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Abstract— This paper proposes a passivity-based control
approach that addresses the trajectory tracking problem for
a class of mechanical systems that comprises a broad range
of robotic arms. The resulting controllers can be naturally
saturated and do not require velocity measurements. Moreover,
the proposed methodology does not require the implementation
of observers, and the structure of the closed-loop system
permits the construction of a Lyapunov function, which eases
the convergence analysis. To corroborate the effectiveness of
the methodology, we perform experiments with the Philips
Experimental Robot Arm.

I. INTRODUCTION

Customarily, robotic arms are modeled as mechanical sys-

tems [1], [2], [3], where energy-based modeling approaches,

such as the Euler-Lagrange (EL) or the port-Hamiltonian

(pH) one, have proven suitable to represent the behavior of

these systems. In particular, pH models underscore the roles

of the energy, the interconnection pattern, and the dissipation

of the system [4], [5], which are the main components of

passivity-based control (PBC) [6]. Hence, this control ap-

proach represents a suitable methodology to control complex

nonlinear mechanical systems.

The literature on trajectory tracking for fully actuated

mechanical systems is abundant. We refer the reader to [7],

[8], [9] and the references therein contained for a detailed

exposition on this topic. However, the implementation of

the methodologies that address this control problem is often

hampered by the necessity of high gains to ensure stability,

or some practical issues like the lack of sensors to measure

velocities, the necessity of considering bounded inputs to

protect the actuators, and performance requirements. Con-

cerning the requirement of control laws without velocity

measurements, in [10], the authors propose a solution that

ensures global uniform exponential convergence towards

the desired trajectories, where the velocities are estimated

via an immersion and invariance observer. Another related

reference is [11], where the authors design a controller that

achieves trajectory tracking with only position measurements

by proposing a dynamic extension to remove the necessity

of velocity measurements. On the other hand, in [12], the

authors propose saturated control laws that guarantee global

uniform asymptotic convergence towards the desired trajecto-

ries. However, to this end, velocity measurements are needed.

Finally, in [13], the authors propose controllers that achieve

semi-global uniform asymptotic convergence to the desired

trajectories avoiding velocity measurements while ensuring

that the inputs are bounded.

The main contribution of this work is a PBC approach

that addresses the trajectory tracking problem for a class of

fully actuated mechanical systems while considering satu-

rated inputs and avoiding velocity measurements. Therefore,

the proposed methodology offers an alternative to achieve

trajectory tracking while considering physical limitations

often neglected in the literature. To this end, we propose a

pre-feedback that allows us to express the error dynamics as a

pH system. Then, we devise an energy-shaping approach that

guarantees saturated control laws and a dynamic extension

that permits the injection of damping without measuring the

velocities of the system. The proposed methodology is an

extension of the controllers reported in [14]. Nevertheless,

we stress that such an extension is far from trivial since

the closed-loop system is nonautonomous in the trajectory

tracking problem. Hence, in contrast with the problem

studied in [14], La Salle’s arguments are not suitable for

the stability analysis. The proposed methodology differs

from [10], [11], [12], [13] in the following aspects: (i) it

tackles the input saturation and no velocity measurements

problems simultaneously; (ii) no observers are required; (iii)

the stability properties are global; (iv) the pH framework

leads naturally to a Lyapunov function, which significantly

simplifies the stability analysis.

The remainder of this paper is organized as follows: Sec-

tion II contains the preliminaries and problem formulation.

Section III is devoted to the design of the controllers that

solve the trajectory tracking problem. In Section IV, we

illustrate the applicability of the proposed methodology via

its implementation in the PERA system. Finally, we present

the concluding remarks and future work in Section V.

II. PRELIMINARIES AND PROBLEM FORMULATION

This section discusses the mathematical modeling of the

PERA system in the pH framework and the problem formu-

lation. Additionally, we briefly revisit the partial linearization

via change of coordinates (PLvCC) of pH mechanical sys-

tems and Barbalat’s lemma.

© 20221IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any 
copyrighted component of this work in other works. 



