
AUTOMAT IC REPA IR OF 3D C I TY BU I LD ING MODELS US ING A
VOXEL-BASED REPA IR METHOD

A thesis submitted to the Delft University of Technology in partial fulfillment
of the requirements for the degree of

Master of Science in Geomatics

by

Damien Mulder

M.Sc Geomatics Thesis

June 2015

Damien Mulder: Automatic repair of 3D City Building Models using a voxel-
based repair method (2015)
cb This work is licensed under a Creative Commons Attribution 4.0 Inter-
national License. To view a copy of this license, visit
http://creativecommons.org/licenses/by/4.0/.

The work in this thesis was made in the:

3D geoinformation group
Department of Urbanism
Faculty of Architecture & the Built Environment
Delft University of Technology

Supervisors: Prof.dr. Jantien Stoter
Dr. Hugo Ledoux

Co-reader: Ph.D. Pirouz Nourian

http://creativecommons.org/licenses/by/4.0/

ACKNOWLEDGEMENTS

First of all I would like to thank Hugo Ledoux for his guidance on all aspects
of the thesis throughout the entire project. By patiently explaining the basics
and providing the relevant datasets and papers he enabled me to perform a
focussed research from the very start. Without the tools for the triangulation,
solidification and validation of the datasets (provided by Hugo Ledoux and
Filip Biljecki) this thesis would not have been possible. In addition, his
thesis layout and tips on presentation were of great help.
I would also like to thank Jantien Stoter for keeping an overview of the
process and her comments that improved the clarity of the thesis. Her work
on the development of a national 3D standard and the 3D Special Interest
Group were motivating during the writing of this thesis as it showed the
relevance of the topic.
Furthermore I would like to thank Ph.D. Pirouz Nourian, first of all for
introducing me to the basics of computation geometry during my Architec-
ture studies, which caused me to choose for the field of Geomatics. The
knowledge provided in the 3D-modelling course was very useful in this
thesis. When finally turning out to be my co-reader, his very detailed and
useful comments helped to improve the most technical parts of this thesis.
I thank my fellow students for their help and making the Geolab a pleasant
workspace, where we could have fun and learn from each other. Finally I
would like to thank my girlfriend Godelief for listening to my voxel-related
babbling and my family for their continuous support and encouragement.

iii

ABSTRACT

Over the recent years, 3D city models have been gaining in importance.
However, many defects are often present in the currently available datasets
which hinders the further processing and analyzing of these models. Out of
the existing repair methods, none are able to entirely repair all defects in 3D
City Models. This thesis focuses on the process of transforming a defect 3D
city building model into a valid one by using a voxel-based method. Two
voxel-based repair approaches are proposed to repair 3D building models.
Both methods start with a voxelization step which encompasses the con-
version of a polygonal model to a binary volumetric representation. The
second step consists of Morphological Operators which ensure the creation
of a manifold voxel representation by filling up holes, selecting connected
components and filtering certain voxels. The goal of this step is to simplify
the topology. The third step then involves the extraction of the iso-surfaces,
which is the main differences between the two methodologies. The first
approach applies the Marching Cubes algorithm on a binary grid, resulting
in a reliable surface reconstruction. The results are affected by rounding
of the corners and a stair stepping effect. Therefore, the possibilities of
using edge sharpening algorithms to sharpen the corners and applying the
Marching Cubes algorithm on a signed distance field to recreate oblique
surfaces are explored. In the second approach, some adaptation are pro-
posed to the Dual Contouring algorithm to enable it to handle defect input
models. By using a quadratic error function for computing vertex positions,
oblique surfaces and sharp corners can be recreated in one step. In order
to preserve any attributes of 3D city models throughout the repair process,
three methods are proposed; (i) geometry based attribute determination, (ii)
voxel-based attribute preservation and (iii) edge-based attribute preserva-
tion. Testing both approaches on a test set of existing 3D models shows
that the repair capability of the first approach was quite reliable (90%).
The second approach turned out to be less effective (30%), although its
surface reconstruction was more accurate. Applying the first approach
on the Heijplaat dataset from Rotterdam3D resulted in the percentage of
valid building models improving from 10% to 93%. Although some more
work is needed to reconstruct oblique surfaces and sharp corners in the first
approach, it can be concluded that this kind of voxel-based repair method
is capable of reliably repairing 3D city building models.

v

CONTENTS

1 introduction 1

1.1 Objectives . 3

1.2 Requirements . 4

1.3 Test datasets . 4

1.4 Scope of this thesis . 6

1.5 Outline of this thesis . 7

2 state of the art in 3d city model repair 9

2.1 3D City model standards . 9

2.2 Current Repair Methods . 17

2.3 Evaluation . 21

3 related work 23

3.1 Overview Related Work . 23

3.2 Voxelization of a polygonal mesh 24

3.3 Morphological operators . 32

3.4 Surface reconstruction . 36

3.5 Post processing . 50

4 my voxel-based repair method 55

4.1 Methodology . 55

4.2 Voxelization . 56

4.3 Approach 1: Marching Cubes 61

4.4 Approach 2: Dual Contouring 70

4.5 Preservation of attributes . 78

5 implementation and experiments 83

5.1 Implementation . 83

5.2 Test data . 84

5.3 Validation after repair . 86

5.4 Evaluation . 93

6 conclusions, discussion and future work 95

6.1 Conclusions . 95

6.2 Discussion . 98

6.3 Future work . 99

a marching cubes cases 101

b test case validation 103

c reflection 109

Bibliography 111

vii

L I ST OF F IGURES

Figure 1 Solar3Dcity: An example of 3D City Model analysis
[Biljecki et al., 2015] 1

Figure 2 Examples of visible defects in a 3D City model 2

Figure 3 Components of methodology 3

Figure 4 Neighborhood ’Nieuwe Werk’ from the Rotterdam3D
CityGML dataset . 5

Figure 5 Missing walls in between buildings 5

Figure 6 Examples of defects in existing datasets 6

Figure 7 Examples of defect buildings from the Montreal dataset 6

Figure 8 The different stages in the general 3D city model work-
flow . 7

Figure 9 The 5 Level of Detail (LoD)s in CityGML [Kolbe et al.,
2005] . 10

Figure 10 International Organization for Standardization (ISO)
19107 geometric primitives [Ledoux, 2015] 11

Figure 11 Example of a gml:Solid 11

Figure 12 Self-intersecting ring 12

Figure 13 Valid polygon with a hole described as interior ring . 12

Figure 14 Example of Consecutive Points Same error 13

Figure 15 Self-intersecting ring 13

Figure 16 Some examples of invalid polygons 14

Figure 17 Example of a non-planar polygon distance deviation 14

Figure 18 Example of a valid shell and three invalid ones 15

Figure 19 Some limitations of the detect and local repair method
[Alam et al., 2013] . 18

Figure 20 Healing of non-planar Roof Surfaces in LoD1 & LoD2

[Alam et al., 2013] . 18

Figure 21 Illustration of the Shrink-wrapping method [Zhao et al.,
2013] . 19

Figure 22 Incorrectly repaired overshoot [Zhao et al., 2013] . . . 19

Figure 23 Vector to raster conversion 25

Figure 24 Illustration of the 3D model and voxelization in dif-
ferent coordinate representations 26

Figure 25 Illustration of the translation vector 27

Figure 26 Different results in scan converting a concave polygon 28

Figure 27 Scan conversion of defect input using Parity Count . 29

Figure 28 Number of scan directions per voxel 30

Figure 29 The effect of using majority voting on defect input
geometry . 31

Figure 30 Advantage of Ray Stabbing in case of self-intersections 31

Figure 31 Advantage of Ray Stabbing in case of double surfaces 31

Figure 32 6-, 18- and 26- adjacency 33

Figure 33 Performing a closing operation by using Manhattan
distance mapping . 34

Figure 34 Detecting connected components 35

Figure 35 Performing a closing operation by using Euclidean
distance mapping . 36

Figure 36 Looping through cubes and indexing the edges . . . 39

ix

x LIST OF FIGURES

Figure 37 Examples of Marching Cubes cases 40

Figure 38 Applying Marching Cubes on a binary grid 40

Figure 39 Ambiguity in Marching Cubes Case 10 41

Figure 40 Linear interpolation on a binary grid and a signed
distance field . 42

Figure 41 Comparison of applying Marching Cubes on binary
values versus using signed distance values 42

Figure 42 Rounding off sharp features when applying March-
ing Cubes on signed distance values 43

Figure 43 The possible effect of a gap on the result of applying
Marching Cubes on signed distance values 43

Figure 44 Diagram of the relation between the voxel grid and
dual . 44

Figure 45 Diagram of grid edges intersections with the input
model . 44

Figure 46 Diagram of the Dual Contouring principle 45

Figure 47 Diagram of using Hermite data [Ju et al., 2002] 45

Figure 48 Difference between minimizing towards center-point
and mass-point [Schaefer et al., 2002] 46

Figure 49 Overview of pressing method 47

Figure 50 Finding sticks connecting interior with exterior 47

Figure 51 Searching neighborhood of each stick 48

Figure 52 Overview of isosurface extraction techniques 49

Figure 53 Result of the filtering steps [Attene et al., 2003] 50

Figure 54 Vertex placement on chamfer edges and corner trian-
gle [Attene et al., 2003] 51

Figure 55 Edge Sharpening [Attene et al., 2003] 51

Figure 56 Principle of quadric error mesh simplification [Gar-
land and Heckbert, 1997] 52

Figure 57 Visualization of the geometric error 53

Figure 58 Overview of the methodology 55

Figure 59 The effect of aligning on the repair capability 56

Figure 60 The effect of aligning the input model 56

Figure 61 A buffer on the grid is needed after aligning 58

Figure 62 Correct volumetric representation 58

Figure 63 Defective volumetric representation due to combina-
tion of three gaps . 59

Figure 64 Defective volumetric representation due to combina-
tion of double surface and hole 59

Figure 65 Examples of artefacts in the volumetric representation 60

Figure 66 Example of a saw tooth artefacts in the volumetric
representation . 60

Figure 67 Result of down-sampling with a 2x2x2 filter 61

Figure 68 Building which requires the connected components
selection . 62

Figure 69 Corners rounded off after distance mapping 62

Figure 70 Filtering of hanging voxels 63

Figure 71 Example of Marching Cubes output for a CityGML
building with a gap . 63

Figure 72 Example of Marching Cubes output for a CityGML
building with a double surface and an overshoot . . . 63

Figure 73 Edge sharpening triangle cases 64

LIST OF FIGURES xi

Figure 74 Result of triangle based edge sharpening on a manu-
ally made object . 64

Figure 75 Two examples of more complex triangle configurations 65

Figure 76 Unsupported triangle cases returning a non-manifold
mesh . 65

Figure 77 Performing edge sharpening to improve the results
in Approach 1 . 65

Figure 78 Performing edge sharpening to improve the results
in Approach 1 . 66

Figure 79 Mesh after edge sharpening 66

Figure 80 Comparison between a rounded and sharpened oblique
surface . 66

Figure 81 The polygonal model turned non-manifold after edge
decimation . 67

Figure 82 The polygonal model turned non-manifold after edge
decimation . 67

Figure 83 The three steps of the detriangulation process 68

Figure 84 Result of the detriangulation step 69

Figure 85 DC gap model . 70

Figure 86 Three options for computing the dual vertex 71

Figure 87 Result of the proposed method on a building with a
gap . 71

Figure 88 Several incorrect solutions for the Quadratic Error
Function (QEF) computation 73

Figure 89 Assigning the mass-point in case of a misplaced voxel 73

Figure 90 Assigning the cube center in case of misplaced a voxel 74

Figure 91 Effect of misplaced voxels on isosurface extraction . . 74

Figure 92 Self-intersections in the output triangle mesh 74

Figure 93 Example of self-intersection and possible solution by
changed triangulation [Ju and Udeshi, 2006] 75

Figure 94 Flowchart of the applied approaches 77

Figure 95 Diagram of geometry based attribute preservation . . 78

Figure 96 Attribute preservation per building part and per surface 79

Figure 97 Diagram of voxel based attribute preservation 80

Figure 98 Diagram of grid edge based attribute preservation . . 80

Figure 99 Building 18 . 87

Figure 100 Building 10 . 87

Figure 101 Buildings 11 & 12 were not repaired 88

Figure 102 Approach 2 applied on Building 14 88

Figure 103 Approach 2 applied on building 18 89

Figure 104 Self-intersections on the roof of building 18 89

Figure 105 Geometric error in the repaired model 90

Figure 106 Correctly repaired building model 91

Figure 107 Defect output due to ambiguities in the Marching
Cubes cases . 92

Figure 108 Examples of valid output for incorrect volume 93

Figure 109 Marching Cubes cases 0 - 6 101

Figure 110 Marching Cubes cases 7 - 15 102

L I ST OF TABLES

Table 1 Details concerning the test datasets 5

Table 2 An overview of the defects detected by val3dity [Ledoux,
2013] . 16

Table 3 Strengths and drawbacks of detect & local repair method 19

Table 4 Strengths and drawbacks of Shrink-wrapping method 20

Table 5 Strengths and drawbacks of a potential voxel based
method . 20

Table 6 Iso-surface extraction overview 38

Table 7 Overview of the detected defects in the Rotterdam
datasets . 83

Table 8 Overview of the detected defects in the Montreal datasets 84

Table 9 Overview of the tested 3D models 85

Table 10 Overview of repair process results 86

Table 11 Remaining defects after repairing the test set 87

Table 12 Comparison of 3 repair results for Building 18 90

Table 13 Overview of the detected defects in the Rotterdam
datasets . 91

Table 14 Comparison in theory of a voxel based repair and
Shrink Wrapping . 93

xiii

L I ST OF ALGOR ITHMS

3.1 Parity Count . 28

3.2 Ray Stabbing . 28

3.3 Majority Voting . 30

3.4 Voxel Adjacency . 33

3.5 Closing Operation . 35

3.6 Marching Cubes . 40

4.1 Model Alignment . 57

4.2 Detriangulation . 68

4.3 Dual Contouring . 72

xv

ACRONYMS

ahn Actueel Hoogtebestand Nederland National
(=Height Model of the Netherlands)

bag Basisregistraties Adressen en Gebouwen
(=Basic Register of Addresses and Buildings)

b-rep Boundary Representation

collada Collaborative Design Activity

dc Dual Contouring

dem Digital Elevation Model

dmc Discretized Marching Cubes

dxf Drawing Exchange Format

emc Extended Marching Cubes

gis geographical information system

gml Geography Markup Language

iso International Organization for Standardization

ifc Industry Foundation Classes

kml Keyhole Markup Language

lod Level of Detail

mc Marching Cubes

ogc Open Geospatial Consortium

pca Principal Component Analysis

qef Quadratic Error Function

rmse Root Mean Square Error

sdi Spatial Data Infrastructure

shp Shapefile

xml Extensible Markup Language

xvii

1 INTRODUCT ION

The recent years technology has emerged to incorporate the third dimension
in the areas of geographical information system (GIS) and Spatial Data
Infrastructure (SDI). During this process the concept of 3D city models
has been gaining in importance as more 3D geometry of urban areas is
becoming available. In these models the geometry and the semantics of real
world objects such as terrain, buildings, infrastructure, vegetation and city
furniture can be represented. This makes 3D City models usable for many
applications such as urban planning [Chen, 2011], disaster management
[Kolbe et al., 2008], augmented reality [Zamyadi et al., 2013] and navigation
systems [Cappelle et al., 2012]. In general four types of 3D GIS analysis are
distinguished by Moser et al. [2010]. Proximity & overlay analysis involves
the using 3D distance, buffer and intersection calculation. Spread & flow
analysis uses simulations of physical processes in the real world. 3D density
data can be used to analyze for instance population distribution, which is
useful for emergency planning or mobile phone coverage. Visibility analysis
locates positions that are visible from a specific point. Applications of this
may involve sight lines or shadow analysis or finding the optimal position
for an antenna. An example of spread & flow analysis is the studying of
noise effects on the environment. de Kluijver and Stoter [2003] describe
the importance of noise effect studies in 3D GIS to monitor noise levels.
Other examples of spatially related questions which may be answered by
analyzing a 3D City model may be:

• Which buildings and/or floor levels are affected by a 2 meter flooding
of the city?

• During which times will a certain location be in the shadow?

• How many square meters of facade do these buildings have?

An example of 3D City Model analysis is shown in Figure 1 where the yearly
solar radiation upon rooftops is calculated [Biljecki et al., 2015].

Figure 1: Solar3Dcity: An example of 3D City Model analysis [Biljecki et al., 2015]

1

2 introduction

These kinds of tools have a great potential to enhance the workflow and
decision making in many working fields. A prerequisite is that the built
environment has to be accurately modeled into a computer understandable
data format. Three ways of generating 3D City models are described in
[Singh et al., 2013]. The first technique is described as conventional and
involves using vector maps (such as cadastre data) and height points. The
second technique makes use of high resolution satellite images. The third
technique applies close range photogrammetry on terrestrial images. An
automatic generation process using a Digital Elevation Model (DEM) in com-
bination with Cadastre data is proposed by Durupt and Taillandier [2006].
The buildings roof geometry is created by comparing height point data to a
set of predefined roof shapes. A method which may yield higher precision
is the procedural creation of 3D City models using point clouds, which is
described by Lafarge and Mallet [2012]. A multitude of efficient ways of
creating of 3D City models is currently present. However, defects may be
present in these models due to manual errors, model optimization, data
conversions, misinterpretation of the data standard or unexpected cases
in the applied algorithms. Figure 2 shows two examples of incorrectly
modeled building models.

(a) Hole in building model (b) Overshoot in building model

Figure 2: Examples of visible defects in a 3D City model

Although 3D City models offer a structured way of storing geometry, in
practice a significant amount of geometry is not considered valid. Geo-
metric defects that may occur are self-intersections, folding, invalid holes,
wrong orientation or non-2-manifold solids. This hinders the further ana-
lyzing or processing of these models, for instance computing the volume
or performing boolean operations. Therefore the use of valid geometry is
essential to be able to make use of the benefits of 3D City Models. Validation
processes have been developed in order to check a dataset for some of
these formats. An example of such a validation process for the CityGML
data standard (see § 2.1.2 for a description) has been created based on the
work of [Ledoux, 2013]. A web service running this process is available at
http://geovalidation.bk.tudelft.nl/val3dity, enabling users to check
their datasets. In case datasets are not completely valid, repair methods are
needed to restore the geometry.

http://geovalidation.bk.tudelft.nl/val3dity

1.1 objectives 3

1.1 objectives
Since manual repair of 3D City models is very time consuming and prone
to errors, automatic repair methods are highly desirable. However, none of
the existing repair methods are able to entirely repair all defects in 3D City
Models (see Section 2.2), therefore additional research into alternative repair
methods is required. This thesis focuses on the process of transforming a
defect 3D City building into a valid one by using a voxel-based method. The
main research question for this thesis is:

To which extent is it possible to automatically repair a geometrically invalid 3D
City Building Model using a voxel-based method?

In Chapter 3 the 3 components of a voxel-based method are distinguished.
Figure 3 shows an overview of these components.

VoxelizationCityGML input

IN OUT

Morphological
operators

Surface Reconstruction CityGML output

parser

writer

Figure 3: Components of methodology

To explore the possibilities of a voxel-based repair approach, the following
sub-questions are relevant:

• What are the most common errors of invalid 3D City models and can
they be repaired by using a voxel-based repair method?

• Which voxelization algorithm is most suitable for converting a polyg-
onal model while preserving any semantics which may be present?

• Which surface reconstruction method is most suitable for rebuilding
the sharp geometry characteristics of 3D city buildings from a vox-
elization?

• What are the advantages and disadvantages of using a voxel-based
repair methods when compared to existing repair methods?

This thesis proposes two voxel-based repair methods to demonstrate the
potential and illustrate the obstacles and/or shortcomings of a voxel-based
approach. By implementing and testing these methods, more insight in the
potential of a voxel-based repair method could be gained.

4 introduction

1.2 requirements
In order to conduct the development of a repair prototype and evaluate the
existing repair methods, some requirements have been set for the ideal 3D
City model repair method.

• The repair method should return valid 3D city model given a (realistic)
input model.

• There should be no significant geometric differences with the original
model. In case of defect input geometry, realistic assumptions should
be made.

• If any attributes are present in the input model, these should be present
in the repaired model as well. Since the surface attributes are initially
lost in the voxelization process, a way of preserving or restoring these
attributes should be investigated.

• The method should preferably run automatically without user inter-
vention.

The decisions for applying certain algorithms in this thesis, are made with
these requirements in mind.

1.3 test datasets
For the development and testing of the developed prototypes, various 3D
City Model datasets were used. Using different datasets is important since
particular defects are encountered. Four sources of city models were used:

• The first dataset on which the developed prototypes have been tested
is Rotterdam3D which was published in 2011 as open data at:
http://www.rotterdam.nl/links_rotterdam_3d. The dataset contains
90 neighborhoods and has been automatically built up by combining
cadastre footprints from the Basisregistraties Adressen en Gebouwen
(=Basic Register of Addresses and Buildings) (BAG) and the Actueel
Hoogtebestand Nederland National
(=Height Model of the Netherlands) (AHN). CityGML 1.0 was used
as data standard and all buildings are modeled in LoD 2. An illustra-
tion of the neighborhood Nieuwe Werk of the Rotterdam3D dataset is
shown in Figure 4.

• The second dataset which was used is from Montreal, Canada. It was
published in 2013 as CityGML 1.0 in LoD 2. This dataset differs from
Rotterdam3D since it was created using photogrammetry, which is
noticeable since there is more detail in the models. The datasets is
available at: http://donnees.ville.montreal.qc.ca/dataset/.

