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Learning for Control: An Inverse
Optimization Approach

Syed Adnan Akhtar , Arman Sharifi Kolarijani , and Peyman Mohajerin Esfahani

Abstract—We present a learning method to learn the
mapping from an input space to an action space, which is
particularly suitable when the action is an optimal decision
with respect to a certain unknown cost function. We use an
inverse optimization approach to retrieve the cost function
by introducing a new loss function and a new hypothe-
sis class of mappings. A tractable convex reformulation
of the learning problem is also presented. The method is
effective for learning input-action mapping in continuous
input-action space with input-output constraints, typically
present in control systems. The learning approach can be
effectively transformed to learn a Model Predictive Control
(MPC) behaviour and a case study to mimic an MPC is
presented, which is a rather computationally heavy con-
trol strategy. Simulation and experimental results show the
effectiveness of the proposed approach.

Index Terms—Learning-based control, supervised learn-
ing, inverse optimization, convex reformulation.

I. INTRODUCTION

REINFORCEMENT learning has gathered interest in the
learning community recently [1] where learning of the

expert action is based on rewards. Generally, one has access to
the expert demonstrations, but not the reward/cost function that
dictates the expert action. Imitation Learning involves inferring
the optimum policy through expert demonstrations [2] with-
out knowing the reward function. It has been used to teach
sequential skills to a robotic arm [3] or acrobatic maneuvers
to a helicopter [4].

Numerous methods have been proposed for imitation learn-
ing. One of the straightforward methods is to view imitation
learning as a supervised learning problem, known as behaviour
cloning [5]. Such methods directly learn a mapping from the
state space to the action space through expert demonstra-
tions [6]. Alternatively, Inverse Reinforcement Learning (IRL)
methods construct an expert policy by retrieving the expert
reward function [7]. These methods predominantly follow a
Markov decision process framework. See, e.g., the maximum
margin approach in [8] and the linear programming approach
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Fig. 1. Learning settings.

in [9]. An alternative approach is entropy maximization that
aims to retrieve a distribution over potential reward func-
tions [10]. In relative entropy methods, the KL-divergence
between two trajectories is minimized [11]. Bayesian IRL
methods use the state-action pair observations to perform a
Bayesian update of a prior distribution over a hypothesis
of reward functions [12]. Most of the IRL algorithms are
designed for discrete state-action spaces [13]. However, the
state-action space in control or robotics is typically continu-
ous and effective discretization leads to exponential growth in
the number of states.

Consider Figure 1 depicting the nature of such problems
in the context of control. There are two settings in Figure 1a
and Figure 1b with a difference who (expert or learner) drives
the system. The goal of the learning agent is to learn the cost
function of the expert regardless of the choice of the setting
in Figure 1. At each time step, the expert takes an optimal
action uet(st) by solving a parametric optimization problem
depending on an exogenous signal st. The learner observes
the expert action uet(st) with a one time-step delay and infers
the cost function that the expert optimizes. Subsequently, the
learning agent can mimic the expert action through the learned
cost. The learning agent action, denoted by uln

θ (st), is in gen-
eral a suboptimal action since it is generated based on an
approximated (or learned) cost rather than the true (or expert)
cost. Notice that the true cost is unknown to the learning agent
and only available to the expert. In this letter, we focus on
learning of the cost function that explains the expert actions
possibly in the presence of some state-action constraints.

An example that can be cast as a learning problem is
MPC [14]. Online optimization renders MPC computation-
ally demanding and restricts its application to systems with
moderate size dynamics. There are numerous studies in the
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literature to reduce the computational burden of MPC such
as exploiting the structure of the optimization problem [15],
warm-start approach [16] and explicit MPC [17], to name a
few. Fundamentally speaking, MPC finds a mapping from the
system states to the optimal control inputs. In the context of
learning problems, a natural approach to learn this mapping
is supervised learning. There are several studies that learn (or
approximate) the MPC controller in the context of supervised
learning either through indirect learning [18] or direct learn-
ing [19]. In the former class, the mapping from the system
states to the optimal MPC cost is approximated. Then, the
approximated cost is used to obtain a sub-optimal input. In
the latter class, the mapping from the states to the optimal
input is directly approximated. We emphasize that respecting
state and input constraints in supervised learning is generally a
challenge, particularly from a computational perspective dur-
ing the training phase. This computational challenge is at the
center of the contribution of this letter.

