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Abstract
Satellite radar interferometry (InSAR) is a powerful technique for monitoring deformation phenomena.
While deformation phenomena occur in a three­dimensional (3D) world, one of the limitations of the
InSAR phase observations is that they are only sensitive to the projection of the 3D displacement vector
onto the radar line­of­sight (LoS) direction. To uniquely estimate the three displacement components,
we would require at least three sets of spatiotemporally coinciding independent (STCI) LoS observa­
tions, (i.e., scatterers on an object that is not subject to internal deformations, observed at the same
time) available over the same Region of Uniform Motion (RUM). More importantly, the system of equa­
tions needs to have a full rank coefficient matrix. Unfortunately, in most practical situations at most two
sets of STCI LoS observations are available, resulting in an underdetermined system with an infinite
amount of possible solutions.

Within the InSAR literature we encounter different approaches to address the underdeterminancy
problem, unfortunately often with either mathematical or semantic flaws. Their impact reaches from
quantitative errors in the reported studies, mismatches in comparative studies with other geodetic tech­
niques, a lack of trust in the technology by end users, to plain confusion. We concluded that the InSAR
community has no uniform way of addressing the underdeterminancy problem. A recurring problem is
the lack of distinction between a ‘projection’ and a ‘decomposition’. We developed a taxonomy for the
different fallacious approaches that can help by evaluating InSAR results and reviewing InSAR papers.

Moreover, using the east­north­up (ENU) reference frame for decomposing the LoS observations
provides results that are not tuned to the needs of the end­user of an InSAR product. Therefore,
developed an alternative solution to the underdetermined problem, in the form of a ‘strap­down’ ap­
proach, which uses a local strap­down reference system that is fixed to the deformation phenomenon
with transversal, longitudinal, and normal (TLN) components. For many practical cases, such as line­
infrastructure, landslides, or subsidence bowls, analysis of the main driving forces supports the as­
sumption that significant deformations in the longitudinal direction are unlikely.

We found that using the strap­down approach gives physically more relevant estimates. Moreover,
it results in more relevant estimates since it properly includes all uncertainties. We can further con­
clude that the conventional way of communicating (PS)­InSAR results by means of a ‘dot distribution
map’ is sub­optimal when considering the quality of the estimates, in particular for products with a de­
composition in two (or three) orthogonal directions. For such InSAR information products, ‘vector arrow
maps’, or traditional geodetic vector­based visualizations, including error ellipses are a viable and more
optimal alternative.
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1
Introduction

1.1. Background
Satellite radar interferometry (InSAR) is a powerful technique for monitoring deformation phenomena
[1], [2]. With deformation phenomena, one can think of deformations due to natural hazards such as
landslides, earthquakes and volcanic eruptions but also deforming infrastructure, residential areas, or
water defense structures. The analysis of InSAR time series enables the estimation of millimeter level
surface motions with a high spatial resolution [3], [4].

The large amount of available data, frequently acquired, with high precision at relatively low costs,
makes InSAR observations valuable. Fig. 1.1 shows an example of the results of an InSAR study.
Such results are often presented as colored dots on a map, where the colors represent a particular
displacement rate for a specific location.

Figure 1.1: InSAR time series results for the TU Delft campus area. The colored dots on the map represent estimated displace­
ment rates into the line­of­sight direction of the radar. Given observations from a single satellite viewing geometry, the full 3D
displacement cannot be estimated. From [5].

However, a defining characteristic of the InSAR observations is that they are not tuned to a specific
problem, unlike conventional geodetic observations, which are generally only performed given a par­
ticular signal of interest. Stakeholders related to deformation phenomena are usually interested in the
full three­dimensional (3D) displacements. Yet, one of the characteristics of the InSAR phase obser­
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2 1. Introduction

Figure 1.2: Geometric configuration of the 3D displacement vector, the LoS vector, the incidence angle 𝜃, and the azimuth of
the zero­Doppler plane 𝛼𝑑 at the position of the target.

vations is that they are only sensitive to the projection of the 3D displacement vector onto the radar
line­of­sight (LoS) direction, along a plane orthogonal to the LoS [6]. Thus, the LoS projection 𝑑LoS in
a local Cartesian east, north, up (ENU) coordinate system is given by

𝑑LoS = 𝑝LoS 𝑑ENU, (1.1)

where 𝑝LoS = [sin𝜃 sin𝛼𝑑 , sin𝜃 cos𝛼𝑑 , cos𝜃] is the orthogonal projector onto the line of sight, and
the 3D displacement vector in east, north and up direction is 𝑑ENU = [𝑑𝑒 , 𝑑𝑛 , 𝑑𝑢]𝑇. The angle 𝜃 is the
incidence angle of the radar, and 𝛼𝑑 is the azimuth of the zero­Doppler plane of the radar, at the position
of the target. See Fig. 1.2 for an overview of the geometry.

From observations from one viewing geometry only, see Fig. 1.1, it remains unclear what happens in
the real world. For example, the red dots can be due to subsidence, to horizontal displacements, or
a combination of both. Uniquely estimating (disentangling) the three displacement components would
require at least three independent LoS observations from different viewing geometries. Unfortunately,
in most practical situations, only two LoS observation geometries are available, resulting in an under­
determined system with an infinite amount of possible solutions.

Different approaches to interpret the InSAR observations
While the underdeterminancy problem is rather trivial and straightforward, a systematic review of In­
SAR literature (section 2.5) reveals that approaches to address it often have either mathematical or
semantic flaws. The impact of these flaws reaches from (i) quantitative errors in the reported stud­
ies, (ii) mismatches in comparative studies with other geodetic techniques, (iii) a lack of trust in the
technology by end­users, to (iv) problems in the interpretation.

In several studies the LoS observations are directly (but erroneously) interpreted as vertical displace­
ments. For example, in [7] the following statement can be found: “A comprehensive image of the ground
vertical displacements affecting the Venice region has been drawn […] using the available data.” The
authors show Fig. 1.3a, stating that the LoS observations are presented as vertical displacements. In
chapter 2 we will show that this can cause an underestimation of the vertical displacements of up to
40%.

There are also studies that claim that the vertical displacement component is derived by computing the
(oblique) projection of the LoS observations onto the vertical direction without explicitly stating assump­
tions on the potential horizontal components. A quote from [8]: “We converted the LoS displacements
[…] to vertical displacements using 𝑑𝑢 = 𝑑LoS/ cos𝜃”, see Fig. 1.3b. In other words, the contribution of
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a potential horizontal component to the LoS observations is simply ignored, which is unsubstantiated.

Figure 1.3: a), published by [7], shows the InSAR results from a study where the LoS observations are directly interpreted as
vertical displacements. In [7], the figure title states that the results are vertical displacements whereas the results are in fact LoS
displacements. Hence, this is erratic by up to 40%. b) published by [8], shows the vertical displacements, which are obtained
by computing the (oblique) projection of the LoS observations onto the vertical direction without stating any assumption on the
horizontal components. Without such an explicit assumption, the results are not substantiated.

As a final example, [9] state “It is possible to decompose the LoS measurements to horizontal and
vertical products in certain areas of interest where two LoS observations are available”, followed by
“Consequently, we add the additional constraint that the north­south (𝑑𝑛) motion is assumed to be
zero”, see Fig. 1.4. While such an assumption is theoretically possible, it is unsubstantiated, as it is
an assumption on the physical signal, not on the observations. The mistake the authors make is that
they confuse the lack of sensitivity of an observation (to a particular displacement direction) with the
absence of the physical signal. While the former can be valid, the latter would need to be substantiated,
and requires a geophysical argumentation.

The three examples above demonstrate that there are different ways to interpret and present InSAR
LoS observations, with mathematical or semantic flaws. In chapter 2, we will describe and categorize
all approaches we have found.

Quality description of the unknown parameters
Stakeholders and end­users of InSAR data need to know the quality of the estimated parameters, i.e.,
the unknown displacements in the east, north, and up direction: 𝑑𝑒 , 𝑑𝑛, and 𝑑𝑢. The quality of the esti­
mates follows from the precision (noise level) of the observations, and potential biases of the estimates.
The approaches mentioned above all result in quantitatively incorrect estimates for the displacement
parameters, i.e., there is a bias between the estimated displacement and the actual displacement,
independent of the precision of the LoS observations. Obviously, this bias is often undesirable. For ex­
ample, when a stakeholder wants to use InSAR to monitor a particular deformation phenomenon, e.g.,
a landslide­prone area, the magnitude of a displacement that needs to be detected can be predefined.
Often this magnitude is related to the maximum allowable displacement to still ensure the safety of the
surroundings. However, when the estimated displacements are biased, they result in displacements
not being detected at all, or in false warnings being sent out, which are both undesirable [10].

The considerations above lead to the following two research questions. (i) How large is the bias for
the estimated parameters? And, (ii) is the variance­covariance matrix of the estimated parameters
sufficient to describe the quality of the estimates?
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Figure 1.4: Results from [9]: decomposed displacement results obtained with LoS observations from only two viewing geome­
tries. (Physical) displacements in the north direction are assumed to be zero and are therefore removed from the decomposition
equation (Eq. (2.7)).

Parameterization for the decomposition
In almost all InSAR studies where the LoS observations are ‘decomposed’, this is done in the ENU
reference frame. We are interested in investigating whether this choice of reference frame is always
optimal. For example for a deforming dike. Physically, it would be the most useful to know how much
the dike deforms along the slope or how large the displacements are in the normal direction. Therefore,
a research question is (i) is the decomposition in the ENU reference frame always the most optimal, or
(ii) is it better to decompose the LoS observations in other directions?

1.2. Problem statement
The introduction above shows that there is a need for further unification in how InSAR results are
computed and communicated and for insight into the consequences of particular choices in terms of
accuracy and precision. Within the InSAR community, there is no authoritative documentation on the
full problem description and no analysis of the consequences of particular choices. Moreover, it is
unclear which semantics should be used, and there is a need for clear recommendations on how the
underdetermined nature of the estimation problem should be handled.

These problems will be addressed in this study.

1.3. Different problem perspectives
InSAR investigations are typically complex, and we can distinguish different factors that are all related
and affect the final result. Here, we define different perspectives on how we can ’look’ at the InSAR
problem.

1.3.1. The stakeholder’s perspective
The first perspective to look at the problem is the perspective of the end­user. For example, suppose
an asset manager wants to use InSAR to monitor a deformation phenomenon of a bridge. While the
asset manager has minimal knowledge about satellites, radars, and the InSAR technology in general,
he should still make difficult decisions, e.g., on what satellite mission(s) to use. The question of the
stakeholder then is: “What can InSAR do for me in this situation?” and “is InSAR able to detect dis­
placements of a particular size in a particular direction for my bridge with InSAR?” After the choice for
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a particular satellite mission is made, this will lead to particular product requirements, i.e., “how precise
can we estimate the unknown displacement parameters and can we disentangle (estimate) the three
displacement parameters?” But also “what is the magnitude of the displacement that can be detected
in a particular direction?” It is desirable to be able to answer the stakeholder questions before starting
with the InSAR study because the answer to these questions determine whether it is worth investing in
using the InSAR technology, or whether conventional geodetic techniques should be deployed.

1.3.2. User of a pre­existing InSAR information product
Within this perspective, the InSAR information product does already exist. This is different from the
first perspective, in which the information product still needs to be acquired or computed. Suppose
the end user has access to a particular information product, e.g., a displacement map that shows
colored dots, where the colored dots represent the LoS displacement rates, as in Fig. 1.1. The user is
not particularly interested in the colored dots. Most probably, he is interested in what happens with a
particular deformation phenomenon that he should monitor. He wants to know what the product tells
him about the deformation phenomenon. So the question related to this perspective is: “What can
we get from the product?”, or, in other words: “What deformation phenomenon can be significantly
estimated from the product?”

1.3.3. The InSAR service provider
The last perspective reviews the problem from the space segment. On the one hand, the stakeholders
within this perspective can be ‘value­adding service’ providers. These are companies that are using
InSAR data to create end products that stakeholders can use. These companies have to meet the
product requirements set by their customers. The question that such parties typically ask is “with which
(combination) of satellite mission(s) can we meet the product requirements asked by the client?”

Another category of stakeholders are the data providers, such as space agencies. Space agencies and
other space companies providing InSAR satellites want to createmissions (or systems) that deliver what
is needed and have highest added value. As they want to know what the viewing geometry of a new
InSAR satellite should be, they may ask: “what should be the viewing geometry of a new operating
satellite to deliver an InSAR product that has a high added value?”

1.4. Research objective
As discussed above, InSAR studies are often complex studies with many possibilities. Moreover, there
are different perspectives on the problem, all accompanied by specific questions. Therefore, the aim
of this research is to provide a full and complete description of the problem and an analysis of the con­
sequences of particular choices. Moreover, we want to come with clear recommendations on how the
underdetermined nature of the estimation problem should be handled. Furthermore, as the decompo­
sition in the ENU system is not tuned for the problem we want to develop a new approach that provides
physically more relevant estimates.

The main research question of this research is therefore defined as follows:

Can a better geometrical insight lead to a more optimal way of computing and
communicating InSAR results?

To be able to answer this question, the research is divided into the following subquestions:

1. What conditions need to be satisfied to fully solve for the 3D displacement vector in the East­
North­Up reference frame from InSAR LoS observations?

2. What are current approaches within the literature to address the underdeterminancy problem,
and what are potential mathematical and semantic flaws?



6 1. Introduction

3. Can we find a better solution to the underdeterminancy problem?

4. What are different perspectives to study the InSAR decomposition and what are corresponding
approaches?

1.5. Outline
First, in chapter 2 we discuss the relevant InSAR geometry and conditions that need to be satisfied to
solve for the full 3D displacement vector. We end the second chapter with an analysis of the different
approaches we encounter in InSAR literature. In the third chapter we introduce an alternative solution
to the underdeterminancy problem, in the form of a ‘strap­down’ approach, which uses a local strap­
down reference system that is fixed to the deformation phenomenon. We also discuss the effect of
the uncertainty of the frame on the final estimates. In chapter 4, we describe the different InSAR
perspectives to review the decomposition problem and we discuss the related questions. Then, in
chapter 5 we present the results of some case studies related to the different InSAR perspectives.
Finally, in chapter 6, the main findings and recommendations of this study are presented.



2
InSAR LoS observations and current

approaches to address the
undeterminancy problem

InSAR (Interferometric Synthetic Aperture Radar) has become an established and efficient tool to mon­
itor deformations of the Earth’s surface. However, to solve for the full 3D displacement vector, several
conditions (necessary but individually not sufficient) need to be satisfied. In section 2.1, we first review
the relevant InSAR geometry. The forward model is discussed in section 2.2, and the inverse model,
including the necessary conditions in section 2.3. In section 2.4 we discuss the rank deficiency gener­
ally encountered in InSAR and the necessary conditions. Subsequently, in section 2.5 we analyze the
different approaches we encounter in InSAR literature and finally, in section 2.6 we show the correct
approaches.

2.1. InSAR viewing geometry
Within this research, we assume that we always start with already ‘processed’ data, i.e., time series
estimates of displacements in the LoS direction. It is further assumed that this input data is provided
with an a priori standard deviation. We now first discuss the basic principles of InSAR. For a more
detailed description of the InSAR technique the reader is referred to [6] and [11].

2.1.1. InSAR basics
InSAR is a technique that can be used to estimate displacements of the ground or the objects on it. The
initial measurements are obtained by a radar on board of a satellite which sends out electromagnetic
pulses. A part of the pulse is reflected back to the sensor by the Earth’s surface and arrives with a
delay due to the two­way travel time of the signal. While orbiting over the Earth, the satellite illuminates
a certain area on the Earth’s surface, with a width which is defined as the swath width. For each
resolution cell, a complex measurement is recorded, which can be transformed into a phase and an
amplitude. The amplitude 𝐴, or intensity of the signal, contains information on the slope, roughness
and electrical properties of the reflecting surface. The phase 𝜓 gives information on the travel time
and is also dependent on the complex interaction of the electromagnetic wave with the Earth’s surface.
Both properties are combined in the complex phasor 𝑃 [6, 11]

𝑃 = 𝐴𝑒𝑖𝜓. (2.1)

A SAR image consists of a two­dimensional array of pixels in the azimuth and range direction. The
azimuth direction is defined parallel to the velocity vector of the satellite, the range direction is per­

7
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Table 2.1: Taxonomy of classes of scatterers, [12], based on coherence, including their acronyms, amplitude PDF’s and expected
normalized amplitude dispersion (NAD).

Continuously Coherent Temporary Coherent Incoherent
Distributed Scatterers CCDS TCDS IDS

Rice (low SNR) Rice (low SNR) &
Rayleigh

Rayleigh,

NAD low NAD high NAD medium
Point Scatterers CCPS TCPS unlikely

Rice (high SNR), [13] Rice (high SNR) &
Rayleigh

NAD lowest NAD highest
CCS TCS

Figure 2.1: While orbiting the Earth, the radar sends out electromagnetic pulses that are reflected bu the Earth surface. The
area that is covered on the ground surface is called the swath of the satellite [14]

pendicular to the azimuth direction. The width of the image is referred to as the swath, see Fig. 2.1.
Every pixel in the SAR image has its own value for the phasor 𝑃, where 𝑃 is the coherent sum of all
reflections on the Earth’s surface that fall within that specific image resolution cell. We can distinguish
two extreme cases for signal reflections, following the taxonomy of Hu et al., [12], see table 2.1. The
first is Point Scattering (PS), where the measurement of the pixel is dominated by one strong reflecting
object, such as a corner reflector, which can be considered as a point source at a fixed 3D position.
The other one is Distributed Scattering (DS), where a large number of scattering objects, distributed
within the entire resolution cell, form the measurement, this is the case for for instance farmlands or
forests [11]. Note that in this taxonomy, the acronym PS does not refer to ‘persistent’ scatterers, as
used by the wider InSAR community.

As already described, the phase, 𝜓, holds information on the time delay of the signal when travelling in
the range direction. One phase measurement 𝜓𝑃 itself cannot give any information about a displace­
ment. However, if (i) a phase measurement at a different location is also available 𝜓𝑄, and (ii) it is
possible to repeat those measurements when the satellite passes over during a subsequent acquisi­
tion, it is possible to compute the double­difference. This is the phase difference in space and time and
is also called the interferometric phase,

𝜙 = (𝜓𝑃 − 𝜓𝑄)𝑡2 − (𝜓𝑃 − 𝜓𝑄)𝑡1 . (2.2)

When a point moves between the times of the first satellite acquisition and the second acquisition, a
phase difference will be measured, see Fig. 2.2. All interferometric phases together form an interfer­
ogram [6]. The phase differences are measured as changes in range in the Line of Sight (LoS) of a
satellite, which is the vector from the phase center of the SAR antenna on the satellite at zero­Doppler
towards the point scatterer (PS), or the center of the DS resolution cell on the Earth’s surface. The
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Figure 2.2: Two InSAR LoS measurements, one before and one after a displacement occurs, for this situation on a dike. The
image­plane coincides with the zero­Doppler plane. Both the deformation and the different position of the satellite cause a phase
difference, due to the longer two­way travel time of the radar signal between the first and the second acquisition of the satellite,
assuming sufficient temporal coherence and identical atmospheric conditions. From this phase difference, the displacement in
the LoS direction of the satellite can be determined (Image from [16]).

relation between the interferometric phase and a displacement in the LoS direction is given by

𝜙 = −4𝜋𝜆 𝛿LoS (2.3)

where 𝜆 is the radar wavelength and 𝛿LoS the displacement in the LoS direction. Typically, considering
only instrumental noise, the double differences have a precision of about 0.45 mm [15].

The interferometric phase does not only contain information about displacements but also contains
information on several other components, such as the Earth’s curvature, the topography, atmospheric
delay, orbital errors, scattering mechanisms at the Earth’s surface, and measurement noise. It is there­
fore needed to separate the displacement signal from these other signals. In general, the separation
of the displacement signal is done by using time­series of many satellite acquisitions. Yet, one of the
most important conditions for separation is that the signal between the satellite acquisitions remains
coherent [6].

Using multiple satellite acquisitions results in radar interferometric data of hundreds of radar images,
each with billions of image pixels. There are various time­series processing techniques for estimating
the displacement signal from the data. Here we give a short explanation of the the PS­InSAR method
that uses PS points which are expected to have a coherent phase behavior over a longer time. The
method roughly consists of three main steps. (i) Creating multiple interferometric combinations from
complex data, (ii) identifying the PS points and estimating the displacement phase (also called the
’PSI analysis’), and (iii) assessing the quality of the results. The PSI analysis is very valuable since
it aims to detect scatterers with a coherent phase behavior. The result of the PS­InSAR approach is
often a space­time matrix that consists of PS points and their location on Earth. For each PS point a
displacement time­series is estimated in the LoS direction. For a description of the PS­InSAR method
the reader is referred to [11].

2.1.2. Geometry
The estimated displacements resulting from the radar image processing are one­dimensional displace­
ments towards the satellite. This direction, whcih is the line­of­sight direction at the target, depends
of the viewing geometry to the satellite, that can be described using two angles: the azimuth of the
zero­Doppler plane at the Earth surface 𝛼𝑑 and the incidence angle 𝜃.

2.1.3. Heading angle and azimuth of the zero­Doppler plane
Most radar satellites orbit in retrograde sun­synchronous near­polar orbits. Thus, the satellite passes a
location on Earth in the north by west direction (ascending) and in the south by west direction (descend­
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Figure 2.3: The viewing geometry to (a) a descending satellite acquisition and (b) an ascending acquisition shown in the horizontal
plane. The orbit heading 𝛼ℎ is the angle between the velocity vector of the satellite with respect to the geometrical north and
changes as a function of the longitude

ing). While the orbital plane of the satellite has a fixed inclination, both the ascending and descending
track have a varying orbital heading 𝛼ℎ, which is the angle between the velocity vector of the satel­
lite with respect to the geometrical north, see Figs. 2.3a and b and Fig. 2.9. Most SAR satellites are
right­looking satellites, and in most cases the observations are taken at zero­Doppler, the zero­Doppler
plane (ZDP) is perpendicular to the heading of the satellite1.

The heading of the satellite 𝛼ℎ, and consequently the orientation of the ZDP from a satellite­centered
coordinate frame, are different from the direction of the velocity vector and the azimuth of the ZDP 𝛼𝑑
in a target­centered coordinate frame on the Earth’s surface, see Fig.2.4. This effect is the largest near
the poles and is caused by the non­parallel nature (convergence) of the Earth meridians. For a satellite
in an ascending acquisition at a higher latitude, considering the zero­Doppler plane at the moment of
the satellite acquisition, the satellite has a lower latitude in space compared to the latitude at the Earth’s
surface. Due to the meridian convergence, the azimuth of the ZDP of the satellite at the Earth surface,
𝛼𝑑, is greater than the heading of the satellite (in space), 𝛼ℎ − 90∘. This effect should be taken into
account while computing the viewing geometry since the difference can be significant, especially at
higher latitudes.

Note, however, that the effect is also present near the equator. When at the moment of the acquisition a
descending satellite is positioned exactly at the equator, the satellite ‘looks’ at a point which is located
at a higher latitude > 0∘. The heading of a satellite corresponds to a latitude of the location of the
satellites in space, and consequently a (slight) difference between the heading angle of the satellite
and the orientation of the ZDP. Thus, to obtain the correct azimuth angle of the ZDP for a target on the
Earth’s surface, these effects need to be accounted for.

Finally it is important to mention that not all observations are taken at zero­Doppler, consider e.g.,
Sentinel­1 in TOPS mode. Strictly, for such cases the azimuth of the zero­Doppler plane cannot be
used to express the orientation of the LoS direction at the target. Instead, it is the azimuth of the plane
spanned by the LoS vector and the gravity vector pointing from the Earth to the satellite that should be
considered. Yet, for many satellites modes, the zero­Doppler plane is a good approximation to describe
the orientation of the LoS vector. In the following, we therefore consider the standard ‘stripmap’ viewing
geometry since the potential errors are minimal.

2.1.4. Incidence angle
Within this study, the incidence angle, 𝜃, refers to the nominal (ellipsoidal) incidence angle, i.e., the
angle between the normal vector on the local ellipsoid, at the position of the target, and the Line­of­

1Note that the ZDP is an approximation for the zero­Doppler. Actually, we have to do with iso­doppler lines which can be curved
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Figure 2.4: A satellite observes a location on Earth (target) from a particular latitude in space. The velocity vector of the satellite
has azimuth angle 𝛼ℎ with respect to the geographical north. For the Northern Hemisphere, the satellite is observing the target
on Earth (red dot) which is located at a higher latitude compared to the latitude of the satellite. Due to the meridian convergence,
the azimuth of the zero­Doppler plane on Earth (𝛼𝑑) differs from 𝛼ℎ − 90∘. For an ascending acquisition 𝛼𝑑 > 𝛼ℎ − 90∘ and for
a descending acquisition, the opposite is true: 𝛼𝑑 < 𝛼ℎ − 90∘

Sight towards the satellite in the ZDP, see Fig. 2.5a [17]. The incidence angle should not be confused
with the satellite look angle 𝜃𝑙, which is the angle between the LoS direction and the nadir of the
satellite sensor. Due to the curved surface of the Earth the incidence angle is always greater than the
look angle (𝜃 > 𝜃𝑙). Moreover, the nominal incidence angle varies with the range direction. Therefore,
the incidence angle is different for every pixel in an InSAR image. For example the swath width of the
Sentinel­1 radar is 250 km, therefore the incidence angle varies from 29.1° at the near range to 46° at
the far range [18]. The difference between the near­range and far­range incidence angles should be
taken into account when performing a decomposition or projection of the LoS displacements.

We can also define a topographic incidence angle 𝜃topo. This is the angle between the LoS vector to­
wards the satellite and the normal at the surface at the point of interest, see Fig. 2.5c. The topographic
incidence angle determines for a great part whether a displacement is observable by a satellite, espe­
cially at steep slopes, where it can be expected that the main displacements occur parallel to the slope.
For small topographic incidence angles, the LoS direction is almost perpendicular to the expected dis­

Figure 2.5: (a) The incidence angle 𝜃 is the angle between the LoS vector and the local zenith at the surface. The incidence
differs from the satellite look angle 𝜃𝑙. (b) shows that the incidence angle varies over an InSAR image. The near­range incidence
angles can be significantly smaller than the far­range incidence angles. In (c) the topographic incidence angles are shown. 𝜃topo
determines whether a displacement can be observed by a satellite. Larger topographic incidence angles will result in better
observable displacements.
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placement direction, resulting in the fact that only a part of the occurring displacement is mapped to
the LoS direction. For large topographic incidence angles, the LoS direction can almost be parallel to
the slope and up to the full deformation signal will be mapped to the LoS.

From now on, we will use 𝜃 to indicate the nominal incidence angle which we will call the incidence
angle for short. A complete overview of the viewing geometry to the satellite is given in Fig. 2.6.

Figure 2.6: Schematic overview of the viewing geometry to a satellite in an ascending and a descending acquisition. The heading
angles 𝛼ℎ,𝑎𝑠𝑐 and 𝛼ℎ,𝑑𝑠𝑐 are the azimuth angles of the velocity vectors of the satellites with respect to the geometrical north. The
azimuth angle of the ZDP at the Earth surface 𝛼𝑑,𝑑𝑠𝑐 is shown for the descending acquisition. The incidence angle is the angle
between the LoS vector and the local zenith and differs from the satellite look angle 𝜃𝑙.
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Figure 2.7: Number of observations per cycle per location on Earth. Due to the convergence of the meridians, different tracks
overlap at higher and lower latitudes. Around the equator, at most one ascending and one descending acquisition are available.
Whereas at high latitudes some locations are observed by up to eight different ascending and descending acquisitions.

2.1.5. Correlation incidence angle and azimuth of the ZDP
Due to the convergence of the meridians, different tracks overlap at higher and lower latitudes. As a
result, the number of observations per cycle per location on Earth differs, see Fig. 2.7. For locations on
Earth observed by multiple acquisitions, the geometric configuration of the observations differs since
the range distance between the different satellite positions and the target is unique. Consequently, the
incidence angles differ, but the azimuth of the ZDP varies as well.

Using DRaMA, the Delft Radar Modelling and performance Analysis toolbox2 [19], we estimated the
viewing geometries of all available acquisitions for all locations on Earth. In Fig. 2.8, we show the
maximumandminimum values for the azimuth of the ZDP for the available acquisitions. This shows that

Figure 2.8: Minimum and maximum azimuth angle of the ZDP, 𝛼𝑑, as a function of location on Earth. In (a) and (b), the minimum
and maximum values for 𝛼𝑑 for all ascending acquisitions are shown, and (c) and (d) show the minimum and maximum 𝛼𝑑 for
the descending acquisitions.This shows that 𝛼𝑑 varies more than 20∘ over the earth, and that this is both latitude as well as
longitude dependent.

the values for 𝛼𝑑 can differ per acquisition. Around the equator, the minimum and maximum azimuth
2DRaMA can be downloaded from: https://gitlab.tudelft.nl/drama/drama
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Figure 2.9: The ground track for Sentinel­1.It can be seen that the heading of the satellite changes with latitude. At the equator,
the heading is almost NS directed (at location A) whereas, for a satellite in an ascending orbit around the poles, the heading is
almost westward (location C), source: Heavens Above [20].

of the ZDP are equal, which is trivial since there is typically only one ascending or one descending
acquisition. For the ascending acquisitions, we find 𝛼𝑑 ≈ 260∘, and for the descending acquisitions,
we find 𝛼𝑑 ≈ 100∘. At high latitudes, 𝛼𝑑 increases for the ascending acquisitions and decreases for the
descending acquisitions. Note that there is also a difference between the minimum andmaximum value
for 𝛼𝑑. Finally, it can be observed that there is also a longitude­dependent variability of the minimum
and maximum azimuth angles, particularly at mid­latitudes.

We will explain this behavior first geographically. For an ascending satellite, seen from the Earth’s
surface, the heading of the satellite 𝛼ℎ shifts more and more to the west while the satellite heads for
the poles, see Fig. 2.9. Therefore, 𝛼𝑑 shifts more north and becomes smaller compared to 𝛼𝑑 around
the equator (at the poles we find 𝛼𝑑 < 260∘). As already mentioned, the incidence angle varies with
range. But from Fig. 2.10 it can be seen that also 𝛼𝑑 varies with range. In blue, the position of the
satellite is given, imaging two targets—indicated in red—at different ranges. As the range to the target
increases, due to the meridian convergence the azimuth of the ZDP, 𝛼𝑑 increases. Thus, for ascending
acquisitions, 𝛼𝑑,nr < 𝛼𝑑,fr where 𝛼𝑑,nr is the azimuth of the ZDP at the near range and 𝛼𝑑,fr the azimuth
of the ZDP at the far range. This implies that there is a positive correlation between the incidence angle
and the azimuth of the ZDP. For the descending satellite, the opposite is true—with 𝛼𝑑,nr > 𝛼𝑑,fr and a
negative correlation between 𝜃 and 𝛼𝑑, see Appendix B at p. 103 for a visualization.

We tested whether these correlations were also visible in the viewing geometry from Sentinel­1 as
estimated with DRaMA. In Fig. 2.11, the correlation between 𝜃 and 𝛼𝑑 for all available ascending (left)
and descending (right) acquisitions for a location at 81° latitude and 40° longitude can be seen. This
shows that there is a clear positive (linear) 𝜃 − 𝛼𝑑 correlation for the ascending acquisitions and a
negative (linear) 𝜃 − 𝛼𝑑 correlation for the descending acquisitions. These relations are described by

𝜃asc = 𝑐𝑎1𝛼𝑑,asc + 𝑐𝑎2 (2.4)

𝜃desc = 𝑐𝑑1𝛼𝑑,desc + 𝑐𝑑2 (2.5)

where 𝑐𝑎1 and 𝑐𝑎2 are constants related to the ascending acquisitions and 𝑐𝑑1 and 𝑐𝑑2 are the constants
related to the descending acquisitions.

For locations on Earth between −75° and +85° latitude and between 30° and 50° longitude we esti­
mated the constants 𝑐𝑎1, 𝑐𝑎2, 𝑐𝑑1 and 𝑐𝑑2, plotted in Fig. 2.12. This demonstrates that there is indeed
a positive correlation (𝑐𝑎1 > 0) between 𝜃 and 𝛼𝑑 for the ascending acquisitions for the Northern Hemi­
sphere and a negative correlation (𝑐𝑎1 < 0) for the descending acquisitions. Moreover, it can be seen
that 𝑐𝑎1 and 𝑐𝑑1 change sign when going from the northern to the Southern Hemisphere. Near the equa­
tor, we expect to see large values for 𝑐𝑎1 and 𝑐𝑑1 since the incidence angles vary from near to far range.
In contrast, the azimuth of the ZDP’s only have a minor difference since the meridian convergence is
minimal.
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Figure 2.10: Range dependency of the azimuth of the ZDP. In blue, the position and heading of the satellite. In red, two targets
on the ground at different ranges. For the near range (nr), the north meridians at the Earth surface have a different orientation
then the north meridians at the far range (fr). Therefore, for ascending acquisitions, 𝛼𝑑,nr < 𝛼𝑑,fr. As the incidence angle also
varies with range, this results in a positive correlation between 𝛼𝑑 and 𝜃.

Figure 2.11: For a location at 81° latitude and 40° longitude, the left figure shows the positive correlation between 𝛼𝑑 and 𝜃 for
ascending acquisitions. For descending acquisitions there is a negative correlation

Figure 2.12: For locations on Earth where multiple acquisitions were available, we computed the linear relation between the
incidence angles and azimuth values of the ZDP’s for both the ascending, (a) and (b) and the descending (c) and (d) acquisitions.
The figures show the estimated constants in Eqs. (2.4) and (2.5)
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We also observe a very strong relation between the different constants 𝑐𝑎1 and 𝑐𝑑1 and 𝑐𝑎2 and 𝑐𝑑2.
In fact, in Appendix B we find that 𝑐𝑎1 = −𝑐𝑑1. Moreover, we found that there is also a strong relation
between the latitudinal coordinate and the four constants, see also the Appendix B.