• Another set of models which has been used is the unit test set. These
models were used in the development of val3dity, a tool for the geo-
metric validation of GML solids created by [Ledoux, 2013]. They are
available at: https://github.com/tudelft3d/val3dity/tree/master/
data/poly

• Additionally, some manual models have been created in order to check
specific cases of geometric input.

http://www.rotterdam.nl/links_rotterdam_3d
http://donnees.ville.montreal.qc.ca/dataset/
https://github.com/tudelft3d/val3dity/tree/master/data/poly
https://github.com/tudelft3d/val3dity/tree/master/data/poly

1.3 test datasets 5

Figure 4: Neighborhood ’Nieuwe Werk’ from the Rotterdam3D CityGML dataset

Some statistics show that the validity of the Rotterdam dataset is very low.
For example, 10.335 out of 10.828 buildings have defects in the Hoogvliet-
Zuid dataset. Furthermore it is obvious that the Montreal dataset has a
better quality of data, as it contains less defects while storing more detailed
geometry. The number of polygons and valid buildings for several datasets
is shown in Table 1.

Buildings Faces

defect total % total per building

Rotterdam Hoogvliet-Zuid 10 335 10 828 95 100 195 9,3
Rotterdam Overschie 3 048 3 318 92 44 319 13,4
Rotterdam Heijplaat 1 091 1 207 90 13 738 11,4
Montreal VM01 2009 62 384 16 84 759 220,7
Montreal VM02 2009 21 209 10 32 973 157,7
Montreal VM03 2009 68 339 20 64 440 190,1

Table 1: Details concerning the test datasets

Apart from a high number of defects, some peculiar geometry can be seen
in the dataset of Rotterdam. Some thin walls are modeled in between row
houses (see Figure 5a), which is not necessarily considered as defect. Also
some very steep roofs are modeled (see Figure 5b), where these are not to
be expected.

(a) Building model with unrealistic
thin walls

(b) Building model of a row house
with an overly steep roof

Figure 5: Missing walls in between buildings

However, these observations are not relevant since the focus is on model
validity. A set of validation rules which will be used in this thesis is shown
in Table 2, in § 2.1.5 of Chapter 2. In this regard, some of the described

6 introduction

defects are very specific for this dataset. Whenever buildings are connected
(e.g. row houses) the intermediate walls are usually not modeled in the
dataset of Rotterdam. In addition, sometimes these walls are partially mod-
eled but added to the neighboring building. This results in many non-closed
buildings, making it impossible to compute the volume of a building which
is necessary for tax purposes as described by Boeters [2013].

(a) CityGML model with overshoot (b) CityGML model with two gaps

Figure 6: Examples of defects in existing datasets

The Montreal dataset on the other hand, does not show many obvious
defects. Figure 7a shows the amount of detail which is typical for the
Montreal dataset. A defect model with a non-closed shell is shown in
Figure 7b. Usually, non-closed shells are only the case in more complex
geometry such as the rounded object shown in Figure 7b.

(a) CityGML model with detailed ge-
ometry

(b) Rounded CityGML model with
non closed shell

Figure 7: Examples of defect buildings from the Montreal dataset

1.4 scope of this thesis

The main objective of this thesis is to repair geometrically invalid 3D City
model building using a voxel-based method. Using such a volumetric repair
method offers a robust repair capability compared to the existing repair
methods. Any surface-oriented or graph-based repair steps will not be at
the core of the developed methods. Only where necessary, some surface-
oriented steps (for example Edge Sharpening, see § 4.3.3) have been re-
searched.
An overview of the general workflow and the role of 3D City model repair
is shown in Figure 8. This thesis does not deal with the initial creation of
defects in 3D City models nor with their consequences for further processing
or analyzing of the data. The focus will be on maintaining any sharp fea-
tures of the input geometry which are characteristic for buildings, meaning
that smooth polygonal models (e.g. Standford bunny) are not taken into
consideration. Also any building formats which allow for inner shells (e.g.
CityGML LoD 4) are outside the scope of this research.

1.5 outline of this thesis 7

Model
generation

Data acquisition

Validation

Spatial analysis

Repair

Valid

Invalid

Figure 8: The different stages in the general 3D city model workflow

1.5 outline of this thesis
Chapter 2 starts by describing the validation rules of solids in 3D City mod-
els. This is followed by an overview of CAD-repair methods and continues
to evaluate the currently existing methods for repairing 3D City models.
This Chapter concludes that existing methods can heal large percentages
of defect building models. However, none of them are totally satisfactory
when repairing certain defects.

Chapter 3 presents the relevant background theory about a voxel-based
repair method, separated in three components; Voxelization of a polygonal
mesh, Morphological operators and Surface reconstruction. The topological
repair of a voxelization by scan conversion along with morphological op-
erators is illustrated. Subsequently, an overview of surface reconstruction
algorithms is presented of which Marching cubes, Dual contouring and
Pressing are described in more detail. Here a clear distinction is made
between using only a binary grid versus using the original input model in
addition. Based on this chapter, the two alternative approaches have been
formed.

Chapter 4 describes the choices made in the implementation of the two
approaches (Approach 1: Marching Cubes and Approach 2: Dual Contour-
ing). The decisions that were made for both approaches are explained per
component and specific issues that have been encountered are highlighted.

Chapter 5 explains the selection of a test set and consecutively shows the
results of applying a voxel-based repair on the test set, where the perfor-
mance is measured by validity and geometric error.

Chapter 6 starts with a more general discussion section, where the role of a
voxel-based method is placed in the context of general 3D City model pro-
cessing. This is followed by the conclusion, stating the fundamental repair
capability of the researched method but also emphasizing the difficulties
of an accurate surface reconstruction. Finally several recommendations for
future work will be given.

2 STATE OF THE ART IN 3D C I TY
MODEL REPA IR

Some research on repairing 3D City models has been performed. However,
to be able to speak of model repair, first the specifications of a valid model
will be described in Section 2.1. This will be followed up in Section 2.2 by
a description of the existing approaches, both in City modeling and other
disciplines. An evaluation of the effectiveness of the approaches is given in
Section 2.3.

2.1 3d city model standards
In this section the specifications for 3D modeling standards (CityGML in
particular) will be described along with existing tools for validation of datasets
and an overview of the possible errors.

2.1.1 3D standards

Several ways of storing 3D City models are currently in existence. The most
common 3D standards are

• CityGML by Open Geospatial Consortium (OGC)
url: http://www.citygmlwiki.org/index.php/Specifications

• x3D by web3DConsortium
url: http://www.web3d.org/x3d/what-x3d

• Industry Foundation Classes (IFC) by buildingSMART International
url: http://www.ifcwiki.org/index.php/Documentations

• Geography Markup Language (GML) by OGC
url: http://www.opengeospatial.org/standards/gml

• Keyhole Markup Language (KML) by OGC
url: http://www.opengeospatial.org/standards/kml/

• COLLADA by Khronos Group
url: https://www.khronos.org/files/collada_spec_1_5.pdf

• Drawing Exchange Format (DXF) by Autodesk
url: http://images.autodesk.com/adsk/files/acad_dxf0.pdf

• Shapefile (SHP) by ESRI
url: https://www.esri.com/library/whitepapers/pdfs/shapefile.

pdf

• 3D PDF by Visual Technology Services
url: http://www.3dpdfconsortium.org/pdf-standards-info.html

Based on a set of criteria such as geometry, texture, semantics and accep-
tance among others, CityGML has been adopted in 2011 as the main format
of the Dutch 3D SDI [Stoter et al., 2011]. The main advantages of CityGML

9

http://www.citygmlwiki.org/index.php/Specifications
http://www.web3d.org/x3d/what-x3d
http://www.ifcwiki.org/index.php/Documentations
http://www.opengeospatial.org/standards/gml
http://www.opengeospatial.org/standards/kml/
https://www.khronos.org/files/collada_spec_1_5.pdf
http://images.autodesk.com/adsk/files/acad_dxf0.pdf
https://www.esri.com/library/whitepapers/pdfs/shapefile.pdf
https://www.esri.com/library/whitepapers/pdfs/shapefile.pdf
http://www.3dpdfconsortium.org/pdf-standards-info.html

10 state of the art in 3d city model repair

over the other formats is that it’s the only international standard for 3D
City Models that covers both the semantics and geometry. For this reason
many 3D city models are available in CityGML. Therefore, CityGML will be
the main focus for the validation and repairing processes described in this
thesis.

2.1.2 CityGML as 3D standard

To enable the widespread use and reuse of 3D city models, a common
format for storage and exchange is needed. For this reason the OGC has de-
veloped CityGML as an open standard with the goal of creating a common
definition for the objects, attributes and relations of a 3D city model. The
most important characteristics of CityGML are multi-scale representation,
coherent semantic-geometrical modeling and geometric topological model-
ing [Kolbe et al., 2005]. The multi-scale representations of CityGML are
developed as five Levels of Detail LoD, describing the scale of the object
geometry (see Figure 9). For each of these LoD representations, geometry
can be stored.

Figure 9: The 5 LoDs in CityGML [Kolbe et al., 2005]

2.1.3 Semantic modeling of CityGML

Another property of CityGML is the coherent semantic-geometrical model-
ing Stadler and Kolbe [2007]. Objects in the real world are represented both
on the geometric and the semantic level, which are linked. This means that
for example a city object can be stored as a Building, Bridge, City Furniture,
Water Body, Transportation, etc. This thematic modeling enables the possibil-
ity of adding further semantics to the object. In case of a Building, surfaces
can be grouped together as either Ground Surface, Roof Surface or a Wall
Surface. Furthermore, individual surfaces may store attributes, for example
the class Textured Surface enables the storage of appearance properties such
as material, texture or transparency. These links between geometry and se-
mantics is one of the advantages CityGML has over the other 3D standards.

2.1 3d city model standards 11

2.1.4 Geometry specifications of CityGML

CityGML is based on GML3 which uses the ISO19107 geometry model
[Kolbe, 2009]. Geometric primitives exist for each dimension. A zero-
dimensional primitive is a point, a one-dimensional primitive is a curve,
a two-dimensional primitive is a surface and a three-dimensional primitive
is a solid. Examples of these primitives are shown in Figure 10.

Figure 10: ISO 19107 geometric primitives [Ledoux, 2015]

Solids in CityGML are described by using a Boundary Representation (B-Rep),
this means the higher dimensional primitives are topologically built up of
the lower dimensional primitives. Polygons are built up of one exterior ring
and may have multiple interior rings, which represent holes in the polygon.
A surface is then built up from a set of polygon faces. The collection of such
surfaces can be regarded as a boundary representation which represents
a solid. An example of how such a solid is stored in GML is shown in
Figure 11. In this example only a single Linear Ring is shown, for the sake
of clarity.

<gml : Sol id>
<gml : e x t e r i o r>

<gml : CompositeSurface>
<gml : surfaceMember>

<gml : Polygon>
<gml : e x t e r i o r>

<gml : LinearRing>
<gml : pos>84468 .66733 429533 .28100 0.00000</gml : pos>
<gml : pos>84470 .71000 429539 .03000 0.00000</gml : pos>
<gml : pos>84479 .52000 429535 .91000 0.00000</gml : pos>
<gml : pos>84477 .47000 429530 .15000 0.00000</gml : pos>
<gml : pos>84468 .66733 429533 .28100 0.00000</gml : pos>

</gml : LinearRing>
</gml : e x t e r i o r>
<gml : i n t e r i o r>
. . .

</gml : surfaceMember>
</gml : CompositeSurface>

</gml : i n t e r i o r>
</gml : Sol id>

Figure 11: Example of a gml:Solid

12 state of the art in 3d city model repair

2.1.5 Validation of CityGML

The requirements for valid three-dimensional primitives as defined by the
ISO 19107 geometry model. Based on this definition an implementation for
the validation process has been described by Ledoux [2013]. The definition
states that solids should be closed or watertight and each shell should be
simple, thus a 2-manifold. This means that for every point on a surface, the
neighborhood should be topologically equivalent to a plane. Since shells
should be 2-manifold, no dangling pieces, gaps or overlaps are allowed.
Figure 12a shows an example of a non-manifold solid since it is touching
itself on a single vertex, which is called a singular point. Several faces share
this vertex but none of them share an edge. Another example of a non-
manifold solid is shown in Figure 12b where more than two faces share the
same edge.

(a) Non-manifold vertex (b) Non-manifold edge

Figure 12: Self-intersecting ring

A solid may be perforated, as long as the remaining volume remains water-
tight. Since all surfaces are represented by polygons, their geometry should
be planar. All holes are described by an exterior ring. If holes are present in
the polygon, these are represented as interior rings. In order to distinguish
between exterior and interior rings, any exterior polygons of a solid should
be ordered counter-clockwise. Vice versa, interior rings should be ordered
clockwise. An example of a valid polygon containing a hole is illustrated in
Figure 13.

1-6 5

2 3

4

10 9

7-11 8

Figure 13: Valid polygon with a hole described as interior ring

2.1 3d city model standards 13

A process is proposed by [Ledoux, 2013] where the validation takes place
on four levels; (i) per ring, (ii) per polygon, (iii) per shell and (iv) per solid.
If defects are found on one level, the next levels are not checked anymore as
the model will be considered invalid. A description of these errors for each
level, will be described below.

ring level
In general every ring should be closed and consecutive points are not al-
lowed to be the same. An example of this is shown in Figure 14. When the
distance between the highlighted coordinates is smaller than the threshold,
a defect will be the result.

. . .
<gml : LinearRing>

<gml : pos>300607 .4669 5040070 .0728 22.8400</gml : pos>
<gml : pos>300606 .0106 5040070 .5849 23 .4520</gml : pos>}
<gml : pos>300606 .0106 5040070 .5849 23 .4516</gml : pos>
<gml : pos>300607 .4669 5040070 .0728 22.84</gml : pos>

</gml : LinearRing>
. . .

Figure 14: Example of Consecutive Points Same error

Furthermore, all vertices should be incident to two edges and edges are
not allowed to be intersected. Figure 15a shows an example of an invalid
self-intersecting ring. In Figure 15b the vertices 3 and 5 have the same
position and are connected to multiple edges. Figure 15c illustrates another
example of vertices being connected to multiple edges, also resulting in a
self-intersection defect. Figure 15d shows a polygon where the distance
between two vertices is lower than the specified threshold, resulting in a
consecutive points same error.

1-5

2

3

4

(a) Self-intersecting ring

1-7 2

6 43-5

(b) Self-intersecting ring

1-7

2

4

3-6

5

(c) Self-intersecting ring
(d) Ring with consecutive points

same

Figure 15: Self-intersecting ring

14 state of the art in 3d city model repair

polygon level
On the polygon level, defects can be caused by either the interior rings or
non-planarity. Every point in the interior of a polygon, should be connected
to any other point in the interior. Additionally, interior rings are not allowed
to intersect with the exterior ring or other interior rings, and should be
oriented counter-clockwise. Some examples of invalid rings are shown in
Figure 16. Figure 16a shows an example of the interior ring being located
outside the exterior ring. Intersecting rings are visible in Figure 16b. The
interior of the polygon shown in Figure 16c is disconnected, resulting from
the fact that the hole splits the polygon in two pieces. A polygon with a
wrong interior ring orientation is shown in Figure 16b.

(a) Interior ring intersecting with
exterior ring

(b) Interior rings intersecting each
other

(c) Polygon interior is not con-
nected

1-6 5

2 3

4

8 9

7-11 10

(d) Interior ring with wrong orien-
tation

Figure 16: Some examples of invalid polygons

Another defect on the polygon level is shown in Figure 17, where the polyg-
onal is non-planar. All triangle normals of the triangulated polygon may
not deviate more than a specified threshold angle. In this example, an angle
of 90◦will be found which is too high.

1 mm

Figure 17: Example of a non-planar polygon distance deviation

2.1 3d city model standards 15

shell level
Once the checks on the lower levels have been accomplished, the shell can
be validated. The first example shown in Figure 18a shows a valid solid,
containing an exterior shell and an interior shell. Figure 18b shows a gap
in the model, disabling the distinction between interior and exterior. An
example of a non-manifold edge is shown in Figure 18c. Related to this, a
non-manifold vertex is illustrated in Figure 18d.

(a) A valid Solid (b) Invalid shell: shell not closed

(c) Invalid shell: non-manifold edge (d) Invalid shell: non-manifold vertex

Figure 18: Example of a valid shell and three invalid ones

solid level
Defects on the solid level involve conflicts between the exterior shell and one
or more interior shells. Figure 18a shows a solid with an interior shell. Since
the scope of this thesis is restricted to 3D City models with no interior shells
(i.e. CityGML LoD 1− 3), defects at the solid level are not relevant. An
overview of the possible errors that may be found in the data is in Table 2,
based on the work of Ledoux [2013].

16 state of the art in 3d city model repair

Defects val3dity

Ring

Too few points
Consecutive points same
Not closed
Self intersection
Collapsed to line

Polygon

Intersection rings
Duplicated rings
Non planar polygon distance plane
Non planar polygon normals deviations
Interior disconnected
Hole outside
Inner rings nested
Orientation rings same

Shell

Too few polygons
Not closed
Non manifold vertex
Non manifold edge
Multiple connected components
Self intersection
Polygon wrong orientation
All polygons wrong orientation

Table 2: An overview of the defects detected by val3dity
[Ledoux, 2013]

2.2 current repair methods 17

2.2 current repair methods
This Section will start by giving an overview of general methods for re-
pairing polygon meshes followed by an evaluation of the existing work
on 3D City Model repair. Two existing methods for repairing 3D City
models are described (see § 2.2.3 and § 2.2.4) along with a description of the
potential of a voxel-based repair method (see § 2.2.5). Then the strengths
and weaknesses of these three repair methods will be evaluated.

2.2.1 Polygonal mesh repair

Polygonal mesh repair in CAD-models is a widely studied topic, often
applied in the fields of finite element analysis and mechanical engineering.
Although not aimed at repairing building models specifically, these methods
can be applied on city models. An extensive overview of polygonal mesh
errors and repairs has been presented by [Attene et al., 2013]. Here a clear
distinction is made between local and global repair methods.

• Local repair methods are defined as handling defects on an individ-
ual basis using local modifications. These methods are characterized
by leaving the original mesh untouched where possible, however a
repaired or manifold output is often not guaranteed.

• Global or volumetric repair methods are described as using a complete
re-meshing resulting in robust method which may loose detail.

2.2.2 City Model repair

Since building models have different characteristics such as large planes
and sharp features, the desired result is different than in most CAD-repair
methods. Several descriptions on the approach of repairing 3D city models
have been published. A classification of the common defects in CityGML
is given by Zhao et al. [2014]. It is stated that these defects may arise as a
result of the interactive modeling process, data optimization, conversion of
CAD models or the adding of semantics. Basic repair routines are proposed:
triangulation, regularization removing dangling pieces and decomposition
based on intersections of the model. An alternative set of rules for valida-
tion is given by Wagner et al. [2013] addressing the geometric-semantical
consistency of CityGML models.

Two initiatives show results of applying repair methods on datasets. The
first done by Alam et al. [2013] describes a local method which iterates
through all polygons and solids, and checks each for a number of polygon
and solid specific errors. Their results are described in § 2.2.3. The second
case is done by [Zhao et al., 2013] using a method called Shrink-wrapping.
This method is based on using a constrained tetrahedralization, which will
be described in more detail in § 2.2.4.

2.2.3 Detect & local repair

An attempt of using local mesh-repair techniques on defective CityGML
models is described by [Alam et al., 2013], of which the process is still
ongoing. Two sets of validation checks are created, both for the polygon and
shell level. Their method then proceeds to test building models for specific

18 state of the art in 3d city model repair

errors, first on the polygon level then on the shell level. If any defects are
encountered, local repair techniques are applied aiming to fix the defects.

(a) Self-intersections (b) Non-manifold vertex

Figure 19: Some limitations of the detect and local repair method [Alam et al., 2013]

On the polygon level, defects such as self-intersection, consecutive points
same can be repaired. On the shell and solid level multiple connected com-
ponents, simple self-intersections (overlapping polygons) and face-orientations
can be repaired. A major problem on the solid level are overused edges
(edge bounding more than 2 faces) which are considered impossible to
repair automatically. Furthermore, any ’complex’ self-intersections (see Fig-
ure 19a on the shell level may be solved but are often transformed into
the same problematic overused edge error. Also overshoots (edge bound-
ing less than 2 polygons) are not necessarily repaired. The repair for any
solids touching in a point (umbrella) has not yet been implemented (see
Figure 19b). They conclude by stating that different datasets often contain
different types of defects due to a possible misinterpretation of the required
modeling standards. Although this method does not repair all defects, it
does leave the surface semantics intact. In case of non-planar polygons, the
assumption is made that all walls are vertical and roof edges are parallel.
Depending on the building model, this may not be a realistic representation.
See Figure 20 for an illustration of the non-planar polygon repair step.

Figure 20: Healing of non-planar Roof Surfaces in LoD1 & LoD2 [Alam et al., 2013]

The findings of this paper may be seen as an indication that local repair
methods are efficient and fast at repairing some defects but do not seem suit-
able for defects on the solid level involving overshoots or self-intersections.
An overview of the strengths and drawbacks of this method are given in
Table 3.

2.2.4 Shrink-wrapping

A second repair method called Shrink-wrapping was developed by [Zhao
et al., 2013]. It is a graph-based method which applies a constrained tetra-
hedralization on all faces of the model and its convex hull. This results in
a volumetric representation made up of polyhedra, of which some have to

2.2 current repair methods 19

Detect & local repair

Strengths Drawbacks

Efficient in terms of processing Non-manifold edges not repaired
Preservation of attributes Self-intersections not repaired
Oblique surface are supported Assumptions on parallelism

Non-manifold vertex not repaired

Table 3: Strengths and drawbacks of detect & local repair method

be removed. To do so a heuristic carving process is performed, deleting
polyhedra which are outside of the original model. An illustration of this
process is illustrated in Figure 21.

