for several different experiments scenarios. These
p-values are for the third order interpolation method.

Match No-match
SRF 1 2 5 10 1 2 5 10

kz

1 3.2 2.9
3 2.9 2.9 2.8
5 3.4 3.4 3.4
8 3.8 3.8

6.3.1 Spatial resolution difference
The spatial resolution difference, in the tables indicated by SRF 1, 2, 5 and 10, has
almost no influence on the p-values. Only in zonal wavenumber 1 is the p-value different
for a spatial resolution factor of 1 and 5. For the other zonal wavenumbers the p-value
is the same for all the factors.

6.3.2 Horizontal interpolation errors
The horizontal interpolation errors that can be caused in case the gridpoint of the
LB boundary is not matching with a gridpoint of the BB model (indicated by match
and no-match) are not influencing the p-value. The p-value is exactly the same for
the both a matching and non-matching set-up. The L2-norm of the error does change
in case the gridpoints are not maching. The non-matching outcome is slightly more
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accurate. In the case of zonal wavenumber 5 and spatial resolution factor of 2 has the
matching experiment a norm of E2 = 3.19E − 04 for N = 201 gridpoints and a norm
of E2 = 2.52E − 04 for the non-matching experiment.

6.3.3 Zonal wavenumbers
The zonal wavenumbers all have a different output of the p-value. The highest zonal
wavenumber has a p-value of 3.8 in relation to a p-value of 2.9 for kz = 3. I don’t know
due to which grounds this can be explained.
The zonal wavenumbers have impact on the accuracy in absolute norm. Figure 5.1
shows that the norms all differ with a factor 10 from each other. That means that
the output of kz = 8 is 1000 times less accurate than the output of kz = 1! This
is significant. This can easily be explained by the fact that the it is much harder to
approximate 8 ridges and troughs in one domain of kz = 8, than the one ridge of kz = 1.

Most importantly is the question whether the zonal wavenumber influences the re-
taining of the p-value. Figures 5.2-5.5 show that this is not the case. Although the
p-values differ for different wavenumbers, they retain all until the exact same boundary
data interval resolution.

6.4 Final Conclusion
The conclusion from this experimental set-up should be based on the performance of
the p-values. The final conclusion is thus not based on the L2-norms of the errors be-
tween the exact solution and the LB output, but only on how the p-values are holding
up. It is convenient for the reader to take a look again at figures 5.2-5.5.
From these figures it can be concluded that in case of linear interpolation, the lowest
boundary data interval resolution can be between 10∆T and 25∆T .
In case of third order interpolation the lowest resolution can be between 50∆T and
100∆T .
This holds for all the wavenumbers, spatial resolution differences and matching and
non-matching boundary points. A used boundary data interval resolution between
these values should lead to the best obtainable accuracy, while using less computa-
tional time.

The boundary data interval resolution depends on the chosen temporal resolution
of the BB model. The chosen temporal resolution is ∆T = 1/80h. But a lower tem-
poral resolution doesn’t lead to less accurate approximations. It is thus also possible
to choose a BB temporal resolution of ∆T = 1/8h and a boundary data interval res-
olution of 1∆T . This saves even more computation time. In the case of third order
interpolation, the BB temporal resolution can even be lowered to: ∆T = 5/8h and a
boundary data interval resolution of 1∆T .

6.4.1 What does this mean for the full Climate Models
To relate the conclusion to the final model, the boundary data interval resolution needs
to be translated to the physical workable values, explained in section 4.6 and finally
to the full model, the Navier-Stokes equations.
The meaning of a boundary data interval resolution of 10 − 25∆T and 50 − 100∆T
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Table 6.3: Final conclusion. The values in the table stand for the boundary data
interval resolution.

Constant
interval

Constant
ratio

Linear 10 25
Third order 50 100

have to be translated to the workable values. The model time period T was in the
non-dimensional analysis scaled to T = L/α/2π.

The values for α depend on the wavenumbers. kz = 1 and kz = 3 are investigated for
α = 20 ms−1 and kz = 5 and kz = 8 are investigated for α = 3 ms−1.

The physical value of parameter L is L = 40000000 m. A wavespeed of α = 3 ms−1

and a temporal stepsize of ∆T of ∆T = 1/NT = 1/4000 lead to a physical temporal
resolution of

∆T ∗ = 1/4000 ∗ 40000000/3/2π ≈ 500 s or around 8.5 minutes.

A boundary data interval resolution of 10∆T , means a resolution of 1h30. This is
significantly less than the current rule of thumb of 6 hours. A less strict bound (the
grey dashed line) is a boundary data interval resolution of 25∆T or 3h45.
In case of third order interpolation it could be increased to 50∆T , which should lead
to a resolution of almost 7h30 hours or with the less strict bound to even 100∆T 15
hours.
A wave speed of α = 20 ms−1 means a physical resolution of ∆T ∗ = 1/4000 ∗
40000000/20/2π ≈ 80 s, which is around 1.5 minutes. The physical boundary data
interval resolution would change to a value between 0h15 and 0h40 for linear inter-
polation. For third order interpolation it would change to a value between 1h15 and
2h30.
There is thus a significant difference in the choice of the physical boundary data inter-
val resolution which depends on the wavespeed.
The nowadays used rule of thumb to update the boundary condition was around 6
hours. The combination of this rule of thumb with linear interpolation would lead to
a decrease of accuracy of the final outcome for all the wavenumbers. A combination
with third order interpolation would gain the desired accuracy in the case of the low
wavespeed α = 3 ms−1. On top I would like to add that a higher resolution than the
here stated bound, would not lead to more accurate approximations. Thus a boundary
data interval resolution around the stated bound is desirable to avoid useless compu-
tational time and storage.
Furthermore, the experiments with several characteristic wave properties have shown
that the BB − LBE simulations are less accurate as the wavenumbers increases, but
that the p-values are acting similar for all the wavenumbers. This means that it is
not a wise idea to choose a higher boundary data interval resolution for a higher
wavenumber, because the approximation cannot exceed a certain accuracy.
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6.5 Notes on the conclusion
The research is conducted for a simplified problem of the global and regional climate
models. This simplified problem shows how the boundary data interval resolution and
interpolation methods are influencing the solutions. If it is already visible in this sim-
plified problem, then it is definitely visible in the full model. But a note should be
made that this simplified model cannot be used to determine the exact value of the
boundary data interval resolution in combination with the interpolation method. This
research should be used to confirm the hypothesis that third order interpolation meth-
ods are able to longer retain an accurate solution. Another conclusion is that third
order interpolation does not lead to more accurate solutions on its own! Linear and
third order interpolation method lead to the same accuracy as long as the boundary
data interval resolution is high enough.
To determine the exact value of the boundary data interval resolution the thesis can
be repeated for the full model. The several experiment options have shown that they
do not influence the final approximation. Redoing the experiments for a matching and
non-matching scenarios or for several spatial resolution differences is thus unnecessary.