A. pH representation of fully actuated mechanical systems

We consider mechanical systems that can be represented

by the following pH model



q̇

ṗ



 =



0n×n In

−In 0n×n








∂H
∂q

(q, p)

∂H
∂p

(q, p)



+



0n×n

In



u,

H(q, p) = 1

2
p⊤M−1(q)p+ V (q), y = M−1(q)p = q̇,

(1)

where q, p ∈ R
n denote the generalized positions and mo-

menta, respectively, u ∈ R
n is the input, M : Rn → R

n×n is

the inertia matrix, which is positive definite and all its entries

are assumed to be C1 functions, V : Rn → R+ denotes the

potential energy of the system, H : Rn × R
n → R+ is the

system’s Hamiltonian, and y ∈ R
n is the passive output.

The following assumptions characterize the class of sys-

tems for which the methodology introduced in Section III is

suitable.

Assumption 1: The term ∂V
∂q

(q) is bounded from above

and from below.

Assumption 2: For every bounded trajectory

q(t) of (1), the inertia matrix M(q(t)) and its

(element-wise) time derivative are bounded, i.e.,

‖M(q(t))‖ < ∞,
∥∥dM

dt
(q(t))

∥∥ < ∞, where ‖(·)‖
denotes the spectral norm of a matrix.

Remark 1: A broad range of mechanical systems satisfies

Assumptions 1 and 2. For instance, for robotic manipulators

with only revolute joints, the non-constant entries of M(q(t))
and the elements of ∂V

∂q
(q) are sines and cosines, which

satisfy the mentioned assumptions. For further details, see

Section 9.5.2 in [1].

Below, we present the definition of feasible trajectory,

which is necessary to formulate the problem to be solved.

Definition 1 (Feasible trajectory): A trajectory q = qd(t)
is feasible if there exists a control input u = ud(t) such that

the pair (qd(t), ud(t)) solves (1).

Henceforth, we assume that the desired trajectories

qd(t), q̇d(t) are smooth and bounded.

Problem setting. Given the desired feasible trajectory qd(t),
find a control law such that the trajectories of (1) converge

to qd(t), and the corresponding pd(t), while ensuring that:

C1 The control law does not depend on p.

C2 The control signals satisfy ui(t) ∈ [Umini
,Umaxi

] for all

t ≥ 0, with i = 1, . . . , n, and the constants Umini
,Umaxi

satisfy Umini
< Umaxi

.

B. PLvCC of pH systems

Let Ψ : Rn → R
n×n be a factor of M−1(q), i.e.,

M−1(q) = Ψ(q)Ψ⊤(q).

Note that, since M−1(q) has full rank, Ψ(q) has full rank

as well. Define the new coordinates P := Ψ⊤(q)p. Then, (1)

can be rewritten as



q̇

Ṗ



 =



 0n×n Ψ(q)

−Ψ⊤(q) J(q, P)








∂H̄
∂q

(q, P)

∂H̄
∂P

(q, P)



+



 0n×n

Ψ⊤(q)



u

H̄(q, P) = 1

2
P
⊤
P+ V (q) y = Ψ(q)∂H̄

∂P
(q, P) = q̇

(2)

where J : Rn × R
n → R

n×n is a skew-symmetric matrix

representing the gyroscopic forces present in the system [10],

and whose elements are given by

Jij(q, P) = −P
⊤Ψ−1(q) [Ψi(q),Ψj(q)] ,

where [·, ·] denotes the standard Lie bracket [15]. For a

thorough exposition on PLvCC, we refer the reader to [16].

C. Barbalat’s lemma

The stability proofs contained in Section III are based

on Barbalat’s lemma, which we present below to ease the

readability of this paper.

Lemma 1: Consider a function f : R → R uniformly

continuous on the interval [0,∞). Suppose that

lim
t→∞

∫ t

0

f(τ)dτ = φ < ∞.

Then, f(t) → 0 as t → ∞.

The proof of Lemma 1 may be found in [17].

