
Calculating
Ways to
Calculate

by

Lars van der Kuil
To obtain the degree of Bachelor of Science

at the Delft University of Technology,
To be defended publicly on July 6 2023 at 13:30.

Student number: 5337402
Project duration: April 24, 2023 – July 6, 2023
Thesis committee: Dr. N.D. (Nikolaas) Verhulst, TU Delft, supervisor

Dr. ir. W.G.M. (Wolter) Groenevelt TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Summary

Algebras are vector spaces with a bilinear product. When we fix a finite dimension n and a
finite field K with q elements, there are a finite number of non-isomorphic algebras. Seeing
as vector spaces are completely determined by the dimension and scalar field, the number
of non-isomorphic algebras is the number of ways we can define a bilinear product of vec-
tors. Exploiting the bilinearity of the product we can construct a surjection from vectors of
n n ×n matrices over K to non-isomorphic n-dimensional algebras over K . This function
can be made injective by reducing to orbits under a group action on the set of vectors of
matrices, thus providing a bijection. So the number of non-isomorphic algebras is equal to
the number of orbits of this group action. In 2020 Verhulst [9] used Burnside’s Lemma to
count the orbits and thus the number of non-isomorphic algebras. However, the formula
he derived still requires a number of complicated calculations.

The aim of this thesis is to implement Verhulst’s formula in python. In Table 4.1 you
can find the output of the python script. The results for n = 1 merely show some trivial
cases. The results for n = 2 fit the formulas obtained, using completely different meth-
ods, by Petersson and Scherer [5]. The results for n = 3 and n = 4 are, to my knowledge,
new. Currently, the limiting factor is computation time. A more powerful computer could
squeeze out a few more results, but a more efficient formula is necessary. Based on the re-
sults, it seems that the contribution of the identity matrix in Verhulst’s formula provides a
decently tight lower bound.

ii

Contents

1 Introduction 1

2 Preliminaries 2
2.1 Groups. 2
2.2 Finite Fields . 4
2.3 Vector Spaces. 5

3 Algebras 8
3.1 Vector of Matrices Representation . 9

4 Data and Analysis 13
4.1 Some Notes on the Code . 13
4.2 Results . 14
4.3 Conclusion and Outlook . 17

A Code 18

Bibliography 20

iii

1
Introduction

Linear algebra is a very powerful tool, but some vector spaces contain some additional mul-
tiplication structure. For instance, in the vector space of matrices we can multiply vectors
using the matrix product and in R3 we can multiply vectors using the cross-product. This
additional structure is described by an algebra - an extension of a vector space that adds a
bilinear product.

The classification of finite-dimensional algebras is a hard problem, unlike in the case of
vector spaces. In 1992, Althoen and Hansen [2] successfully classified 2-dimensional alge-
bras over the base field R. In 2000, Petersson [4] generalised this classification to arbitrary
base fields, which Petersson and Scherer [5] used in 2004 to derive polynomial formulas
in terms of q for the number of non-isomorphic 2-dimensional algebras over a finite field
with q elements. Lastly, Verhulst [9] derived a formula for calculating the number of non-
isomorphic n-dimensional algebras over a finite field in 2020.

However, this general formula is not entirely satisfactory as it requires a number of com-
plex calculations, unlike the polynomial formulas developed by Petersson and Scherer. In
this thesis, our goal is to implement Verhulst’s formula in a Python program and collect
data.

Chapter 2 will cover basic definitions and results concerning groups (Section 2.1), finite
fields (Section 2.2), and vector spaces (Section 2.3). These concepts will be utilized in Chap-
ter 3 to introduce the theory of algebras and in Chapter 4 to implement Verhulst’s formula
in a Python program, the results of which are also discussed in Chapter 4.

1

2
Preliminaries

In algebra, most definitions of structures are based on groups. Therefore, we will begin
by reviewing the definition of a group, along with some fundamental properties and the
concept of a group action. After that, we will delve into fields, followed by a well-known
classification theorem for finite fields. Finally, we will define vector spaces over arbitrary
fields.

2.1. Groups
A group is set with a single operation on it which satisfies some basic properties. These
properties reflect the properties we commonly see in regular arithmetic.

Definition 2.1 (Group). A group is a pair (G ,∗) of a set G and a binary operation, ∗, on G
such that:

• ∀a,b ∈G : a ∗b ∈G (closure)

• ∀a,b,c ∈G : (a ∗b)∗ c = a ∗ (b ∗ c) (associativity)

• ∃e ∈G : ∀a ∈G : a ∗e = e ∗a = a (e is the identity element)

• ∀a ∈G : ∃a−1 ∈G : a ∗a−1 = a−1 ∗a = e (a−1 is the inverse of a)

We call (G ,∗) an Abelian group if ∗ also satisfies:

• ∀a,b ∈G : a ∗b = b ∗a (commutativity)

It is easy to check that the following are examples of groups.

Example 2.2. (Z,+), (Q,+), (R,+), (Q\ {0}, ·), (R\ {0}, ·) are all Abelian groups.

Example 2.3. The set GLn(R) of invertible n ×n real matrices with matrix multiplication is
a non-Abelian group.

Note that all of these groups contain an infinite number of elements. A classic family of
finite groups are the groups of modular arithmetic. Recall that we consider two numbers
a,b ∈Z to be congruent (mod n) (write a ≡ b (mod n)) if and only if there exists a k ∈Z such
that a = b +kn. The relation ≡ (mod n) is an equivalence relation. The set of equivalence
classes with respect to this equivalence relation is Z/nZ = {0,1,2, · · · ,n −1}, where a is the
equivalence class of a ∈Z.