Figure 21: Illustration of the Shrink-wrapping method [Zhao et al., 2013]

Validating this process shows that it can effectively repair gaps and self-
intersections in LoD2 CityGML datasets. Also any interior holes can be
filled. A drawback of this method is that overshoots do cause problems.
Although the resulting building may be considered valid, the geometry has
not been accurately repaired. An example of a valid model but not an
accurate repair is illustrated in Figure 22. In addition the Shrink-wrapping
method is sensitive to floating point arithmetic. The rounding of point
precision may result in triangles being decomposed into edges or vertices,
leaving the building model invalid. Finally, the occurrence of overlaps in
the input model may result in small errors.

Figure 22: Incorrectly repaired overshoot [Zhao et al., 2013]

20 state of the art in 3d city model repair

Shrink-wrapping also leaves the surface semantics intact and maintains the
original vertex positions of the input geometry. An overview of the strengths
and drawbacks of this method are given in Table 4.

Shrink wrapping

Strengths Drawbacks

Effective repair of gaps Overshoots can be incorrectly repaired
Effective repair of self-intersections Sensitive to floating point arithmetic
Preservation of attributes Overlapping surface cause small errors
Oblique surface are supported
No geometry shifts (except overshoots)

Table 4: Strengths and drawbacks of Shrink-wrapping method

2.2.5 Voxel based repair

Using a voxel-based repair method takes a different approach to polygonal
model repair, corresponding to the global methods described by [Attene
et al., 2013]. By performing the intermediate step of converting the input
model to a binary grid, a manifold result can be acquired by using morpho-
logical operators and disregarding inner shells. Existing research on this
approach is given by [Nooruddin and Turk, 2003] and [Hétroy et al., 2011].

Although the use of voxel-based methods for repair of 3D City models has
been suggested, the specific problems which may be encountered when ap-
plying these methods on 3D City building models have not been researched
in depth. One issue is that the semantics will be lost initially. A second issue
is the preservation of characteristics of 3D City Model Buildings such as
large planar regions and sharp edges. These features are usually lost when
using the above mentioned methods. However, more suitable results may be
achieved by selecting methods which take these characteristics into account.
The possibilities of applying a voxel based reconstruction method on invalid
CityGML geometry will be explored in this thesis. The theory of applying
a voxel based repair method will be described in the next Chapter 3. An
overview of the expected strengths and drawbacks of a voxel based method
are given in Table 5.

Voxel based

Strengths Drawbacks

Robust repair capability Potential shift in geometry
Potential to repair non-manifold edges Potential loss of attributes

Inherently slower processing

Table 5: Strengths and drawbacks of a potential voxel based method

2.3 evaluation 21

2.3 evaluation
When we compare the two existing repair methods to the requirements set
in Section 1.2 in Chapter 1, it becomes clear that both the Local Repair
and the Shrink-wrapping method are quite effective but do not repair all
defective cases. While some defects may be more efficiently repaired by
the existing methods, certain defects such as overshoots and other cases of
non-manifold edges seem to be a particular challenge. The third method
encompasses a voxel-based repair and has the potential to repair cases of
non-manifold edges and severely defective geometry. Whereas both Shrink-
wrapping and the Detect & Local Repair method do preserve attributes and
support oblique surfaces without any problems, this is challenging for a
voxel-based method. The possibilities of preserving attributes and smoothly
reconstructing oblique surfaces will be studied, to find out the suitability of
a voxel based method.

3 RELATED WORK

Several voxel-based repair methods for general polygonal mesh repair are
already in existence. In general, the existing work on voxel-based repair
can be distinguished in 4 components, which form the basis of the two
methodologies which I propose later in this thesis (see Chapter 4).

• The first component is Voxelization of a polygonal mesh Section 3.2
which has the goal of turning a (defect) 3D polygonal model into a
binary grid.

• The second component is Morphological operators (Section 3.3) which
has the goal of filtering artefacts and closing any holes, ensuring a
manifold binary grid.

• The final component is Surface reconstruction (Section 3.4) which has
the goal of turning binary grid into polygonal mesh using isosurface
extraction techniques.

• Additional steps are described in Post processing (Section 3.5) which
have the goal of turning the mesh into a polygonal model with sharp
features.

This chapter will start by giving an overview of the related work. Consecu-
tively, the separate components which are at the basis of these methods will
be described.

3.1 overview related work
One of the earlier methods of voxelization is presented by Oomes et al.
[1997] describing a process of transforming a 3D-polygonal model into a
voxel representation using a flood filling algorithm. It was developed as a
means of converting between polygonal and volumetric models. Since it was
not meant for repair it does not allow for any gaps in the input geometry.
A process for topology reduction and surface simplification was described
by Andújar et al. [2002]. Apart from a voxelization process they go on
to describe two alternatives for surface reconstruction; a triangular and an
orthogonal reconstruction. Although this method covers the full process of
voxelization and surface reconstruction, the fact that the mesh is purpose-
fully simplified and gaps cannot be handled make this method unsuitable
for 3D City repair.
A well known contribution for a voxel-based mesh repair was presented
one year later by Nooruddin and Turk [2003], specifically proposing a way
to repair polygonal models using a voxelization consisting of Parity Count &
Ray Stabbing. Some morphological operators are offered in order to remove
holes. Finally, they filter the binary grid before converting it back to trian-
gle mesh (marching cubes like) and using edge decimation techniques for
reducing the number of triangles. Although this method does not maintain

23

24 related work

sharp building features, its repair capability makes it very relevant for 3D
city model repair.
According to Bischoff and Kobbelt [2005], the existing repair methods can be
distinguished as being either Surface- or volume- based algorithms, corre-
sponding with the local & global repair methods described in § 2.2.1. They
propose a hybrid model, detecting defect regions (intersections and cracks)
based on a threshold specified by the user. Then they apply a voxel based
repair only on those parts of the mesh. The valid parts of the mesh are
left untouched. A surface reconstruction combining Marching Cubes and
Dual Contouring is applied before applying smoothing and decimation. A
strong point of this method is its hybrid approach. However, the connection
(clipping) between the original and the repaired part of the mesh may leave
artefacts. Furthermore the applied smoothing and decimation may remove
sharp features, although these can be customized.
A new and original approach is described by Hétroy et al. [2011], which
gives the user control over the local application of the topology repair. A
voxelization is applied by finding all voxels that intersect with the bound-
ing box of mesh triangles, which was compared to [Nooruddin and Turk,
2003] and considered equally effective. After the voxelization morphological
operators are applied for closing holes before using an extension of the
Marching Cubes algorithm (preventing ambiguous cases) and smoothing to
rebuild the triangle mesh. Again, this method is not aimed at reconstructing
building models as the smoothing steps will not produce sharp feature.
Both hybrid methods [Bischoff and Kobbelt, 2005; Hétroy et al., 2011] require
user input which does not fully meet the requirement of an automatic repair.
A recent paper considering the voxelization was published during the de-
velopment of this thesis by Steuer et al. [2015]. They apply the voxelization
method of [Nooruddin and Turk, 2003] on (defect) City Models in order
to approximate the volume. They describe how their algorithm has the
capability of calculating volumes of defect City models and may have an
impact on building model repair. Existing methods provide ways of adjust-
ing topology and returning smooth manifold triangle meshes with as little
artefacts as possible (oversampling, smoothing, filtering) These methods are
not perfect for building model repair but their components may be used
in combination with surface rebuilding and post-processing algorithms that
are better suited. The rest of this chapter will describe the work on each of
the defined components.

3.2 voxelization of a polygonal mesh
The voxelization component encompasses the conversion of a polygonal
model to a binary volumetric representation. The goal of this component
is to enable the simplification of topology while avoiding the creation of
unwanted artefacts. First the basics of vector to raster conversion and the
principle of using a 3D grid are explained. Then the theory of scan con-
verting a 3-dimensional polygonal model will be clarified. Subsequently the
topological repair capability of scan conversion will be described.

3.2 voxelization of a polygonal mesh 25

3.2.1 Vector to raster conversion

The principle of raster conversion of a vector model is not new. [Kaufman
and Shimony, 1987] were the first to describe this process for application on
a 3-dimensional model. They describe a set of scan-conversion algorithms
for 3D geometric objects such as straight line segments, polygons, cylinders
and cones. The basics of this process are described by Jones [2014, Ch. 8,
p. 132-137] showing how the boundaries of a polygon can be approximated
by transforming them to pixel locations. There are two ways of doing so;
(i) rasterizing a B-Rep or (ii) rasterizing the interior of a B-Rep. Figure 23a
shows the input vector model of which the B-Rep is rasterized in Figure 23b,
showing all pixels which intersect the original vector model. For rasterizing
the interior of a B-Rep, first all pixels are selected which intersecting mul-
tiple edges (see Figure 23c). Once these corner pixels are found, these can
be connected to form a polygon. Now all pixels within the polygon are
shown. This result is shown in Figure 23d. Where the original vector model
was only limited by the precision of its coordinate system, rasterizing a
polygonal model results in a raster model with a lower precision. This
precision is closely related to the resolution of the raster.

(a) Vector model (b) Rasterizing a B-Rep

(c) Select and connect corner
pixels

(d) Rasterizing the interior of
a B-Rep

Figure 23: Vector to raster conversion

In order to rasterize a polygonal model in 3D, the same principles apply
but have to be expanded. Since our goal is to reconstruct the volume of a
building, we are looking for a way to rasterize the interior of a B-Rep in
3D. To do so, we have to fill a 3D grid of cells. Similar to the rasterization
process, values should be assigned to every voxel; 0 to voxels in the exterior
of the model and 1 to voxels in the interior of the model.
The 3D grid should contain the entire polygonal model, meaning that the
bounding box of the 3D-model should correspond with the bounding box
of the 3D-grid. An illustration of a 3D model in real world coordinates

26 related work

(x,y & z) with its bounding box and scale is shown in Figure 24a. The
voxelized version of this model is shown in Figure 24b, illustrating the voxel
coordinates (i, j & k), the origin at (0, 0, 0) and the dimension of the grid.

x

z

y

model x-scale [m]

(a) Representing a 3D model in real world coordinates (R3)

i

k

j

0,0,0

model i-dimension [n]

(b) Representing a volume in voxel coordinates (Z3)

Figure 24: Illustration of the 3D model and voxelization in different coordinate
representations

During the repair process, we need to be able to convert back and forth
between the real world coordinates and the voxel coordinates. In order
to relate the two different coordinate representations, four parameters are
required;

• The scale defines the size of the grid which is determined by the largest
length of the model in either the x, y or z direction.

• The dimension defines the resolution of the grid. It describes the num-
ber of voxels needed to fill the length of the model scale.

• The voxel size defines the dimensions of a grid cell.

• The translation values describe the distance of the lower left corner
of the first voxel V0,0,0 to the lower left corner of the original mod-
els’ bounding box. This is needed to switch between Vijk in voxel

3.2 voxelization of a polygonal mesh 27

coordinates (Z3) to Vxyz in the original model coordinates (R3). An
illustration of the translation vector is given in Figure 25.

(0,0,0) x

y

i

j

(min(x), min(y), min(z))

Figure 25: Illustration of the translation vector

The conversion of voxel coordinates to original coordinates is described by
Equation 1.

Retrieving original model coordinates:

x = scalex ·
(i + 0.5)

dimensionx
+ translatex (1a)

y = scaley ·
(j + 0.5)

dimensiony
+ translatey (1b)

z = scalez ·
(z + 0.5)

dimensionz
+ translatez (1c)

In order to determine the resolution of a voxelization of a certain model,
either the dimension or the voxel size should be given as input. Assum-
ing that cubic voxels are used with the same dimension in the x,y, and z
direction, this relation can be described as:

scalex = dimensionx · voxelsize (2a)

scaley = dimensiony · voxelsize (2b)

scalez = dimensionz · voxelsize (2c)

The next step is to transform a 3D polygonal model into a binary grid, which
can be done with a scan conversion.

3.2.2 Scan conversion

Scan conversion is a well tested method for determining whether a voxel
should be considered inside or outside a polygonal model. This is decided
by shooting scan rays through the polygonal model. Two methods of scan
conversion are proposed by Nooruddin and Turk [2003]; parity count and
ray stabbing. Although both methods base the voxel value on the position
of scan line intersections, their decision is made in a different way. Parity
Count considers a voxel to be inside when it is positioned after an odd
number of intersections, see algorithm 3.1.

28 related work

Algorithm 3.1: Parity Count

[Nooruddin and Turk, 2003]
Input: A triangulated model M, an empty 3-dimensional grid G and

a ray directed ⊥ xy, ⊥ yz or ⊥ zy
Output: binary voxel grid G with assigned values 0 (exterior) and 1

(interior) for every voxel Gijk along ray r

1 calculate intersections between r and M
2 for every Gijk along r do
3 if odd number of intersections before Gijk then
4 return Gijk = 1
5 end
6 else
7 return Gijk = 0
8 end
9 end

Algorithm 3.2: Ray Stabbing

[Nooruddin and Turk, 2003]
Input: A triangulated model M, an empty 3-dimensional grid G and

a ray r along the grid
Output: binary voxel grid G with assigned values 0 (exterior) and 1

(interior) for every voxel Gijk along ray r

1 calculate intersections between r and M
2 for every Gijk along r do
3 if intersection before and intersection after Gijk then
4 return Gijk = 1
5 end
6 else
7 return Gijk = 0
8 end
9 end

Ray stabbing considers a voxel to be inside when it is positioned anywhere
between the first and last intersection along the scan line, see algorithm 3.2.
The difference between these methods is illustrated in Figure 26. Whereas
Parity Count functions as an on/off switch, Ray Stabbing fills all space
between the first and last intersection.

(a) Parity Count: all intersections
taken into account

(b) Ray Stabbing: first and last inter-
section taken into account

Figure 26: Different results in scan converting a concave polygon

3.2 voxelization of a polygonal mesh 29

This example shows why the Parity Count method is more precise, as it
accurately converts a concave model. The reason why Ray Stabbing may
be relevant is because possible defects in the input polygonal model should
be considered. How defect input models may be converted to topologically
correct binary volumes has to do with the concept of majority voting.

3.2.3 Majority Voting

The defects which are most significant during the scan conversion process
are gaps, overshoots and self-intersections. Figure 27 shows that these defects
prevent single scan rays to correctly determine the interior and exterior of a
polygonal model.

(a) Overshoot: effect on single scan-
line

(b) Gap: effect on single scan-line

Figure 27: Scan conversion of defect input using Parity Count

If a polygonal model would be scanned in one direction, any existing defects
may cause wrongly assigned values to the voxel grid. The way to solve
this as proposed by Nooruddin and Turk [2003] is to use a majority voting.
The concept is to shoot multiple rays in different directions, and let each
of these rays vote for a value (1 for interior or 0 for exterior) in the voxel
grid. A majority voting then means that any voxel with more than a certain
amount of votes, will be considered to be inside the model. In this process
two parameters are of importance:

• the number of rays in different directions

• the voting threshold

In order to achieve a symmetrical composition of rays, using either 6, 18
or 26 rays is most logical. Figure 28a shows how scanning in 6 directions
is done towards neighboring voxels in the x,y and z direction. Similarly,
scanning in 18 or 26 directions is possible by selecting more neighboring
voxels, as shown in Figure 28b. Using a higher number of rays will possibly
result in a more precise voxelization at the cost of processing time. The
suitability will be described in more detail in Chapter 4 in Section 4.2.
The importance of the voting threshold is illustrated in Figure 29. All voxels
are colored according to the number of votes. Voxels with 1 vote are shown
in grey, voxels with 2 votes are shown in black. By only including voxels
with a value of 2, the overshoot Figure 29a and the gap Figure 29b can be
topologically repaired. This principle is important, since it is the reason why
a voxel based method is able to handle certain defects.
The voting threshold determines how loose or strict the voxelization process
is performed. Nooruddin and Turk [2003] leave open the option for different
thresholds. However, Steuer et al. [2015] choose to scan in 6 directions and

30 related work

(a) Shooting in 6 directions

(b) Shooting in 18 (left) or 26 directions (right)

Figure 28: Number of scan directions per voxel

Algorithm 3.3: Majority Voting

[Nooruddin and Turk, 2003]
Input: A triangulated model M, an empty 3-dimensional grid G and

n number of scan directions
−→
dirn and a threshold t

Output: a filled 3-dimensional binary voxel grid G

1 for voxel Gijk in G do
2 votes = 0

3 for every
−→
dirn do

4 ray r = Vxyz +
−→
dirn

5 if ParityCount returns 1 then
6 votes += 1
7 end
8 end
9 if votes > t then

10 Gijk = 1
11 end
12 else
13 Gijk = 0
14 end
15 end
16 return G

set the threshold t at more than half the number of rays, t = rn/2. In their
approach this leads to a threshold t = 3. However, i.e. a voxelization in
6 directions is performed, a threshold t = 3 or t = 4 may yield different
results. In some (defect) cases this can lead to the output being either
manifold or not. The specific cases were studied and are presented in
Section 4.2.

3.2 voxelization of a polygonal mesh 31

(a) Scan converting an overshoot (b) Scan converting a gap

Figure 29: The effect of using majority voting on defect input geometry

In general the Parity Count method is expected to result in correct decisions
more often, due to its support for concave geometry. However, the Ray
Stabbing method may solve cases of self-intersecting models and double
surfaces. Examples of these cases are illustrated in Figure 30 and Figure 31.
The self-intersecting case shows how the Parity Count method stops filling
voxels in the overlapping area since a second intersection was found. The
scan-line continues to fill voxels when the overlapping area is left. Running
this process for a single scan-line will result in a gap.

(a) Parity Count: all intersections
taken into account

(b) Ray Stabbing: first and last inter-
section taken into account

Figure 30: Advantage of Ray Stabbing in case of self-intersections

In case of a double surface, the Parity Count method immediately finds
two intersections. This means that voxels won’t be filled until the third
intersection is found. When the actual exterior is reached, this will be
mistaken for the interior. Running this process for a single scan-line will
result in multiple connected components.

(a) Parity Count: all intersections
taken into account

(b) Ray Stabbing: first and last inter-
section taken into account

Figure 31: Advantage of Ray Stabbing in case of double surfaces

In general we can observe that any self-intersections or double-surfaces in
the input model, may cause the Parity Count method to return an undesired
result for individual scan rays. However, by using majority voting these

32 related work

cases can be repaired in general. Only in extreme cases of multiple defects
in combination with self-intersections or double-surfaces, this problem may
result in a disordered topology. Only in these cases Ray Stabbing may be
more appropriate.

3.2.4 Down-sampling

An optional step of smoothing the resulting binary grid which is used by
Nooruddin and Turk [2003] is a down-sampling of the grid. They propose
a 3x3x3 Gaussian filter but mention that a 2x2x2 filter may also be suitable.
In the latter case a 1283 resolution grid for example, would be turned into
a 643 resolution voxelization, turning every 8-cube into either a single 0- or
1-valued voxel. Since we are looking at building model repair, we want to
maintain any sharp edges. Therefore the suitability of smoothing is highly
dependent on the characteristics of the input model and the applied surface
reconstruction.

3.2.5 Repair capability

The previously described process has the ability to turn most defect polygo-
nal models into a manifold volumetric representation. However, the result-
ing binary grid is not guaranteed to be manifold. In case of combinations of
self-intersections, double surfaces or extreme defects, the resulting voxeliza-
tion can contain holes and/or dangling voxels. There are three aspects of
the voxelization which may affect the quality of the final output:

• the number of connected components

• any holes in the voxelization (possibly caused by self-intersections or
double surfaces)

• any unwanted hanging voxels (possibly caused by sharp angles in the
input model)

Some morphological operators are needed to process these cases. How to
detect and handle each of them, will be discussed in the following Sec-
tion 3.3.

3.3 morphological operators
Since our goal is to create a topologically correct voxelization which repre-
sents a 2-manifold, some checks need to be performed after the voxelization
process. These aspects were identified in the previous Section as (i) selecting
the relevant connected component(s), (ii) detecting and removing any holes
and (iii) detecting and removing unwanted hanging and/or dangling voxels
which may result in unwanted artefacts. An overview of solutions for these
problems will be given in this Section.

3.3.1 Adjacency Filtering

The most basic of morphological operations on binary grids are based on
the notion of adjacency. This is described by Cohen-Or and Kaufman [1995]
and allows the identification of any hanging or dangling voxels.

3.3 morphological operators 33

Figure 32: 6-, 18- and 26- adjacency

Each voxel in a binary grid has a number of voxels within its N-adjacency.
The possible 6-, 18- and 26- adjacency have been illustrated in Figure 32.
Any voxels that share a face are 6-adjacent, voxels that share an edge are 18-
adjacent and voxels that share a vertex are 26-adjacent. By calculating the
number of N-adjacent voxels, information regarding the position of single
voxels can be retrieved. For example a voxel with 26/26-adjacency is fully
covered and in the interior of a volume. A voxel with 1/6-adjacency is
connected to a volume through one face (a hanging voxel). Based on this
knowledge, filtering and selecting of voxels can be applied. An example of
filtering any hanging voxels is shown in algorithm 3.4. Different operations
can be performed by setting a different rule for the adjacency threshold and
voxel value.

Algorithm 3.4: Voxel Adjacency

[Cohen-Or and Kaufman, 1995]
Input: A binary grid G containing voxels Vijk with values 1 (interior)

or 0 (exterior), a specified N-adjacency (6, 18or26) and a
threshold t

Output: An integer grid G containing voxels Vijk with values 0toN

1 for Vijk in G do
2 calculate number of N-adjacent voxels n
3 if n < t then
4 Vijk = 0
5 end
6 end

3.3.2 Distance Mapping

Distance mapping is a morphological operator with the goal of enlarging
or removing holes, which is used both in [Nooruddin and Turk, 2003] and
[Hétroy et al., 2011]. Both of these methods use a slightly different way of
a double buffer. This can be done in two ways, called opening and closing.
Since we are interested in removing holes, the closing is a relevant step.

