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Scaling up a sign-ordered Kitaev chain without magnetic flux control
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A. Mert Bozkurt , and Michael Wimmer

QuTech and Kavli Institute of Nanoscience, Delft University of Technology, Delft 2600 GA, The Netherlands

(Received 27 July 2024; accepted 17 January 2025; published 27 February 2025)

Quantum-dot-superconductor arrays have emerged as a new and promising material platform for realizing
topological Kitaev chains. So far, experiments have implemented a two-site chain with limited protection. Here,
we propose an experimentally feasible protocol for scaling up the chain in order to enhance the protection of the
Majorana zero modes. To this end, we make use of the fact that the relative sign of normal and superconducting
hoppings mediated by an Andreev bound state can be changed by electrostatic gates. In this way, our method
only relies on the use of individual electrostatic gates on hybrid regions, quantum dots, and tunnel barriers,
respectively, without the need for individual magnetic flux control, greatly simplifying the device design. Our
work provides guidance for realizing a topologically protected Kitaev chain, which is the building block of
error-resilient topological quantum computation.

DOI: 10.1103/PhysRevResearch.7.L012045

Introduction. The Kitaev chain is a paradigm of topological
superconductivity that can host Majorana zero modes [1–15].
These zero-energy excitations are non-Abelian anyons which
can be utilized to implement topological quantum compu-
tation [16,17]. Recently, quantum-dot-superconductor arrays
have emerged as a promising platform for realizing a Kitaev
chain [18]. A minimal two-site version [19] has been success-
fully realized in low-dimensional semiconductors, supported
by tunnel spectroscopic evidence of Majorana zero modes at
a fine-tuned sweet spot [20–22]. Crucially, a balance of the
normal and superconducting coupling strengths is achieved
by electrostatic gating on the hybrid region [23,24]. However,
these finely tuned zero modes remain vulnerable to envi-
ronmental noises due to a limited protection [19,23,25–31],
which can be enhanced and become topological only after the
quantum dot array is scaled up [1,18,32–35]. Furthermore, the
experiments of anyonic fusion and braiding [36–39] to detect
the non-Abelian statistics would not be possible before the
Kitaev chain is extended to four or more sites.

In an extended chain (N � 3), the phases of the couplings
become particularly important. In the limit of confinement to
a one-dimensional channel as in experiments [20–22,40,41]
and in the presence of a Rashba spin-orbit interaction and
an axial magnetic field, an approximate complex conjugate
symmetry [42] further constrains the effective couplings to
be real numbers [18,43,44]. Thus, the problem of phase un-
certainty is now reduced to sign uncertainty. For an N-site
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Kitaev chain

HK =
N∑

n=1

εn f †
n fn +

N−1∑

n=1

(tn f †
n+1 fn + �n f †

n+1 f †
n + H.c.), (1)

the sweet-spot condition becomes

εn = 0, |tn| = |�n|, sgn(t1�1) = sgn(tn�n), (2)

where fn is the annihilation operator of a spinless fermion,
εn is the on-site energy, and tn and �n are the amplitudes
of normal and superconducting tunnelings, respectively. In
Ref. [18], the proposed solution to the sign problem was
to use an individual magnetic flux control of the phase
between neighboring superconducting grains. However, this
would inevitably introduce multiple flux bias lines, thus com-
plicating the device design and causing heating problems
[see Fig. 1(a)]. In particular, the crosstalk of flux bias lines
becomes an issue when using small superconducting loops,
while larger-size loops would significantly increase the device
size and thus limit the possible number of quantum dots to
scale up.

In this Letter, we propose a scale-up protocol, where the
sign problem is fixed purely in an electrostatic way without
magnetic flux control [see Fig. 1(b)]. The physical insight here
is that the two sweet spots mediated by an Andreev bound
state (ABS) have opposite signs and can be explicitly detected
in a three-site setup by conductance spectroscopy. Since a set
of electrostatic gates is always needed to individually control
εn, |tn|, and |�n| in a Kitaev chain, our proposal does not
introduce any additional overhead in the device fabrication.
Instead, our method greatly simplifies the device design and
makes the platform suitable for implementing scalable topo-
logical quantum computation.