2

2.1. Groups 3

Proposition 2.4. For all n ∈Nwe have thatZ/nZwith the operation + given by a+b = a +b
for a,b ∈Z is an Abelian group.

Proof. Cf. e.g. [7] p.13.

In the next section, this group will play an important role in describing the finite fields.
For most concepts in mathematics there is some notion of ’essentially the same’. For

groups, as for most algebraic objects, we call this notion isomorphism. The idea is that
we map the elements of two groups to each other using a bijection, which respects the
operations on the group.

Definition 2.5 (Group Isomorphism). Two groups (G ,∗G) and (H ,∗H) are said to be iso-
morphic (G ∼= H) if there exists a group isomorphism between G and H, that is, there exists
a bijective function ψ : G → H such that for all a,b ∈G we have ψ(a ∗G b) =ψ(a)∗H ψ(b).

Group actions describe symmetries and Burnside’s Lemma is a very useful theorem for
avoiding symmetries when counting. Suppose, for example, that we have 5 colours of beads
and we want to know how many necklaces with 8 beads we can make. The simple answer
would be 85, since each of the 8 beads can be one of 5 colours. However, two necklaces are
essentially the same if they differ by a rotation or a reflection. These symmetries can be
described using a group action, then we can use Burnside’s Lemma to count the number of
different necklaces.

Definition 2.6 (Group Action). Given a set X and a group G with identity element e, a (right)
G-action on X is a map φ : X ×G → X such that

• ∀x ∈ X :φ(x,e) = x

• ∀x ∈ X ,∀g ,h ∈G :φ(x, g h) =φ(φ(x,h), g)

Example 2.7. In the example of the necklace, we have a group consisting of rotations and
reflections (see dihedral group in e.g. [7] p.68) acting on the set of all possible necklaces ig-
noring symmetries. The ’do nothing’ element acts like doing nothing to any of the necklaces
and is the identity in our group, so the first requirement is satisfied. If we apply a 2π

5 rota-
tion and then a 4π

5 rotation to a necklace, then we have essentially rotated the necklace by
a 6π

5 rotation. So in our group the operation determines the net effect of the rotations and
reflections. This also satisfies the second requirement.

In this example we have found a group which, when acting on a necklace gives us an
equivalent necklace. We say two elements, in this case necklaces, are in the same orbit
if you can reach one from the other by applying the group action. More formally, for a G-
actionφ on X , we define theφ-orbit of an element x ∈ X to be the set G(x) = {φ(x, g) : g ∈G}
and we write X /G for the set of φ-orbits.

Some actions do not have any effect on some necklaces while they do on others. A
necklace with 5 beads all of the same colour does not change if it is rotated by 2π

5 . It does
not just become an equivalent necklace, it becomes indistinguishable from the original,
even in its position. We call this necklace a fixpoint of the 2π]

5 rotation. Formally, we say
that X g = {x ∈ X :φ(x, g) = x} is the set of fixpoints of g ∈G .

Burnside’s Lemma uses the number of fixpoints of each group element to count the
number of orbits under the group action, thereby counting the number of distinct neck-
laces. Application of this result to the necklace example will be left as an exercise for the
reader.

4 2. Preliminaries

Theorem 2.8 (Burnside’s Lemma). Suppose φ is an action of a finite group G on a finite set
X . Then

|X /G| = 1

|G|
∑

g∈G
|X g |

Proof. Cf. e.g. [7], p.58.

For counting non-isomorphic algebras the symmetry lies in the isomorphism. In Chap-
ter 3 we use a group-action to describe when two algebras are isomorphic.

2.2. Finite Fields
In essence, R is a set of objects which we can add, subtract, multiply and divide. We want
to generalise this structure. This generalisation is captured in the following definition.

Definition 2.9 (Field). A field is a triple (K ,+, ·) of a set K and two binary operations, addi-
tion "+" and multiplication " ·", on K such that:

• (K ,+) is an Abelian group

• (K \ {0}, ·) is an Abelian group, where 0 is the identity element of (K ,+)

• The distributive law holds: ∀α,β,γ ∈ K : (α+β) ·γ= (α ·γ)+ (β ·γ)

If the operations on a field (K ,+, ·) are natural, already given or unimportant, then the
field is referred to by just the set K . We write 0 when referring to the additive identity ele-
ment of an arbitrary field K and similarly 1 for the multiplicative identity of K . Furthermore
−α is the additive inverse of α ∈ K and α−1 or 1

α is its multiplicative inverse. In some situ-
ations, the symbols for the operations are omitted: for α,β ∈ K , α−β means α+ (−β) and
αβ means α ·β.

As mentioned before R with the usual addition and multiplication forms a field. It is
not difficult to check that Q and C are also fields. Notably Z is not a field, since it does not
contain e.g. 1

2 , the multiplicative inverse of 2 ∈Z.
Just like with groups, if fields are essentially the same we say they are isomorphic. Since

our definition of a field is largely based on groups, our definition of a field-isomorphism will
be similar to that of a group-isomorphism. In fact the definition given below is equivalent
to saying that the underlying groups of the fields have to be isomorphic.

Definition 2.10 (Field Isomorphism). Two fields (K ,+K , ·K) and (F,+F , ·F) are said to be iso-
morphic (K ∼= F) if there exists a field isomorphism between K and F , that is, there exists a
bijective function ψ : K → F such that for all α,β ∈ K we have ψ(α+K β) =ψ(α)+F ψ(β) and
ψ(α ·K β) =ψ(α) ·F ψ(β).

