
Delft University of Technology
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft Institute of Applied Mathematics

CVA calculation, an extended marked branching
diffusion approach

A thesis submitted to the
Delft Institute of Applied Mathematics
in partial fulfillment of the requirements

for the degree

MASTER OF SCIENCE
in

APPLIED MATHEMATICS

by

Laurens Jan Borsje

Delft, the Netherlands
June 2014

Copyright c© 2014 by L. J. Borsje All rights reserved.

1

MSc THESIS APPLIED MATHEMATICS

“CVA calculation, an extended marked branching diffusion approach”

Laurens Jan Borsje

Delft University of Technology

Daily supervisor Responsible professor

dr. J. H. M. Anderluh Prof. dr. F. H. J. Redig

Other thesis committee members

Prof. dr. ir. C. W. Oosterlee dr. D. Fedorets

June, 2014 Delft

3

Contents

1 Abstract 6

2 Introduction 7

3 CVA 8
3.1 Example PDE’s . 8

3.1.1 Type I . 10
3.1.2 Type II . 11

4 Branching Diffusion 12
4.1 Killed Brownian Motion . 12
4.2 McKean . 13
4.3 Branching Particle Process . 15

4.3.1 Stochastic Rates . 15
4.3.2 Stochastic Default Rates . 16
4.3.3 Immortal Descendants . 16

4.4 Branch and Bound . 16
4.5 Marked Branch and Bound . 20
4.6 Convergence Considerations and Conditions . 23

5 Polynomial Approximation 24
5.1 Interval . 24
5.2 Example . 24

5.2.1 Two Sided Payoffs . 25
5.3 Bounds . 26

5.3.1 Bounds on Two Sided Payoffs . 28

6 Interest Rates 29

7 Analytical Results 34
7.1 Type I . 34
7.2 Type II . 35
7.3 Exact Solutions for the Constant and Hull White Interest Rate Models 35

8 Implementation 37
8.1 Matlab . 37
8.2 C++ . 37
8.3 Functionality . 37

9 Results 38
9.1 Parameters . 38
9.2 Hull White Rates . 38

9.2.1 Parameters . 38
9.2.2 Type I . 38
9.2.3 Type II . 43

10 Conclusions 49
10.1 Future research . 49

A Personal Note 50

B Results Continued 51
B.1 Constant Rates . 51

B.1.1 Parameters . 51
B.1.2 Type I . 51
B.1.3 Type II . 56

B.2 CIR Rates . 60
B.2.1 Parameters . 60
B.2.2 Type I . 61
B.2.3 Type II . 66

C Animation frames 71

4

D Pn Coefficients 74

5

1 Abstract

The marked branching diffusion algorithm as proposed by [Henry-Labordére, 2012], based on the particle diffusion
introduced by [McKean, 1975], is extended upon to include stochastic interest rate models. This extended branching
diffusion algorithm is used to solve pricing PDE’s for equity derivatives including CVA, using the two types of de-
fault conventions as in [Brigo and Morini, 2011]. Analytical results are then used to evaluate the performance of the
algorithms in the case of one sided payoffs at maturity in a constant and Hull White interest rate world. An implemen-
tation of the lower and upper bounds, as suggested by [Henry-Labordére et al., 2013], for the error introduced by the
algorithms polynomial approximation is also given. The main results are the mismatches in price introduced in far out
of the money derivatives having value close to zero and the extension to the stochastic interest rate framework.

6

2 Introduction

Since the fall of Lehman Brothers in 2008 and the subsequent crisis the financial industry has changed. Previous
truths are now being questioned. Banks are no longer considered too big to fail, governments are reducing their
(implicit) support, while credit worthiness and ratings have dropped across the market. A counterparty defaulting
before maturity of a deal is now a real possibility and should be taken into consideration when pricing deals. This
Credit Value Adjustment (CVA) will depend on the creditworthiness of the counterparty as well as the collateral
agreements made.

ING, a global financial institution of Dutch origin, engages in numerous deals per day. Most of these deals are
collateralized and rebalanced daily, reducing but not eliminating CVA completely. However, Over The Counter (OTC)
derivatives might not have this collateralization and contain a significant exposure to a counterparty defaulting. From
a risk management perspective it is vital that CVA is incorporated in these deals to compensate for this exposure and
possibly use this charge to hedge the exposure in Credit Default Swap (CDS) market. The main focus of this thesis
will be on this type of uncollateralized deals.