2.2. The forward model: LoS observations
Deformation phenomena, i.e., the displacements of objects represented by infinitesimally small points,
occur in a 3D world and their displacement can be described by a 3D vector with displacement com­
ponents in the east, north and up direction: 𝑑ENU = [𝑑𝑒 , 𝑑𝑛 , 𝑑𝑢]𝑇. This displacement is observed by
the satellite as the orthogonal projection of 𝑑ENU onto the LoS direction. We refer to this as a forced
projection, as it is an implicit autonomous operation.3 For a SAR satellite with an azimuth angle of the
ZDP, 𝛼𝑑, the LoS projection 𝑑LoS in a Cartesian east, north, up (ENU) coordinate system is given by

𝑑LoS = − sin𝜃 [−𝑑𝑒 sin𝛼𝑑 − 𝑑𝑛 cos𝛼𝑑] + 𝑑𝑢 cos𝜃. (2.6)

We refer to this as the forward problem, which can be written as the multiplication of a row and column
vector by

𝑑LoS = [sin𝜃 sin𝛼𝑑 sin𝜃 cos𝛼𝑑 cos𝜃] [
𝑑𝑒
𝑑𝑛
𝑑𝑢
] = 𝑃LoS 𝑑ENU, (2.7)

where 𝑃LoS = [sin𝜃 sin𝛼𝑑 , sin𝜃 cos𝛼𝑑 , cos𝜃] is the orthogonal projector onto the LoS. It is crucial
to note that the unit vector spanning the LoS direction has its origin at the scatterer (i.e., the target),
and not at the satellite. Consequently, the signs of the projector elements make sense when looking
from the scatterers perspective. The reference is the scatterer position at 𝑡0 and a motion upward
(+, positive 𝑑𝑢) would yield a decrease (−) in slant range, i.e. the distance between the satellite and
the scatterer will be shorter. This can also be seen in Eq. (2.7), where the signs of the projector are
[+,+,+] as measured from the scatterer (the up­component is positive, indicating that upward motion
corresponds with an increasing LoS (the objects moves towards the satellite), hence, a decreasing
total slant range. A detailed derivation of the signs of the projector is given in Appendix A.

The alternative choice is to use the satellite as the reference point. In that case, the unit vector spanning
the LoS direction is pointing in the opposite direction, and the signs of the projector in Eq. (2.7) would
be the opposite resulting in [−,−,−], a choice made by other authors, e.g., [9]. This way, a positive
LoS displacement is a (positive) range increase, but if we then look at the up­component, this will result
in the scatterer moving downward. Here we propose to use the more straightforward convention from
the target’s perspective.

Since 𝑑LoS is the orthogonal projection of the 3D displacement vector onto the LoS direction, displace­
ments that have a direction which is orthogonal to the LoS, i.e., displacements that are directed in the
solution plane or null space, result in 𝑑LoS = 0. This is visualized in Fig. 2.13 where the red arrow rep­
resents the LoS direction and the blue surface is the null space. Therefore, displacements represented
by the blue arrows (which are in the null space) result in 𝑑LoS = 0, i.e., the radar has no sensitivity
for displacements in that direction. Moreover, any displacement vector from the target to a location
somewhere on the solution plane (the orange arrows) result in the same orthogonal projection onto the
LoS direction and therefore in the same LoS observation.

2.3. The inverse model: decomposition of the LoS displacements
The LoS displacements itself are one­dimensional and are hard to interpret for end users without a
substantial radar knowledge. Moreover, end users are mostly interested in the ’real’ 3D displacements.
Therefore it is required to decompose the LoS displacements, 𝑑𝐿𝑜𝑆, into ’real’ 3D displacements, 𝑑𝑒, 𝑑𝑛
3Later, in section 2.4.2 we will compare the forced projection with a voluntary projection.
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Figure 2.13: 𝑑LoS is the orthogonal projection of the 3D displacement vector (the orange vectors) onto the LoS direction of the
satellite. The blue plane orthogonal to the LoS direction is the null space or solution plane. Displacements into this plane (blue
arrows) have no projection onto the LoS and therefore 𝑑LoS = 0. Moreover, all displacement vectors from the target with the end
point at a location somewhere in the solution plane result in the same projection onto the LoS direction.

and 𝑑𝑢, which we call the inverse problem. To uniquely estimate the three displacement components,
we require at least three spatio­temporally coinciding independent (STCI) LoS observations (i.e., of
the same scatterer, observed at the same time), discussed in section 2.3.1, which are all stemming
from the same Region of Uniform Motion (RUM), discussed in section 2.3.2, and a full­rank system of
equations, meaning that the observations need to have sufficiently angular diversity. The mathematical
model of Eq. (2.7) is then extended to

𝐸{
⎡
⎢
⎢
⎢
⎣

𝑑(1)LoS
𝑑(2)LoS
⋮

𝑑(𝑚)LoS

⎤
⎥
⎥
⎥
⎦⏝⎵⏟⎵⏝

𝑦

} =
⎡
⎢
⎢
⎣

sin𝜃1 sin𝛼𝑑,1 sin𝜃1 cos𝛼𝑑,1 cos𝜃1
sin𝜃2 sin𝛼𝑑,2 sin𝜃2 cos𝛼𝑑,2 cos𝜃2

⋮ ⋮ ⋮
sin𝜃𝑚 sin𝛼𝑑,𝑚 sin𝜃𝑚 cos𝛼𝑑,𝑚 cos𝜃𝑚

⎤
⎥
⎥
⎦⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝

𝐴

[
𝑑𝑒
𝑑𝑛
𝑑𝑢
]

⏟
𝑥

, (2.8)

𝐷{
⎡
⎢
⎢
⎢
⎣

𝑑(1)LoS
𝑑(2)LoS
⋮

𝑑(𝑚)LoS

⎤
⎥
⎥
⎥
⎦⏝⎵⏟⎵⏝

𝑦

} =
⎡
⎢
⎢
⎣

𝑄LoS,1 0 … 0
0 𝑄LoS,2 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝑄LoS,𝑚

⎤
⎥
⎥
⎦⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝

𝑄𝑦𝑦

, (2.9)

where vectors 𝑑(1)LoS until 𝑑(𝑚)LoS are sets of STCI LoS displacement observations. Each vector 𝑑(𝑖)LoS
represents an independent viewing geometry, i.e., the set of all observation points (scatterers) observed
from a particular satellite orbit. The size of each displacement vector can be different since the number
of available scatterers can differ. From now on, we refer to all observations from one viewing geometry
as a ‘set’. 𝐸{.} expresses the expectation operator. This system of equations can be solved with at
least three sets of STCI LoS observations, i.e. 𝑑(1)LoS, 𝑑

(2)
LoS and 𝑑

(3)
LoS. The first row in the design matrix

𝐴, for 𝑑(1)LoS, is the projection of the 3D displacements onto the LoS vector towards the first satellite
position. We assume that for the observations within one set, the incidence angle 𝜃 and azimuth of
the ZDP 𝛼𝑑 are the same within the RUM. 𝐷{.} is the dispersion of the model, where 𝑄LoS,𝑖 is the
variance­covariance matric of an independent observation set. When 𝑑(𝑖)LoS has size 𝑝 × 1, the size
of 𝑄LoS,𝑖 is 𝑝 × 𝑝. It is a diagonal matrix with the variances of the STCI LoS observations on the
diagonal. The off­diagonal elements are equal to zero. It can be safely assumed that the different LoS
observations are uncorrelated since they all represent different physical scatterers, i.e., with different
reflective characteristics of the imaged objects.

When 𝑚 > 3, the unknown displacement parameters can be estimated by using the Best Linear Unbi­
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ased Estimator (BLUE),
�̂� = (𝐴𝑇𝑄−1𝑦𝑦𝐴)−1𝐴𝑇𝑄−1𝑦𝑦𝑦, (2.10)

and when 𝑚 = 3 and matrix 𝐴 has rank 3 (full rank), the displacement parameters follow from inverting
the system of equations, as

�̂� = 𝐴−1𝑦. (2.11)

In the following sections, we will first explain the concepts STCI LoS observations and RUM in sec­
tions 2.3.1 and 2.3.2, respectively. Afterwards, in section 2.3.3, we explain why we require three dif­
ferent sets of STCI observations and why it remains difficult to have a full rank system of equations.

2.3.1. Spatio­temporally coinciding independent LoS observations
The mathematical discussion above would be valid only if all observations 𝑦 from different radar ge­
ometries would be unambiguously linked to the same physical displacement signal, 𝑥. In reality, this
is almost never exactly true. Therefore, using the concept of spatio­temporally coinciding independent
(STCI) LoS observations, we mean that (i) the same scatterers, (ii) on an object that is not subject
to internal deformation, are observed (iii) simultaneously by different viewing geometries. Thus, the
following three conditions should be fulfilled:

1. The observations from the different viewing geometries should observe the same deformation
signal or phenomenon.

2. This only works if the same (position of an) object would be measured by the different viewing
geometries

3. Added to condition 1 and 2, the deformation phenomenon should be observed at the same mo­
ments in time (epochs).

Condition 1 is trivial. When the first satellite only observes targets that move in the vertical plane, while
the other satellites observe different points that move both vertically and horizontally, the estimates
for the displacements components will be wrong. For example, this may hold when ascending and
descending viewing geometries observe the opposite sides of a house. In such cases the observations
of the different viewing geometries are related to different functional models and combining them in one
model would obviously cause errors in the estimated parameters.

The second condition is related to the spatial part of the STCI LoS observations and is essential since
scatters close to each other are not per definition stemming from the same object. Added to this,
different objects (or parts of objects) can show different deformation phenomena. An example would
be a road with at one side a building. Due to soft soils , the road close to the building may show large
vertical displacements, while the building is stable. Two scatterers may be spatially near, but showing
a totally different deformation behavior.

The third condition is related to the temporal part, which is required since by definition deformation
phenomena change over time. The observations from the different acquisitions are never taken at the
same moment. E.g., in the Netherlands, there is a time difference of three days between the ascending
en descending acquisition from Sentinel­1. For rapid changing deformation phenomena such as land­
slides, it may be tricky to assume that observations from different epochs represent the same behavior.
When the different observations are indeed representing different signals, the observations belong to
different functional models, which will cause errors when the observations are combined in the same
functional model. However, to be still able to use observations from different viewing geometries, we
need to assume that it is possible to interpolate the observations in time, which is only possible when
the deformation phenomenon has a smooth behavior in time and is not rapidly changing.

The last term of importance from the STCI LoS observations in the ’independent’ part, where the
different observations need to be independent, to ensure the diagonal variance­covariance matrix in
Eq. (2.9).
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Thus, we need to explicitly make the STCI assumption when we attempt to solve the inverse problem
and estimate the displacement components.

2.3.2. Region of Uniform Motion
Unfortunately, the three conditions described in section 2.3.1 are hardly ever fulfilled for a single target.
This would only be the case when point scatterers (PS) observed with one satellite would exactly match
the PS of the other satellites, as e.g., with lamp posts [21, 22] or integrated geodetic reference stations
(IGRS) [23]. Thus, more in general, the decomposition of the LoS observations should be based on
the following assumption:

Points that fall within one Region of Uniform Motion (RUM) are stemming from the same object and
behave according to the same deformation phenomenon

So only after (i) defining a RUM, (ii) aligning the different data sets in time, and (iii) ensuring that the
data sets are all referenced to one common reference point, it will be possible to decompose the LoS
observations into the unknown displacements parameters. However, defining a RUM can be tricky
since it is likely to fail. For example, when one would be interested in the deformation of a road and a
RUM is defined, it may be that scatterers from the side of the road or the crash barrier fall within the
RUM. However, those points may behave according to different deformation phenomena and should
not end up in the same RUM as scatterers on the road.

Reference point
Apart from the STCI and RUM conditions, it is also essential that the different LoS observations are
referenced to the same reference point. Typically PS displacements are acquired by taking double­
differences with respect to a stable reference point. If the reference point is not as stable as expected,
e.g., subsiding, the LoS displacements for the other scatterers are biased with an uplift signal. Obvi­
ously, there are different reference points for the observations from different viewing geometries, which
results in erroneous results for the decomposed displacement parameters. Thus, if the different LoS
observation sets are referenced to other reference points, they are not observing the ’same’ deforma­
tion phenomenon anymore.

There are several ways to correct this problem. One approach relies on the assumption that for larger
areas (significantly wider than one RUM), the average displacement of all PS points within this wider
area is zero. When the average displacement of a complete LoS data set is not zero, it can be the case
that the LoS displacements are referenced to a moving reference point. It is possible to subtract this
average displacement signal from all PS points separately. Now, on average, the complete data set is
assumed to have zero displacements. When this procedure is executed for all data sets used for the
decomposition, all data sets are referenced to the same virtual reference point.

2.3.3. Full rank system
To unambiguously solve for the three unknown displacement components we require at least three
sets of STCI observations from different viewing geometries, yielding a unique solution. Multiple ob­
servations from one set would not be sufficient since the observations within one RUM all belong to the
same viewing geometry and the same deformation phenomena. This can be explained by analyzing
the solution space for different cases. With only one LoS observation set, the solution space is the
plane orthogonal to the LoS displacement vector that contains the end point of 𝑑LoS, see Fig. 2.14a.
All points located in the null space (red surface) are a possible solution to the inverse problem. The
solution plane for one LoS observation is defined by the LoS unit vector uLoS which is normal to the
solution plane, and can be written as

uLoS = [
u1
u2
u3
] = [

sin𝜃 sin𝛼𝑑
sin𝜃 cos𝛼𝑑

cos𝜃
] . (2.12)
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Figure 2.14: The solution space for the inverse problem. With only one LoS observation set this is the red plane shown in (a).
When two LoS observation sets are available, the two solution planes (blue and green plane) intersect, where the intersection
is a line. All points located on the null line, the red line in (b), are a possible solution to the inverse problem. Only with three
observation sets, the displacement components can be solved unambiguously. The solution is the intersection point of the three
solution planes in (c). When precisions are available for the observations, the precision of the solution is described by an error
ellipsoid, shown in red in (c).

The solution plane further contains point 𝑝0 = (𝑑LoS,e, 𝑑LoS,n, 𝑑LoS,u), where 𝑑LoS,e, 𝑑LoS,n and 𝑑LoS,u
are the coordinates of the LoS vector in the east, north and up direction and are defined as: 𝑑LoS,e =
𝑑LoS sin𝜃 sin𝛼𝑑 , 𝑑LoS,n = 𝑑LoS sin𝜃 cos𝛼𝑑 and 𝑑LoS,u = 𝑑LoS cos𝜃. The equation of the plane is
defined as

u1(𝑥 − 𝑑LoS,e) + u1(𝑦 − 𝑑LoS,n) + u1(𝑧 − 𝑑LoS,u) = 0. (2.13)

When two LoS observation sets are available, the solution space is a line: the null line. This is visualized
in Fig. 2.14b, where the blue and green lines are the LoS unit vectors corresponding to an ascending
and a descending observation, the blue and green planes are the solution planes, and the red line is
the solution space (or null space) for the two observations. This null line contains the endpoint of the
unknown 3D displacement vector. However, the actual (correct) solution remains unknown since all
points on the line are a potential solution to the underdetermined problem.

When the viewing geometry for both acquisitions is known, it is possible to describe the orientation of
the null line with two angles, 𝜙 and 𝜁, where 𝜙 is the azimuth of the line and 𝜁 the elevation angle. The
direction of the null line is given by the cross product of the two normal vectors of the solution planes,
which are the LoS unit vectors. Therefore the direction vector of the null line equals

𝑛 = u(1)LoS × u(2)LoS = [
sin𝜃1 sin𝛼𝑑,1
sin𝜃1 cos𝛼𝑑,1

cos𝜃1
] × [

sin𝜃2 sin𝛼𝑑,2
sin𝜃2 cos𝛼𝑑,2

cos𝜃2
]

= [
𝑛1
𝑛2
𝑛3
] = [

sin𝜃1 cos𝛼𝑑,1 cos𝜃2 − cos𝜃1 sin𝜃2 cos𝛼𝑑,2
− sin𝜃1 sin𝛼𝑑,1 cos𝜃2 + cos𝜃1 sin𝜃2 sin𝛼𝑑,2

sin𝜃1 sin𝛼𝑑,1 sin𝜃2 cos𝛼𝑑,2 − sin𝜃1 cos𝛼𝑑,1 sin𝜃2 sin𝛼𝑑,2
] , (2.14)

where 𝑛 is the direction of the null line, 𝜃1 and 𝛼𝑑,1 correspond to the first viewing geometry and 𝜃2 and
𝛼𝑑,2 to the second viewing geometry. From 𝑠 it is possible to compute 𝜙 and 𝜁 with

𝜙 = tan−1(𝑛1𝑛2
) and (2.15)

𝜁 = tan−1( 𝑛3
√𝑛21 + 𝑛22

), (2.16)

where 𝑛1, 𝑛2, and 𝑛3 are the first, second, and third component of 𝑛 respectively. Displacements that
are directed in 𝑛 have a projection into both LoS directions which is zero, i.e., both satellites are not
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sensitive for displacements into that direction. Note that with 𝜙 and 𝜁 we only have the direction of the
null line and not the exact position.

Only with three or more sets of LoS observations, it is possible to solve for the 3D displacement vector
unambiguously. With three viewing geometries, there is one unique point where the three solution
planes intersect, see Fig. 2.14. This location is the unique solution to the (well­determined) problem.

Moreover, the quality of the solution for Eq. (2.11) is found with the error propagation law as

𝑄�̂� = (𝐴𝑇𝑄−1𝑦𝑦𝐴)−1 = [
𝜎2𝑒 𝜎𝑒𝑛 𝜎𝑒𝑢
𝜎𝑒𝑛 𝜎2𝑛 𝜎𝑛𝑢
𝜎𝑒𝑢 𝜎𝑛𝑢 𝜎2𝑢

] , (2.17)

where the diagonal elements of 𝑄�̂� give the precision for �̂�𝑒 , �̂�𝑛, and �̂�𝑢 respectively. Within Fig. 2.14c
we also showed the error ellipsoid for the solution, which is uniquely defined by 𝑄�̂� It can be seen that,
especially for the northern direction, the precision of the estimated displacement is ∼30 times worse
compared to the eastern and vertical direction. This is caused by the limited angular diversity of the
observations on which we elaborate more on in the next section.

Angular diversity
The requirement of three STCI LoS observations sets stemming from the same RUM is a necessary
but insufficient requirement. The three STCI LoS observations also need to have sufficiently different
angular diversity. Only then, the solution to the underdetermined problemwill result in reliable estimates
for the three displacement components. For example, if only observations would be available from three
ascending satellite orbits, with only small differences in the azimuth of the ZDP 𝛼𝑑 and incidence angle
𝜃, the angular diversity is too small to give reliable estimates for the unknown displacement parameters
resulting in large condition numbers of the design matrix 𝐴.

2.3.4. Ill­posed problem
Because all SAR satellites are right­looking and orbiting the Earth in near­polar retrograde orbits, they
all have very similar viewing geometries, and there is limited angular diversity between different SAR
missions. So even with LoS observations from three viewing geometries, the inverse problem solution
is extremely unstable—a small difference in the LoS observations can lead to an enormous change
in the estimated displacement components. The inverse problem described by Eqs. (2.8) and (2.9) is
therefore often an ill­posed problem. A part of the ill­posed problem comes from to the near­polar orbits
of the SAR satellites. For an ascending acquisition, with an incidence angle of 23∘ and an azimuth angle
of the ZDP of 256∘, Eq. (2.7) is

𝑑𝐿𝑜𝑆 = [−0.38 −0.09 0.92] [
𝑑𝑒
𝑑𝑛
𝑑𝑢
] . (2.18)

This means that only ∼10% of the displacement in the north direction is mapped to the LoS, while the
vertical (up) direction is captured for 92% by the LoS observation. Thus, as only a small part of the north
component is mapped to the observation, it is difficult to estimate the north component. Therefore, SAR
satellites are less ‘sensitive’ for displacements in the north direction, and it is more difficult to solve for
the north component compared to the east and up components [24, 25].

Variance­covariance matrix of the estimates
With the variance­covariance matrix, we can show that it is indeed difficult to give reliable results for
𝑑𝑛. When simulating three different viewing geometries, consisting of two ascending acquisitions and
one descending acquisition, it is possible to estimate the precision for the estimated displacement
parameters with the error propagation law:

𝑄�̂� = (𝐴𝑇𝑄−1𝑦𝑦𝐴)−1 = [
𝜎2𝑒 𝜎𝑒𝑛 𝜎𝑒𝑢
𝜎𝑒𝑛 𝜎2𝑛 𝜎𝑛𝑢
𝜎𝑒𝑢 𝜎𝑛𝑢 𝜎2𝑢

] . (2.19)
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Table 2.2: Characteristics of the simulated viewing geometries to estimate 𝑄�̂�

Geometry type Incidence angle 𝜃 Azimuth ZDP 𝛼𝑑
ascending (right looking) 31∘ 261∘
ascending (right or left looking) 41∘ 260∘
descending (right looking) 44∘ 100∘

Figure 2.15: The full variance­covariance matrix for the estimates for the three displacement components shown in a logarithmic
scale. a) shows the situation where all observations are stemming from right­looking satellites. In b) there are two right looking
satellites and one left looking satellite. It can be seen that there is a significant improvement on retrieving 𝑑𝑛, but also the other
displacement components benefit from the addition of a left­looking radar acquisition.

Here, 𝐴 is the design matrix from Eq. (2.8) and 𝑄𝑦𝑦 is the variance­covariance matrix from Eq. (2.9).
With the characteristics of the three viewing geometries as presented in Tab. 2.2, simulating one scat­
terer per viewing geometry, and using 𝜎2LoS = 1 mm/yr for all three observations, we estimated 𝑄�̂�, see
Fig. 2.15a. The diagonal of 𝑄�̂� shows the variances of �̂�𝑒 , �̂�𝑛 and �̂�𝑢. The precision (𝜎) with which we
can estimate the north component is 27.6 mm/yr, which is way larger than the simulated 𝜎’s of the LoS
observations. The estimates for the east and up components are more precise and are 1.2 mm/yr and
3.9 mm/yr, respectively.

In Fig. 2.16a, the three null spaces for the three observations are shown, as well as the LoS unit vectors.
It can be seen that for the three­unit vectors, the component in the north direction is small, resulting
in the low sensitivity for north­south displacements. Furthermore, the intersection of one ascending
and one descending solution plane results in the null line running almost from north to south. When a
third ascending satellite is added, it only adds limited additional information since the geometry is much
like the other ascending satellite. This also explains why the quality of the solution in Fig. 2.14c was
described by an ellipsoid that was elongated in the Northern direction.

Left and right looking acquisitions
One solution to improve on retrieving 𝑑𝑛 is to add a left­looking observation as Rocca [25] suggested.
In Fig. 2.15b, the variance­covariance matrix for the unknown displacement components can be seen
for the case where we changed the second ascending acquisition to a left looking acquisition. The
precisions of the unknown parameters are now 1.1 mm/yr, 6.0 mm/yr, and 0.8 mm/yr for 𝑑𝑒, 𝑑𝑛, and 𝑑𝑢
respectively, which is an improvement for all components. However, the 𝜎 for 𝑑𝑛 is still large, especially
when we consider that the 𝜎 for the LoS observations was 1mm/yr. This can also be seen in Fig. 2.16b,
where we see the three solution spaces. Still, there is limited angular diversity.

2.4. The underdetermined problem
Summarizing what we have discussed so far, we can state that uniquely estimating the three displace­
ment components would require at least three sets of STCI LoS observations, all stemming from the



2.4. The underdetermined problem 23

Figure 2.16: The solution spaces for the three observations used for the decomposition. In a) we see the case where only
observations from right looking satellites are available. In b) there are two observations from right looking satellites and one
observation from a left looking satellite.

Table 2.3: Characteristics of the simulated viewing geometries for one ascending and one descending satellite. Note that the
azimuths of the ZDP are indicated towards the satellite.

Geometry type Incidence angle 𝜃 Azimuth ZDP 𝛼𝑑
ascending 30∘ 260∘
descending 45∘ 100∘

same RUM and with sufficiently angular diversity. Unfortunately, in many practical situations, at most
two sets of STCI LoS observations (one ascending and one descending) are available, resulting in an
underdetermined system with an infinite amount of possible solutions.

2.4.1. Orientation of the null line
In section 2.3.3 we have seen that the orientation of the null line from the RUM’s perspective could
be described by azimuth angle 𝜙 and elevation angle 𝜁. Intuitively, it may seem obvious that 𝜙 = 0∘
because the heading angles of the ascending and descending acquisition are symmetrical relative
to the north. This is also the prevailing premise in the InSAR community, based on common sense:
‘ascending and descending orbits are inclined but symmetrical with respect to the poles, so therefore
the orientation of the solution space (line) is north­south’. However, in the following we argue that this
premise is wrong in itself: it cannot be considered independently from the incidence angle.

Given the exact (nominal) orbital geometries of an ascending acquisition and a descending acquisition
as in Tab.2.3, we computed 𝜙 = 2.7∘ and 𝜁 = 7.2∘. This immediately shows that the premise above
is incorrect, as 𝜙 ≠ 0∘ despite the symmetric azimuths of the ZDP’s (+100° and −100°4). Thus,
apparently, the fact that 𝜙 deviates from zero is caused by the difference in incidence angles between
the ascending and descending acquisitions.

It is intuitively easier to understand that 𝜙 ≠ 0∘ in case the azimuths of the ZDP’s of the ascending and
descending track are not symmetrical. Moreover, we have seen in section 2.1.5 that the azimuth of the
ZDP varies with range. Consequently, the azimuth of the ZDP’s for the ascending and descending track
are hardly ever symmetrical. For locations on earth that can be viewed from multiple ascending and/or
descending acquisitions, the extent of this asymmetry differs per combination. However, we find that
the asymmetry is maximal when, for all locations, the acquisitions are chosen that have the maximal
𝛼𝑑, see Fig. 2.8. When we combine those two acquisitions, it is possible to estimate the orientation of

4The −100° follows from the 260° azimuth of the ZDP minus 360°.
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Figure 2.17: Orientation of the solution space line, defined by 𝜙 and 𝜁. In (a) and (b), we show 𝜙 and 𝜁 respectively, estimated
by combining the ascending and descending observations that had a maximum azimuth of the ZDP, for each location on earth,
considering the maximal asymmetry between the two ZDP’s. However, this demonstrates that it still results in 𝜙 = 0∘ for the
Northern Hemisphere due to the difference in incidence angles. In (c) and (d), we estimated per location different 𝜙 and 𝜁
values for all combinations that we could make between ascending and descending acquisitions. Again, we see at the Northern
Hemisphere that 𝜙 = 0∘. Moreover, we can conclude that 𝜁 ≠ 0∘

the null line for all locations on earth. These results can be seen in Fig. 2.17a and b, where the values
for 𝜙 and 𝜁 are shown. A remarkable result is that 𝜙 ≈ 0∘ for the Northern Hemisphere, whereas the
azimuths of the ZDP’s are often not symmetrical. So only considering the asymmetric azimuth of the
ZDP’s, the null line would have a 𝜙 ≠ 0∘. However, the two corresponding incidence angles (which are
not the same) are counteracting this result and ‘steer back’ to 𝜙 = 0∘. It is important to note that for the
Southern Hemisphere, we find 𝜙 often not equal to 0°.

From section 2.1.5 we have seen that there is a correlation between 𝛼𝑑 and 𝜃, see, e.g., Fig. 2.11.
Therefore, it is relevant to investigate whether 𝜙 = 0∘ can be considered as a ‘general rule’ for the
Northern Hemisphere for Sentinel­1. We compute 𝜙 and 𝜁 for all possible combinations between as­
cending and descending acquisitions for different locations. Since the viewing geometry changes with
latitude, we defined different locations, all with the same longitudinal coordinate (set to 30°) but varying
latitude (between −75° and +85°). Around the equator, there are often only one, two, or four com­
binations to make since there are at most two ascending and two descending acquisitions available.
However, for higher latitudes, with up to eight ascending and descending acquisitions, there are more
combinations to make. In Fig. 2.17c and d, we show values for 𝜙 and 𝜁 for different combinations that
we could make at a particular latitude. We show up to 20 combinations per location. It can be seen that
for the Northern Hemisphere, all combinations result in 𝜙 = 0∘. So the result for one particular case
shown in Fig. 2.17a and b was not coincidental. Also, we found that for the higher southern latitudes,
different combinations result in 𝜙 ≠ 0∘. Moreover, for the elevation angle 𝜁, we find that it increases
when approaching the poles.

In Appendix B we have shown that there is a relationship between the latitude and the azimuth of the
ZDP with the corresponding incidence angle. In the appendix, we use this relation to show that 𝜙 = 0∘
for the Northern Hemisphere.

2.4.2. Neglecting the NS displacement component
In the previous section, we found that for the Northern Hemisphere the orientation for the null line is
described by 𝜙 = 0∘, while 𝜁 varies with latitude. Therefore, the unit vector spanning this null line has
no component in the east direction. Thus, for any displacement into that direction of the line, the two
acquisitions are not sensitive. The results of Fig. 2.17 are therefore in line with the ill­posed problem
described in section 2.3.4. Now, the question can be asked whether it is allowable to simply remove
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Table 2.4: Characteristics of the Sentinel­1 geometry at Sappemeer, the Netherlands.

ascending descending 1 descending 2
𝜃 32.2° 32.0° 40.5°
𝛼𝑑 258.5° 101.5° 99.8 °

𝑑𝑛 from Eq. (2.8) resulting in the functional part of the mathematical model being:
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We can demonstrate that this leads to biased estimates for 𝑑𝑒 and 𝑑𝑢 (in the case that 𝑑𝑛 ≠ 0). We
simulate a displacement signal of 𝑑𝑒 = 4 mm, 𝑑𝑛 = 10 mm, and 𝑑𝑢 = 4 mm, and simulate two LoS
observations using the forward model of Eq. (3.7). Then, we use the inverse model with Eq. (2.20),
see Eq. (2.11), and the two LoS observations to estimate 𝑑𝑒 and 𝑑𝑢. We compare the estimated
displacements with the simulated values and compute the relative error as a percentage.

We performed the simulation on the viewing geometry of the available acquisitions at Sappemeer,
The Netherlands, where we can use one ascending and two descending acquisitions, see Tab. 2.4.
Combining the ascending acquisition with the first descending acquisition yields symmetrical azimuths
of the ZDP’s. We first consider this case in Fig. 2.18. In Fig. 2.18a, we fixed the azimuth of the ZDP to
the descending orbit to 101.5° and we varied the incidence angle. We plotted both the relative error (in
colored lines with the percentage on the left axis) as well as the orientation of the null line (black lines
and right axis). In Fig. 2.18b, we fixed the incidence angle of the descending acquisition to 35° (which
is the same as for the ascending acquisition), and we varied the azimuth of the ZDP. It can be seen that

Figure 2.18: Relative error for the estimated east and up displacement components when the north component is simply removed
and Eq. (2.20) is solved. It can be seen that both 𝑑𝑒 and 𝑑𝑢 (colored lines) are biased. In (a) we show the results when the
azimuth angles of the ZDP for the ascending and descending acquisition are symmetrical and we vary the incidence angle of
the descending acquisition. In (b) we fixed the incidence angle of the descending acquisition and varied the azimuth of the ZDP.
Only for the case that the azimuths of the ZDP’s are symmetrical and the incidence angles are equal, there is no bias for the
east component. It can also be seen that the size of the biases are related to the variation in 𝜙 and 𝜁.

only if the azimuth of the ZDP’s are symmetrical around the north­south direction and both incidence
angles are equal, the bias for 𝑑𝑒 is zero. In all other cases, there is a bias in the estimate of the vertical
component. Moreover, it can be seen that the bias is not only caused due to non­symmetrical azimuths
of the ZDP’s but also due to differences in incidence angles, see Fig. 2.18a.

At Sappemeer, we can also combine the ascending acquisition with the second descending acquisition,
which yields azimuths of the ZDP’s that are not symmetric. The results for this case can be seen in
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Figure 2.19: Relative error for the estimated east and up displacement components when the north component is removed and
Eq. (2.20) is solved for a case where the azimuths of the ZDP’s are non­symmetrical. Still, there are combinations of 𝜃 and 𝛼𝑑
that result in 𝜙 = 0∘ and a non biased result for 𝑑𝑒. In (a), we fix the azimuth of the ZDP of the descending acquisition to 99.8°,
and we varied the incidence angle and in (b), we varied the azimuth of the ZDP and fixed the incidence angle to 40.5°.

Fig. 2.19. In Fig. 2.19a, we fix the azimuth of the ZDP to 99.8°, and we varied the incidence angle. In
Fig. 2.19b, we varied the azimuth of the ZDP and fixed the incidence angle to 40.5°. In both Figs. 2.19a
and b we only find one combination of 𝜃 and 𝛼𝑑 that results in a unbiased estimate for 𝑑𝑒.

The results from Fig. 2.18 and 2.19 can be understood by reviewing the orientation of the solution space
(line) of the underdetermined problem. Since the two satellites are not sensitive for displacements
into the direction of the null line, described by orientation angles 𝜙 and 𝜁, it is possible to do a 2D
decomposition in the plane orthogonal to the null line that results in unbiased estimates. So if and
only if 𝜙 = 0∘ and 𝜁 = 0∘, the east­up plane (EU plane) is orthogonal to the null line and only then it
is possible to give an unbiased estimate for 𝑑𝑒 and 𝑑𝑢. Only in that case, the forced projection of 𝑑𝑛
onto both LoS directions would always be zero and it is allowed to remove it from the decomposition
equation.