III. CONTROL DESIGN

This section is devoted to the control design, where the

main idea is to split the controller into two parts: (i) a

control signal that lets us express the dynamics of the errors,

between the system’s trajectories and the desired ones, as a

pH system. Then, following the results reported in [14], (ii) a

controller that renders the origin of that pH system globally

uniformly asymptotically stable while satisfying C1 and C2.

A. Boundedness

When dealing with nonautonomous systems, particularly

when applying Barbalat’s lemma, it is fundamental to prove

that the functions involved are bounded. Hence, before pro-

ceeding with the control design, we introduce the following

assumption, which is instrumental for the stability proofs

contained in this section.

Assumption 3: All the entries of Ψ(q(t)), in (2) are C1

functions. Moreover, for every bounded trajectory q(t) of

(2), the following holds:

‖Ψ(q(t))‖ < ∞,

∥∥∥∥
dΨ

dt
(q(t))

∥∥∥∥ < ∞,

∥∥∥∥
dΨ−1

dt
(q(t))

∥∥∥∥ < ∞.

Remark 2: Similar to Assumption 2, a large class of

mechanical systems satisfy Assumption 3. Indeed, from the

observation provided in Remark 1, if all the joints of a robotic

arm are revolute, Assumption 3 is satisfied.



B. Desired dynamics and error system

Given the desired feasible trajectory qd(t), we can com-

pute q̇d(t) and q̈d(t). However, qd(t) is a particular solution

to (2). Hence, we can define the following desired dynamics1

q̇d = Ψ(q)Pd

Ṗd = −Ψ⊤(q)∂V
∂q

(qd) + J(q, P)Pd +Ψ⊤(q)ud(t)
(3)

where ud(t) corresponds to the input that ensures the system

continues tracking the trajectories qd, Pd once it has reached

them, i.e., q = qd, P = Pd. Accordingly, similar to [7], [8],

we compute the desired ud(t) by fixing q = qd, P = Pd, and

their corresponding time derivatives in (2). Hence,

ud(t) = Ψ−⊤(qd)
[
d
dt

(
Ψ−1(qd)q̇d

)
− Jd(t)Ψ

−1(qd)q̇d
]

+
∂V

∂q
(qd),

(4)

where the elements of the matrix Jd(t) are given by

Jdij
(t) = −q̇⊤d M(qd)[Ψi(qd),Ψj(qd)].

Notice that qd is bounded. Then, Assumption 3 ensures that

all the eigenvalues of Ψ(qd) are bounded. Moreover, since

this matrix has full rank, Ψ−1(qd) is bounded as well. This,

in combination with Assumption 3, guarantees that ud(t) is

bounded.

The next step in the control design is to transform the

tracking problem into a stabilization one. Towards this end,

we define the errors

q̃ := q − qd, P̃ := P − Pd, ũ := u− ud(t). (5)

Therefore, from (2), (3), and (5), we get

˙̃q = Ψ(q)P̃
˙̃
P = Ψ⊤(q)

[
ũ+ ∂V

∂q
(qd)−

∂V
∂q

(q)
]
+ J(q, P)P̃

(6)

Then, to express (6) as a pH system, we fix

ũ =
∂V

∂q
(q)−

∂V

∂q
(qd) + û. (7)

Thus, substituting (7) in (6) yields



˙̃q

˙̃
P


 =


 0n×n Ψ(q)

−Ψ⊤(q) J(q, P)






∂H̃
∂q̃

(P̃)

∂H̃

∂P̃
(P̃)


+


 0n×n

Ψ⊤(q)


 û

H̃(P̃) = 1

2
P̃
⊤
P̃, ỹ = Ψ(q)∂H̃

∂P̃
(P̃) = ˙̃q

(8)

Note that by designing û, in (8), such that the closed-loop

system has a uniformly asymptotically stable equilibrium at

(0n,0n), we guarantee that q → qd, P → Pd as t → ∞.

1We omit the argument t to simplify the notation.