A central example of this letter is to learn MPC as an “expert
agent.” We propose an indirect learning approach based on the
inverse optimization [20] that satisfies the input constraints
by construction. We refer the reader to the extended ver-
sion of this letter [21] for an online learning approach to
address the limited memory and computational constraints for
real systems, as well as a more detailed discussion on the
experimental setup and additional numerical examples.

Contributions: In the context explained above, the main
contributions of this letter are summarized as follows:

• Inspired by the inverse optimization framework, we intro-
duce parametric optimization as a new hypothesis class
along with a loss function that enjoys a tractable refor-
mulation during the training phase (Section III).

• We develop a nonlinear convex reformulation of the target
objective function (Theorem 1), as well as a tractable
linear matrix inequality (LMI) (Corollary 1).

• We discuss the theoretical results in an MPC setting and
how our results help reduce the planning horizon to essen-
tially 1-step. We also implement the proposed learning-
based controller in a closed-loop fashion (Section V).

Notations: For a non-negative integer n, R
n and R

n+ denote
the spaces of n-dimensional reals and non-negative reals,
respectively. The identity square matrix with dimension n is
denoted by In. For a symmetric matrix Q, the inequality Q � 0
(respectively, Q � 0) means that Q is positive semi-definite
(respectively, positive definite). Given a vector x ∈ R

n, we use
the shorthand notation ‖x‖2

Q := x�Qx. A symmetric matrix
is often described by the upper diagonal elements while the
lower diagonal elements is replaced by “∗”. Throughout this
letter we also reserve the hat notation (e.g., x̂) for the objects
dependent on data.

II. PRELIMINARIES

In this section we briefly explain two key problems in the
learning literature that are central to objective of this letter.

A. Supervised Learning

Supervised learning is one of the prospective ways to solve
the imitation learning problem [5]. Supervised learning intends

to learn an unknown mapping, h� : S → U, from an input vec-
tor s ∈ S ⊆ R

n to an output vector u ∈ U ⊆ R
m. Since the

space of the candidate function is typically large, we restrict
our search to functions within a hypothesis space H. A classi-
cal example is the collection of all linear functions. We refer
to each candidate mapping as a hypothesis function h that
belongs to the hypothesis space H. The aim is to find a func-
tion h that replicates the unknown ground truth mapping h�

as closely as possible. Many algorithms find this hypothesis
function h by solving an optimization program that involves a
loss function � : U×U → R+. Given a sample (s, u), the loss
value �(u, h(s)) essentially quantifies the mismatch between
the predicted output h(s) and the true output u. In super-
vised learning, a training set {(̂st, ût)}t≤T is available where
each (̂st, ût) ∈ S × U represents an input-output sample, and
T denotes the number of samples. Given this dataset, such
algorithms solve the so-called in-sample error described as

min
h∈H

T
∑

t=1

�(̂ut, h(̂st)). (1)

A typical hypothesis class is the space of linear functionals

H = {

h : R
n → R

m | h(s) = As, A ∈ R
m×n}, (2)

where the input and output sets are typically the entire space,
i.e., S = R

n and R
m = U. With regards to the loss function,

a popular example is the squared 2-norm loss �(u1, u2) =
‖u1 − u2‖2

2 where u1, u2 ∈ U. The linear hypothesis class
together with the squared 2-norm loss yields a standard regres-
sion problem known as the least squares methods described
through the optimization program

̂AReg
T := arg min

A∈Rm×n

T
∑

t=1

∥

∥

∥̂ut − Âst

∥

∥

∥

2

2
. (3)

While the least squares method (3) is a powerful estimation
tool, it is however not applicable in cases where the output set
is a strict subset U � R

m. One may impose such constraints
explicitly via, for instance, a projection operator �U. This
alters the training program to minA

∑T
t=1 ‖̂ut − �U(Âst)‖2

2.
However, this modified training objective is unfortunately no
longer convex in the model parameter A. Therefore, con-
straint satisfaction is a challenge with classical methods in
the supervised learning literature.