By simply removing 𝑑𝑛 from the decomposition equation, both LoS observations are implicitly projected
onto the EU plane. Note that this is a ‘voluntary’ projection, and not a ‘forced’ projection, as introduced
in section 2.1.5. Within this EU­plane, a solution is found for 𝑑𝑒 and 𝑑𝑢. When we have the null line in
3D, this line also has a projection onto the EU plane, which is a line that we refer to as 𝑘, see Fig. 2.20.
Line 𝑘 is described by an angle Θ, which is the (elevation) angle between the east axis and 𝑘. As long

Figure 2.20: The orientation of the null line 𝑛 in the ENU reference frame is given by azimuth angle 𝜙 and elevation angle 𝜁.
The projection of 𝑛 onto the EU plane is line 𝑘 which has elevation angle Φ. In (a), the 𝜙 ≠ 0∘ and 𝜁 ≠ 0∘ and therefore 𝑘 as a
component in the east and up direction, further Φ ≠ 90∘. In (b), 𝜙 = 0∘ and therefore Φ = 90∘, 𝑘 only has a component in the
up direction, the component in the east direction is zero.
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as 0∘ ≥ Θ ≤ 90∘ the null line projected onto the EU plane has both a component in the up directed as
well as in the east direction, meaning that 𝑘 contains infinitely many combinations of 𝑑𝑒 and 𝑑𝑢. So it
is not possible to solve unambiguously for 𝑑𝑒 and 𝑑𝑢. If and only if 𝜙 = 0∘, line 𝑘 has no component in
the east direction and Φ = 90∘. Only then, it is possible to solve unambiguously for 𝑑𝑒, and only 𝑑𝑢 is
biased. This can also be seen in Figs. 2.18 and 2.19, where we indeed see that the relative error for
𝑑𝑒 equals 0% when 𝜙 = 0∘.

The elaboration above also shows that when 𝜁 and 𝜙 increase, the biases for 𝑑𝑒 and 𝑑𝑢 increase
accordingly. So the answer to the question whether it is allowed to remove 𝑑𝑛 from the decomposition
equation should simply be no. In Fig. 2.17 we have seen that the orientation of the null line is never
parallel to the north­south axis. Therefore, we will always have biased results. However, it can be
seen that for the Northern Hemisphere, 𝜙 = 0∘, so we can unambiguously solve for 𝑑𝑒, and only 𝑑𝑢
will be biased. The bias for 𝑑𝑢 will be more significant for higher latitudes since 𝜁 increases for higher
latitudes.

2.4.3. Discussion
It can be argued whether an unbiased estimator should always be preferred over a biased estimator.
From a probabilistic view, one would prefer an estimator with the highest probability of being correct. For
this reason, we need to consider the complete probability distribution of the estimator, as approximated
by its expectation, 𝐸{�̂�}, and spread (or variance), 𝐷{�̂�} = 𝜎2�̂� . In case of a biased estimator the
expected value is not equal to the true value, i.e., 𝐸{�̂�} ≠ 𝑥. Thus, one could argue that a (slightly) biased
estimator with a high precision should be preferred over an unbiased estimator with low precision.
Unfortunately, for the InSAR estimators under evaluation here, we do not have the luxury of choosing
an estimator with a higher precision, which makes biasedness a property that should be avoided, if
possible. We can influence the bias (or expectation) of the estimator by changing the mathematical
model, as proposed in this study, see chapter 3. Another reason why an unbiased estimator is preferred
is the fact that, when a set of LoS observations consists of multiple scatterers, the observations from
one viewing geometry are averaged over the RUM. This results in a higher precision for the estimator,
while the bias will not disappear.

The statement that it is possible to give an unbiased estimate for the east­west component on the
Northern Hemisphere with observations from two viewing geometries is currently only validated for
Sentinel­1, since we only computed these viewing geometries. Other SAR missions have their own
orbital parameters, and therefore, the relation between the incidence angle 𝜃 and azimuth of the ZDP
𝛼𝑑 may be different. Yet, we provided the conceptual framework for this evaluation, as it is the relation
between the two angles that is responsible for 𝜙 = 0∘. Even when the two 𝛼𝑑 values of the two
acquisitions are not symmetrical, the relation between 𝜃 and 𝛼𝑑 results in 𝜙 = 0∘. So we need to know
per mission what the exact relationship is between the two angles.

The computations of the viewing geometries are performed with DRaMA, which is discussed in more
detail in Appendix B. Here, we also encounter some potential limitations. The first step DRaMA carries
out is the computation of the LoS direction in the satellite­centered reference system, for which the look
angle is used, see 2.5 on p. 11. However, the range of the look angle, 𝜃𝑙, is estimated based on the
near and far range incidence angles, 𝜃𝑖, as described in the Sentinel­1 specification [26] and with:

𝜃𝑙 = sin−1( sin𝜃𝑖𝑅𝑒 + ℎ
𝑅𝑒), (2.21)

where 𝑅𝑒 is the radius of the Earth and ℎ is the altitude of the spacecraft. This approach is not perfectly
accurate since it does not provide the exact look angles, however it is good approximation.

Moreover, DRaMA can estimate the incidence angles and azimuths of the ZDP up to a particular res­
olution that is larger than the resolution for which we desired to estimate the two angles. A linear
interpolation is used to obtain results at the specified resolution, which is not entirely correct, certainly
around the poles.



28 2. InSAR LoS observations and current approaches to address the undeterminancy problem

2.4.4. Projecting the LoS displacement vector
Wehave discussed that with only two LoS observations it is not possible to decompose the observations
into the 3D displacement vector. What is possible, however, is to project the two LoS observations on
any arbitrary plane, e.g., the EU­plane spanned by the vertical and east axis, and then solve for 𝑑𝑒 and
𝑑𝑢 in that plane. Alternatively, when only one LoS observation is available, it is possible to project onto
one direction, e.g., the vertical. We will refer to this as ‘voluntary’ projections, as it is up to the end­user
on whether such a projection contains intelligible information. This differs from a ‘forced’ projection,
such as the orthogonal projection of the 3D displacement onto the LoS direction, which is a necessary
projection, i.e., we cannot influence it.

Projecting two LoS observations onto an arbitrary plane
The two available Los observations can be projected onto any arbitrary plane by a multiplication of the
LoS displacement vector with a projection matrix 𝑃. When the LoS displacements are projected onto
the plane spanned by the east and up axis, i.e., the EU plane, we have

𝑑′EU = [
1 0 0
0 0 0
0 0 1

]
⏝⎵⎵⏟⎵⎵⏝

𝑃

uLoS𝑑LoS, (2.22)

where 𝑑′EU is the projection of 𝑑LoS onto the EU plane and uLoS the LoS unit vector (see Eq. (2.12)).
When this projection is performed for the two LoS observations it is possible to transform the observa­
tions into east and up components with Eq. (2.20). However, it should be stressed that the results of
the voluntary projection are not the same as the unknown displacement components. This is because
projecting the LoS onto a plane, such as the EU plane, and consequently ‘solving’ for the two compo­
nents in that plane (such as the east and up components) is similar to neglecting the NS component,
as described in section 2.4.2, where we found that the results are biased as long as 𝜙 ≠ 0∘ and 𝜁 ≠ 0∘.

Projecting one LoS observation onto the vertical direction
When there is only one LoS observation available, it is possible to project that observation onto one
direction. Usually, 𝑑LoS is projected onto the vertical direction using

𝑑′up = 𝑃up, (LoS)⊥ 𝑑LoS = (cos𝜃)−1𝑑LoS, (2.23)

which is an oblique projection of the LoS observations onto the vertical axis, along a plane orthogonal
to the LoS unit vector. It is important to stress that Eq (2.23) is an oblique projection. When the LoS
observations would be projected orthogonally onto the vertical, along a plane orthogonal to the ‘up’ unit
vector, that would result in

𝑃up, (up)⊥ 𝑑LoS = [
0 0 0
0 0 0
0 0 1

]
⏝⎵⎵⏟⎵⎵⏝

𝑃

uLoS𝑑LoS, (2.24)

which becomes

𝑃up, (up)⊥ 𝑑LoS = cos𝜃 𝑑LoS, (2.25)

which differs from Eq. (2.23). Thus, both 𝑃up, (LoS)⊥ and 𝑃up, (up)⊥ are allowable voluntary projectors,
albeit with a completely different result.

Note the the oblique projection in Eq. (2.23) may be counterintuitive as the result (𝑑′up) can be larger
than the vector that is projected (𝑑LoS). For the orthogonal projection, the absolute value of the result
will always be smaller than the vector that is projected. To avoid a misinterpretation we therefore
recommend to write, for the case of an oblique projection: “The LoS observations are projection onto
the vertical along ...”, to make clear that it is not an orthogonal projection.
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2.5. InSAR fallacies in literature
The inverse problem described by Eq. (2.7) is in fact a “not possible, unless…” case. If additional
information is available, on which it is possible to make additional assumptions, then estimating the
full 3D displacement vector may be possible. However, there is not one standard approach. Within
InSAR literature, we encounter different approaches to address the underdeterminancy problem, yet
often with either mathematical or semantic flaws. The impact of these flaws ranges from quantitative
errors in the reported studies, mismatches in comparative studies with other geodetic techniques, to a
lack of confidence in the technology by end­users. In this section, we report on an in­depth literature
review of InSAR studies, with the main goal to classify the main categories of InSAR fallacies and to an­
alyze their impact. We distinguish four different types of InSAR fallacies: on the attribution, projection,
decomposition, and on assumptions.

Note that the review below is not intended to “blame” authors and that we do not want to imply any
position on the level of their understanding. Instead, we respectfully assume that the majority of authors
is well­aware of the geometric limitations of InSAR. Yet, we do observe that many of the different
fallacies that are cited have a rather loose usage of semantics. For the general public, loose and
non­strict communication may easily lead to misinterpretation, misunderstanding or confusion, which
can have a high impact in several cases. Therefore, we chose to communicate our statements on the
fallacious approaches quit strictly and firmly, as we believe that this will stimulate discussion on how
InSAR results should be communicated.

2.5.1. Attribution errors
An attribution error is made when the line­of­sight observation is completely attributed to e.g. a vertical
displacement, using only a single viewing geometry, and without further justification. In such studies, no
projection statements are given, and LoS observations are directly interpreted as vertical displacements
([7, 27–31]). This is erroneous, and results in a severe underestimation (bias) of vertical displacements
of up to 40%. For a situation with only vertical displacements 𝑑𝑢 (thus, 𝑑𝑛 = 0 and 𝑑𝑒 = 0), and
𝜃 = 45∘, we have 𝑑LoS = cos 40∘𝑑u ≈ 0.71 ⋅ 𝑑u, which is a significant underestimation of the vertical
displacements.

Typical examples of attribution errors found in literature include:

1. “15 ascending Sentinel­1A TOPS SAR images […] were selected to estimate vertical average
surface subsidence ” [30]

2. “Vertical displacements […] has been drawn […] using the available data. ” [7]

3. “The result from the IPTA processing is a surface velocity map […] the velocity map shows a slow
subsidence.” [27]

Statement 1 is incorrect since it is not possible to estimate the vertical velocities from one data set
only, without explicitly stating additional assumptions. Furthermore, without any projection statements,
it remains unclear how the results were obtained, which does not satisfy the scientific principle of
reproducibility. Perhaps, the LoS observations are projected but it could also be that the LoS data
is directly interpreted as vertical displacements. The same holds for the second statement, here the
‘available data’ are LoS displacements. In the third statement, where only one viewing geometry is
available, it is unclear what the published velocity map shows: LoS velocities or LoS velocities projected
onto the vertical? The authors state that ‘subsidence’ results can be obtained from the map, this cannot
be stated from one viewing geometry only.

Several studies use terminology inconsistently [28, 32]. Here, InSAR results are first presented un­
altered as LoS displacements, while later the terms ‘LoS displacements’ and ‘subsidence’ or ‘vertical
displacements’ are mixed up. It is evident that loose usage of terminology can easily lead to a misin­
terpretation.

To prevent attribution errors, one could present the LoS observations unaltered and avoid suggestive
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words such as ‘subsidence’ and ‘vertical’, i.e., strictly use the term LoS displacements when results
are discussed. Another option would be to project the LoS results onto any arbitrary direction, e.g., the
vertical direction, as long as this is stated explicitly.

2.5.2. Projection errors
Projection errors occur when LoS displacement estimates are projected onto the vertical, but are sub­
sequently presented as ‘vertical displacements’.5 This type of error occurs, just like attribution errors,
when only one single viewing geometry is available, and the actual direction of the displacement vector
is unknown.

While ‘projection onto the vertical’ would be a perfectly correct statement, ‘vertical displacement’
is not, since the latter would necessarily rely on the assumption that any non­vertical displacement
component of the 3D vector is non­existent. Since this assumption is in many cases incorrect, e.g. for
landslides or even subsidence bowls, it leads to a biased estimate instead of a more noisy estimate.
Frequently, a bias has a bigger impact and less chance of being detected, which is the case in [33–38].

Samiei­Esfahany et al. [39] showed that the bias Δ𝑑𝑢 induced while projecting the LoS onto the vertical
without assuming horizontal displacements is computed as:

Δ𝑑𝑢 = tan𝜃 ⋅ [−𝑑𝑒 sin𝛼𝑑 − 𝑑𝑛 cos𝛼𝑑]. (2.26)

Thus, when a horizontal displacement is directed in the zero­Doppler plane (in the look direction of the
sensor) the bias is maximal and can be estimated with

Δ𝑑𝑢,max = tan𝜃 ⋅ 𝑑ZDP, (2.27)

where 𝑑ZDP is the horizontal displacement in the ZDP. Thus, for larger incidence angles, the induced
bias becomes larger. When 𝑑ZDP is 5 m and 𝜃 = 35∘, the bias becomes 3.5 mm, which may be
significant for many applications.

There are also studies where assumptions on the horizontal component are not made at all, e.g.,
[8, 40–42]. Examples include:

1. “We converted the LoS displacements […] to vertical displacements using 𝑑𝑣 = 𝑑LoS/ cos𝜃. ” [8]

2. “The differential phase […] was converted from SAR LoS to vertical displacements using:
𝑑𝑢 = 𝜙(𝜆/4𝜋)/ cos𝜃.” [40]

3. “Each of the PS points was projected into the vertical deformation according to their own incidence
angle. ” [42]

All three statements are incorrect since the words ‘converted’ and ‘transformed’ suggest that there is a
one­on­one relation between the LoS displacements and the vertical displacements. However, it is not
possible to convert or transform the LoS displacements directly to vertical displacements. Other verbs,
such as ‘computed’, ‘calculated’, ‘estimated’, and ‘determined’ would also be wrong.

To prevent projection errors, we suggest (i) to mention the assumption of a non­existent horizontal
component (when this valid) or (ii) use the safe projection operation and write: ‘We projected the LoS
displacements onto the vertical direction along ...’. However, to prevent a misinterpretation we suggest
to add a statement or caveat that a projection onto the vertical is not the same as the vertical displace­
ments. Added to this, when an oblique projection is used following Eq. (2.23) (as is almost ever the
case) it should be made clear that the LoS displacements are projected onto the vertical along the
plane orthogonal to the LoS vector.

Added to this, we suggest a consequent use of the term ‘projection onto the vertical’ in all figures,
tables, and throughout the whole paper. This would be especially recommended for the captions of
5Obviously this also holds for equivalent situations in a particular horizontal direction.



2.5. InSAR fallacies in literature 31

Figure 2.21: Projection errors can be corrected by changing the semantics. In (a), the caption of the figure reads ‘Vertical dis­
placements’ whereas the results shown are LoS observations projected onto the vertical direction. To obtain a correct figure, we
therefore advise to change the caption of the figure in ‘LoS observations projection onto the vertical’ to prevent misinterpretations
as in (b).

colorbars of InSAR products, which all too frequently simply state ’vertical displacements’. As stated
above, a displacement projected onto the vertical is not identical to a vertical displacement. In Fig. 2.21
we show changing the semantics can help in achieving a correct result.

2.5.3. Decomposition errors
Decomposition errors occur when the null­space in the 3D solution space—using only one or two view­
ing geometries, i.e., ascending and descending—is ignored, and subsequently a ’non­measurable’ dis­
placement vector component is equated to a ’non­existing’ displacement vector component. In such
cases, it is assumed that the lack of sensitivity in the north­component for near­polar orbits is equivalent
to the absence of a north­south component by simply removing the component from the decomposi­
tion equation, e.g., [9, 43–52]. This assumption fails since the solution space for two observations is
a line which is never orthogonal to the east­up (EU) plane, see section 2.4.1. Neglecting the north­
component results in biased estimates mostly for the vertical component but depending on the latitude
of the target it may also influence the east­component, see section 2.4.1. Therefore, these approaches
are very dependent on the actual magnitude of the north­south displacements and on the location on
earth where they occur.

Typical examples of decomposition errors include statements such as:

• “By combining an ascending and a descending time­series, it is possible to disentangle east­west
horizontal deformation from vertical deformation.” [44]

• “Whenever two data sets of InSAR images are available, […] the PS­InSAR results can be used
successfully to estimate the vertical and east­west components of the local displacement fields.”
[46]

• “The combination of ascending and descending satellite passes allows the decomposition of the
light of sight velocities into horizontal east­west and vertical components.” [9]

• “Reconstructing vertical and horizontal components […] using two interferograms, one from an
ascending and the other from a descending orbit.” [47]

All these statements suggest that it is possible to ‘disentangle’, ‘estimate’, or ‘reconstruct’ two displace­
ments components, usually the vertical and east component, with two LoS observations. However,
in general this is not possible due to the dimensionality of the solution space when two observations
are available. There are also approaches where authors try to decompose the observations into the
plane spanned by the up direction and the azimuth look direction of one of the satellites, see [8, 51].
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However, this approach is still incorrect since the plane that is used has not the same orientation as
the plane orthogonal to the null line, and therefore the results are still biased.

To prevent decomposition errors we suggest two solutions. The first option would be to project the two
LoS observations onto the EU plane as in Eq. (2.22), and solving for the displacements in the east and
up direction in this plane. However, it should be stressed that the results of the voluntary projection
are not the same as the unknown displacement components. Another option is to solve for the two
displacements components that are in the directions of the vectors that span the plane orthogonal to
the null line.

2.5.4. Flawed assumptions
The problem of estimating 3D displacement vectors observed by only one or two viewing geometries
can only be solved by adding additional information (conditions) in the form of assumptions. Thus,
these need to be explicitly stated, both in the documentation of the approach as well as in the final
information products, such as maps. Yet, in many cases, these assumptions are either lacking, mis­
stated, incorrect, or implausible. The consequence of flawed assumptions typically results in biased
results rather than noisy results.

When an approach is incorrect due to flawed assumptions, it is often related to an attribution, projec­
tion, or decomposition error. We observed lacking assumptions in both the projection error and the
decomposition error. Regarding the projection error, it is possible to only solve for the vertical dis­
placements under the assumption that the horizontal components are zero. However, in many studies
this assumption was not explicitly mentioned. The same holds for the decomposition error: one could
potentially solve for two displacement components with two Los observations, however this requires
additional conditions, which are often lacking.

Studies where the assumptions are misstated are mainly found for the decomposition error, e.g.:

• “Assuming that the orbital path of the satellite is approximately parallel to the meridian, the LOS
sensitivity to motion in the north­south direction is negligible, hence the equation can be rewrite
to solve for 𝑑𝑒 and 𝑑𝑢.” [50]

• “The north­south component can be neglected due to the low sensitivity of SAR sensors along
that direction.” [52]

• “The sensitivity to a target motion along the north­south direction is usually quite low.” [46]

It is indeed correct that near­polar radar satellites have a low sensitivity for the north­component. How­
ever, simply removing 𝑑𝑛 from the decomposition equation under the assumption of the low sensitivity
for that component is not permissible without any knowledge or explicit statements on the expected
magnitude of the north­component. Thus, this is typically a Signal­to­Noise Ratio (SNR) consideration.
As long as the real world displacement into the north­direction is large enough, e.g., larger than the
noise level of the projected LoS observations, it can still be discriminated from the observations.

Examples of assumptions that are implausible are:

• “The north component is insensitive […] consequently, we add the additional constraint that the
north­south motion is assumed to be zero. In this way, we calculate the velocity in east­west and
up­down direction.” [9]

• “Sentinel­1 data are insensitive to north­south displacements direction […] Therefore, we as­
sumed that 𝑑𝑛 = 0, and this allowed us to find the other two components of the deformation
vector.” [48]

• “It is also assumed that horizontal velocities are mainly due to east–west motion, owing to InSAR
low sensitivity to the north component.” [51]
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Here is is assumed that 𝑑𝑛 = 0 since the radar is insensitive for displacements into the north­south
direction. However, the assumption of 𝑑𝑛 = 0 is an assumption on the actual size of the physical signal,
which is the unknown parameter and evidently not correlated to the sensitivity of the radar instrument!

Examples of incorrect assumptions are:

• “However, […] results obtained from two different acquisition geometries (i.e. ascending and
descending), […], allows one to estimate 2D measurements.” [53]

• “Using data from both ascending and descending orbits, it is possible to determine the vertical
displacement and one component of horizontal displacement.” [47]

As discussed, those statements are incorrect since the solution space of this underdetermined problem
is a line, so with two observations only it is never possible to unambiguously solve for two displacement
components, since the solution space is never orthogonal to the plane spanned by the two displacement
components.

2.5.5. Discussion
When discussing the sensitivity of the north­south component and subsequently removing it from the
decomposition equations, an argument that is often used, is that the sensitivity for the north­south
component is only valid for exceptional cases with large north­south displacements. Yet, we argue that
the argumentation should be exactly opposite: one should describe the decomposition problem in a
generic sense, both for small and large displacements. Initially, the stochastic model plays no role,
as only the geometry of the observations should be taken into account, as captured in the 𝐴­matrix.
Once the generic model is known, it is possible to deduce particular cases, e.g., cases with either
small displacements or very high or low observation precision. We have shown that there are several
factors that can influence particular cases, such as the location (latitude) of the area of interest, or the
magnitude of the event. Deductions from the generic to the particular are more valuable than the other
way around, where authors start with the exceptional (particular) case, stating that the precision of the
observations is low or that the displacements are small, and from there try to deduce the generic model.

In Appendix E we discuss some fallacious propositions that we encountered in this literature study.

Finally, we would like to stress that our attempt to identify and classify common errors (fallacies) in
InSAR studies, based on a thorough review of publications, does not imply any position on the level
of understanding of the authors of those studies. Instead, we respectfully assume that the majority of
authors is well­aware of the geometric limitations of InSAR, and that the different fallacies cited are not
a consequence of a lack of mathematical understanding, but rather a loose usage of semantics. Yet,
for the general public, we observed that a rather loose and non­strict communication easily leads to
misinterpretation, misunderstanding or confusion, which can have a high impact in several cases.

2.6. Suggestions for handling the underdetermined problem
While the underdetermined nature of the problem cannot be formally solved, we propose some practical
solutions.

2.6.1. LoS unaltered as the final product
Presenting the LoS observations unaltered as the final product is obviously correct, as it does not
attempt to do any projection, attribution, or decomposition. The approach can be seen in [43, 54–56].
The drawback of the LoS product is that it is typically hard to interpret, especially for untrained end­
users. As potential vertical and horizontal displacement components are projected into the LoS and
superposed, it remains ‘invisible’ what happens in the real world.
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2.6.2. “Projection­onto” products
When only one LoS observation is available, a correct option is to present the projection of the LoS
onto the, e.g., vertical direction. In this case, it must be made clear that the results are displacement
projections and not the vertical displacements themselves to avoid misinterpretation. Moreover, the
projection type should be made clear, since the oblique projection provides different results compared
to the orthogonal projection.

The results should also be communicated consistently. In all figures, tables, and the entire written
text it should be mentioned that the estimates are projections on the vertical rather than the vertical
displacements itself. When two LoS observations are available, it is possible to project the observations
on any arbitrary plane and solve for two displacement directions in the plane. However, the estimated
displacements are not equal to the true displacements.

2.6.3. 2D Decomposition with valid, plausible, and explicit assumptions
While assumptions that east­west displacements are more likely than north­south displacements are
implausible in most cases, there are several assumptions for which plausibility would be hardly dis­
puted. For example, for gravity­induced down slope displacements, it is near­impossible that there is a
displacement component parallel to the elevation contours, it is near­impossible that for a subsidence­
bowl, there is a displacement component parallel to the LoS displacement contours. It is very unlikely
to have significant secular displacements in the longitudinal direction of horizontal line infrastructure
[16, 57]. For such cases, the displacement vector can be described as a 2D displacement vector, and
as a result, it is possible to solve for the two unknown displacement components with only two LoS
observations. More on this approach is described in chapter 3.

A complete overview of all the different approaches even with their impact can be found in Appendix C.
In Appendix D we present fallacious statements for the different InSAR approaches and our proposal
on how approach can be made correct.



3
The strap­down approach

Using the ENU system is only one of the infinitely many possibilities for the parameterization of the
inverse problem. However, in many cases it is a choice that is not optimally tuned to the user needs,
and in chapter 2 we have seen that it often results in an underdetermined problem. One solution to
the underdetermined problem would be to choose the parameterization such that there are only two
unknown displacement parameters which are into the direction of the two vectors that span the plane
orthogonal to the null line unit vector1.

Here we developed a new alternative solution to the underdeterminancy problem, in the form of a
‘strap­down’ approach, which uses a local strap­down reference system that is fixed to the deformation
phenomenon with transversal, longitudinal, and normal (TLN) components. This approach results in
better interpretable results compared to the conventional method where displacements are estimated
in the east­up (EU) plane. In sections 3.1 and 3.2 we first discuss the strap­down approach and the
different deformation phenomena for which it can be used. In sections 3.4 and 3.5 we analyze the
impact of the uncertainty of the alignment of the TLN­frame on the final estimates, resulting in the final
mathematical model which we discuss in section 3.6. Finally, in section 3.7, we discuss when particular
displacements can be detected.

3.1. LoS­Vector decomposition using a local strap­down coordi­
nate system

For most deformation phenomena we propose to work with a local, ‘strap­down’, right­handed Carte­
sian coordinate system that is fixed to the deformation phenomenon with transversal, longitudinal, and
normal components, see e.g., Fig. 3.1. The term local implies that the orientation of the TLN frame
may differ for each location in the image. A displacement in those three directions is projected onto the
LoS with Eq. (2.7) as [57]:

𝑑LoS = 𝑃LoS 𝑑ENU, (2.7)
= 𝑃LoS 𝑅1 𝑅2 𝑅3 𝑑TLN, (3.1)

where 𝑑TLN is the vector containing the displacement components in the local strap­down system, with
𝑑TLN = [𝑑𝑇 , 𝑑𝐿 , 𝑑𝑁]𝑇, containing the transversal, longitudinal, and normal displacement components,

1For every parameterization it is furthermore important that no information is lost. This happens for instance when the decom­
position is done in the east­up plane: information is lost on the north component resulting in biased estimates. Once this
information is ‘lost’ it is not possible to go back at another parameterization.
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respectively. 𝑅1, 𝑅2, and 𝑅3 are rotation matrices which are expressed as

𝑅1 = [
cos𝛽 sin𝛽 0
− sin𝛽 cos𝛽 0
0 0 1

] ,

𝑅2 = [
1 0 0
0 cos 𝛾𝑙 − sin 𝛾𝑙
0 sin 𝛾𝑙 cos 𝛾𝑙

] ,

𝑅3 = [
cos 𝛾𝑡 0 sin 𝛾𝑡
0 1 0

− sin 𝛾𝑡 0 cos 𝛾𝑡
] , (3.2)

where 𝛽 ∈ [0∘, 360∘) is the azimuth of the longitudinal direction relative to the north. Note that the
longitudinal direction has a 180∘ ambiguity. Therefore, in case of a topographic slope or a subsidence
slope, the longitudinal direction is defined tangential to the local iso­elevation or iso­deformation lines,
such that the positive transversal direction is always directed down­slope. In the absence of a clear
slope, we use the smallest angle w.r.t. the north, i.e. 𝛽 ∈ (−90∘, +90∘], following [57]. The slope in
the longitudinal direction is 𝛾𝑙 ∈ (−90∘, +90∘], where up­hill is positive. The slope in the transversal
direction is 𝛾𝑡 ∈ (0∘, +90∘]. The normal direction completes the right­handed system. The angles 𝛾𝑡
and 𝛾𝑙 represent the elevation angles of the slope relative to the horizontal.

While Eq. (3.1) does not solve the problem of underdeterminancy, for many practical cases, e.g., line
infrastructure, landslides, or subsidence bowls, analysis of the main driving forces supports the as­
sumption that significant displacements in the longitudinal direction are unlikely. Under this assump­
tion, Eq. (3.1) can be solved with two sets of STCI LoS observations from sufficiently different viewing
geometries.

Below, we will address the application, and implications, of the strap­down system for different practical
situations.

3.2. Deformation Phenomena
In practice, we can distinguish two main categories of InSAR deformation cases. First, there are cases
where the deformation mechanism is known, where a TLN system can be well­defined, and where we
can assume that there are no displacements in the longitudinal direction (𝑑𝐿 = 0). This holds, e.g.,
when the main driving mechanisms and forces are gravity or a volume change underneath the Earth’s
surface. Second, there are cases in which it is not known whether deformation is occurring, or when
the deformation mechanism is unknown. For such cases, it is obviously not possible to distinguish a
primary driving force for the displacements. As a result, it is impossible to define ’main’ orientations
for the displacements, and we cannot use the TLN frame. This is the case for, e.g., nationwide InSAR
displacement products, see e.g. [5]. For such cases, the ENU system be used for the decomposition
and three sets of STCI LoS observations are required.

Here we discuss three typical types of deformation phenomena from the first category: downslope
displacement, subsidence and uplift, and infrastructure.

3.2.1. Gravity induced downslope displacement
Landslides, moving glaciers, or slope instability of a dike are examples of phenomena where the main
deformation occurs along the slope, with gravity as the main driving force. When the longitudinal axis
is parallel to the iso­elevation lines of the slope of the occurring landslide, we can safely assume that
displacements in the longitudinal direction are (close to) zero, i.e., all displacements occur in the vertical
plane spanned by the 𝑑𝑇 and 𝑑𝑈 vectors, see Fig. 3.1a. Hence, in Eq. (3.2), 𝛾𝐿 = 0∘ by definition.

The slope aspect, i.e., the compass direction that a terrain surface faces, determines the values for the
angles 𝛽 and 𝛾𝑡, see Fig. 3.1b. We define the orientation angle 𝛽 as the direction of the longitudinal
axis relative to the north. Hence, perhaps counterintuitively, for a north­east facing slope (first quadrant
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Figure 3.1: Orientation of the TLN reference system for slopes. (a) shows how the TLN reference system is oriented to the ENU
reference system for gravity­induced downslope deformation phenomena. (b) A top view of a schematized mountain, where the
highest elevation is located at the center of the figure. The slope aspect determines in further detail the boundaries within which
𝛽 should lie.

in Fig. 3.1b), 𝛽 ∈ (−90∘, 0∘] such that the positive transversal direction is downslope. The (angle of the)
slope is 𝛾𝑡, and is always referred to as a positive number.

3.2.2. Subsidence and uplift
Subsidence bowls and uplift domes are caused by a change in volume underneath the Earth’s surface.
They exhibit vertical and horizontal displacement components. The horizontal component is orthog­
onal to the iso­deformation lines: centripetal for subsidence [58], and centrifugal for uplift. Thus, the
longitudinal direction is oriented parallel to the iso­deformation lines, and the transversal direction is
downslope (centripetal) for subsidence, see Fig. 3.2. For uplift, the transversal direction is centrifugal.
Caused by the the gravitational force, and the driving mechanisms involved, it is safe to assume that no
displacements in the longitudinal direction may occur. The normal displacements are the largest in the
center of the field, where there is almost no vertical displacement at the edge of the field. Considering
a perfect circular subsidence field as in Fig 3.2, the poss 𝛽 values depend on the quadrant.

3.2.3. Line­infrastructure
Line infrastructure is characterized by an extended spatial dimension in one direction (the longitudinal
direction), where the spatial extent in the other two directions is limited, as e.g. roads, railways, dikes,
and pipelines. The slope of the asset is given by 𝛾𝑙, and 𝛾𝑡 represents the cant of the asset or the slope
in the transversal direction, which is usually small. Often, it is possible to assume that no significant
displacements occur in the longitudinal direction [16, 57]. For cases where 𝛾𝑡 equals zero, there is a
directional ambiguity for 𝛽, and the smallest azimuth angle should be chosen, i.e., 𝛽 ∈ (−90∘, 90∘].

3.3. Estimating displacements using the strap­down system
Given the definition of the TLN­frame, there are several options for estimating the displacements in
the transversal and normal direction using the assumption of zero longitudinal displacements. One
option is to estimate 𝑑𝑇 and 𝑑𝑁 by adding a pseudo observation for 𝑑𝐿, where the pseudo observation
is chosen to be 𝑑𝐿 = 0 as in [57] and [16]. However, the drawback of this approach is that it is likely that
the estimates for the transversal and normal displacements components are biased, which happens
when the assumption of 𝑑𝐿 = 0 fails. The assumption of zero longitudinal displacements fails when the
orientation of TLN frame is chosen incorrectly.
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Figure 3.2: Orientation of the TLN reference system for subsidence bowl. The transversal direction is always directed towards
the centre of the subsidence bowl. It differs per quadrant what can be the possible 𝛽 values.

Figure 3.3: The orientation of the TLN reference system for line­infrastructure.
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Table 3.1: Viewing characteristics of a satellite in an ascending and a descending orbit

Geometry type Incidence angle 𝜃 Azimuth angle of
the ZDP 𝛼𝑑

ascending 30∘ 260∘
descending 35∘ 92∘

For every displacement vector in the conventional ENU system there exist an infinite number of 2D
planes that contain the displacement vector by definition. When this plane is the plane spanned by the
transversal and the normal direction (TN plane)2, the longitudinal direction points in the direction of the
normal vector of this TN plane. When we know the exact orientation of the TN plane, an approach with
a pseudo­observation for the longitudinal displacement will result in proper unbiased estimates for the
three displacement components. However, the problem is that the exact orientation of the TN plane is
not known. We can only estimate the orientation by means of the direction of the displacement vector,
but this is the unknown of the inverse problem. There are deformation phenomena for which we can
make a good estimate of the orientation (see section 3.2) but the exact orientation remains unknown.