[Henry-Labordére, 2012] proposes the use of a marked branching diffusion approach to incorporate CVA when pricing
derivatives. This thesis will deal with the implementation of this approach and extend upon it by finding an answer to
the following main research question: Can the marked branching diffusion approach be used to price deals including
CVA? This will be done using the following subquestions: Can the marked branching diffusion approach be extended to
include stochastic interest rates? What are the advantages and disadvantages of using the marked branching diffusion
approach?

These questions will be treated within an equity framework. Although there are not many OTC derivatives in this
market having large CVA components it is the most basic setting to consider. It is possible to extend the methods and
algorithms to other classes such as FX and Fixed income, however this introduces additional class specific complications
not related to the branching diffusion method.

This thesis is organized as follows: Example problems and different default type agreements will be discussed in Section
3, while Labordères marked branching approach and earlier results from [McKean, 1975] will be explained in Section
4. The polynomial approximations of x+ and bounds of these will be derived in Section 5. Stochastic interest rates
will be introduced in Section 6. Analytical results used to evaluate the branch and bound results will be discussed in
Section 7. The implementation in C++ and Matlab will be briefly discussed in Section 8 while the results are treated
in Section 9. The findings, conclusions and further research will be discussed in Section 10

7

3 CVA

To calculate CVA it is important to know what actually happens when the counterparty defaults. Note that CVA is a
one-sided adjustment and that the default of the party issuing the deal, Debt Value Adjustment (DVA), is not taken
into consideration. It is possible to include DVA using the framework discussed in this thesis, however this will not be
implemented. Suppose a simple case where a deal will be canceled when the counterparty defaults freeing both parties
from any obligations to pay. An example of this is given in Section 4.1. This is however not what happens in practice
since it can be assumed that both parties will try and get their moneys worth. Two types of default conventions will
be used throughout the thesis, conveniently named type I and type II:

I. When the counterparty defaults a portion R of the market to market value of the deal u (including CVA) is
recovered if it has a positive value. The counterparty is under some form of curator and should pay of as much
of its obligations as possible. If the market to market value of the deal would be negative it is assumed that the
full amount will be payed out to the defaulting counterparty. The payoff at default equals:

FI = −u− +Ru+. (1)

II. Type II is similar to type I however instead of the market to market value of derivative, a riskfree (no risk of
defaulting counterparty) valuation v is used to value the derivative at default, leading to the following payoff at
default:

FII = −v− +Rv+. (2)

[Brigo and Morini, 2011] gives an excellent description of the advantages and implications of the two types. The
Partial differential Equations (PDE’s) corresponding with the different default agreements will be derived in the next
section.

3.1 Example PDE’s

Two example problems will be given in this section corresponding with type I and type II close out conventions discussed
above. These will be used and extended upon throughout the thesis. It is assumed that all partial derivatives to time
t and underlying Xt of u, v and F used exist and are integrable. Consider some underlying stock X and a risk free
bond B with the following dynamics under the risk free measure Q in a constant rate r world:

dXt = rXtdt+ σXtdWt, (3)

dBt = rdt.

Furthermore suppose that the counterparty gives out a risky bond P , paying out zero at the moment they default
with the following dynamics under Q:

dPt = (r + β)Ptdt− PtdJt. (4)

Where J is a Poisson jump process with intensity β and jumps of size one. The dynamics of the derivative u(t,X, J)
are needed to derive a pricing PDE for u(t,X, J) with the counterparty. Using [Shreve, 2004] Itô’s lemma for two
dimensional processes with jumps :

u(t,Xt, Jt) = u(0, X0, J0) +

∫ t

0

∂u

∂t
(s,Xs, Js)ds+

∫ t

0

∂u

∂X
(s,Xs, Js)dXs +

1

2

∫ t

0

∂2u

∂X2
(s,Xs, Js)dXsdXs

+
∑

0≤s≤t

(F (s,Xs)− u(s,Xs−, Js−)). (5)

Where X−s equals limt↑sXt and (F (s,Xs)− u(s,Xs−, Js−) is the size of the jump in u if a jump happens at time s.
Suppose that F (s,Xs) (the value after a jump) is continuous at (s,Xs,):

∑
0≤s≤t

(F (s,Xs)− u(s,Xs−, Js−) =
∑

0≤s≤t

(F (s,X−s)− u(s,Xs−, Js−)∆Js, (6)

=

∫ t

0

F (s,Xs)− u(s,Xs, Js)dJs.