B. Inverse Optimization

Inverse optimization aims to learn the behavior of a
decision-maker whose decisions may be influenced by an
exogenous environmental signal. More specifically, it is
believed that the decision-maker upon receiving a signal
s ∈ S ⊂ R

n optimizes an unknown objective function u →
F�(s, u) over a feasible set of actions U(s), which may also
depend on the signal s. In the context of the learning problem
depicted in Figure 1b, the signal s and the decision-maker may
be seen as the state of the dynamical system and the expert
agent, respectively. With this in mind, we hereafter refer to
the decisions optimizing the objective F� by uet(s). For ease
of notation, we will often omit the dependency of uet on s.
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Therefore, the inverse optimizing problem is described via the
forward optimization program

uet(s) := arg min
u∈U(s)

F�(s, u). (4)

Recall the mission of the learning agent in Figure 1b; it
aims to replicate the behavior of the expert agent. One can
approach this objective through the lens of supervised learn-
ing. However, as pointed out earlier in Section II-A, the usual
spaces such as the linear hypothesis (2) do not necessarily
respect the decision constraint set uet ∈ U(s).

Alternatively, the learning agent can aim to learn the
unknown objective function F� in (4). To this end, a hypoth-
esis space can be a collection of parameterized functions
F = {Fθ : S × U → R | θ ∈ �} where U ⊃ U(s) denotes
a superset of all admissible decisions and θ ∈ � represents
the parameter to be learnt. The mapping θ → Fθ and the
choice of space � depend on the problem at hand. In contrast
with supervised learning in Section II-A, the input and out-
put sets are now considered as S × U and R, respectively. It
is worth noting that in this perspective, the difference on the
formal definition of the input and output sets has an impor-
tant consequence. The training data should now constitute the
triple ((s, uet), F�(s, uet)).

An approach bridging these two perspectives mentioned
above is to utilize parametric objective functions Fθ ∈ F and
define a hypothesis space H containing functions from s ∈ S

directly to u ∈ U. More specifically, the arg min functions

uln
θ (s) = hθ (s) := arg min

u∈U(s)
Fθ (s, u), (5)

can be a natural basis to predict the experts behavior.
Notice that the hypothesis candidate uln

θ (s) respects the con-
straints uln

θ (s) ∈ U(s), for all s ∈ S, by construction.
Now given T observations {(̂st, ûet

t )}t≤T and a loss function
� : U × U → R+, the training procedure (1) is

min
θ∈�

T
∑

t=1

�
(

ûet
t , uln

θ (̂st)
)

. (6)

We emphasize that the tractability of (6) highly depends on
the set F , more specifically the mapping θ → uln

θ (s), and the
loss function �. We focus on this in the next section.

III. PROPOSED LEARNING APPROACH

The aim of this section is to elaborate on the choice of the
hypothesis space F described in the previous section and the
loss function � to make the training procedure (6) efficient.

A. Hypothesis Class

As a particular example of F , we consider a family of
quadratic functions defined as

F =
{

Fθ (s, u) =
[

s
u

]�
θ

[

s
u

]

∣

∣

∣ θ ∈ �

}

, (7)

where � is a subset of square matrices R
(m+n)×(m+n). We

can then introduce the following hypothesis class, that is as a

collection of mappings hθ : R
n → R

m,

H =
{

hθ (s) = arg min
u∈U(s)

[

s
u

]�
θ

[

s
u

]

∣

∣

∣ θ ∈ �

}

. (8)

Similar hypothesis classes have been actually studied in the
literature in the context of continuous time, infinite horizon,
but unconstrained optimal control problems [22]. Next, we
discuss the choice of the set �. Let us denote

θ =
[

θss θsu
θus θuu

]

. (9)

