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A B S T R A C T   

Unexpected disruptions commonly occur in the railway network, causing delays, and extra cost 
for operators and inconvenience for passengers by missing their connection and facing over-
crowded trains. This paper presents a passenger-centric approach for timetable rescheduling in 
case of disruption. We study a railway system in which passengers are free to choose their itin-
erary and compete over limited train capacity. We explicitly model the passengers’ decisions 
using a choice model. We propose a multi-objective algorithmic approach to solve the problem. 
Service punctuality, operating cost, and passengers’ inconvenience are selected as objectives. 
Computational experiments are performed on the Swiss and Dutch railway networks. The results 
demonstrate the performance of the algorithm in finding high-quality solutions in a computa-
tionally efficient manner.   

1. Introduction 

Dealing with disruption is an inevitable part of the railway’s daily operations. Events such as open-track blockade, train station 
shutdown, and adverse weather conditions interrupt rail service. iteAs reported in Riden de Treinen (2021), the Dutch railway faced 
nine disruptions per day between 2011 and 2021. These disruptions last on average 2.5 h. As a result, passengers experience delays, 
miss the connecting trains, and face overcrowded trains. 

During a disruption, the initial timetable becomes infeasible. As a result, the operator plans a disposition timetable to restore the 
train service while minimizing passengers’ inconvenience. As noted by Batley et al. (2011), during the disruption, passengers rarely 
change their travel mode. Instead, they adapt their itinerary and departure time, see, Benezech and Coulombel (2013) and Parbo et al. 
(2016). There are two common approaches to incorporate passengers’ behavior into designing the disposition timetable. Passengers’ 
behavior is either implicitly or explicitly considered in the planning process. 

In the first approach, passengers’ behavior is implicitly considered in the disposition timetable aimed to minimize delays and 
cancelations of trains, see, for example, Narayanaswami and Rangaraj (2013), Louwerse and Huisman (2014), Veelenturf et al. (2016a) 
and, Ghaemi et al. (2018). However, minimizing the train delays creates conflicts with passengers’ connections, ultimately delaying 
their journey. 
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In the second approach, the passengers’ itinerary is explicitly considered. The goal is to reschedule the trains in a way that the total 
passengers’ delay is minimized. Here, the passengers’ itineraries are either assumed to be static or dynamic. In the static case, the 
passenger itinerary is the one that is realized according to the initial timetable, see, Zhu and Goverde (2019). In contrast, in the 
dynamic case, it is assumed that passengers adapt their itinerary to the changes in the timetable. The passengers’ inconvenience is 
expressed as a function of delay, waiting time, in-vehicle time, etc. The disposition timetable aims at minimizing the overall incon-
venience of passengers, see Binder et al. (2017b), Zhu and Goverde (2020b) and Zhan et al. (2021). In the above-mentioned ap-
proaches, a system optimum solution (minimizing the total inconvenience for all passengers) is provided for the disposition timetable. 
In practice, a system optimum solution can only be applied to the railway systems using a seat reservation mechanism. However, it has 
practical limitations for those systems in which passengers are free to choose their itineraries. Further, estimating passengers’ 
inconvenience becomes more complicated if the number of boarding passengers exceeds the available capacity. Therefore, the 
disposition timetable needs to consider passengers’ routes and estimate who can board the train and who cannot. 

For railway service, passengers assignment models are well-studied problems to predict travelers’ behavior, see, Binder et al. 
(2017a) and Zhu and Goverde (2020a). These models provide insight about the train occupancy and enable the decision-maker to 
comprehend the service quality perceived by travelers. At the same time, any change in the disposition timetable influences travelers 
behavior which complicates the integration of passenger assignment model into designing disposition timetables. This paper presents 
an algorithmic framework to design the disposition timetable when passengers could freely choose their itinerary, and the train ca-
pacity is limited. We consider passengers’ inconvenience, operating cost, and deviation from the initial timetable as rescheduling 
objectives. The disposition timetable is determined by retiming, reordering, canceling, rerouting, and short-turning the initially 
planned timetable or establishing the emergency trains and buses. We apply our algorithm to the Swiss and Dutch railway networks. 
The results show that our proposed approach can find high-quality solutions in a computationally efficient manner. 

The remainder of this paper is as follows. Section 2 reviews recent contributions to train rescheduling problems. Description of the 
problem is presented in Section 3. The overview of our resolution approach is described in Section 4. The details of the algorithm is 
presented in Sections 5–7. In Section 8, we report the computational experiments on our selected case studies. Finally, Section 9 
concludes the paper and provides directions for future research. 

2. Related literature 

Dealing with service interruption is either studied as disturbance or disruption management. Generally, in disruption management, 
the incidents block railway tracks. The initial timetable becomes infeasible, as a result, a disposition timetable is designed to recover 
the train service. In this section, we review the relevant research dealing with disruption management. Interested readers are referred 
to Cacchiani et al. (2014) for a comprehensive review of railway recovery algorithms. 

Disposition timetable is determined by modifying the plan of the initial scheduled trains. The commonly used decisions are 
retiming, reordering, canceling, flexible stop, short-turning and, adding trains. From the operator’s perspective, it is preferred to 
maintain service punctuality while recovering from disruption. This way, the operator can control the negative impact of disruptions. 
The service punctuality is measured by indicators such as minimizing the average delay, minimizing the maximum delay, minimizing 
train cancellation, or their combinations. At microscopic level, this problem has been studied by D’Ariano et al. (2007), Corman et al. 
(2011), Corman et al. (2012), Törnquist and Persson (2007) Meng and Zhou (2014) and Pellegrini et al. (2014). Other studies, tackle 
the problem at macroscopic level, see, Narayanaswami and Rangaraj (2013), Louwerse and Huisman (2014), Veelenturf et al. (2016a), 
Zhan et al. (2015), Zhan et al. (2016) and, Ghaemi et al. (2018). Algorithmic resolution methods have been presented in Brucker et al. 
(2002), Albrecht et al. (2013), Zhu and Goverde (2021) and, Corman et al. (2014). 

The disposition timetable designed from the operator’s perspective neglects passengers’ traveling route. Therefore, the new 
timetable may break passengers’ transfer connections and ultimately delay passengers’ journeys. To overcome this challenge, the delay 
management problem, introduced by Schöbel (2001), considers passengers itinerary when modifying the trains schedule. The goal is to 
minimize the total delay of passengers. This is achieved by synchronizing trains schedule at stations. In other words, keeping the 
departing train to allow boarding passengers on delayed arriving one, see Schöbel (2009), Schachtebeck and Schöbel (2010), Dollevoet 
et al. (2012), Corman et al. (2016), Espinosa-Aranda and García-Ródenas (2013), Kanai et al. (2011) and Corman (2020). 

Disruption causes variation in travel demand and passengers’ route choice compared to the operation of a regular day. Rather than 
reducing the passengers’ delay, several studies quantify overall passengers’ experience for designing the disposition timetable. Zhu and 
Goverde (2019) proposed a two-step approach where first, they estimate the passengers’ route choice on a regular day using a 
schedule-based passenger assignment model. Then, the estimated routes are used in the rescheduling model to minimize passengers 
inconvenience (see also Cadarso et al. (2013) and Sato et al. (2013)). The model is extended in Binder et al. (2017b), Zhu and Goverde 
(2020b) and Zhan et al. (2021) in which a system optimum solution is provided to explicitly incorporate passengers’ routes. The system 
optimum solution cannot be applied to the railway systems in which passengers freely choose their travel routes. This is critical for 
designing the disposition timetable for densely populated areas where the train’s capacity plays an important role. 

The seminal works of Niu and Zhou (2013) and Tian and Niu (2020) studied a saturated railway corridor in which passengers 
demand is time-dependent. The goal is to schedule trains to satisfy the passengers demand. A closely related problem is also studied in 
Chen et al. (2019) and Almodóvar and García-Ródenas (2013). For a given disposition timetable, the rolling stock scheduling problem 
aims to determine the optimal composition of rolling stocks. Kroon et al. (2015) present a mathematical model for rolling stock 
scheduling and an algorithm for passengers assignments. Due to the difficulty resulted from combining passengers’ assignment with 
rolling stock scheduling model, they propose an iterative approach to minimize the system-related cost (e.g., penalty to modify rolling 
stock composition) and service-related cost (e.g., the effect of train capacity on the delay of passengers). Veelenturf (2014) extend the 
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passenger assignment model proposed by Kroon et al. (2015) to reschedule rolling stock by changing trains stopping pattern. Finally, 
van der Hurk et al. (2018) present an algorithm to minimize the passenger inconvenience by simultaneously deciding about the 
passengers advised routes (i.e. which routes should be suggested to a passenger) and rolling stock schedule. 

