Delft University of Technology

Finding the empty-beam-calibration for a SESANS setup in a beam line at PIK

Kraan, Wicher; Akselrod, LA; Zabenkin, V. N.; Chetverikov, Yu.O.; Grigoriev, SV; Sumbatyan, A.A.

Publication date

2017

Citation (APA)

Kraan, W., Akselrod, LA., Zabenkin, V. N., Chetverikov, Y. O., Grigoriev, SV., \& Sumbatyan, A. A. (2017). Finding the empty-beam-calibration for a SESANS setup in a beam line at PIK.

Important note

To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy

Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

Finding the empty-beam-calibration for a SESANS setup in a beam line at PIK

W.H. Kraan ${ }^{1}$, L.A. Akselrod ${ }^{2}$, V.N.Zabenkin ${ }^{2}$, Yu.O. Chetverikov ${ }^{2}$, S.V. Grigoriev ${ }^{2}$ and A.A. Sumbatyan ${ }^{2}$

${ }^{1}$ retired from: Delft University of Technology, 2629 JB Delft, The Netherlands
${ }^{2}$ Petersburg Nuclear Physics Institute, Gatchina, Leningrad Oblast, 188300, Russia
SESANS is a neutron Spin-Echo (SE) experiment in devices, effectively operating as regions of length L with magnetic field B, shaped as parallellograms. ${ }^{1}$ The precession phase "collected" along a trajectory at angle ψ (insert Fig.1) through such a device is

$$
\begin{equation*}
\phi \approx \lambda(c B L+\Gamma \psi) \tag{1}
\end{equation*}
$$

($c=4 \pi \mu_{n} m_{n} / h^{2}=4.63210^{14} T^{1} \mathrm{~m}^{-2} ; \mu_{n}, m_{n}, h=$ neutron mass, magn. moment and Planck's constant). $\lambda \Gamma \psi$ is the angle labeling term, Γ is called "labeling coefficient".

Suppose a neutron is scattered by $\psi_{2}-\psi_{1}=\theta_{\mathrm{S}}$ in horizontal direction perpendicular to the beam axis. Then, using Eq.(1) we can calculate the offset $\phi_{1}-\phi_{2}=\lambda \Gamma \theta_{\mathrm{s}}$ due to this process. It has wavevector transfer $\mathrm{Q}=(4 \pi / \lambda) \sin \left(\theta_{\mathrm{S}} / 2\right) \approx 2 \pi \theta_{\mathrm{s}} / \lambda$. If we divide the offset by Q , we get a quantity of dimension length:

$$
\begin{equation*}
\delta=\lambda \Gamma \theta_{S} / \mathrm{Q}=\Gamma \lambda^{2} / 2 \pi, \tag{2}
\end{equation*}
$$

called "spin-echo length". δ depends on the setup parameters $\theta_{0, L}, B$ and on λ.
The aim of this report is to find the coefficient Γ and the empty beam polarisation $\mathbf{P}_{\mathbf{0}}$ for a setup, with each SE-arm made up of 2 adiabatic/RF/gradient flippers in special DC magnets existing at PNPI. To get $\Gamma \neq 0$, their poles are shaped as parallellograms with apex angle $\theta_{0}=33.5^{\circ}$.

We made software to calculate the (DC/RF/gradient)fields experienced through the setup (4 flippers) along trajectories in a divergent-ribbon-beam: the beam defined by 2 vertical slits (2 cm high) at distance equal to the total length (4.4 m) of the setup.

The section of a trajectory through each flipper is divided in N steps with fields supposed homogeneous. We simulate Larmor precession as the product of 4 progressing products $P_{i, j}^{k}(i, j=x, y, z)$ of rotation matrices (with number of factors increasing from $1 \ldots . . N$) operating on the classical "polarisation vector" - in a coordinate system rotating around the DC field direction at the frequency ω_{RF} of the RF coils in the flippers (time dependence of the RF fields "transformed away" by subtracting a homogeneous field $B^{*}=\omega_{\mathrm{RF}} / \gamma ; \gamma / 2 \pi=29126 \mathrm{kHz} / \mathrm{T}$). As input we take the polarisation vectors (100 010001) from an ideal " $\pi / 2$-flipper" in front. The final matrix product are the polarisation components passing through an ideal $\pi / 2$-flipper behind the setup.

To study SE, we must follow the collected precession phase. After each step k we calculate this phase by: $\phi_{k}=\tan ^{-1}\left(P_{y x}^{k} / P_{y y}^{k}\right)$. The result comes in the interval $[-\pi, \pi]$. If we choose the number N so high that $\phi_{k}<\pi$ for all k, we can recover the multiples of 2π. Thus, we can find the final precession phase Φ for all trajectories in our beam through the full setup without sample, for given λ. It appears that the SE is not sharp - there is a spread in Φ (for example, for $\lambda=3 \AA \dot{\AA}$ up to 4 rad).

To get the polarisation \mathbf{P}_{0}, we must insert a "phasecoil" in the setup, to make offset from SE by adding precession phase $\Delta \varphi$ (equal for all trajectories) in SE-arm 2. $\mathbf{P}_{\mathbf{0}}$ is the amplitude of the signal

$$
\left.P_{y y}=<\cos (\Phi+\Delta \varphi)\right\rangle_{\text {beam. }} .
$$

We calculated these signals for $\lambda=2 \ldots 10 \AA$, varying $\Delta \varphi$ in 13 steps from $-\pi$ to π. Their amplitudes are identical with $\mathbf{P}_{\mathbf{0}}(\lambda)$. Using Eq.(2) we convert λ to spin-echo length δ. Then we arrive at the empty-beam-calibration $\mathbf{P}_{\mathbf{0}}(\delta)$ of the setup, supposed to be installed in a beam line of PIK. We also find: the signals for divergent-ribbon-beams until 2.5 mrad away from the beam axis are practically in-phase.

We conclude: a SESANS setup based on the existing DC magnets will have an acceptable $\mathbf{P}_{\mathbf{0}}(\delta)$ up to $\delta=20 \mu \mathrm{~m}$, with a beam of divergence (FWHM) up to 5 mrad .

Fig.1: Empty-beam polarisation $\mathbf{P}_{\mathbf{0}}$ in a SESANS setup based on DC magnets existing at PNPI, with poles shaped as 33.5^{0}-parallellograms, flippers in each SE-arm 1.4 m apart.

1. M.Th.Rekveldt, J.Plomp, W.G.Bouwman, W.H.Kraan, S.V.Grigoriev, and M.Blaauw, Rev. Sci.Instr 76 (2005) 033901