Considering that the ultimate goal is to replicate the expert
action, the critical entity is the hypothesis hθ ∈ H defined
in (8). In this view, it is straightforward to observe that the
element θss in (9) does not play any role in the behavior
of hθ . Moreover, in order to guarantee that the hypothe-
sis hθ is a computationally tractable oracle, i.e., it is a convex
optimization, it is also required to ensure that θuu � 0. These
observations, together with the fact that scaling the function Fθ

with a positive scalar also does not have any impact on hθ ,
leads us to introduce the set

� =
{

θ =
[

0 θsu

θ�
su θuu

]

∣

∣

∣ θuu � Im

}

. (10)

B. Loss Function

A loss function � : U × U → R+ quantifies the inaccuracy
of a hypothesis hθ ∈ H. One can borrow the classical squared
2-norm loss as in the least squares method and define the
predictability loss [20] as

�pr
(

uet(s), uln
θ (s)

)

:= ∥

∥uet(s) − uln
θ (s)

∥

∥

2
2, (11)

where the learning agent action uln
θ (s) is as defined in (5).

The above loss function has a clear interpretation in the con-
text of inverse optimization: It penalizes the error between
the decisions of the expert and the learning agent. Despite
such a useful interpretation, it is unfortunately shown that the
mapping θ → �pr(uet, uln(s)) is non-convex [23].

In this letter, we utilize a rather unconventional loss function
in the context of supervised learning. This loss function is par-
ticularly suitable for the class of inverse optimization problems
where the observed data consists of optimal decisions. Unlike
the classical loss functions, the proposed loss function, which
we name suboptimality loss, penalizes the mismatch between
the expert and learning agent actions “nonuniformly”. Let us
define the suboptimality loss �sub : S × U × U → R+ as

�sub
(

s, uet, uln
θ

)

:= Fθ

(

s, uet) − min
u∈U(s)

Fθ (s, u). (12)

The loss function (12) effectively quantifies the mismatch
between the decisions in terms of their suboptimality level
in the candidate hypothesis.

Remark 1 (Regret Loss): The suboptimality loss (12) con-
ceptually shares some interesting similarities with the well
studied notion of regret loss [24], however, they are differ-
ent in essence. The regret loss is introduced to measure the
performance of optimizing a sequential loss in the form of (6).
There are numerous techniques in the online optimization lit-
erature in which the decision variable (θ in (6)) are updated
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sequentially upon arrival of each data at time t. One can
indeed resort to these techniques to solve (6) when � is the
suboptimality loss (12).

Intuitively, suboptimality loss minimization searches for the
hypothesis function in the hypothesis space that best explains
the expert action uet given an external input s immaterial of
the true cost incurred by the agent. Notice that the loss goes
to zero only when the expert action uet is indeed the mini-
mizer of the hypothesized cost. Notice also that the candidate
hypothesis depends on the exogenous signal s. Thus, “subop-
timality” is attributed to this loss. As opposed to usual loss
functions in supervised learning (e.g., the predictability loss �pr

in (11)), the suboptimality loss depends explicitly on the sig-
nal s. Given the loss function (12) and a dataset {(̂st, ûet

t )}t≤T ,
the training phase of the inverse optimization approach yields
the optimization program

̂θ Inv
T = argmin

θ∈�

{

T
∑

t=1

(

Fθ (̂st, ûet
t ) − min

ut∈U(̂st)
Fθ (̂st, ut)

)

}

. (13)

The key computational feature of (12) is that the loss func-
tion is convex in θ when the mapping θ → Fθ is linear (e.g.,
the hypothesis class (7)), a feature missing in the case of the
predictability loss (11). To see this, it suffices to notice that
the function θ → �sub(s, uet, uln

θ (s)) constitutes a pointwise
maximum of linear functions.

Recall from Section II-B that an alternative (indi-
rect) approach to learn expert action described in (4) is
through learning the unknown objective function F�. This
viewpoint considers the set F as the main hypothesis
space, in which the learning phase requires access to a
dataset {(̂st, ûet

t ), F�(̂st, ûet
t )}t≤T , i.e., it requires additional

information {F�(̂st, ûet
t )}t≤T . In such a setting, one can cast

the learning problem as a standard regression problem akin
to (3). This leads to the optimization program

̂θ
Reg
T = argmin

θ∈�

{

T
∑

t=1

∥

∥

∥Fθ (̂st, ûet
t ) − F�(̂st, ûet

t )

∥

∥

∥

2

2

}

, (14)

where Fθ has the quadratic form defined in (7) with the
feasible set � defined in (10).