8

Where ∆Js is the jump size at s. Using the above:

u(t,Xt, Jt) = u(0, X0, J0) +

∫ t

0

∂u

∂t
(s,Xs, Js)ds+

∫ t

0

∂u

∂X
(s,Xs, Js)dXs +

1

2

∫ t

0

∂2u

∂X2
(s,Xs, Js)dXsdXs

+

∫ t

0

F (s,Xs)− u(s,Xs, Js)dJs.

This means a differential notation for du is found:

du =
∂u

∂t
(t,Xt, Jt)dt+

∂u

∂X
(t,Xt, Jt)dX +

∂2u

∂X2
(t,Xt, Jt)dXtdXt + (F (t,Xt)− u(t,Xt, Jt))dJ. (7)

Now consider the following risk free portfolio Π:

Π = u+ c1X + c2P. (8)

For this portfolio to be risk free it should have the same dynamics as a risk free bond:

rΠdt = dΠ, (9)

= du+ c1dX + c2dP,

=
∂u

∂t
dt+

∂u

∂X
dX + (F − u)dJ +

1

2

∂2u

∂X2
dXdX + c1dX + c2dP,

=
∂u

∂t
dt+

∂u

∂X
(rXdt+ σXdW) + (F − u)dJ +

1

2

∂2u

∂X2
σ2X2dt+ c1(rXdt+ σXdW) + c2((r + β)Pdt− PdJ),

=

(
∂u

∂t
+ rX

∂u

∂X
+ σ2X2 1

2

∂2u

∂X2
+ c1rX + c2(r + β)

)
dt+

(
σX

∂u

∂X
+ c1σX

)
dW + (F − u− c2P) dJ.

Use the following weights in the portfolio, assuming continuous rebalancing is possible:

c1 = − ∂u

∂X
, (10)

c2 = (F − u)
1

P
. (11)

This corresponds to regular delta hedging as in Black Scholes to compensate movement of X due to randomness intro-
duced by dW and buying and selling risky bonds from the counterparty to compensate for a jump if the counterparty
defaults. Using the weights c1 and c2 equation (9) can be written as:

r(u− ∂u

∂X
X + (F − u))dt =

(
∂u

∂t
+ rX

∂u

∂X
+ σ2X2 1

2

∂2u

∂X2
− ∂u

∂X
rX + (F − u)

1

P
(r + β)

)
dt. (12)

By rearranging the terms and adding a payoff at maturity T gives a pricing PDE for u, t ≤ T still dependent on F ,
the payout in case of a default of the counterparty:

∂u

∂t
+ rX

∂u

∂X
+ σ2X2 1

2

∂2u

∂X2
+ β(F − u)− ru = 0, (13)

u(T,X) = g(x).

Notice how jump process J is no longer part of the equation, its effects have been included by the term β(F−u). Every
derivative u can be hedged. Thus the market model is complete. The first and second fundamental theorem of asset
pricing guarantee absence of arbitrage and uniqueness of the value of a derivative as well as the martingale property
for derivatives in this setting. Constant rates allow for using the substitutions u(t,Xt) = e−rT−tu(t,Xt), g(x) =
g(x)e−rT−tu(t,Xt) and v(t,Xt) = e−rT−tv(t,Xt) and the fact that F (t, ut) is linear in u and v:

9

FI(t, λut) = λFI(t, ut), (14)

FII(t, λvt) = λFII(t, vt).

Thus equation (13) can be reformulated to:

∂u

∂t
+ rX

∂u

∂X
+ σ2X2 1

2

∂2u

∂X2
+ β(F − u) = 0, (15)

u(T,X) = g(x).