Figure 33a shows the initial grid with a hole (in this case a single missing
voxel). The first step is to create the Manhattan Distance map of the binary
grid, which is described by Danielsson [1980]. This is an efficient algorithm
which calculates Manhattan distance values for each 0-valued voxel in the
grid to the closest 1-valued voxel. Naturally, all 1-valued voxels are given
a distance value 0. The next step is to select all voxels with a Distance
map value lower than a threshold. This operation can be considered as an
outward buffer, which is called dilation in this context. Figure 33b shows
all voxels that were selected by the outward buffer in orange. Note that

34 related work

the gap has been included in the dilation. Now to recreate the original
volume, an inward buffer is needed, which is called erosion. To do so, all
voxels which were not selected during the dilation are given the value 0,
for all other values the Manhattan distance to the closest 0-valued voxel is
again computed. Now, using the same threshold, an inward buffer can be
performed This inward buffer is illustrated in orange in Figure 33c. Finally,
by inversing the grid and thus selecting all voxels with a distance value
above the threshold, the initial volume is retrieved. Note that the hole
has been removed but also the concave corner has been rounded off (see
Figure 33d).

0

00
00

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0
0

0 0
0 0

0
0

0 0
0 0

0
0

0 00 0 0
0 0

1
1
1
1

1

1

1

1

1
1

(a) Initial grid with a hole

0 0 0

0 0

1
4 4

4
53

3
3

3
3
3
3
3
3
43

2
2

2
2
2
3
4
5 4

3
3

2
2

2 2
1 1

1

1
1

1

1
1 2
22

22
2
2
2

2

1
1

1
1
1

1
1

0
0 0

0
0

(b) Buffer on distance map

2 2 2

2 2

10

0
0

0

0
0

1 1

3

1
1

1

1
1
00

0

1
1

1
1
1

1
1

2
2 2

2
2

0
0
0
0
0
0
0 0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0 0 0 0 0 0 0

(c) Buffer of the inversed dis-
tance map

1

10
00

0 0
0 0
0
0 0
0 0
0 0
0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0
0

0 0
0 0

0
0

0 0
0 0

0
0

0 00 0 0
0 0

1
1
1
1

1

1

1

1

1
1

0

(d) Final output grid without
hole

Figure 33: Performing a closing operation by using Manhattan distance mapping

These methods were proposed for general polygonal models which often
have smooth characteristics. When we apply this method on a building
model, indeed the holes smaller than buffer distance d are removed. How-
ever, any sharp concave corners which are often present in building models
will be rounded off, making this operation unsuitable.

3.3.3 Connected Components

Before applying the surface reconstruction on the binary grid, it must be
ensured that the number of disjoint sets (= connected components) in the
grid is one. This is important because multiple connected components will
result in a polygonal model which is considered invalid. When multiple
connected components are found, is it possible that the building model
represents an aggregated model, or it could be severely defect. Either way,
a decision will have to be made regarding the separation of the connected
components. Knowledge about the connected components also gives us
another way of detecting and removing any holes by looking at the inverted
grid. A flood filling algorithm such as described by Burtsev and Kuzmin

3.3 morphological operators 35

Algorithm 3.5: Closing Operation

[Danielsson, 1980]
Input: A distance map represented as an integer grid G containing

voxels Vi jk with a distance value v, and a buffer distance d
Output: A binary grid G with no holes smaller than d

1 calculate distance map D1 on G
2 for Vi jk in G do
3 if Vi jk has v < d then
4 Vi jk = 0
5 end
6 else
7 Vi jk = 1
8 end
9 end

10 calculate distance map D2 on updated G
11 for Vi jk in G do
12 if Vi jk has v > d then
13 Vi jk = 1
14 end
15 else
16 Vi jk = 0
17 end
18 end

[1993] can be used to solve this problem. By applying a breadth first search,
all connected voxels can be selected. For large binary grids, applying a
flood filling algorithm may be time consuming. Therefore it may be of
interest to use the optimized version mentioned in [Franklin and Landis,
2006; Isenburg and Shewchuk, 2009]. An illustration of this process is shown
in Figure 34.

(a) Selecting a start
voxel

(b) Flood filling
through a volume

(c) Selecting a new start
voxel

Figure 34: Detecting connected components

A starting voxel is needed as shown in Figure 34a. By using 6-adjacency as
described in § 3.3.1, the flood filling algorithm will start looking for neigh-
boring voxels, as shown in Figure 34b. When no new neighboring voxels
can be found, but voxels with value 1 are still present, a new starting voxel
is selected (see Figure 34c). In case more than one connected component is
found, these volumes can be separated. Alternatively, volumes lower than a
certain threshold can be disregarded since they are likely to not represent a
3D City object.

36 related work

I have adapted this principle to be applied on the inverted binary grid
in order to remove holes. In this case the result should contain only one
connected component, namely the exterior. Any additional connected com-
ponents in the inverted grid are holes, and should be added to the interior.

(a) Initial grid
with a hole

(b) Inverse the
grid

(c) Filling the ex-
terior

(d) Detecting
holes

Figure 35: Performing a closing operation by using Euclidean distance mapping

Figure 35 shows how the exterior can be found by applying the flood filling
algorithm on the inverted binary grid. Figure 35a shows the initial grid
which is reversed in Figure 35b. The exterior volume is selected using 6-
adjacency (see Figure 35c). Any remaining voxels with value 1 must be
holes, as shown in Figure 35d. In other words we can state that holes are
present when several connected components are found in the inversed grid.
By removing any redundant connected components on the inversed grid, a
manifold volume in the binary grid can be ensured.

3.3.4 Suitability of morphological operators

The suitability for certain morphological operators is closely related of the
process of surface reconstruction. Some methods rely solely on the binary
grid values, which make the morphological operators very effective. Other
methods make use of additional information of the initial polygonal model,
along with the formed binary grid. Performing morphological operators for
these cases may not help or even obstruct the surface reconstruction. This
distinction between pure binary grid versus original polygon model input
will be further explained in the next Section 3.4

3.4 surface reconstruction
The goal of the surface reconstruction component is to rebuild a polygonal
mesh out of the voxel representation. The first step of converting a binary
grid into a triangle mesh is called isosurface extraction. The isosurface
represents a triangle mesh containing vertices which are meeting a certain
condition. For example, this could mean that the boundary between interior
(= 1) and exterior (= 0) is positioned at the isosurface with value 0.5. An
overview of existing isosurface extraction methods will be given in § 3.4.1.
Then the theory of three of these methods (Marching cubes, Dual contouring
and Pressing) will be described in more detail.

3.4.1 Overview

Since many isosurface extraction techniques exist, an overview will be given
specifying the advantages and drawbacks of existing methods. Since our

3.4 surface reconstruction 37

goal is to repair 3D building models, isosurface extraction techniques can
be separated on the following criteria:

• Input: some isosurface extraction methods only use a binary grid (Z3)
as input. Other algorithms require additional information. Specifically
Hermite data is required for some of the algorithms, which means the
set of all values and derivatives for a specific function. In case of
a 3D-model this means that intersections and corresponding surface
normal vectors are needed. This needs to be taken into consideration
while determining the suitability of any morphological operators.

• Oblique surfaces: while some of the methods estimate the isosurface
using only orthogonal and 45

◦angles, other methods can produce sur-
faces oriented in any direction which results in a more accurate surface
reconstruction.

• Sharp Features: some of these algorithms round off any sharp features
which may be present in the input. Algorithms exist for sharpening
these edges later, but using algorithms that preserve sharp features are
preferred.

• Triangle reduction: some methods create a (large) number of triangles
which is directly related to the binary grid resolution. Other methods
automatically produce larger surfaces where possible. This is an ad-
vantage although the implications for attribute preservation should be
kept in mind.

• Manifoldness: in order to repair 3D City models the final triangle
mesh should be manifold. Some methods may results in gaps or self-
intersections in some cases, which is unwanted.

38
related

w
ork

Algorithm Input Oblique Sharp features Triangle reduction Manifold

Marching Cubes
[Lorensen and Cline, 1987] Z3 No No No Ambiguities possible

Marching Cubes 33

[Chernyaev, 1995] Z3 No No No Yes

Discretized Marching Cubes
[Montani et al., 1994] Z3 No Yes Yes Yes

Sharp Feature Marching Cubes
[Loke and Jansen, 2007] Z3 No Yes No Yes

Pressing
[Chica et al., 2008] Z3 Yes No Yes, returns planes unknown

Extended Marching Cubes
[Kobbelt et al., 2001] Z3 + Intersections Yes No No Self-intersections

Dual Contouring
[Ju et al., 2002; Schaefer et al., 2002] Z3 + Hermite data Yes Yes No Self-intersections

Manifold Dual Contouring
[Schaefer et al., 2007] Z3 + Hermite data Yes Yes No Yes

Dual Marching Cubes
[Schaefer and Warren, 2005] Z3 + Hermite data Yes Yes Yes OC-tree Self-intersections

Manifold Dual Marching Cubes
[Manson and Schaefer, 2010] Z3 + Hermite data Yes Yes Yes, OC-tree Yes

Table 6: Iso-surface extraction overview

3.4 surface reconstruction 39

Because of the abundance of isosurface extraction methods, I have made a
decision on which algorithms are further investigated. Three of the algo-
rithms have been selected because of their distinctive approach. Each of
them is promising for a different reason; (i) simplicity, (ii) oblique surface
reconstruction from a binary grid & (iii) making use of the input model.

• Marching Cubes [Lorensen and Cline, 1987] will be described since
closely related variations of it are used both in [Nooruddin and Turk,
2003] and [Hétroy et al., 2011]. Although it has clear disadvantages
(i.e. no support of oblique surfaces and sharp features) describing it is
a must since it is the most commonly applied algorithm for isosurface
extraction. Closely related methods such as [Chernyaev, 1995] are not
considered unsuitable but their implementation would lead to similar
results.

• Dual Contouring [Ju et al., 2002] will be described since it shows how
the input model can be used in order to rebuild oblique surfaces and
sharp features. Similar and more advanced methods are also listed,
but these implementations are based on the same principle. To explore
the potential of these adaptive contouring methods, dual contouring will
be researched.

• Pressing [Chica et al., 2008] will be described since it is specifically
aimed at the problem of rebuilding planar regions of building models.
This methods is thus capable of creating oblique surfaces using only a
binary grid as input.

3.4.2 Marching cubes

One of the first methods to extract a triangle mesh from a 3-dimensional
grid was published by Lorensen and Cline [1987]. By iterating through
the entire voxel model and looking at blocks of 8 voxels at a time, 256 (28)
combinations can be found. This is illustrated in Figure 36a. By rotating
and mirroring, these can be brought down to 15 possible combinations of
empty& filled voxels. For every block, the triangle configurations can be
looked up in a pre-computed lookup table. In theory each vertex position
along the edge is calculated by interpolating between scalar values. How-
ever, if we are only dealing with binary values (exterior = 0, interior = 1),
all these vertices will be placed in the middle of an edge.

(a) Looping through cubes (b) Cube numbering

Figure 36: Looping through cubes and indexing the edges

Now, for every case triangles can be made. Based on the configuration of
the voxel-blocks, triangles are added to a mesh. The positions are based on

40 related work

the numbering of the cubes’ vertices, of which the numbering is illustrated
in Figure 36b. Two examples of cases are visible in Figure 37.

(a) Case 1 (b) Case 2

Figure 37: Examples of Marching Cubes cases

Illustrations of all 15 cases are given in the appendix (see Appendix A).
An overview of the process is given in algorithm 3.6.

Algorithm 3.6: Marching Cubes

Lorensen and Cline [1987]
Input: A binary grid G containing voxels Vijk with values 0 for

exterior, 1 for interior. A look-up table for 256 cube
configurations

Output: A triangular mesh M

1 for Vijk in G do
2 Get configuration of cube Vi..i+1,j..j+1,k..k+1

3 Look up triangles for cube configuration in table
4 for triangle returned by lookup table do
5 add triangle to mesh M
6 end
7 end

Two drawbacks of this method for building models are its approximation
of oblique surfaces and the possibility of ambiguous cases. Figure 38 shows
how an oblique surface is voxelized and turned into a triangle mesh. The
surface in this example is oriented at a 30◦angle. Since the vertices are
placed in the middle of an edge, the original surface can only be approxi-
mated by connecting triangles under 45◦angles.

(a) Voxelized oblique surface (b) Stair stepping

Figure 38: Applying Marching Cubes on a binary grid

To create smooth surfaces, an edge decimation strategy is applied by Noorud-
din and Turk [2003]. This principle will be explained in § 3.5.2 and the

3.4 surface reconstruction 41

suitability for 3D building model repair will be determined in Section 4.3.
Some cases and combinations of Marching Cubes are ambiguous, meaning
that cube configurations can be interpreted in several ways. The results is
that the created triangles are not necessarily topologically correct. However,
this can only happen in some cases and specific combinations of cases which
will generally not occur while processing a manifold volume. Manifold vol-
umes may only produce ambiguities when there are occurrences of hanging
(edge-adjacent) voxels. An example of such a case (10) is shown in Figure 39.

Figure 39: Ambiguity in Marching Cubes Case 10

Modified versions of the Marching Cubes algorithm have been created [Wil-
helms and Van Gelder, 1990; Chernyaev, 1995] in order to solve these am-
biguities and ensure a correct topology. However, since we are assuming
the input volume is manifold due to the applied morphological operations,
these unwanted ambiguous cases can be avoided in general. The approach
on how to do so using N-adjacency is described in Section 4.3.
A more precise option for surface reconstruction is to apply the Marching
Cubes algorithm on a 3D grid of signed distances instead of using binary
values. In such a grid all voxels receive a value storing the closest distance
to the original model. All distance values of voxels in the interior receive
a positive sign. Vice versa, all values of voxels in the exterior receive a
negative sign.
Using a linear interpolation on a grid edge connecting the interior and
exterior of a binary grid (values 0 and 1) always results in a vertex with
an isosurface value of 0.5 being placed on the middle of the edge. However,
when the interpolation is performed on a 3D grid of signed distance values,
the vertex positions with isosurface value of 0 can be more accurately placed
along the edge. Equation 3 shows how the position on this edge can be
computed, where v1 is the value of the interior vertex and v2 is the value of
the exterior vertex. By determining a value for the isosurface, the position
of the interpolated vertex can be computed.

Computing the vertex position by linear interpolation of signed distance
values:

iso = v1 · (1− u) + v2 · u (3a)

u =
v1 − iso
v1 − v2

(3b)

Figure 40a shows the linear interpolation along an edge with binary values
for an isosurface value of 0.5, which always results in the vertex being placed
in the middle of the edge. Figure 40b gives a similar example but now
signed distance values are available and the isosurface value is set at 0.

42 related work

iso
0.5v1

 1
v2
 0

u

(a) Interpolation on binary values

iso
0v1

0.3
v2

 -0.7
u

(b) Interpolation on signed distances

Figure 40: Linear interpolation on a binary grid and a signed distance field

Using a interpolation of signed distance values will result in a more accurate
surface reconstruction. Figure 41a and Figure 41b show the application
of Marching Cubes on a binary grid, where the surface position is only
estimated and vertices are placed in the middle of the edge. Figure 41c and
Figure 41d illustrate the creation of the distance values and the result after
applying Marching Cubes. In this example, both of the new vertices are
positioned on the original surface.

0

11

1

(a) Binary grid as input

0

11

0.5

0.5

1

(b) Marching Cubes result

-0.3

0.5

0.2

1

(c) Signed distances as input

-0.3

0.5

0.2

1

0

0

(d) Marching Cubes result

Figure 41: Comparison of applying Marching Cubes on binary values versus using
signed distance values

Applying the Marching Cubes algorithm on the distance field is guaranteed
to produce output which is topologically equal to the output of applying
Marching Cubes on a binary grid. The same number of triangle is produced,
but the position of the vertices will be closer to the original model. However,
since the output is topologically equal, this means that the same ambigu-
ous cases may still appear when the original Marching Cubes algorithm
is applied. Similarly, corners will still be rounded off when applying the
algorithm on a grid with signed distances. Figure 42 illustrates the rounded
off result after applying Marching Cubes on signed distance values.

3.4 surface reconstruction 43

(a) Sharp edge in input (b) Rounded off corners in result

Figure 42: Rounding off sharp features when applying Marching Cubes on signed
distance values

The clear advantage is that oblique surfaces are accurately reconstructed,
avoiding the creation of a stair-stepping effect. However, it is possible that a
corner will be rounded off in such a way that the new vertices are positioned
very close to each other (see Figure 42b). In case of CityGML models, this
may be regarded as a consecutive points same defect, depending on the
selected threshold. Another issue that has to be taken into account is the
occurrence of gaps and overshoots in defective input.

(a) Input model with gap (b) Resulting triangle mesh

(c) Input model with overshoot (d) Resulting triangle mesh

Figure 43: The possible effect of a gap on the result of applying Marching Cubes on
signed distance values

44 related work

In case of a gap, a part of the surface is missing. This may result in some
distance values being too high, preventing a precise surface reconstruction.
An example of this is shown in Figure 43a and Figure 43b. In case of an
overshoot, some distance values may be calculated smaller than what is
desired. An example of this effect is shown in Figure 43c and Figure 43d.
Both cases may result in small artefacts in the resulting mesh. Compared
to using a binary grid however, the estimated surfaces are still much more
accurate.

The further research performed in this thesis, makes use of a Marching
Cubes implementation on a binary grid. However, the possibility of further
developing upon this thesis with an implementation of Marching Cubes for
a signed distance field is recommended as future work (see Section 6.3).

3.4.3 Dual contouring

An example of a surface reconstruction method which uses the input model
is Dual Contouring. It was first described by Ju et al. [2002] and expanded
towards the implementation by [Schaefer et al., 2002]. As the name of the
method describes, it creates a contour by connecting the duals of a grid.
Figure 44 shows a diagram of the relation between a grid and its dual.

dual

grid

Figure 44: Diagram of the relation between the voxel grid and dual

In 3D a dual vertex can be placed within every cube of 8 voxels. However,
to extract the contour of the building, we only want to do this for cubes
with a sign change. This means that only cubes which contains voxels both
in the interior (=1) and exterior (=0), should be selected. Figure 45 shows a
diagram of a voxel grid showing grid edges with a sign change.

interior voxel

grid edge with
 sign change

exterior voxel

Figure 45: Diagram of grid edges intersections with the input model

The black voxels represent the interior and white voxels represent the exte-
rior. The grid edges which connect a black and a white voxel, are shown in

3.4 surface reconstruction 45

green. These green edges are expected to intersect with the original model.
Each of these edges is neighboring with 4 cubes. Only for these cubes the
dual position is required. An illustration of the configuration of a grid edge
and its 4 neighbors in 3D is shown in Figure 46.

Figure 46: Diagram of the Dual Contouring principle

By connecting the 4 duals of the cubes neighboring with the grid edge, 1
quad (or 2 triangles) can be created. Now in order to compute the dual ver-
tex positions, Dual Contouring makes use of Hermite data. Strictly speaking,
the Hermite data contains the values of a function and its derivatives. In
case of a 3D model this translates to a set of intersection points between the
grid edges and the original input surfaces p and the corresponding surface
normals n. This can be estimated by using a method such as Principal
Component Analysis (PCA) as described by Wold et al. [1987]. For every
grid edge which intersects with the polygonal model, the intersection point
and surface normal are stored. Based on these values, a vertex position can
be determined within every grid cell. Figure 47 shows an illustration in
2D of how the intersection and normal vector can be used to compute dual
vertex within a grid cell. By connecting these dual vertices, the surfaces can
be reconstructed.

Figure 47: Diagram of using Hermite data [Ju et al., 2002]

46 related work

Since every intersection point pi has a corresponding surface normal ni, the
equation of a plane is represented for every intersection. The QEF is then
the sum of the squares of the distances from the cubes center point to each
of the defined planes. By minimizing the QEF, the most appropriate point
can be found. This concept was first described by Kobbelt et al. [2001].
The computation of the vertex position is determined by minimizing the
quadratic error function of the distances from a point to a number of planes,
as described in Equation 4:

E|x| = ∑ (ni · (x− pi)
2) (4)

Here pi is the intersection point and ni the corresponding surface normal,
for all grid edge intersecting the polygonal model. However, since min-
imizing the QEF to the cubes center point may result in a dual vertex
outside of the cube, an adaption is proposed by Ju et al. [2002] and Schaefer
et al. [2002]. By computing the minimized QEF towards the mass-points
instead of the center-point, the resulting dual vertex inside the cube is
guaranteed. Figure 48 shows how minimizing towards the mass point
avoids dual vertices being placed outside of the cube.

Figure 48: Difference between minimizing towards center-point and mass-point
[Schaefer et al., 2002]

In general the Dual Contouring method is able to reconstruct the isosurface
when Hermite data is available for the entire model. However, when this
method is applied on defect 3D City models, this is often not the case due
to gaps (missing Hermite data) or overshoots (additional Hermite data). I
propose a method in Section 4.4 where an implementation of Dual Con-
touring is aimed towards the repair of defect 3D City models, based on a
set of heuristics. The possibility of improved surface reconstruction will be
illustrated, along with important issues that are encountered.