In section 3.3.1 we will show that a misalignment of the TLN frame results in a biased estimate. Then,
in section 3.4 we study the effect of the frame alignment uncertainties on the estimated displacement
parameters from which we will conclude that the alignment uncertainty should be considered in the
mathematical model. Therefore, in section 3.6, this leads to the final approach where we added the
frame uncertainty to the mathematical model to arrive at proper estimates for 𝑑𝑇 and 𝑑𝑁.

3.3.1. A misalignment of the TLN frame
The assumption of 𝑑𝐿 = 0 is likely to fail when the orientation of the TLN reference frame is chosen
incorrectly. So for a decomposition, optimal estimates for 𝛽, 𝛾𝑡, and 𝛾𝑙 are required. Let 𝛽0, 𝛾0𝑡 , and 𝛾0𝑙
represent the initial estimates for the orientation of the TLN frame. When the orientation estimate is
incorrect, e.g., 𝛽0 ≠ 𝛽, we make a mistake in the design matrix 𝐴 and the functional model is incorrect,
i.e., the assumption of 𝑑𝐿 = 0 fails resulting in biased estimates. Consequently, we may view the biased
estimation problem in terms of the uncertainty of the estimates for the orientation angles. During the
rest of this section we only focus on the uncertainty for 𝛽0 but the approach is identical for the other
two angles 𝛾0𝑡 and 𝛾0𝑙 . With an uncertainty of 𝛽0 ± 𝜀𝛽 we have

B = |𝑑(𝛽0 − 𝜀𝛽0) − 𝑑(𝛽0 + 𝜀𝛽0)|, (3.3)

where B represents the bias introduced by an imperfect alignment of the reference frame, 𝑑 is the
estimated displacement (in the transversal or normal direction) and 𝜀𝛽0 represents the uncertainty of
the value of 𝛽0 in degrees. The bias is the absolute difference between the estimated displacement
calculated with an angle of 𝛽0 − 𝜀𝛽0 and 𝛽0 + 𝜀𝛽0 . The better we can estimate the initial value for the
angle of 𝛽0, the smaller the bias we create on our final estimates.

We simulated unit displacements in the transversal and normal direction. With 𝛾𝑡 = 10∘ and 𝛾𝑙 = 0∘
we computed two STCI LoS observations for varying values of 𝛽 ∈ (0∘, 360∘], following the satellite
geometry shown in Table 3.1. The LoS observations were computed using the forward model as in
Eq. (3.1). We choose the uncertainty for the azimuth angle to be 𝜀𝛽 = 10∘ and we set the value for
𝜎𝑑𝐿 to 0.0001 mm, and for 𝜎2LoS,1 and 𝜎2LoS,2 to 0.3 mm, even though this has no consequence for the
alignment bias estimation. The results for the misalignment­induced bias for both the transversal and
normal direction are shown in Fig. 3.4.

The normalized bias is calculated by dividing B by the simulated displacement signal. A zero­value
implies a non­biased result, while a value of one implies that the B is equal to the simulated displace­
ment component, i.e., a significant error. The value of B depends on the azimuth orientation 𝛽 of the
TLN system. This follows from the fact that we simulated two LoS observations from almost near­polar
orbits. As a result, the null space is oriented almost in the north­south direction. When the transver­
2In most practical cases, this plane will be the (near­)vertical plane
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Figure 3.4: Normalized bias induced by a frame misalignment of 𝜀𝛽 = 10∘, as a function of 𝛽, for the normal and transversal
component. This shows that a unit displacement in the transversal direction, given a misalignment of 10 degrees, may give a
bias of more 3 times the true displacement value for 𝛽 ≈ 80∘. The two ‘peaks‘ in the curve follow from the fact that the transversal
direction is directed into the direction of the null line for that particular orientation of the TLN frame.

sal direction is exactly in the direction of the null line3, it cannot be retrieved. Furthermore, when the
transversal direction near the direction of the null line, the estimates can be significantly biased, which
is the case when 𝛽 has values around 80∘, 100∘, 220∘, and 260∘. For such cases, Fig. 3.4 shows that
there is also leakage to the normal component.

3.4. Uncertainty for the TLN frame alignment
The application of the strap­down approach is subject to the correct alignment of the TLN frame. In this
section we will investigate the effect of misalignments, i.e., the alignment uncertainty, of the TLN frame
on the precision of the final estimates for the transversal and normal displacements. For deformation
phenomena, where 𝑑𝐿 = 0 by definition, any displacement vector can be unambiguously represented
in a 2D plane, the (𝑑𝑇 , 𝑑𝑁) system, as long as the orientation of the TLN reference frame over the RUM
is well chosen. Therefore, the mathematical model can be written as

𝐸{ [
𝑑(1)LoS
⋮

𝑑(𝑚)LoS

]
⏝⎵⏟⎵⏝

𝑦

} = [
𝑝1𝑇 𝑝1𝑁
⋮ ⋮
𝑝𝑚𝑇 𝑝𝑚𝑁

]
⏝⎵⎵⎵⏟⎵⎵⎵⏝

𝐴

[𝑑𝑇𝑑𝑁]⏝⏟⏝
𝑥

(3.4)

𝐷{ [
𝑑(1)LoS
⋮

𝑑(𝑚)LoS

]
⏝⎵⏟⎵⏝

𝑦

} = [
𝑄LoS,1 0 0
0 ⋱ ⋮
0 … 𝑄LoS,𝑚

]
⏝⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⏝

𝑄𝑦𝑦

, (3.5)

where 𝐸{.} expresses the expectation of the model, which can be solved with two sets of STCI LoS
observations: 𝑑(1)LoS and 𝑑(2)LoS, each having a different viewing geometry and consisting of a positive
number of scatterers. Each set is dependent of the unknown parameters via [𝑝1𝑇𝑑𝑇 + 𝑝1𝑁𝑑𝑁] which
corresponds to 𝑃LoS,1𝑅1𝑅2𝑅3[𝑑𝑇 , 𝑑𝐿 , 𝑑𝑁]𝑇, where the component related to the longitudinal direction 𝑑𝐿
is removed by definition. 𝐷{.} is the dispersion of the model, where 𝑄LoS,𝑖 is the covariance matrix of
the LoS observations for set 𝑖. This covariance matrix is a diagonal matrix containing the variances of
displacement for each scatterer within the set.
3See section 2.3.3 for a definition of the null line.
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The 𝐴 matrix contains the important information on the orientation of the TLN frame. Thus, for estimat­
ing 𝑑𝑇 and 𝑑𝑁 also estimates for the orientation angles 𝛽, 𝛾𝑡, and 𝛾𝑙 are actually required, which are
described by stochastic variables 𝛽, 𝛾

𝑡
, and 𝛾

𝑙
which have initial values 𝛽0, 𝛾0𝑡 , and 𝛾0𝑙 and standard

deviations 𝜎𝛽 , 𝜎𝛾𝑡 , and 𝜎𝛾𝑙 respectively. Thus, 𝛽 ∼ 𝒩(𝛽0, 𝜎2𝛽), 𝛾𝑡 ∼ 𝒩(𝛾0𝑡 , 𝜎2𝛾𝑡), and 𝛾𝑙 ∼ 𝒩(𝛾0𝑙 , 𝜎2𝛾𝑙).
With these distributions, using a Monte Carlo (MC) approach, we can get insight in how the alignment
uncertainty affects the distribution and uncertainty of the estimated parameters 𝑑𝑇 and 𝑑𝑁.

For a particular RUM it is possible to compute 𝑁 realizations from the distributions 𝛽, 𝛾
𝑡
, and 𝛾

𝑙
. For

every realization 𝑛 ∈ [1, 𝑁], we can compute estimates for 𝑑𝑇 and 𝑑𝑁, where every estimate �̂�𝑇,𝑛
and �̂�𝑁,𝑛 would be unique due to the different realizations for the orientation angles and consequently
different 𝐴matrices used in the inverse model. TheMonte Carlo procedure contains the following steps.

1. Simulate a displacement signal in the transversal and normal direction (𝑑𝑇 and 𝑑𝑁) for a specific
orientation of the TLN frame with 𝛽, 𝛾𝑡, and 𝛾𝑙 (the true frame orientation).

2. With (i) the displacement signal, (ii) the characteristics of the satellite viewing geometries of an
ascending and a descending acquisition, and (iii) the correct orientation of the TLN frame it is
possible to compute two LoS observations, using the forward model in Eq. (3.4). This results in
𝑑LoS­asc and 𝑑LoS­dsc.

3. To estimate 𝑑𝑇 and 𝑑𝑁 we use the inverse model. Within the inverse model, the true orientation
of the TLN frame is not known, and therefore estimates are required as initial values for (𝛽0 𝛾0𝑡 ,
and 𝛾0𝑙 ) as well as their uncertainty (𝜎𝛽, 𝜎𝛾𝑡 , and 𝜎𝛾𝑙 ). We simulate 𝑁 realizations for 𝛽, 𝛾

𝑡
, and

𝛾
𝑙
.

4. With the LoS observations 𝑑LoS­asc and 𝑑LoS­dsc, we also simulate 𝑁 different realizations of the
LoS observations from normal distributions which are defined as: 𝑑LoS­asc ∼ 𝒩(𝑑LoS­asc, 𝜎

2
LoS­asc),

and 𝑑LoS­dsc ∼ 𝒩(𝑑LoS­dsc, 𝜎
2
LoS­dsc).

5. For every realization 𝑛 ∈ [0, 𝑁] we estimate �̂�𝑇,𝑛 and �̂�𝑁,𝑛, where every estimate �̂�𝑇,𝑛 and �̂�𝑁,𝑛 is
unique due to the different realizations for the LoS observations and orientation angles.

3.4.1. Results from the Monte Carlo approach
We did different Monte Carlo simulations to study the impact of the uncertainty in the alignment of the
frame on �̂�𝑇 and �̂�𝑁. We started with simulating a displacement signal of 𝑑𝑇 = 5mm and 𝑑𝑁 = 10mm.
For all Monte Carlo simulations, the displacements are observed from an ascending and descending
orbit with viewing characteristics as presented in Table 3.1.

Impact of uncertainty 𝛽 (for 𝛽 = 10∘)
For the first simulation we only took into account an uncertainty for 𝛽, i.e., we assumed no uncertainty for
𝛾𝑡 and 𝛾𝑙. We set𝑁 = 3000, 𝜎𝛽 = 5∘, and 𝜎LoS = 10−4 i.e., we simulated noise­free LoS observations at
first. This allows us to study purely the effect of the uncertainty of 𝛽 on the distribution for the estimated
displacement components �̂�𝑇 and �̂�𝑁. For the first simulation, we choose the orientation of the TLN
frame such that 𝛽 = 10∘, 𝛾𝑡 = 0∘, and 𝛾𝑙 = 0∘, see the blue histograms in Fig. 3.5. The blue histogram
at the top left (Fig. 3.5A) shows the distribution of the transversal component, �̂�𝑇, the blue histogram
in the middle (Fig. 3.5C) shows the distribution of the normal component, �̂�𝑁 and the histogram at the
bottom right (Fig. 3.5F) shows the distribution of 𝛽 where 𝛽 ∼ 𝒩(𝛽0, 𝜎2𝛽) and where we choose 𝛽0 = 𝛽.

From the blue histogram in Fig. 3.5A, we see that the estimates for the transversal component, �̂�𝑇,
are not normally distributed. The tail at the right side of the simulated value (𝑑𝑇 = 5 mm) is broader
compared to the tail at the left side, which follows from the direction of the null line of the two LoS
observations. The orientation of the null line in the TLN reference system is described by 𝜙TLN and
𝜁TLN, where 𝜙TLN is the angle between the null line and the longitudinal axis and 𝜁TLN is the angle
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Figure 3.5: Results from the Monte Carlo analysis using 3000 realizations for 𝛽, where the TLN frame is oriented such that
𝛽 = 10∘ , 𝛾𝑡 = 0∘, and 𝛾𝑙 = 0∘. (A and B): distributions of the estimates for the transversal �̂�𝑇 and normal �̂�𝑁 displacement
component. The blue histograms show the results form the simulation with noise­free LoS observations. The green histograms
show the results from the situation where we simulated noisy LoS observations (𝜎LoS = 0.5 mm). (B, D, and E) the noise­free
results with the blue and yellow dots and the noisy results with the green dots. In F, the different realizations for 𝛽 are shown.
The blue values are closer to the true values and the yellow values are further apart. In D and E, different estimates for the
transversal and normal displacements are shown versus the realizations for 𝛽. The blue dots correspond to the blue 𝛽 values
in F, we see that the larger the difference between 𝛽𝑟 and 𝛽, the larger the bias for �̂�𝑇 and �̂�𝑁. The red dot in D and E shows
the simulated displacement.
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between the plane spanned by the longitudinal and transversal axis and the null line, see Eqs (2.15)
and (2.16) in section 2.3.3. For 𝛽 = 10∘ we find 𝜙TLN = −8∘ and 𝜁TLN = 7∘. Therefore, the orientation
of the null lineis almost in the longitudinal direction. When 𝜙TLN = 0∘, the longitudinal direction would
be insensitive, and the sensitivity for the transversal component would be maximal. If we then use
a realization 𝛽𝑟 for 𝛽 such that 𝛽𝑟 ≠ 𝛽 in the inverse model, this only results in an overestimation of
the transversal displacement component. Since for 𝛽𝑟 that is used, the sensitivity for the transversal
component is smaller compared to the 𝛽 that corresponds to the deformation phenomena and thus the
LoS observation. We see this effect also for the simulated case at 𝛽 = 10∘, where the null line in the
TLN frame is almost fully in the longitudinal and normal direction. For this particular case, there are lot
of realizations for 𝛽𝑟 that result in a lower sensitivity for the transversal displacement compared to the
correct orientation of the frame, for all those values �̂�𝑇 ≤ 𝑑𝑇.

Above, we only discussed the results for the noise free case (the blue histograms). However, the
noise level of the LoS observations also has an effect on the uncertainty for �̂�𝑇 and �̂�𝑁. The green
histograms in Fig. 3.5 show the results when we also take into account the noise level of the ob­
servations. We took realizations for the LoS observations from 𝑑LoS­asc ∼ 𝒩(𝑑LoS­asc, 𝜎2LoS­asc) and
𝑑LoS­dsc ∼ 𝒩(𝑑LoS­dsc, 𝜎2LoS­dsc), where 𝜎LoS­asc = 0.5 mm and 𝜎LoS­dsc = 0.5 mm. It can be seen
that for the case where 𝛽 = 10∘, the uncertainty of the LoS observations has a larger impact on the
uncertainty for �̂�𝑇 and �̂�𝑁 compared with the frame uncertainty.

Impact of uncertainty 𝛽 (for 𝛽 = 70∘)
We did the same simulations for an orientation of the TLN frame with 𝛽 = 70∘, 𝛾𝑡 = 0∘, and 𝛾𝑙 = 0∘.
The results are shown in Fig. 3.6. In this case, the orientation of the null line is such that 𝜙TLN =
−68∘ and 𝜁TLN = 7∘, meaning that it is almost directed in the transversal direction, resulting in an
ill­posed problem. For the case where 𝛽 = 70∘ and 𝜎𝛽 = 5∘ there are some realizations 𝛽𝑟 for 𝛽
that result in the the null line fully directed in the transversal direction, making it impossible to find
a solution for �̂�𝑇. We indeed see that the spread of the estimates for the transversal component is
larger compared to the simulation where 𝛽 = 10∘. This follows from the fact that the satellites are less
sensitive for displacements in the transversal direction for this situation, resulting in a lower reliability
of the estimates.

Also, for 𝛽 = 70∘, we did the simulation with and without noise for the LoS observations. Again, the blue
histograms show the noise­free results, and the green histograms show the noisy results. Compared to
the situation where 𝛽 = 10∘ we see that the uncertainty of the frame alignment has a more significant
effect compared to the noisy observations, since (especially for �̂�𝑇) the difference between the blue
and green histogram became smaller.

From Figs. 3.5 and 3.6 we also conclude that the uncertainty for 𝛽 has a larger effect on the uncertainty
for �̂�𝑇 compared to �̂�𝑁 (for the situation where 𝛾𝑡 = 0∘ and 𝛾𝑙 = 0∘). However, when 𝛾𝑡 ≠ 0∘ and/or
𝛾𝑙 ≠ 0∘ we find that the uncertainty for �̂�𝑁 becomes larger since the sensitivity for �̂�𝑁 becomes smaller.

Impact of uncertainty 𝛾𝑡 and 𝛾𝑙
So far, we only took into account the uncertainty for 𝛽. However, 𝛾

𝑡
and 𝛾

𝑙
do also have an uncertainty

that should be taken into account, so we also performed simulations where we simulated realizations
from 𝛾

𝑡
∼ 𝒩(𝛾0𝑡 , 𝜎2𝛾𝑡) and 𝛾𝑙 ∼ 𝒩(𝛾

0
𝑙 , 𝜎2𝛾𝑙) where 𝜎2𝛾𝑡 ≠ 0∘ and 𝜎2𝛾𝑙 ≠ 0∘. We found that we were able to

create the same figures as shown in Figs. 3.5 and 3.6, with 𝛽 being replaced by 𝛾𝑡 or 𝛾𝑙. We find that
not only the uncertainty for 𝛽 has an impact on the uncertainty for �̂�𝑇 and �̂�𝑁, the uncertainty for 𝛾𝑡 and
𝛾𝑙 is also important.

3.5. Factors of influence on the uncertainty of �̂�𝑇 and �̂�𝑁
From the Monte Carlo analyses, we can conclude that the two parameters of interest, 𝑑𝑇 and 𝑑𝑁, suffer
from two types of errors: (i) the random or measurement error in the original LoS observations and
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Figure 3.6: Results from the Monte Carlo analysis with 3000 realizations for 𝛽, where the TLN frame is oriented such that
𝛽 = 70∘ , 𝛾𝑡 = 0∘, and 𝛾𝑙 = 0∘. (A and B) distributions of the estimates for the transversal �̂�𝑇 and normal �̂�𝑁 displacement
component. The blue histograms show the results from the simulation with noise­free LoS observations. The green histograms
show the results from the situation where we simulated noisy LoS observations (𝜎LoS = 0.5mm). (B, D, and E) noise­free results
with the blue and yellow dots and the noisy results with the green dots. In F, the different realizations for 𝛽 are shown. The blue
values are closer to the true values and the yellow values are further apart. In D and E, different estimates for the transversal
and normal displacements are shown versus the realizations for 𝛽. The blue dots correspond to the blue 𝛽 values in F, we see
that the larger the difference between 𝛽𝑟 and 𝛽, the larger the bias for �̂�𝑇 and �̂�𝑁. The red dot in D and E shows the simulated
displacement.
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(ii) a potential misalignment of the TLN frame. However, the latter only introduces a bias for the final
estimates �̂�𝑇 and �̂�𝑁 in the case that there is deformation. It is possible to define four factors of influence
on the uncertainty of the estimated parameters:

1. The precision of the LoS observations

2. The orientation of the TLN reference frame

3. For the case that there is actual deformation:

(a) The potential misalignment of the frame
(b) The magnitude of the displacements

Below, these four factors of influence are discussed.

3.5.1. The precision of the LoS observations
The LoS observations are assumed to be4 described by a Probability Density Function (PDF) of a Gaus­
sian distribution, i.e. 𝑑(𝑚)LoS ∼ 𝒩(𝑑

(𝑚)
LoS, 𝜎2𝑑LoS), where the precision of the LoS observation is described

by the variance of the normal distribution, 𝜎2LoS. It can be seen that the uncertainty of the estimates is
a direct result from the precision of the LoS observations using the error propagation law

𝑄�̂� = (𝐴𝑇𝑄−1𝑦𝑦𝐴)−1 = [
𝜎2𝑇 𝜎𝑇𝑁
𝜎𝑁𝑇 𝜎2𝑁

] . (3.6)

Where 𝑄𝑦𝑦 is the variance­covariance matrix as described in Eq. (3.5) and 𝐴 is the design matrix as in
Eq. (3.4). The effect of 𝜎LoS could also be seen in Figs. 3.5 and 3.6.

3.5.2. The orientation of the TLN reference frame
As described in section 2.3, the combination of two sets of LoS observations results in a null space
which is described by a line, the null line, and it is impossible to find a solution for displacements that
have the same direction as the line. In section 2.4.1 we parameterized the orientation of the null line in
the ENU system, see Eqs. (2.15) and (2.16) in section 2.3.3. It is also possible describe the orientation
of the line in the TLN system by azimuth angle 𝜙TLN (to the longitudinal direction) and elevation angle
𝜁TLN (to the plane spanned by the transversal and longitudinal axis).

The inverse problem estimates the two unknown displacements parameters 𝑑𝑇 and 𝑑𝑁. The sensitivity
for one of those parameters is the highest when the two unknown parameters span the plane normal
to the null line. Thus, the uncertainty for displacement estimate becomes larger when the sensitivity
for the displacement direction becomes smaller.

So, for example, when 𝜙TLN = 0∘ and 𝜁TLN = 0∘ the sensitivity for the transversal component would be
maximal (given the two viewing geometries). When 𝜙TLN = 90∘ and 𝜁TLN = 0∘ it would be minimal. For
the latter case, the transversal direction is in the null space and it is impossible to find reliable estimates
for �̂�𝑇. This effect was also visible in Figs. 3.5 and 3.6.

The influence of the orientation of the frame on the uncertainty for the �̂�𝑇 and �̂�𝑁 could also be seen
from Eq. (3.6), where 𝑄�̂� is a function of the design matrix 𝐴 and the variance­covariance matrix 𝑄𝑦𝑦.
𝐴 contains information on the orientation of the frame. In Fig. 3.7 we visualized two realizations for 𝑄�̂�.
Both matrices are obtained by simulating one observation from an ascending and one observation from
a descending acquisition with the viewing geometry as presented in Table 3.1. The standard deviation
of the LoS observations was set to one, i.e. 𝜎LoS = 1, resulting in 𝑄𝑦𝑦 being the identity matrix. The
orientation of the TLN reference frame for Fig. 3.7a was chosen such that 𝛽 = 0∘, 𝛾𝑡 = 0∘, and 𝛾𝑙 = 0∘.
4Note that the PDF for the LoS displacement follows from the original phase observations, which are not Gaussian distributed,
but follow a Von Mises distribution. A deeper analysis of including this alternative PDF falls outside the scope of this study, but
is recommended in future research.
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By taking the square root of the diagonal elements of 𝑄�̂� we compute the standard deviations for �̂�𝑇 and
�̂�𝑁, this resulted in 𝜎𝑑𝑇 = 1.32 and 𝜎𝑑𝑁 = 0.84. Fig. 3.7b shows the result for 𝑄�̂� when the orientation
of the TLN frame was chosen such that 𝛽 = 90∘, 𝛾𝑡 = 0∘, and 𝛾𝑙 = 0∘. Again, we were able to compute
𝜎𝑑𝑇 and 𝜎𝑑𝑁 , this resulted in 20.91 and 1.22 respectively. It could be seen that for the second case, the
uncertainty for 𝑑𝑇 is much worse compared to the first case.

Lastly, from the Monte Carlo simulations, we can conclude that the orientation of the TLN frame does
not only affect the width of the distribution of �̂�𝑇 and �̂�𝑁 but also the shape. From Figs. 3.5 and 3.6 it
follows that a Gaussian distribution could not describe the distribution of the estimated parameters and
that the shape of the distribution depends on the orientation of the TLN frame.

Figure 3.7: Visualizations for 𝑄�̂� for two different orientations of the TLN reference frame. In both cases (a and b) 𝛾𝑡 = 0∘, 𝛾𝑙 = 0∘
and 𝜎LoS, the angle 𝛽 differs. It can be seen that the uncertainty for �̂�𝑇 and �̂�𝑁 depends on the orientation of the TLN frame

3.5.3. The uncertainty of the frame alignment
Suppose there is an actual deformation signal (i.e. 𝑑𝑇 > 0 and/or 𝑑𝑁 > 0). In that case, the uncer­
tainty of the frame alignment also plays a role in the accuracy, i.e., the deviation from the truth, for the
estimated displacement parameters. We will now show the effect of a misalignment in the TLN frame.
Consider a situation where we do have a displacement signal which equals 𝑥 = [𝑑𝑇 , 𝑑𝑁]𝑇. Using the
forward model, this results in

𝑦LoS = 𝐴(𝛽, 𝛾𝑡 , 𝛾𝑙) [
𝑑𝑇
𝑑𝑁] = [

𝑑(1)LoS
𝑑(2)LoS

] , (3.7)

where 𝐴(𝛽, 𝛾𝑡 , 𝛾𝑙) is the design matrix (as in Eq. (3.4)) with correct values for 𝛽, 𝛾𝑡, and 𝛾𝑙. With two LoS
observations and estimates for the orientation angles we can estimate the unknown parameters with

[�̂�𝑇�̂�𝑁
] = (𝐴(𝛽𝑟 , 𝛾𝑡,𝑟 , 𝛾𝑙,𝑟)𝑇𝑄−1𝑦𝑦𝐴(𝛽𝑟 , 𝛾𝑡,𝑟 , 𝛾𝑙,𝑟))−1𝐴(𝛽𝑟 , 𝛾𝑡,𝑟 , 𝛾𝑙,𝑟)𝑇𝑄−1𝑦𝑦𝑦LoS (3.8)

Where 𝛽𝑟 , 𝛾𝑡,𝑟 and 𝛾𝑙,𝑟 are realizations from 𝛽 ∼ 𝒩(𝛽0, 𝜎2𝛽), 𝛾𝑡 ∼ 𝒩(𝛾
0
𝑡 , 𝜎2𝛾𝑡), and 𝛾𝑙 ∼ 𝒩(𝛾

0
𝑙 , 𝜎2𝛾𝑙). When

𝛽𝑟 = 𝛽, 𝛾𝑡,𝑟 = 𝛾𝑡, and 𝛾𝑙,𝑟 = 𝛾𝑙 the estimates for the transversal and normal displacement components
are unbiased, i.e. 𝐸{�̂�𝑇} = 𝑑𝑁 and 𝐸{�̂�𝑁} = 𝑑𝑁. However, if we make a mistake in our estimates for
the orientation angles and 𝛽𝑟 ≠ 𝛽 and/or 𝛾𝑡,𝑟 ≠ 𝛾𝑡 and/or 𝛾𝑙,𝑟 ≠ 𝛾𝑙 we make a mistake in the functional
model resulting in biased estimates, i.e., 𝐸{�̂�𝑇} ≠ 𝑑𝑇 and 𝐸{�̂�𝑁} ≠ 𝑑𝑁. From Eq. (3.8) it can further
be seen that the larger the difference between the true orientation angles and the realizations, the
larger the bias for the estimated parameters 𝑑𝑇 and 𝑑𝑁. This effect was also visible in Figs. 3.5 and
3.6. E.g., subfigure E shows the effect for incorrect values for 𝛽𝑟 on �̂�𝑇. It can be seen that the larger
the difference between 𝛽𝑟 and 𝛽, the larger the bias in the estimate for �̂�𝑇, the red dot shows the true
simulated values. Subfigure F shows the relation between the estimated value for 𝛽𝑟 and only now for
the normal component.
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3.5.4. Magnitude of displacements
The size of the bias also depends on the displacement magnitude. First consider the trivial case of
zero displacements, i.e. 𝑑𝑇 = 0 and 𝑑𝑁 = 0. Using the forward model, this results in LoS observations
which are zero: 𝑑(1)LoS = 0 and 𝑑

(2)
LoS = 0. Obviously, from Eq. (3.8) it follows that 𝐸{�̂�𝑇} = 𝑑𝑇 = 0 and

𝐸{�̂�𝑁} = 𝑑𝑁 = 0, resulting in unbiased estimates. The estimates are independent from the size of the
misalignment in the frame. However, there is a special case when one of the unknown parameters is
(almost) in the direction of the null line, the solution for the unknown parameter is totally unreliable and
can be totally incorrect.

For cases with (i) nonzero displacements (i.e. 𝑑𝑇 > 0 and/or 𝑑𝑁 > 0) and (ii) when we make an error
in the alignment of the TLN frame, the size of the bias depends on the size of the displacements. For
larger displacements, 𝑦LoS becomes larger, resulting in more extensive biases. We will elaborate on
this in section 3.6.1.

3.6. The alignment uncertainty in the mathematical model
We can give reliable estimates for 𝑑𝑇 and 𝑑𝑁 for deformation phenomena where we can assume that
𝑑𝐿 = 0 when the following conditions are fulfilled: (i) At least two sets of STCI LoS observations over
one RUM are available, (ii) the direction of 𝑑𝑇 and 𝑑𝑁 is not into the direction of the null line, and (iii)
the alignment of the TLN frame is well chosen. However, for the the latter, we have shown with a
Monte Carlo approach in section 3.4 that the uncertainty of the orientation angles (𝜎𝛽 , 𝜎𝛾𝑡 , and 𝜎𝛾,𝑙)
has an effect on the uncertainty and distribution of �̂�𝑇 and �̂�𝑁. Therefore, the uncertainty of the frame
alignment (𝜎𝛽 , 𝜎𝛾𝑡 , 𝜎𝛾𝑙 ) should be taken into account by adding pseudo­observations 𝛽, 𝛾

𝑡
, and 𝛾

𝑙
for

the orientation angles to the mathematical model resulting in

𝐸{

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑑(1)LoS
⋮

𝑑(𝑚)LoS
𝛽
𝛾𝑡
𝛾𝑙

⎤
⎥
⎥
⎥
⎥
⎥
⎦⏝⎵⏟⎵⏝

𝑦

} =

⎡
⎢
⎢
⎢
⎢
⎣

𝑎1(𝑥)
⋮

𝑎𝑚(𝑥)
𝑎𝑚+1(𝑥)
𝑎𝑚+2(𝑥)
𝑎𝑚+3(𝑥)

⎤
⎥
⎥
⎥
⎥
⎦⏝⎵⎵⏟⎵⎵⏝

𝐴(𝑥)

=

⎡
⎢
⎢
⎢
⎢
⎣

𝑝1𝑇𝑑𝑇 + 𝑝1𝑁𝑑𝑁
⋮

𝑝𝑚𝑇𝑑𝑇 + 𝑝𝑚𝑁𝑑𝑁
𝛽
𝛾𝑡
𝛾𝑙

⎤
⎥
⎥
⎥
⎥
⎦⏝⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏝

𝐴(𝑥)

(3.9)

𝐷{

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑑(1)LoS
⋮

𝑑(𝑚)LoS
𝛽
𝛾𝑡
𝛾𝑙

⎤
⎥
⎥
⎥
⎥
⎥
⎦⏝⎵⏟⎵⏝

𝑦

} =

⎡
⎢
⎢
⎢
⎢
⎣

𝑄LoS,𝑖 … 0 0 0 0
⋮ ⋱ ⋮ ⋮ ⋮ ⋮
0 … 𝑄LoS,𝑖 0 0 0
0 … 0 𝜎2𝛽 0 0
0 … 0 0 𝜎2𝛾𝑡 0
0 … 0 0 0 𝜎2𝛾𝑙

⎤
⎥
⎥
⎥
⎥
⎦⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝

𝑄𝑦𝑦

, (3.10)

where the unknowns of the model are 𝑑𝑇 , 𝑑𝑁 , 𝛽, 𝛾𝑡 and 𝛾𝑙. 𝐸{.} expresses the expectation of the model,
which can be solved with two sets of STCI LoS observations: 𝑑(1)LoS and 𝑑(2)LoS, each having a different
viewing geometry and consisting of a positive number of scatterers. To overcome rank deficiency,
pseudo observations for 𝛽, 𝛾

𝑡
, and 𝛾

𝑙
are added. 𝐷{.} is the dispersion of the model, where 𝑄LoS,𝑖 is

the covariance matrix of the LoS observations for set 𝑖. This covariance matrix is a diagonal matrix
containing the variances of displacement for each scatterer within the set. 𝜎2𝛽, 𝜎2𝛾𝑡 , and 𝜎2𝛾𝑙 are the
variances for the pseudo observations for the estimates of the orientation angles. Rows 1–𝑚 in the 𝐴
matrix are non­linear equations that consist of 𝑑𝑇 , 𝑑𝑁, 𝛽, 𝛾𝑡, and 𝛾𝑙, where 𝑝𝑚𝑇 and 𝑝𝑚𝑁 are defined as:

𝑝𝑚𝑇 =(sin𝜃𝑚 sin𝛼𝑑,𝑚 cos𝛽 − sin𝜃𝑚 cos𝛼𝑑,𝑚 sin𝛽) cos 𝛾𝑡−
(−(sin𝜃𝑚 sin𝛼𝑑,𝑚 sin𝛽 + sin𝜃𝑚 cos𝛼𝑑,𝑚 cos𝛽) sin 𝛾𝑙 + cos𝜃𝑚 cos 𝛾𝑙) sin 𝛾𝑡 (3.11)

𝑝𝑚𝑁 =(sin𝜃𝑚 sin𝛼𝑑,𝑚 cos𝛽 − sin𝜃𝑚 cos𝛼𝑑,𝑚 sin𝛽) sin 𝛾𝑡+
(−(sin𝜃𝑚 sin𝛼𝑑,𝑚 sin𝛽 + sin𝜃𝑚 cos𝛼𝑑,𝑚 cos𝛽) sin 𝛾𝑙 + cos𝜃𝑚 cos 𝛾𝑙) cos 𝛾𝑡 . (3.12)
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Every set of STCI LoS observation has unique values for 𝑝𝑚𝑇 and 𝑝𝑚𝑁 due to the different incidence
angles and the azimuth angles of the zero­Doppler plane (ZDP) at the RUM. To estimate the five un­
known parameters, we need to linearize the system of equations. The linearized system of equations
is defined as

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Δ𝑑(1)LoS
⋮

Δ𝑑(𝑚)LoS
Δ𝛽
Δ𝛾𝑡
Δ𝛾𝑙

⎤
⎥
⎥
⎥
⎥
⎥
⎦⏝⎵⏟⎵⏝

Δ𝑦
[0]

≈ [

𝜕
𝜕𝑑𝑇

𝑎1(𝑥[0])
𝜕
𝜕𝑑𝑁

𝑎1(𝑥[0])
𝜕
𝜕𝛽𝑎1(𝑥[0])

𝜕
𝜕𝛾𝑡
𝑎1(𝑥[0])

𝜕
𝜕𝛾𝑙
𝑎1(𝑥[0])

⋮ ⋮ ⋮ ⋮ ⋮
𝜕
𝜕𝑑𝑇

𝑎𝑚+3(𝑥[0])
𝜕
𝜕𝑑𝑁

𝑎𝑚+3(𝑥[0])
𝜕
𝜕𝛽𝑎𝑚+3(𝑥[0])

𝜕
𝜕𝛾𝑡
𝑎𝑚+3(𝑥[0])

𝜕
𝜕𝛾𝑙
𝑎𝑚+3(𝑥[0])

]

⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝
𝐽[0]

⎡
⎢
⎢
⎢
⎣

Δ𝑑𝑇
Δ𝑑𝑁
Δ𝛽
Δ𝛾𝑡
Δ𝛾𝑙

⎤
⎥
⎥
⎥
⎦[0]⏝⎵⏟⎵⏝

Δ𝑥[0]

,

(3.13)

where 𝐽[0] is the Jacobian matrix which is a function of 𝑥[0] (the initial estimate for the unknown pa­
rameters), where 𝑥[0] = [𝑑𝑇[0], 𝑑𝑁[0], 𝛽[0], 𝛾𝑡[0], 𝛾𝑙[0]]𝑇. Δ𝑦[1] is the difference between the observed
observations and the computed observations for the initial estimate 𝑥[0]: Δ𝑦[0] = 𝑦−𝐴(𝑥[0]). With Δ𝑦

[0]
and 𝐽[0] we can estimate Δ𝑥[0] by using least­squares estimation:

Δ�̂�[0] = (𝐽
𝑇
[0]𝑄−1𝑦𝑦𝐽[0])−1𝐽𝑇[0]𝑄−1𝑦𝑦Δ𝑦[0]. (3.14)

The estimate for the unknown parameters �̂� now becomes �̂�[1] = 𝑥[0] + Δ�̂�[0]. We can iterate this
process by using �̂�[1] again to compute 𝐽[1] and Δ𝑦[1], following the iteration scheme presented in
Fig. 3.8. It is needed to define a stop criterion. For converging solutions we choose Δ�̂�[0] < 𝜖 where
𝜖 is the tolerance level. Once �̂� approaches 𝑥 the increment Δ�̂�[0] becomes very small. Furthermore,
we need an initial estimate 𝑥[0] for the unknown parameters.