In summary, existing literature on the passenger-centric approach focuses on providing a system optimum solution that has limited 
applicability when the passengers are free to choose their itinerary. To overcome this challenge, in this paper, we propose an algo-
rithmic framework to design a disposition timetable taking into account the train capacity. We assume that passengers choose their 
route freely and look to find a user equilibrium solution. We present a multi-objective optimization approach considering passengers’ 
inconvenience, operator’s cost, and service punctuality. We introduce a tailored algorithmic approach to explore non-dominated 
solutions for all objectives in a computationally efficient manner. 

3. Problem description 

We consider a railway network with several train lines in which one or multiple tracks become unavailable, resulting from the 
disruption. We assume that the duration of disruption is known, and we are interested in designing a disposition timetable over the 
recovery period. During the disruption period, the system performance (e.g., track capacity) is reduced. Once we introduce the 
disposition timetable, the system performance will improve. After the end of disruption, there is a transition to the normal operating 
condition. We assume that the disruption period happens within the recovery period. If the train company knows the disruption 
starting time, the recovery period can begin before the disruption. Otherwise, it starts at the same time as the disruption happens and 
ends after it is over. This way, the disposition timetable includes the transition to normal operating conditions. All individual trains are 
scheduled to run along the train line, but trains may alter their course during the recovery period. 

In this research, the travel demand between each origin–destination pairs is known. Passengers are characterized by the origin-
–destination stations and departure time. The passengers know the schedule of trains in the disposition timetable and freely choose 
their itinerary. We suppose that passengers are utility maximizer agents and choose an itinerary that provides them the highest 
satisfaction level. However, they have no information about the crowdedness of the trains. In Section 6, we describe our approach to 
model passengers behavior. 

We define a block train as a combination of rolling stocks with known capacity. The capacity of a block train is measured as the 
maximum number of onboard passengers and is fixed during the planning horizon. Coupling and decoupling of trains are not 
considered. The disposition timetable is designed by either modifying the schedule of the block trains operating in the original 
timetable (i.e., retiming, canceling, rerouting, turn-around) or adding additional block trains and buses. Moreover, we assume that the 
composition of the additional block trains (in terms of capacity) and their associated shunting yards are known to the planner. 

We study the problem at the macroscopic level. Meanwhile, we consider some headway-related constraints to increase the chance 
of finding a feasible solution at the microscopic level. The performance of our proposed approach to handle disruption is investigated 
from the interaction between the disposition timetable, train capacity, and passengers behavior. We quantify these interactions 
through three objectives: (1) minimizing the operating cost, (2) minimizing the passengers inconvenience, and (3) minimizing the 
deviation from the original timetable. These three objectives also show the preferences of the key actors of the railway service, i.e., the 
train operating company, passengers, and infrastructure manager. 

3.1. Mathematical model 

For a given disruption and a recovery period, let G ∈ G be the set of all possible disposition timetables. We define ω(G) as a function 
describing how the passengers choose their itinerary if timetable G is selected. The output of this function shows the passenger flow 
which is noted by I . The disposition timetable can be presented as: 

min (zD , zO , zP ) (1)  

G ∈ G (2)  

I = ω(G) (3)  

The model (1)–(3) has three objectives: (1) zD measures the deviation from the original timetable (i.e., service punctuality), (2) zO 

evaluates the operating cost of the disposition timetable, and (3) zP measures the passengers inconvenience due to disruption. In 
Section 7.1, we describe the procedure to calculate the value of these objectives. 

The optimization model (1)–(3) is hard to solve for three main reasons. First, there is a temporal relation between the decision of 
passengers and the rescheduled timetable. The proposed timetable constrains the decisions of passengers and vice versa. Second, we 
assume that passengers are free to choose their itinerary and cannot be controlled by the operator. Any model that seeks to optimize 
both will result in a system optimum solution, whereas our interest is to find a user equilibrium solution. Third, due to the limited train 
capacity, it is not easy to decide who can board the train and who cannot. As a result, in this paper, we focus on developing an 
algorithmic framework to capture the dynamism mentioned above. We aim at providing a flexible model to handle various decisions to 
modify the timetable. In the next section, we describe the general framework of our proposed algorithm. 
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4. Algorithmic overview 

As mentioned in Section 3.1, model (1)–(3) is a multi-objective optimization problem. To overcome the challenge of this capac-
itated mathematical model, we present an algorithmic framework. The main idea is to combine a heuristic (based on the adaptive large 
neighborhood search) with a passenger assignment model. The general steps of our approach are presented in Fig. 1 and detailed in 
Algorithm 1. 

The algorithm uses the original timetable (noted by G0) as an input and provides a set of non-dominated timetables showing the 
trade-off between the three stated objectives (note by A ). We use the principles of simulated annealing as stopping criteria. Let Tstart

i 

and Tend
i be the starting and ending temperature for each objective, i ∈ {zP ,zO ,zD }. The iterative process continues till the temperature 

of all the objectives reach its ending value. 
Inside the loop, the algorithm follows an iterative approach. Step 3 applies different operators to design a new feasible timetable 

(Section 5). The feasible timetable is then used in a passenger assignment model in step 4 to estimate passengers flow (Section 6). The 
timetable’s performance is evaluated in step 5 (Section 7.1) and archived in step 6. In steps 7 to 9, the algorithm periodically updates 
the temperature and weights of the operators. In Section 7, we will describe the details of steps 6 to 9. 

Algorithm 1. General steps of the hyper-heuristic   

4.1. Timetable representation 

We present the railway infrastructure with a set of stations, s ∈ S, and a set of tracks, Q. A track (s, s′ ) ∈ Q is defined as a railway 
connecting station s to s′ directly without passing through any other station. We define two stations s and s′ to be neighboring if both 
(s, s′ ) and (s′ , s) belongs to Q. Tracks can be used by trains in both directions. In any case, a certain headway has to be respected if two 

Fig. 1. Algorithm overview.  
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trains are scheduled on the same track. The running time and travel distance between two stations are symmetric and shown by t(s,s′ ), 
in minutes and d(s, s′ ), in kilometers, respectively. Trains cannot switch tracks between stations, and overtaking occurs only within 
stations. Finally, we define a train line ℓ ∈ L as a succession of neighboring stations visited in a given order. 

We discretize the recovery period into n+1 time intervals (τ), typically one minute, and present it by the set H := {0,τ,2τ,…,nτ}. 
The disposition timetable can then be presented on a time–space graph with V = S × H nodes. Let k ∈ K = {K1 ∪ K2} be a set of 
available block trains. Set K1 shows the trains operating according to the undisrupted timetable. Set K2 is the block train parked in the 
shunting yards. We call the trains in K2 emergency trains. The capacity of each block train is noted by qk. We present the schedule of 
train k ∈ K as a path in the time–space graph and denote it by rk. Set R shows the schedule of all trains in the network. Disposition 
timetable is presented by G = (V,R). For a given timetable, the passenger assignment model, ω(G), determines the passengers flow 
shown by I . The interaction between the disposition timetable and passengers decision is shown by X = (G,I ). 

5. Timetable adjustment 

This section describes the procedure to modify the exiting timetable (G) to create a disposition timetable (G′ ). Inspired by the 
Adaptive Large Neighborhood Search (ALNS) first introduced by Ropke and Pisinger (2006), we define several operators to modify the 
timetable. Algorithm 2 presents the general steps of our proposed approach. We define two sets of operators (Π and ΠInf ) that can be 
applied on G. If timetable G is feasible (Section 5.1), operators in the set Π are utilized to find a new one. Otherwise, we use several 
operators (noted by set ΠInf ) to restore the feasibility. The operators are selected probabilistically using the roulette wheel mechanism 
described in Section (7.4). 