Another note I would like to make is that the determined wave characteristics are
a result of a literature study. It was hard to determine which waves are exactly of
importance and which characteristics are used in the full climate models. Especially
the wave speed is important in the translation of the model value to the physical value.
The most extreme conditions are chosen, but if they are too harsh this would mean
that the physical update resolution is less strict than stated now. It is important to
conduct more research on this topic.
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Appendix A

Spatial interpolation errors

In case of a Little Brother boundary that is not matching with Big Brother gridpoints,
spatial interpolation is necessary to transfer the output of the BB model to the LB
model to form the lateral boundary condition. Spatial interpolation is done with a
linear method, because it is not the main focus to investigate whether this causes any
harm to the solution, it is more to give an insight of what would happen if they are
not matching.
Linear interpolation transfers the BB output on two adjacent points (xLB1 and xLB2)
of the LB boundary to the gridpoint z0 of the LB boundary with the following formula:

gLB(z0) = uBB(xLB1) + uBB(xLB2)− uBB(xLB1)
xLB2 − xLB1

(A.1)

The vector gLB(z0) is not yet the lateral boundary condition! This vector contains only
temporal information on the update intervals and still requires temporal interpolation
before it can be used as the LBC of the Little Brother model.
The adjacent points xLB1 and xLB2 of the boundary z0 can be found with the following
algorithm:

Algorithm 1 Finding the adjacent points of the LB boundary
1: N← number of spatial BB gridpoints
2: ∆x← gridsize of the BB domain
3: for i = 1 : N do
4: if i∆x > z0 −∆x & i∆x < z0 + ∆x then
5: xLB1 ← i∆x
6: xLB2 ← (i+ 1)∆x
7: end if
8: end for
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Appendix B

Estimation of the error

In case the exact solution is not present to use for validation, an estimate has to be
made on the LB output to investigate the LBC properties. This estimation should
estimate the error between the numerical approximation from the LB model and the
exact solution. This can be done by unraveling what exactly is going on in the Runge-
Kutta solver.
To investigate the error-norm, several terms have to be taken into account to get a
clear idea how much the boundary term is influencing the error. Therefore we have
precisely evaluated the equation the following way:

ut + αP−1Qu = σP−1E0(u− g) (B.1)

⇔ ut = (−αP−1Q+ σP−1E0)︸ ︷︷ ︸
A

u− σP−1E0g︸ ︷︷ ︸
b

(B.2)

Thus the spatial discretization can be written as

ut = Au− b(t). (B.3)

The notation un = u(tn) and bn = b(tn) and bn+ 1
2 = b(tn + 1

2∆t) is introduced. If the
whole numerical method is considered, it can be written as

un+1 =
(
I + ∆tA+ 1

2∆t2A2 + 1
6∆t3A3 + 1

24∆t4A4
)
un

−
(1

6∆tI + 1
6∆t2A+ 1

12∆t3A2 + 1
24∆t4A3

)
bn

−
(2

3∆tI + 1
3∆t2A+ 1

12∆t3A2
)
bn+1/2 −∆t16b

n+1

The notation A′ = I + ∆tA+ 1
2∆t2A2 is introduced for convenience:
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un+1 =

I + ∆tA+ 1
2∆t2A2︸ ︷︷ ︸

A′

+1
6∆t3A3 + 1

24∆t4A4

un

− ∆t
6

I + ∆tA+ 1
2∆t2A2︸ ︷︷ ︸

A′

+1
4∆t3A3

 bn

− 2
3∆t

I + ∆tA+ 1
2∆t2A2︸ ︷︷ ︸

A′

−1
2∆tA− 3

8∆t2A2

 bn+1/2 −∆t16b
n+1

And even more compact by introduction of A,B,C and D:

un+1 =
(
A′ + 1

6∆t3A3 + 1
24∆t4A4

)
︸ ︷︷ ︸

C

un − ∆t
6

(
A′ + 1

4∆t3A3
)