Figure 3.8: The iteration scheme for non­linear least­squares estimation (after [59])

To linearize the model in Eq. (3.9) and apply the Jacobian matrix 𝐽, partial derivatives for the functions
𝑎1 until 𝑎𝑚 are needed. When 𝑖 corresponds to a particular LoS observation and 𝑖 ∈ [1,𝑚], the partial
derivatives are defined as
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𝜕
𝜕𝑑𝑇

𝑎𝑖 =(sin𝜃𝑖 sin𝛼𝑑,𝑖 cos𝛽 − sin𝜃𝑖 cos𝛼𝑑,𝑖 sin𝛽) cos 𝛾𝑡
− (−(sin𝜃𝑖 sin𝛼𝑑,𝑖 sin𝛽 + sin𝜃𝑖 cos𝛼𝑑,𝑖 cos𝛽) sin 𝛾𝑙 + cos𝜃𝑖 cos 𝛾𝑙) sin 𝛾𝑡 (3.15)

𝜕
𝜕𝑑𝑁

𝑎𝑖 =(sin𝜃𝑖)𝑠𝑖𝑛𝛼𝑑,𝑖 cos𝛽 − sin𝜃𝑖 cos𝛼𝑑,𝑖 sin𝛽) sin 𝛾𝑡
+ (−(sin𝜃𝑖 sin𝛼𝑑,𝑖 sin𝛽 + sin𝜃𝑖 cos𝛼𝑑,𝑖 cos𝛽) sin 𝛾𝑙 + cos𝜃𝑖 cos 𝛾𝑙) cos 𝛾𝑡 (3.16)

𝜕
𝜕𝛽𝑎𝑖 =((− sin𝜃𝑖 cos𝛼𝑑,𝑖 cos𝛽 − sin𝜃𝑖 sin𝛼𝑑,𝑖 sin𝛽) cos 𝛾𝑡

+ (sin𝜃𝑖 sin𝛼𝑑,𝑖 cos𝛽 − sin𝜃𝑖 cos𝛼𝑑,𝑖 sin𝛽) sin 𝛾𝑙 sin 𝛾𝑡)𝑑𝑇
+ ((− sin𝜃𝑖 cos𝛼𝑑,𝑖 cos𝛽 − sin𝜃𝑖 sin𝛼𝑑,𝑖 cos𝛽) sin 𝛾𝑡
− (sin𝜃 sin𝛼𝑑,𝑖 cos𝛽 − sin𝜃𝑖 cos𝛼𝑑,𝑖 sin𝛽) sin 𝛾𝑙 cos 𝛾𝑡)𝑑𝑁 (3.17)

𝜕
𝜕𝛾𝑡

𝑎𝑖 =(−(sin𝜃𝑖 sin𝛼𝑑,𝑖 cos𝛽 − sin𝜃𝑖 cos𝛼𝑑,𝑖 sin𝛽) sin 𝛾𝑡
− (−(sin𝜃𝑖 sin𝛼𝑑,𝑖 sin𝛽 + sin𝜃𝑖 cos𝛼𝑑,𝑖 cos𝛽) sin 𝛾𝑙
+ cos𝜃𝑖 cos 𝛾𝑙) cos 𝛾𝑡)𝑑𝑇 + ((sin𝜃𝑖 sin𝛼𝑑,𝑖 cos𝛽
− sin𝜃𝑖 cos𝛼𝑑,𝑖 sin𝛽) cos 𝛾𝑡 − (−(sin𝜃𝑖 sin𝛼𝑑,𝑖 sin𝛽
+ sin𝜃𝑖 cos𝛼𝑑,𝑖 cos𝛽) sin 𝛾𝑙 + 𝑐𝑜𝑠𝜃𝑖 cos 𝛾𝑙) sin 𝛾𝑡)𝑑𝑁 (3.18)

𝜕
𝜕𝛾𝑙
𝑎𝑖 =− (− sin(𝜃𝑖 sin𝛼𝑑,𝑖 sin𝛽 + sin𝜃𝑖 cos𝛼𝑑,𝑖 cos𝛽) cos 𝛾𝑙

− cos𝜃𝑖 sin 𝛾𝑙) sin 𝛾𝑡𝑑𝑇 + (−(sin𝜃𝑖 sin𝛼𝑑,𝑖 sin(𝛽)
+ sin𝜃𝑖 cos𝛼𝑑,𝑖 cos𝛽) cos 𝛾𝑙 − cos𝜃𝑖 sin 𝛾𝑙) cos 𝛾𝑡𝑑𝑁 (3.19)

The rows 𝑗𝑚+1 until 𝑗𝑚+3 of the Jacobian matrix 𝐽 in Eq. (3.13) are defined as

[
𝑗𝑚+1
𝑗𝑚+2
𝑗𝑚+3

] = [
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

] . (3.20)

The uncertainty of the final estimates for 𝑑𝑇 , 𝑑𝑁 , 𝛽, 𝛾𝑡, and 𝛾𝑙 can be computed with

𝑄�̂� = (𝐽𝑇[𝑖]𝑄−1𝑦𝑦𝐽[𝑖])
−1, (3.21)

where 𝐽𝑖 is the Jacobian matrix for the point when convergence is reached, i.e., the last iteration step.

3.6.1. Impact of the size of the deformation signal
As discussed in section 3.5, the size of the displacement signal affects the magnitude of the uncertainty
for the estimated displacements in the transversal and normal direction. With Eq. (3.21) we are able
to validate this. We simulated both a small and a large displacement signal and for both cases we
computed 𝑄�̂�. We also tested the effect of the orientation of the frame for both cases. In Table 3.2
the characteristics for the different cases are presented. We simulated one LoS observation from an
ascending and one LoS observation from a descending satellite with a viewing geometry as presented
in Table 3.1, p. 39. We set 𝜎𝛽 = 5∘, 𝜎𝛾𝑡 = 5∘, and 𝜎𝛾𝑙 = 5∘, we choose 𝜎LoS to be 1 mm for both the
LoS observations.

Case 1 and 2
In case 1 and 2 the orientation of the TLN frame was chosen such that 𝛽 = 10∘, 𝛾𝑡 = 0∘, and 𝛾𝑙 = 0∘. For
the first case, we simulated a displacement signal where 𝑑𝑇 = 1mm and 𝑑𝑁 = 1mm. The result for 𝑄�̂�
for only the upper four elements is presented in Fig. 3.9a. We find 𝜎𝑑𝑇 = 1.36 mm and 𝜎𝑑𝑁 = 0.85 mm.
In the second case, we estimated 𝑄�̂� but now we simulated a larger displacement signal, consisting of
𝑑𝑇 = 10 mm and 𝑑𝑁 = 10 mm, which resulted in 𝜎𝑑𝑇 = 1.64 mm and 𝜎𝑑𝑁 = 1.21 mm, see Fig. 3.9b.
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Table 3.2: Simulated orientations of the TLN reference frame and displacements in the transversal and normal direction. Case 1
and 3 represent small displacements, Case 2 and 4 large displacements. The orientation of the frame differs between cases 1/2
and 3/4.

Case 1 Case 2 Case 3 Case 4
𝛽 10∘ 10∘ 80∘ 80∘
𝛾𝑡 0∘ 0∘ 0∘ 0∘
𝛾𝑙 0∘ 0∘ 0∘ 0∘
𝑑𝑇 1 mm 10 mm 1 mm 10 mm
𝑑𝑁 1 mm 10 mm 1 mm 10 mm

Case 3 and 4
For cases 3 and 4, we repeated the same simulations as in cases 1 and 2 but now for another orientation
of the TLN frame. For cases 3 and 4 𝛽 = 80∘. With the simulated near­polar orbits of the satellites
this means that for those two cases we are less sensitive for the transversal direction. Within case 3
we simulated a small displacement signal (𝑑𝑇 = 𝑑𝑁 = 1 mm) and within case 4 we simulated a larger
displacement signal (𝑑𝑇 = 𝑑𝑁 = 10 mm). The results are shown in Fig. 3.9c and d respectively. For
case 3 we estimated 𝜎𝑑𝑇 = 11.59mmand 𝜎𝑑𝑁 = 1.16mm, and for case 4 we estimated 𝜎𝑑𝑇 = 15.76mm
and 𝜎𝑑𝑁 = 1.61 mm.

When comparing the results of these four cases, we conclude that the larger the displacement signal,
the larger the uncertainty for the unknown parameters 𝜎𝑑𝑇 and 𝜎𝑑𝑁 . This can be understood by the
following. If we make amistake in the alignment of the frame, we introduce a bias for the final estimates,
see section 3.5. The bias scales with the displacement signal. With the mathematical model as in
Eqs. (3.9) and (3.10) we take into account the potential misalignment of the frame, and also the effects
of this. We try to capture the potential bias for the displacement estimates into uncertainties for those
estimates. Therefore it is apparent that the uncertainties for the displacement estimates become larger
when the displacement signal becomes larger too, since the biases becomes also larger. It can also be
explained by Eq. (3.21): for the different displacement signals we used other values for the Jacobian
matrix 𝐽[𝑖]. E.g., for case 1 and 3 we used 𝑑𝑇[𝑖] = 𝑑𝑁[𝑖] = 1 mm and for case 2 and 4 we used
𝑑𝑇[𝑖] = 𝑑𝑁[𝑖] = 10 mm, therefore the realizations for 𝑄�̂� were different.

3.7. Detectability of displacements
It is possible to use the mathematical model described in section 3.6 to comment on the detectability
of displacements. When InSAR is used to monitor the displacements of a RUM, we want to detect
displacements that are significantly different from the displacement history. A stakeholder may want
to be warned when the RUM starts behaving differently. Therefore, the question is: “When is the new
observation significantly different from the observations before?” It is possible to use the standard
deviations of �̂�𝑇 and �̂�𝑁 as a metric for the detectability of displacements. We will elaborate on this in
this section.

Assume that we have estimated a decomposed time series in the transversal and in the normal direction
from 𝑡0 until 𝑡𝑚−2, see Figs. 3.10a and c. Both time series are obtained by performing a decomposition
over the RUM per epoch 𝑡 ∈ [0,𝑚−2], using the iterative approach described in section 3.6. Both time
series have a negative trend. Due to the observation noise and a potential misalignment of the TLN
frame, the decomposed time series have a particular noise level. We also plotted dashed lines for +𝜎
and −𝜎 for the estimated linear trends.

When we estimate the displacement at 𝑡𝑚−1 (the orange dot), we want to test whether this estimated
displacement is significantly different from the deformation history of the RUM. At first sight, the estimate
for 𝑡𝑚−1 does not seem to be significantly different. However, the estimate at 𝑡𝑚 (red dot) seems to be
different from the observations before. Thus, the question is: ‘When do we state that a displacement
is significantly different from a given deformation history?’ To answer this question, we need to test a
null hypothesis 𝐻0 against an alternative hypothesis 𝐻𝑎.



3.7. Detectability of displacements 51

Figure 3.9: Visualizations of the upper four elements of 𝑄�̂� estimated with Eq. (3.21). Fig. a and b are a result from simulations
were 𝛽 = 10∘. For Fig. c and d we changed to orientation to 𝛽 = 80∘. We also simulated different displacement signals. It can
be seen that the larger the displacement signal, the larger the uncertainty for the displacement parameters 𝑑𝑇 and 𝑑𝑁 (diagonal
elements of 𝑄�̂�)

Figure 3.10: (a) and (c) show simulated displacement time series in the transversal and normal direction respectively. For new
estimates �̂�𝑇 and �̂�𝑁 we want to test whether it is likely that the RUM starts behaving differently from the deformation history or
that there is no change in deformation behavior. (b) and (d) show the hypothesis test to answer that question. The probability
density functions under 𝐻0 (no displacement) and under 𝐻𝑎 (a displacement of MDD) are shown. The MDD can be estimated
when the detectability power 𝛾 and significance level 𝛼 are known.
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In the following, we will discuss the procedure for the transversal component. Obviously, the same
procedure belongs to the normal component.

3.7.1. Hypothesis for the functional model
When we use a functional model where we have a displacement time series in the transversal direction,
and we want to estimate the displacement velocity, the null hypothesis is defined as

𝐻0 ∶ 𝐸{
⎡
⎢
⎢
⎢
⎣

𝑑(1)𝑇
𝑑(2)𝑇
⋮

𝑑(𝑚)𝑇

⎤
⎥
⎥
⎥
⎦⏝⎵⏟⎵⏝

𝑦′

} =
⎡
⎢
⎢
⎣

1 𝑡0 − 𝑡1
1 𝑡0 − 𝑡2
⋮ ⋮
1 𝑡0 − 𝑡𝑚

⎤
⎥
⎥
⎦⏝⎵⎵⎵⏟⎵⎵⎵⏝

𝐴

[𝑑𝑇0𝑣𝑇 ]⏝⏟⏝
𝑥

, (3.22)

where 𝑦′ is the vector with estimates for the transversal component for epoch 1 until𝑚. Those estimates
can be obtained by using the method described in section 3.6 per epoch 𝑡 ∈ [0,𝑚]. The hypothesis is
that the displacement behavior of the RUM is described by a linear model with an initial value 𝑑𝑇0 and
velocity 𝑣𝑇. The vector of unknowns 𝑥 is therefore defined as 𝑥 = [𝑑𝑇0 , 𝑣𝑇]𝑇. All displacements 𝑑

(1)
𝑇

until 𝑑(𝑚)𝑇 are referenced to epoch 𝑡0 and to a stable reference point outside the RUM. The stochastic
model is defined as

𝐷{
⎡
⎢
⎢
⎢
⎣

𝑑(1)𝑇
𝑑(2)𝑇
⋮

𝑑(𝑚)𝑇

⎤
⎥
⎥
⎥
⎦⏝⎵⏟⎵⏝

𝑦′

} =
⎡
⎢
⎢
⎢
⎣

𝜎2𝑑1𝑇 0 0 0
0 𝜎2𝑑2𝑇 0 0
0 0 ⋱ 0
0 0 0 𝜎2𝑑𝑚𝑇

⎤
⎥
⎥
⎥
⎦⏝⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⏝

𝑄𝑦𝑦

, (3.23)

where 𝜎2𝑑1𝑇 until 𝜎
2
𝑑𝑚𝑇

are estimated with Eq. (3.21) for every epoch separately since the values depend
on the size of the displacement signal which can differ per epoch.

We test the null hypothesis against an alternative hypothesis where we assume that something has
changed for the last observation at epoch 𝑚:

𝐻𝑎 ∶ 𝐸{
⎡
⎢
⎢
⎢
⎣

𝑑(1)𝑇
𝑑(2)𝑇
⋮

𝑑(𝑚)𝑇

⎤
⎥
⎥
⎥
⎦⏝⎵⏟⎵⏝

𝑦′

} =
⎡
⎢
⎢
⎣

1 𝑡0 − 𝑡1
1 𝑡0 − 𝑡2
⋮ ⋮
1 𝑡0 − 𝑡𝑚

⎤
⎥
⎥
⎦⏝⎵⎵⎵⏟⎵⎵⎵⏝

𝐴

[𝑑𝑇0𝑣𝑇 ]⏝⏟⏝
𝑥

+
⎡
⎢
⎢
⎣

0
⋮
0
1

⎤
⎥
⎥
⎦⏟

𝑐𝑦

∇, (3.24)

where 𝑐𝑦 is an 𝑚 × 1 column vector with all zeros except for the last value, which equals one.

3.7.2. Hypothesis for the model of condition equations
We can also approach the problem following a different rationale. With the observations from 𝑡0 un­
til 𝑡𝑚−1 we can estimate the initial value for the transversal displacement 𝑑𝑇0 and velocity 𝑣𝑇 with
�̂� = (𝐴𝑇𝑄−1𝑦𝑦𝐴)−1𝐴𝑇𝑄−1𝑦𝑦𝑦′, where 𝐴 is the design matrix from Eq. (3.22), 𝑦′ is a column vector con­
taining the estimated values for the transversal component and 𝑄𝑦𝑦 is the variance­covariance matrix
as in Eq. (3.23). The uncertainty for �̂� is estimated with 𝑄�̂� = (𝐴𝑇𝑄−1𝑦𝑦𝐴)−1.

With the estimate for initial value 𝑑𝑇0 and velocity 𝑣𝑇, it is possible to compute a predicted value for the
transversal displacement at epoch 𝑚, 𝑑(𝑚)𝑇,𝑝 with

𝑑(𝑚)𝑇,𝑝 = [1 𝑡0 − 𝑡𝑚]⏝⎵⎵⎵⏟⎵⎵⎵⏝
𝐴𝑝

[�̂�𝑇0�̂�𝑇
] , (3.25)
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where [�̂�𝑇0 , �̂�𝑇]𝑇 = �̂�. The precision for 𝑑
(𝑚)
𝑇,𝑝 is computed with

𝜎2𝑑𝑇,𝑝 = 𝐴𝑝𝑄�̂�𝐴𝑇𝑝, (3.26)

where 𝐴𝑝 is the design matrix as in Eq. (3.25) [60]. For RUMs where the displacement behavior is not
changing, we expect the predicted value to be equal to themeasured value at 𝑡𝑚, i.e., 𝐸[𝑑(𝑚)𝑇,𝑝 − 𝑑

(𝑚)
𝑇 ] = 0.

We can therefore write the null hypothesis 𝐻0 as

𝐻0 ∶ 𝐵𝑇𝐸[𝑦] = 0, (3.27)

where 𝐵𝑇 = [1 − 1] and 𝑦 = [𝑑(𝑚)𝑇,𝑝 , 𝑑
(𝑚)
𝑇 ]𝑇. The dispersion of the model is defined as

𝐷 {𝑦} = [
𝜎2𝑑𝑇,𝑝 0
0 𝜎2𝑑𝑇,𝑚

] , (3.28)

where 𝜎2𝑑𝑇,𝑚 is the precision of the measured parameter, which is in this case the estimate for the
transversal component at epoch 𝑚 which is 𝑑(𝑚)𝑇 . 𝜎2𝑑𝑇,𝑝 is the uncertainty of the predicted value for the
transversal component at epoch 𝑚. The longer the historical time series, the smaller the uncertainty
for the predicted parameter.

If the displacement behavior of the RUM changed in the last epoch, the predicted value will no longer
be equal to the measured value. The alternative hypothesis 𝐻𝑎 is therefore defined as

𝐻𝑎 ∶ 𝐵𝑇𝐸[𝑦] = 𝑐𝑡∇, (3.29)

where 𝑐𝑡 is a 1 × 1 scalar and ∇ is the change in displacement behavior.

3.7.3. Minimal Detectable Displacement
Given the hypotheses in section 3.7.2 and selected values for the significance level and the detectability
power, we can test whether the deformation behavior of the RUM changes, which is of interest from a
monitoring perspective. Equally important is it to know a priori, for each point, how likely it is to detect
a displacement with a particular magnitude.

If we choose a confidence level 1−𝛼, where 𝛼 is the significance level, it is possible to compute a critical
value 𝐾𝛼, see Figs. 3.10b and d. Displacements greater than 𝐾𝛼 are considered significantly different
from the null hypothesis 𝐻0, and 𝐻0 is rejected. The significance level 𝛼 determines the probability of
a ‘false alarm’, which is the probability that 𝐻0 is rejected while it is correct.

Additionally, we can test how large a displacement should be before it is detected with a predefined
detectability power (DP) 𝛾, where 𝛾 is the likelihood that the alternative hypothesis is correctly sustained.
A displacement detected with a likelihood of 𝛾 is called the Minimal Detectable Bias (MDB) [60], or, in
this specific context, theMinimal Detectable Displacement (MDD). TheMDD corresponds to a particular
alternative hypothesis 𝐻𝑎, where we test whether we can significantly detect a displacement with a
magnitude of MDD.

From Figs.3.10b and d, it can be seen that the smaller the uncertainty for �̂�𝑇 and �̂�𝑁, the larger the
detectability power 𝛾 for a particular MDD. In Figs. 3.10b and d, the distribution for the null hypothesis
𝐻0 and the alternative hypothesis 𝐻𝑎 are visualized where 𝐻𝑎 is a displacement of the size of the MDD
in the transversal and normal direction, respectively (the MDD has the samemagnitude for both cases).
The width of the distributions depends on the precision of �̂�𝑇 and �̂�𝑁. Thus, the more precise we can
estimate the unknown parameters, the more narrow the distributions, and the higher the power 𝛾 for
detecting a particular MDD.

MDD for model of condition equations
When an overall model test (OMT) is used to test whether 𝐻0 should be sustained or rejected, a signif­
icance level 𝛼 is required. Subsequently, a w­test can be used to estimate the MDD when 𝛾, 𝛼1 (the
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significance level for the w­test) and the dispersion 𝐷{𝑦} are known. When 𝐻0 and 𝐻𝑎 are specified as
in the linear model of condition equations in Eqs. (3.27) and (3.29) the MDD is estimated with [60]

|MDD| = √ 𝜆0
𝑐𝑇𝑡 𝑄−1𝑡 𝑐𝑡

, (3.30)

where 𝜆0 is the non­centrality parameter, which couples the OMT and the w­test, with

𝜆0 = 𝜆(𝛼, 𝑞 = 𝑚 − 𝑛, 𝛾 = 𝛾0) = 𝜆(𝛼1, 𝑞 = 1, 𝛾 = 𝛾0), (3.31)

where 𝛼 is the significance value of the OMT test which has a redundancy of 𝑚 − 𝑛, where 𝑚 is the
number of observations and 𝑛 the number of unknowns. The w­test has a significance level 𝛼1 and
has a redundancy of 𝑞 = 1. When 𝜆0 = 𝜆, a model error can be found with the same probability in the
OMT and the w­test. Both tests also have the same reliability and therefore the same MDD. When the
model of condition equations is used, 𝑐𝑡 is a scalar that has a value of 1. 𝑄𝑡 can be estimated with

𝑄𝑡 = 𝐵𝑇𝑄�̂�𝐵. (3.32)

It can be seen that with this method, we can a priori (i.e., before the InSAR investigation started)
estimate the MDD as long as we know the viewing geometry of the LoS observations, the precision of
the LoS observations, and the precision of the predicted parameter.

MDD for the functional model
When 𝐻0 and 𝐻𝑎 are specified using the functional model as in Eqs. (3.22) and (3.24), the MDD is
estimated with

|MDD| = √ 𝜆0
𝑐𝑇𝑦𝑄−1𝑦𝑦𝑄�̂��̂�𝑄−1𝑦𝑦𝑐𝑦

, (3.33)

where 𝑄𝑦𝑦 is defined in Eq. (3.23) and 𝑐𝑦 in Eq. (3.24), 𝑄�̂��̂� is specified as:

𝑄�̂��̂� = 𝑄𝑦𝑦 − 𝑄�̂��̂� = 𝑄𝑦𝑦 − 𝐴𝑄�̂�𝐴𝑇 = 𝑄𝑦𝑦 − 𝐴(𝐴𝑇𝑄−1𝑦𝑦𝐴)−1𝐴𝑇 . (3.34)

Practical implementation
In order to make an a priori assessment on the applicability of InSAR for a particular application, stake­
holders need to decide on the confidence level 1 − 𝛼. A higher confidence level means that displace­
ments need to be more significant to be detected. Yet, as a consequence, smaller signals will be
missed. Alternatively, choosing a lower confidence level will result in more false warnings, which can
be unfavorable.

Stakeholders can also choose to select a particular detectability power 𝛾. With 𝛾 given, values for the
MDD can be estimated. It may be that the MDD in the transversal direction differs from the MDD in the
normal direction (due to the different 𝑄𝑦𝑦 matrices in Eq. (3.28)). Stakeholders often want high values
for the detectability power 𝛾, as this implies that true displacement anomalies will be detected. Hence
this results in unfavorable MDDs.

In other cases, the MDD is predefined by stakeholders, where the maximum allowable displacement
can determine the MDD to ensure the surroundings’ safety. Given the MDD, the detectability power 𝛾
can be estimated, and stakeholders can consider whether it is large enough for the particular situation.

3.8. Summary and Discussion
We developed a new alternative approach for the underdetermined problem often encountered in In­
SAR studies (see section 2.4 p. 22) that we call the ‘strap­down’ approach. The approach makes use of
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a local TLN reference frame. For lot of deformation phenomena it is possible to make the assumption
that the displacements in the longitudinal direction are zero. Therefore the inverse problem can be
solved with two sets of STCI LoS observations.

However, we have found that the approach requires that the orientation of the TLN frame is well chosen
and that in the case of amisalignment of the frame, the estimated transversal and normal displacements
are biased. We therefore came with a mathematical model that also takes into account the frame
alignment uncertainty, see section 3.6.

In section 3.5 we have seen that there are multiple factors that affect the precision and accuracy for the
displacement estimates: (i) the precision of the LoS observations, (ii) the orientation of the TLN frame,
and for cases where there is a displacement signal, also (iii) the uncertainty of the frame alignment,
and (iv) the magnitude of the displacements. With the method we developed, we were able to take into
account all those factors while estimating the displacements in the transversal and normal direction.

However, stakeholders are often not only interested in the displacements itself but also in detecting a
change in the displacement behavior of a RUM. In section 3.7 we developed a methodology to estimate
theMinimal Detectable Displacements given a Detectability Power, significance level and the stochastic
model of the LoS observations. We found that we could also use the strap­down approach for this.

3.8.1. Discussion
From the Monte Carlo analysis in section 3.4, we found that the uncertainty of the TLN frame orientation
results in an uncertainty for the estimated parameters. For the case of noise­free LoS observations,
we found that the distributions of the different estimates for 𝑑𝑇 and 𝑑𝑁 were not normally distributed.
However, the estimates are still described by a variance, or standard deviation.

When we review the situation with noisy LoS observations (using 𝜎LoS = 0.5 mm) we see that the
estimates for 𝑑𝑇 and 𝑑𝑁 have an (almost) normal distribution, at least for 𝛽 ∈ (−60∘, 60∘). For 𝛽 ∼ 90∘,
we still found that the estimates were not normally distributed. However, in most cases, the noise of
the LoS observations is larger than 0.5 mm, more likely around 2 mm. Therefore we expect that normal
distributions can then describe the distribution of the estimates for most of the orientations of the TLN
frame.

To estimate the MDD with the model of condition equations, it is required to have initial displacement
values and displacement velocities. It is also required to know the corresponding standard deviations,
which can be estimated when the standard deviations of the estimated displacements per epoch are
known. The latter can be estimated with Eq. (3.21). The only remark here is that the distribution of the
standard deviations per epoch is unknown (it depends on the noise level of the observations and the
frame orientation). However, estimating the MDD requires normally distributed data since it is a mod­
ification of the w­test. Nevertheless, as we mentioned before, in most cases, it is possible to assume
that the estimates will normally be distributed due to the larger noise level of the LoS observations.





4
Practical considerations: feasibility,

applicability, and impact

InSAR investigations are typically complex. We define different perspectives on howwe can ‘look’ at the
InSAR problem described by Eqs. (3.9) and (3.10). In section 4.1, we first review the different InSAR
factors related to the perspectives which we use for the different perspectives. In section 4.2.1, we
discuss the stakeholder’s perspective followed by the perspective of the user of a pre­existing InSAR
information product which is discussed in section 4.2.2. Finally, we discuss the space perspective in
section 4.2.3.

4.1. InSAR influence factors
We distinguish five factors influencing the feasibility, applicability, and impact of InSAR analysis, i.e., (i)
the space segment, (ii) the location of the Area of Interest (AoI) on Earth, (iii), the particular deformation
phenomenon at hand, (iv) the location­specific part, and (v) the (requested) characteristics of final
InSAR product. We discuss different factors below.

4.1.1. Space segment
Many SAR satellite missions can be considered within the space segment, each with a unique viewing
geometry, affecting the LoS direction from a target towards the satellite. Moreover, the different radars
use different wavelengths affecting the precision of the LoS observations, and therefore the minimal
detectable displacement will differ per mission. Finally, the ground resolution differs per mission. Often,
with finer resolutions, displacements can be detected earlier.

4.1.2. Location on Earth
For every location on Earth, the LoS direction towards the satellite is different, e.g., the incidence angle
and the azimuth angle of the zero­Doppler plane (ZDP) change from near to far range within an InSAR
image, see section 2.1.5. Furthermore, the revisit time, and thus the number of available observations
and independent viewing geometries is different for different locations on Earth. For example, for
Sentinel­1, the revisit times are around six days near the equator but significantly smaller for higher
latitudes [61]. Note that we use the term revisit to indicate how frequent a particular location on earth is
observed by the same satellite mission, even if it is from different viewing geometries. We use the term
repeat to indicate how frequent a particular area is observed from the same orbital position in space.

57
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4.1.3. Deformation phenomenon
Each deformation phenomenon can be characterized by its own unique spatial and temporal character­
istics, including the spatio­temporal extent and spatio­temporal smoothness, a certain magnitude and
the direction of the displacements. The direction of the displacements determines how the displace­
ments are projected onto the LoS. Also, the spatial magnitude of the signal is of relevance. Larger
displacement signals can be detected with a higher detectability power (see section 3.7). To be de­
tected, it is the particular SNR that is of importance: the signal needs to be significantly greater than
the noise level. We found that the orientation of the TLN reference frame affects the detectability for
the transversal and normal directions.

The smoothness of a signal in space is essential for detecting displacements. A higher spatial sampling
is required for highly local deformation signals compared to smooth and wide signals. The temporal
extent provides information on the duration of the deformation and is essential for the required length
of the InSAR investigation. Lastly, the temporal smoothness determines how often measurements are
needed, e.g., temporally smooth signals can be monitored with reduced temporal sampling rates.

4.1.4. Location­specific part
The location­specific part differs per case, and is the part that influences the spatial distribution of the
LoS observations. Given the land cover, for every location on Earth the distribution of observations will
different, which is a defining characteristic of InSAR. Typically, InSAR does not work over water bodies
or in the middle of the tropical rain forest. Consequently, the quality of the observations is captured
within the location­specific part. Before we can decompose the LoS signals, we require observations
with sufficient quality that remain coherent in time.

4.1.5. InSAR product
There is no single unique InSAR product. The final product often is a result of the stakeholder’s require­
ments. In some cases the stakeholder may want a full representation of the deformation phenomenon
and a decomposition is required, while in other cases, the LoS observations themselves may already
be sufficient.

Per case, it will differ what product can be delivered. Suppose only observations from one viewing
geometry are available (given the space segment). In that case, it is impossible to decompose the LoS
observations, and only the LoS observations themselves or projections of the LoS observations can be
delivered. Furthermore, the deformation phenomenon affects the final product since smooth signals in
space require fewer RUMs compared to non­smooth signals in space.

The final product should be delivered with an uncertainty: how reasonable are the final estimates?.
Within section 3.5 we found that the uncertainty depends on the viewing geometry (space segment
and location on Earth) and the orientation of the TLN frame (deformation phenomenon).

4.2. InSAR perspectives
We require two sets of STCI LoS observations over the RUM to be able to decompose the LoS obser­
vations in the TLN system, i.e., for deformation phenomena with no longitudinal displacements, see
chapter 3. This requires coherent scatterers which are well distributed over the RUM to successfully
decompose the LoS observations. Thus, considering the five influence factors discussed above, we
can state that the location­specific part needs to ‘sufficient’, as we need observations from a sufficient
quality. Since we cannot influence the way the Earth looks at a particular location, from now on, we
need to assume that the location­specific factor is satisfactory, i.e., we assume that there are enough
observations available over the RUM and that these are coherent and well distributed.