5.1. Timetable feasibility 

We use macroscopic operational constraints to check whether a timetable is feasible or not. A timetable is feasible if it does not 
haveheadway-relatedand disruption-related infeasibility. The detail of each case is described as follows: 

A headway-related infeasibility occurs when two trains do not respect each other’s minimum headway while they are scheduled to 
run on the same track. If both trains are running in the same direction, a minimal headway time h needs to be respected. If two trains 
are scheduled to run in opposite directions on a given track (s,s′ ), we need to ensure that the track is vacated by the first train before the 
second one can use it. Again, we consider a minimum headway time h needs to be respected between trains. Hence, the difference 
between the two trains departure times from station s and s′ has to be greater than h + t(s, s′ ). 

A disruption-related infeasibility occurs when a train is scheduled on a track that is not available due to disruption. More precisely, in 
case of disruption between station s an s′ , from time t1 to t2, a train movement from station s to s′ (or vice versa) is said to be infeasible if 
its departure time or its journey (between s to s′ ) falls in the time interval between t1 and t2. Note that initially, only disruption-related 
infeasibilities occur since the track is unavailable. Later on, both types of infeasibilities may appear simultaneously and multiple times 
after applying the operators. 

Algorithm 2. Adjusting timetable   

5.2. Operators 

We define an operator as a combination of two building blocks: a neighborhood structure that defines how to modify a timetable to 
generate a neighbor timetable, and a search strategy that modifies the current timetable by selecting one of the neighbors. In the 
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following, we first introduce ten neighborhood structures and then we present the search strategies associated with each of them. 

5.2.1. Neighborhood structures 
The neighborhood structures introduced in this section define the potential modifications to obtain a neighbor timetable. Table 1 

provides a summary of these neighborhood. The detailed description of the neighborhood structure is described below. 
Cancelation (CC, PC). Cancelation neighborhood structures select a train k ∈ K and cancel it, either completely (CC) or partially 

(PC). In partial cancelation, the train is canceled after a station s ∈ Sk, where Sk⊂S is the ordered set of stations visited by train k. 
Delay (CD, PD). Delay neighborhood structures modify a train k ∈ K by delaying it, either completely (CD) or partially (PD). We 

assume that the time by which the train is delayed is a multiple of 5 min and cannot exceed 30 min. We introduce the set of potential 
delay times, HD = {5,10,15,20,25,30}. In the case of a complete delay, train k is kept behind by t ∈ HD minutes on its entire line. For a 
partial delay after station s ∈ Sk, train k is operated on time up to station s and delayed by t ∈ HD minutes after that. 

Advance (CA, PA). Advance neighborhood structures modify a train k ∈ K by scheduling it earlier, either completely (CA) or 
partially (PA). The following additional conditions need to be respected. i) if k is an original train, no departure time can be scheduled 
earlier than in the undisrupted timetable. ii) a train cannot depart from a station earlier than its departure time from the previous 
station, plus the running time between the stations and the minimal dwell time at the station. For train k, we define Hk

A⫅HD as the set of 
possible advance time respecting the above-mentioned constraints. In the case of a complete advance, train k is advanced by t ∈ Hk

A 

minutes on its entire line. For a partial advance after station s ∈ Sk, train k is not modified up to station s, and advanced by t ∈ Hk
A 

minutes after that. 
Rerouting (RR). The rerouting neighborhood structure (RR) modifies a train k ∈ K by rerouting it between neighboring stations s,

s′ ∈ Sk. The set of all possible reroutings between stations s and s′ is generated in advance, and the one with the minimum deviation 
time is selected. Let {sj}

N
j=1,N⩾1, be the sequence of stations visited in this rerouting between stations s and s′ . Train k is then modified 

in the following way: up to station s, there is no modification to its schedule; between s and s′ , the train is rerouted along with stations 
{sj}

N
j=1; after s′ , the train runs on its original line but is delayed because of the rerouting. The departure times at stations after s are 

updated according to running and minimal dwell times. 
Turn-around (TA). The turn-around neighborhood structure (TA) modifies a train k ∈ K by turning it around after station s ∈ Sk. 

Train k is modified in the following way: up to station s, there is no modification to its schedule. Then, a turn-around time of 10 min is 
considered, after which it departs in the opposite direction, back to the station where it started its journey. The departure times at 
stations after s are updated according to running and minimal dwell times. 

Emergency Train (IT). The neighborhood structure inserting an emergency train (IT) schedules a new train along line ℓ ∈ L. An 
additional train can be scheduled every 15 min from the first station of the line. 

Emergency Bus - (IB). The neighborhood structure inserting an emergency bus (IB) schedules a new bus between two neighboring 
stations s,s′ ∈ S. A bus can be scheduled to depart every 5 min. For simplicity, we assume that the bus travel time and cost are doubled 
compared to operating a train between the stations. 

5.2.2. Search strategies 
The choice of parameters (k,s,s′ ,t,ℓ) of the neighborhood structures described above determines which neighboring timetable G′ is 

constructed from timetable G. Four search strategies are used to choose the combination of parameters from this list: local search, 
random selection, disruption mitigation, and feasibility restoration. 

Local search. A local search algorithm is run to select a combination of parameters that minimizes locally one of the objectives 
(zP , zO or zD ). This search strategy is applied in association with the following neighborhood structures: CC, PC, CD, PD, CA, PA, or IT. 
Ideally, the set of all possible neighborhood timetables N(G) should be constructed by applying one of the above neighborhood 
structures with all possible parameter combinations. However, the construction of the complete set N(G) becomes computationally 
demanding. Therefore, we impose an upper bound νmax on the number of evaluated neighbors. For a given neighborhood structure, the 
local search considers successively the feasible parameter combinations introduced in Table 1 and adds the neighbor timetable to N(G). 

Table 1 
List of neighborhood structures.  

Name Label Parameters Description 

Complete Cancel CC k Select train k ∈ K and cancel it completely  
Partial Cancel PC k, s  Select train k ∈ K and cancel it after its arrival in station s ∈ Sk  

Complete Delay CD k, t  Select train k ∈ K and delay it by t ∈ HD minutes on its complete line  
Partial Delay PD k, t, s  Select train k ∈ K and delay it by t ∈ HD minutes after station s ∈ Sk  

Complete Advance CA k, t  Select train k ∈ K and advance it by t ∈ Hk
A minutes on its complete line  

Partial Advance PA k, t, s  Select train k ∈ K and avance it by t ∈ Hk
A minutes after station s ∈ Sk  

Insert Train IT ℓ, t  Insert an emergency train along train line ℓ ∈ L, starting its trip at time t ∈ Hℓ
I  

Reroute RR k, s, s′ Select train k ∈ K and reroute it between neighboring stations s, s′ ∈ Sk  

Turn Around TA k, s  Select train k ∈ K and turn it around at station s ∈ Sk  

Insert Bus IB s, s′, t  Insert a bus between neighboring stations s, s′ ∈ S, starting at time t ∈ HB   

S. Binder et al.                                                                                                                                                                                                         



Transportation Research Part C 132 (2021) 103368

7

Once |N(G)| = νmax, the neighbor timetable G′

∈ N(G) with the lowest value of the corresponding objective function is selected. Here, 
we have to note that the operating cost is expressed as the kilometer cost of running the train. The delay and advance neighborhood 
structure do not affect the timetable’s operational cost. Therefore, the local search minimizing zO is not defined for CD, PD, CA, and PA. 
In Section 7.1 we explain how the values of the objectives are calculated. 

Random selection. This search strategy is applied in association with all neighborhood structures, except RR and TA. The main 
reason behind this strategy is to diversify the search space. For the selected neighborhood structures, the associated parameters are 
randomly selected from their corresponding sets. 

Disruption mitigation. This search strategy is applied exclusively in association with the bus insertion neighborhood structure. Its 
purpose is to schedule a bus that “bridges the gap” between the two sides of the disruption. For a disruption on track (s1, s2), the 
neighborhood structure IB is used with s = s1 and s′ = s2. Two operators are defined: the departure time t is either drawn uniformly 
from HB, or a local search is applied to determine the value t ∈ HB. Again, an upper bound νmax is imposed on the number of evaluated 
timetables in the local search. 