3.4 surface reconstruction 47

3.4.4 Pressing

An alternative method for isosurface extraction on pure binary grids is
Pressing, partially aimed at finding large planar tiles [Chica et al., 2008]. Its
purpose is to accurately rebuild 3D models from their binary volume, as is
illustrated in Figure 49. It consists of three steps:

• detection and creation of large planar tiles

• detection and creation of curved surfaces

• sharpening the edges

Figure 49: Overview of pressing method

Since curved input models are outside the scope of this thesis, this part
of their method can be disregarded. The process of edge sharpening is
described in Section 3.5. Here we will describe the process of detecting
large planes. The method of detecting the largest flat areas in a voxel
representation is described by Andújar et al. [2004]. The process starts by
finding the so called sticks. Sticks are defined as the orthogonal grid edges
which connect an interior voxel (value =1) with an exterior voxel (value = 0).
Therefore every stick is expected to intersect with a surface of the polygonal
model. Two illustration of these sticks are shown in Figure 50.

Figure 50: Finding sticks connecting interior with exterior

The aim is to find a plane that intersects the maximum amount of sticks.
In order to determine the parameters of this plane, the 5x5x4 neighborhood
of each stick is looked at. A large lookup table containing all possible,
manifold configurations of the 5x5x4 neighborhood needs to be created.
This way every stick can be related to an entry in the lookup table, return-
ing parameters for the plane which separates the interior voxels from the
exterior voxels. The size of the neighborhood is a trade-off between the size
of the dictionary and the ability to efficiently detect large planar regions. A
larger neighborhood (e.g. 7x7x6) would be more efficient at detecting planar
regions, but the look-up table would be extremely large. On the contrary,
using a smaller neighborhood (e.g. 3x3x2) will result in a smaller look-up
table but Andújar et al. [2004] describe how it is only suitable for detecting
strongly curved regions. The process of finding the plane parameters for a
possible 5x5x4 neighborhood is illustrated in Figure 51.

48 related work

(a) Selecting a stick,
connecting interior
with exterior

(b) Finding the sticks’
5x5x4 neighboring
voxels

(c) Plane parameters
for this neighbor-
hood

Figure 51: Searching neighborhood of each stick

Once all sticks have casted their vote for plane parameters, the combi-
nation of these votes can be used to determine the most likely position
of a plane. This is done by performing a global optimization, resulting
in surfaces which are guaranteed to cover all interior voxels. The process
continues to look for the junction points between these planes and applies
edge sharpening technique.

Although this methods proves to be a promising way of accurately re-
building a triangle model from a binary grid, a major drawback of this
approach is the complexity. The lookup table contains ±32.000 entries,
because of the large neighborhood, which is created in a time consuming
process. Additionally, using the method as is may result in curved surfaces
being estimated at some locations while curved geometry may or may not
be supported by the data format. While using a relatively low resolution,
many regions where a 5x5x4 neighborhood does not represent a plane may
be found. A new solution should be created for those regions.

3.4 surface reconstruction 49

3.4.5 Evaluation

In the related work on surface reconstruction (see Section 3.4), 3 distinctively
different algorithms have been researched. An illustration of the principles
of each of these algorithms is shown in Figure 52.

(a) The original polygonal model (b) Marching Cubes result

(c) Dual Contouring result (d) Pressing result

Figure 52: Overview of isosurface extraction techniques

Despite the fact that the Marching Cubes algorithm has some limitations
regarding oblique surface reconstruction (see Figure 52b, it is widely used
in voxel based repair methods. Its main strengths are simplicity and quick
processing. Therefore its applicability will be tested in Section 4.3. The
Pressing method describes a unique approach for acquiring oblique surfaces
from binary grid. Although, the approach is very relevant for 3D City model
repair, the implementation and analysis of this method are not considered
achievable within the time limits of this research. However, this method
can possibly be a part of a future work which aims to rebuild oblique
surfaces from a binary grid. Finally the Dual Contouring approach shows
a way of rebuilding oblique surface by using additional information such
as intersection points and surface normals. Admitting that this method is
mostly suitable for rebuilding models where all Hermite Data is found, the
possibilities of how to apply this method to defect geometry will be further
explored in Section 4.4. The fact that Dual Contouring may result in self-
intersections must be taken into account. If time allows, the extended ver-
sion described by [Manson and Schaefer, 2010] will be applied for achieving
manifold results.

50 related work

3.5 post processing
Once the iso-surfaces have been extracted from the binary grid, the resulting
mesh may be post processed in order to achieve a satisfying result.

3.5.1 Edge sharpening

Since some isosurface extraction algorithms such as Marching Cubes or
Pressing result in rounded of corners a method proposed in [Attene et al.,
2003] may improve the results. To detect the edges which need to be adapted
for edge sharpening, the triangle mesh has to be stored using a topological
model. Therefore an intermediate step of iterating over the Marching Cubes
triangle mesh is needed. Once this is done, the following filtering steps can
be applied as described in [Attene et al., 2003]:

• 0. Paint brown the ’smooth’ edges where incident triangle normals are
similar.

• 1. Paint red each vertex whose incident edges are all brown.

• 2. Each triangle with a red vertex becomes red.

• 3.Paint red (recursively) each triangle that is adjacent to a red triangle
through a brown edge.

• 4. Paint red the edges and vertices of the red triangles

• 5. Paint blue each non-red edges joining two red vertices

• 6. Paint green each triangle with three blue edges

The result of these filtering steps is illustrated in Figure 53. Now every
blue edge lies on a chamfer which has been rounded off in one direction.
Each green triangle is a corner triangle which has been rounded off in two
directions.

Figure 53: Result of the filtering steps [Attene et al., 2003]

To rebuild the sharp features, the existing triangles will be split up in several
smaller triangles. Three types of triangles can be separated, containing one,
two or three rounded edges. Figure 54 shows these cases.

To subdivide these triangles new vertex have to be placed. The yellow
vertices are positioned on blue chamfer edges, meaning they should be at

3.5 post processing 51

Figure 54: Vertex placement on chamfer edges and corner triangle
[Attene et al., 2003]

the intersection of two planes. The red vertex inside the green triangle
should be positioned at the intersection of three planes.

For a given chamfer edge E with two vertices A and B, the weighted sum
of the normals N and M are computed over all red triangles incident to
point A and B. This way two planes P and Q can be defined, the first being
orthogonal to N and passing through vertex A, the second being orthogonal
to M and passing through vertex B. Now the new vertex V is placed on the
line where P and Q intersect, as close to the midpoint of the original edge
E as possible. These calculations for a new vertex V for a chamfer edge is
shown in Equation 5:

V = (A + B)/2 + (h/k)H (5a)

H = AB× (M × N) (5b)

h = AB · N (5c)

k = 2(M · N)(AB · N)–2(AB ·M) (5d)

For every corner triangle containing the vertices A, B and C an extra vertex
W is placed. The weighted sum of the normals N is computed over all
red triangles incident to point A, where the angle between incident edges
is the weight for each triangle. Now a plane P can be defined which is
intersecting with point A and orthogonal to N. Similarly, the planes Q and
R can be defined for vertices B and C. Now the position of vertex W is
found at the intersection of the planes P, Q and R. This can be solved in a
linear way as is shown in Equation 6.

The calculation of a new vertex W on a corner triangle edge:

W · N = A · N (6a)

W ·M = B ·M (6b)

W · L = C · L (6c)

By detecting the rounded off triangles and adding new vertices based on
plane intersections, many of the rounded corners can be sharpened. A
visualization of this process on a simple corner is shown in Figure 55.

(a) Sharpening of a chamfer edge (b) Sharpening of a corner

Figure 55: Edge Sharpening [Attene et al., 2003]

52 related work

Figure 55a shows how a single chamfer edge is sharpened. Figure 55b
illustrated the sharpening of a corner. Although in theory the computation
of new vertex positions is correct, in practice some exceptions take place,
A description of these cases is described by Attene et al. [2003] but not all
solutions are given. These cases and possible solutions will be described in
§ 4.3.3.

3.5.2 Edge decimation

A method for triangle reduction which was opted for in Nooruddin and
Turk [2003] is using Quadric Edge Metrics for surface simplification. This
application is described by Garland and Heckbert [1997]. By contracting
certain edges into a single vertex, the number of triangles can be reduced.
This principle is shown in Figure 56.

Figure 56: Principle of quadric error mesh simplification
[Garland and Heckbert, 1997]

The before picture shows a highlighted edge consisting of vertices v1 and
v2. If it is determined that this edge should be contracted, then a new
vertex (̄v) will be placed: v1, v2 =⇒ v̄. All edges that connected to either
v1 or v2 are now connected to (̄v). All triangles that are incident to the
highlighted edge are removed. In order to detect which edges to contract
during a certain iteration, the cost of a contraction is determined. The cost is
computed as a quadric error function of the new vertex position relative to
the old vertices. Contractions with the lowest cost will be performed earlier
in the iteration. This algorithm has later been adapted for triangle color and
attribute support by [Garland and Heckbert, 1998], which may be relevant
for attribute preservation.

3.5.3 Mesh comparison

As a means of validating the repair process, the geometric quality of the
repaired model can be measured. To do so a comparison can be performed
between the input and output mesh. The Haussdorf distance can be used
to find the largest distance between a set and the nearest point in another
set. This concept has been applied in the comparison of triangle meshes by
Aspert et al. [2002] and Garland and Heckbert [1997]. For a surface S and
a point p the minimal distance is found by sampling vertices p′ along the
surface.

ε(p, S) = min
p′∈S

d(p, p′) (7)

3.5 post processing 53

This principle of using sample points on a surface can be used to compute
the distance between two surfaces.

E(S1, S2) = max
p∈S1

ε(p, S2) (8)

This way an estimation of the geometric difference between two surfaces
can be acquired. For every sample vertex, a corresponding distance is
stored.

(a) Original 3D model before process-
ing

(b) 3D Model after voxelization and
Marching Cubes

(c) Geometric errors highlighted in red

Figure 57: Visualization of the geometric error

Based on these distances, colors may be given to the mesh to visualize the
location of large geometric errors. An illustration of the geometric error is
visible in Figure 57, showing the geometric error of the stair stepping effect
and the error free surface due to model alignment.

4 MY VOXEL-BASED REPA IR
METHOD

This chapter starts by describing the general repair methodology I propose,
in which two different approaches have been tested (see Section 4.3 and
Section 4.4). This will be followed by a practical description of the different
components. The specific options within each component are considered
and decisions are made based on a heuristic approach.

4.1 methodology
I propose two voxel-based repair approaches to repair 3D buildings. These
two approaches are extensions of two different isosurface extraction tech-
niques which are described in Section 3.4.

Approach 1 will continue with the work of Nooruddin and Turk [2003]
and Hétroy et al. [2011] using a Marching Cubes algorithm (see § 3.4.2) and
fitting it towards 3D City model repair. The second approach will be based
on the Dual Contouring algorithm (see § 3.4.3), described by Ju et al. [2002]
to show the potential of using the input model. This way a better rebuild-
ing of oblique surfaces may be achieved. Both methods are significantly
different during and after the Surface reconstruction component, however
the first steps of Pre-processing and Voxelization are similar. Therefore the
methodology can be depicted as in Figure 58.

Voxelization

CityGML input

Preprocessing

Approach 1:
Marching Cubes

Approach 2:
Dual Contouring

CityGML output

parser

writer

Figure 58: Overview of the methodology

In order to perform the described algorithms some pre-processing of the
input model is needed. The polygonal model has to be converted to a

55

56 my voxel-based repair method

triangle model before applying the actual repair steps. This can be done
using FME or the CityGML2OBJs tool available at http://erlangarticles.
com/p/tudelft3d/CityGML2OBJs. This chapter will now continue to select
the most suitable components for each approach.

4.2 voxelization
The first step is to voxelize the polygonal model, in order to rebuild it into a
manifold, volumetric representation. The decisions of how this is done, are
described in this section.

4.2.1 Scan conversion

model alignment
A basic alteration which can be performed is model alignment, which

has the potential of improving the results. This is a step which can be
applied before starting the repair process, which orients the 3D model in
an orthogonal direction, corresponding with the binary grid. Aligning the
input model is an optional step (of little cost) that may improve the output
voxelization for two reasons. Firstly, by aligning the model the different
scan lines are more likely to intersect different surfaces, as is illustrated
in Figure 59. In general this may lead to more positive votes in orthogonal
buildings with gaps present. This was the adjustment of the scan conversion
parameters (threshold and number of scan directions) can be avoided.

(a) Non aligned majority voting (b) Aligned majority voting

Figure 59: The effect of aligning on the repair capability

Secondly, since many of the building in a 3D city model are (partially)
orthogonal, many flat surfaces will be connected through 90

◦angles. Where
the original position of the building will lead to a jagged voxelization, an
aligned model will result in a voxelization with flat parts. This will mostly
be useful in Approach 1 using Marching Cubes (see Section 4.3) to reduce
the bumpiness and artefacts of the resulting mesh.

(a) Non aligned voxelization result (b) Aligned voxelization result

Figure 60: The effect of aligning the input model

http://erlangarticles.com/p/tudelft3d/CityGML2OBJs
http://erlangarticles.com/p/tudelft3d/CityGML2OBJs

4.2 voxelization 57

Based on these two reasons, I decided to align all input models prior to
the scan conversion, slightly improving the repair capability and enabling
smooth surface reconstruction of orthogonal buildings in approach 1.

In order to calculate the angle of rotation along the Z-axis, the normal
vectors for every triangle in the triangulated model are computed. All
triangles with normal vectors with an absolute z-component larger than
a certain threshold (for instance 0.1) are disregarded. By taking the area
of the remaining triangles as weight, the normal vector with the largest
corresponding area can be found. Then we compute the angle between this
normal vector and the predefined orthogonal direction. In order to run this
step, the polygonal model should be triangulated.

Algorithm 4.1: Model Alignment

Input: A triangulated polygonal model M and an orthogonal vector
~ortho

Output: A polygonal mesh oriented such that the largest surface
area has a normal vector equal to ~ortho

1 Find all unique triangle normal vectors N present in M
2 for every N do
3 set Nweight at 0
4 end
5 for each τ in M do
6 Compute triangle normal vector N and triangle area τarea
7 Corresponding Nweight = Nweight + τarea

8 end
9 Alignment vector ~Valignment = N with max Nweight

10 α = ∠ between ~Valignment and ~ortho
11 for triangle τ in M do
12 for vertex v in τ do
13 orient points:
14 v = (xalign, yalign, z)
15 end
16 end

Once the rotation angle α around the Z-axis is known, the model can be
oriented, see Equation 10.

Orienting the models’ vertices around the Z-axis:

x′ = x · cos(α)− y · sin(α) (9a)

y′ = y · sin(α)− y · cos(α) (9b)

z′ = z (9c)

A result of the model alignment is that several slices of voxels are placed at
the border of the bounding box. During the later stages of the rebuilding
process, it will be vital to find the regions connecting interior (value = 1)
and exterior (value = 0) voxels. For this reason a buffer of 0-valued voxels
is needed around the model as shown in Figure 61.
After this step an adjustment of the binary grid values is needed. The
dimensions, scale and translation values of the grid have to be updated:

58 my voxel-based repair method

Figure 61: A buffer on the grid is needed after aligning

Updating the dimension and scale of the grid after creating a buffer:

dimensionnew = dimensionold + 2 (10a)

scalenew = scaleold + (2 · voxelsize) (10b)

translatenew = translateold − voxelsize (10c)

The updating of each of the x-, y- & z- translation values depends on the
sign of the value. Updating a positive translation value:

translatenew = translateold − voxelsize (11)

Updating a negative translation value:

translatenew = translateold + voxelsize (12)

scan method
The theory in § 3.2.2 has described that two effective ways of scan conversion
are Parity Count or Ray Stabbing. Although Ray Stabbing may have a better
repair capability for very defective input containing self-intersections and
double surfaces, it does not reconstruct any buildings with a hole or concave
buildings with overhangs. Therefore it is considered too limited and Parity
Count method will be used instead.

number of scan directions
The number of scan directions may improve the repair capability, however
the processing speed will increase quickly. An example of a CityGML
building with a manually added gap is shown. Figure 62 where 6 scan
directions are used to correctly produce the volumetric representation of
the building.

(a) CityGML model with 2 gaps (b) Correct scan conversion

Figure 62: Correct volumetric representation

However, when one more gap is introduced, a scan conversion in 6 direc-
tions is no longer sufficient. Figure 63 illustrates a dent in the model, where
gaps are found in 3 out of 6 orthogonal directions.

4.2 voxelization 59

(a) CityGML model with 3 gaps (b) Incorrect scan conversion

Figure 63: Defective volumetric representation due to combination of three gaps

There are two options to produce a correct result for a building such as in
Figure 63a. By using a 26-direction scan, the building model can be turned
into a correct volumetric representation as shown in Figure 62b. However,
this is at the cost of the processing time. The second option is to decrease
the voting threshold in certain cases, which will be described in the next
paragraph. It is decided that scanning in 6 orthogonal directions will be
sufficient unless the input models are severely defective.

voting threshold
Until now all voting thresholds were set at the number of scan directions
divided by two. All voxels that are considered as interior have a number
of votes higher than the threshold, hence the name majority voting. Since
a number of voting directions has been set at 6, the threshold will be 3
meaning that at least 4 votes are needed for a voxel to be filled. However, in
case of severe defects (multiple gaps, self-intersections or double surfaces)
a threshold of 3 may be too strict to produce a correct volumetric represen-
tation. As described in Section 3.2 a closely related algorithm was used by
Steuer et al. [2015]. In their work they are choosing to scan in 6 orthogonal
directions and set the threshold to n/2 (n = number of scan rays). No
particular problems have been described in their results. However, when
severely defective models are processed unwanted results may occur. An-
other manually edited example of problematic input is visible in Figure 64.
Here a double surface, overshoot and gap are located in the same area of the
building. Using the regular 6 directional scan conversion with a threshold
of 3 results in an incorrect result.

(a) CityGML model with double sur-
face, overshoot and gap

(b) Incorrect scan conversion due to
multiple errors

Figure 64: Defective volumetric representation due to combination of double surface
and hole

Similar to the previously shown model, lowering the threshold or raising
the number of scan directions will produce a correct result. Since these
models were manually made to illustrate the limitations of the scan con-

60 my voxel-based repair method

version, these parameters can be considered as a detail. In general these
combinations of defects will be rare. Additionally, an easier step which
does not need an adaption of the parameters is aligning the model.

4.2.2 Possible artefacts

Using the previously described scan conversion may result in three kinds of
aliasing artefacts:

• Stair stepping

• Hanging voxels

• ’Saw tooth’ effect

The stair-stepping effect (see Figure 65a) is to be expected, as it approx-
imates the interior close to an oblique surface. This is inherent to the
voxelization process but may remain visible in a pure binary grid surface
reconstruction (see Section 4.3). A related artefact occurs when there are
sharp angles on the border of oblique surfaces, which will result in hanging
voxels only connected to one other voxel. An example of this is visible in
Figure 65b. These are not acceptable since they could result in unexpected
output geometry or ambiguous cases in the surface reconstruction process.
The artefact which is described as ’saw tooth effect’ is a result from the
combination of the precision of calculating the intersection point and the
almost parallel surfaces. An example is shown in Figure 66.

(a) Stair-stepping artefact (b) Hanging voxel artefact

Figure 65: Examples of artefacts in the volumetric representation

(a) Nearly parallel surfaces (b) Saw tooth artefact

Figure 66: Example of a saw tooth artefacts in the volumetric representation

down-sampling

An option for decreasing the artefacts is to perform down-sampling on the
grid, as described in § 3.2.4. This has been tested on on several of the
input models but in general the artefacts were moved but still present. An
example of this is illustrated in Figure 67.

4.3 approach 1: marching cubes 61

(a) Saw tooth artefact in original
voxel-grid

(b) Enlarged saw tooth artefact for
down-sampled voxel-grid

Figure 67: Result of down-sampling with a 2x2x2 filter

In case of artefacts in the voxelization, the smoothing does not improve the
output voxelization. Applying any down-sampling has the obvious draw-
backs of decreasing the resolution, which may lead to a larger geometric
shift (depending on the surface reconstruction method). For these reasons
the step of down-sampling will not be applied.

4.3 approach 1: marching cubes

After the voxelization component, a volumetric representation has been
acquired. In the following surface reconstruction component, the two ap-
proaches come into play. The first approach is based around the March-
ing Cubes algorithm as described in § 3.4.2,which can be applied on a
3-dimensional grid of binary or scalar values. This section will describe
which components are considered to be most suitable for using a voxel-
based repair method using the Marching Cubes algorithm. The components
can be split up in Morphological operators, Isosurface extraction: Marching
Cubes and Post processing.

4.3.1 Morphological operators

In order to prepare the volumetric representation for the Marching Cubes
algorithm there are three steps needed to ensure a valid result. These are
the selection of a single connected component, the removal of possible gaps
and the removal of artefacts. Because Marching Cubes only takes a binary
grid as input, grid can be ’molded’ into the desired shape without any
consequences. This makes morphological operators very appropriate for
this approach.

selecting connected component
The selection of a single connected component is needed to ensure valid
output. The UnionFind algorithm as described in § 3.3.3 was implemented
in order to select the largest connected component. It should be noted that
cases of multiple connected components are only rarely encountered, but
are possible in theory. In the event of a very defective voxelization, several
small connected components might be detected. This knowledge can be
used to detect a possible errors. Optionally the user can be notified or the
voxelization parameters can be adjusted to process exceptional cases.
Figure 68 shows the only case that was encountered where the number of
connected components was an issue. It is shown in Figure 68b that the two

62 my voxel-based repair method

(a) Severely defective building with
edge adjacent box

(b) Volumetric representation only
edge connected

Figure 68: Building which requires the connected components selection

components are only edge connected. When this is left like this, it may
result in several ambiguous cases such as depicted in Figure 39 in § 3.4.2.

gap removal
Although rarely encountered, in theory it is possible that gaps are present
inside the volumetric grid. Removing these is essential for valid output. To
do so Distance Mapping is applied by [Nooruddin and Turk, 2003] as was
described in § 3.3.2.