Under this assumption, there are four influence factors left. With these four InSAR factors, we define
three different InSAR perspectives: three unique ways of looking at InSAR studies, see Fig. 4.1. These
are the perspectives from a prospective user, from a user of a pre­existing product, and from a provider
of InSAR services or data. Each perspective results in a different set of questions that can be asked.
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Figure 4.1: Within every InSAR perspective there is one questioner who is interested in one InSAR factor. There are always
three InSAR factors known.

The different perspectives have in common that there are always three InSAR influence factors consid­
ered to be known, while a statement on the fourth one is required. We will further discuss the different
perspectives in the following.

4.2.1. Perspective 1: The stakeholder’s perspective
The first perspective to look at the problem is the perspective of a (prospective) end­user. For example,
suppose an asset manager considers to use InSAR to monitor a deformation phenomenon of a bridge.
Even though the asset manager has minimal knowledge about satellites, radars, and the InSAR tech­
nology in general, he should still make difficult decisions, e.g., regarding what satellite mission(s) to
use, or on feasibility in general. The typical questions of the stakeholder are: “What can InSAR do for
me in this particular situation?” and “Is InSAR able to detect displacements of a particular size in a
particular direction for my bridge with InSAR?”

After the choice for a particular satellite mission is made, this will lead to particular product requirements,
i.e., “how precise can we estimate the unknown displacement parameters?”, “can we disentangle (es­
timate) the three displacement parameters?”, and “what is the magnitude of the displacement (i.e., the
MDD) that can be detected in a particular direction?” It should be possible to answer the stakeholders
questions before starting with the InSAR study because the answers to the questions above determine
whether it is worth investing in choosing the InSAR technology, over alternatives.

Especially the MDD and the DP values can help the stakeholder to make a decision, whether it is worth
investing in InSAR. For example, when a stakeholder wants to use InSAR to monitor a landslide­prone
area, the MDD can be predefined. In section 3.7.3, we have seen that, when the viewing geometries
and precision of the LoS observations of the available acquisitions are known, and we define a value
for the significance level, we can estimate the DP corresponding to this MDD. The stakeholder should
now decide on whether this DP satisfies his requirements. When the stakeholder is just interested
in what InSAR can do for him, the MDD can serve as an answer to that question. In that case, the
stakeholder should a priori decide on the DP, and we can estimate the corresponding MDD. Afterward,
the stakeholder can decide whether this MDD value is sufficient. Obviously, to be able to answer those
questions, the deformation phenomena that needs to be monitored should be known.

Considering these two examples, we see that the first perspective is actually an a priori perspective,
since the answers to the questions can serve as a metric to help in making a decision on whether is
it worth to invest in applying the InSAR methodology. In this first perspective, three InSAR influence
factors are known: the space segment, the location on Earth, and the deformation phenomenon. The
stakeholder’s questions are related to the product requirements, which is the unknown InSAR influence
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Figure 4.2: Workflow for Module 1: LoS geometry (left) where the viewing geometry for a particular satellite mission at a location
on Earth is estimated using DRaMA and Module 2: Parameterization of the deformation phenomenon (right) where the unknown
parameters for the deformation phenomenon are determined.

factor. The workflow for this perspective consists of four modules, which have been developed and
implemented in software routines in the framework of this study, i.e., (i) Module 1: LoS geometry, (ii)
Module 2: Parameterization of the deformation phenomenon, (iii) Module 3: The functional model and
the 𝑄𝑦𝑦 matrix, and iv) Module 4: Hypothesis testing.

Module 1: LoS geometry
Given the space segment and the location on Earth, the first module aims to estimate the viewing ge­
ometry for the space segment for a specific location on Earth, see Fig. 4.2. In the first step, the available
acquisitions are computed with the simulation toolbox DRaMA [19]. It could be the case that multiple
acquisitions are available over the RUM. Therefore, in step 1.2 the corresponding incidence angles 𝜃
and azimuth angles of the ZDP 𝛼𝑑 are computed. The output of the first module is per acquisition the
incidence angle 𝜃 and the azimuth angle of the ZDP 𝛼𝑑 per RUM.

Module 2: Parameterization of the deformation phenomenon
Within module 2, the unknown parameters for the deformation phenomenon are defined. The first step
is to test whether it is possible to assume that there are no longitudinal displacements and whether the
TLN system can be used, and subsequently the unknown parameters can be determined. When the
TLN frame can be used, the orientation of the frame needs to be estimated even as this has a certain
uncertainty, see Fig. 4.2. For deformation phenomena without a main driving mechanism or where
the deformation phenomena is unknown, the ENU reference system should be used, resulting in three
unknown displacement parameters.

Module 3: Functional model and 𝑄𝑦𝑦
The third module aims to define, per RUM, the functional model and the 𝑄𝑦𝑦 matrix that should be used
to solve for the unknown parameters. With the viewing geometry of the available satellite mission (out­
put module 1), the orientation of the reference frame, and the unknown parameters (output module 2), it
is possible to define the functional model. In step 3.2, the number of available sets of STCI observations
𝑚 is compared with the number of unknown displacement parameters 𝑛. It is important to mention that
sufficient angular diversity is required to solve for the unknown parameters, see section 2.3.4. When
𝑚 < 𝑛, the output of Module 3 is the following statement: ‘There are not enough observations to give
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estimates for all unknown parameters.’ When 𝑚 ≥ 𝑛, the design matrix 𝐴 in Eq. (3.9) can be filled. As
a last step, the variance­covariance matrix 𝑄𝑦𝑦, see Eq. (3.10), should be defined. Given the satellite
mission and the location on Earth, a rough a priori estimate of the uncertainty of the LoS observations
needs to be made. The output of module 3 is the design matrix 𝐴 and the 𝑄𝑦𝑦 for the RUM for the case
where 𝑚 ≥ 𝑛. For an overview of the third module, see Fig. 4.3

Figure 4.3: Workflow for Module 3: Functional model and 𝑄𝑦𝑦 where the mathematical model that should be used is formed. It
is also checked whether the inverse model can be solved with the observation (geometry) available.

Module 4: Hypothesis testing
The aim of Module 4 is to estimate the MDD or DP, see Fig. 4.4. The first step is to check which
of the two is predefined. If the DP, 𝛾, is predefined, step 4.3 needs to be performed, where 𝑄�̂� is
estimated using Eq. (3.14). 𝑄�̂� contains information regarding how precise the unknown parameters
can be estimated with the available viewing geometries, the orientation of the TLN frame, and the frame
uncertainty. Consequently, 𝜎𝑑𝑇 and 𝜎𝑑𝑁 (the diagonal elements of 𝑄�̂�) are estimated and the linear
model of condition equations (see section 3.7.2) should be defined (step 4.4), followed by computing
the corresponding 𝑄𝑦𝑦 matrix (see Eq. (3.28)). It is now possible to define a null hypothesis 𝐻0 and an
alternative hypothesis 𝐻𝑎 in step 4.6. These two hypotheses are needed to compute the value for the
MDD with Eq. (3.30) in step 4.7, which is the output of this module.

If the MDD is predefined, step 4.2 is needed first, i.e., making a first estimate for the DP 𝛾𝑖. With this
value for 𝛾𝑖 we can estimate MDD𝑖, if MDD = MDD𝑖, the value for 𝛾𝑖 is the the DP that corresponds
to the value for MDD. When MDD ≠ MDD𝑖, we should make a new estimate for 𝛾𝑖. We repeat this
process until we find the correct value for 𝛾 such that MDD = MDD𝑖.

4.2.2. Perspective 2: User of a pre­existing InSAR information product
Within this second perspective from an end­user, the InSAR information product does already exist.
Note that this is different from the first perspective, in which the information product still needs to be
acquired or computed. Suppose the end user of this information product, e.g., a displacement map that
shows colored dots, where the colored dots represent the LoS displacement rates, as in Fig. 1.1, p. 1.
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Figure 4.4: Workflow for Module 4: Hypothesis testing. This module aims to estimate the MDD or the DP, given the mathematical
model and the product specifications defined by the stakeholder.

Obviously, the user is not particularly interested in the colored dots. Most likely, he is interested in what
happens with the asset, or deformation phenomenon, that he should monitor. He wants to know what
the product tells him about the deformation phenomenon. So the question related to this perspective
is: “What can we get from the product?”, or, in other words: “What deformation phenomenon can be
significantly estimated from the product?” Since the InSAR data is already processed, this is an a
posteriori perspective.

The workflow developed for this perspective is divided into (i) module 5: RUM observations and un­
known parameters, (ii) module 6: RUM parameter estimation, and (iii) module 7: Deformation phe­
nomenon visualization.

Module 5: RUM observations and unknown parameters
The input for this module is the displacement product, for instance, a LoS displacement time series for
different scatterers. Within step 5.1, it is first needed to identify different RUMs from the product. The
next step is to make an estimate for the deformation phenomenon for every RUM 𝑟, which serves as
the input for step 5.2 where the orientation angles and their uncertainties are estimated. Consequently,
within step 5.3, the number of unknowns 𝑛 related to the deformation phenomenon, e.g., 𝑑𝑇 and 𝑑𝑁,
are determined. Afterwards, the number of sets of STCI observations 𝑚 that have sufficient angular
diversity over the RUM should be defined from the product (step 5.4).

It is essential to check whether the angular diversity of the different LoS observations is large enough
to have a full­rank functional model. Within step 5.5, the number of unknowns 𝑛 are compared with
the number of sets of STCI observations 𝑚. If 𝑚 < 𝑛, the output of module 5 for that particular RUM
is: ’There are not enough sets of STCI observations to solve for the unknowns for RUM 𝑟h.’ For every
RUM where 𝑚 ≥ 𝑛 the output is as follows: (i) Available (LoS) observations over the RUM, (ii) list of 𝑛
unknown parameters, and (iii) values for 𝛽, 𝛾𝑡 and 𝛾𝑙 and for 𝜎𝛽 , 𝜎𝛾𝑡 and 𝜎𝛾𝑙 , see Fig.4.5
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Figure 4.5: Workflow for Module 5: RUM observations and unknown parameters (left) and Module 6: RUM parameter estimation
(right). In Module 5, per RUM the deformation phenomenon is estimated and it is verified whether there are enough observations
to solve for the unknowns. Subsequently, in module 6, the unknown displacements are estimated using the STCI observations.

Figure 4.6: Workflow for Module 7: Deformation phenomenon visualization where the estimates for the deformation phenomenon
are visualized.
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Module 6: RUM parameter estimation
With the output of module 5 and the estimate for the deformation phenomenon, it is possible to loop
through all the RUMs and define the functional model that should be used per RUM (step 6.1). A
decision should be made about the reference frame that should be used (TLN or ENU) and whether it
is possible to assume 𝑑𝐿 = 0. With the geometry of the observations it is possible to define the design
matrix 𝐴. Within step 6.2, one should define the 𝑄𝑦𝑦 matrix, which consists of the precision of the
product (which are, for instance, the LoS observations). With the functional model and 𝑄𝑦𝑦, the system
needs to be linearized if the TLN frame is used. With the linearized model and the observations, the
next step is to estimate the unknowns with Eq. (3.14) and the iteration scheme as in Fig. ??. As a
last step, in 6.5 we compute 𝑄�̂� by using Eq. (3.21). The output for module 6 is an estimate for the
unknowns �̂� and 𝑄�̂�. For an overview of module 6, see Fig. 4.5.

Module 7: Deformation phenomenon visualization
The defining question related to the second perspective was, ’What deformation phenomenon can
be significantly estimated?’. The result from module 6 was an estimate per RUM for the unknown
parameters and their uncertainty. Within module 7, we try to visualize those results to answer the
question related to this perspective. When we observe that the uncertainty for one of the final estimates
is low, our conclusion should be that it is impossible to significantly conclude something about the
deformation phenomenon from the product, see Fig. 4.6.

4.2.3. Perspective 3: The InSAR service provider
The last perspective reviews the problem from the space segment. On the one hand, the stakeholders
within this perspective can be ‘value­adding service’ providers. These are companies that are using
InSAR data to create end products that stakeholders can use. These companies have to meet the
product requirements set by their customers. E.g., the stakeholders can require that a particular MDD
is always detected with a DP of 80%, or they may ask for a decomposed displacement map where
the uncertainty falls below a particular level. The question that such parties typically ask is “with which
(combination) of satellite mission(s) can we meet the product requirements asked by the client?”

Another category of stakeholders are the data providers, such as space agencies. Space agencies and
other space companies providing InSAR satellites want to createmissions (or systems) that deliver what
is needed and have highest added value. As they want to know what the viewing geometry of a new
InSAR satellite should be, they may ask: “what should be the viewing geometry of a new operating
satellite to deliver an InSAR product that has a high added value?”

Within this perspective we consider the location on Earth, the deformation phenomenon, and the prod­
uct requirements to be known. We want to state something about the space segment. Module 8 and
Module 9 correspond to the space perspective from the value adding services, where module 10 cor­
responds to the perspective of the space agencies.

Module 8: MDD for different missions
Within module 8, the aim is to select the satellite mission that fits the client’s product requirements. Due
to the difference in viewing geometry and resolution between different missions, it differs per satellite
mission, whether displacements can be detected or not. In step 8.1, Module 2: parameterization of
the deformation phenomenon is executed. Afterward, it is needed to loop trough all available satellite
missions. Per satellite mission, first the LoS geometry is estimated with Module 1. With the LoS
geometry and the parameterization of the deformation phenomenon, the functional model and 𝑄𝑦𝑦 are
computed with Module 3. Afterward, the MDD for a particular satellite is estimated for a predefined 𝛾
(step 8.4). The module’s output is a list with values for the MDD and the corresponding satellite mission.
When the computed MDDs are compared with the predefined MDDs of the client, the satellite mission
can be chosen that satisfies the client’s requirements, see Fig. 4.7.
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Figure 4.7: Workflow for Module 8: MDD for different missions. The module aims to select the satellite mission that fits the
client’s product requirements given a particular location on Earth and the deformation phenomenon

Module 9: MDD for combinations of missions
For some cases, to reach higher values for the MDD, combinations of satellite missions are used and
needed to monitor displacements. To assess the satellite combination that satisfies the requirements,
we can run Module 9. The only difference with module 8 is that Module 9 loops trough combinations of
missions instead of missions.

Module 10: New mission design
Within Module 10, a deformation phenomenon at a particular location on Earth is monitored. There are
already LoS observations of one (or more) satellite acquisitions available. However, space agencies
may be looking for the geometry of a mission under design such that the results for monitoring the
deformation phenomenon are optimal, see Fig. 4.8.

The input for module 10 consists of (i) the location on Earth, (ii) the space segment, which consists
of the already available satellite observation(s), and (iii) the deformation phenomenon. The first step
is to run module 2 to obtain a parameterization of the deformation phenomenon (10.1). Afterward, 𝑝
potential incidence angles and 𝑞 potential azimuth angles of the ZDP values are defined (10.2). The
next step is to loop trough all angles, resulting in 𝑝 × 𝑞 potential LoS directions. Per potential LoS
direction, the design matrix 𝐴 is defined even as the 𝑄𝑦𝑦 matrix with Module 3. In step 10.4, 𝑄�̂� is
computed with Eq. (3.21) followed by 10.5 where the standard deviation for the estimates for 𝑑𝑇 and
𝑑𝑁 are computed, and the values are saved in a 𝑝 × 𝑞 matrix. Lastly, we find the potential viewing
geometry that provides the smallest standard deviations for the transversal and normal components.
This is the optimal viewing geometry for monitoring the deformation phenomenon under consideration
and the output for module 10.

4.2.4. Software
Together, all modules that we discuss above form so called ‘building blocks’ to answer the questions
that are asked in the three InSAR perspectives. We also incorporated the modules in software that can
answer the InSAR questions. For the software we refer to Appendix F. In Chapter 5 we will test whether
the software we created can help in answering the questions asked by the different stakeholders.
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Figure 4.8: Workflow for Module 10: Optimal viewing geometry. The module is used to help space agencies to design a new
satellite mission such that the results for monitoring a deformation phenomenon at a particular location on Earth are optimal.



5
Case studies

We performed different case studies related to the three InSAR perspectives as described in Chapter 4.
First, in section 5.1 we discuss the perspective of a stakeholder that is considering to use InSAR to
monitor the A6 highway in Switzerland. Subsequently, we analyze two deformation phenomena in two
existing InSAR products: a subsidence case due to salt production in Groningen, the Netherlands, in
section 5.2 and displacements resulting from coal mining after­effects in Limburg, the Netherlands, in
section 5.3. This covers the second perspective of extracting information from a pre­existing product.
Finally, in section 5.4 we discuss the optimal viewing geometry for monitoring strike­slip motion at faults,
which is an example of the perspective of a product or service provider.

5.1. Stakeholder’s perspective: A6 highway, Switzerland
We applied the approach for the first perspective at a case study on the A6, a highway that runs between
Bern and Thun in Switzerland, see Fig. 5.1. Between the villagesMuri and Rubigen, the road runs along
a river on sloped terrain, resulting in down­slope displacements that need to be monitored. In this case,
the stakeholder wants to know whether it is worth investing in the application of InSAR technology. He
is interested in the magnitude of the displacements that can be detected, i.e., the MDDs. To answer
the question, we use the workflow, and written software, as described in section 4.2.1.

Figure 5.1: The A6 highway between Bern and Thun in Switzerland. Close to the villages Muri and Rubigen, the road runs along
the river Aare on a slope. (c) shows InSAR LoS displacements estimated projected onto the vertical obtained over the road with
an ascending and an descending acquisition. From the estimates shown in the visualization, no significant displacements can
be seen (data from SkyGeo).
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Table 5.1: Acquisition details for Sentinel­1 track 15 and track 66 available over the A6 highway between Muri and Rubigen

Sentinel­1 track 15 Sentinel­1 track 66
Acquisition ascending descending
Mean 𝜃 31∘ 43∘
Mean 𝛼𝑑 261∘ 98∘
Start May 16, 2016 May 20, 2016
End June 30, 2020 June 28, 2020

5.1.1. Deformation phenomenon and RUMs
Since the road runs along a slope, we assume that it is most likely that the road may deform along
the slope with gravity as the main driving force. Thus, we mainly assumed gravity­induced downslope
displacements. We use the strap­down approach and use the iso­elevation lines to define the orien­
tation of the TLN frame. The longitudinal direction is directed parallel to the iso­elevation lines and
the transversal direction downslope (see section 3.2.1). Since the road has a varying orientation, the
orientation of the TLN frame is location­dependent as well. Therefore we need to make sure that we
define the RUMs such that the orientation of the frame remains consistent within one RUM. In total we
defined 36 RUMs, see Fig 5.2. We used a Digital Elevation Model (DEM) to estimate the value for 𝛾𝑡
(the slope in the transversal direction), and to extract iso­elevation lines which are used to estimate 𝛽
(the azimuth of the longitudinal direction)1. Per RUM, the values for 𝛽 and 𝛾𝑡 can be seen in Figs 5.2a
and 5.2b respectively. We set 𝛾𝑙 = 0∘ for every RUM, meaning that the slope in the longitudinal direciton
is 0°. Further we estimated 𝜎𝛽 = 7∘, 𝜎𝛾𝑡 = 5∘, and 𝜎𝛾𝑙 = 3∘.

Figure 5.2: The A6 is divided in 36 RUMs, where the DEM is used to determine the orientation of the TLN frame for each RUM.
(a) shows the azimuth value 𝛽 per RUM. (b) shows the slope values 𝛾𝑡. The value for 𝛾𝑙 was set to 0∘ for all RUMs, as the road
largely follows the iso­heightlines.

5.1.2. Satellite characteristics
Per RUM, there are two unknown parameters (𝑑𝑇 and 𝑑𝑁). Thus, to estimate the MDDs in those two
directions, observations from at least two viewing geometries are required. The area is monitored with
observations from Sentinel­1 from both an ascending orbit (track 15) and a descending orbit (track 66).
In Tab 5.1 we presented the viewing characteristics.

1In Fig. 3.1 at p. 37 the definition of the orientation angles for gravity induces downslope displacements can be found
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Table 5.2: Relation between the 𝛽 value of a RUM and estimated MDD in the transversal direction

# RUM 𝛽 [degrees] MDD (transversal direc­
tion) [mm]

6 143° 5.4
28 170° 5.2
29 170° 4.1
36 147° 4.9
21 115° 14.9
22 115° 16.8
30 100° 83.4

5.1.3. Minimal Detectable Displacements
To estimate the MDD in the transversal and normal direction, we need to define the null hypothesis for
both the displacements in the transversal and the normal direction. We assume that the displacement
behavior of every RUM is stable, i.e., we do not expect accelerations or velocity changes in the dis­
placement behavior. With the LoS observations available over the area (Fig. 5.1c), we can estimate
the displacement time series in the transversal and normal direction for epochs 𝑡0 until 𝑡𝑚. Based on
those time series, we can estimate the mean velocities, and we can predict the displacement value for
epoch 𝑡𝑚+1. The null hypothesis, i.e. no change in displacement behavior, is defined as in Eq. (3.27)
on p. 53, where the predicted value equals the new measurement update. The alternative hypothesis
is defined such that there is a change in displacement, see Eq. (3.29).

We can estimate the MDDs with Eq. (3.30) on p. 54, where 𝑄𝑡 is computed with Eq. (3.32). We need
to know 𝑄�̂� which is defined as:

𝑄�̂� = [
𝜎2𝑑𝑇,𝑝 0
0 𝜎2𝑑𝑇,𝑚

] , (5.1)

where 𝜎2𝑑𝑇,𝑝 is the variance of the predicted displacement at epoch 𝑡𝑚+1 and 𝜎
2
𝑑𝑇,𝑚 the variance for the

measured value at epoch 𝑡𝑚+1.

We can estimate the predicted displacement based on the displacement history of the RUM by estimat­
ing the displacement velocity and the initial displacement value. Therefore, the longer the displacement
time series, the better the estimate of the velocity and the initial value. Also, the number of scatterers
available within one RUM and the noise level of the corresponding LoS displacement times series play
a role. First we estimate the mean LoS displacement time series for the ascending and the descend­
ing track per RUM. Consequently, we can estimate the displacement in the transversal and normal
direction per epoch, using Eqs. (3.9) and (3.10) on p. 47, resulting in displacement time series in the
transversal and normal direction. Afterward, we estimate the velocities and the initial values. The
more scatterers (and thus LoS displacement time series) available within one RUM, the smaller the
noise level of the mean LoS displacement time series and consequently, the smaller the variance of
the estimated displacements in the transversal and normal direction and therefore, the smaller 𝜎2𝑑𝑇,𝑝 .
Obviously, the exact value of 𝜎2𝑑𝑇,𝑚 is unknown. However, we can estimate it by computing the noise
level of the estimated displacement time series in the transversal or normal direction.

To estimate the MDDs for the transversal and normal direction, we need to define a significance level
𝛼 (the percentage of false warnings) and the detectability power, 𝛾, which were set to 5% and 90%
respectively. The results for the MDDs in both directions can be seen in Fig.5.3. We see that the
MDD in the transversal direction depends largely on the orientation angle of 𝛽 for the TLN frame, see
Table 5.2. For 𝛽 values around 180°, the MDD is smaller, and when 𝛽 is close to 90°, the MDD is
larger. This relation follows from the direction of the null line. For orientations of the TLN frame where
𝛽 ≈ 280∘, the transversal direction is directed almost in the north direction, and therefore, for near polar
orbiting satellites, very close to the direction of the null line.

The MDD in the transversal direction also depends on the number of scatterers at the RUM. E.g,
RUMs 9 and 10 have high MDDs in the transversal direction: 15.1 mm and 15.3 mm respectively,
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Figure 5.3: The MDDs in the transversal and normal direction per RUM over the A6. A high value, indicates that large dis­
placement needs to occur before the displacement is detected. E.g., a MDD value of 10 mm means that the magnitude of the
displacement between to observations epochs (which is 6 days) needs to occur before it can be detected. For RUM 11, 15, 18,
and 19 there were no LoS time series available, and therefore it was not possible to estimate the MDD. We found that the value
of the MDD for the other RUMs depends on the orientation of the TLN frame, even as the number of available LoS time series.

where 𝛽 = 146∘ and 𝛽 = 144∘ respectively. But because there are only 2 and 1 scatterer for the
ascending acquisition, respectively, the uncertainty for the estimated normal and transversal displace­
ment time series is high. Therefore, the variance for the predicted observation at 𝑡𝑚+1 will be high, and
consequently, the MDD is high as well.

We can also see that the MDD for the normal direction depends on 𝛾𝑡. The larger 𝛾𝑡, the larger the
MDD in the normal direction. E.g., for RUMs 22 and 23, the MDDs in the normal direction are 6.7 mm
and 6.4 mm, corresponding to slopes of 14∘ and 19∘ respectively. Moreover, we see that for RUM 30,
the high value for the MDD results from the unstable solution for that RUM. The MDD for RUM 10 is
high due to the low amount of available LoS time series.

5.1.4. Comparison with estimated time­series
From the InSAR LoS displacements estimations (Fig. 5.1c), it seems that there are no significant dis­
placements observed by the satellites. However, the question related to the stakeholder’s perspective,
is not on getting insight in whether we see ‘something’ happening. The question is, ‘when something
would happen, are we able to see it?’

So with the displacement time series available over the RUM, we can validate whether the estimated
MDDs are reasonable. Since it seems that there are no significant displacements, we would expect
that the displacement time series are ’smaller’ than the MDD. In Fig. 5.4 we show the estimated time­
series for RUM 4 and RUM 25 together with the estimated velocities and the values for the MDDs. For
both RUMs, it can be seen that the estimated velocities are low and that both do not show unexpected
deformation behavior since the estimated decomposed time series falls in between the MDD range.
We computed those figures for all RUMs and found that all RUMs have small estimated displacement
rates and none of them had a significantly different behavior from the predicted behavior.

5.1.5. Changing the MDD
In some situations, the stakeholder may like to decrease the MDD. As discussed in section 3.5 at p. 43,
multiple parameters affect the size of the MDD: (i) the orientation of the TLN frame, (ii) the standard
deviation of the LoS observations, (iii) the viewing geometry of the satellites, (iv) the deformation signal,
and (v) the length of the observations time­series. Here we show the effect of changing those param­
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Figure 5.4: Decomposed time series in the transversal and normal direction for RUM 4 and 25. The estimated displacement
velocities are shown in orange and the MDD by the striped grey lines. Both RUMs do not show a displacement behavior that
differs from the expected behavior.

Table 5.3: RUM characteristics for RUM 27

Value
𝛽, 𝛾𝑡 , 𝛾𝑙 354∘, 3.2∘, 0∘
𝜎𝛽 , 𝜎𝛾𝑡 , 𝜎𝛾𝑙 7∘, 5∘, 3∘
𝜃asc, 𝜃dsc 31∘, 44∘
𝛼𝑑,asc𝛼𝑑,dsc 261∘, 98∘
𝑣𝑇 −0.8 mm/yr
𝑣𝑁 −0.7 mm/yr
# observations epochs 210

eters on the MDD. We take RUM 27 as an example, with characteristics as presented in Table 5.3, the
MDD in the transversal direction was 8.6 mm, and 6.1 mm in the normal direction. When we change
(i) the number of available observations (the epochs), (ii) the uncertainty of the alignment of the frame,
(iii) the deformation signal, or (iv) the precision of the observations, we see that the MDD in both direc­
tions changes, see Fig. 5.5. Interesting is the figure that shows the MDD as an effect of the number
of available epochs. First, we see that having more extended LoS time series is valuable since the
MDDs are decreasing. However, when more than 250 observation epochs are available, we see that
the MDDs are increasing. This can be understood from the fact that when 𝑣𝑡 ≠ 0 or 𝑣𝑡 ≠ 0, the esti­
mated displacements become larger when having longer LoS time series. We have seen before, that
for larger displacement signals the MDDs are larger as well. Moreover, we see that when we enlarge
the uncertainty for the frame alignment and the precision of the observations, the MDDs also become
larger.

5.1.6. Discussion
One can argue that the case we describe here is not a perfect example of the stakeholder’s perspective
as described in Chapter4, where we write that the perspective an a priori perspective where no satellite
data is available. We have satellite data available in this example, and we estimate the MDDs based
on those data. However, we choose to show the results for a case with real data to be able to compare
our results with what was observed, see Fig. 5.5. For a situation where the MDDs are used as a metric
to decide whether the stakeholder should invest in InSAR, there are a few differences with what we
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Figure 5.5: The effect of (i) the length of the LoS displacement time series, (ii) the uncertainty for the alignment of the frame, (iii)
the displacement velocities and (iv) the precision of the LoS observations on the MDDs in the transversal and normal direction.

have shown here. Obviously, information on the amount of available scatterers and their location and
quality is needed to be able to make a quantitative statement on the values for the MDD. An option
would be to estimate those values, however that is very difficult. Therefore an existing data set could
help.

For the case we described in this section, we estimated the precision for every estimated displacement
in the transversal and normal direction per epoch (𝜎𝑑𝑇 and 𝜎𝑑𝑁 ). We estimated those values from
the estimated time series in the transversal and normal directions. Another method is to estimate the
standard deviation for every available LoS displacement time series per RUM, which we still need to
do from the data since the actual values are not known. The next step is to estimate the mean value
LoS displacement time series per acquisition, and corresponding uncertainty. Those time series can
be used to estimate the precision for �̂�𝑇 and �̂�𝑁 for every epoch. This method probably gives a smaller
standard deviation and is less conservative than the way we did it.

We also have to make an assumption on the occurring deformation phenomenon, where we assume
that displacements only occur in the downslope direction. We use the iso­elevation lines for the ori­
entation of the TLN system. However, we are studying a road, so one could argue that we should
also consider the deformation phenomenon of the road (line infrastructure) and take the road for the
orientation of the TLN system. Nevertheless, for most of the RUMs, the road runs parallel to the iso­
elevation lines. Only for RUMs 21 and 29, there is a significant difference in orientation. For these two
RUMs, the assumption of zero longitudinal displacements in the direction perpendicular to the slope is
probably not valid, and therefore, the estimated MDDs are also less reliable.

5.2. User of a pre­existing InSAR product: Magnesium extracting
in Veendam

In Veendam (north of the Netherlands) magnesium is extracted at a depth of approximately 1500 me­
ters. As an undesired consequence, this leads to subsidence, resulting in a subsidence bowl. Wells
are injected with water and as a result, the magnesium salts resolve and can be extracted. Through
this process, caverns start to form and at locations where the cavern’s pressure is lower than the pres­
sure in the surrounding salt layers, salt flows towards to cavern[62]. Resulting in overlaying rock layers
moving towards the downwards and to the center, and resulting in a subsidence bowl [62]. The vertical
displacements are largest near the center of the bowl, which is at the location of the wells. There are
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Table 5.4: Acquisition details for Sentinel­1 track 15 and track 139 available at Veendam

Sentinel­1 track 15 Sentinel­1 track 139
Acquisition ascending descending
Mean 𝜃 36.3∘ 44.2∘
Mean 𝛼𝑑 261∘ 98∘
Start January 29, 2016 January 14, 2016
End March 8, 2020 February 16, 2020

Figure 5.6: LoS displacement rates projected onto the vertical for an ascending and descending track over the subsidence bowl
which is a result of the magnesium extraction near Norg, the Netherlands (data: SkyGeo).

also horizontal displacements directed towards the center of the subsidence bowl.

5.2.1. The InSAR product
The area is monitored with Sentinel­1 data from ascending and descending acquisitions, we refer to
Tab 5.4 for the acquisition details. The estimated LoS displacement rates projected onto the vertical
for both acquisitions are shown in Fig. 5.6. It appears that the location with the most extensive
displacement is different for both acquisitions. E.g., Fig. 5.6a shows the results from the ascending
acquisition where the location with maximum LoS displacements is located more towards the west
compared to the results obtained from the descending acquisition, Fig. 5.6b. This is a first indication
for the presence of horizontal displacements [63].

From the two LoS datasets, the vertical and east­west (EW) velocities are also estimated (see Fig 5.7)
under the commonly made assumption that ‘the north component can be neglected’. This is typically a
decomposition error but also an approach that is used a lot in InSAR literature, see section 2.5 at p. 29.
We address a few points regarding the results. First, the NS component is simply neglected and not
shown, which results in a bias for the vertical component. Second, why would an end­user be interested
in the EW component, and not in any other direction?. Obviously the decomposed estimated are not
tuned to the needs of the end­user and the complete deformation behavior remains unclear from the
EW­Up decomposed results. Third, the choice for the decomposition direction is arbitrary. With the
two viewing geometries available, there is also a sensitivity for other directions instead of only the
EW and Up direction. The sensitivity may be less, but we argue that that should not be leading for
the decomposition direction. Moreover, the figures give no indication of the quality of the estimated
parameters, which makes interpretation difficult. And finally, we already have information about the
location that we are observing: we know we are looking at a salt mining case, and therefore we know
that we have a subsidence bowl, so we know that there is also a NS component.
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Figure 5.7: Estimated vertical (A) and east­west (B) displacement rates for the area around Veendam from the two available LoS
data sets.

Table 5.5: Angles for 𝛽0 per segment

Segment # 𝛽0 Segment # 𝛽0
1 105∘ 7 285∘
2 135∘ 8 315∘
3 165∘ 9 345∘
4 195∘ 10 15∘
5 225∘ 11 45∘
6 255∘ 12 75∘

Nedmag, the company that produces the salt may be interested in the complete deformation phe­
nomenon, with a proper error description. To discover the complete deformation phenomenon we can
use the workflow as described in section 4.2.2.

5.2.2. Deformation phenomenon and RUMs
As already described, the deformation phenomenon related to this case is a subsidence bowl, and
displacements parallel to the iso­deformation lines are note expected (see section 3.2.2). Thus, we
can use the TLN frame and assume 𝑑𝐿 = 0.

For different locations at the subsidence bowl, the orientation of the TLN frame is different. There­
fore, we divided the full subsidence bowl into different RUMs, see Fig. 5.9, and we assumed that all
scatterers within one RUM behave according to the same deformation phenomenon. For every RUM,
we estimated 𝛽0 (see Table 5.5) and we set 𝜎𝛽 = 5∘. We estimated 𝛾0𝑡 = 0∘ and 𝛾0𝑙 = 0∘ due to the
absence of significant topography, and we set 𝜎𝛾𝑡 = 2∘ and 𝜎𝛾𝑙 = 2∘.