Feasibility restoration. This search strategy is applied in association with all neighborhood structures, except IT and IB. Starting 
from an infeasible timetable G′ (according to the definition of Section 5.1), its purpose is to generate a feasible neighbor timetable G′′. 
The search strategy uses the first infeasibility of the timetable to determine the appropriate combination of parameters for a given 
neighborhood structure. If the infeasibility is headway-related, let k1, k2 ∈ K be the two involved trains and (s1, s2) ∈ Q be the track 
where the minimal headway is not respected. In this case, the parameters of the neighborhood structure are set (when applicable) to 
k = k1, s = s1, s′ = s2 and t = h (the minimal headway time). If the infeasibility is disruption-related, let k1 ∈ K be the train that is 
scheduled on the disrupted track (s1, s2) ∈ Q. In that case, the parameters of the neighborhood structure are set (when applicable) to 
k = k1, s = s1 and s′ = s2. The delay time t is selected (in HD or Hk1

A ) so as to train k1 passes track (s1,s2) just before the start or after the 
end of the disruption. If no such time exists, t is set to the maximal delay or advance time. Note that one application of a feasibility 
restoration operator does not necessarily result in a feasible neighbor timetable. Therefore, a loop is introduced in Algorithm 2 (lines 
5–10) to ensure that the final neighbor timetable G′′ is feasible before its potential inclusion in the archive. 

Summary. Based on the above descriptions, Table 2 summarizes the operators that are used in our framework. Each row corre-
sponds to a neighborhood structure, and each column indicates the search strategy that determines the parameters of the neighbor-
hood structure. A total of 35 operators are thus defined. We classify the operators into two sets: general operators (Π) and infeasibility 
operators (ΠInf ). The former tries to improve the current solution, whereas the latter attempts to make the current solution feasible. The 
set of general operators consist of Π = {ΠC ∪ ΠD ∪ ΠA ∪ ΠI,ΠB} in which ΠC = {CCP ,CCO ,CCD ,CCR ,PCP ,PCO ,PCD ,PCR } is “cancel 
operators”, ΠD = {CDP ,CDD ,CDR , PDP ,PDD ,PDR } is “delay operators”, ΠA = {CAP ,CAD ,CAR , PAP ,PAD , PAR } is “advance opera-
tors”, ΠI = {ITP , ITO , ITD , ITR } is the “train insertion operators” and, ΠB = {IBR , IBDis,P , IBDis,R } is the “bus insertion operators”. The set 
of infeasibility operators is given by ΠInf = {CCInf ,PCInf ,CDInf ,PDInf ,CAInf ,PAInf ,RRInf ,TAInf}. 

Here, each operator aims at resolving the infeasibility issues by applying a specific rule. The selection of these operators depends on 
their performance in resolving the infeasibility. Therefore, for each timetable a unique combination of infeasibility operators are 
applied. We will discuss operators’ selection in more details in Section 7.4. 

6. Passengers assignment 

For each constructed disposition timetable, a new evaluation of the passengers flow is required. When the trains are overcrowded, it 
is challenging to estimate who can board the train. This section presents an efficient stochastic scheduled-based passengers assignment 
algorithm that explicitly considers the capacity of block trains. We extend and adapt the passenger assignment model proposed by 
Binder et al. (2017a). The algorithm’s main idea is to define an exogenous priority list showing the order in which passengers are 
assigned. With this approach, the algorithm can accurately estimate the passengers’ flow in a computationally efficient manner. 

The scheduled-based passenger assignment algorithm takes the following information as input: a train timetable (G), passengers’ 

Table 2 
List of operators.   

Search strategy  
Local search Random Disruption Feasibility  

zP  zO  zD  selection mitigation restoration 

CC CCP  CCO  CCD  CCR  - CCInf  

PC PCP  PCO  PCD  PCR  - PCInf  

CD CDP  - CDD  CDR  - CDInf  

PD PDP  - PDD  PDR  - PDInf  

CA CAP  - CAD  CAR  - CAInf  

PA PAP  - PAD  PAR  - PAInf  

IT ITP  ITO  ITD  ITR  - - 
RR - - - - - RRInf  

TA - - - - - TAInf  

IB - - - IBR  IBDis,P , IBDis,R  -  
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list (P), and a list defining assignment priorities among the passengers (L ). In the following sub-sections, we present the key elements 
of the passengers assignment model. 

6.1. Passenger’s decision 

We assume that demand is known in the form of an origin–destination (OD) matrix per time interval (τ). Let p ∈ P be a set of 
passengers entering the system during the disruption. We show each passenger by a tuple (op,dp,tp). Here, op, dp ∈ S show the origin and 
destination stations and tp ∈ H is the desired departure time of passenger p. 

Let j ∈ Jp be the set of all possible itineraries for passenger p in the disposition timetable. We associate a utility value with each 
itinerary and call it U(j). It is calculated by Zj ⋅ β in which Zj is a vector of attributes and β is a weight vector. The following speci-
fications are considered as the values of attributes: i) the cumulative time spent by the passenger inside trains (Ttravel), ii) the cu-
mulative time spent by the passenger waiting between trains, in case of using multiple trains (Twaiting), iii) the number of times the 
passenger changes trains (m), iv) The difference between the desired departure time (tp) and the actual one, noted by t, from the origin 
(Tearly = max(0, tp − t)), if early and v) the time difference between the actual and the desired departure time from the origin, if late 
(Tlate = max(0, t − tp)). The value of U(j) is determined by Eq. (4). 

U(j) = Ttravel + β1Twaiting +m(β2 +Twaiting)+ β3Tearly + β4Tlate (4)  

We assume that passengers leave the system if they cannot reach their destination within a deadline. The deadline depends on the OD 
pair of passengers and is defined as a generalized travel time on the shortest path between op and dp in the original timetable, plus a 
cutoff time κ. For each passenger, such an itinerary is created showing the opt-out option as the passenger can choose another transport 
mode. We assume that passengers are aware of the current timetable. Therefore, among all possible itineraries, the passenger chooses 
the one with the highest utility. 

6.2. Passengers’ priority lists 

The passengers’ priority list (L ) is an ordered set showing the passengers’ assigning order (importance). The importance of the 
passenger p ∈ P is shown by ηp = υp +εp in which υp is the deterministic part of the importance function and εp is the stochastic part. 
The deterministic part imposes some rules on passengers’ priority order (e.g., passengers with earlier desired departure time from the 
origin are prioritized, or passengers with longer travel time have priority to board the train). The stochastic part captures the elements 
that are not explicitly considered by the deterministic part. For example, the exact arrival time of passenger p or the platform’s distance 
to the train door. For passenger p and passenger p′, if ηp⩾ηp′ ,then passenger p has boarding priority over passenger p′. There are various 
ways to define ηp, as our passengers are free to choose their itinerary, we assume that υp = 0 and passengers are prioritized by the value 
of εp. 

6.3. Passenger assignment graph 

We present the passenger assignment by the time–space graph. The set of nodes is defined by V′ = S × H × K and the set of arcs is 
presented by A = ADri ∪ AWai ∪ (∪p∈PAp

Acc) ∪ (∪p∈PAp
Egr) ∪ ATra ∪ AOpt . The detailed description of arc sets and their associated costs and 

capacities are presented in Table 3. In this table, op and dp are the nodes corresponding to the origin and destination stations of 
passenger p. Other nodes in time–space graph are noted by a tuple (s, t, k) in which s, t and k are indices for the station, time and train. 
The parameters related to the cost are described in Section 8.1 and qk is the capacity of train k. 

Finally, at each iteration, the passenger graph is adapted to the changes made to the timetable. The itinerary choice and the 
associated satisfaction can be easily determined by finding the shortest path on each passenger’s graph. We use the Dijkstra algorithm, 
Dijkstra (1959), to find the shortest path. 

Table 3 
Arc weights and capacities.  