3.1.1 Type I

To get the type I example PDE start from (15) and use the default convention corresponding with type I:

∂u

∂t
+ rX

∂u

∂X
+ σ2X2 1

2

∂2u

∂X2
+ β(−u− +Ru+ − u) = 0, (16)

u(T,X) = g(x).

The solution to (16) can also be represented stochastically using the following dynamics for u, no longer dependent
on J and substituting FI back to reduce clutter:

du(t,Xt) =

(
∂u

∂t
(t,Xt) + rXt

∂u

∂x
(t,Xt) +

1

2
σ2X2

t

∂2u

∂x2
(t,Xt)

)
dt+

∂u

∂x
(t,Xt)σXtdWt, (17)

= β(u(t,Xt)− FI(t, u))dt+
∂u

∂x
(t,Xt)σdWt.

Via a Feynman Kac [Shreve, 2004] type argument by reordering terms, using an integrating factor e−βt and integrating
left and right hand side:

du(t,Xt)− βu(t,Xt)dt = −βFI(t, ut)dt+
∂u

∂x
(t,Xt)σdWt, (18)

e−βtdu(t,Xt)− e−βtβu(t,Xt)dt = −e−βtβFI(t, ut)dt+ e−βt
∂u

∂x
(t,Xt)σdWt,

de−βtu(t,Xt) = −e−βtβFI(t, ut)dt+ e−βt
∂u

∂x
(t,Xt)σdWt,

e−βTu(T,XT)− e−βtu(t,Xt) = −
∫ T

t

e−βsβFI(s, us)ds+

∫ T

t

e−βs
∂u

∂x
(s,Xs)σdWs,

u(t,Xt) = e−β(T−t)u(T,XT) +

∫ T

t

e−β(s−t)βFI(s, us)ds−
∫ T

t

e−β(s−t)
∂u

∂x
(s,Xs)σdWs.

Taking expectations given filtration on time t:

Et[u(t,Xt)] = Et
[
e−β(T−t)u(T,XT)

]
+ Et

[∫ T

t

e−β(s−t)βFI(s, us)ds

]
− Et

[∫ T

t

e−β(s−t)
∂u

∂x
(s,Xs)σdWs

]
, (19)

u(t,Xt) = Et
[
e−β(T−t)g(XT)

]
+ Et

[∫ T

t

e−β(s−t)βFI(s, us)ds

]
.

When an independent random variable τ ′, exponentially distribution with parameter β is introduced, such that
τ = t+ τ ′ the above can be rewritten to to the following:

u(t,Xt) = Et [Iτ>T g(XT)] + Et [Iτ≤TFI(τ, uτ)] . (20)

10

Where I is the indicator function. Intuitively this can be seen as a an expected payoff of a derivative restricted to
the outcome space where the counterparty does not default before time T plus an expected payoff restricted to the
outcome space where the counterparty defaults at time τ ≤ T . When u(τ,Xτ) in the second expectation of the above
stochastic form is replaced an iterated expectation is found:

u(t,Xt) = Et [Iτ>T g(XT)] + Et [Iτ≤TFI(τ, uτ)] , (21)

= Et [Iτ1>T g(XT)] + Et [Iτ1≤TFI(τ1,Et [Iτ2>T g(XT)] + Et [Iτ2≤TFI(τ2, uτ2)])] .

Where τ1 = t + τ ′1 and τ2 = t + τ ′1 + τ ′2 with τ ′i ’s exponentially distributed with parameter β. This can be repeated
indefinitely, giving rise to significant problems when a numerical integration or Monte Carlo method is used to directly
evaluate the expressions. The number of simulations or gridpoints (n) needed increases by a factor n with each
iterated integral/expectation, making the process impossible to implement. This could be circumvented by using an
approximation of u (not requiring iterated expectations to compute) at some iteration.

3.1.2 Type II

The PDE for problems of type II is derived in a similar fashion to the type I PDE previously. Starting from (15) and
substituting FII :

∂u

∂t
+ rX

∂u

∂X
+

1

2
σ2X2 ∂

2u

∂X2
+ β(−v− +Rv+ − u) = 0, (22)

u(T,X) = g(x).

Where v is the solution to:

∂v

∂t
+ rX

∂v

∂X
+

1

2
σ2X2 ∂

2v

∂X2
= 0, (23)

v(T, x) = g(x).