5.2.3. Parameter estimation per RUM
We have two unknown parameters per RUM: the displacement velocity in the transversal direction,
𝑣𝑇, and the displacement velocity in the normal direction 𝑣𝑁. With the LoS observations and pseudo­
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observations for the orientation angles we have
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where 𝑣ascLoS and 𝑣dscLoS are the displacement velocities in the LoS direction for the ascending and de­
scending acquisition. The unknowns of the model are 𝑣𝑇 , 𝑣𝑁 , 𝛽, 𝛾𝑡 and 𝛾𝑙. The first row in the 𝐴 matrix
is [𝑝1𝑇𝑣𝑇 + 𝑝1𝑁𝑣𝑁] which corresponds to 𝑃LoS,1𝑅1𝑅2𝑅3[𝑣𝑇 , 𝑣𝐿 , 𝑑𝑁]𝑇, with the component related to the
longitudinal direction 𝑣𝐿 removed. The last three rows of 𝐴(𝑥) correspond to the pseudo­observations
for the orientation angles. 𝐷{.} is the dispersion of the model, where 𝜎2LoS,1 and 𝜎2LoS,2 are the variances
for the estimated LoS displacement rates. 𝜎2𝛽 , 𝜎2𝛾𝑡 , and 𝜎2𝛾𝑙 are the uncertainties for the orientation
estimates.

The LoS velocities can be estimated from the mean LoS displacements time series per RUM with

𝐸{
⎡
⎢
⎢
⎢
⎣

𝑑(1)LoS
𝑑(2)LoS
⋮

𝑑(𝑚)LoS

⎤
⎥
⎥
⎥
⎦⏝⎵⏟⎵⏝

𝑦′

} =
⎡
⎢
⎢
⎣

1 𝑡1 − 𝑡0
1 𝑡1 − 𝑡2
⋮ ⋮
1 𝑡1 − 𝑡𝑚

⎤
⎥
⎥
⎦⏝⎵⎵⎵⏟⎵⎵⎵⏝

𝐴

[𝑑
(𝑡0)
𝐿𝑜𝑆
𝑣LoS

]
⏝⎵⏟⎵⏝

𝑥

(5.4)
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𝑑(𝑚)LoS

⎤
⎥
⎥
⎥
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𝑦′

} =
⎡
⎢
⎢
⎣

𝜎2LoS,1 0 0 0
0 𝜎2LoS,1 … 0
0 ⋮ ⋱ 0
0 0 0 𝜎2LoS,𝑚

⎤
⎥
⎥
⎦⏝⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⏝

𝑄𝑦𝑦

, (5.5)

where 𝑑(1)LoS until 𝑑(𝑚)LoS are the mean LoS displacements from epoch 1 until 𝑚, 𝑑(𝑡0)LoS is the unknown
initial displacement and 𝑣LoS is the displacement velocity in the LoS direction. 𝜎LoS,1 until 𝜎LoS,𝑚 are
the variances for the mean LoS displacements over the RUM.

Per RUM, we can estimate the velocity in the transversal and normal direction from from mean LoS
displacements time series. In Fig. 5.8 the mean LoS displacement time series projected onto the
vertical for RUMs D9 and E2 are shown. It can be seen that from January 2016 until March 2018,
the displacement can be described by a linear trend. In March 2018, there is an acceleration in the
displacement, which stabilizes more or less in August 2018. From August 2018 until the end of the
time series, the displacements can again be described by a linear model. Therefore, we decided to
estimate the displacement velocities over the period from August 2018 until March 2020.

Since the LoS displacements are not provided with a standard deviation (𝜎), we assumed that 𝑄𝑦𝑦 in
Eq. (5.5) equals the identity matrix. Thus, all mean displacement estimates have the same weight. The
precision for the estimated LoS velocity 𝜎2𝑣LoS can be estimated by computing the residuals between
the LoS observations and the estimated linear trend. With the velocities and corresponding precision
for both acquisitions per RUM, it is possible to estimate the velocity in the transversal 𝑣𝑇 and normal
𝑣𝑁 direction with Eq. (5.2). With 𝑄�̂� = (𝐴𝑇𝑄−1𝑦𝑦𝐴)−1 we can estimate the precision of both velocities.
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Figure 5.8: Mean LoS displacements rates projected onto the vertical for RUM D9 (a) and RUM E2 (b). In March 2018 an
acceleration in the LoS displacements rates takes place which stabilizes more or less in August 2018.

5.2.4. Final results
In Fig. 5.9 the estimated velocities in the transversal (centripetal) and normal (near vertical) direction
can be seen. For RUMs A4, A6, A7, and A8, only observations from one viewing geometry were
available and we were not able to estimate the transversal and normal velocities. It can be seen
that indeed the largest vertical displacements occur at the center of the subsidence bowl. We also
found that all displacements are directed towards the center of the bowl, excepting RUM D12. At the
center of the bowl, we found significant vertical displacements up to 40 mm/yr. When we compare
those results with the results from the the east­west­up decomposition (Fig 5.7), we argue that we
convey significantly more intelligible information, including the uncertainty estimates. Moreover, using
the strap­down approach and the concept of RUMs resulted in figure where we could show both the
vertical as well as the horizontal displacements. With this approach we were able to give a three
dimensional representation of the full deformation phenomenon with only one figure.

To give good proper geodetic results, we also need to add uncertainties, what we did by adding error
ellipses for the transversal component and error bars for the normal component. The short axis of the
ellipse follows from error propagation given the uncertainty in the orientation of the frame. The long
axis of the ellipse gives the uncertainty for the estimated transversal displacements. Immediately we
can see that the estimates for the transversal components that are in the NS direction are less reliable
compared to the estimated transversal displacements that are in the east direction, which follows from
the near­polar orbit of Sentinel­1. For some RUMs, transversal displacement vector is situated entirely
in the 2𝜎 confidence error ellipse.

5.2.5. Discussion
The most significant discussion point here is whether we defined the RUMs the optimal way. In our
approach, we divided the subsidence bowl into equal segments. However, to optimally estimate the
displacements corresponding to the deformation phenomenon, it may probably be more optimal to
define the RUMs based on the number of available observations. For locations with many observa­
tions, as is the case in the city of Veendam, the RUMs could be made smaller to map the deformation
phenomenon optimally.

5.3. User of a pre­existing InSARproduct: Coalmining after­effects
near Brunssum

Because of the coal mining history in Limburg, there are some after­effects present in Limburg. There
are three main effects, (i) differential ground heave induced by rising mine water, (ii) potential ground
instability as the failure of a shaft may cause subsidence of a sinkhole, and (iii) at the near­surface
mine voids, the hanging wall can collapse into the mine void [64]. Heitfeld et al. [64] document three
major ground heave zones (based on InSAR data), where one of the zones is situated near Brunssum
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Figure 5.9: Results for strap­down approach at a subsidence bowl which is the result of magnesium extraction at Norg. The
red arrows represent the estimated displacement velocities in the transversal direction (near horizontal), and their uncertainty is
visualized by an ellipse. The blue arrows are the displacement velocities in the normal direction (near vertical), which have an
error bar.

Table 5.6: Acquisition details for Radarsat­2 track 109 and track 302

Radarsat­2 track 109 Radarsat­2 track 302
Acquisition ascending descending
Mean 𝜃 37.3∘ 33.4∘
Mean 𝛼𝑑 259.2∘ 100.9∘
Start December 14, 2016 December 4, 2016
End September 12, 2020 September 26, 2020

along the Feldbiss fault. Within this case study, we have a closer look at the displacements near the
Feldbiss fault in Brunssum caused by the rising mine water, see Fig. 5.10.

5.3.1. The InSAR product
The area around Brunssum ismonitoredwith an ascending and a descending acquisition fromRadarsat­
2, see Tab 5.6 for the acquisition details. The estimated LoS displacement rates projected onto the ver­
tical for both acquisitions are shown in Fig. 5.11. Around the Feldbiss fault, the two acquisitions show
different results for the projected LoS displacements onto the vertical, indicating significant horizontal
displacements.

With the observations from the two acquisitions, the vertical and EW velocities are also estimated
while neglecting the displacements directed into the north, resulting in biased estimates (due to the
decomposition error, see section 2.5 at p. 29). Nevertheless, the (biased) estimated vertical, and EW
displacement rates are presented in Fig. 5.12a and b, respectively. It seems that the area is moving
upward at the southwest side of the fault, while at the northeast side, it seems that the vertical displace­
ments are minimal. When we review the estimated EW displacement rates, the interpretation of the
signal is too ambiguous, especially for a non­export stakeholder. This lack of intelligible information is a
consequence of the choice of the visual representation, rather than a lack of meaningful observations.

5.3.2. Deformation phenomenon and RUMs
From the LoS displacement estimates and the (biased) decomposed estimates, we hypothesize that
the surface moves upward southwest of the Feldbiss fault. We also hypothesize that the horizon­
tal displacements are directed away from the fault, rather than parallel to the fault, since the driving
mechansism is most likely related to the redistribution of subsruface water pressure. There is no in­
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Figure 5.10: Left: the Feldbiss fault runs approximately northwest to southeast through Limburg. Source: [65]. Right: The
alignment of the TLN reference system for displacements around the Feldbiss fault near Brunssum. The longitudinal axis is
parallel to the fault and the transversal direction perpendicular to it. Since the two sides of the fault move away, we can assume
that there are no longitudinal displacements. The normal direction is near vertical.

Figure 5.11: Estimated LoS displacement rates projected onto the vertical for an ascending (a) and descending (b) track over the
area of Brunssum in Limburg, the Netherlands. The feldbiss fault runs trough the midle of the city from approximately north­west
to south­east (data: SkyGeo).
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dication to assume a strike­slip component parallel to the fault direction. Therefore, we can use the
strap­down approach, where the longitudinal axis is defined parallel to the Feldbiss fault. We assume
that there are no longitudinal displacements, see Fig. 5.10.

We assume that the whole area for Brunssum shows the same behavior and that the orientation of the
TLN frame is the same everywhere. Therefore we divide the area into grid cells of 70×70 meter were
we estimate that 𝛽0 = −55∘ and 𝛾0𝑡 = 𝛾0𝑙 = 0∘, and we set 𝜎𝛽 = 10∘ and 𝜎𝛾𝑡 = 𝜎𝛾𝑙 = 5∘ for every grid
cell.

5.3.3. Parameter estimation

Figure 5.12: Estimated decomposed displacement rates for Brunssum. A and B show the biased vertical and EW displacements
rates (estimated while neglecting the NS displacements). A blue value in figure B indicates an eastbound motion and orange
a westbound motion. C and D show the estimated normal and transversal displacement rates estimated with the strap­down
approach. A blue value in C means that there is an upward motion. A blue value in D means that there the displacements in the
transversal direction are positive and an orange value means a negative transversal displacement.

Per grid cell (i.e., RUM), the workflow is as follows:

1. Estimate the mean LoS displacement rate for both the ascending and descending acquisition

2. Estimate 𝜎LoS for both the ascending and descending acquisition by estimating the spread of the
LoS displacement rates around the estimated average value.

3. Compute the mean incidence angles and azimuth angles of the ZDP per acquisition.

4. Solve for the unknown normal and transversal displacement rates using Eqs. (5.2) and (5.5). The
system of equations needs to be linearized.



80 5. Case studies

The estimated transversal and normal displacement rates per grid cell are shown in Fig. 5.12c and d. At
the southwest, we find positive normal displacements, meaning that the area moves upward relatively,
which is in line with expected vertical displacements [66]. At the norteast, the normal displacements
are almost zero but there are significant transversal displacements. Northeast of the fault, we see
positive transversal displacements, while at the southwest of the fault, the transversal displacements
are negative, meaning that the two sides of the fault move away.

Moreover, we find that the largest transversal displacements are ≈ 6 mm/yr. Since the length of the
displacement time­series has a length of almost four years, the total displacement (over four years)
is approximately 2.3 cm. With the width of the area with the largest transversal displacements being
400 m, the results in approximately 23 micro­strain, which is quit significant.

When we compare the decomposed estimates with the vertical and EW displacements rate, we can
state that the strap­down results are much better interpretable. Especially for the estimated horizontal
components. Based on the estimated EW components, the magnitude of the horizontal displacements
seems smaller compared to the estimated horizontal dispacements from the strap­down approach.
Thus, the estimated EW displacements are actually an underestimation of the horizontal displacements
which can be unfavorable.

5.4. The InSAR service provider: Monitoring displacements near
strike­slip faults

Around fault zones, large displacements may occur. This section discusses the optimal viewing geom­
etry to monitor displacements at the North Anatolian Fault (NAF) in Turkey and the San Andreas Fault
(SAF) in North America. Both faults are strike­slip faults, which means that both sides of the fault move
horizontally relative to each other in opposite directions, see Fig. 5.13. Displacements are assumed to
occur only parallel to the fault. When the TLN frame is used, the transversal direction is directed along
the fault and the longitudinal direction perpendicular to the fault. For strike­slip faults, we can therefore
assume that 𝑑𝐿 = 0.

Within this section, we study the problem from the perspective of product providers, such as space­
agencies, who are particularly interested in answering the following question: “What should be the
viewing geometry of a new satellite mission to deliver an InSAR product that has a high added value?”.
Note that we do not limit ourselves to feasible orbits and look angles, as we focus on the optimal
geometry.

Figure 5.13: At a strike­slip fault, both sides of the fault move horizontally in opposite directions. The TLN frame is aligned such
that the transversal direction is along the fault and longitudinal direction is perpendicular to the fault direction, therefore 𝑑𝐿 = 0,
[67].

5.4.1. North Anatolian Fault
The North Anatolian Fault (NAF) is a 1200 km long fault that runs along the northern part of Turkey. It
separates the Eurasian and Anatolian plates. The East Anatolian Fault (EAF) is the separation between
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Table 5.7: Viewing geometry of the available Sentinel­1 acquisitions at the NAF

𝜃 𝛼𝑑
Ascending 1 (A1) 31.8° 259.1°
Ascending 2 (A2) 42.7° 260.4°
Descending 1 (D1) 34.8° 100.6°
Descending 2 (D2) 45.1° 99.3°

the Anatolian plate and the Arabian plate. Due to the motion of the Arabian plate, which is northbound,
the region of Anatolia moves westward relative to Eurasia, resulting in a right­lateral strike­slip fault
motion along the NAF, see Fig. 5.14. Due to the large displacements and potential earthquakes, it is
crucial to monitor the displacements.

Figure 5.14: The NAF seperates the Eurasian and Anatolian plates and runs along the northern part of Turkey. The red dot is
the location under consideration close to Karliova, which moves in the transversal direction. Figure from [68]

Here we focus on a location close to Karliova at a latitude of 39.215°and a longitude of 40.515°, see
Fig. 5.14. At this location, four Sentinel­1 satellite acquisitions are available, see Table 5.7. We are
interested in the optimal viewing geometry to add for this particular case? To answer that question, we
can use the workflow as described in section 4.2.3.

We first need to align the TLN reference frame at the location. Ozener et al. [68] monitored the area
with a GPS campaign and found that the motion near Karliova is −18.00 mm/yr towards the east and
5.45 mm/yr towards the north. We can therefore use 𝛽0 = tan−1(−𝑣𝑛/𝑣𝑒) + 180∘ = 196.8∘. Moreover,
𝛾0𝑡 = 0∘ and 𝛾0𝑙 = 0∘, and we estimate 𝜎𝛽 = 7∘, and 𝜎𝛾𝑡 = 𝜎𝛾𝑙 = 5∘.

We first consider the situation when only ascending acquisition A1 is available and we investigate what
would be the viewing geometry of a new satellite mission such that the results for monitoring displace­
ments around the fault are optimal. We constrained that 𝛼𝑑 ∈ [0∘, 360∘) and 𝜃 ∈ [10∘, 80∘], although
we know that some values within those ranges are not feasible. For both the available ascending ac­
quisition and the new, non­existent mission, we assumed that 𝜎LoS = 1 mm, i.e., the LoS observations
from both missions have a standard deviation of 1 mm.

To estimate the optimal additional viewing geometry, we define potential values for 𝜃 and 𝛼𝑑 and loop
trough all possible combinations. One combination of 𝜃 and 𝛼𝑑 gives the viewing geometry for the
additional mission which we can use to estimate 𝑄�̂� with Eq. (3.21), since the viewing geometry of the
existing geometry is also known. Consequently, we can estimate the uncertainties for �̂�𝑇 and �̂�𝑁 from
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Figure 5.15: Estimated standard deviations for the transversal and normal displacement component when a potential viewing
geometry is combined with ascending acquisition A1. The horizontal axis represents potential values for the azimuth angle of
the ZDP. The vertical axis contains possible incidence angles. The optimal viewing geometry differs per direction that should be
monitored.

the diagonal elements. To estimate 𝑄�̂�, we first need estimates 𝑑𝑇,0 and 𝑑𝑁,0, which we set to 𝑑𝑇,0 = 1
and 𝑑𝑁,0 = 1 since we are only interested in relative improvements for the precision for 𝑑𝑇 and 𝑑𝑁.

In Fig. 5.15 the estimated standard deviations for the transversal and normal displacement components
are visualized for all potential viewing geometries of the new mission in combination with the existing
ascending acquisition A1. The optimal viewing geometry differs per displacement direction. For the
transversal direction, we find that the optimal viewing geometry has incidence angle 𝜃 = 77.2∘ and the
azimuth of the zero­Doppler plane is 𝛼𝑑 = 106.7∘. Obviously, the optimal 𝜃 is large since the more the
radar looks under an angle, the more the LoS is directed into the transversal direction. From Fig. 5.15
it can also be seen that when the viewing geometry of the new acquisition has the same geometry as
A1, the standard deviations for both the transversal and normal direction become large. We find that
the optimal viewing geometry for monitoring the normal direction results in 𝜃 = 17.8∘ and 𝛼𝑑 = 106.7∘,
so the same azimuth angles of the ZDP as for the transversal component but now a smaller incidence
angle. It is interesting to observe that the optimal viewing geometries almost have an azimuth angle of
the ZDP value that corresponds to a near­polar orbiting satellite.

Since multiple acquisitions are available, we can also estimate optimal viewing geometries for combi­
nations of acquisitions. Since we are mainly interested in monitoring displacements in the transversal
direction, we selected the optimal viewing geometry based on this direction, see Table 5.8 for the re­
sults. It can be seen that when also descending acquisitions are available the optimal viewing geometry
has a different 𝛼𝑑 compared to combinations where more ascending acquisitions are available. Actu­
ally, the estimated 𝛼𝑑 corresponds to a left looking satellite in a near­polar orbit. With observations
from A1 and an optimal geometry, the results are better compared to the case where we only have
observations from excising acquisitions A1, A2 and D1. This can be seen by the smaller values for the
standard deviation for the first case as presented in Tab. 5.8.

We also estimated the standard deviation for the transversal direction for the cases with five ascending
acquisitions and five descending acquisitions. We let the azimuth angle of the ZDP for the ascending
acquisitions vary from 259.05∘ to 260.38∘ and with the correlation between 𝜃 and 𝛼𝑑 we can estimate
the corresponding incidence angles, see Appendix B. For the descending acquisition 𝛼𝑑 runs from
100.59∘ to 99.27∘. When those ten acquisitions are combined, we find that the standard deviation for
the transversal direction is 0.58 mm.
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Table 5.8: The optimal viewing geometries estimated for a combination of available acquisitions. The standard deviation for the
transversal component before the optimal viewing geometry and with the optimal viewing geometries are shown.

Available mission(s) standard devi­
ation �̂�𝑇 [mm]

Optimal 𝜃 Optimal 𝛼𝑑 standard devi­
ation �̂�𝑇 (with
optimal) [mm]

A1 – 77.2° 106.7° 0.95
A1 & D1 1.38 80° 287.64° 0.82
A1, A2 & D1 1.11 80° 106.7° 0.74
A1, A2, D1 & D2 0.87 80° 287.6° 0.66

Table 5.9: Viewing geometry of the available acquisitions at the SAF

𝜃 𝛼𝑑
Ascending 3 (A3) 37.4° 259.7°
Descending 3 (D3) 37.9° 100.2°

5.4.2. San Andreas Fault
For the San Andreas Fault (SAF), it is possible to do the same analysis. The major difference with the
NAF is the orientation of the fault and location on Earth. For the analysis, we study the area around
Point Reyes, just north of San Fransico, see Fig. 5.16. The latitudinal coordinate is 38.06°, and the
longitudinal coordinate is−122.80°. The SAF, like the NAF, is a right­lateral strike­slip fault where at the
west side of the SAF, the relative motion of the Pacific plate is northbound and at the east, the relative
motion of the North American plate is southbound.

With DRaMA [19], we can compute the viewing geometry of the available Sentinel­1 acquisitions at
Point Reyes. Two acquisitions are available: one ascending (A3) and one descending (D3), see Ta­
ble 5.9. For different (combinations of) acquisitions, we investigate what what would be the viewing

Figure 5.16: The SAF is a strike­slip fault. At the left of the SAF, the Pacific Plate has a relative northward motion, where at the
right of the SAF the North American Plate as a relative southward motion. After [69]

geometry of a new satellite mission such that the results for monitoring displacements around the fault
are optimal. First, we estimate the optimal viewing geometry of a new mission when we only have
one ascending acquisition (A3). Again, the orientation of the TLN frame is needed. At point Reyes,
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Figure 5.17: Estimated standard deviations for the transversal and normal displacement component when a potential viewing
geometry is combined with ascending acquisition A3. The optimal viewing geometry differs per direction that should bemonitored.

the fault runs from north­northwest to south­southeast, and therefore, we estimate 𝛽0 = 65∘. Again
𝛾0𝑡 = 𝛾0𝑙 = 0∘ and 𝜎𝛽 = 7∘ and 𝜎𝛾𝑡 = 𝜎𝛾𝑙 = 5∘. The optimal geometry is estimated from the geometry that
provides the smallest standard deviation for the unknown displacement components. We assume that
𝜎LoS for both the available acquisitions and the estimated optimal acquisitions equals 1 mm. We set
𝑑𝑇,0 = 𝑑𝑁,0 = 1 mm. The results for the standard deviations for the transversal and normal component
for all potential viewing geometries are presented in Fig. 5.17.

As for the NAF, we also find for the SAF that the optimal incidence angle 𝜃 for monitoring the transversal
component is large (80°). The optimal azimuth of the zero­Doppler plane 𝛼𝑑 is in the direction of the
SAF and is 155°. This corresponds to a satellite that has an inclination of approximately 25°. From
Fig. 5.17 it can further be seen that a satellite that has 𝛼𝑑 ≈ 75∘ and 𝛼𝑑 ≈ 245∘ provides bad results,
those angles correspond to right­looking near­polar orbiting satellites. For the normal direction, we
again find that the optimal incidence angle is small: 10°.

We can also estimate the optimal viewing geometry of a new mission when there are aleardy multiple
acquisitions available, see Table 5.10 for the estimated optimal viewing geometry that should be added.
It can be seen that there is a major improvement when going from two existing acquisitions (A3 and D3)
to a situation where there is only one existing acquisition and a new mission. The standard deviation
for the transversal direction is more than halved.

We also study the imaginary case where there were already observations from five ascending acqui­
sitions (from a near­polar orbiting satellite) and five descending observations. We varied the azimuth
angles of the ZDP for the ascending acquisitions from 259.1°to 260.4°, and we estimated the cor­
responding incidence angles. The azimuth angles of the ZDP for the descending acquisitions were
ranging from 99.7°to 100.6°. With those ten acquisitions, the standard deviation for the transversal
component was 0.6 mm. So there is an improvement in the standard deviation compared to the case
where we have A3, D3, and optimal viewing geometry.

Also, for monitoring displacements in the transversal direction, the SAF orientation is worse than the
orientation of the NAF. For the SAF, the transversal direction is directed towards the north, where it is
eastward for the NAF. Therefore, we see that when two Sentinel­1 acquisitions are combined, we find
a value for the standard deviation for the NAF of 1.38 mm (based on A1 and D1). For the SAF, we find
𝜎𝑇 = 2.4 mm (based on A3 and D3), which is much worse. However, when we combine one ascending
acquisition with the optimal viewing geometry for both cases, we find approximately the same values
for the standard deviation, 0.95 mm, and 1.0 mm for the NAF and SAF, respectively. So we find a more
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Table 5.10: The optimal viewing geometries estimated for a combination of available acquisitions for the SAF.

Available mission(s) standard devi­
ation �̂�𝑇 [mm]

Optimal 𝜃 Optimal 𝛼𝑑 standard devi­
ation �̂�𝑇 (with
optimal) [mm]

A3 – 80° 155.6° 1.0
D3 – 80° 334.7° 0.97
A3 & D3 2.4 80° 334.7° 0.95

Table 5.11: The optimal viewing geometries estimated for a combination of available acquisitions for a strike­slip fault running
perfectly north south.

Available mission(s) standard devi­
ation �̂�𝑇 [mm]

Optimal 𝜃 Optimal 𝛼𝑑 standard devi­
ation �̂�𝑇 (with
optimal) [mm]

A3 – 80° 0°or 360° 1.1
D3 – 80° 0°or 360° 1.1
A3 & D3 1550.5 80° 334.7° 1
3 asc & 3 desc 0.9 – – –
5 asc & 5 desc 0.62 – – –

significant improvement for the SAF.

5.4.3. More observations vs optimal viewing geometry
To bring a new mission into operation, one may need to opt for either putting more satellites into near­
polar orbit or putting several satellites into other special orbits. An argument for the first option is
that the complete Earth can be studied with a near­polar orbiting satellite. However, we have seen
that acquisitions in special orbits can significantly improve the precision of the estimated parameters.
Moreover, there is no single best outcome to the above dilemma. The preferred option depends on the
case which we will show with an example.

For a strike­slip fault that runs north­south, the transversal direction is also north­south directed. Thus
for the TLN frame we have 𝛽 = 90∘ and 𝛾𝑡 = 𝛾𝑙 = 0∘. If we further assume that the same acquisitions
as for the SAF are available, see Table 5.9, and that 𝜎𝛽 = 7∘ and 𝜎𝛾𝑡 = 𝜎𝛾𝑙 = 5∘ we can again estimate
optimal viewing geometries.

When we combine acquisition A3 with D3, this results in a high standard deviation for the transversal
displacement component. We find 𝜎𝑇 = 1550.5 mm. However, when we only have acquisition A3, and
we look for the optimal viewing geometry, we find 𝜃 = 80∘ and 𝛼𝑑 = 0∘ or 𝛼𝑑 = 360∘ resulting in 𝜎𝑇 =
1.1 mm. We see that we have a significant improvement with the optimal viewing geometry, whereas
we have the same number of observations as with A3 and D3 only, see Table 5.11.

We can also look at the optimal viewing geometry that should be added when we have observations
from three ascending and three descending acquisitions, with the same range for the azimuth angle
of the ZDP as for the NAF. This results in a standard deviation of 0.9 mm, so in the same order of
magnitude as A3, D3, and an optimal geometry. When we have five ascending and five descending
acquisitions, the precision is improved to 0.62 mm.

When we compare the result to the NAF (where the transversal direction is almost in the EW direction),
we can state that it depends on the situation whether it is preferred to add an optimal satellite or that
the satellites available are already sufficient. For the NAF, the current viewing geometries are already
in the right direction. When the results should be improved, it is helpful to add more observations by
adding more satellites in the same orbit.

When deformation phenomena with the transversal direction directed NS are monitored, it is best to
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add one satellite in a particular optimal orbit. We have seen that adding one satellite in an optimal orbit
provides the same results as adding two ascending and two descending acquisitions.

5.4.4. Discussion
To estimate the optimal viewing geometries, we look for the viewing geometry that results in the smallest
value for the standard deviation for the transversal and normal displacement components. To estimate
the standard deviations we use Eq. (3.21), where 𝑄𝑦𝑦 is needed, which contains 𝜎2𝐿𝑜𝑆, the variances of
the LoS observations. We set 𝜎2𝐿𝑜𝑆 for all acquisitions to 1. Obviously, those values are, not real values
but estimated standard deviations. However, when we want to know the optimal viewing geometry, this
is fine since we are only interested in the geometry that results in the smallest standard deviation for
the transversal and normal displacement components and not in the absolute values.

To be able to compute the standard deviations we also need to provide initial estimates for the displace­
ments since the standard deviations become larger for larger displacements, see section 3.5. Because
both transversal and normal displacements may occur, we set both values to 1. Again, one could argue
that these values are just some estimates and not based on any foreknowledge. However, we are not
interested in the real standard deviation but in relative improvements based on varying geometries. So
as long as the estimates remain the same during computations, it is a good approach.

We considered an extensive range of viewing geometries during the computations, and we ignored
whether the viewing geometries were reasonable. A lot of the viewing geometries are impossible, e.g.,
all geometries with 𝜃 = 80∘. However, it is still possible to determine the optimal viewing geometry
within the reasonable ranges with the figures we created.



6
Conclusions

This research aimed to provide a full and complete description of the decomposition problem and to
analyze the consequences of particular choices. Moreover, the aim was to come with clear recommen­
dation on how the underdetermined nature of the estimation problem should be handled. Furthermore,
we wanted to develop a new approach that the provides physically more relevant estimates. The main
research question to be answered was formulated as:

Can a better geometrical insight lead to a more optimal way of computing and communicating InSAR
results?

We argue that this question can be answered affirmative. We analyzed the decomposition problem and
formulated explicit conditions that need to be satisfied. Comparing those conditions with approaches
typically encountered in literature, one main result is that many approaches are either incorrect or lack
proper semantics, resulting in biased displacement estimates. We are well aware that this is a strict
and firmly stand. However, we think that this helps in opening up the discussion on how results should
be communicated.

Additionally, we found that the default displacement estimates in the ENU system are often not tuned
to the needs of an InSAR product end­user, and are therefore sub­optimal. Therefore, we propose a
new systematic approach that gives physically more relevant estimates and considers all uncertainties
properly. We also developed a new taxonomy to label the different approaches that can help in evalu­
ating InSAR results and InSAR papers. We argue that the next step lies with the InSAR community, to
be aware of potential fallacious approaches. This will help the InSAR community to develop better and
more informative information products and improve communication of InSAR results. In the following,
we discuss the main conclusions of the research in more detail.

An analysis of the inverse problem
We found that uniquely estimating the three displacement components would require at least three sets
of STCI LoS observations stemming from the same RUM. While fundamentally trivial, this condition,
in particular explicitly expressing the need for STCI observations under an assumed region of uniform
motion, is often not satisfied in reported InSAR studies. More importantly, the system of equations
needs to have a full rank coefficient matrix, i.e., the different observations need to have sufficient angular
diversity.

However, since almost all SAR satellites are near­polar orbiting satellites, there is limited angular di­
versity, and the sensitivity for the north­south displacement component is low, resulting in an ill­posed
problem. Moreover, in most practical situations, two sets of STCI LoS observations (one ascending
and one descending) are available at most, resulting in an underdetermined system with an infinite
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amount of possible solutions.

With two observations, from different viewing geometries, there are two solution planes whose inter­
section is the null line. The direction of this line is given by azimuth angle 𝜙 and elevation angle 𝜁 and
depends on the viewing geometry of the two LoS observations, e.g., the incidence angles and azimuth
angles of the zero­Doppler plane (ZDP). An essential finding in this study is that it is not the heading
angle of the satellite, 𝛼ℎ, that is important, but it is the azimuth angle of the ZDP 𝛼𝑑 that should be con­
sidered due to the convergence of the Earth meridians. In other words, the viewing geometry needs
to be considered from the perspective of the target on the ground, rather than from the spacecraft per­
spective. Considering 𝛼𝑑 instead of 𝛼ℎ also changes the projector of the forward model compared to
what we commonly observe in InSAR literature.

In common literature, we often read that near­polar orbiting satellites are insensitive for displacements
in the north direction due to the symmetric headings of the satellites. However, this statement is only
valid when the null line is orthogonal to the plane spanned by the east and up direction which is (almost)
never the case, see Fig. 2.17. First, asymmetric azimuth angles of the ZDP of the two observations
result in 𝜙 ≠ 0∘. Nevertheless, when the azimuth angles of the ZDP are symmetrical, the difference in
incidence angles also results in 𝜙 ≠ 0∘. Moreover, we fount that 𝜁 is never equal to 0°and therefore,
the satellites are always sensitive for displacements in the north direction and neglecting the north
component leads to biased estimates for the east and up direction.

When 𝑑𝑛 is removed from the inverse problem, the orientation of the null line also determines whether
both the east and up estimates are biased. When 𝜙 = 0∘, only the up component is biased, and it is
possible to solve unambiguously for the east component. We have seen that when observations from
an ascending and a descending acquisition are combined, the azimuth angles of the ZDP are often not
symmetrical relative to the north since 𝛼𝑑 is range dependent. Therefore we would expect that 𝜙 ≠ 0∘.
Yet, for Sentinel­1, we have found a strong correlation between the incidence angle and 𝛼𝑑, which is
latitude dependent, see Figs. 2.10 and 2.11. This correlation results in 𝜙 = 0∘. And therefore, for
Sentinel­1 at the northern hemisphere, it is possible to give a proper (unbiased) estimate for the east
component with only two LoS observations (one ascending and one descending). Only the estimate
for the up component will be biased.

Approaches in common literature
Reviewing InSAR literature, we encounter different approaches to address the underdetermination
problem, yet often with either mathematical or semantic flaws. We conclude that errors are made
throughout the entire InSAR community and not only by people with limited InSAR knowledge, as some
authors argue. The impact of the errors reaches from quantitative errors, mismatches in comparative
studies with other geodetic techniques, to a lack of trust in the technology by end­users.