C. Tractable Reformulation

We now show how the optimization program (6) emerging
from the training phase of the inverse optimization approach
can be solved efficiently. Note that the optimization (6) is
essentially a robust program, i.e., a minimization over the cost
parameter θ ∈ � and then maximization over ut ∈ U(̂st).

Theorem 1 (Convex Reformulation): Consider the
optimization problem (13) with suboptimality loss (12)
where the candidate function Fθ admits quadratic form
as in (7) and U(s) = {u ∈ R

m: M(s)u ≤ W(s)}, where
the parametric matrices M(s) ∈ R

d×m and W(s) ∈ R
d are

given for any admissible signal s. Then, the program (13) is
equivalent to

min
θ∈�
λt≥0

�
∑

t=1

Fθ

(

ŝt, ûet
t

) + 1

4

∥

∥

∥M(̂st)
�λt + 2θ�

suŝt

∥

∥

∥

2

θ−1
uu

+ W (̂st)
�λt, (15)

where θ is as in (9) and λt ∈ R
d+ is the Lagrange multiplier.

Proof: As the main building block, we first reformulate

min
v

{Fθ (̂st, v) : M(̂st)v ≤ W (̂st)} (16)

where v is an-Rm vector and represents the learner action.
The matrices M and W encode the input-output constraints.
For ease of notation, we omit writing the dependency of the
matrices M and W on ŝt. Define the Lagrangian function

L(λt, v) = Fθ (̂st, v) + (Mv − W)�λt

= v�θuuv + (2θ�
suŝt + M�λt)

�v − W�λt.

The dual function is defined as g(λt) = infv L(λt, v). To find
the optimal v∗, we set ∇vL(λt, v) = 0. Hence,

∇vL(λt, v) = 2θuuv + 2θ�
xuŝt + M�λt = 0,

and as a result, v∗ = − 1
2 θ−1

uu (M�λt + 2θ�
suŝt). We now

substitute v∗ in the dual function g(λt) and arrive at

g(λt) = −1

4
‖M�λt + 2θ�

suŝt‖2
θ−1

uu
− W�λt.

Observe that

max
λt≥0

g(λt) = − min
λt≥0

{

1

4
‖M�λt + 2θ�

suŝt‖2
θ−1

uu
+ W�λt

}

.

The above equality holds because the program (16) has a
quadratic convex cost with affine constraints, which implies
strong duality (Slater’s condition); and its RHS is equivalent
to the program (16). Next, we reformulate (6) by using the
above observation. This yields

min
θ∈�

T
∑

t=1

(

Fθ

(

ŝt, ûet
t

) + min
λt≥0

{

1

4
‖M�λt + 2θ�

xuŝt‖2
θ−1

uu
+ W�λt

})

.

Moving minλt≥0 outside the sum concludes the proof.
While the program (15) is convex, it does not follow any

particular structure and one has to resort to generic-purpose
convex optimization solver for numerical purposes. Next, we
show that the program (15) can be translated into a subclass
of convex optimization known as the LMI, which is amenable
to tailored efficient off-the-shelf solvers like MOSEK [25].

Corollary 1 (LMI Reformulation): The optimization
problem (15) admits the LMI reformulation

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

min
∑T

t=1

(

Fθ

(

ŝt, ûet
t

) + 1
4γt + W (̂st)

�λt

)

s.t. θ ∈ � in (10), λt ∈ R
d+, γt ∈ R, ∀t ≤ T

[

θuu M(̂st)
�λt + 2θ�

suŝt
∗ γt

]

� 0, ∀t ≤ T.

(17)

Proof: In (15), replace ‖M(̂st)
�λt + 2θ�

suŝt‖2
θ−1

uu
with an

upper-bound γt for all t ≤ T . We get

γt − (M(̂st)
�λt + 2θ�

suŝt)
�θ−1

uu (M(̂st)
�λt + 2θ�

suŝt) ≥ 0.