Note that the examples of field mentioned earlier all contain an infinite number of ele-
ments. With the usual addition and multiplication this is unavoidable, since a+1 can never
be a number smaller than or equal to a for any number a and a field must contain the iden-
tity elements 0 and 1. This is however not the case for modular arithmetic. In Proposition
2.4 we have seen that Z/nZ is an Abelian group for all n ∈N. Similar to addition we multi-
ply modulo n; for a,b ∈ Z/nZ we define a ·b = a ·b. However this multiplication does not
make Z/nZ a field for all n. For example (Z/4Z) \ {0} is not closed under multiplication;
2 ·2 = 4 = 0. The following theorem shows exactly for which n ∈ N we have that Z/nZ is a
field.

2.3. Vector Spaces 5

Theorem 2.11. Z/pZ for p ∈N is a field if and only if p is a prime number.

Proof. Cf. e.g. [1] p.7.

The fieldsZ/pZ for p a prime number form the basis of all finite fields and are therefore
known as prime fields.

Theorem 2.12 (Characterisation of the Finite Fields). For every prime number p and every
positive integer k there exists, up to isomorphism, a unique field Fpk containing pk elements.
Conversely, for every finite field K there exist a prime number p and a positive integer k such
that K ∼= Fpk .

Proof. Cf. e.g. [1] p.126/127.

This theorem motivates us to define the finite field with q elements Fq for any prime
power q . Note that these fields are only defined up to isomorphism. Any sort of arithmetic
happens in an instance of the finite field Fq . For q a prime number we have already seen
the prime fields Z/pZ. For q a higher power of a prime the field Fq can be constructed
using polynomials. The details of this will not be important for the purposes of this thesis
and we will thus refer to a book about field algebra like [1] (p.126/127). As an example we
give a construction of F4.

Example 2.13. The field of 4 = 22 elements is the set F4 = {0,1, X , X +1} of polynomials with
addition modulo 2 and multiplication given by

· 0 1 X X+1
0 0 0 0 0
1 0 1 X X+1
X 0 X X+1 1

X+1 0 X+1 1 X

2.3. Vector Spaces
Most people with a background in science will have seen vector spaces over R. This defi-
nition can easily be generalised to vector spaces over an arbitrary field K . The difference is
that scalars are no longer real numbers, but elements of the scalar field K .

Definition 2.14 (Vector Space). A vector space over a field K is an Abelian group (V ,+) with
a left (K \ {0}, ·)-action · such that for all α,β ∈ K , u, v ∈V

• (α+β) ·u = (α ·u)+ (β ·u)

• α · (u + v) = (α ·u)+ (α · v)

Most, if not all, theorems, definitions and methods generalise directly to vector spaces
over arbitrary fields. The details will not be important for this thesis, so we will refer to an
advanced linear algebra book (like [6]) for those. The following definitions and results will
be essential for the rest of this thesis.

6 2. Preliminaries

Definition 2.15 (Linear Function). Given two vector spaces V and W over a field K , a func-
tion f : V →W is called linear if for all u, v ∈V ,α,β ∈ K we have f (αu+βv) =α f (u)+β f (v).

For the definition of an algebra in Chapter 3 we will need a related concept, namely
bilinear functions.

Definition 2.16 (Bilinear Function). Given three vector spaces V , V ′ and W over a field K , a
function f : V ×V ′ →W is called bilinear if f is linear in both components, that is, ∀v ∈V ′ :
u 7→ f (u, v) and ∀u ∈V : v 7→ f (u, v) are linear functions.

Linear functions preserve the operations on a vector space. This motivates the following
definition.

Definition 2.17 (Vector Space Isomorphism). Two vector spaces V and W are said to be
isomorphic (V ∼=W) if there exists a linear bijection between V and W .

Let K n be the vector space of ordered sets with n components and elements in K .
Addition and scalar multiplication on K n are component-wise. Given a basis of an n-
dimensional vector space V there is a unique way of writing the vectors of V as a linear
combination of basis vectors. This leads to a linear bijection to K n .

Proposition 2.18. For any integer n ∈ Z≥1 and any field K there is, up to isomorphism, ex-
actly one n-dimensional vector space over K .

Proof. Let V be an n-dimensional vector space over K . Then by choosing a basis for V we
can map the vectors of V to their coordinate vectors in K n . So we map v = ∑n

i=1αi ei to
(α1, · · · ,αn). This map is well-defined because of linear independence of the basis, linear
because the summation is linear and bijective because span of the basis is the whole space
V . So V ∼= K n .

The image of a v ∈V under the isomorphism corresponding to a basis B is known as the
coordinate vector of v and is denoted as [v]B . The idea of using a basis to change vectors
to columns of field elements can also be used to change linear functions to matrices.

Theorem 2.19. Let V and W be two vector spaces over a field K with dimensions n and m
and bases BV and BW respectively. Then for any linear function f : V → W there exists a
unique m ×n matrix M with entries in K such that for all v ∈V : [f (v)]BW = M [v]BV .

Proof. By Proposition 2.18 we have isomorphisms V → K n and W → K m . Via these isomor-
phisms we can construct a function f̃ : K n → K m by [v]BV 7→ [f (v)]BW . By linearity of f we
find a unique m ×n matrix M with entries in K such that [f (v)]BW = M [v]BV .

This correspondence lets us connect concepts related to functions with concepts re-
lated to matrices. Let f be a linear function and let M f be the associated matrix. The image
of f corresponds to the column space Col(M f) of M f , the span of the columns of M f . The
kernel of f corresponds to the nullspace Null(M f) of M f , the space of vectors v such that
M f v = 0. The dimensions of these spaces are known, respectively, as the rank Rank(M f)
and nullity Nullity(M f) of M f . The following theorem relates the rank and nullity and is
used to slightly simplify the code in Appendix A.

2.3. Vector Spaces 7

Theorem 2.20 (Rank-Nullity Theorem). For any m ×n matrix M over a field K we have

Rank(M)+Nullity(M) = n.