Name Set Start node End node Cost Capacity 

Driving ADri  (s, t,k) (s′, t′,k) t′ − t  qk  

Waiting AWai  (s, t,k) (s, t′,k) β1 ⋅ (t′ − t) qk  

Access Ap
Acc  op  (s, t,k) β3 ⋅ max(0, (tp − t)) + β4 ⋅ max(0, (t − tp)) 1 

Egress Ap
Egr  (s, t,k) dp  0 1 

Transfer ATra  (s, t,k) (s, t′,k′ ) β2 + (t′ − t) ∞  
Opt-out AOpt  op  dp  t(op,dp) + κ  ∞   
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6.4. Passenger assignment model 

The passenger assignment model introduced by Binder et al. (2017a) relies on simulation to handle the stochasticity involved in 
defining the exogenous passengers’ order. Their extensive numerical tests reveal that the variance across realizations of aggregate 
passenger satisfaction (e.g., total generalized travel time) is very low. Therefore, we assume that one iteration of the passengers’ 
assignment model provides sufficient approximation for passenger flow and convenience for computational efficiency. Moreover, for 
consistency, the priority list is constructed in advance and is the same for all timetables. When all disposition timetables are created, 
one can use several iterations of the passengers’ assignment model, as described in Binder et al. (2017a), to have a more precise outlook 
on passengers’ satisfaction. Algorithm 3 presents the steps of the stochastic-based passenger assignment model. The algorithm per-
forms several iterations till the set L (i.e., priority list) is empty. At every iteration, the passenger with the highest priority is selected 
and removed from the list. Then the shortest path is calculated for the chosen passenger (noted by ip). Based on the calculated path, the 
aggregate flow on each arc, indicated by f(a), is updated. If the flow on arc a surpasses the train capacity, the arc will be removed from 
the graph in the next iteration. In the end, all passengers’ itineraries, I , returned. 

Algorithm 3. Passengers’ flow assignment   

7. Objectives evaluations and archiving 

By having a new disposition timetable G and passengers’ itinerary I , the algorithm then determines the objectives’ value, archives 
the solution, and updates the operators’ selection probability. These steps are summarized in Algorithm 4 and are described in the 
following sub-sections. 

7.1. Objective value 

We consider three objectives to evaluate the timetable’s performance (i.e., operating cost, passengers convenience, and deviation 
from the original timetable). For solution, X′ = (G,I ), the details of our calculation are presented as follows: 

Operating cost.For the itinerary of train k, shown by rk, the operating cost ck is expressed as kilometer cost of running the train. 
The total operating cost is then zo(X′) =

∑
k∈Kckrk. 

Passengers’ convenience.For passenger p, the utility of the selected itinerary is noted by U(ip). The total passengers’ satisfaction is 
then calculated by zP (X′) =

∑
p∈PU(ip). 

Deviation cost. We present the train itinerary (rk) as an ordered-set of visiting nodes. That is rk = {sb,…, s′,…, se} in which sb and se 

are the first and the last visited stations, respectively. For station s′, functions tk(s′) and t*
k(s

′) return the departure time of train k in the 
disposition and original timetable. The duration of itinerary rk is then calculated as tk(se) − tk(sb). To compute the deviation cost from 
the undisrupted timetable, four weighting factors are used: penalties for canceling (δc), delaying (δd) and rerouting trains (δr), and the 
cost of operating emergency trains (δe). The values of these penalties are presented in Section 8.1. We use the following steps to 
calculate the deviation cost:  

• Train k has operated in the original timetable and it is canceled in the disposition timetable. The deviation cost (Δk
c ) is proportional 

to the train duration in the original timetable. In other words, Δk
c = δc ⋅ (t*

k(s
e) − t*

k(s
b)). 
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• Train k is scheduled as an emergency train. In this case, the deviation cost is calculated as a penatly cost of operating emergency 
train (δe) and the duration of train journey, that is Δk

e = δe + tk(se) − tk(sb).  
• Train k has operated in the original timetable but its schedule and/or visiting stations are different. In this case, we first identify the 

last station until which the train follows its original planed journey and name it s′. Up to s′, the deviation cost is computed as delay 
cost. In other words, the delay cost is Δk

d = δd ⋅
∑

i∈{sb ,…,s′}(tk(i) − t*
k(i)). After station s′, there are three possibilities. i) If the train is 

partially canceled after s′, the deviation cost is Δk
c = δc ⋅ (t*

k(s
e) − tk(s′)). ii) If the train is rerouted after s′, the deviation cost is Δk

r =

δr ⋅ (tk(se) − tk(s′)). iii) if the train is turned around after s′, we consider that an emergency train needs to be scheduled to compute 
the cost: Δk

e = δe + (tk(se) − tk(s′)). 

Given the definitions above, the overall deviation cost is the sum over all trains and all types of deviations: That is zD (X′) =
∑

k∈KΔk
c +

Δk
d + Δk

r + Δk
e . 

7.2. Archiving and acceptance criteria 

After finding a new solution, we follow the strategy proposed by Suppapitnarm et al. (2000) for archiving. Let X and X′ be two 
solutions. We say that X dominates X′ if, 

zi(X)⩽zi(X′),∀i ∈ {P ,O ,D } and ∃i ∈ {P ,O ,D } : zi(X) < zi(X′),

where zP , zO , zD are defined in Section 7.1. We denote this property by X ≺ X′. A solution X* ∈ A is said to be Pareto optimal if it is not 
dominated by any other solution: ∕= xistsX ∈ A : X ≺ X*. The set of all Pareto optimal solution is {X* ∈ A | ∕= xistsX ∈ A : X ≺ X*}. At 
every iteration, the current solution X′ is a candidate for archiving. The following cases need to be considered:  

a) X′ is dominated by at least one solution in A (i.e., ∃X ∈ A : X ≺ X′). X′ is not added to the archive and A is not modified.  
b) X′ is not dominated by any solution in A (i.e., ∕= xistsX ∈ A : X ≺ X′). Here, X′ is added to A , and all solutions in A that are 

dominated by X′ are removed from the archive. 

Given this archiving procedure, we define the following acceptance criterion for the current solution X′. If X′ is archived, it is 
automatically accepted. If not, it is accepted with a probability defined as follows: 

∏

i∈{P ,O ,D }

min
{

exp
(

−
zi(X′) − zi(X)

Ti

)

, 1
}

. (5)  

This acceptance probability is the product of individual acceptance probabilities for each objective, with its associated temperature Ti. 
Note that the individual acceptance probability, exp( − (zi(X′) − zi(X))/Ti), may be greater than unity (if the difference is negative). We 
therefore take the minimum between the calculated value and one. 

Algorithm 4. Archiving   

7.3. Temperature update 

In this problem, a separate temprature is considered for every objective and note it by Ti, i ∈ {zP , zO , zD }. The temperatures, 
Tstart

i > 0, are initially set to a sufficiently high value, in order to allow for a broad exploration of the search space, and to escape local 
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minima. The temperature is then gradually decreased as the search intensifies around a minimum. The cooling of the temperatures 
needs to be related to the objective functions’ typical values to obtain meaningful acceptance probabilities. To that end, Suppapitnarm 
et al. (2000) suggest to compute after a predetermined number of iterations N1, the standard deviation of the respective objective 
functions, σ(zi), over all previously accepted solutions. The authors suggest N1 = 1000 iterations, but this value can be reduced if the 
standard deviations stabilize earlier. After this warm-up phase, the temperatures are lowered M times, according to the following 
schedule: 

Ti(m) = −
σ(zi)

ln(p0 +
pf − p0

M m)
, m = 0,…,M. (6)  

This cooling strategy has the advantage that the acceptance probability decreases linearly, with respect to m, between the initial (p0) 
and the final (pf ) acceptance probability. The algorithm is run K times at this temperature, before the next cooling step. 

7.4. Operators’ selection and weight update 

In Section 5.2 we have introduced 35 operators to modify the timetable. These operators are selected probabilistically. The operator 
selection probability depends on the weight assigned to each of them. In Algorithm 1 we define a segment as a fixed number of it-
erations during which the weights are updated before they are reset at the beginning of the next segment. With this approach, we can 
present the search process with a set of segments j ∈ J. For operator π in segment j ∈ J, we define three variables to adjust its selection 
probability dynamically. i) wj

π shows the weight of the operator π at segment j, ii) ϱπ shows the score of the operator in each segment, 
iii) φπ shows the number of times that operator π is used during a segment. In the following part, we first describe how the weights for 
general and infeasibility operators are updated. Then we describe how these operators are selected during the search process. 