C. Control without velocity measurements

The asymptotic stabilization problem of (8) may be

addressed by performing an energy-shaping plus damp-

ing injection process. Nevertheless, the latter requires

information—measurements—of P̃, and consequently of q̇,

which is often a nonmeasurable signal. To overcome this is-

sue, we propose the controller state xc ∈ R
n with dynamics,

see [11], [13], [14],

ẋc = −Rc (KIz +Kcxc) , (9)

where the matrices Rc,Kc,KI ∈ R
n×n are positive definite,

and z ∈ R
n is defined as

z(q̃, xc) := q̃ + xc. (10)

The following proposition provides a controller that solves

the global uniform asymptotic stabilization problem for (8)

without velocity measurements.

Proposition 1: Consider the augmented state vector

[q̃⊤, P̃⊤, x⊤
c ]

⊤, with dynamics (6)-(9). Then, the control law

û = −KIz (11)

ensures that (q̃∗, P̃∗, xc∗) = (0n,0n,0n) is a globally uni-

formly asymptotically stable equilibrium point for the closed-

loop system.

Proof: Consider the function2

H̃d(q̃, P̃, xc) =
1

2
z⊤KIz +

1

2
P̃
⊤
P̃+

1

2
x⊤

c Kcxc.

Note that H̃d(0n,0n,0n) = 0 and H̃d(q̃, P̃, xc) > 0 for all

(q̃, P̃, xc) ∈ R
n×R

n×R
n−{0n,0n,0n}. Thus, H̃d(q̃, P̃, xc)

is positive definite with respect to the equilibrium. Further-

more, substituting (11) in (8), the dynamics of the augmented

state vector take the form



˙̃q

˙̃
P

ẋc


 =




0n×n Ψ(q) 0n×n

−Ψ⊤(q) J(q, P) 0n×n

0n×n 0n×n −Rc







∂H̃d

∂q̃
(q̃, P̃, xc)

∂H̃d

∂P̃
(q̃, P̃, xc)

∂H̃d

∂xc
(q̃, P̃, xc)


 .

Hence, since J(q, P) is skew-symmetric,

˙̃
Hd = −

(
∂H̃d

∂xc

(q̃, P̃, xc)

)⊤

Rc

(
∂H̃d

∂xc

(q̃, P̃, xc)

)
≤ 0.

(12)

Note that H̃d(q̃, P̃, xc) is radially unbounded, which, in

combination with (12), ensures that q̃, P̃, and xc are bounded.

Thus, since we consider that qd(t) is bounded, we get that

q, P, and z are bounded. Thus, Assumption 3 guarantees that

‖Ψ(q)‖ < ∞ and ‖J(q, P)‖ < ∞, which together with the

boundedness of the state and the pH structure of the closed-

loop system, imply that ˙̃q, ˙̃
P, ẋc, and ż are bounded as well.

Now, differentiating the dynamics of q̃, we get

¨̃q =

(
dΨ

dt
(q)

)
P̃+Ψ(q) ˙̃P,

2We omit the argument (q̃, xc) from z to simplify the notation.



which, from Assumption 3, is bounded. Accordingly, ˙̃q is

uniformly continuous. Hence, since q̃ is bounded, it follows

from Barbalat’s lemma that ˙̃q → 0n as t → ∞. Furthermore,
˙̃q → 0n implies P̃ → 0n as t → ∞.

Differentiating the dynamics of P̃, we obtain

¨̃
P = −

(
dΨ⊤

dt
(q)

)
KIz −Ψ(q)KI ż + J(q, P)

˙̃
P

+

(
dJ

dt
(q, P)

)
P̃ .

Therefore, given the arguments above about the boundedness

of the states and their derivatives,
¨̃
P is bounded, and conse-

quently,
˙̃
P is uniformly continuous. Moreover, since P̃ tends

to zero, it follows from Barbalat’s lemma that
˙̃
P → 0n as

t → ∞. Hence, we have the following chain of implications.

˙̃
P → 0n =⇒ Ψ⊤(q)KIz → 0 =⇒ z → 0n, (13)

as t → ∞. Now, note that, since ż and ẋc are bounded,
˙̃
Hd is uniformly continuous. Furthermore, H̃d(q̃, P̃, xc) is a

positive function that is decreasing. Therefore, for bounded

initial conditions, lim
t→∞

H̃d(q̃(t), P̃(t), xc(t)) < ∞.