Proof. Cf. e.g. [6] p.63.

Let g be another linear function and let Mg be its associated matrix. Then the compo-
sition f ◦ g of f and g corresponds to the matrix multiplication M f Mg . This means that
linear bijections correspond to invertible matrices, where the inverse matrix corresponds
to the inverse function. We denote Matn(K) for the set of n×n matrices over K and GLn(K)
for the subset of Matn(K) of invertible matrices.

Theorem 2.21. The set GLn(K) forms a group with the operation matrix multiplication.

Proof. Cf. e.g. [7] p.13.

The identity element of GLn(K) is 1n , the n ×n matrix with 1’s on the diagonal and 0’s
everywhere else.

The size of the group GLn(K) is given by the following paraphrased version of proposi-
tion 1.10.1 in [8].

Theorem 2.22. The number of invertible n ×n matrices over a field K with q elements is

|GLn(K)| = (qn −1)(qn −q)(qn −q2) · · · (qn −qn−1).

Proof. An arbitrary n ×n matrix is invertible if and only if its columns are independent.
There are qn −1 choices for the first column; all non-zero vectors in K n . The q multiples of
the first column are all vectors dependent on it. So there are qn −q choices for the second
column. The first two columns span a subspace V of K n of dimension 2, since they are
independent. The third column can be any element of K n not in V , so there are qn − q2

choices for the third column. Continuing this reasoning we get that there are qn − q i−1

choices for the i -th column.

In Theorem 3.11 there is a different kind of product of matrices: the Kronecker product.
The Kronecker product is a way to combine two matrices of any size into a larger matrix
containing all products between an element of the first matrix and an element of the second
matrix.

Definition 2.23 (Kronecker Product). Let A be an n × m matrix with entries αi j ∈ K for
1 ≤ i ≤ n, 1 ≤ j ≤ m and let B be an p ×q matrix. Then the Kronecker product of A and B is
the np by mq matrix A⊗B consisting of blocks αi j B.

This definition is better understood with an example.

Example 2.24.

[
1 2
3 4

]
⊗

[
5 6
7 8

]
=

1

[
5 6
7 8

]
2

[
5 6
7 8

]
3

[
5 6
7 8

]
4

[
5 6
7 8

]
=

5 6 10 12
7 8 14 16

15 18 20 24
21 24 28 32

In Theorem 3.11 we also encounter an eigenspace of a matrix. Eigenspaces and eigen-

values are defined very similarly to the case over R. The difference is that the eigenvalues
exist in the scalar field K or some extension of it. We will only need the eigenspace cor-
responding to the eigenvalue 1, which is given by Eig1 = Null(M − 1n) for an n ×n matrix
M .

3
Algebras

An algebra is the algebraic structure describing a product of vectors. Examples include,
but are not limited to, R3 with the cross-product, C as vector space over R with complex
multiplication and Matn(K) as vector space over a field K with matrix multiplication. The
common thread is the relation between the product and the vector operations addition and
scalar multiplication.

Definition 3.1 (Algebra). An algebra over a field K is a vector space A over K equipped with
a bilinear product ∗ : A× A → A, that is, for all α ∈ K , u, v, w ∈ A we have

• α · (u ∗ v) = (α ·u)∗ v = u ∗ (α · v)

• (u + v)∗w = (u ∗w)+ (v ∗w)

• u ∗ (v +w) = (u ∗ v)+ (u ∗w)

In the literature, a symbol for multiplication is often left out. In this thesis, however, we
will explicitly write ∗ to disambiguate the vector-vector product from scalar products and
matrix-vector products.

Due to their underlying vector space structure, many results from linear algebra can be
extended to algebras. In particular, the relationship between linear functions and matri-
ces discussed in Chapter 2.3 gives us a relation between algebras and vectors of matrices.
The group GLn(K) plays a significant role in completing this correspondence. Additionally,
an algebra’s dimension and basis correspond to the dimension and basis of its underlying
vector space.

Definition 3.2 (Algebra Isomorphism). Two algebras A and A′ are said to be isomorphic
if the vector spaces A and A′ are isomorphic and an isomorphism f : A → A′ respects the
multiplication, that is, for any a,b ∈ A we have f (a ∗A b) = f (a)∗A′ f (b).

We denote the isomorphism class of an algebra A as [A]. The set of all isomorphism
classes of n-dimensional algebras over a field K is denoted as Algn(K). The size of Algn(K)
is the number of non-isomorphic n-dimensional algebras over K .

Example 3.3. Consider the vector space F2
2 over F2. Component-wise multiplication defines

a bilinear map on F2
2. So F2

2 is an algebra over F2 with component-wise multiplication.

8

3.1. Vector of Matrices Representation 9

Example 3.4. Consider F4 as vector space over F2. Multiplication in F4 defines a bilinear map
on F4. So F4 is an algebra over F2 with multiplication in F4.

Note that {1, X } is a basis for F4, so F4
∼= F2

2 as vector spaces. However, in F4 there are
no non-zero elements whose product is 0, whereas in F2

2 we have (0,1)T ∗ (1,0)T = (0,0). So
F4 ̸∼= F2

2 as algebras.

3.1. Vector of Matrices Representation
We have seen in Proposition 2.18 that a vector space is fully determined by its dimension
and its scalar field. The examples given above show that this is clearly not the case for al-
gebras. The bilinear product determines the rest of the structure. In his paper [9] Verhulst
exploited the bilinearity of this product to represent algebras using matrices. This section
is heavily based on his work.