(a) Volumetric representation before
distance mapping

(b) Volumetric representation after
distance mapping

Figure 69: Corners rounded off after distance mapping

Figure 69 shows that the application of distance mapping results in rounded
off corners. This has a large impact on the surface reconstruction and is
thus not acceptable for 3D City model repair. For these reasons the slower
but more effective method of removing holes by looking at the connected
components of the inverse grid, as described in § 3.3.3 is applied.

removing artefacts

As was stated before, the removal of hanging voxels is important to avoid
the creation of artefacts and avoid any marching cubes ambiguities. To
detect these voxels, a filtering based on the 6-adjacency is applied (see § 3.3.1
for the theory). An example of the filtering is illustrated in Figure 70.

4.3.2 Isosurface extraction: Marching Cubes

Once the desired volumetric representation has been created, the binary
grid can be converted to a triangle mesh. At this point the input volume

4.3 approach 1: marching cubes 63

(a) Hanging voxels on
a sharp roof

(b) Marching Cubes
bumpy mesh result

(c) Selection based on
1/6-adjacency

Figure 70: Filtering of hanging voxels

is guaranteed to be manifold without any inner gaps. The Marching Cube
algorithm is applied as described in § 3.4.2. An overview of the 15 Marching
Cubes cases is illustrated in the appendix (see Appendix A). Some illustra-
tion of the resulting triangle mesh are shown Figure 71 and Figure 72 to
give an indication of the repair process so far.

(a) 3D-model with a gap (b) Result after Marching Cubes

Figure 71: Example of Marching Cubes output for a CityGML building with a gap

(a) 3D-model with an overshoot (b) Result after Marching Cubes

Figure 72: Example of Marching Cubes output for a CityGML building with a
double surface and an overshoot

These examples show that the defects present in the original model have
been removed. However, all sharp corners have been rounded off and
the oblique surfaces could only be approximated. In the post-processing
component, the following steps for edge sharpening and detriangulation
will be discussed.

4.3.3 Post processing

A characteristic of the Marching Cubes approach is the rounded off corners.
The application of an edge sharpening algorithm will be described. In

64 my voxel-based repair method

order to turn the resulting triangle mesh back into a polygonal model, a
detriangulation is needed. The ways of doing so will be discussed.

Edge Sharpening

In order to sharpen the rounded off corners, an edge sharpening algorithm
can be applied. The theory has been described previously in § 3.5.1 and
is based on the work of [Attene et al., 2003]. Since we know the triangle
mesh is resulting from the Marching Cubes algorithm, some assumptions
can be made regarding the geometry. With this idea in mind, a possible
adaption of the original edge sharpening method was explored. In stead of
classifying certain edges, specific triangles that should be sharpened can be
found by looking at the neighboring triangles’ normal vectors. The initial set
of triangles which were detected are illustrated in Figure 73, distinguishing
corner and chamfer triangles and separating convex and concave cases.

Figure 73: Edge sharpening triangle cases

This method was first applied on a manually made object to test the spec-
ified cases. An illustration of the detection and rebuilding of rounded off
triangles is shown in Figure 74.

(a) Classification of the triangles that
need sharpening

(b) Result after triangle based edge
sharpening

Figure 74: Result of triangle based edge sharpening on a manually made object

Although this shows a successful sharpening of the input geometry, the clas-
sification of triangle cases has a major drawback, as each possible case needs
to be taken into account. When this method is applied on real buildings,
many more triangle cases can be found. Figure 75 shows some examples of
the additional triangle configurations that need to be taken into account.
Granting most of these cases are quite easy to distinguish, implementing
all possible cases would be quite a task. For any unexpected case, the

4.3 approach 1: marching cubes 65

(a) Example of triangle configuration (b) Example of triangle configuration

Figure 75: Two examples of more complex triangle configurations

resulting triangle mesh is very likely to be non-manifold. An example of the
edge sharpening result including an unsupported triangle case is shown in
Figure 76.

Figure 76: Unsupported triangle cases returning a non-manifold mesh

Although the method of classifying triangles is viable, many cases are pos-
sible. Finding all possible triangle configurations is important, since any
missed cases will result in a defective triangle mesh. For this reason it was
decided to finally apply the edge sharpening algorithm such as described in
the theory (see § 4.3.3). Figure 77 shows an example of a sharpened building
acquired by applying an edge based edge sharpening.

(a) triangle mesh before edge sharpen-
ing

(b) triangle mesh after edge sharpen-
ing

Figure 77: Performing edge sharpening to improve the results in Approach 1

However, in the theory it was described that some unexpected cases may
take place. The first one being the occurrence of long edges, which are being
created when the corresponding planes are parallel or do not intersect in
one point. This leads to vertex positions very far away from the original
building. The second case occurs where multiple sharp corners are joined

66 my voxel-based repair method

together (which is quite common in building models). In these cases a
triangle is created which turns the mesh non-manifold. An illustration of
these defects is shown in Figure 78.

(a) Long edges for incorrectly solved
plane intersections

(b) A non-manifold triangle where
three sharp corners meet

Figure 78: Performing edge sharpening to improve the results in Approach 1

By checking the edge lengths, long edges can be detected. These vertex
positions are now moved to the middle of the edge, as is recommended in
the work of Attene et al. [2003]). An additional filter for the non-manifold
cases of multiple corners removes the non-manifold triangles. Another
unexpected case, which has not been reported in the paper is in the vertex
calculation for edges that are placed within a stair stepping effect, which is
illustrated in Figure 79. This effect has something to do with the weighted
sum of normals of this particular configuration. This case can be detected
by filtering for this combination of surface normals in the adjacent triangles.

(a) Mesh before edge sharpening (b) Example of sticks

Figure 79: Mesh after edge sharpening

For orthogonal buildings, the edge sharpening clearly improves the result-
ing geometry (see Figure 74b and Figure 77b). An illustration of the result of
edge sharpening for a building with oblique surfaces in shown in Figure 80.

(a) Mesh before edge sharpening (b) Mesh after edge sharpening

Figure 80: Comparison between a rounded and sharpened oblique surface

A comparison of the input model and sharpened result, is not necessarily
in favor of the edge sharpening. It is visible that the sharpened model

4.3 approach 1: marching cubes 67

contains artefacts at the locations of stair stepping. In addition the geometry
seems rather unintuitive, being sharpened while still approximating the
original model. Finally it was decided to not run the edge sharpening in
the repair process, since it increases the chance of unexpected results while
its improvement of the geometry is arguable.

Detriangulation

To convert the triangle mesh back to the CityGML data format, a detrian-
gulation is needed. Two methods have been researched; quadric edge mesh
decimation and a triangle segmentation method based on knowledge of the
Marching Cubes output. Arroyo Ohori [2010]

quadric edge mesh decimation
In order to reduce the number of triangles and simplify the geometry, Noorud-
din and Turk [2003] use an edge decimation method developed by Garland
and Heckbert [1997]. The theory of this process is described in § 3.5.2. It
has been applied using the Quadric Edge Collapse Decimation tool in MeshLab.
This tool is capable of slightly simplifying geometry in order to reduce the
triangle count. However it is rather unpredictable in its selection of edges.

(a) Input model (b) Defects in resulting model

Figure 81: The polygonal model turned non-manifold after edge decimation

Figure 81 shows an example of a wrongfully created ground plane. Al-
though some of the vertices may be close to each other, merging them is
obviously unwanted in this case.

(a) Input model (b) Overlap in resulting model

Figure 82: The polygonal model turned non-manifold after edge decimation

A second example of a triangle mesh turning non-manifold is shown in
Figure 82. In this case the number of triangles on the right side has not been
simplified, yet the geometry on the roof is already self-intersecting. Since
the main strength of a voxel-based repair method is its robustness, using an
unpredictable method for triangle count reduction is not suitable.

68 my voxel-based repair method

triangle segmentation
As an alternative to the edge decimation method, I have developed a detri-
angulation method specified towards Marching Cubes output. Its aim is not
to simplify or improve the geometry, but simply to reduce the triangle count.
Because we know Marching Cubes can only produce triangles in 26 different
directions, it is possible to segment all triangles and group them based on
their normalized normal vector. The next step is to merge all neighboring
triangles which are pointing in the same direction. This process is explained
in algorithm 4.2.

Algorithm 4.2: Detriangulation

Input: A triangle mesh M and 26 empty segments
Output: A polygonal model

1 for triangle τ in M do
2 compute triangle normal
3 add τ to corresponding segment
4 end
5 for every segment do
6 keep all directed edges that appear once
7 sort all incident directed edges
8 while edges with same direction are detected do
9 for every edgen (v1v2) and edgen+1 (v2v3) do

10 if v1v2 has same direction as v2v3 then
11 create new edge v1v3
12 delete both edges v1v2 and v2v3
13 delete vertice v2
14 end
15 end
16 end
17 end
18 order all polygons on descending area for polygon in set do

19 end
20 if polygonn contains polygonn+1 then
21 add polygonn+1 to interior of polygonn
22 end

Figure 83a shows the first step; selecting triangles pointing in the same
direction. The second step is selecting only the edges that appear once,
shown in Figure 83b. The third step is to connect all incident edges, and
remove all vertices that are not positioned on a corner (see Figure 83c). The
final step is to select any holes as interior rings.

(a) Step 1: Select a set
of triangles with
same orientation

(b) Step 2: Find and
merge consecutive
edges

(c) Step 3: Detect inte-
rior rings for each
polygon

Figure 83: The three steps of the detriangulation process

4.3 approach 1: marching cubes 69

The results of these steps are visible in Figure 84.

(a) Triangle mesh segmented on nor-
mal vector

(b) Polygonal mesh result after detri-
angulation

Figure 84: Result of the detriangulation step

4.3.4 Evaluation

After developing the method, some advantages and drawbacks of this ap-
proach became clear.

Advantages:

• The isosurface extraction is based on a binary grid only, which means
that all morphological operators can be performed on the binary grid.

• The Marching Cubes results for a given binary grid are very pre-
dictable. Since triangles are created by simple cube configurations,
no unexpected cases are encountered.

• Any defective building model which is converted to a manifold vox-
elization without any holes, is guaranteed to be converted to a mani-
fold mesh (taking into account the possible ambiguities of the original
Marching Cubes algorithm).

Drawbacks:

• Oblique surfaces are approximated with a stair stepping effect. (Note
that a using a distance field would remove this issue, see § 3.4.2)

• Corners are rounded off which may be sharpened by using an edge
sharpening technique. This however, gives the possibility of unex-
pected results appearing in the output mesh (long edges & weird stair
stepping effect).

70 my voxel-based repair method

4.4 approach 2: dual contouring

The second approach for a voxel-based repair method is focused on the
surface reconstruction technique of Dual Contouring as explained in § 3.4.3.
This section will describe the decisions that have been made in the develop-
ment of this approach.

4.4.1 Morphological operators

As described in § 3.3.4, morphological operators are most useful when
applied for a pure binary grid reconstruction method. The Dual Contouring
method is based on finding the original grid edges which connect the inte-
rior and the exterior of the grid. By performing morphological operators,
binary voxel values will be changed. In doing so, some grid edges con-
necting the interior (value = 1) with exterior (value = 0) are not necessarily
intersecting with the original model anymore. For this reason no use can
be made of Distance Mapping or Adjacency Filtering. Only the steps of
selecting a single connected component and filling holes by flood filling the
inverse grid are used, in a similar way as described in § 4.3.1 in Section 4.3.

4.4.2 Isosurface extraction: Dual Contouring

The second approach consists of an adaption I made based on the original
Dual Contouring method, as described in § 3.4.3 in Chapter 3. In the theory
it is described how the contour can be shaped by creating a triangulation
of the dual vertices. Here the position of dual vertices is computed by
checking the intersections and corresponding surface normals between the
input model and all grid edges of the cube. However, since we are applying
this method on defective geometry, not all intersections can be found in
all cases. In case of a hole or overshoot, no intersections or too many
intersections will be found.

gap

Figure 85: DC gap model

A clear example of a case where intersections cannot be found, is when
the input model has a hole. A diagram of this is shown in Figure 85. The
grid edges connecting a white and a black voxel are depicted as black lines.
It is clear that the grid edges positioned at a gap, do not intersect with
the original building model which is shown in blue. The reason that Dual
Contouring can still be applied to the defective input, is because we can fall
back on the volume defined by the binary grid.

4.4 approach 2: dual contouring 71

Defective Input Handling

In this approach I try to overcome this issue, by computing the dual in an
alternative way when not all Hermite data is available. By distinguishing
three cases a decision can be made on how to compute the dual vertex. In
descending precision these are:

• Minimized QEF, when all intersections and normals are found compute
the QEF.

• Mass point, when only some intersections are found, compute the
average of the intersection points that have been found.

• Cube center point, if no intersections are found at all assign the center
of the cube.

In case not all intersections are found, the mass point can be computed as
the average of intersection points that have been found. When no intersec-
tions are found but the cube is known to intersect the original model, we
can simple use the center of the cube since no additional information is
available. An illustration of these three options is shown in Figure 86.

minimized QEF masspoint centerpoint

Figure 86: Three options for computing the dual vertex

The idea behind this approach is that we use the intersections with the orig-
inal model where possible, and fall back to the voxel representation in other
cases. Figure 87 shows an example of an accurate surface reconstruction of
the correct parts of the model. At the location of the gap, the triangle mesh
is representing the voxel representation since no intersections can be found.

(a) Input model with limited hermite
data due to a gap

(b) Approximation of the original sur-
face at gap

Figure 87: Result of the proposed method on a building with a gap

72 my voxel-based repair method

algorithm 4.3 shows how different options for computation of the dual
vertex are selected.

Algorithm 4.3: Dual Contouring

adaptation of [Ju et al., 2002; Schaefer et al., 2002]
Input: A binary grid G and a (possibly defective) polygonal model

M
Output: A triangle mesh

1 for voxel Vijk in G do
2 check grid edges Ge for sign change with Vi+1jk, Vij+1k and Vijk+1

3 for every grid in Ge do
4 if grid edge intersects with M then
5 store intersection point pi and surface normal ni
6 tag 4 grid cells Gc neighboring the grid edge Ge

7 end
8 end
9 end

10 for every tagged grid cell Gc do
11 if all hermite Data available then
12 Gc’s dual vertex v is computed by QEF
13 end
14 else if some intersection available then
15 Gc’s dual vertex v is the mass-point
16 end
17 else if no intersections available then
18 Gc’s dual vertex v is the center-point
19 end
20 end
21 for every grid edge Ge in A do
22 create two triangles connecting the dual vertex v1, v2, v3&v4 of

the neighboring grid cells Gc
23 end

After testing the method as described above on several building models, 3
important issues were encountered;

• Incorrectly solved QEF vertices

• Misplaced voxels finding no intersections

• Non-manifold Self-intersections

Descriptions and possible solutions for each of these issues are described
below.

incorrectly solved qef
Theoretically, the computation of the QEF results in an intersection point
between the planes which are defined by the hermite data (= intersection
point & normal vector). However, in some cases the computation of the
QEF causes exceptions where the dual vertex position is calculated very far

4.4 approach 2: dual contouring 73

away from the actual building. This has to do with the precision of the
intersections, which causes the QEF to search for the intersection between
two nearly parallel planes. An example of this is shown in Figure 88.

Figure 88: Several incorrect solutions for the QEF computation

These exceptions can be easily detected by performing an edge length check
and the dual vertex can be replaced by either the mass point or cube center.
However, this means that this part of the triangle mesh will not be able to
rebuild any sharp features.

misplaced voxels

A second issue that is encountered has to do with the detection of grid edges
that are intersecting with the original building model. We are using the
voxel representation to determine where these grid edges should be located.
In theory, every grid edges which connects an interior voxel with an exterior
voxel, should intersect with the original model. In practice however, mis-
placed voxels will have grid edges which do not find an intersection. When
the intersection cannot be found, the QEF cannot be computed. Therefore
either the mass-point or the cube center will have to be used instead. Two
diagram of the effect of this error are shown in Figure 89 and Figure 90.

Figure 89: Assigning the mass-point in case of a misplaced voxel

The misplaced voxel is indicated with the red arrow. Note that this voxel is
positioned at the wrong side of the blue line, which represents the original

74 my voxel-based repair method

building model. Now this misplaced voxel is connected to two white voxels
through a grid edge. On both of these grid edges an intersection with the
original model is expected but not found. The dotted red lines show the
result after assigning either the mass-point or the cube center, which in both
cases results in artefacts.

Figure 90: Assigning the cube center in case of misplaced a voxel

The result of assigning cube centers in case of misplaced voxels is shown
in Figure 91. By observing both the voxel representation and the output
model it is visible that voxels on the end of a slice are likely to be misplaced.
During the processing of these voxels, it is likely that artefacts are generated
in the resulting triangle mesh. These artefacts are highlighted in Figure 91b.

(a) Input voxel representation (b) Artefacts after Dual Contouring

Figure 91: Effect of misplaced voxels on isosurface extraction

self-intersections
The third issue is caused since the current implementation is based on the
original Dual Contouring method [Ju et al., 2002; Schaefer et al., 2002].
Although this method is guaranteed to result in a closed mesh, in case
of certain concave configurations of cubes, the resulting mesh may be self-
intersecting. An illustration of this is shown in Figure 92.

(a) Result after Dual Contouring (b) Example of a self-intersection

Figure 92: Self-intersections in the output triangle mesh

4.4 approach 2: dual contouring 75

This problem is inherent to the original implementation of the Dual Con-
touring algorithm. An adaptation called Dual Marching Cubes was devel-
oped by Schaefer and Warren [2005], allowing for multiple vertices being
placed in a cube. However, also this implementation allows for self-intersections.
Ju and Udeshi [2006] developed a method which either changes the detrian-
gulation or adds extra vertices to a cube in order to prevent self-intersections.
Figure 93a and Figure 93b show a configuration of binary values in the voxel
grid and a possible triangulation created by Dual Contouring without self-
intersections. However, for the same configuration the dual vertices may be
placed on different positions, which may cause self-intersections as shown
in Figure 93c. Figure 93d shows how their method changes the triangulation,
preventing the triangles to intersect.

(a) Configuration of binary
values in the voxel grid

(b) Triangulation without
self-intersections

(c) Triangulation with
self-intersection

(d) Changed triangulation
without self-intersections

Figure 93: Example of self-intersection and possible solution by changed
triangulation [Ju and Udeshi, 2006]

Another adaption of the Dual Contouring algorithm is proposed by [Man-
son and Schaefer, 2010]. Here, dual vertices are re-positioned towards the
iso-surface which is followed by a topology test to preserve the original
topology. An implementation of either of these algorithm should theoreti-
cally solve the problem of self-intersection.

76 my voxel-based repair method

Although the first two issues (incorrectly solved QEF and misplaced voxels)
do not create invalid building models, they very often do cause undesired
artefacts in the output model. More importantly, the occurrence of self-
intersections means that the current implementation of this approach is not
capable of repairing 3D City models. Before this second approach can be
validated, more research is needed for guaranteeing a manifold output,
reducing the creation of artefacts and finally the detriangulation of the
model.

4.4.3 Evaluation

After testing the second approach it is clear that the current implementation
is not capable of 3D City Building model repair. It does however show the
potential of the adaptive contouring methods, which makes use of information
of the input model.

Advantages:

• The major advantage is the exact surface reconstruction (oblique sur-
faces and sharp features) of the original model when the Hermite data
is available.

• My proposed adjustment to Dual Contouring allows for removing
overshoots and filling holes by falling back to the binary grid.

• Any attributes of the input model can be directly linked to triangles in
the mesh by using an edge based attribute preservation (see § 4.5.3 in
Section 4.5).

Drawbacks:

• The original Dual Contouring algorithm results in self-intersecting
triangles.

• Incorrectly solving the QEF can be filtered but this results in non-sharp
features.

• Misplaced voxels will not find all intersections, meaning that the QEF
cannot be solved and artefacts are created. Although this does not
create non-manifold geometry, the resulting artefacts are unwanted.

• In case of filling gaps, the resulting surfaces will be jagged since they
are representing the binary grid.

4.4 approach 2: dual contouring 77

Voxelization

CityGML input

Select volume using
connected components

Fill holes using
connected components

Filter voxels with
6-adjacency <2

Marching Cubes

Edge Sharpening

CityGML output

Select volume using
connected components

Fill holes using
connected components

Dual Contouring

Detriangulation

parser

writer

Approach 1 Approach 2

Figure 94: Flowchart of the applied approaches

An overview of the selected components for each of the approaches is shown
in Figure 94. In the first approach, the Edge Sharpening component is
dotted as it is not essential for the repair process and the risk of producing
defective output is increased (see § 4.3.3). In the second approach, it should
be noted that more research is needed on the area of Dual Contouring to
determine its suitability for 3D City Model Repair. The detriangulation
component has only been implemented for the first approach. In Chapter 5

the repair capability of both approaches is tested.

78 my voxel-based repair method

4.5 preservation of attributes
In many 3D City models, attributes are an important part of the data. The
possibilities of storing semantics in CityGML are described in § 2.1.3. A
drawback of using a voxel-based repair method it that the surface based
attributes are not directly related to the resulting triangle mesh. Depending
on the surface reconstruction technique, different approaches may be used
to preserve attributes throughout the process. Three ways of preserving or
restoring the attributes will be described here:

• Geometry based

• Voxel based

• Binary Grid edge based

This section will explain the method and suitability for each of these ap-
proaches.

4.5.1 Geometry based attribute determination

The most basic way of attribute preservation is by performing all the geo-
metric repair steps while disregarding any surface information, and only
restoring the attributes afterwards. This way of attribute determination has
been researched in more detail by Boeters [2013] and Diakité et al. [2014].
By looking at the orientation and position of surfaces, some assumptions
can be made. In case of CityGML data, every building surfaces should be
stored as either Ground Surface, Wall Surface or Roof Surface. An examples
of attribute determination could be that a surface with a normal vector with
a z-component = 0 should be considered as a Wall Surface. A diagram of
this principle is shown in Figure 95.