Weight update. For the general operators, we initialize the value of ϱπ and φπ to zero at the beginning of each segment. Then, at 
every iteration, the score of the selected operator is updated. We distinguish three cases: i) if the last iteration results in a new solution 
is added to the archive (Algorithm 4, line 4), then the operator is rewarded with a score ρ1 > 0, ii) if the last iteration results in a 
solution that was not added to the archive but was accepted by the simulated annealing criterion, the operator score is increased by 
ρ2 < ρ1, iii) if the last iteration results in a solution that was neither added to the archive nor accepted by the simulated annealing 
criterion, the score of the selected operator stays unchanged (ρ3 = 0). 

At the beginning of the algorithm, all weights are initialized at one (w0
π = 1 ∀π ∈ Π). At the end of every segment (line 8, Al-

gorithm 1), the weights are updated using the recorded scores in the following manner. After segment j, the weight of operator π in 
segment j + 1,wj+1

π , is given by wj+1
π = (1 − ζ)wj

π + ζ(ϱπ/φπ). The reaction factor, ζ is a parameter that is defined between 0 and 1. This 
parameter controls the weight adjustment of the operators to keep them effective. If φπ = 0, we assume that the weight of operator π 
remains unchanged in segment j + 1. A lower bound wmin is enforced on weights. Its purpose is to avoid the probability of choosing an 
operator to become too small. Therefore, its value needs to be adjusted a posteriori once all operators’ maximal weights are known. 

For the infeasibility operator, the score is increased by ρ1 if it produces a feasible solution. When the solution is not feasible but the 
operator manages to reduce the total number of infeasibilities, its score is increased by ρ2 (line 8, Algorithm 2). Here we have to note 
that we do not use segments to update the weights of infeasibility operator. Therefore, their weights are updated once all infeasibilities 
of a solution are resolved (line 10, Algorithm 2), and the scores are set to zero. 

Operators’ selection. For general operators π ∈ Π, a two-level roulette wheel mechanism governs their selection process. In the 
first level, a set of operators is selected from Π = {Πc,ΠD,ΠA,ΠI,ΠB}. The selection probability is the same for all sets in Π, thus ensuring 
fair use of cancelation, insertion, delay, advance, and bus insertion operators. In the second level, given the selected set (noted by Π′), 
operator π′ ∈ Π′ is chosen with probability wj

π′/
∑

π∈Π′wj
π. 

A single-level roulette-wheel mechanism is implemented for infeasibility operators (π ∈ ΠInf ). In this case, the selection only de-
pends on the operators’ weight. In the next subsection, we explain our strategy to intensify the search process. 

7.5. Return-to-archive strategy 

To explore the search space close to the Pareto frontier more intensively, we implement an occasional selection of a solution in the 
archive. The rate at which to come back to a solution from the archive is decided in the following way. In the warm-up phase, before 
the iteration count hits N1, we do not perform any return-to-archive moves, as the goal is to explore the search space as freely as 
possible at that time. After that, the rate of return to solutions of the archive is increased in the following manner: NB

j = rB ⋅ NB
j− 1,j = 2,

3,4,…, where NB
j is the number of iterations to be executed prior to the jth return-to-archive and 0 < rB < 1 is a parameter controlling 

the rate of return. Suitable values of the parameters found by Suppapitnarm et al. (2000) are rB = 0.9 and NB
1 = 2K. The selection of the 

solution from archive is performed in a random manner. 

8. Computational experiments 

The algorithm is implemented in Java, and all numerical experiments have been carried out on a 3.33 GHz Intel Xeon X5680 server 
running 64-bit Ubuntu 16.04.2. Computational results are presented in the following manner. In Section 8.1, we briefly introduce the 
case studies on which the algorithm is applied. The contribution of different operators are discussed in Section 8.2, and the 
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computational results are presented in Section 8.3. Finally, the practical applicability of the framework is discussed in Section 8.4. 

8.1. Description of case studies 

We evaluate our proposed resolution algorithm on the Dutch and the Swiss rail networks. The Dutch case is used to calibrate the 
algorithm, and the Swiss case is used to evaluate our proposed approach. For the detailed description of these case studies, we refer the 
reader to Binder et al. (2017b) and Binder et al. (2017a). We create a large set of “small” instances from the Dutch case network to 
calibrate our algorithm’s parameters. The Dutch network comprises 18 double tracks between stations. For each track, the following 
disruptions are considered:  

• complete blockade for the entire time horizon (0–120 min);  
• complete blockade for the first half of the time horizon (0–60 min);  
• partial blockade for the entire time horizon (0–120 min). 

A total of 54 test instances are thus created. For each of instance, the algorithm is run, and results are reported in Section 8.2. For 
the Swiss case study, the network of S-trains in canton Vaud Switzerland is considered. Fig. 2 shows the network of S-train. For this 
case, we consider the recovery period between 5:00 am and 9:00 am. For this network, two disruption scenarios are considered. The 
first scenario is a full blockade of the tracks between stations Montreux (MON) and Vevey (VEV), between 05:30 am, and 06:30 am. 
The main purpose is to analyze the disposition timetables constructed by our framework and to validate the latter by comparing the 
algorithm’s output with the recovery procedures used in practice. The second scenario illustrates a more severe case, with the two 
following disruptions happening simultaneously:  

• complete blockade of the tracks between Lausanne (LAU) and Vevey (VEV), from 5:00am to 8:00am;  
• complete blockade of the tracks between Lausanne (LAU) and Pully (PUI), from 5:00am to 7:00am. 

For the two scenarios, the algorithm is run ten times, and the archives of non-dominated solutions of every run are merged together, 
according to the dominance rules described in Section 7.2. Tables 4 and 5 summarize the values we use for the parameters of the 
algorithm. These values are either borrowed from the literature or calibrated based on preliminary trial-and-error combinations. The 
54 instances of the Dutch case study are extensively used to calibrate the parameters. 

8.2. Algorithm performance 

In this section, we aim at showing our algorithm’s performance by discussing the functionality of operators. We report the results 
on 54 instances from the Dutch railway. First, the variation in the operators’ selection probability is examined in Fig. 3, both during 
and at the end of the algorithm. We discuss the operators’ contribution to the search for non-dominated solutions in Table 6. Then, the 
performance of the “infeasibility operator” is presented in Table 7. Finally, computational times associated with the operators are 

Fig. 2. Network of S-trains in canton Vaud, Binder et al. (2017a).  
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reported in Fig. 4. 
Recall that during the search, the operators’ weight is dynamically updated based on their past performance. This influences the 

selection probability of the operators. Moreover, after a fixed number of iterations (i.e., segment), we reset the weight associated with 
each operator. Here, we have to note that at the beginning of each segment, operators’ selection probability is updated by the pro-
cedure described in Section 7.4. Fig. 3 reports the distribution of probabilities for general operators. Fig. 3a shows the distribution of 
selection probabilities (see Section 7.4) for all segments over 54 instances. In Fig. 3b we only report operators selection probability for 
the last segment of the search procedure. 

The probabilities reported in Fig. 3a indicate that each operator is useful at some point when considering results across all in-
stances. Indeed, the median probability of selecting an operator is different from zero across all segments, and every operator exhibits 
high values of its maximal probability of being chosen. At the same time, the high variability of the probabilities to select an operator 
demonstrates the usefulness of the weight adaptation scheme. In other words, an increment in selection probability means that the 
operator weight is increased, which shows that the operator succeeds in improving the timetable. Even for operators such as CCO,PCO,

PCR, which exhibit very low final probabilities, there are instances where the probability is higher. An operator can therefore be very 
efficient in the case of one instance, but not contribute significantly to another, thus suggesting that the weight updating scheme is 
capable of adapting to the specificities of each instance. 