︸ ︷︷ ︸
D

bn

− 2
3∆t

(
A′ − 1

2∆tA− 3
8∆t2A2

)
︸ ︷︷ ︸

E

bn+1/2 −∆t16I︸ ︷︷ ︸
F

bn+1

Thus in short:

un+1 = Cun −Dbn + Ebn+1/2 + Fbn+1 (B.4)
This equation can be seperated by evaluating the temporal steps seperately. That
means that it can be written as follows: You can also write it as follows: For n =
0, . . . , NT :

un+1 = Cun −Dbn + Ebn+1/2 + Fbn+1

⇔ un+1 = C2un−1 − CDbn−1 + (CF −D)bn + Fbn+1 + CEbn−1+1/2 + Ebn+1/2

un+1 = C3un−2 − C2Dbn−2 − CDbn−1 + (CF −D)bn + C2Fbn−2+1

+ Fbn+1 + CEbn−1+1/2 + C2Ebn−2+1/2 + Ebn+1/2

un+1 = C4un−3 +Fbn+1 +(CF−D)bn+C(CF−D)bn−1 +C2(CF−D)bn−2−C3Dbn−3

+ Ebn+1/2 + CEbn−1+1/2 + C2Ebn−2+1/2 + C3Ebn−3+1/2

un+1 = C4un−3+C0Fbn+1+CFbn+C2Fbn−1+C3Fbn−2−C0Dbn−CDbn−1−C2Dbn−2

− C3Dbn−3 + C0Ebn+1/2 + CEbn−1+1/2 + C2Ebn−2+1/2 + C3Ebn−3+1/2

. . .

Until the equation can be regarded as the following sum:

un+1 = Cn+1u0 +
n∑
i=0

CiFbn+1−i +
n∑
i=0

CiDbn−i +
n∑
i=0

CiEbn−i+1/2 (B.5)

If characters A,B,C and D are replaced back by their original values, you end up with
the following very long equation:
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un+1 =
(
I + ∆tA+ 1

2∆t2A2 + 1
6∆t3A3 + 1

24∆t4A4
)n+1

u0

+ ∆t
6

n∑
i=0

(
I + ∆tA+ 1

2∆t2A2 + 1
6∆t3A3 + 1

24∆t4A4
)i
bn+1−i

+ ∆t
6

n∑
i=0

(
I + ∆tA+ 1

2∆t2A2 + 1
6∆t3A3 + 1

24∆t4A4
)i

(
I + ∆tA+ 1

2∆t2A2 + 1
4∆t3A3

)
bn−i

+ 2∆t
3

n∑
i=0

(
I + ∆tA+ 1

2∆t2A2 + 1
6∆t3A3 + 1

24∆t4A4
)i

(
I + ∆tA+ 1

2∆t2A2 − 3
8∆t2A2

)
bn−i+1/2

If then A and b are replaced by their equation, then it becomes even longer:

un+1 =
(
I + ∆t

(
−αP−1Q+ σP−1E0

)
− 1

2∆t2
(
−αP−1Q+ σP−1E0

)2

− 1
6∆t3

(
−αP−1Q+ σP−1E0

)3

− 1
24∆t4

(
−αP−1Q+ σP−1E0

)4
n+1u0

− ∆t
6

n∑
i=0

(
I + ∆t

(
−αP−1Q+ σP−1E0

)
+ 1

2∆t2
(
−αP−1Q+ σP−1E0

)2

+ 1
6∆t3

(
−αP−1Q+ σP−1E0

)3

+ 1
24∆t4

(
−αP−1Q+ σP−1E0

)4
i
(
σP−1E0g

)n+1−i

− ∆t
6

n∑
i=0

(
I + ∆t

(
−αP−1Q+ σP−1E0

)
+ 1

2∆t2
(
−αP−1Q+ σP−1E0

)2

+ 1
6∆t3

(
−αP−1Q+ σP−1E0

)3
+ 1

24∆t4
(
−αP−1Q+ σP−1E0

)4
i(

I + ∆t
(
−αP−1Q+ σP−1E0

)
+ 1

2∆t2
(
−αP−1Q+ σP−1E0

)2

+ 1
4∆t3

(
−αP−1Q+ σP−1E0

)3 (
σP−1E0g

)n−i
− 2∆t

3

n∑
i=0

(
I + ∆t

(
−αP−1Q+ σP−1E0

)
+ 1

2∆t2
(
−αP−1Q+ σP−1E0

)2

+ 1
6∆t3

(
−αP−1Q+ σP−1E0

)3
+ 1

24∆t4
(
−αP−1Q+ σP−1E0

)4
i(

I + ∆t
(
−αP−1Q+ σP−1E0

)
+ 1

2∆t2
(
−αP−1Q+ σP−1E0

)2

− 3
8∆t2

(
−αP−1Q+ σP−1E0

)2 (
σP−1E0g

)n−i+1/2

Now we have separated the norm in several terms, we can verify our solution by
this approximation.
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APPENDIX B. ESTIMATION OF THE ERROR

B.1 Finding a bound on the error
To find a bound on the error, we take a closer look at the compact version:

un+1 = Cn+1u0 −
n∑
i=0

CiDbn−i −
n∑
i=0

CiEbn−i+1/2 −
n∑
i=0

CiFbn+1−i (B.6)

With n the considered timestep, u0 the initial condition and b is the boundary term.
Take a closer look at this term:

b = σP−1E0g (B.7)

with g a vector with boundary data on the first row of the vector.

An estimation has to be found for the error between the exact solution (which is
not present) and the LB output.
Firstly, the term that corresponds to the initial condition can be neglected, because
after a certain time, the initial condition shouldn’t influence the final solution anymore.
The error between the exact solution and the Little Brother solution can be written
as follows then:

||u(tn+1)− un+1|| = −
n∑
i=0

CiD||bn−i − bn−iBB ||

−
n∑
i=0

CiE||bn−i+1/2 − bn−i+1/2
BB ||

−
n∑
i=0

CiF ||bn+1−i − bn−i+1
BB || (B.8)

The term between norm brackets is the error between the BB boundary data and the
time interpolated solution. Now an estimation of this term can be found.

B.1.1 Estimation of the bound due to linear interpolation

The error due to linear interpolation is explained in section 3.4.3 and is estimated by
(3.44), which is:

ξ(t) ≤ k2

2!