Using a Feynman Kac type argument the above is solved by v(t,Xt) = Et [g(XT)] and proceeding as before results in
a stochastic representation:

u(t,Xt) = Et [Iτ>T g(XT)] + Et [Iτ≤TFII(τ, uτ)] . (24)

This can again intuitively be seen as a an expected payoff of a derivative restricted to the outcome space where
the counterparty does not default before time T plus an expected payoff restricted to the outcome space where
the counterparty defaults at time τ ≤ T . However this time substituting FII(τ, uτ) pays off and results in the
following:

u(t,Xt) = Et [Iτ>T g(XT)] + Et
[
Iτ≤T (−v(τ,Xτ)− +Rv(τ,Xτ)+)

]
, (25)

= Et [Iτ>T g(XT)] + Et
[
Iτ≤T (−Et [g(XT)]

−
+REt [g(XT)]

+
)
]
.

This stochastic representation can be computed numerically or using a Monte Carlo Method and corresponds with
(21) where an approximation is used at τ1.

11

4 Branching Diffusion

In this section the branch and bound algorithm will be explained. Starting with a simple example of killed Brownian
motion and building up to marked branching diffusion. A branching diffusion process will be defined and conver-
gence conditions will be discussed. Both type I and type II PDE’s will be discussed by approximating F with a
polynomial.

4.1 Killed Brownian Motion

Consider the following example from [Steele, 2001]. Assume for now that u(t, x) is the unique solution of the initial
value problem:

∂u

∂t
=

1

2

∂2u

∂x2
, (26)

u(0, x) = f(x).

The solution can be written as a Gaussian integral, applying a change of variables y = u− x:

u(t, x) =
1√
2πt

∫ ∞
−∞

f(u)e−(u−x)
2/(2t)du, (27)

=
1√
2πt

∫
R
f(x+ y)e−(y)

2/(2t)dy,

= E [f(x+Wt)] .

Now consider the killed process Xt defined as a Brownian motion killed at time τ , a non-negative random variable,
and extend f to

f̃ : (R, I)→ R, (28)

f̃(x, i) =

{
f(x) if i = 0,
0 if i = 1.

Where I = {0, 1} and i ∈ I,

Xt =

{
(Wt, 0) if 0 ≤ t < τ,
(Wτ , 1) if τ ≤ t(coffin state).

(29)

The process Xt ∈ (R, I) is called exponentially killed Brownian motion with instantaneous killing rate β if τ has an
exponential distribution with parameter β (independent of Wt). The question of interest becomes: Is there an initial
value problem satisfied by:

ũ(t, x) = E[f̃((x, 0) +Xt)]. (30)

Note that ũ(0, x) = f̃(x, 0) = f(x), giving a boundary condition. An expression for ∂ũ
∂t remains to be found. Splitting

the expectation gives:

ũ(x, t) = E[f̃((x, 0) +Xt)], (31)

= E[f(x+Wt)Iτ>t] + 0,

= e−βtE[f(x+Wt)].

Working out the partial derivative to t gives:

12

∂ũ

∂t
= e−βt

∂

∂t
E[f(x+Wt)]− βe−βtE[f(x+Wt)], (32)

= e−βt
∂u

∂t
− βũ,

= e−βt
1

2

∂2u

∂x2
− βũ,

=
1

2

∂2

∂x2
e−βtE[f(x+Wt)]− βũ,

=
1

2

∂2ũ

∂x2
− βũ.

Notice how similar this PDE is to (26). Actually Feynman Kac can also be used to get the result immediately.

∂u

∂t
=

1

2

∂2u

∂x2
+ q(t, x)u(t, x), (33)

u(0, x) = f(x).

This can be represented stochastically as:

u(t, x) = E
[
f(x+Wt)e

∫ t
0
q(s,x)ds

]
(34)

4.2 McKean

The following example is from [McKean, 1975] and introduces the a branching diffusion process to solve a similar
PDE.

∂u

∂t
=

1

2

∂2u

∂x2
+ u2 − u, where (35)

u(0, x) = f(x).