Sign of sweet spot. We first consider a minimal setup
consisting of double quantum dots connected by a hybrid
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FIG. 1. (a) Schematic of a device with magnetic flux control
using bias lines. (b) Schematic of a device where the phase difference
is controlled purely by electrostatic gates (purple lines). (c) and
(d) Schematic of a two-site Kitaev chain and the virtual processes
that induce effective couplings of � and t . (e) and (f) Dependence
of the coupling amplitudes on the chemical potential of the Andreev
bound states.

segment. The Hamiltonian is [23–26,45]

H = HD,1 + HA,1 + HD,2 + HDAD,1,

HD,i =
∑

σ=↑,↓
(εDi + σEZi )nDiσ + UDinDi↑nDi↓,

HA,i =
∑

σ=↑,↓
εAinAiσ + (�icAi↑cAi↓ + H.c.),

HDAD,i =
∑

σ=↑,↓
(tsc,ic

†
Aiσ cDiσ + t ′

sc,ic
†
Di+1σ cAiσ

+ σ tsf,ic
†
Aiσ cDiσ + σ t ′

sf,ic
†
Di+1σ cAiσ + H.c.). (3)

Here, HD is the Hamiltonian for a quantum dot, εD is the or-
bital energy, EZ is the induced Zeeman spin splitting, and UD

is the Coulomb repulsion. HA is the Hamiltonian of a subgap
ABS in the hybrid region, εA is the normal-state energy, and �

is the induced pairing. HDAD describes single-electron tunnel-
ing between dots and hybrids, and tsc (tsf) is the amplitude for
spin-conserving (spin-flipping) processes. When the direction
of the spin-orbit field is perpendicular to the applied magnetic
field [40,41], tsc, tsf are real [18,42]. Here, we assume a single
dot orbital and single ABS in HD and HA, respectively. This
approximation is accurate when the level spacings are large,
i.e., �εD > EZ and �εA > tsc, tsf , as discussed in Ref. [23]
and demonstrated in recent experiments [22,24].

In the tunneling regime where |tsc|, |tsf| � �, EZ , the ef-
fective couplings can be obtained using perturbation theory,

t↑↑ = (tsf,1t ′
sf,1 − tsc,1t ′

sc,1)
u2 − v2

EA
,

�↑↑ = (tsc,1t ′
sf,1 + tsf,1t ′

sc,1)
2uv

EA
, (4)

where t↑↑ and �↑↑ are the effective normal and supercon-
ducting couplings between spin-up orbitals in two quantum
dots. u2 = 1 − v2 = 1/2 + εA/2EA are the coherence factors,
and EA =

√
ε2

A + |�0|2 is the excitation energy. Figure 1(e)
shows the dependence of t↑↑ and �↑↑ on the chemical po-
tential of the hybrid region, with model parameters �1 = �0,
tsc = 3tsf = 0.3�0. Here, both amplitudes are real due to
complex conjugate symmetry [42], and, furthermore, the two
sweet spots have opposites signs, i.e.,

t↑↑ = �↑↑, for εA = −ε∗
A,

t↑↑ = − �↑↑, for εA = ε∗
A, (5)

where ε∗
A = �0(tsc,1t ′

sf,1 + tsf,1 t ′
sc,1)/(tsf,1 t ′

sf,1 − tsc,1t ′
sc,1) =

0.75�0. We emphasize that the existence of two opposite-sign
sweet spots is a robust feature as evidenced in Eq. (4). For ex-
ample, when the strength of the spin-orbit interaction becomes
much stronger (3tsc = tsf = 0.3�0), the only effect is that t↑↑
obtains an overall minus sign, thus only reversing the signs
of the sweet spots relative to Fig. 1(e). In addition, change
of the parity of the bound-state wave functions (t → −t or
t ′ → −t ′) would only give a common minus sign to both t↑↑
and �↑↑, not affecting the sweet-spot properties either. On
the other hand, the coupling amplitudes between orbitals of
opposite spins are

t↑↓ = −(tsc,1t ′
sf,1 + tsf,1t ′

sc,1)
u2 − v2

EA
,

�↑↓ = (tsf,1t ′
sf,1 − tsc,1t ′

sc,1)
2uv

EA
. (6)

Figure 1(f) shows the t↑↓ and �↑↓ curves using the same
model parameters as in Fig. 1(e). Now two sweet spots appear
at εA = ±ε∗

A with ε∗
A = �0(tsf,1t ′

sf,1 − tsc,1t ′
sc,1)/(tsc,1t ′

sf,1 +
tsf,1t ′

sc,1) = 4�0/3, and, interestingly, their signs are reversed
relative to the same-spin scenario. Here, in obtaining Eqs. (5)
and (6), we have assumed no Zeeman splitting in ABS, which
in general is expected to be reduced due to g-factor renor-
malization [46,47]. Nevertheless, even when this assumption
is relaxed, it is still possible to find two opposite-sign sweet
spots due to continuity [23,48]. Hence, we find that gener-
ically the relative sign of the normal and superconducting
couplings can be changed by either changing the chemical
potential in the hybrid region to switch to the other sweet spot
or by changing the dot energy to switch the spin polarization,
with both ways using electrostatic gating only.