(a) Mesh is segmented based on
surface normals (b) Mesh with attributes

Figure 95: Diagram of geometry based attribute preservation

An advantage of this process is that the implementation of this approach
is easy, and no customization of any of the geometric steps is needed. In
case of missing geometry or attributes in the original model, attributes can
still be determined. This makes a strong case for returning reasonable
output for very defective input buildings since often the semantics of a
defective model should not be considered more reliable than the geometry.
A drawback is that the original surface attributes are lost and only restored
based on assumptions. This means that only general attributes (such as

4.5 preservation of attributes 79

Ground Surface, Wall Surface & Roof Surface in the case of CityGML) can be
restored. Also this approach is not appropriate for models with high level of
detail (LoD 3 and higher) nor in cases such as roof overhangs. Additionally,
any artefacts created by a voxel-based repair method may be modeled as
small surfaces pointing in unexpected directions, which has to be taken into
consideration.

4.5.2 Voxel based attribute preservation

A more precise way to preserve any surface related attributes is to store
them throughout the voxelization process. Individual voxels may be ’tagged’
in order to indicate if they are close to the original surface. By checking the
distance for every voxel to its scan line intersections, the voxels close to the
original surface can be separated. Any voxels that are within a threshold
distance of the intersection, can inherit the attributes of the corresponding
surface. The theory of this is described in Section 4.2. By storing all surfaces
in a table and giving them an ID, voxels can be tagged for their correspond-
ing attributes. This way a 3D grid can be created, containing both binary
values and a surface ID. Depending on the surface reconstruction method,
these voxels can be translated into triangles. This process is illustrated in
Figure 96a. On a higher level, any building parts can be separately voxelized
within the same bounding box. This allows for a distinction of building
parts in the voxel representation. An illustration of this principle is shown
in Figure 96b.

(a) Combined geometries (b) Surface attributes

Figure 96: Attribute preservation per building part and per surface

The main advantage of this approach is that the initial surface attributes can
be coupled to voxels. This can be done for building parts (e.g. House &
Garage), the boundary surfaces (e.g. Roof Surface, Ground Surface & Wall
Surface) and for individual surfaces (e.g. material or texture). However, this
approach has some other drawbacks. To convert the voxel attributes into the
final polygon model, customization of all the intermediate processing steps
is needed. In case of Approach 1 for example, this means that the adjacency
filtering, Marching Cubes, edge sharpening and detriangulation should all
be adapted which is not trivial. Also when any surfaces are missing in the
input model, naturally no information is available for the the neighboring
voxels. Additional, on the locations where a Wall Surface meets a Roof
Surface, the corner voxels will receive two tags. In order to determine the
correct attribute, some geometry based assumptions are likely to be needed
again. A schematic representation of the double tags is shown in Figure 97.

80 my voxel-based repair method

(a) Original input model with at-
tribute information

(b) Voxels ’tagged’ with attributes
information

Figure 97: Diagram of voxel based attribute preservation

4.5.3 Grid edge based preservation

The third way of preserving attributes, is to store them per grid edge. This
approach is only suitable for the surface reconstruction methods that are
using grid edges of the original model. These methods have been described
in Section 3.4 in Chapter 3. Dual Contouring, Pressing & Dual Marching
Cubes are examples of surface reconstruction methods that are based on
grid edges. Each of these methods store grid edges that are intersecting
with the input model. This means that each of these intersecting grid edges
can be easily related to one of the original surfaces. Therefore, every grid
edge connecting the interior and the exterior can be tagged with an attribute
value. A diagram of this principle is shown in Figure 98.

(a) Original input model with at-
tribute information

(b) Grid edges with attribute in-
formation

Figure 98: Diagram of grid edge based attribute preservation

An advantage compared to voxel-based attribute preservation is that multi-
ple tags (i.e. both Roof Surface and Wall Surface) are not possible. Instead,
the horizontal grid edge will be tagged as a Wall Surface and the vertical
grid edge will be tagged as a Roof Surface. This is especially useful in a
method such as Dual Contouring, where every intersecting grid edge has a
direct relation with two resulting triangles. This means the edge attribute
can simply be added to a single triangle. A problem however, is that some-
times a grid edge connecting interior and exterior does in fact not find an
intersection with the original model. This issues is described in Section 4.4,

4.5 preservation of attributes 81

earlier in this chapter. In case an edge does not find any surface, it will
result in geometric artefacts and in no attribute information. As described
before, this method can only be used for surface reconstruction methods
which are based on finding grid edge intersections with the original model.
For instance, this makes it unsuitable for Marching Cubes implementation.

4.5.4 Recommendation

Based on the evaluation of the three approaches a recommendation is given
for the preservation of attributes.

approach 1 : marching cubes
For the Marching Cubes approach, a voxel based attribute preservation
seems suitable, but the conversion of voxel attributes to triangle attributes
involves customization of all intermediate steps (adjacency filtering, March-
ing Cubes, edge sharpening & detriangulation). To preserve the attributes
throughout this process, geometric based decision will have to be made
regardless. Therefore a fully geometry based attribute preservation is rec-
ommended for building models with a lower level of detail (LoD 1 & 2).

approach 2 : dual contouring
For Dual Contouring the edge based voxel preservation is recommended.
Every edge attribute can be easily translated into triangle attribute. In case
of no intersection found, neighboring grid edges may be checked for any
attribute values. In case of small holes this may solve the problem. In case
of large gaps in the input model, an assumption on the attributes can be
done by using a geometry based attribute preservation.

In general, one could argue that data sets with a high number of errors need
a simple geometry based attribute determination since the data quality of
the input model is low. Especially for dataset with a low LoD a complex
attribute preservation seems unnecessary. This decision will depend on the
specific dataset.

5 IMPLEMENTAT ION AND
EXPER IMENTS

In this chapter both approaches (Marching Cubes and Dual Contouring) are
tested on set of buildings from existing data sets. The results are evaluated
quantitatively by measuring the repair success rate and qualitatively by
analyzing the geometric errors between input and output model. Finally,
an evaluation of a voxel-based repair method will be given, comparing the
results of the validation with the known capabilities of the Shrink-wrapping
method.

5.1 implementation
The two approaches as described in the Chapter 4 have been implemented
in Python using the Numpy and VTK modules. The developed code for
the described components is available at https://github.com/dtmulder/

VoxelRepair. FME and CityGML2OBJ (made by Filip Biljecki and available
at https://github.com/tudelft3d/CityGML2OBJs were used for triangulat-
ing the CityGML data. The component of Quadric Edge Mesh Decimation
was tested by using Meshlab, as well as the geometric comparison using the
Hausdorff distance. Paraview was used for viewing the voxelized volumes.

Rotterdam

Hoogvliet-Zuid Overschie Heijplaat

Number of buildings 10 828 3 318 1 207

Too few points - - -
Consecutive points same 1 562 1 222 572

Self intersection 14 2 1

N.p.p. 1 distance plane 306 535 58

N.p.p. 1 normals deviation 315 181 57

Too few polygons 373 77 16

Shell not closed 18 040 7 530 2 020

Non manifold edge 34 11 13

Multiple connected components 3 11 1

Polygon wrong orientation 2 - 3

Percentage of defects 95 92 90

Table 7: Overview of the detected defects in the Rotterdam datasets

83

https://github.com/dtmulder/VoxelRepair
https://github.com/dtmulder/VoxelRepair
https://github.com/tudelft3d/CityGML2OBJs

84 implementation and experiments

5.2 test data
To test the repair capability, buildings from the existing CityGML datasets
of Rotterdam and Montreal have been used. However, the defects which are
present in these datasets are quite different. An overview of the validity of
both datasets is shown in Table 7 and Table 8, based on the val3dity tool
(see § 2.1.5). This shows a great difference between the two datasets.

Montreal

VM01 VM02 VM03

Number of buildings 384 209 339

Too few points 13 5 31

Consecutive points same 324 122 373

Self intersection - - -
N.p.p. 1 distance plane - - -
N.p.p. 1 normals deviation - - -
Too few polygons - - -
Shell not closed 15 2 1

Non manifold edge - - -
Multiple connected components - - 2

Polygon wrong orientation - - -
Percentage of defects 16 10 20

Table 8: Overview of the detected defects in the Montreal datasets

Due to the specific defects in the datasets, the repair method would be
evaluated for certain defects. If we would run the Rotterdam dataset, ap-
proximately 90% of the defects would consist of non-closed shells because
of missing walls. Since this kind of validation would not be representative
for other errors, it was decided to create a test set in which different kinds
of errors are specifically selected. An overview of the test set is shown in
Table 9.

1 Non planar polygon

5.2
test

data
85

Dataset Building ID Defect Description

Rotterdam

1 HoogvlietZuid 7 467 - Simple Block
2 HoogvlietZuid 2 399 - Simple Tilted Roof
3 HoogvlietZuid 8 862 - Combined Blocks
4 HoogvlietZuid 5 439 - Combined Tilted Roof
5 HoogvlietZuid 6 736 - Combined Blocks Tilted Roof
6 HoogvlietZuid 0 001 Too few polygons Row house, missing 2 walls
7 HoogvlietZuid 6 517 Shell non closed Orthogonal building with gap
8 HoogvlietZuid 8 592 Non planar polygon Two vertices within tolerance
9 HoogvlietZuid 9 137 Non-manifold edge Building with overshoot
10 HoogvlietZuid 3 606 Non-manifold edge Gap + overshoot + double surface
11 HoogvlietZuid 1 107 Non planar polygon Polygon soup
12 HoogvlietZuid 0 860 Shell non closed Polygon soup
13 HoogvlietZuid 1 625 Self-intersection Row house with many missing walls
14 HoogvlietZuid 0 095 Non planar polygon Small building also missing a wall
15 HoogvlietZuid 0 556 Too few polygons Box with gap and consecutive points same

Montreal

16 VM01 0 060 Consecutive points same Building with detailed roof
17 VM01 0 028 Consecutive points same Building with objects on roof
18 VM01 0 116 Consecutive points same Building with objects on roof
19 VM01 0 050 Consecutive points same Building with objects on roof
20 VM01 0 107 Shell not closed Large building with interior

Table 9: Overview of the tested 3D models

86 implementation and experiments

5.3 validation after repair
The success of the repair process is measured by validating the resulting
model and checking the Root Mean Square Error (RMSE) of the geometric
comparison as described in § 3.5.3. The Metro-tool [Garland and Heckbert,
1997] which is available at http://vcg.isti.cnr.it/vcglib/metro.html

has a tool in Meshlab, which is used. The results of the validation process
are shown in Table 10.

Building Approach 1 Approach 2

valid valid RMSE valid RMSE

1 yes yes 0.014 m yes 0.005

2 yes yes 0.078 m no -
3 yes yes 0.100 m yes 0.006

4 yes yes 0.078 m no -
5 yes yes 0.109 m yes 0.056

6 no yes 0.088 m yes 0.044

7 no yes 0.143 m no -
8 no yes 0.284 m no -
9 no yes 0.421 m no -
10 no yes 0.102 m no -
11 no no - no -
12 no yes 0.247 m no -
13 no no - no -
14 no yes 0.114 m yes 0.057

15 no yes 0.122 m yes 0.032

16 no yes 0.145 m no -
17 no yes 0.214 m no -
18 no yes 0.391 m no -
19 no yes 0.335 m no -
20 no yes 0.316 m no -

Table 10: Overview of repair process results

Approach 1 was able to return 18 valid buildings, thus repairing 12 out of
15 invalid buildings. Approach 2 clearly performed less desirable, returning
only 6 valid buildings. By applying this approach 3 defective buildings were
repaired and 2 valid buildings were turned invalid. An advantage however,
is that the RMSE of the buildings processed by approach 2 are clearly lower,
which indicates a surface reconstruction closer to the original model. An
overview of the remaining defects per approach is shown in Table 11.

http://vcg.isti.cnr.it/vcglib/metro.html

5.3 validation after repair 87

Before repair Approach 1 Approach 2

Defective buildings 15 2 14

Too few points - - -
Consecutive points same 14 - 5

Self intersection - - 6

N.p.p. 1 distance plane 2 - -
N.p.p. 1 normals deviation 1 - -
Too few polygons 2 - -
Shell not closed 4 2 -
Non manifold edge 2 - 1

Multiple connected components - - -
Polygon wrong orientation - - -
Percentage of defects 75 10 70

Table 11: Remaining defects after repairing the test set

5.3.1 Validation of approach 1

Overall, approach 1 was capable of returning a high percentage of valid
buildings. An example is building 18 from the Montreal dataset. This
model contained a Consecutive points same error, but could be repaired.
An illustration of the model before and after repair is shown in Figure 99.

(a) Original building (b) Building after processing

Figure 99: Building 18

Another example of a repaired model is building 9, shown in Figure 100.
The input model shows an overshoot and a gap, which are removed in the
output model. It is clearly visible in this case that the Marching Cubes result
is only capable of approximating the oblique surface.

(a) Original building (b) Building after processing

Figure 100: Building 10

88 implementation and experiments

Two buildings (11 & 12) could not be repaired. Building 11 is shown in
Figure 101a and contains multiple holes, self-intersections and an overshoot.
Building 12 is shown in Figure 101b and also contains several holes and
overshoots. By lowering the voxelization threshold to 3 the building could
be repaired (see Section 4.2 for the description of the importance of the
threshold).

(a) Building 11 (b) Building 12

Figure 101: Buildings 11 & 12 were not repaired

Illustrations of the full test set before and after processing with approach 1
are presented in Appendix B.

5.3.2 Validation of approach 2

As was shown in Table 11, approach 2 was only able to return 6 valid
building models. An example of one of these repaired building models
is shown in Figure 102. Where the original model was missing a wall,
the resulting model returns a closed volume. It is visible that the roof
is accurately reconstructed. However, where the roof meets the missing
wall surface, it is visible that pointy artefacts are created, which has been
described in Section 4.4.

(a) Original building 14 (b) Building 14 after processing

Figure 102: Approach 2 applied on Building 14

5.3 validation after repair 89

An example of an invalid building which could not be repaired by approach
2 is shown in Figure 103. The original building contained a consecutive
points same error. The processed building model is shown in Figure 103b.
Although the resulting model seems to be visually correct, it contains self-
intersections. This issue has been described in Section 4.4.

(a) Original building 18 (b) Building 18 after repair

Figure 103: Approach 2 applied on building 18

When we check the triangle mesh and zoom in on the roof of the model, the
problem becomes visible. Figure 104 shows two locations of self-intersections,
where the roof geometry has concave corners. Although the mesh is closed,
edges are intersecting each other, turning the resulting model invalid. How-
ever, it is also visible that the oblique surfaces and sharp features are accu-
rately reconstructed. The adjustments which are needed to prevent this
approach from resulting in self-intersections are described in the future
work section (see Section 6.3).

Figure 104: Self-intersections on the roof of building 18

90 implementation and experiments

5.3.3 Geometry comparison

To evaluate the quality of the repair, the geometry comparison such as
described in § 3.5.3 is applied. In Table 10 it is visible that the RMSE of
approach 1 on buildings with oblique surfaces is quite high, which is due
to the stair-stepping effect. An almost orthogonal building (Building 18) is
selected here to make a fair comparison between the two approaches.

Figure 105: Geometric error in the repaired model

The geometry comparison between input and output model resulting from
approach 1 is shown in Figure 105. The orthogonal building parts have
been aligned, resulting in almost no error. The oblique roof surface and
more detailed objects contain errors ranging up to 0.36 meter. Although
these error values are mostly a matter of resolution, it is an indication that
a significant geometric shift has taken place.

Approach 1 Approach 1 Approach 2

resolution 323 643 323

RMSE 0.195 m 0.176 m 0.142 m

Table 12: Comparison of 3 repair results for Building 18

When comparing the RMSE-values of the geometry comparison for the
different repair approaches, some differences become clear. Table 12 shows
the results after applying approach 1 with a resolution of 323 and 643 and
approach 2 with a resolution of 323 . Although approach 2 does not repair
the model, it does perform a more accurate surface reconstruction, even in
case of orthogonal buildings.

5.3 validation after repair 91

5.3.4 Repairing a full dataset

Since the first approach is shown to be capable of repairing a large number
of defective building models, it has been tested on the Rotterdam3D dataset
for the neighborhood Heijplaat. The results are shown in Table 13. The
repair process was able to reduce the number of defective buildings from
1091 (90%) in the original dataset to 49 (4%) in the final result.

Rotterdam3D Heijplaat

Before repair After repair

Number of defective buildings 1 091 49

Percentage of defective buildings 90 4

Too few points - -
Consecutive points same 572 -
Self intersection 1 111

N.p.p. 1 distance plane 58 3

N.p.p. 1 normals deviation 57 6

Too few polygons 16 0

Shell not closed 2 020 76

Non manifold edge 13 15

Multiple connected components 1 4

Polygon wrong orientation 3 15

Table 13: Overview of the detected defects in the Rotterdam datasets

Two examples of buildings that have been successfully repaired are shown
in Figure 106. The first example shows how two holes could be repaired.
In the second example a combination of two holes and an overshoot is
repaired.

(a) Invalid building model (b) Repaired building model

(c) Invalid building model (d) Repaired building models

Figure 106: Correctly repaired building model

92 implementation and experiments

The buildings which could not be repaired are mostly produced by the am-
biguous cases of the Marching Cubes algorithm, sometimes in combination
with a inaccurate voxelization. Two examples of defective output models
are shown in Figure 107, showing the result of ambiguous Marching Cubes
cases on the intersection of two oblique surfaces.

(a) Overview of input building model (b) Gap due to ambiguity

(c) Overview of input building model (d) Gap due to ambiguity

Figure 107: Defect output due to ambiguities in the Marching Cubes cases

Although the repair percentage is quite high, some clear remarks have to be
made. First of all buildings in the resulting dataset (repaired or unrepaired)
have been affected by a geometric shift, rounded off corners and contain the
stair-stepping effect at the location of oblique surfaces. Secondly a number
of the repaired buildings, do not represent the actual volume of the original
building model. This may occur since the largest connected component
is selected. For a inaccurate voxelization process, the largest connected
component may produce valid output but does not necessarily represent
the original building model.

5.4 evaluation 93

(a) Input building model (b) Inaccurate but valid result

(c) Input building mode (d) Inaccurate but valid result

Figure 108: Examples of valid output for incorrect volume

5.4 evaluation
The capability of repairing certain defects has been shown. However, this
is at the cost of geometric precision. Table 14 shows a comparison between
the voxel-based method tested above and the Shrink-wrapping method as
described in § 2.2.4 in Chapter 2.

Voxel-based repair Shrink Wrapping

Oblique surfaces no yes
Attribute preservation possible yes
Shift in geometry yes no
Affected by floating point arithmetic no yes
Repair of overshoots yes possibly incorrect

Table 14: Comparison in theory of a voxel based repair and Shrink Wrapping

In general the voxel-based repair method is robust in its repair capability.
However, a major drawback is the shift in geometry and lack of support
for oblique surfaces. The further studying of applying Marching Cubes on
a distance field (see § 3.4.2) or an non-self-intersecting adaption of Dual
Contouring (as described in Section 4.4) may be capable of improving these
results. However, when taking into account the processing speed and com-
prehensibility of the algorithm, the Shrink-wrapping method can be consid-
ered as a more efficient and reliable repair method.

6 CONCLUS IONS , D ISCUSS ION
AND FUTURE WORK

6.1 conclusions
What are the most common errors of invalid CityGML models?
Which of these errors can be repaired by using a voxel-based repair method?

The most common error is very different per dataset. In Rotterdam3D
the Shell Not Closed defect is very common because of a misinterpretation
of the data standard. Another common error is Consecutive Points Same,
furthermore some defects on the polygon level are present. In a dataset with
better quality such as Montreal the most common errors is Consecutive Points
Same which makes for more than 90% of the defects. For some complex
buildings (almost rounded, very large or with many holes) the Shell Not
Closed defect is sometimes present.

Which voxelization algorithm is most suitable for an automatic repair method?

In general a scan conversion in the 6 orthogonal directions using Parity
Count method with a majority voting is sufficient to generate a manifold vol-
umetric representation. It is dependent on the defects in the input polygonal
model, but in general a parity count in 6 directions using a majority voting
with a threshold of ≥ 4 seems most effective. Only in specific cases with
multiple gaps and self-intersections more scan directions may be needed. In
very rare cases of multiple double surfaces, ray stabbing is most suitable.

Which surface reconstruction method is most suitable for rebuilding sharp geometry
characteristics?
Is a Marching Cubes algorithm sufficient or are other algorithms needed?
Is additional processing such as surface smoothing or edge sharpening required?

Surface reconstruction methods can be distinguished in two groups. The
first group uses only a binary grid to determine the triangle mesh, the
second group uses additional information such as intersections and surface
normals of the original model.

• Approach 1: Marching Cubes is reliable, but not accurate in approxi-
mating oblique surfaces or sharp features. Applying this approach on
a signed distance field instead of a binary grid will reconstruct oblique
surfaces but still suffer from rounded off corners.

• Approach 2: Dual Contouring has the potential of performing an accu-
rate surface reconstruction, reproducing any sharp features. However,
also artefacts and self-intersections are created in the process.

• The Pressing method may be suitable as an alternative way of recon-
structing oblique surfaces from a voxel representation.

• More research is needed to determine ether any of these methods are
capable of reconstructing sharp features in a reliable way.

95

96 conclusions, discussion and future work

• For the Marching Cubes and Pressing method, an edge sharpening
may be applied, although it has been shown to cause non-manifold
exceptions.