(∆T
2

)2
= k2

8 (∆T )2. (B.9)

With kz the zonal wavenumber and ∆T the BB timestep. This term is a bound on the
boundary term g in (B.7) in case of linear interpolation. The first term on the RHS
of (B.8) can then be bounded by:

n∑
i=0

CiD||bn−i − bn−iBB || ≤ D
k2

8 σP
−1E0(∆T )2

n∑
i=0

Ci (B.10)

The D k2

8 σP
−1E0(∆T )2 stands now before the sum, because we are intersted in an

estimation of the error, so the maximum term.
Due to the simplifications made by estimating the second derivative of the cosinus and
using constant timesteps, the same errorbounds are eligible for the second and third
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B.1. FINDING A BOUND ON THE ERROR

term of the RHS.
This leads to a total estimate of:

||u(tn+1)− un+1|| ≤ −(D + E + F )k
2

8 σP
−1E0(∆T )2

n∑
i=0

Ci (B.11)

Where D + E + F = ∆tC. This is an analytic bound, which tells us how much the
error due to interpolation is influencing the final solution.

B.1.2 Estimation of the bound due to third order interpolation
A similar bound can be accomplished for the natural cubic spline interpolation. This
becomes

||u(tn+1)− un+1|| ≤ −(D + E + F ) k
4

384σP
−1E0(∆T )4

n∑
i=0

Ci (B.12)
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Appendix C

Results

This section shows a part of the results of the performed experiments. Only a cou-
ple of scenarios are shown, which are representative for the conclusion that can be
drawn. The tables show the L2 norm of the error between the exact solution and
Little Brother solution for three different resolutions (columns from left to right) and
different boundary interval resolution (rows). The most left column shows the size of

 51 101  201

 0.005  0.0025  0.00125

0.00031
0.00029
0.00028
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.....

.....

.....

0.000023
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0.000005
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4
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8
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The size of the 
update 
interval is this 
factor times 
the size of the 
BB timestep

Norm of the error 
between exact 
solution and Little 
Brother solution

The error 
between the 
Big Brother 
solution and 
exact solution

Figure C.1: This is an example of the results table. The text-clouds explain the meaning of
the values in the table.

the boundary interval. The 1 means that the boundary data interval resolution has
the size of one Big Brother timestep ∆T . The 2 means that the size is 2 times the
Big Brother timestep, which is 2∆T . This means that that the Big Brother solution
is stored in half the number of points as in the first row. If there are in total 100 Big
Brother timepoints, then 50 would mean that the solution is only stored at T = 0.5
and at T = 1 (the initial condition at T = 0 is always present). Figure C.1 explains
what you see in the tables. The round clouds representing Ih2 refer to the interval
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APPENDIX C. RESULTS

resolution. This indication is necessary for the validation section, in which two options
are sketched to compare the solution. The indication corresponds to the explanation
in section 4.4.

C.1 Norms
The following subsections show the L2-norms for the several experiment options,
sketched in section 4.5. Five scenarios are lighted out in the:

• Scenario I is the simulation of kz = 3, a SRF of 5 and matching gridpoints.

• Scenario II is the simulation kz = 1, a SRF of 1 and matching gridpoints.

• Scenario III is the simulation kz = 8, a SRF of 2 and matching gridpoints.

• Scenario IV is the simulation kz = 3, a SRF of 10 and non-matching gridpoints.

• Scenario V is the simulation kz = 5, a SRF of 2 and non-matching gridpoints.

These five scenarios give an indication of how the lateral boundary condition is in-
fluencing the fnial solutions. More experiments are performed to give an insight on
how the zonal wavenumbers, spatial interpolation and spatial resolution difference are
influencing the LB outcome. These results are summarized in figures 5.2 till 5.5.
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C.1. NORMS

C.1.1 Scenario I: Zonal wavenumber 3, factor 5, Matching gridpoints

Table C.1: This table shows all the L2 norms from Scenario I. The table is explained in
the picture at the beginning of this chapter. The table on the left is linear interpolation.
The table on the right is cubic interpolation.

N 51 101 201
∆t 2.50e-04 1.25e-04 6.25e-05
1 3.05e-03 3.94e-04 5.22e-05
2 3.05e-03 3.95e-04 5.23e-05
4 3.06e-03 3.96e-04 5.26e-05
5 3.07e-03 3.97e-04 5.29e-05
8 3.09e-03 4.03e-04 5.41e-05

10 3.11e-03 4.07e-04 5.52e-05
12.5 3.17e-03 4.18e-04 9.54e-05
20 3.28e-03 4.47e-04 6.48e-05
25 3.40e-03 4.77e-04 7.21e-05
40 3.94e-03 6.10e-04 1.05e-04
50 4.44e-03 7.35e-04 1.36e-04
80 6.91e-03 1.41e-03 2.93e-04
100 8.95e-03 1.90e-03 4.30e-04
125 1.23e-02 2.75e-03 6.48e-04
200 2.69e-02 6.54e-03 1.60e-03
250 3.98e-02 9.95e-03 2.48e-03
400 9.18e-02 2.47e-02 6.26e-03
500 9.15e-02 3.77e-02 9.67e-03
BB 1.04e-02 1.12e-03 1.34e-04

N 51 101 201
∆t 2.50e-04 1.25e-04 6.25e-05
1 3.05e-03 3.94e-04 5.22e-05
2 3.05e-03 3.94e-04 5.22e-05
4 3.05e-03 3.94e-04 5.22e-05
5 3.05e-03 3.94e-04 5.22e-05
8 3.05e-03 3.94e-04 5.22e-05
10 3.05e-03 3.94e-04 5.22e-05
20 3.06e-03 3.95e-04 5.22e-05
25 3.07e-03 3.95e-04 5.22e-05
40 3.14e-03 4.00e-04 5.25e-05
50 3.27e-03 4.07e-04 5.29e-05

100 6.57e-03 6.18e-04 6.52e-05
125 1.14e-02 9.56e-04 8.57e-05
200 4.93e-02 4.10e-03 2.93e-04
250 6.39e-02 9.11e-03 6.44e-04
500 6.15e-01 6.20e-02 8.83e-03
BB 1.04e-02 1.12e-03 1.34e-04
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C.1.2 Scenario II: Zonal wavenumber 1, factor 1, Matching gridpoints

Table C.2: The norms of Scenario II. Left is linear interpolation, on the right is cubic
interpolation.