Hence, again, invoking Barbalat’s lemma we have

˙̃
Hd → 0 =⇒ Kcxc +KIz → 0n =⇒ xc → 0n

as t → ∞, where we used (13). Furthermore, substituting

xc → 0n and (13) in the definition of z, given in (10), we

get that q̃ → 0n as t → ∞, which completes the proof.

The following remark provides a practical intuition inter-

pretation of the state xc.

Remark 3: The expressions(9), (10) can be interpreted

as the state-space representation of a dirty-derivative filter,

as is explained in [18]. Moreover, in (12), we observe

that the closed-loop system exhibits damping in terms of
∂H̃d

∂xc
(q̃, P̃, xc), which, remarkably, depends only on q and

xc.

D. Saturated control without velocity measurements

In this subsection, we modify the controller (11) to ensure

that the control signals comply with the saturation imposed

in C2, given in the problem formulation. Towards this end,

consider the controller state xc ∈ R
n with dynamics

ẋc = −Rc

(
n∑

i=1

eiαi tanh (βizi) +Kcxc

)
, i = 1, . . . , n;

(14)

where ei denotes an element of the canonical basis of R
n,

the constant parameters αi, βi are positive, the matrices

Rc,Kc ∈ R
n×n are positive definite, and z is defined

as in (10). The following proposition provides a saturated

control law that addresses the global uniform asymptotic

stabilization problem of (8), which does not require velocity

measurements.

Proposition 2: Consider the augmented state vector

[q̃⊤, P̃⊤, x⊤
c ]

⊤, with dynamics (6)-(14). Then, the control law

û = −

n∑

i=1

eiαi tanh (βizi)

ensures that the closed-loop system has a globally uniformly

asymptotically stable equilibrium at (q̃, P̃, xc) = (0n,0n,0n)
with Lyapunov function

H̃sat(q̃, P̃, xc) =

n∑

i=1

αi

βi

ln (cosh (βizi))+
1

2
P̃
⊤
P̃+

1

2
x⊤

c Kcxc.

Proof: Note that H̃sat(q̃, P̃, xc) is positive definite with

respect to the equilibrium point and is radially unbounded.

Moreover, the closed-loop system takes the form




˙̃q

˙̃
P

ẋc


 =




0n×n Ψ(q) 0n×n

−Ψ⊤(q) J(q, P) 0n×n

0n×n 0n×n −Rc







∂H̃sat

∂q̃
(q̃, P̃, xc)

∂H̃sat

∂P̃
(q̃, P̃, xc)

∂H̃sat

∂xc
(q̃, P̃, xc)


 ,

and

˙̃
Hsat = −

(
∂H̃sat

∂xc

(q̃, P̃, xc)

)⊤

Rc

(
∂H̃sat

∂xc

(q̃, P̃, xc)

)
≤ 0.

The rest of the proof follows similar to the proof of Propo-

sition 1 by noting that

∂H̃sat

∂q̃
(q̃, P̃, xc) =

n∑

i=1

eiαi tanh (βizi) = 0n ⇐⇒ z = 0n,

and

d

dt

(
∂H̃sat

∂q̃
(q̃, P̃, xc)

)
=

n∑

i=1

eie
⊤

i αiβi [sech (βizi)]
2
ż

is bounded if ż is bounded.

E. Passivity-based trajectory tracking controller

Theorem 1 introduces the main result of this paper,

namely, a control law that addresses the trajectory tracking

problem for (2) while satisfying C1 and C2.

Theorem 1: Consider the pH system (2) in closed-loop

with

u =
∂V

∂q
(q)−

n∑

i=1

eiαi tanh (βizi) + κ(t) (15)

where

κ(t) := Ψ−⊤(qd)

[
d

dt

(
Ψ−1(qd)q̇d

)
− Jd(t)Ψ

−1(qd)q̇d

]

Then,

lim
t→∞

q(t) = qd(t), lim
t→∞

P(t) = Pd(t).

Proof: The proof follows from (4), (7), Proposition

2, noting that q̃ → 0 implies q → qd and P̃ → 0 implies

P → Pd.