Consider an n-dimensional algebra A over a field K with basis B = {e1, . . . ,en}. Let a,b ∈
A and write a = ∑n

i=1αi ei for αi ∈ K . We can now use the linearity of the multiplication to
rewrite the product a ∗b.

a ∗b =
(

n∑
i=1

αi ei

)
∗b

=
n∑

i=1
αi (ei ∗b)

We see that the product a∗b is determined by the products ei ∗b for 1 ≤ i ≤ n. Using linear-
ity in the second argument we can reduce this further to the products ei ∗e j for 1 ≤ i , j ≤ n.
So the products of basis vectors completely determine the product of vectors. This reduces
the condition on an isomorphism of algebras to f (ei ∗A e j) = f (ei)∗A′ f (e j).

We can also take a slightly different approach. For b ∈ A consider the maps fi : b 7→ ei ∗b
for 1 ≤ i ≤ n, then the linearity in the second argument of the product implies linearity of
the functions fi . This in turn means that there are matrices Mi associated with fi such
that [ei ∗b]B = [fi (b)]B = Mi [b]B . So the algebra A is determined by the vector of n n ×n
matrices M = (M1, · · · , Mn)T .

This motivates us to define the following family of algebras.

Definition 3.5. The algebra induced by a vector M of n n ×n matrices over a field K is the
n-dimensional algebra over K with vector space structure K n and a bilinear product given
by ei ∗a = Mi a for every a ∈ K n and i ∈ {1, · · · ,n}. This algebra is denoted by alg(M).

Lemma 3.6. For every n-dimensional algebra A over a field K there is an M ∈ Matn(K)n

such that A ∼= alg(M).

Proof. The argument above Definition 3.5 provides M given A.

Example 3.7. Consider, for example, the algebra R3 with the cross-product. A natural basis
for R is e1 = (1,0,0)T ,e2 = (0,1,0)T ,e3 = (0,0,1)T . To describe this algebra using matrices we
look at the products of e1,e2,e3 with an arbitrary vector b = (b1,b2,b3)T ∈R3.

10 3. Algebras

e1 ×b =
 0
−b3

b2

=
0 0 0

0 0 −1
0 1 0

b1

b2

b3

= M1b

e2 ×b =
 b3

0
−b1

=
 0 0 1

0 0 0
−1 0 0

b1

b2

b3

= M2b

e3 ×b =
−b2

b1

0

=
0 −1 0

1 0 0
0 0 0

b1

b2

b3

= M3b

We see that R3 with the cross-product is induced by M = (M1, M2, M3)T .

Example 3.8. Consider the matrices[
1 0
0 1

]
,

[
0 1
1 1

]
∈ Mat2(F2)

They define a bilinear product on the vector space F2
2 by associating the first matrix with

multiplication on the left by (1,0)T and the second matrix with multiplication on the left by
(0,1)T . Let (a,b)T , (c,d)T ∈ F2

2. Then their product is given by[
a
b

]
∗

[
c
d

]
= a ·

([
1
0

]
∗

[
c
d

])
+b ·

([
0
1

]
∗

[
c
d

])
= a ·

[
1 0
0 1

][
c
d

]
+b ·

[
0 1
1 1

][
c
d

]
=

[
a · c
a ·d

]
+

[
b ·d

b · (c +d)

]
=

[
a · c +b ·d

a ·d +b · c +bḋ

]
We see how two matrices induce a 2-dimensional algebra over F2.

Note that there are different vectors of matrices that correspond to isomorphic alge-
bras. Multiplying all matrices with the same non-zero element will result in an isomorphic
algebra. In other words, the map

[alg] : Matn(K)n → Algn(K)

M 7→ [alg(M)]

is surjective (Lemma 3.6), but not injective.

Lemma 3.9. Given two vectors of matrices M = (M1, . . . , Mn),N = (N1, . . . , Nn) ∈ Matn(K)n .
The algebras alg(M) and alg(N) are isomorphic if and only if

∃G ∈ GLn(K) : Mi =G−1(
n∑

k=1
Gki Nk)G .

3.1. Vector of Matrices Representation 11

Proof. Suppose that alg(M) and alg(N) are isomorphic. Then there exists an isomorphism
f : alg(M) → alg(N). So f is a linear bijection such that for a basis {e1, . . . ,en} for AM we
have f (ei ∗e j) = f (ei)∗ f (e j) for 1 ≤ i , j ≤ n. So there is a matrix G ∈ GLn(K) associated with
f such that G(ei ∗e j) =Gei ∗Ge j . Using the vectors of matrices we can rewrite

G(ei ∗e j) =GMi e j

Gei ∗Ge j =
n∑

k=1
Gki ek ∗Ge j

= (
n∑

k=1
Gki Nk)Ge j

Multiplying both sides on the left with G−1 we find Mi e j =G−1(
∑n

k=1 Gki NkG)e j . Since the
matrices act the same on all basis vectors, we have the desired result.

Conversely, suppose there exists a G ∈ GLn(K) such that Mi =G−1(
∑n

k=1 Gki Nk)G . Then
G induces a linear bijection f : alg(M) → alg(N). It suffices to show that f (ei ∗e j) = f (ei)∗
f (e j). Using the hypothesis (H y p.) we find

f (ei)∗ f (e j) =Gei ∗Ge j = (
n∑

k=1
Gki Nk)Ge j

=GG−1(
n∑

k=1
Gki Nk)Ge j

H y p.= GMi e j = f (ei ∗e j)

Let φ : Matn(K)n ×GLn(K) → Matn(K)n be given by

φ

M1

...
Mn

 ,G)

=

G−1(
∑n

k=1 Gk1Nk)G
...

G−1(
∑n

k=1 Gkn Nk)G

As we have seen in Section 2.3, the invertible matrices GLn(K) form a group with operation
matrix multiplication.