We now employ the Schur complement approach. Since θuu �
0, the above inequality holds if and only if

[

θuu M(̂st)
�λt + 2θ�

suŝt
∗ γt

]

� 0.

The desired claim then follows.
We emphasize that the optimization problem (17) is only

required to be solved when (one wants to use extra avail-
able information for a better estimate of the cost function) we
intend to improve the cost function Fθ , and not necessarily at
every time instance.
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IV. CASE STUDY: MODEL PREDICTIVE CONTROL

We now use the proposed approach to approximate the value
function of an MPC problem. Notice that an MPC problem is
a forward optimization problem [14]. The value function is
determined implicitly as a solution to a constrained program.
However, it is difficult in general to provide a closed-form
representation for the value function.

Consider the linear time-invariant system

xt+1 = Axt + But, (18)

where x ∈ X ⊆ R
n and u ∈ U(x) ⊆ R

m denote the states and
inputs of the system, respectively. A ∈ R

n×n and B ∈ R
n×m

denote the system matrices. Assume that sets X and U(x)
are polytopic and contain the origin. Let N be the horizon
length and denote ut := (ut, . . . , ut+N−1). Define the stage
cost c(x, u) := ‖x‖2

Q + ‖u‖2
R for some matrices Q � 0 and

R � 0. Finally, let the MPC cost be

VN(xt, ut) :=
N−1
∑

i=0

c(xt+i, ut+i) + Vf (xt+N), (19)

where Vf : R
n → R+ represents the terminal cost. Given an

initial state xt, we solve the following MPC problem

min VN(xt, ut)

s.t. xt+i+1 = Axt+i + But+i, i = 0, . . . , N − 1

ut+i ∈ U(xt+i), i = 0, . . . , N − 1

xt+i ∈ X, i = 1, . . . , N, (20)

to obtain V�
N(xt) and an optimal input sequence u�

t . However,
we only apply the first input u�

t of the sequence u�
t and

repeatedly solve the problem (20) at each sampling instance.
Our goal is to use the tools developed in this letter to

approximate the value function V�
N(xt) such that the com-

putation of the control action u�
t is made lighter w.r.t. (20).

In doing so, we employ the optimality condition in dynamic
programming, and rewrite the problem (20) as

min c(xt, ut) + F�(xt, ut)

s.t. ut ∈ U(xt), (21)

where the tail cost F�(xt, ut) is defined as

min
N−1
∑

i=1

c(xt+i, ut+i) + Vf (xt+N)

s.t. xt+i+1 = Axt+i + But+i, i = 1, . . . , N − 1

ut+i ∈ U(xt+i), i = 1, . . . , N − 1

xt+i ∈ X, i = 1, . . . , N.

In view of (21) and following an indirect learning mindset
in the previous section, our main goal is to learn the tail
cost F� : R

n × R
m → R+. To fit in the reference track-

ing framework, we define st as a feature vector, composed
of a combination of states, xt and reference signals rx

t , i.e.,
we introduce st = [x�

t , (xt − rx
t )

�, rx
t
�]�. We represent the

data collected with MPC reference tracking by {(̂st, ûet
t )}t≤T .

Notice that approximating the MPC cost function through sub-
optimality loss does not require knowledge of the true cost
value, MPC parameters (Q, R) or the system matrices. In the
next section, we present simulation results of mimicking an
MPC controller for a lab helicopter.

V. RESULTS

In the previous section, we discussed typecasting the learn-
ing problem in an MPC framework. We now discuss empirical
results with an experimental setup of a 1-DOF lab helicopter.
Recall that the goal through inverse optimization is to approx-
imate the true but unknown cost function that explains the
mapping from the system states to the actions for reference
tracking. In the context of MPC, the hope is to reduce the com-
putational complexity. For shortage of space, we only present
brief results here. A more detailed discussion of the exper-
imental setting as well as additional simulation results on
high-dimensional dynamics of a shell heavy oil fractionator
is presented in the extended version [21].