N 51 101 201
∆t 2.50e-04 1.25e-04 6.25e-05
1 1.69e-04 1.80e-05 2.09e-06
2 1.69e-04 1.80e-05 2.08e-06
4 1.68e-04 1.79e-05 2.06e-06
5 1.68e-04 1.78e-05 2.04e-06
8 1.67e-04 1.75e-05 1.96e-06

10 1.66e-04 1.72e-05 1.89e-06
12.5 2.66e-04 8.93e-05 4.08e-05
20 1.55e-04 1.49e-05 1.39e-06
25 1.48e-04 1.33e-05 1.22e-06
40 1.22e-04 1.12e-05 2.73e-06
50 1.08e-04 1.63e-05 4.93e-06

62.5 1.71e-04 7.10e-05 3.60e-05
80 1.87e-04 5.46e-05 1.49e-05
100 3.30e-04 9.22e-05 2.42e-05
125 5.70e-04 1.51e-04 3.88e-05
200 1.63e-03 4.08e-04 1.02e-04
250 2.60e-03 6.44e-04 1.60e-04
400 7.00e-03 2.25e-03 5.30e-04
500 1.39e-02 2.98e-03 7.76e-04
BB 2.91e-04 3.62e-05 4.53e-06

N 51 101 201
∆t 2.50e-04 1.25e-04 6.25e-05
1 1.69e-04 1.80e-05 2.09e-06
2 1.69e-04 1.80e-05 2.09e-06
4 1.69e-04 1.80e-05 2.09e-06
5 1.69e-04 1.80e-05 2.09e-06
8 1.69e-04 1.80e-05 2.09e-06
10 1.69e-04 1.80e-05 2.09e-06
20 1.69e-04 1.80e-05 2.09e-06
25 1.69e-04 1.80e-05 2.08e-06
40 1.67e-04 1.78e-05 2.07e-06
50 1.66e-04 1.77e-05 2.06e-06

100 1.61e-04 1.82e-05 2.24e-06
125 1.71e-04 2.07e-05 2.64e-06
200 3.60e-04 4.96e-05 6.32e-06
250 6.10e-04 9.17e-05 1.16e-05
500 5.78e-03 6.00e-04 9.02e-05
BB 2.91e-04 3.62e-05 4.53e-06
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C.1.3 Scenario III: Zonal wavenumber 8, factor 2, Matching gridpoints

Table C.3: The norms of Scenario III. Left is linear interpolation, on the right is cubic
interpolation.

N 51 101 201
∆t 2.50e-04 1.25e-04 6.25e-05
1 1.94e-01 1.39e-02 1.25e-03
2 1.94e-01 1.39e-02 1.25e-03
4 1.94e-01 1.39e-02 1.25e-03
5 1.94e-01 1.39e-02 1.24e-03
8 1.94e-01 1.39e-02 1.23e-03

10 1.94e-01 1.38e-02 1.22e-03
12.5 1.95e-01 1.41e-02 1.29e-03
20 1.94e-01 1.36e-02 1.15e-03
25 1.94e-01 1.34e-02 1.10e-03
40 1.94e-01 1.27e-02 8.61e-04
50 1.94e-01 1.21e-02 6.58e-04

62.5 1.95e-01 1.17e-02 6.29e-04
80 1.94e-01 1.02e-02 5.89e-04
100 1.95e-01 9.64e-03 1.43e-03
125 1.96e-01 1.15e-02 2.86e-03
200 2.29e-01 3.70e-02 1.01e-02
250 2.56e-01 6.01e-02 1.67e-02
400 4.19e-01 1.49e-01 4.26e-02
500 3.70e-01 1.87e-01 6.48e-02
BB 1.04e-02 1.12e-03 1.34e-04

N 51 101 201
∆t 2.50e-04 1.25e-04 6.25e-05
1 1.94e-01 1.39E-02 1.25e-03
2 1.94e-01 1.39e-02 1.25e-03
4 1.94e-01 1.39e-02 1.25e-03
5 1.94e-01 1.39e-02 1.25e-03
8 1.94e-01 1.39e-02 1.25e-03
10 1.94e-01 1.39e-02 1.25e-03
20 1.94e-01 1.39e-02 1.25e-03
25 1.94e-01 1.39e-02 1.25e-03
40 1.94e-01 1.37e-02 1.23e-03
50 1.94e-01 1.34e-02 1.21e-03

100 2.18e-01 1.10e-02 7.03e-04
125 2.51e-01 2.08e-02 1.13e-03
200 4.46e-01 1.17e-01 1.05e-02
250 3.69e-01 1.84e-01 2.47e-02
500 3.69e-01 5.34e-01 1.84e-01
BB 7.10e-01 4.90e-02 3.75e-03
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C.1.4 Scenario IV: Zonal wavenumber 3, factor 10, Non-Matching

Table C.4: The norms of Scenario IV. Left is linear interpolation, on the right is cubic
interpolation.