We note that final probabilities (Fig. 3b) accentuate the overall trend observed during the algorithm (Fig. 3a). It can thus be 
observed which operators become essential and which are not that useful any more. Operators minimizing passenger inconvenience 
appear to have consistently higher probabilities of being selected for the groups of cancel, advance, train, and bus insertion operators 
(CCP ,PCP ,CAP , PAP , ITP and IBDis,P ). Regarding the delay operators, there appears to be no clear preference between minimizing 
passenger inconvenience or the deviation from the undisrupted timetable (see CDP ,CDD and PDP ,PDD ). 

Table 6 reports over the 54 test instances for each general operator: the number of times it found a non-dominated solution; the 
number of times it was used; and its success rate defined as the ratio between the two previous values. Note that the number of non- 
dominated solutions is an overestimation of the total number of solutions in the final archive, as a non-dominated solution in an early 
iteration might become dominated by a later solution. Each operator can find a significant amount of non-dominated solutions that 
corroborate the different operators’ usefulness described above. Further, it can be observed that operators with low success rates (such 

Table 4 
Parameters’ value.  

Symbol Description Value Source 

Tstart
i  Initial temperature 108  Trial-and-error 

p0  Initial acceptance probability 0.999 Bierlaire (2015) 
pf  Final acceptance probability 0.001 Bierlaire (2015) 
M Number of temperature changes 100 Bierlaire (2015) 
K  Iterations per temperature level 50 Bierlaire (2015) 
N1  Warm-up iterations 300 Trial-and-error 

NB
1  Iterations before first return-to-archive 2K  Suppapitnarm et al. (2000) 

rB  Decrease parameter 0.99 Suppapitnarm et al. (2000) 
J Weight segment length 2K  Trial-and-error 
ζ  Reaction factor 0.5 Ropke and Pisinger (2006) 
ρ1  Reward 10 Trial-and-error 
ρ2  Reward 2 Trial-and-error 
ρ3  Reward 0 Trial-and-error 
wmin  Minimal operator weight 0.3 Trial-and-error 
νmax  Maximal number of evaluated solutions 20 Trial-and-error 
δd  Deviation cost for delayed train (per minute) 1 Veelenturf et al. (2016b) 
δc  Deviation cost for cancelled train 50 Veelenturf et al. (2016b) 
δr  Deviation cost for re-routing train 10 Veelenturf et al. (2016b) 
δe  Penalty to lunch a new trains 1000  + OC1 Veelenturf et al. (2016b) 

1) OC: operating cost of the new train  

Table 5 
Values of weighting factors in the passengers’ generalized travel time.  

Parameter Value Unit Reference 

β1  2.5 [min/min] Wardman (2004) 
β2  10 [min/transfer] de Keizer et al. (2012) 
β3  0.5 [min/min] Small (1982) 
β4  1 [min/min] Small (1982)  
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as ITO, ITD, ITR, IBR and IBDis,R) are not necessarily the ones with the lowest number of usages, indicating that those should not be 
discarded as useless, but rather considered as diversification opportunities that pave the path for a later significant improvement 
leading to a new non-dominated solution. Likewise, operators with a very high number of usages are not the ones with the best success 
rate. 

Table 7 reports the usage statistics of infeasibility operators, as well as their capacity to restore feasibility. The number of resolved 
infeasibilities indicates how many times an operator could generate a feasible neighbor timetable. In contrast, the number of reduced 
infeasibilities reports the number of times the operator generated a neighbor timetable with a lower number of infeasibilities than the 
incumbent solution. One can observe that the complete cancelation operator is by far the most used, which is explained by the fact that 
resolving an infeasibility is highly rewarded in the algorithm’s weighting scheme. The other infeasibility operators are nevertheless 
used frequently, except for the advance operators (CAInf and PAInf ). The latter results from the nature of the considered disruptions: all 
disruptions start at the beginning of the time horizon, and it is, therefore, impossible to schedule a train to pass before the disruption 
happens. This demonstrates once more the usefulness of the weight adaptation scheme. 

Finally, Fig. 4 reports the distribution of average computational times during a segment per operator and over 54 instances. Local 
search operators exhibit longer computational times than the operators with a different search strategy. Overall, computational times 
are very low, at less than one-tenth of a second per operator usage. 

Fig. 3. Distribution of selecting probabilities of each operator over the 54 test instances.  
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8.3. Effectiveness in handling disruption 

In the following section, we show the performance of our algorithm to handle large disruptions. For this reason, we have applied 
our algorithm to the Swiss case study described in Section 8.1. 

8.3.1. Disruption MON–VEV 
As introduced in Section 8.1, this section focuses on the analysis of the disposition timetables constructed by our framework for a 

disruption scenario that is easy to solve due to the limited rescheduling possibilities. Indeed, a full blockade of the tracks between 
stations MON and VEV from 5:30 am to 6:30 am is considered. In the normal timetable, three trains are scheduled on the disrupted 
tracks:  

• Train S2 12211, leaving VEV at 06:21 am and reaching MON at 06:30 am; 

Table 6 
Usage statistics and success rates of general operators.  

General # of non-dominated # of usages Success rate 
operator solutions found   

CCP  4572 10,672 0.43 
CCO  1229 4863 0.25 
CCD  3119 8581 0.36 
CCR  2113 7373 0.29 
PCP  3016 9105 0.33 
PCO  718 3941 0.18 
PCD  1448 6357 0.23 
PCR  923 5116 0.18 
CDP  4077 11,108 0.37 
CDD  3411 10,393 0.33 
CDR  2121 8750 0.24 
PDP  2715 9517 0.29 
PDD  2626 9325 0.28 
PDR  1360 7006 0.19 
CAP  3508 11,424 0.31 
CAD  1944 9644 0.20 
CAR  446 3382 0.13 
PAP  2876 9548 0.30 
PAD  1500 7743 0.19 
PAR  210 1228 0.17 
ITP  4299 19,716 0.22 
ITO  931 12,542 0.07 
ITD  1118 13,310 0.08 
ITR  661 10,894 0.06 
IBR  317 18,504 0.02 
IBDis,R  179 13,892 0.01 
IBDis,P  1746 23,476 0.07  

Table 7 
Usage statistics of infeasibility operators.  

Infeasibility # of resolved # of reduced # of usages 
operator infeasibilities infeasibilities  

CCInf  19,587 725 20,312 
PCInf  3435 1021 4456 
CDInf  2250 232 5223 
PDInf  660 333 1664 
CAInf  0 0 236 
PAInf  0 1 13 
RRInf  3821 149 4798 
TAInf  2597 830 3795  
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• Train S2 12216, leaving MON at 06:29 am and reaching VEV at 06:37 am;  
• Train S3 12314, leaving MON at 05:55 am and reaching VEV at 06:03 am. 

For this disruption scenario, the merged archive of non-dominated solutions obtained by our framework contains 952 disposition 
timetables. Table 8 summarizes the recovery strategies applied to the three disrupted trains in each of the timetables: column CC 
indicates the number of timetables in which the train is completely canceled; column PC the number of timetables in which the train is 
partially canceled, and after which station; column CD the number of timetables in which the train is completely delayed; column PD 
the number of timetables in which the train is partially delayed, and after which station; and column TA the number of timetables in 
which the train is turned around, and after which station. 

It can be observed that “common sense” recovery actions are properly reproduced by our algorithm. For instance, trains S1 12211 
and S2 12216, which are scheduled in the normal timetable to cross the disrupted tracks only very shortly before the disruption ending 
time (9 and 1 min, respectively), are much more likely to be delayed (partially or completely) than train S3 12314. Indeed, by delaying 
these trains only by a few minutes, the timetable easily becomes feasible again. In particular, it is noteworthy that the algorithm 
proposes timetables in which these two trains are delayed so as to depart exactly at 06:30 am (the ending time of the disruption) from 
stations MON or VEV. Further, the most common station for partial cancelations and turn arounds is the station right before the 
disruption (VEV for the first train, MON for the two others), which makes sense from a practical point of view. 