In this section, the performance of the learning agent that is
trained with the two methods, namely, regression as in (14),
and inverse optimization as in (13) is compared. For the com-
parison, we use the 2-norm of the control input error relative
to MPC as a performance metric. The MPC is taken for a
prediction horizon of N = 75. We will also present the refer-
ence tracking error for inverse optimization without expert in
the loop, and compare it with that of MPC.

Consider Figure 1b where the learning agent is driving the
system and the expert gives corrective advice to the learner in
the form of expert actions. At each time t, the learning agent
has an estimate Fθ of the true cost F� that guides its action.
The learner reads the state st, and takes an action uln

θ (st).
Subsequently, the expert (MPC) reveals its action uet(st) (cor-
rective advice). Now, with the new information, uet(st) gained
by the learner, it improves its estimate of the true cost function.
Therefore, the learning agent decides an action in response to
the signal ŝt by using the past data upto time (t − 1), i.e.,
(̂sk, ûet

k , F�(̂sk, ûet
t )) for all k = 1, . . . , (t − 1) in addition to ŝt.

We denote this action with uln
θt−1

(̂st), obtained by solving the
following optimization problem similar to (5)

uln
θt−1

(̂st) = arg min
u∈U(̂st)

Fθt−1 (̂st, u), (22)

where θt = θ
Reg
t for regression, θt = θ Inv

t for inverse
optimization with suboptimality loss. It is worth noting that
the learner action at time step t uses θt−1 since the the expert
action ûet

t is revealed to the learner in one time step delay.
Henceforth, the superscript ‘Inv’ will be referred to the case
where inverse optimization using suboptimality loss is used
with the LMI reformulation shown in (17) and ‘Reg’ will sim-
ilarly denote the training through regression according to (14).
We do not solve the LMI in (17) at each time instance, but
only in the simulation for the first 50s to study the input
error behaviour. An online learning approach to update Fθ

at each time instance is presented in the extended version of
this letter [21]. Recall that the end goal for the learner was
to mimic the expert action, ûet

t , which is the control input.
Since the expert action ûet

t is not immediately available to the
learner, it is a good performance metric to measure the action
discrepancy ‖uln

θt−1
(̂st) − ûet

t ‖2.
Consider the first scenario as depicted in Figure 1b for

tracking of square-wave of amplitude 0.2, while also receiv-
ing corrective advice from the expert at each time instance,
for the duration of T = 200s. The control input error for
such a scenario is shown in Figure 2 for regression (magenta)
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Fig. 2. Simulation results: control input error.

Fig. 3. Experimental results: tracking error.

and inverse optimization (blue). The control input error with
inverse optimization drops to almost 10−4 in just 10s and to
10−5 in about 100s. For regression, it takes about 120s for the
error to drop to 10−4. Now consider a second scenario as in
Figure 1b where the expert (thus its corrective advice) is only
available up till time t = tcut. Beyond the time t > tcut the
expert is removed from the control loop and the learner can
no longer improve its estimate Fθ of the true cost function F�.
Therefore the cost Fθ learned up till t = tcut becomes static for
the subsequent times t > tcut. For such a scenario, the 2-norm
of the control input error is presented for regression (black)
and inverse optimization (red) in Figure 2 with tcut = 50s.
It can be observed that until time t = 50, the control input
errors for both the methods are identical to the previous sce-
nario when the expert was present throughout. However, for
t > tcut, the error slightly increases after the MPC is removed
from the loop, and the static cost of the learner is used for ref-
erence tracking of square wave of amplitude 0.2. Therefore,
the learner solves a simple quadratic program as in (5) to gen-
erate a suboptimal input rather than the computationally heavy
MPC. Figure 3 shows the 2-norm of the tracking error with
MPC (green) and inverse optimization (red). yInv is the system
output due to the control input uInv whereas yMPC is the system
output due to the MPC inputs uMPC = uet. Occasionally, it can
be observed that inverse optimization has lower tracking error
than MPC. Finally, we compare the computation time for the
expert (MPC) vs the learner. For each control input compu-
tation and in the average, the learner takes 0.12 ms against
1.69 ms for MPC. As such, the learning agent is roughly
twelve times faster than MPC.
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