N 51 101 201
∆t 2.50e-04 1.25e-04 6.25e-05
1 3.13e-03 4.48e-04 8.04e-05
2 3.14e-03 4.48e-04 8.05e-05
4 3.14e-03 4.50e-04 8.09e-05
5 3.15e-03 4.51e-04 8.12e-05
8 3.17e-03 4.56e-04 8.25e-05

10 3.19e-03 4.61e-04 8.37e-05
12.5 3.25e-03 4.75e-04 1.19e-04
20 3.36e-03 5.01e-04 9.38e-05
25 3.48e-03 5.32e-04 1.01e-04
40 4.06e-03 6.73e-04 1.40e-04
50 4.57e-03 8.05e-04 1.71e-04

62.5 5.43e-03 1.04e-03 2.54e-04
80 6.90e-03 1.40e-03 3.22e-04
100 9.05e-03 1.95e-03 4.60e-04
125 1.24e-02 2.83e-03 6.80e-04
200 2.70e-02 6.59e-03 1.63e-03
250 3.98e-02 1.00e-02 2.51e-03
400 9.18e-02 2.48e-02 6.28e-03
500 9.11e-02 3.78e-02 9.69e-03
BB 1.04e-02 1.12e-03 1.34e-04

N 51 101 201
∆t 2.50e-04 1.25e-04 6.25e-05
1 3.13e-03 4.47e-04 8.03e-05
2 3.13e-03 4.47e-04 8.03e-05
4 3.13e-03 4.47e-04 8.03e-05
5 3.13e-03 4.47e-04 8.03e-05
8 3.13e-03 4.47e-04 8.03e-05
10 3.13e-03 4.47e-04 8.03e-05
20 3.14e-03 4.48e-04 8.03e-05
25 3.14e-03 4.48e-04 8.04e-05
40 3.15e-03 4.49e-04 8.05e-05
50 3.18e-03 4.51e-04 8.07e-05

100 3.60e-03 4.92e-04 8.52e-05
125 4.25e-03 5.48e-04 9.20e-05
200 1.63e-02 9.51e-04 1.48e-04
250 3.11e-02 1.74e-03 2.19e-04
500 6.48e-01 2.99e-02 1.44e-03
BB 1.04e-02 1.12e-03 1.34e-04
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C.1.5 Scenario V, Zonal wavenumber 5, factor 2, Non-Matching

Table C.5: The norms of Scenario V. Left is linear interpolation, on the right is cubic
interpolation.

N 51 101 201
∆t 2.50e-04 1.25e-04 6.25e-05
1 3.03e-02 2.77e-03 2.53e-04
2 3.03e-02 2.77e-03 2.53e-04
4 3.02e-02 2.77e-03 2.53e-04
5 3.02e-02 2.76e-03 2.52e-04
8 3.02e-02 2.75e-03 2.51e-04

10 3.02e-02 2.75e-03 2.50e-04
12.5 3.07e-02 3.00e-03 3.97e-04
20 3.00e-02 2.68e-03 2.41e-04
25 2.98e-02 2.63e-03 2.37e-04
40 2.92e-02 2.47e-03 2.46e-04
50 2.88e-02 2.36e-03 2.87e-04

62.5 2.88e-02 2.62e-03 4.96e-04
80 2.77e-02 2.57e-03 6.09e-04
100 2.80e-02 3.48e-03 9.59e-04
125 3.11e-02 5.42e-03 1.52e-03
200 6.43e-02 1.60e-02 4.42e-03
250 9.38e-02 2.66e-02 6.89e-03
400 5.99e-02 6.64e-02 1.75e-02
500 3.15e-01 9.46e-02 2.70e-02
BB 8.11e-02 6.54e-03 6.63e-04

N 51 101 201
∆t 2.50e-04 1.25e-04 6.25e-05
1 3.03e-02 2.77e-03 2.53e-04
2 3.03e-02 2.77e-03 2.53e-04
4 3.03e-02 2.77e-03 2.53e-04
5 3.03e-02 2.77e-03 2.53e-04
8 3.03e-02 2.77e-03 2.53e-04
10 3.03e-02 2.77e-03 2.53e-04
20 3.02e-02 2.77e-03 2.53e-04
25 3.02e-02 2.77e-03 2.53e-04
40 3.02e-02 2.76e-03 2.53e-04
50 3.02e-02 2.76e-03 2.53e-04

100 2.90e-02 2.68e-03 2.51e-04
125 3.06e-02 2.59e-03 2.50e-04
200 1.28e-02 4.84e-03 3.00e-04
250 4.05e-01 1.56e-02 5.70e-04
500 4.81e-01 3.82e-01 1.63e-02
BB 8.11e-02 6.54e-03 6.63e-04
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C.2 Constant ratio between intervals to compare
There are two options to compare the norms logarithmically, as explained in section
4.4. Tables C.6 till C.10 show the p-values of the comparison of the norms that are
related by a constant ratio. Figure C.2 show how the norms are compared in this case.
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The intervals of the blocks with 
the same grey color (so on the 
diagonal line) have the same size. 
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stant interval size case. 

The intervals that lie on the same 
horizontal line are compared in 
the constant interval factor case. 
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Figure C.2: This is an example of the p-value table. The text-clouds explain the meaning of
the values in the table.

In the case of constant ratio, the norms from tables C.1 till C.5 are compared that lie
on the same horizontal line. That results in the p-values that are showed in the coming
subsections.
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C.2.1 Scenario I: Zonal wavenumber 3, factor 5, Matching gridpoints

Table C.6: This table contains the p-value of the intervals compared with constant
ratio of Scenario II. Left table is due to linear interpolation. Right table is due to
cubic interpolation.