Remark 4: For robotic arms, the control law (15) can

be physically interpreted as follows. The gradient of the

potential energy compensates the gravitational forces acting

on the system. The second term of the right-hand ensures that

the trajectories of the system converge towards the desired

ones, and the last term guarantees that the system keeps

tracking such trajectories.



(a) (b)

Fig. 1: PERA system (a) and schematic of the joints used in

the experiments (b).

Remark 5: Note that the control law (15) is saturated

because of Assumption 1, the fact that the desired trajec-

tories are bounded, and the shape of the function tanh(·).
Moreover, the saturation limits can be adjusted by modifying

the parameters αi. In particular, Umini
= −αi + V + κ,

Umaxi
= αi+V +κ, where V , V denote the lower and upper

bound of ∂V
∂q

(q), and κ, κ denote the lower and upper bound

of κ(t). Additionally, the parameters βi adjust the slope of

the functions tanh(·), i.e., the sensitivity with respect to the

error.

IV. IMPLEMENTATION IN THE PERA SYSTEM

To corroborate the effectiveness of the methodology pro-

posed in the previous section, we implement the controller

(15) in the PERA system, depicted in Fig. 1a, which is

a robotic arm with seven DoF that intends to emulate the

motion of a human arm. To illustrate the applicability of the

saturated tracking controller, we consider only three degrees

of freedom, namely, the shoulder pitch q1, shoulder yaw q2,

and elbow pitch q3 (see Fig. 1b). Accordingly, the dynamics

of the reduced system can be expressed as a pH system of

the form (1), with n = 3, and

M(q) :=




I1 + I2 + I3 + a 0 I3 cos(q2)

0 I2 + I3 0

I3 cos(q2) 0 I3




V (q) := −
(
1

3
m1 +m2

)
gL1 cos(q1) +

1

3
m2gL2b(q)

a := (m1 +m2)L
2
1

b(q) := cos(q2) sin(q1) sin(q3)− cos(q1) cos(q3),

where the constant parameters of the system are provided in

Table I. Moreover, the saturation limit of the motors are

|u1| ≤ 18.77, |u2| ≤ 3.32, |u3| ≤ 7.72, (16)

with units [N ·m].
For further details about the PERA system, we refer the

reader to [19].

TABLE I: System parameters

Parameter Value/Units Parameter Value/Units

L1 0.32[m] g 9.81[m/s2]

L2 0.48[m] I1 0.03[kg ·m2]

m1 2.9[kg] I2 0.004[kg ·m2]

m2 1[kg] I3 0.02[kg ·m2]

The control objective is to track a circular trajectory with

the end-effector of the system. To this end, we parameterize

the desired trajectory as follows

qd(t) =




0

arcsin
(

r
L2

)
sin
(
2π
T
t
)

π
2
− arcsin

(
r
L2

)
cos
(
2π
T
t
)


 . (17)

with r ∈ R+ the radius of the circle, T ∈ R+ the period of

the circle trajectory and t ∈ R+ the time.

A. Experiments

To carry out the experiments, we choose values of α such

that the limits provided in (16) are not reached. Then, we

adjust the sensitivity of the controller by adjusting β until

we get a satisfactory performance. But, alas, the criterion to

fix the gains of the filter Rc and Kc is not clear and these

parameters are tuned by trial an error. The chosen control

parameters are α = [11 2 6]
⊤

, β = [400 100 120]
⊤

, Kc =
diag{30, 20, 200}, and Rc = diag{1, 0.1, 4500} × 10−4.

Moreover, the initial conditions of the experiments are q0 =
p0 = 03.

The experiments consist of two steps: (i) during the first

second, we consider that the desired trajectory is a constant

point, which belongs to the circle to be tracked. Then, (ii)

we consider that the desired trajectory is given by (17).

This procedure has two advantages: on the one hand, it

is easier to physically set the robot at the origin, enabling

the repeatability of the experiments under the same initial

conditions. On the other hand, we improve the performance

of the controller.