Lemma 3.10. The map φ defines a GLn(k)-action on Matn(K).

Proof. It is easy to see that φ(M ,1n) =M for any M ∈ Matn(K)n . Let M = (M1, . . . , Mn)T ∈
Matn(K)n and G ,G ′ ∈ GLn(K).

φ(φ(M ,G),G ′) =φ

G−1 ∑n

k=1 Gk1MkG
...

G−1 ∑n
k=1 Gkn MkG

 ,G ′

=

G ′−1 ∑n
l=1 G ′

l1(G−1 ∑n
k=1 Gkl MkG)G ′

...
G ′−1 ∑n

l=1 G ′
l n(G−1 ∑n

k=1 Gkl MkG)G ′

=

GG ′−1 ∑n
k=1(GG ′)k1MkGG ′

...
GG ′−1 ∑n

k=1(GG ′)kn MkGG ′

=φ(M ,GG ′)

12 3. Algebras

By Lemma 3.9 two vectors of matrices are in the same orbit if and only if the algebras
they induce are isomorphic. This implies that the following map is injective.

alg : Matn(K)n/GLn(K) → Algn(K), (GLn(K))(M) 7→ [alg(M)]

Since the map [alg] is surjective, this map is also surjective. So the map alg is a bijection
between the orbits of Matn(K)n under φ and the set of non-isomorphic algebras Algn(K).
This means that there are as many elements in Algn(K) as there are orbits of Matn(K) under
φ. These orbits can be counted using Burnside’s lemma, which is exactly what Verhulst [9]
did in 2020 to obtain the following result.

Theorem 3.11. The number of non-isomorphic n-dimensional algebras over K = Fq is

|Algn(K)| = 1

|GLn(K)|
∑

M∈GLn (K)
qdimEig1(M T ⊗M T ⊗M−1).

4
Data and Analysis

Using Theorem 3.11 we can calculate the number of n-dimensional algebras over a field
with q elements. In this chapter we discuss my implementation in python (see Appendix
A) of the formula in Theorem 3.11 and the results that it provided.

4.1. Some Notes on the Code
The main function is Al g ebr aCount (n, q). It starts by initiating the finite field K with
q elements using the g al oi s package [3]. This package is an implementation of the finite
fields into python and is designed to be compatible with numpy. Next the function GL(n, q)
is called to make a list of all invertible n ×n matrices over K . This function checks a list of
all n ×n matrices over the field K for invertible matrices and returns them in a list. The
function Mat(n, q) generates this list of all matrices. This is done using a bijection from the
numbers 0 through qn2 −1 written in base q .

Example 4.1. Suppose for example that we want to generate a list of all 2×2 matrices over
F3. List these matrices by varying one component at a time. The start of such a list would
look like [

0 0
0 0

]
,

[
1 0
0 0

]
,

[
2 0
0 0

]
,

[
0 1
0 0

]
,

[
1 1
0 0

]
,

[
2 1
0 0

]
,

[
0 2
0 0

]
,

[
1 2
0 0

]
, · · ·

This way of listing is very reminiscent of listing integers in base 3. If we consider the first
entry of a matrix to be the number of units, the second to be the number of threes, the third
to be the number of nines and the fourth to be the number of 27’s. Then the list of matrices
corresponds to the list of base 3 numbers

0000,0001,0002,0010,0011,0012,0020,0021, · · ·

which corresponds with the list of base 10 numbers

0,1,2,3,4,5,6,7, · · ·

Since there are 322
different 2 by 2 matrices over F3, we can easily use this to list all matrices.

The functions base(x, q) and Li st toM atr i x(l st ,n) each implement one of the steps in
the conversion from the numbers 0 through qn2 −1 to the list of all matrices. Note that the

13

14 4. Data and Analysis

g al oi s package has an integer representation for elements of a finite field Fq even if q is
not prime. So even though 8 is not actually an element of the field F9, it still represents one
of the elements of F9, and when viewed as an element of F9 it will act like the element it is
supposed to represent.

Having generated a list GLnK of all n ×n invertible matrices over K , Al g ebr aCount
iterates through GLnK to calculate the contribution of each matrix and add them as in
Theorem 3.11. First, it calculates the Kronecker product of the matrix’s transpose with itself
and with its inverse. This results in the n3 ×n3 matrix T T I .

The variable di mEi g 1 represents the dimension of the eigenspace corresponding to
the eigenvalue 1 of T T I . By definition this eigenspace is given by Null(T T I −1 ·1n3). Seeing
as di mEi g 1 is the dimension of the nullspace of T T I − 1n3 , we can use the Rank-Nullity
Theorem 2.20 to calculate it. So

di mEi g 1 = n3 −Rank(T T I − 1n3).

Note that numpy by default makes di mEi g 1 a 32-bit integer. This is not a problem for
di mEi g 1 as it stays relatively small. However, this also makes qdi mEi g 1 a 32-bit integer,
causing overflow errors to occur. To circumvent this, di mEi g 1 is converted to a standard
python integer first to allow for arbitrary size.

Lastly, the contribution qdi mEi g 1 of each matrix is added to the total and the total di-
vided by the length of GLnK is returned.

4.2. Results
In Table 4.1 we see the output of Al g ebr aCount (n, q) for certain n and q .

Table 4.1: Output of Al g ebr aCount (n, q)

q \ n 1 2 3 4
2 2 52 801 168 915 017 470 109 856
3 2 162 678 999 898
4 2 402 99 286 246 390
5 2 877 5 007 115 325 062
7 2 2 975 1 945 066 184 799 352
8 2 4 894
9 2 7 656

11 2 16 507

For n = 1 and any prime power q , there are 2 non-isomorphic algebras. The only non-
isomorphic 1-dimensional algebras over Fq are F1

q with field multiplication and F1
q with all

products equal to 0. This result can also be independently derived.