N 51-101 101-201
1 2.953 2.917
2 2.952 2.916
4 2.950 2.912
5 2.948 2.909
8 2.948 2.909
10 2.932 2.883

12.5 2.932 2.883
20 2.873 2.788
25 2.833 2.727
40 2.692 2.537
50 2.596 2.429
80 2.596 2.429

100 2.294 2.267
125 2.236 2.142
200 2.161 2.086
250 2.040 2.031
400 1.998 2.005
500 1.893 1.983
BB 3.209 3.061

N 51-101 101-201
1 2.953 2.918
2 2.953 2.918
4 2.953 2.918
5 2.953 2.918
8 2.953 2.918
10 2.953 2.918
20 2.954 2.919
25 2.957 2.920
40 2.976 2.929
50 3.005 2.945

100 3.410 3.244
125 3.581 3.479
200 3.586 3.808
250 2.809 3.824
500 3.311 2.811
BB 3.209 3.061
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C.2.2 Scenario II: Zonal wavenumber 1, factor 1, Matching gridpoints

Table C.7: This table contains the p-value of the intervals compared with constant
ratio of Scenario II. Left table is due to linear interpolation. Right table is due to
cubic interpolation.

N 51-101 101-201
1 3.228 3.109
2 3.230 3.111
4 3.234 3.121
5 3.238 3.128
8 3.253 3.159
10 3.267 3.189

12.5 1.572 1.131
20 3.387 3.424
25 3.474 3.454
40 3.450 2.033
50 2.731 1.726

62.5 1.269 0.980
80 1.775 1.870

100 1.840 1.929
125 1.913 1.965
200 1.996 2.003
250 2.013 2.011
400 1.637 2.087
500 2.221 1.941
BB 3.007 3.002

N 51-101 101-201
1 3.228 3.108
2 3.228 3.108
4 3.228 3.108
5 3.228 3.108
8 3.228 3.108
10 3.228 3.108
20 3.229 3.108
25 3.229 3.108
40 3.229 3.106
50 3.229 3.103

100 3.148 3.019
125 3.040 2.973
200 2.860 2.972
250 2.733 2.983
500 3.266 2.734
BB 3.007 3.002
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C.2.3 Scenario III: Zonal wavenumber 8, factor 2, Matching gridpoints

Table C.8: This table contains the p-value of the intervals compared with constant
ratio of Scenario III. Left table is due to linear interpolation. Right table is due to
cubic interpolation.

N 51-101 101-201
1 3.803 3.476
2 3.803 3.476
4 3.804 3.479
5 3.805 3.481
8 3.808 3.489
10 3.811 3.496

12.5 3.786 3.453
20 3.834 3.563
25 3.852 3.615
40 3.929 3.885
50 3.999 4.204

62.5 4.055 4.218
80 4.254 4.111

100 4.334 2.749
125 4.094 2.011
200 2.630 1.866
250 2.088 1.848
400 1.489 1.810
500 0.984 1.531
BB 3.856 3.710

N 51-101 101-201
1 3.803 3.476
2 3.803 3.476
4 3.803 3.476
5 3.803 3.476
8 3.803 3.475
10 3.803 3.475
20 3.804 3.475
25 3.806 3.475
40 3.825 3.474
50 3.856 3.472

100 4.300 3.973
125 3.590 4.207
200 1.936 3.472
250 1.004 2.898
500 -0.536 1.536
BB 3.856 3.710
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C.2.4 Scenario IV: Zonal wavenumber 3, factor 10, Non-Matching
gridpoints

Table C.9: This table contains the p-value of the intervals compared with constant
ratio of Scenario IV. Left table is due to linear interpolation. Right table is due to
cubic interpolation.

N 51-101 101-201
1 2.808 2.477
2 2.808 2.477
4 2.806 2.475
5 2.804 2.473
8 2.797 2.467
10 2.791 2.461

12.5 2.774 1.999
20 2.744 2.417
25 2.711 2.389
40 2.594 2.261
50 2.505 2.236

62.5 2.383 2.037
80 2.302 2.119

100 2.213 2.084
125 2.134 2.055
200 2.033 2.016
250 1.994 1.996
400 1.891 1.979
500 1.271 1.962

N 51-101 101-201
1 2.808 2.478
2 2.808 2.478
4 2.808 2.478
5 2.808 2.478
8 2.808 2.478
10 2.808 2.478
20 2.809 2.478
25 2.809 2.478
40 2.812 2.480
50 2.816 2.482

100 2.870 2.529
125 2.955 2.573
200 4.099 2.689
250 4.165 2.989
500 4.437 4.379
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C.2.5 Scenario V: Zonal wavenumber 8, factor 2, Non-Matching
gridpoints

Table C.10: This table contains the p-value of the intervals compared with constant
ratio of Scenario V. Left table is due to linear interpolation. Right table is due to cubic
interpolation.

N 51-101 101-201
1 3.450 3.451
2 3.450 3.451
4 3.451 3.452
5 3.452 3.453
8 3.455 3.457
10 3.458 3.460

12.5 3.356 2.917
20 3.483 3.475
25 3.501 3.473
40 3.567 3.326
50 3.605 3.044

62.5 3.456 2.402
80 3.426 2.078

100 3.010 1.861
125 2.520 1.834
200 2.003 1.860
250 1.820 1.948
400 -0.150 1.925
500 1.736 1.808

N 51-101 101-201
1 3.450 3.451
2 3.450 3.451
4 3.450 3.451
5 3.450 3.451
8 3.450 3.451
10 3.450 3.451
20 3.450 3.451
25 3.450 3.451
40 3.451 3.450
50 3.451 3.449

100 3.436 3.416
125 3.564 3.372
200 1.400 4.013
250 4.697 4.776
500 0.331 4.556
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C.3 Constant interval size
The tables C.11 till C.15 in this section show the p-values when the intervals are
compared that lie on the same diagonal line. See figure C.2 for the explanation.