How can the semantics be kept during voxelization process?

This thesis presents three ways of preserving/restoring the attributes during
the model repair process. The selection of the appropriate method is very
much dependent on the surface reconstruction technique which is applied.
For Approach 1 (using Marching Cubes) geometry based attribute assump-
tions are recommended. For Approach 2 (using Dual Contouring) it seems
most effective to store the attributes per grid edge.

What are the advantages and disadvantages of using a voxel-based repair methods
when compared to existing repair methods?

Advantages:

• A manifold volumetric representation is almost guaranteed

• Non visible errors (such as Consecutive Points Same are repaired with-
out the possibility of unexpected cases

• Non-manifold edges can be repaired in a consistent way

Disadvantages:

• By converting to a binary grid, there is a shift in geometry. Both of the
researched approaches do end up with a significant geometric error.

• In both approaches artefacts may occur, showing unwanted geometry
which is in some way still representing the binary grid.

• In the scan conversion process, the initial surface attributes are lost. To
restore these attributes, customization steps are needed.

• Depending on the resolution, the processing speed of a voxel-based
approach will be inherently slower than that of the existing methods.

To which extent is it possible to automatically repair a 3D City Model building
using a voxel-based method?

• A voxel based method as applied in Approach 1 can consistently
repair invalid 3D City models in the sense of making the 3D model
free of defects. However, this is at the cost of significant geometry
shifts while oblique surfaces are only approximated.

• The result of the surface reconstruction component in both approaches
is not ideal. In general it is likely for artefacts to occur, showing
unwanted geometry based on the binary grid.

6.1 conclusions 97

• An adaptive contouring method such as applied in Approach 2 is
more precise in the surface reconstruction, however several issues
have been encountered which make this method unreliable for 3D City
Model repair.

• In the scan conversion process, the initial surface attributes are lost. To
restore these attributes, customization steps are needed.

• Some important challenges are still to be solved before a reliable and
precise voxel-based repair method can be developed.

98 conclusions, discussion and future work

6.2 discussion

The aim of this thesis was to develop a voxel-based repair method for 3D
city models and research its applicability. Some of the findings in this thesis
raised ideas about the process of automatically repairing invalid 3D City
models. The most important points are discussed below.

• We have seen that a voxel-based repair method has the potential for
performing a volumetric repair for severely defect input models. How-
ever, some obvious drawbacks are inherent to this method. An initial
loss of attributes, a possible geometric shift, possible artefacts and a
relatively low processing speed are clear weaknesses coming to light
when comparing this method to existing repair methods. In the light
of 3D City model repair in general, a combination of repair techniques
may be most effective in the repair of datasets. Some defects such as
small gaps or wrong polygon orientation may be very efficiently pro-
cessed by existing methods whereas overshoots or models resembling
a polygonal soup may require a voxel-based method.

• The specific requirements for a repair tool is another point of discus-
sion regarding the repair process. The most obvious goal would be
to improve the data quality of a dataset in general, not allowing for
a decrease in geometric quality nor the loss of attributes. However,
another goal could be to repair the entire dataset automatically, regard-
less of loosing some geometric accuracy. This could be useful when
a datasets needs to be processed, but the analysis-tool only accepts
valid data. A related question is whether user input is considered as
acceptable. Requiring user input for individual buildings may be very
time consuming. However, it could be justified when it is needed to
repair specific defects in an otherwise high quality dataset.

• On a more general note, the process of procedural creation of 3D
City models should foremost be considered as a crucial part for the
creation of valid datasets. It was also stated by previous contributions
in the field that every dataset seems to have specific types of defects,
based on the method by which they were produced. The percentage
of invalid models in a dataset such as Rotterdam3D is over 90%,
which is simply related to a misinterpretation of the data standard. A
suggestion may be to focus repair methods at a certain dataset, where
defects are produced by unexpected input.

6.3 future work 99

6.3 future work
This thesis has concluded that a voxel-based repair method has the potential
to repair a large amount of defects in 3D City models. However, the problem
of an accurate surface reconstruction has not been fully resolved. Some
areas of research which may improve the surface reconstruction are:

• The combination of applying the Marching Cubes algorithm on a
signed distance field followed by an edge sharpening algorithm has
the potential to be a reliable method for accurate reconstruction of
the original model. Points of focus during this work may be (i) the
handling of defect geometry in computing the signed distance field,
(ii) avoiding any exceptions in the edge sharpening algorithm which
may turn the mesh non-manifold, (iii) determining the most appropri-
ate way of attribute preservation and (iv) speed optimization of this
process.

• The application of Dual Contouring for repairing 3D City models
needs to be researched in more depth to be able to make conclu-
sions about its suitability. The implementation of the original Dual
Contouring algorithm often results in self-intersections, an extended
implementation for manifold results is required for 3D City model
repair. Additionally, unwanted artefacts are created when a precise
dual placement cannot be computed due to any ’misplaced voxels’.
Also in case of gaps, a transition zone will be present between the
original model and binary grid.

• Alternatively, an isosurface extraction method which also uses infor-
mation of the original model may be studied: Dual Marching Cubes
(and its manifold extension). Ether these methods are more suitable
for the surface reconstruction of defect input models could be a topic
of future research.

• If the use of data of the original model is considered unacceptable,
the Pressing approach offers a different approach which does sup-
port oblique surfaces based on a volumetric grid only. The theory of
Pressing has been studied but the effects of its implementation on 3D
city model repair have not been tested. Although the implementation
of Pressing is quite intricate, combining it with the scan-conversion
implemented in this paper may give reliable results.

The scan conversion process and morphological operators have shown that
a manifold volumetric representation can be achieved for almost all defects
present in 3D City models. Some areas that could be further explored are:

• During the scan conversion, information on the number of votes of the
Majority Voting process becomes available. In theory this information
can be used to detect and locate errors in a 3D City model. How to
use this information to improve further model repair could be a topic
of further research.

• Also the possibilities of speed optimization could be researched. A
more efficient surface reconstruction can often be achieved by using
an CO-tree, however the issues of preserving the attributes should be
taken into account.

A MARCH ING CUBES CASES

Case 0

Case 1

Case 2

Case 3

Case 4

Case 5

Case 6

00000000 11111111

00100000 11011111

00100010 11011101

00010010 11101101

10000010 01111101

10001100 01110011

10100010 01011101

0 1

3 2

4 5

7 6

01234567

Figure 109: Marching Cubes cases 0 - 6

101

102 marching cubes cases

Case 7

Case 8

Case 9

Case 10

Case 11

Case 12

Case 13

Case 14

01010010 10101101

11001100 00110011

10001101 01110010

10010110 01101001

10001110 01110001

10101100 01010011

10100101 01011010

10011100 01100011

Figure 110: Marching Cubes cases 7 - 15

B TEST CASE VAL IDAT ION

Figure 111: Building 1: valid box

Figure 112: Building 2

Figure 113: Building 3

Figure 114: Building 4

103

104 test case validation

Figure 115: Building 5

Figure 116: Building 6

Figure 117: Building 7

Figure 118: Building 8

test case validation 105

Figure 119: Building 9

Figure 120: Building 10

Figure 121: Building 11

Figure 122: Building 12

106 test case validation

Figure 123: Building 13

Figure 124: Building 14

Figure 125: Building 15

Figure 126: Building 16

test case validation 107

Figure 127: Building 17

Figure 128: Building 18

Figure 129: Building 19

Figure 130: Building 20

C REFLECT ION

This thesis proposes two voxel-based approaches for automatically repairing
defect 3D city building models. The research was conducted from Novem-
ber 2014 to June 2015. The initial planning separated timeslots for literature
research, studying of the existing algorithms and implementation of the
final prototype. In reality, the process shifted more towards a continuous
research, which resulted in the implementation of two different approaches
to the problem. Early in the process, three components were determined
as being at the core of a voxel-based repair method; (i) Voxelization, (ii)
Morphological Operators and (iii) Surface Reconstruction. At the start of the
process a majority of the time was spent on the first two components. The
final component Surface Reconstruction proved the be the most challenging,
therefore taking up most of the time during the latter stages of the project.

The final product of this thesis is the code that was developed in order
to apply the two repair methods on existing datasets. The code that was
created for several algorithms that were tested but did not end up in either
approach, can also be considered as part of the final product. In order to
test the effectiveness of both repair methods, tests were performed on defect
buildings in existing datasets. In addition, a validation process was needed
to define and test the validity of 3D city models. Both were available from
the start of the process, along with useful tools for pre-processing of 3D city
models.

The methodical line of approach in the Master of Geomatics consists of
Data Capture, Data Storage, Analysis, Communication/Visualization and
Quality Control. This thesis has a clear position within this methodical line,
as its focus lies on the aspect of Quality control of 3D City models. To
carry out this research, knowledge from the core courses of Geomatics was
needed. In particular the courses 3D Modelling of the Built Environment,
Python Programming and Geo Datasets and Quality provided information
that could be directly applied.

3D City models have the potential to indirectly influence citizens through
applications such as urban planning, disaster management, virtual real-
ity and navigation. However, many defects are currently present in these
datasets which can prevent further processing and analysis of the data. By
developing an automatic repair method, the data quality of these datasets
can be improved, enabling the potential uses of 3D city models. This the-
sis contributes to the larger society by examining the possibilities of auto-
matically improving the data quality of these datasets using a voxel-based
method. The resulting algorithm can be applied to repair a large number of
defects, taking into account a slight shift in geometry. Applying this method
can be useful for enabling the processing of datasets for applications such
as volume calculation, noise mapping or wind analysis.

109

B IBL IOGRAPHY

N. Alam, D. Wagner, M. Wewetzer, J. von Falkenhausen, V. Coors, and
M. Pries. Towards automatic validation and healing of CityGML models
for geometric and semantic consistency. ISPRS Annals of Photogrammetry,
Remote Sensing and Spatial Information Sciences, 1(1):1–6, 2013.

C. Andújar, P. Brunet, and D. Ayala. Topology-reducing surface simplifica-
tion using a discrete solid representation. ACM Transactions on Graphics
(TOG), 21(2):88–105, 2002.

C. Andújar, P. Brunet, A. Chica, I. Navazo, J. Rossignac, and A. Vinacua.
Computing maximal tiles and application to impostor-based simplifica-
tion. In Computer Graphics Forum, volume 23, pages 401–410. Wiley Online
Library, 2004.

K. Arroyo Ohori. Validation and automatic repair of planar partitions
using a constrained triangulation. Master’s thesis, Delft University of
Technology, aug 2010. ISBN: 978-94-6186-034-7.

N. Aspert, D. Santa Cruz, and T. Ebrahimi. Mesh: measuring errors between
surfaces using the hausdorff distance. In ICME (1), pages 705–708, 2002.

M. Attene, B. Falcidieno, J. R. Rossignac, and M. Spagnuolo. Edge-
sharpener: recovering sharp features in triangulations of non-adaptively
re-meshed surfaces. 2003.

M. Attene, M. Campen, and L. Kobbelt. Polygon mesh repairing: An
application perspective. ACM Computing Surveys (CSUR), 45(2):15, 2013.

F. Biljecki, G. B. M. Heuvelink, H. Ledoux, and J. Stoter. Propagation of
positional error in 3D GIS to the estimation of the solar irradiation of
building roofs. International Journal of Geographical Information Science, In
submission, 2015.

S. Bischoff and L. Kobbelt. Structure preserving CAD model repair. In
Computer Graphics Forum, volume 24, pages 527–536. Wiley Online Library,
2005.

R. Boeters. Automatic enhancement of CityGML LoD2 models with interiors
and its usability for net internal area determination. Master’s thesis, Delft
University of Technology, jun 2013.

S. Burtsev and Y. P. Kuzmin. An efficient flood-filling algorithm. Computers
& graphics, 17(5):549–561, 1993.

C. Cappelle, M. E. El Najjar, F. Charpillet, and D. Pomorski. Virtual 3D
city model for navigation in urban areas. Journal of Intelligent & Robotic
Systems, 66(3):377–399, 2012.

R. Chen. The development of 3D city model and its applications in urban
planning. In Geoinformatics, 2011 19th International Conference on, pages
1–5. IEEE, 2011.

111

112 Bibliography

E. V. Chernyaev. Marching cubes 33: Construction of topologically correct
isosurfaces. Institute for High Energy Physics, Moscow, Russia, Report CN/95-
17, 42, 1995.

A. Chica, J. Williams, C. Andujar, P. Brunet, I. Navazo, J. Rossignac, and
A. Vinacua. Pressing: Smooth isosurfaces with flats from binary grids. In
Computer Graphics Forum, volume 27, pages 36–46. Wiley Online Library,
2008.

D. Cohen-Or and A. Kaufman. Fundamentals of surface voxelization.
Graphical models and image processing, 57(6):453–461, 1995.

P.-E. Danielsson. Euclidean distance mapping. Computer Graphics and image
processing, 14(3):227–248, 1980.

H. de Kluijver and J. Stoter. Noise mapping and GIS: optimising quality
and efficiency of noise effect studies. Computers, Environment and Urban
Systems, 27(1):85–102, 2003.

A. A. Diakité, G. Damiand, and G. Gesquière. Automatic semantic labelling
of 3D buildings based on geometric and topological information. In
Proc. of 9th International 3DGeoInfo Conference (3DGeoInfo), 3DGeoInfo
conference proceedings series, pages 49–63, Dubai, United Arab Emi-
rates, November 2014. Karlsruhe Institute of Technology. URL http:

//nbn-resolving.org/urn:nbn:de:swb:90-438043.

M. Durupt and F. Taillandier. Automatic building reconstruction from a
digital elevation model and cadastral data: an operational approach. Inter-
national Archives of Photogrammetry, Remote Sensing and Spatial Information
Sciences, 36(3):142–147, 2006.

W. R. Franklin and E. Landis. Connected components on 1000x1000x1000

datasets. In 16th Fall Workshop in Computational Geometry, Smith College,
Northampton, MA, volume 1011, 2006.

M. Garland and P. S. Heckbert. Surface simplification using quadric error
metrics. In Proceedings of the 24th annual conference on Computer graphics
and interactive techniques, pages 209–216. ACM Press/Addison-Wesley
Publishing Co., 1997.

M. Garland and P. S. Heckbert. Simplifying surfaces with color and
texture using quadric error metrics. In Proceedings of the conference on
Visualization’98, pages 263–269. IEEE Computer Society Press, 1998.

F. Hétroy, S. Rey, C. Andújar, P. Brunet, and À. Vinacua. Mesh repair
with user-friendly topology control. Computer-Aided Design, 43(1):101–113,
2011.

M. Isenburg and J. Shewchuk. Streaming connected component computa-
tion for trillion voxel images. In Workshop on Massive Data Algorithmics,
2009.

C. B. Jones. Geographical information systems and computer cartography.
Routledge, 2014.

T. Ju and T. Udeshi. Intersection-free contouring on an octree grid.
In Proceedings of the 14th Pacific Conference on Computer Graphics and
Applications, volume 3, 2006.

http://nbn-resolving.org/urn:nbn:de:swb:90-438043
http://nbn-resolving.org/urn:nbn:de:swb:90-438043

Bibliography 113

T. Ju, F. Losasso, S. Schaefer, and J. Warren. Dual contouring of hermite data.
In ACM Transactions on Graphics (TOG), volume 21, pages 339–346. ACM,
2002.

A. Kaufman and E. Shimony. 3d scan-conversion algorithms for voxel-based
graphics. In Proceedings of the 1986 workshop on Interactive 3D graphics,
pages 45–75. ACM, 1987.

L. P. Kobbelt, M. Botsch, U. Schwanecke, and H.-P. Seidel. Feature sensitive
surface extraction from volume data. In Proceedings of the 28th annual
conference on Computer graphics and interactive techniques, pages 57–66.
ACM, 2001.

T. Kolbe, G. Gröger, and L. Plümer. CityGML–3D city models and their
potential for emergency response. Geospatial information technology for
emergency response, 257, 2008.

T. H. Kolbe. Representing and exchanging 3D city models with CityGML.
In 3D geo-information sciences, pages 15–31. Springer, 2009.

T. H. Kolbe, G. Gröger, and L. Plümer. CityGML: Interoperable access to
3D city models. In Geo-information for disaster management, pages 883–899.
Springer, 2005.

F. Lafarge and C. Mallet. Creating large-scale city models from 3D-point
clouds: a robust approach with hybrid representation. International journal
of computer vision, 99(1):69–85, 2012.

H. Ledoux. On the validation of solids represented with the international
standards for geographic information. Computer-Aided Civil and Infrastruc-
ture Engineering, 28(9):693–706, 2013.

H. Ledoux. Three-dimensional primitives in the context of the CityGML
QIE. Unpublished work, 2015.

R. E. Loke and F. W. Jansen. Maintaining sharp features in surface
construction for volumetric objects. 2007.

W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution
3d surface construction algorithm. In ACM Siggraph Computer Graphics,
volume 21, pages 163–169. ACM, 1987.

J. Manson and S. Schaefer. Isosurfaces over simplicial partitions of
multiresolution grids. In Computer Graphics Forum, volume 29, pages 377–
385. Wiley Online Library, 2010.

C. Montani, R. Scateni, and R. Scopigno. Discretized marching cubes.
In Proceedings of the conference on Visualization’94, pages 281–287. IEEE
Computer Society Press, 1994.

J. Moser, F. Albrecht, and B. Kosar. Beyond visualisation–3D GIS analyses
for virtual city models. International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, 38(4):W15, 2010.

F. S. Nooruddin and G. Turk. Simplification and repair of polygonal models
using volumetric techniques. Visualization and Computer Graphics, IEEE
Transactions on, 9(2):191–205, 2003.

114 Bibliography

S. Oomes, P. Snoeren, and T. Dijkstra. 3D shape representation: Transform-
ing polygons into voxels. In Scale-Space Theory in Computer Vision, pages
349–352. Springer, 1997.

S. Schaefer and J. Warren. Dual marching cubes: Primal contouring of
dual grids. In Computer Graphics Forum, volume 24, pages 195–201. Wiley
Online Library, 2005.

S. Schaefer, J. Warren, and R. UniversityE. Dual Contouring: The secret
sauce. 2002.

S. Schaefer, T. Ju, and J. Warren. Manifold dual contouring. Visualization and
Computer Graphics, IEEE Transactions on, 13(3):610–619, 2007.

S. P. Singh, K. Jain, and V. R. Mandla. Virtual 3D City modeling: Techniques
and Applications. ISPRS-International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, 1(2):73–91, 2013.

A. Stadler and T. H. Kolbe. Spatio-semantic coherence in the integration of
3D city models. In Proceedings of the 5th International Symposium on Spatial
Data Quality, Enschede, 2007.

H. Steuer, T. Machl, M. Sindram, L. Liebel, and T. H. Kolbe. Voluminator
- Approximating the volume of 3D buildings to overcome topological
errors. In Accepted for 18th AGILE Conference on Geographic Information
Science, Jun 2015.

J. Stoter, L. van den Brink, G. Vosselman, J. Goos, S. Zlatanova, E. Verbree,
R. Klooster, L. van Berlo, G. Vestjens, M. Reuvers, et al. A generic
approach for 3D SDI in the Netherlands. In Proceedings of the Joint
ISPRS Workshop on 3D City Modelling&Applications and the 6th 3D GeoInfo
Conference Wuhan, China, pages 26–28, 2011.

D. Wagner, M. Wewetzer, J. Bogdahn, N. Alam, M. Pries, and V. Coors.
Geometric-semantical consistency validation of CityGML models. In
Progress and New Trends in 3D Geoinformation Sciences, pages 171–192.
Springer, 2013.

J. Wilhelms and A. Van Gelder. Topological considerations in isosurface
generation extended abstract, volume 24. ACM, 1990.

S. Wold, K. Esbensen, and P. Geladi. Principal component analysis.
Chemometrics and intelligent laboratory systems, 2(1):37–52, 1987.

A. Zamyadi, J. Pouliot, and Y. Bédard. A three step procedure to enrich
augmented reality games with CityGML 3D semantic modeling. In
Progress and New Trends in 3D Geoinformation Sciences, pages 261–275.
Springer, 2013.

J. Zhao, H. Ledoux, and J. Stoter. Automatic repair of CityGML LOD2

buildings using shrink-wrapping. ISPRS Annals of Photogrammetry, Remote
Sensing and Spatial Information Sciences, II-2 W, 1:309–317, 2013.

J. Zhao, J. Stoter, and H. Ledoux. A framework for the automatic geometric
repair of CityGML models. In Cartography from Pole to Pole, pages 187–202.
Springer, 2014.

colophon
This document was typeset using LATEX. The document layout was gen-
erated using the arsclassica package by Lorenzo Pantieri, which is an
adaption of the original classicthesis package from André Miede.

	1 Introduction
	1.1 Objectives
	1.2 Requirements
	1.3 Test datasets
	1.4 Scope of this thesis
	1.5 Outline of this thesis

	2 State of the Art in 3D City Model Repair
	2.1 3D City model standards
	2.2 Current Repair Methods
	2.3 Evaluation

	3 Related work
	3.1 Overview Related Work
	3.2 Voxelization of a polygonal mesh
	3.3 Morphological operators
	3.4 Surface reconstruction
	3.5 Post processing

	4 My voxel-based repair method
	4.1 Methodology
	4.2 Voxelization
	4.3 Approach 1: Marching Cubes
	4.4 Approach 2: Dual Contouring
	4.5 Preservation of attributes

	5 Implementation and experiments
	5.1 Implementation
	5.2 Test data
	5.3 Validation after repair
	5.4 Evaluation

	6 Conclusions, Discussion and Future Work
	6.1 Conclusions
	6.2 Discussion
	6.3 Future work

	A Marching Cubes cases
	B Test case validation
	C Reflection
	Bibliography