Theorem 4.2. For any prime power q all 1-dimensional algebras over Fq are either isomor-
phic to Fq with field multiplication or to Fq with every vector product equal to 0.

Proof. Without loss of generality the vector space is F1
q . Let F1

q be an algebra over Fq with

the product given by 1∗1 = α ∈ F1
q . Suppose α = 0. Then for any u, v ∈ F1

q we have u ∗ v =
uv(1∗1) = uv0 = 0. So F1

q is the algebra where every product is equal to 0. Now suppose

4.2. Results 15

α ̸= 0. Then α−1 ∗α−1 =α−1α−1(1∗1) =α−1α−1α=α−1. Let F′q be the algebra over Fq with

field multiplication and let f : F′q → F1
q be the linear bijection given by f (1) = α−1. Then

we have f (1∗1) = f (1) = α−1 = α−1 ∗α−1 = f (1)∗ f (1). So f is an isomorphism and F1
q is

isomorphic to the algebra with field multiplication.

For n = 2 and any q ≤ 41, the results have been verified with the polynomial formulas
by Petersson and Scherer [5]. My expectation is that the code will keep matching the poly-
nomial formulas for q > 41, but due to limits in computation time I have not yet been able
to verify this.

For n = 3 and n = 4, the results in Table 4.1 are, to my knowledge, new. Currently the
limiting factor to getting more results is computation time. My laptop took about 3 days
to calculate the number for n = 3, q = 7 and about 4 minutes to calculate the number for
n = 4, q = 2. I have tried calculating the number for n = 4, q = 3, but killed the program
after about 5 days. Similarly, for n = 5, q = 2 I killed the program after about 5 days.

Figure 4.1: The number of non-isomorphic 2-dimensional algebras over a field with q elements changes
approximately like q4.

Figure 4.1 was made using the results for n = 2, but might as well have been made using
the polynomial formulas by Petersson and Scherer [5]. Seeing as these polynomials in q
all have degree 4, it might seem obvious that q4 is a close approximation of the number of
non-isomorphic 2-dimensional algebras. However, when seeing this with Theorem 3.11 in
mind one might notice a possible generalisation.

Consider the contribution of the identity matrix to the number of non-isomorphic al-
gebras. The transpose and the inverse of the identity matrix are equal to the identity matrix
and the Kronecker product of the identity matrix with itself is a bigger identity matrix. So
for n = 2 we have

1T
2 ⊗ 1T

2 ⊗ 1−1
2 = 12 ⊗ 12 ⊗ 12 = 18.

Note that all eigenvalues of the identity matrix are equal to 1, since 18v = 1v for all v . So the
dimension of the corresponding eigenspace is equal to the size of the identity matrix. So in
the case that n = 2 this dimension is 8 and the identity matrix contributes q8 to the sum.
By Theorem 2.22 we have that the number of invertible 2×2 matrices over a field K with q
elements is

|GL2(K)| = (q2 −1)(q2 −q) = q4 −q3 −q2 +q.

16 4. Data and Analysis

Putting these together we find that the total contribution of the identity matrix is

q8

q4 −q3 −q2 +q
,

which approaches q4 as q goes to infinity. This suggests that the identity matrix is the
most important matrix, which makes sense considering it is the only matrix all of whose
eigenvalues are equal to 1. Using this strategy we find the following lower bound.

Theorem 4.3. The number of non-isomorphic n-dimensional algebras over K = Fq is bound

from below by qn3−n2
.

Proof. Considering just the identity matrix in Theorem 3.11 we get

|Algn(K)| ≥ 1

|GLn(K)|qdimEig1(1T
n ⊗1T

n ⊗1−1
n)

= 1

|GLn(K)|qdimEig1(1n3)

= 1

|GLn(K)|qn3
.

Rounding all factors up to qn in Theorem 2.22 we get

|GLn(K)| = (qn −1)(qn −q)(qn −q2) · · · (qn −qn−1)

≤ (qn)(qn)(qn) · · · (qn) (n copies)

= (qn)n = qn2
.

Putting these together we find |Algn(K)| ≥ qn3−n2
.

This aggressive bound looks clean, but is not very tight. Omitting the last step of bound-
ing |GLn(K)| and thus calculating the contribution of the identity matrix, makes for a better
bound.

Figure 4.2: For both bounds on the number of non-isomorphic 2-dimensional algebras over a field, the pro-
portion they account for is plotted against the size of the field.

4.3. Conclusion and Outlook 17

In Figure 4.2 we see that the aggressive lower bound is not very tight for small fields. The
first time it accounts for 90% of the number of non-isomorphic 2-dimensional algebras is
for q = 13. The bound does seem to get better for bigger fields, but the absolute difference
with the actual number of non-isomorphic algebras still increases, since the number of
non-isomorphic algebras increases greatly.

With slightly more computations we can calculate the contribution of the identity ma-
trix and have a bound which accounts for 99% of the total number of non-isomorphic 2-
dimensional algebras for q = 13. The importance of the identity matrix becomes even more
apparent in Figure 4.3. Even for the smallest fields, the contribution of the identity matrix
accounts for 99% of the number of non-isomorphic 3-dimensional algebras.

Figure 4.3: For both bounds on the number of non-isomorphic 3-dimensional algebras over a field, the pro-
portion they account for is plotted against the size of the field.