Detection of π -phase shift. To experimentally detect the
subtle sign of sweet spots, the minimal setup is a three-
quantum-dot device with a superconducting loop connecting
the two hybrid regions [see Fig. 2(a)]. Tunnel spectroscopy
would distinguish the signs of the sweet spots by a π -phase
shift. To support the statement, we now perform numerical
calculations using the following Hamiltonian,

H = HD1 + HA1 + HD2 + HA2 + HD3 + HDAD,1 + HDAD,2,

(7)

which includes three normal quantum dots connected by
two ABSs. The Hamiltonians for dots, ABSs, and electron
tunneling are almost identical to those in Eq. (3), except
that now for HA a phase difference determined by the
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FIG. 2. Upper panels: Schematics of the transport setup to detect the signs of the sweet spots. Lower panels: Conductance spectroscopy
(G33 = dI3/dV3) as a function of the magnetic flux or dot detuning. The systems in (a) and (g) are sign-ordered Kitaev chains at � = 0, while
in (d) the two sweet spots have opposite signs.

magnetic flux is included in the pairing potential, i.e.,
�1 = �0, �2 = �0ei�. In addition, a normal-metal lead is
tunnel coupled to dot D3, and conductance is numerically
calculated using the rate-equation method [49,50].

We first consider a scenario where the two sweet spots
are of the same type. By setting all three quantum dots
to be spin up, this condition is satisfied when εA1 = εA2 ≈
−0.804�0, which is close to the values predicted in Eq. (5).
Figure 2(b) shows that a sign-ordered three-site Kitaev chain
indeed appears at � = 0 with a stable and isolated zero-bias
conductance peak induced by Majorana zero modes. Addi-
tionally, this zero-bias peak is robust against detuning of dot
D3 [see Fig. 2(c)], verifying that Majoranas are spatially
localized.

When we change εA2 ≈ 0.704�0 while keeping εA1 un-
changed, the sign of the sweet spot mediated by A2 becomes
opposite to A1 [see Fig. 1(e)]. As shown in Fig. 2(e),
an additional zero-energy state appears in the vicinity of
� = 0, making the system gapless [37]. Unlike the sign-
ordered chain, now the zero-bias peak is readily split with
detuning of D3 [see Fig. 2(f)] due to the hybridization between
the Majorana and the additional zero-energy state see Sup-
plemental Material [48]. Moreover, by comparing Figs. 2(b)
and 2(e) the sign switch of the sweet spot is clearly revealed
as a π -phase shift in the flux-dependent conductance spec-
troscopy.

In the third scenario, we flip the spin of D3 into spin-down,
which can be experimentally implemented by electrostatic
gating. The chemical potential of A2 is still positive: εA2 ≈
1.3�0. Indeed, Figs. 2(h) and 2(i) show the emergence of a
sign-ordered Kitaev chain again, confirming the predictions
made in Fig. 1(f). Therefore, flipping the spin of the dot
orbitals provides an additional knob for correcting the sign
of sweet spots.

Protocol for scaling up. Based on the findings in the pre-
vious sections, we now put forward our protocol for scaling
up a long sign-ordered Kitaev chain. To this end, we re-
quire an experimental setup that can (i) be used to tune two
neighboring dots to a sweet spot, for example, as discussed
in Refs. [20–22,26], and (ii) detect whether the zero-energy
degeneracy splits when the energy of the final dot is de-
tuned from the resonance. In general, this requires that the

superconducting leads that proximitize different hybrid re-
gions form a single grounded lead. The two measurements
can be realized for example by coupling each normal dot to
an individual normal lead, forming a multiterminal junction.
Alternatively, it is also sufficient to only contact the final dot
with a normal lead, as shown in Fig. 2 or using gate sensing.
Our protocol allows to build up the chain iteratively dot by
dot.

Step 0. To begin with, we assume that we have already
obtained a sign-ordered N-site Kitaev chain (N � 2) as shown
in Fig. 3(a) (for N = 2, this corresponds to finding the sweet
spot). Our goal is to extend it to N + 1 sites by choosing an
appropriate sweet spot for the newly added dot.

Step 1. First, we focus on a two-site system formed by the
N th and N + 1th quantum dots decoupled from the rest of
the array [see the dashed rectangle in Fig. 3(b)]. This can be
achieved by closing the tunnel barriers outside the two dots,
or, alternatively, by shifting all the other dots off resonance,
as illustrated in the experiments of Refs. [34,35]. Then by
electrostatic gating on the hybrid region, a sweet spot with
|tN | = |�N | can be reached, e.g., signified by a cross in the
charge stability diagram [see Fig. 3(b)] [20–22]. However, the
sign of the sweet spot remains uncertain so far.