C.3.1 Scenario I: Zonal wavenumber 3, factor 5, Matching gridpoints

Table C.11: This table contains the p-value of the intervals compared with constant
interval of Scenario I. Left table is due to linear interpolation. Right table is due to
cubic interpolation.

N 51-101 101-201
1 2.951 2.915
2 2.946 2.906
4 2.927 2.872
5 2.912 2.847
10 2.797 2.653

12.5 2.729 2.535
20 2.424 2.088
25 2.211 1.807
40 1.484 1.059
50 1.226 0.772

62.5 0.936 0.560
100 0.453 0.248
125 0.307 0.151
200 0.121 0.063
250 0.076 0.042

N 51-101 101-201
1 2.953 2.918
2 2.953 2.918
4 2.953 2.918
5 2.953 2.918
10 2.952 2.917
20 2.936 2.911
25 2.912 2.900
50 2.404 2.643

100 0.679 1.077
125 0.327 0.570
250 0.043 0.045
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C.3.2 Scenario II: Zonal wavenumber 1, factor 1, Matching gridpoints

Table C.12: This table contains the p-value of the intervals compared with constant
interval of Scenario II. Left table is due to linear interpolation. Right table is due to
cubic interpolation.

N 51-101 101-201
1 3.231 3.113
2 3.238 3.129
4 3.267 3.192
5 3.289 3.240
10 3.477 3.634

12.5 4.314 6.196
20 3.798 2.444
25 3.185 1.437
40 1.161 -0.418
50 0.231 -0.571

62.5 0.176 0.872
100 -0.304 -0.141
125 -0.176 -0.078
200 -0.470 -0.379
250 -0.198 -0.270

N 51-101 101-201
1 3.228 3.108
2 3.228 3.108
4 3.228 3.108
5 3.228 3.109
10 3.23 3.11
20 3.243 3.121
25 3.254 3.128
50 3.19 2.98

100 1.699 1.523
125 0.895 0.838
250 0.022 0.024
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C.3.3 Scenario III: Zonal wavenumber 8, factor 2, Matching gridpoints

Table C.13: This table contains the p-value of the intervals compared with constant
interval of Scenario III. Left table is due to linear interpolation. Right table is due to
cubic interpolation.

N 51-101 101-201
1 3.803 3.477
2 3.804 3.480
4 3.808 3.493
5 3.811 3.502
10 3.835 3.587

12.5 3.859 3.689
20 3.930 3.980
25 4.000 4.351
40 4.253 4.435
50 4.329 3.079

62.5 4.080 2.036
100 2.396 -0.073
125 1.709 -0.538
200 0.615 -0.204
250 0.448 -0.109

N 51-101 101-201
1 3.803 3.476
2 3.803 3.476
4 3.803 3.476
5 3.803 3.476
10 3.804 3.477
20 3.826 3.495
25 3.858 3.524
50 4.133 4.250

100 0.900 0.072
125 0.447 -0.245
250 -0.534 -0.002
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C.3.4 Scenario IV: Zonal wavenumber 3, factor 10, Non-Matching
gridpoints

Table C.14: This table contains the p-value of the intervals compared with constant
interval of Scenario IV. Left table is due to linear interpolation. Right table is due to
cubic interpolation.

N 51-101 101-201
1 2.807 2.476
2 2.803 2.470
4 2.785 2.447
5 2.772 2.429
10 2.670 2.296

12.5 2.610 2.225
20 2.318 1.835
25 2.113 1.637
40 1.539 1.064
50 1.227 0.806

62.5 0.942 0.614
100 0.458 0.261
125 0.311 0.173
200 0.124 0.069
250 0.077 0.045

N 51-101 101-201
1 2.808 2.478
2 2.808 2.478
4 2.808 2.478
5 2.808 2.478
10 2.808 2.477
20 2.804 2.475
25 2.799 2.472
50 2.690 2.403

100 1.919 1.738
125 1.291 1.324
250 0.057 0.271
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C.3.5 Scenario V: Zonal wavenumber 5, factor 2, Non-Matching
gridpoints

Table C.15: This table contains the p-value of the intervals compared with constant
interval of Scenario V. Left table is due to linear interpolation. Right table is due to
cubic interpolation.

N 51-101 101-201
1 3.450 3.451
2 3.451 3.454
4 3.457 3.462
5 3.461 3.468
10 3.493 3.509

12.5 3.544 3.661
20 3.603 3.446
25 3.658 3.201
40 3.506 2.017
50 3.046 1.302

62.5 2.409 0.787
100 0.807 -0.343
125 0.227 -0.345
200 -0.048 -0.126
250 -0.013 -0.025

N 51-101 101-201
1 3.450 3.451
2 3.450 3.451
4 3.450 3.451
5 3.450 3.451
10 3.450 3.451
20 3.452 3.453
25 3.454 3.453
50 3.492 3.458

100 2.584 3.161
125 0.970 2.182
250 0.083 -0.058

C.4 More scenarios
More simulations are performed to gain better insight in the impact of the wavenum-
ber, the Spatial Resolution Factor (SRF) and the spatial interpolation errors. Their
influence is described in the conclusion and the p-values are summarized in tables 6.1
and 6.2. The following four scenarios are simulated:

• Scenario Ia is the simulation of kz = 1, a SRF of 1 and matching gridpoints.

• Scenario IIa is the simulation kz = 3, a SRF of 10 and non-matching gridpoints.

• Scenario IIIa is the simulation kz = 5, a SRF of 2 and non-matching gridpoints.

• Scenario IVa is the simulation kz = 8, a SRF of 5 and non-matching gridpoints.
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Figure C.3: p-values of the four wavenumbers (kz1 means zonal wavenumber 1) compared for constant ratio, as in section C.2. Linear interpolation
is used. The black dashed line shows the optimal combination.
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