A recurring problem is the lack of distinction between a vector ‘projection’ and a vector ‘decomposi­
tion’. In InSAR, we often need to use both subsequently. First, the attribution error occurs when the
LoS observation is attributed completely to the vertical, and the results are subsequently presented as
vertical displacements. Then we found the projection error, where the LoS displacement estimations
are projected onto the vertical but subsequently presented as ‘vertical displacements’. The decom­
position error occurs when the null space in the 3D solution space is ignored, and only two viewing
geometries are used in the decomposition. In such cases, it is assumed that the lack of sensitivity
in the north­south component for near­polar orbits is equivalent to the absence of a north­south com­
ponent by simply removing the component from the decomposition equation and only estimating the
east and up components. The final error type is the case with flawed assumptions. Estimating 3D dis­
placement vectors observed by one or two viewing geometries can only be solved by adding additional
information in the form of assumptions, i.e., conditions. These need to be explicitly stated, both in the
documentation and in the final products. Yet, in many cases, these assumptions are either lacking,
misstated, incorrect, or implausible.

From the fallacious approaches mentioned above, we conclude that the way InSAR results are com­
puted and communicated is often too loose and evenwrong, resulting inmisleading results. Often, there
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is a lack of insight into the consequences of particular choices in terms of accuracy and precision. We
argue that the InSAR community should refrain from ‘hand­waving’ argumentation when mentioning
assumptions or final results, and that there is a need to streamline how the community communicates
InSAR results. The developed taxonomy may help in evaluating InSAR results and publications.

In some cases, the fallacious approaches can be corrected by the use of proper semantics. E.g.,
considering the projection error it would be sufficient to present the results as ‘displacement projected
onto the vertical’ instead of ‘vertical displacements’, see Fig. 2.21 at p. 31. The same holds for the
attribution error. Approaches with a decomposition error are simply incorrect and cannot be solved with
proper semantics. An argument that is often used when discussing the sensitivity of the north­south
component and removing it from the decomposition equations is that the sensitivity for the north­south
component is only valid for exceptional cases with large north­south displacements. However, we argue
that it is exactly the other way around: one should describe the decomposition problem in a generic
sense, both for small and large displacements. Initially, the stochastic model plays no role, as only the
geometry of the observations should be taken into account, which is captured in the 𝐴matrix. Once the
generic model is known, it is possible to deduce particular cases, e.g., cases with small displacements
or very high or low observation precision. Thus not the other way around, where authors start with
the exceptional (particular) case. They state that the precision of the observations is low or that the
displacements are small, and from there, they try to deduce the generic model.

Added to this, a decomposition in up and east direction is often not tuned to the needs of the end­user
of the InSAR product and results are difficult to interpret. For example, often there is no particular
physical relevance of reporting an ‘east­component’. Moreover, the results give no indication of the
quality of the estimated parameters, which makes interpretation difficult.

Strap­down approach
As the decomposition error cannot be solved with proper semantics, the only solution would be to add
additional information in the form of assumptions. We argue that working with a local, strap­down, right­
handed Cartesian coordinate system fixed to the deformation phenomenon, with transversal, longitudi­
nal and normal components is a straightforward and physics­based solution to the underdetermination
problem. For many practical cases, such as line­infrastructure, landslides, or subsidence bowls, anal­
ysis of the main driving forces supports the assumption that significant deformations in the longitudinal
direction are unlikely, effectively reducing the number of unknowns in the estimation.

However, this approach requires that the orientation of the TLN frame is well­chosen. Otherwise, the
displacement estimates are still biased. We found that when the orientation of the frame is added to the
mathematical model as an unknown, the uncertainty of the frame alignment can be taken into account.
Therefore, it also affects the precision of the final estimates for the displacement components. We
concluded that the frame’s orientation uncertainty plays a more significant role for larger displacements.

Using the strap­down approach gives physically more relevant estimates and it results in more reli­
able estimates since it properly includes all uncertainties. From the results from a salt mining case in
the Netherlands we further conclude that the conventional way of communicating (PS)­InSAR results
by means of a ‘dot distribution map’ is sub­optimal when considering the quality of the estimates, in
particular for products with a decomposition in two (or three) orthogonal directions. For such InSAR
information products, ‘vector arrow maps’, or traditional geodetic vector­based visualizations, including
error ellipses are a viable and more optimal alternative in terms of information content.

InSAR perspectives
Discussions on InSAR studies, feasibility, and results suffer from differences in perspective. InSAR
studies are complex studies in which different persons have different questions. There are stakeholders
who want to know what InSAR can bring them for their particular case study, or users of existing InSAR
products interested in what they can get from that product, and service providers and space agencies
who want to design missions to be used optimally.

Thus, we defined three InSAR perspectives, all with their own parameters of interest. These different
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perspectives require a unique sequence of operations to answer their typically relevant questions. They
have in common that the question that is asked needs to be very clear. In other words, what is it exactly
that the stakeholder is asking? Or, what requirements should the final product meet? Only then it is
possible to make correct assumptions.

For every perspective, we developed a systematic sequence of operations as described in Chapter 4.
From the results in Chapter 5, it is demonstrated that those methods worked to give a satisfying answer
to the related questions. Moreover, by systematically following the methods described in Chapter 4, it
is clear to everyone what is done and how the results should be interpreted.

6.1. Recommendations
Based on the results of this thesis, we suggest the following:

• The InSAR community should refrain from ‘hand­waving’ assumptions and descriptions while
estimating the 3D displacement vector.

• The generic model, which requires three sets of STCI LoS observations available over the same
RUM that provides a full rank system, should be used as a starting point in InSAR studies, and
should be stated explicitly together with the quantitative results. From there, the particular cases
can be solved (and not the other way around).

• The InSAR community should use proper semantics while presenting InSAR results both in writ­
ten text and papers as in figures, maps, and tables. It is further important that authors remain
consistent.

• We developed a taxonomy to label different approaches. We recommend the adoption of this
taxonomy since it helps in evaluating InSAR results and publications.

• For deformation phenomena where significant displacements into the longitudinal direction are
unlikely, we recommend the adoption of the strap­down approach since it provides physically
more meaningful results compared to the approaches we see in current literature.

• We recommend to present InSAR results using the traditional geodetic vector­based visualiza­
tions with error­ellipses since it conveys more information than the standard dot­distribution maps
used in the InSAR community.

6.2. Future directions
The results from this study lead to several directions for future studies.

• One of our main findings is that it is possible to give an unbiased estimate for the east dis­
placement for large parts of the Northern Hemisphere with only two InSAR observations from
Sentinel­1. This statement is based on viewing geometries for Sentinel­1 which are estimated
with DRaMA [19]. It would be relevant to investigate whether the statements still holds for real
viewing geometries. Moreover, it is important to investigate whether the statement also holds for
satellite missions other than Sentinel­1 (e.g. TerraSAR­X or RADARSAT).

• Within this study we assumed that the LoS direction could be described by the incidence angle
𝜃 and azimuth of the zero­Doppler plane 𝛼𝑑. However, the zero­Doppler plane is not a perfectly
flat plane but can be curved. This should be further investigated.

• Not for all missions the LoS direction can be described by 𝜃 and 𝛼𝑑, since not for all missions
the observations are taken at zero­Doppler. It is important to investigate the error made when
𝛼𝑑 is considered instead of the real azimuth of the plane spanned by the LoS unit vector and the
gravity vector pointing from the Earth towards the satellite.
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• Unfortunately, the strap­down approach is not a solution to the underdetermined problem for
cases where the main deformation mechanism is unknown, as is the case for, e.g., nationwide
InSAR displacement products, see e.g. [5]. For such problems the Harmony Earth Explorer 10
mission could potentially be a good solution. We recommend to investigate whether Harmony
could bring a solution for the underdetermined problem in such cases.
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A
The signs of the projector in the

decomposition formula

The positive LoS displacement 𝑑LoS should be seen from the scatterers perspective, i.e. a scatterer
moving towards the radar is moving in a positive LoS direction. We can now deduce the signs of
the projector in Eq. (2.7), (page 16) in the ENU reference system. The terminology that we use is
as follows: 𝑑LoS, 𝑑east, 𝑑north and 𝑑up are scalar displacement values in the LoS, east, north and up
direction respectively, and uLoS, ueast, unorth and uup are unit vectors in the LoS, east, north and up
direction respectively where

uLoS = [
sin𝜃 sin𝛼𝑑
sin𝜃 cos𝛼𝑑

cos𝜃
] , ueast = [

1
0
0
] , unorth = [

0
1
0
] , uup = [

0
0
1
] . (A.1)

Given a purely vertical displacement signal 𝑑up, the blue displacement vector in Fig. A.1 (which is
equals uup𝑑up), the orthogonal projection of 𝑑up onto the LoS direction is calculated with

𝑑LoS = cos(𝜃) 𝑑up. (A.2)

Figure A.1: The orthogonal projection of a purely vertical displacement signal onto the Los direction for an ascending acquisition.
The striped orange line represents the null space.
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In Figs. A.2 and A.3, the projection of a displacement purely in the eastern and northern direction,
respectively, can be seen. However, to deduce the components for the projector, first the projection

Figure A.2: The projection of displacement signal 𝑑east, which only has a component in the east direction, onto the Los direction
for an ascending acquisition.

Figure A.3: The projection of displacement signal 𝑑north, which only has a component in the northern direction, onto the Los
direction for an ascending acquisition.

onto the zero­Doppler plane, 𝑑LoS, ZDP should be computed. The projection of the east component onto
𝑑LoS,ZDP is computed with

𝑑LoS,ZDP = − sin(𝑎) 𝑑east.
With 𝑎 = 𝛼𝑑 − 𝜋 (see Fig. A.4 for the top­view sketch) and sin(𝛼𝑑 − 𝜋) = − sin(𝛼𝑑) it is possible to
write

𝑑LoS,ZDP = − sin(𝛼𝑑 − 𝜋) 𝑑east = sin(𝛼𝑑) 𝑑east. (A.3)

For the projection of the north component onto 𝑑LoS,ZDP we find (see Fig. A.4)

𝑑LoS,ZDP = − cos(𝑎) 𝑑north.

With 𝑎 = 𝛼𝑑 − 𝜋 and cos(𝛼𝑑 − 𝜋) = − cos(𝛼𝑑) it is possible to write

𝑑LoS,ZDP = − cos(𝛼𝑑 − 𝜋) 𝑑north = cos(𝛼𝑑) 𝑑north.
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Figure A.4: The east (left) and north (right) displacement components, first need to be projected onto the Zero­Doppler plane,
𝑑LoS,𝑔.

Once the projection of the displacement components onto the zero­Doppler plane is known, we can
compute the orthogonal projection of 𝑑LoS,ZDP onto the LoS vector with

𝑑LoS = sin(𝜃) 𝑑LoS,ZDP,

see also Fig. A.5. So in the end, we find for the projection of a displacement in the east direction onto
the LoS

𝑑LoS = sin(𝜃) sin(𝛼𝑑) 𝑑east, (A.4)

and for a displacement in the north direction we find

𝑑LoS = sin(𝜃) cos(𝛼𝑑) 𝑑north, (A.5)

With Eqs. (A.2), (A.4) and (A.5) we have shown that, when looking from a scatterer’s perspective, the
signs of the projector are indeed [+,+,+] and that the LoS vector decomposition can be written as:

𝑑LoS = [sin(𝜃) sin(𝛼𝑑) sin(𝜃) cos(𝛼𝑑) cos(𝜃)] [
𝑑𝑒
𝑑𝑛
𝑑𝑢
] .
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Figure A.5: Help triangles to compute the projections of 𝑑east and 𝑑north onto the ground component of the LoS vector 𝑑LoS, g



B
Sentinel­1 Viewing Geometry

B.1. Estimating the Sentinel­1 viewing geometry
The Delft Radar Modelling and performance Analysis (DRaMA) software [19] can be used to estimate
the viewing geometries of the available Sentinel­1 acquisitions for locations on Earth. It gives an es­
timate for the incidence angle and the azimuth of the zero­Doppler plane (ZDP) at the position of the
target of the available acquisitions. Here we discuss how the two angles are estimated.

First, the orbits of Sentinel­1 are estimated from the orbital parameters at a particular epoch (moment in
time), extracted from the two­line­elements (TLE) file. The orbital parameters include i) the inclination,
ii) the right ascension of the ascending node, iii) the argument of perigee, iv) the mean anomaly, and v)
the mean motion [70]. For the particular epoch, the parameters are stored, and from there, the orbit is
estimated for one orbital period using a J2 propagator. DRaMA estimates how the orbital parameters
would change from the original epoch to the new ones, using the J2 perturbation algorithm of Vallado
et al.[71] and Curtis et al.[72]. As the last step, the orbital parameters are converted into state vectors.

Then the viewing geometry can be estimated. From the state vectors, the LoS direction at the satel­
lite in a satellite­centered coordinate system, is computed using state vectors and the fact that the
observations are taken at zero­Doppler.

The incidence angle
1. With the LoS direction at the satellite, the position of the satellite, and assuming a WGS84 Earth,

the point of intersection between the LoS direction and the location on Earth, which we call point
𝑃, is found.

2. At point 𝑃, compute the surface normal unit vector using the vector gradient of expression for an
ellipsoid

3. Assuming a unit LoS vector, find the component of the LoS along the normal to the surface at 𝑃.

4. The arccosine of the result of step 3 is the incidence angle.

Azimuth of the ZDP
1. Define 𝑧 = [0, 0, 1]. In an Earth­centered Earth­fixed (ECEF) system, 𝑧 points from the center of

the Earth to the north pole.

2. Find the rejection of 𝑧 on the surface normal, which we call 𝑄. 𝑄 now is tangential to the Earth’s
surface at point 𝑃. Normalize 𝑄 to make it a unit vector, and it points north.
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3. Find the unit vector tangential to the Earth surface pointing in the east direction, which we call 𝑅.
𝑅 is computed by the cross product of 𝑄 with the surface normal.

4. Find the component of the LoS that is normal to the surface normal, in the same way as step 2
(this component is tangential to the surface).

5. Project the LoS tangent component along with Q and R.

6. The arctangent of the projected LoS on 𝑄 and 𝑅 is the azimuth of the ZDP at the target, towards
the satellite.

B.2. Available observations
Due to the convergence of the meridians, different tracks overlap at higher latitudes. As a result, the
number of observations per cycle per location on Earth differs, see Fig. B.1. For locations on Earth
observed by multiple acquisitions, the geometric configuration of the observations differs since the
range distance between the different satellite positions and the target is unique. Consequently, the
incidence angles differ, but the azimuth of the ZDP varies as well.

Figure B.1: Number of observations per cycle per location on Earth. Due to the convergence of the meridians, different tracks
overlap at higher and lower latitudes. Around the equator, at most one ascending and one descending acquisition are available.
Whereas at high latitudes some locations are observed by up to eight different ascending and descending acquisitions.

B.3. Ascending Acquisitions
With DRaMA, we computed the viewing geometries of all available ascending acquisitions for all loca­
tions on Earth. In Fig. B.2 we show per grid point (a location on Earth) the minimum and maximum
available incidence angle 𝜃 (in the upper two figures) and the minimum and maximum azimuth of the
ZDP 𝛼𝑑 (in the lower two figures). It can be seen that around the equator—where often at most one
ascending observation is available—the minimum and maximum incidence angle ranges from 30° to
45 °, which is in line with the near and far range incidence angles for Sentinel­1. The maximum avail­
able incidence angle at the poles is often around 45° and the minimum value is around 30° since often
multiple observations are available.

For the minimum and maximum 𝛼𝑑, we find values around 260° for latitudes between −35° and +55°.
For other latitudes, we find that 𝛼𝑑 is lower. For an ascending satellite, seen from the Earth’s surface,
the heading of the satellite 𝛼ℎ shifts more and more to the west as the satellite heads for the poles,
see Fig. 2.9. Therefore, 𝛼𝑑 shifts more north and becomes smaller compared to 𝛼𝑑 around the equator
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Figure B.2: The upper two plots show the maximum (left) and minimum (right) incidence angle of all ascending acquisitions that
are available over a location on Earth. Around the equator, the incidence angle varies from 30° to 45°, which is in line with the
near and far range incidence angle of Sentinel­1. The lower two plots show the maximum (left) and minimum (right) available
azimuth angles of the ZDP’s. Closer to the poles, 𝛼𝑑 decreases.

(at the poles we find 𝛼𝑑 < 260∘). As already mentioned, the incidence angle varies with range. But
from Fig. B.3 it can be seen that also 𝛼𝑑 varies with range. In blue, the position of the satellite is given,
imaging two targets—indicated in red—at different ranges. As the range to the target increases, due
to the meridian convergence the azimuth of the ZDP, 𝛼𝑑 increases. Thus, for ascending acquisitions,
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𝛼𝑑,nr < 𝛼𝑑,fr where 𝛼𝑑,nr is the azimuth of the ZDP at the near range and 𝛼𝑑,fr the azimuth of the ZDP
at the far range. This implies that there is a positive correlation between the incidence angle and the
azimuth of the ZDP.

Figure B.3: Range dependency of the azimuth of the ZDP. In blue, the position and heading of the satellite. In red, two targets
on the ground at different ranges. For the near range (nr), the north meridians at the Earth surface have a different orientation
then the north meridians at the far range (fr). Therefore, for ascending acquisitions, 𝛼𝑑,nr < 𝛼𝑑,fr. As the incidence angle also
varies with range, this results in a positive correlation between 𝛼𝑑 and 𝜃.

B.4. Descending Acquisitions
The results for the descending acquisitions are shown in Fig. B.4. Again, we show the minimum and
maximum available incidence angle 𝜃 and azimuth of the ZDP 𝛼𝑑. It can be seen that the minimum
and maximum 𝛼𝑑 is around 110°, latitudes between −35° and +55°. It increases for other latitudes and
can reach values of 120°.

For a descending satellite at the poles, just after the ascending acquisition changes into the descending
acquisition, the heading 𝛼ℎ of the satellite is almost westward. As a result, 𝛼ℎ at the poles is larger
than 𝛼ℎ at the equator which also holds for 𝛼𝑑. Further, 𝛼𝑑 varies also for descending acquisitions with
range, see Fig. B.5. As the range to the target increases, due to the meridian convergence the azimuth
of the ZDP, 𝛼𝑑 decreases. Thus, for descending acquisitions, 𝛼𝑑,nr > 𝛼𝑑,fr. This implies that there is a
negative correlation between the incidence angle and the azimuth of the ZDP.
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Figure B.4: The upper two plots show the maximum (left) and minimum (right) incidence angle of all descending acquisitions that
are available over a location on Earth. Around the equator, the incidence angle varies from 30° to 45°, which is in line with the
near and far range incidence angle of Sentinel­1. The lower two plots show the maximum (left) and minimum (right) available
azimuth angles of the ZDP’s. Closer to the poles, 𝛼𝑑 increases.
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Figure B.5: Range dependency of the azimuth of the ZDP. In blue, the position and heading of the satellite. In red, two targets
on the ground at different ranges. For the near range (nr), the north meridians at the Earth surface have a different orientation
then the north meridians at the far range (fr). Therefore, for descending acquisitions, 𝛼𝑑,nr > 𝛼𝑑,fr. As the incidence angle also
varies with range, this results in a negative correlation between 𝛼𝑑 and 𝜃.
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B.5. Correlation between the incidence angle and azimuth of the
ZDP

We tested whether these correlations were also visible in the viewing geometry from Sentinel that
we computed with DRaMA. In Fig. B.6 the correlation between 𝜃 and 𝛼𝑑 for all available ascending
(left) and descending (right) acquisitions for a location at high latitude can be seen. There is a clear
positive (linear) relation for the ascending acquisitions and a negative (linear) relation for the descending
acquisitions. These relations are described by

𝜃asc = 𝑐𝑎1𝛼𝑑,asc + 𝑐𝑎2 (B.1)

𝜃desc = 𝑐𝑑1𝛼𝑑,desc + 𝑐𝑑2 (B.2)
where 𝑐𝑎1 and 𝑐𝑎2 are some constants related to the ascending acquisitions and 𝑐𝑑1 and 𝑐𝑑2 are the
constants related to the descending acquisitions.

Figure B.6: In the left figure the positive correlation between 𝛼𝑑 and 𝜃 for ascending acquisitions is shown. For descending
acquisitions there is a negative correlation

For locations on Earth between −75° and +85° latitude and between 30° and 50° longitude we es­
timated the constants 𝑐𝑎1, 𝑐𝑎2, 𝑐𝑑1 and 𝑐𝑑2. The results can be seen in Fig. B.7. There is indeed a
positive correlation between 𝜃 and 𝛼𝑑 for ascending acquisitions in the northern hemisphere and a
negative correlation for descending acquisitions. It can further be seen that 𝑐𝑎1 and 𝑐𝑑1 change sign
when going from the northern to the southern hemisphere. Near the equator, we expect to see enor­
mous values for 𝑐𝑎1 and 𝑐𝑑1 since the incidence angles vary from near to far range. In contrast, the
azimuths of the ZDP’s only have a minor difference since the meridian convergence is minimal.

Figure B.7: For locations on Earth where multiple acquisitions were available, we computed the linear relation between the
incidence angles and azimuth values of the ZDP’s for both the ascending, (a) and (b) and the descending (c) and (d) acquisitions.
The figures show the computed constants in Eqs. (2.4) and (2.5)

There is also a clear relation between the different constants 𝑐𝑎1 and 𝑐𝑑1 and 𝑐𝑎2 and 𝑐𝑑2, see Fig. B.8
which is a scatter plot of all computed constants. So we plotted 𝑐𝑎1 versus 𝑐𝑑1 and 𝑐𝑎2 versus 𝑐𝑑2. The
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Table B.1: 𝑎 and 𝑏 values for the tangential relation between the latitudinal coordinate and constants 𝑐𝑎1, 𝑐𝑑1, 𝑐𝑎2 or 𝑐𝑑2
computed for the northern and southern hemisphere.

𝑐𝑎1 𝑐𝑑1 𝑐𝑎2 𝑐𝑑2
𝑎 (lat > 5∘, North) 8.09 ­8.15 ­2091.26 826.45
𝑏 (lat > 5∘, North) ­1.71 1.78 477.91 ­144.39
𝑎 (lat < 5∘, South) 4.70 ­4.71 ­1217.37 1.10
𝑏 (lat < 5∘, South) ­1.09 1.10 275.44 ­115.63

high correlation between the constants shows that the viewing geometry of the ascending acquisitions
is correlated to the viewing geometry of the descending acquisitions. Furthermore, it can be seen that
𝑐𝑎1 = −𝑐𝑑1

Figure B.8: In the left figure the correlation between 𝑐𝑎1 and 𝑐𝑑1 is shown, where we see that 𝑐𝑎1 = −𝑐𝑑1. The right figure shows
the correlation between 𝑐𝑎2 and 𝑐𝑑2

Additionally, there is a correlation between the latitude and the value of the different constants. First
we computed the mean value for the four constants per latitude, afterwards it was possible to create a
scatter plot for the four constants versus the latitude, see Fig. B.9. It can be seen that there is a clear
relation between the constants and the latitudinal coordinate which we approximate with the following
relation

𝑐 = 𝑎
tan(Φ) + 𝑏, (B.3)

where 𝑐 is the constant that we want to calculate (so 𝑐𝑎1, 𝑐𝑑1, 𝑐𝑎2 or 𝑐𝑑2) andΦ the latitudinal coordinate.
𝑎 and 𝑏 are constants that are unique for every constant (𝑐𝑎1, 𝑐𝑑1, 𝑐𝑎2 or 𝑐𝑑2) that we want to estimate.
In Fig. B.8, the red striped lines represent the fitted functions. The values that we found for 𝑎 and 𝑏 for
the different constants for the northern and southern hemisphere, are shown in Tab. B.1.

With the values for 𝑎 and 𝑏 for every constant it is now possible to compute the corresponding incidence
angle when only the azimuth of the ZDP and the latitudinal coordinate are known. As an example, at a
latitude of 53° we have one ascending and one descending acquisition available where 𝛼𝑑,asc = 258∘
and 𝛼𝑑,desc = 99.7∘. To compute the corresponding incidence angles 𝜃asc and 𝜃desc we need the
values for 𝑐𝑎1, 𝑐𝑑1, 𝑐𝑎2 and 𝑐𝑑2, which we can find with Eq. (B.3). This way, we compute corresponding
incidence angles of 𝜃asc = 33.1∘ and 𝜃desc = 42.5∘.

B.6. Orientation of the solution line for Sentinel­1
In section 2.3.3 we have seen that the solution line from the RUM’s perspective could be described by
azimuth angle 𝜙 and elevation angle 𝜁. Intuitively, it may make sense to think that 𝜙 = 0∘ when the
azimuth of the ZDP of the ascending and descending acquisition are symmetrical around the north.
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Figure B.9: The relation between 𝛼𝑑 and 𝜃 can be described with a linear relation with constants 𝑐𝑎1 and 𝑐𝑎2 for ascending
acquisitions and constants 𝑐𝑑1 and 𝑐𝑑2 for descending acquisitions. Those constants change with latitude where a tangential
relation between the latitudinal coordinate and the constants is found.

Furthermore, we have seen that both the azimuth of the ZDP’s and the incidence angles of both acqui­
sitions play a significant role in the orientation of the solution line, cf. section 2.4.1.

For locations with multiple ascending and/or descending acquisitions, the extent of the asymmetry
differs per combination. However, the asymmetry is maximal when for all locations, the acquisitions
are chosen that have the maximal 𝛼𝑑, see Figs. B.2 and B.4. When we combine those two acquisitions,
it is possible to compute the orientation of the solution line for all locations. The results can be seen
in Fig. B.10a and b, where the values for 𝜙 and 𝜁 are shown. A remarkable result is that 𝜙 ≈ 0∘ for
the Northern hemisphere, whereas the azimuths of the ZDP’s are often not symmetrical. So due to
the asymmetric azimuth of the ZDP’s, the solution line has a 𝜙 ≠ 0∘. However, the two corresponding
incidence angles (which are not the same) are counteracting this result and thus 𝜙 = 0∘. For the
Southern hemisphere, we find 𝜙 often not equal to 0°.

We have further seen that there is a correlation between 𝛼𝑑 and 𝜃. Therefore, it would be interesting to
seewhether𝜙 = 0∘ is a general rule for the northern hemisphere for Sentinel­1. It is possible to compute
𝜙 and 𝜁 for all combinations that we can make between ascending and descending acquisitions for
different locations. Since we have found that the viewing geometry changes with latitude, we defined
different locations, all with the same longitudinal coordinate but varying latitude (between −75° and
+85°). Around the equator, there are often only 1, 2, or 4 combinations to make since there are at most
two ascending and two descending acquisitions available. However, with up to eight ascending and
descending acquisitions at higher and lower latitudes, more combinations are made. In Fig. B.10c and
d, we show values for 𝜙 and 𝜁 for different combinations that we could make at a particular latitude (the
longitudinal coordinate was set to 30°). We show up to 10 combinations per location. It can be seen
that for the Northern hemisphere, all combinations result in 𝜙 = 0∘. So the result for one particular
case shown in Fig. B.10a and b was not coincidentally. Also, we found that for the lowest latitudes,
different combinations result in 𝜙 ≠ 0∘. Further, for the elevation angle 𝜁, we find that it increases when
approaching the poles.
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Figure B.10: In (a) and (b), we show 𝜙 and 𝜁 values, which were computed by combining per location the ascending and de­
scending observations that had a maximum azimuth of the ZDP. The asymmetry between the two ZDP’s was maximal. However,
this still results in 𝜙 = 0∘ for the Northern hemisphere due to the difference in incidence angles. In (c) and (d), we computed
per location different 𝜙 and 𝜁 values for all combinations that we could make between ascending and descending acquisitions.
Again, we see at the Northern hemisphere that 𝜙 = 0∘.

B.6.1. Empirical orientation of the solution line
With the minimal and maximum values for the azimuth of the ZDP for the ascending and descending ac­
quisitions (Figs. B.2 and B.4) available per location, it is possible to compute, per latitudinal coordinate,
artificial potential azimuths of the ZDP for the ascending and descending acquisition. We computed, per
latitude, six different potential azimuths of the ZDP for the ascending and the descending acquisitions.
With Eqs. (B.3), (B.1) and(B.2), and the values from Tab. B.1, we could compute the corresponding
incidence angles. Resulting in 6 artificial ascending viewing geometries and six artificial descending
viewing geometries per location. Afterward, we could make 36 combinations between the ascending
and descending viewing geometries, and we were able to compute corresponding values for 𝜙 and 𝜁
per combination. The results can be seen in Fig. B.11.

It can be seen that for latitudes between −35° and +65° we find that all artificial combinations result in
𝜙 = 0∘. Only for higher and lower latitudes we find combinations that result in 𝜙 ≠ 0∘. From this we
can conclude that, when 𝑑𝑒 and 𝑑𝑢 are estimated with Eq. (2.20) with observations from one ascending
and one descending Sentinel­1 acquisition, only the estimates for 𝑑𝑢 are biased. The estimates for 𝑑𝑒
will be unbiased.

For latitudes < −35∘ and > 65∘, the estimate for 𝑑𝑒 is also biased since 𝜙 ≠ 0∘. Further, we see that
the bias on 𝑑𝑢 will increase when moving away from the equator since 𝜁 increases.
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Figure B.11: Per latitude, we defined six artificial ascending acquisitions and 6 artificial descending acquisitions. Consequently,
we were able to combine the different acquisitions, which resulted in 36 combinations. For all combinations we computed the
orientation of the solution line. In the left figure, we show the results for 𝜙, per latitude, per combination. The right figure shows
the values for 𝜁.





C
Literature overview

On the next pages a table is presented consisting of all different approaches we found in the literature.

For every approach we give a short description. For some approaches there are different types of the
approach, these types are indicated with the letter a), b), c) or d). Moreover, we weigh each approach
according to its correctness, on a scale from 1 to 5. A value of 5 implies that the approach is completely
incorrect, a value of 1 means that the approach is correct.

Approach 5, 6 and 7 are so­called correct approaches, which we weighted according to how practical
they are (from 1 to 3). A value of 1 means that it is very practical and there are no drawbacks for the
approach. A value of 3 means that the approach is not so practical to use and that there is a high
likelihood of misinterpretations by readers.
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D
Fallacious statements

In the table within this Appendix, we show some fallacious statements and our proposal how the state­
ments can be corrected. We also added a column where we describe why we think the statements are
incorrect. The aim of this appendix is not to blame the authors that have written those statements. We
respectfully assume that the majority of authors is well­aware of the geometric limitations of InSAR, and
that the different fallacies cited are not a consequence of a lack of mathematical understanding, but
rather a loose usage of semantics. Yet, we observed that a rather loose and non­strict communication
easily leads to misinterpretation, misunderstanding or confusion. We therefore make a proposal on
how to correct for the incorrect semantics.
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E
Fallacious propositions

During the research, we had the opportunity to present our work on Fringe 2021, the 11th International
Workshop on“Advances in the Science and Applications of SAR Interferometry and Sentinel­1 InSAR”.
Here we obtained a reaction to our work. However, we also remarked that there were some fallacious
propositions of people visiting the conference. Here we would like to discuss a few of them.

1. The EW component can be solved unambiguously from one ascending and one descending ac­
quisition but NS & UD can’t be disentangled without assumptions due to the symmetric heading
angles.

2. The north component is insensitive.

3. Taking the north component into account is in general not needed since it only plays a role when
the displacements into the NS direction are relatively large.

4. The majority of the papers where InSAR fallacies as discussed in section 2.5 are observed are
of non­SAR specialists. This means that there is a big communication gap between SAR experts
and the users.

Generically, we think that the first proposition is incorrect. Let split the statement in two. The first part:
‘The EW component can be solved unambiguously from one ascending and one descending acquisition
but NS & UD can’t be disentangled without assumptions’, is in general not entirely correct. With one
observation of an ascending acquisition and an observation of a descending acquisition, the solution
space of the inverse problem is a line. The orientation of that line determines whether the estimates
for 𝑑𝑒 and 𝑑𝑢 are biased and the potential magnitude. The solution line has an azimuth to the North, 𝜙
and elevation, 𝜁.

If and only if 𝜙 = 0∘, the estimate for 𝑑𝑒 is unbiased. It is indeed correct that, for Sentinel­1, we often
find 𝜙 = 0∘ (Fig. 2.17). However, the statement should be formulated more specifically. At the Northern
hemisphere 𝜙 mostly equals 0° but for the Southern hemisphere we do find 𝜙 ≠ 0∘.

Then, the second half of the statement: ‘due to the symmetric heading angles’. Also, this part is
incorrect. At the locations where we find 𝜙 = 0∘, this is not caused by the symmetric heading angle.
We have seen that there are many locations where the azimuths of the ZDP’s can be asymmetric
(Fig. 2.8). Nevertheless, the incidence angle and the azimuth of the ZDP are correlated. So when the
azimuths of the ZDP’s are asymmetric, the correlation between 𝜃 and 𝛼𝑑 causes the solution line to
have an azimuth angle of 0°.
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In the end, we propose to change the first proposition to: For the Northern hemisphere, the EW com­
ponent can be solved unambiguously from one ascending and one descending acquisition, but NS &
UD can’t be disentangled without assumptions due to the viewing characteristics of Sentinel­1.

The second and third propositions are related, and we think in the generic sense not correct. As long
as the solution line is not perpendicular to the EU plane, the NS component is measured and should
be taken into account. For the third proposition, many authors argue that the sensitivity for the NS
component is only valid for exceptional cases with large NS displacements. However, we argue that
it is precisely the other way around. We think we should describe the decomposition problem in a
generic sense for small and large displacements. Initially, the stochastic model plays no role, purely
the geometry of the observations should be taken into account, which is captured in the 𝐴matrix. When
the generic model is known, we can deduce particular cases, e.g., with small displacements or very
high or low observation precision (deduction). Thus not the other way around, as is stated in proposition
3, where the authors start with the exceptional (particular) case. They state that the precision of the
observations is low or that the displacements are small, and from there, they try to deduce the generic
model. This is not possible (this method is called induction).

We think that the fourth statement is incorrect since, first of all, SAR specialists and non SAR specialists
do not exist. There is no SAR diploma. Added to this, by making this point, the messenger of this point
passes the problem away. After all, the InSAR community still reviews all those papers.
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