Step 2. We then form a three-site chain by coupling the
N − 1th, N th, and N + 1th dots, e.g., by lowering tunnel
barriers or by bringing the N − 1th dot back to resonance [see
Fig. 3(c)]. We measure the conductance spectroscopy against
the detuning of dot-N + 1 [see Fig. 3(c)]. If the zero-bias
peak is robust, we have successfully extended an N-site chain
to N + 1 and can continue with the next dot. Otherwise, we
have to return to step 1 to tune to the other sweet spot or the
other dot spin, effectively flipping the relative sign between
tN and �N .

Effect of phase fluctuations. In a realistic device, complex
conjugate symmetry can be broken due to a finite width of the
one-dimensional channel, the magnetic orbital effect on the
dot or ABS wave functions, or a misaligned magnetic field.
After performing a gauge transformation, an N-site chain
(N � 3) can have N − 2 independent phase fluctuations, i.e.,
�i = |�i|eiδφi for i = 2, 3, . . . , N − 1 see Supplemental Ma-
terial [48]. Here, we focus on the energy gap in the presence
of phase fluctuations, since |ti| = |�i| guarantees the presence

L012045-3
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FIG. 3. Protocol for tuning up a sign-ordered Kitaev chain. (a) Preparation: Get ready a sign-ordered N-site chain (N � 2). (b) Step 1:
Switch on the coupling between the N th and N + 1th dots while decoupling them from the rest of the system, e.g., by closing the tunnel
barriers indicated by the vertical lines of the rectangle or by detuning all the other dot orbitals off resonance. Find the sweet spot |t | = |�|
in the charge stability diagram. (c) Step 2: Connect the N + 1th dot with the N th and N − 1th dots, and measure the differential conductance
against the detuning of dot-N + 1. If the zero-bias conductance peak remains robust, we thereby obtain a sign-ordered N + 1-site Kitaev chain.
Otherwise, we should return to step 1 to find a new sweet spot and test it in step 2 until success.

of a zero energy. Here, phase fluctuation obeys a uniform
distribution of δφi ∈ [−δφ, δφ] for an ensemble of size 2000.
As shown in Fig. 4, both the averaged and the minimal gap
decrease monotonically with either the number of sites or the
phase fluctuation amplitude. Interestingly, a longer chain is
more prone to becoming gapless when δφ > π/2. We hence
expect that our protocol remains applicable even for small de-
viations from one dimensionality, as the sign of the sweet spot
can still be used to minimize the phase difference. Put another
way, reducing the cross-section area of the semiconducting
nanowires would suppress the phase deviations induced by the
magnetic orbital effects [47], thus optimizing the protection of
Majorana zero modes.
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FIG. 4. (a) and (b) Mean of the excitation gap of a Kitaev chain
vs the number of sites and phase fluctuation amplitude. (c) and
(d) Minimal excitation gap vs the number of sites and phase fluc-
tuation amplitude.

Discussion. In previous works, it was suggested to satisfy
the phase-matching condition in an extended Kitaev chain by
controlling the magnetic flux through a superconducting loop
[18,51]. However, devices with small loops [see Fig. 1(a)]
would suffer from crosstalk issues of the flux bias lines, while
larger loops would significantly increase the system size by
tens of micrometers, making it difficult to fit into a nanoscale
device and limiting the number of dots to scale up. Within
this context, our scale-up proposal uses a purely electrostatic
method, thus eliminating the need for the cumbersome mag-
netic flux control. Most crucially, such a gate configuration is
needed anyway to fine tune the sweet-spot values of εn = 0
and |tn| = |�n|, so it does not add any fabrication overhead to
the device design. Practically, the electrostatic gate configura-
tions have already been implemented as a set of finger gates
in recent experiments of three-site chains [34,35], which can
be further generalized to longer chains. Therefore, we note the
crucial difference between the upscaling protocol proposed in
Ref. [51] and ours is that here we rely only on the electrostatic
gates that are already present in the device. There is no need
for additional gates or additional current lines for magnetic
flux control.

Summary. In this Letter, we discover that the sweet
spot mediated by ABS has a sign uncertainty, which
was overlooked and undetectable in two-site chain studies
[20–23,25–27,52–54], but will become crucial in an extended
chain. Based on that, we give a concrete and practical pro-
tocol for scaling up a Kitaev chain using only electrostatic
gates, eliminating the need for a magnetic flux control. It
avoids the adverse heating issue and at the same time main-
tains a small nanoscale device size, both of which will
benefit the eventual implementation of a scalable topological
quantum computer. In particular, the gate configuration and
control required in our proposal have been implemented in
a recent experiment [35], adding to the practicality of our
work. We thus believe that our proposal provides guidance
to realizing a long topological Kitaev chain for imple-
menting topological quantum computing [16,17] as well as
demonstrating the non-Abelian statistics of Majorana anyons
[36,38,39].
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