Conversely, the algorithm also produces less “intuitive” timetables, such as turning around train S2 12211 in station COS or 
delaying train S3 12314 by more than 35 min in order to pass the disrupted area. In addition to the recovery actions applied to the three 
trains, we examine the emergency buses and trains scheduled in the disposition timetables. On average, 5.8 buses are scheduled, and 
this number varies between 0 and 16, depending on the timetable. In 553 out of the 952 timetables, emergency trains are scheduled on 
the disrupted tracks after the disruption is resolved. Interestingly, no emergency train is scheduled before the beginning of the 
disruption at 05:30 am, thus showing the algorithm adapts to the low passenger demand at this time. 

8.3.2. Disruption LAU-VEV-PUI 
This section is dedicated to the discussion of the most severe disruption scenario introduced in Section 8.1. Results are presented at 

the aggregate level: timetables in the archive of non-dominated solutions are first compared using the Pareto frontier of the three 
objectives — passenger inconvenience (zP ), operational cost (zO ), and deviation from the undisrupted timetable (zD ). Then, the three 

Fig. 4. Distribution of computational times of the operators over the 54 test instances.— Change notations.  

Table 8 
Summary of recovery strategies applied to trains S2 12211, S2 12216 and S3 12314 in disruption MON–VEV.  

Train Recovery strategy usage  

CC PC CD PD TA 

S2 12211 440 14 (COS) 38 23 (LAU) 1 (COS)   
7 (LAU)  92 (VEV) 39 (VEV)   
15 (MON)      
5 (REN)      
278 (VEV)    

S2 12216 337 363 (MON) 227 12 (MON) 13 (MON) 
S3 12314 343 481 (MON) 1 11 (MON) 116 (MON)  
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timetables in the archive with the lowest value of zP ,zO , and zD , respectively, are reported in Table 9 and compared in further detail. 
The complexity of the Pareto frontiers obtained by our framework requires a sound methodology for practitioners to choose which 
timetable to implement among the numerous non-dominated solutions. Two of such methodologies are proposed in Section 8.4. For 
this disruption scenario, the merged archive of non-dominated solutions contains 987 disposition timetables. Fig. 5 compares each of 
the timetables’ performance in terms of the objective functions identified above. As the Pareto frontier is three-dimensional, we project 
it on the three planes (zD = 0,zP = 0,zO = 0) for an easier visual interpretation, and the third objective is represented in greyscale. 

It can be observed in Fig. 5a that the starkest trade-off between objectives is achieved on the zO –zP front: an increase in operational 
cost results (almost) automatically in a decrease in passenger inconvenience, regardless of the value of zD . Also, by increasing the 
deviation from the undisrupted timetable, the two other objectives can be improved simultaneously. Note that it is not possible to 
identify a clear inflection point of the frontier. This may be explained by the fact that the cost of the opt-out arc has been lowered, thus 
effectively limiting the sharp increase in passenger inconvenience when canceling trains (i.e., decreasing operational cost). 

The trade-off in the two other frontiers is less clear. In the zO –zD projection (Fig. 5b), the minimal value of deviation from the 
undisrupted timetable lies at about zO = 70k CHF. From this point, zD can be increased in two ways: either by decreasing operational 
cost (thus increasing passenger inconvenience), or vice versa. The former situation corresponds to timetables where many trains are 
canceled, resulting in poor passenger satisfaction, whereas in the latter additional trains and buses are scheduled, increasing passenger 
satisfaction but coming at a cost. Finally, in the zP –zD projection (Fig. 5c), it can be observed that, for a given value of operational cost, 
an increase in zD results in a decrease in passenger inconvenience. This indicates that the operators introduced in our framework are 
capable of scheduling trains that are adjusted to passenger demand. 

Table 9 reports the values of the objective functions at the minimal extremes of the Pareto frontier, as well as the level of unsatisfied 
demand, defined as the number of passengers that need to take the opt-out path. For comparison, in the undisrupted timetable, zP =

901,924.5 [min], zO = 92,160.0 CHF and zD = 0. For the timetable with the lowest passenger inconvenience (first row of Table 9), zP 

is only about 4% higher than in the undisrupted case. This level of service however, requires a high operational cost. Indeed, 18 buses 
and 19 emergency trains are scheduled in this timetable. Even in this case, 2155 out of 14,920 passengers (14%) take the opt-out path. 
The timetable with minimal operational cost (second row of Table 9) is associated with an extremely low level of service for pas-
sengers: on average, travel times increase by about 64%, and more than two-thirds of the passengers need to find an alternative so-
lution to travel. This timetable is “cheap” for the railway operator because only 30 original and six emergency trains are operated. In 
addition, all emergency trains run on train lines with at most two stations. The deviation cost associated with this timetable is very high 
because many original trains are completely canceled. Finally, the timetable with the lowest deviation cost (third row of Table 9) 
represents an interesting compromise: zP increases by 18% concerning the undisrupted case and the associated operational cost re-
mains low. Only one bus is scheduled in this timetable, and not a single emergency train. Railway operators could therefore use this 
timetable as an initial feasible solution, and then include additional trains or buses to increase the level of service provided, especially 
to serve the unsatisfied demand. 

8.4. Practical applicability 

In conclusion, the results show that the proposed framework can construct high-quality feasible disposition timetables that make 
sense from a practical point of view. Also, as can be seen in Fig. 6, the computational time of the algorithm remains low, even for the 
real case study based on the Swiss S-train network. The highest computational times occur with the local search operators, mostly those 
minimizing passenger inconvenience, as the passenger assignment model needs to be rerun on each timetable in this particular case. 
On average, it takes 0.2 s for the passenger assignment model to determine the passengers’ flow. 

Therefore, the algorithm described in this paper can be seen as a tool for railway operators to compare disposition timetables at an 
aggregated level. Its output is a list of timetables that are non-dominated. To choose the “best” among them, train operators wishing to 
use the framework need to decide the relative importance of the objectives to their eyes or the maximal value of each objective that 
they are willing to accept. If one objective is more important than the others, the operator will choose a timetable that minimizes this 
objective while respecting the other objectives’ bounds. Otherwise, if the objectives are equivalently important, the closest timetable 
(e.g., in terms of Euclidian distance in the three-dimensional Pareto frontier) to the undisrupted timetable is preferred. 

We wish to stress here that each timetable in the archive of non-dominated solutions results from successive applications of re-
covery operators that are directly inspired by practice. Therefore, it is practical for railway operators to implement a timetable from the 
archive by retracing the elementary steps that led to it. Finally, note that operator-defined upper bounds on the objective functions can 
easily be included in the framework. This has the advantage of limiting the search for timetables to a solution space in which operators 
are guaranteed to obtain timetables in line with their requirements. 

9. Conclusion 

This paper introduces an algorithmic framework to design the disposition timetable, taking into account train’s capacity. Our 
algorithm is capable of providing a user equilibrium solution for the disposition timetable. We consider operating cost, deviation from 
the original timetable, and passengers’ convenience as the main three performance indicators. The algorithm constructs an approx-
imation of the Pareto frontier of the problem by populating an archive of non-dominated solutions. 

We test our algorithm on the case studies from Dutch and Swiss railway. Our analysis indicates that each of the operators con-
tributes at some point to find new non-dominated solutions. Additionally, it is shown that the framework performs well concerning 
computation time and solution quality compared to practice in many cases. We have presented an approach on how to use our 
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Table 9 
Values of the objective functions, and level of unsatisfied demand, for the timetables with lowest value of zP , zO and zD in A .  

zP [min]  zO [CHF]  zD [-]  Unsatisfied demand 

934,290.0 104,970.0 67,883.0 2155 
1,486,869.5 32,850.0 109,497.0 10,526 
1,069,571.5 71,670.0 31,716.0 3524  

Fig. 5. Pareto frontier projections for disruption LAU–VEV–PUI.  

Fig. 6. Distribution of computational times for disruption LAU–VEV–PUI.  

S. Binder et al.                                                                                                                                                                                                         



Transportation Research Part C 132 (2021) 103368

19

algorithms in practice. In this problem, we assume that passengers know the current disposition timetable and choose their routes 
accordingly. Their choice can be influenced by the route advice that they can receive from the train operating company. As future 
work, we are interested in investigating how to incorporate route advice on planning and designing the disposition timetable. 
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Dollevoet, T., Huisman, D., Schmidt, M., Schöbel, A., 2012. Delay Management with Rerouting of Passengers. Transportation Science 46, 74–89. 
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