The experimental results are shown in Fig. 2, where it

can be noticed that the system tracks the desired trajectory

with a small deviation, particularly notorius in q3. This error

in the trajectory may be caused by several non-modeled

phenomena that affect the behavior of the system, e.g., the

friction in the joints or the anti-symmetry in the motors.

Nevertheless, as depicted in the first column of Fig. 3, the

absolute position error remains smaller than 0.05 [rad], i.e.

|q̃| < 0.05. Furthermore, the control signals do not exceed

the limits given in (16) as it shown in the second column

of Fig. 3, where the mentioned limits are plotted in black

dashed lines. A video of the experiments can be found in:

https://www.youtube.com/watch?v=2bW4PwwSo2s.

V. CONCLUDING REMARKS AND FUTURE WORK

This paper presents a constructive control design method-

ology that solves the trajectory tracking problem for a class



Fig. 2: Experimental results. The solid lines represent the

trajectory of the joints during the experiment, while the

dashed lines represent the desired trajectories.

Fig. 3: Position errors (first column) and control signals

(second column).

of robotic arms, where the control signals are saturated and

do not require velocity measurements. Moreover, the control

law uses gravity compensation based on the modeling of the

gravitational force acting on the robotic arm. To prove that

the trajectories of the closed-loop system globally uniformly

converge to the desired trajectories, we conduct an analysis

based on Barbalat’s lemma.

The control approach was implemented in the PERA sys-

tem, where the experimental results show that the trajectories

of the system track the desired ones with an absolute position

error of the joints that remains smaller than 0.05[rad].

Additionally, the controller proved robustness in the presence

of non-modeled phenomena such as the natural dissipation

present in the joints of the system.

As future work, it is suggested further to investigate a

systematic method for tuning of control gains.

REFERENCES

[1] M. Spong and M. Vidyasagar, Robot dynamics and control. John
Wiley & Sons, 2008.

[2] J. Craig, Introduction to robotics: mechanics and control, 3/E. Pearson
Education India, 2009.

[3] B. Siciliano and O. Khatib, Springer handbook of robotics. Springer,
2016.

[4] V. Duindam, A. Macchelli, S. Stramigioli, and H. Bruyninckx, Mod-
eling and control of complex physical systems: the port-Hamiltonian

approach. Springer Science & Business Media, 2009.
[5] A. J. van der Schaft and D. Jeltsema, “Port-Hamiltonian systems

theory: An introductory overview,” Foundations and Trends in Systems
and Control, vol. 1, no. 2-3, pp. 173–378, 2014.

[6] R. Ortega, A. J. van der Schaft, I. Mareels, and B. Maschke, “Putting
energy back in control,” IEEE Control Systems Magazine, vol. 21,
no. 2, pp. 18–33, 2001.

[7] E. Zergeroglu, D. Dawson, M. de Queiroz, and M. Krstic, “On
global output feedback tracking control of robot manipulators,” in
Proceedings of the 39th IEEE Conference on Decision and Control
(Cat. No. 00CH37187), vol. 5, pp. 5073–5078, IEEE, 2000.

[8] Q. Chen, H. Chen, Y. Wang, and P.-Y. Woo, “Global stability analysis
for some trajectory-tracking control schemes of robotic manipulators,”
Journal of Robotic Systems, vol. 18, no. 2, pp. 69–75, 2001.

[9] E. Børhaug and K. Pettersen, “Global output feedback PID control
for n-DoF Euler-Lagrange systems,” in Proc. IEEE American Control

Conference, pp. 4993–4999, 2006.
[10] J. Romero, R. Ortega, and I. Sarras, “A globally exponentially stable

tracking controller for mechanical systems using position feedback,”
IEEE Transactions on Automatic Control, vol. 60, no. 3, pp. 818–823,
2014.

[11] D. A. Dirksz and J. M. A. Scherpen, “On tracking control of rigid-
joint robots with only position measurements,” IEEE Transactions on

Control Systems Technology, vol. 21, no. 4, pp. 1510–1513, 2012.
[12] E. Aguinaga-Ruı́z, A. Zavala-Rı́o, V. Santibañez, and F. Reyes,
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