4.3. Conclusion and Outlook
The results in Table 4.1 seem to have reached the limits of Verhulst’s formula (Theorem
3.11). With more computation time or a more powerful computer it might be possible to
squeeze out results for n = 3, q = 8 and n = 4, q = 3 and perhaps n = 5, q = 2. However,
a more efficient formula is necessary to truly get general results. In his paper Verhulst [9]
uses the Jordan normal form to work out the case n = 2, q = 2. I suspect this approach
could lead to a better formula for n = 3 and general q . In the mean time, one can use the
contribution of the identity matrix, as it has proven to be a fairly good approximation.

A
Code

from math import *
import time
import numpy as np
import g a l o i s #implements the f i n i t e f i e l d s

the f i n a l formula [N.D. Verhulst , 2020]
def AlgebraCount (n , q) :

K = g a l o i s .GF(q) #the f i e l d to work over
GLnK = GL(n , q) # l i s t of i n v e r t i b l e matrices
t o t a l = 0
for M in GLnK:

M = M. view (K)
TTI = np . kron (np . kron (np . transpose (M) , np . transpose (M)) , np . l i n a l g . inv (M))

#transpose kronecker transpose kronecker inverse
dimEig1 = n**3 − np . l i n a l g . matrix_rank (TTI − np . i d e n t i t y (n* *3 , int) . view (K))

#dimension of the eigenspace with eigenvalue 1
dimEig1 = int (dimEig1) # int to prevent overflow e r r o r s
t o t a l += q** dimEig1 #sum the contribution of each matrix

return t o t a l / len (GLnK)

g i v e s a l i s t of a l l nxn matrices over Fq
def Mat(n , q) :

O = np . zeros ((n , n) , int) #matrix of zeroes
MatnK = np . array ([O] * (q * * (n * * 2))) # i n i t i a t i n g the l i s t of matrices
for m in range (q * * (n * * 2)) :

basemq = base (m, q) #m base q represented by a l i s t
MatnK[m] = ListToMatrix (basemq , n) #basemq becomes matrix

return MatnK

g i v e s a l i s t of a l l i n v e r t i b l e nxn matrices over Fq
def GL(n , q) :

18

19

K = g a l o i s .GF(q) #the f i e l d
O = np . zeros ((n , n) , int) #matrix of zeroes
length = NumberGL(n , q) #the number of i n v e r t i b l e matrices
GLnK = np . array ([O] * length) # i n i t i a t e l i s t
i = 0
Matnq = Mat(n , q)
for M in Matnq :

M = M. view (K)
i f np . l i n a l g . matrix_rank (M) == n : #matrix i s i n v e r t i b l e

GLnK[i] = M # i f f of f u l l rank
i += 1

return GLnK

| GL_n(K) | function [R . P . Stanley , 2012]
def NumberGL(n , q) :

res = 1
for i in range (n) :

res *= q**n − q** i
return res

writes x in base q in a l i s t s t a r t i n g with units
e . g . base (24 ,3) = [0 , 2 , 2] , because 24 = 0 * (3 * * 0) + 2 * (3 * * 1) + 2 * (3 * * 2)
and base (195 ,16) = [3 , 1 2] , because 195 = 3*(16**0) + 12*(16**1)
def base (x , q) :

L = 0
while q * * (L+1) <= x : #L i s log_q (x) rounded down

L += 1
res = np . zeros (L+1 , int)
for i in range (L + 1) :

res [− i −1] = int (x/q * * (L− i))
x −= res [− i −1]*q * * (L− i)

return res

takes a l i s t and makes i t an nxn square matrix with zeroes to f i l l
def ListToMatrix (l s t , n) :

M = np . zeros ((n , n) , int)
for i in range (len (l s t)) :

j = base (i , n)
i f len (j) == 1 :

j = np . append(j , 0)
j = tuple ([j [1] , j [0]])

M[j] = l s t [i]
return M

Bibliography

[1] I.T. Adamson. Introduction to Field Theory. Oliver & Boyd, 1964.

[2] S.C. Althoen and K.D. Hansen. Two-dimensional real algebras with zero divisors. Acta
Scientiarum Mathematicarum, 56, 01 1992.

[3] M. Hostetter. Galois: A performant NumPy extension for Galois fields, 11 2020. URL
https://github.com/mhostetter/galois.

[4] H.P. Petersson. The classification of two-dimensional nonassociative algebras. Results
in Mathematics, 37, 03 2000. doi: 10.1007/BF03322518.

[5] H.P. Petersson and M. Scherer. The number of nonisomorphic two-dimensional alge-
bras over a finite field. Results in Mathematics, 45:137–152, 2004. ISSN 1420-9012. doi:
10.1007/BF03323003.

[6] S. Roman. Advanced Linear Algebra. Graduate Texts in Mathematics. Springer, 3 edi-
tion, 2013. ISBN 978-1-4757-2178-2. doi: https://doi.org/10.1007/978-1-4757-2178-2.

[7] J.J. Rotman. An Introduction to the Theory of Groups. Graduate Texts in Mathemat-
ics. Springer, 4 edition, 2012. ISBN 978-1-4612-4176-8. doi: https://doi.org/10.1007/
978-1-4612-4176-8.

[8] R.P. Stanley. Enumerative Combinatorics, volume 1. Cambridge University Press, 2 edi-
tion, 2012. ISBN 9781139058520.

[9] N.D. Verhulst. Counting finite-dimensional algebras over finite field. Results in Mathe-
matics, 75, 2020. ISSN 1420-9012. doi: 10.1007/s00025-020-01281-6.

20

https://github.com/mhostetter/galois

	Introduction
	Preliminaries
	Groups
	Finite Fields
	Vector Spaces

	Algebras
	Vector of Matrices Representation

	Data and Analysis
	Some Notes on the Code
	Results
	Conclusion and Outlook

	Code
	Bibliography