The above can be considered as a pricing PDE for a derivative u based on stock X moving according to a regular
Brownian motion in a zero rate world, where at default (or an other exponentially distributed event with parameter
1) the value of the derivative is squared. Similar to (16) the above can be rewritten to a stochastic form with the use
of a Feynman Kac type argument:

u(t, x) = E0,x

[
f(x+ z01(t))

]
e−t + E0,x

[
Iτ≤tu

2(t− s, x+Wτ)
]
. (36)

Now define a branching process zt0 where a single particle starts at the origin at time t0 and begins a standard Brownian
motion. After exponentially distributed time, with parameter β = 1, the particle dies and leaves two descendants who
follow the same process. Let zt01 (t), · · · , zt0n (t) be the location of the particles 1 to n(zt0)(t) generated by the original
particle and its descendants at time t. (The above definition of a simple branching process suffices for this example.
A complete definition and some results on branching processes can be found in section 4.3.) Also let τ be the time of
death of the starting particle. The following derivation will show û(x, t) solves (35):

û(t, x) = E0,x

n(z0)(t)∏
i=1

f(x+ z0i (t))

 . (37)

For now assume ||f ||L∞ ≤ 1, this guarantees boundedness. Splitting the expectation gives:

= E0,x

Iτ>t n(z0)(t)∏
i=1

f(x+ z0i (t))

+ E0,x

Iτ≤t n(z0)(t)∏
i=1

f(x+ z0i (t))

 . (38)

13

Consider the first part on the outcome space restricted to the set where {τ > t}, n(z0)(t) = 1:

E0,x

Iτ>t n(z0)(t)∏
i=1

f(x+ z0i (t))

 = E0,x

[
Iτ>tf(x+ z01(t))

]
. (39)

By Independence,

= E0,x [Iτ>t]E0,x

[
f(x+ z01(t))

]
, (40)

= E0,x

[
f(x+ z01(t))

]
P[τ > t],

= E0,x

[
f(x+ z01(t))

]
e−t.

For the second term in (38) use iterated expectation:

E0,x

Iτ≤t n(z0)(t)∏
i=1

f(x+ z0i (t))

 = E0,x

E0,x

Iτ≤t n(z0)(t)∏
i=1

f(x+ z0i (t))|Fτ

 . (41)

Where Fτ is the information known at time τ , including the death of the first particle. The indicator Iτ≤t is known
at time τ , thus can be taken out of the inner expectation.

= E0,x

Iτ≤tE0,x

n(z0)(t)∏
i=1

f(x+ z0i (t))|Fτ

 . (42)

The inner expectation can be rewritten, the first particle dies at time τ ≤ t and generates two new particles behaving
according to particle branching processes ẑτ (t) and z̃τ (t). Note that these are identical in distribution to ẑ0(s) and
z̃0(s) if s = t− τ and n(z0)(t) equals n(z̃0)(s) + n(ẑ0)(s) in distribution if τ ≤ t:

= E0,x

Iτ≤tE0,x

n(ẑ0)(s)∏
i=1

f(x+ z01(τ) + ẑ0i (s))

n(z̃0)(s)∏
i=1

f(x+ z01(τ) + z̃0i (s))|Fτ

 . (43)

By Independence of ẑ0(s) and z̃0(s) of Fτ this equals the unconditional expectation in the point s and z∗:

= E0,x

Iτ≤tE0,x

n(ẑ0)(s)∏
i=1

f(x+ z∗ + ẑ0i (s))

n(z̃0)(s)∏
i=1

f(x+ z∗ + z̃0i (s))


z∗=z01(τ),s=t−τ

 . (44)

Note that E0,x

[∏n(ẑs)(t)
i=1 f(x+ z01(s) + ẑsi (t))|Fs

]
and E0,x

[∏n(z̃s)(t)
i=1 f(x+ z01(s) + z̃si (t))|Fs

]
are independent and

identically distributed, thus the expectation of the product equals the product of expectations.

= E0,x

Iτ≤tE0,x

n(ẑ0)(s)∏
i=1

f(x+ z∗ + ẑ0i (s))

2

z∗=z01(τ),s=t−τ

 . (45)

ẑ0(s) equals z0(s) in distribution.

= E0,x

Iτ≤tE0,x

n(z0)(s)∏
i=1

f(x+ z∗ + z0i (s))

2

z∗=z01(τ),s=t−τ

 . (46)

14

Using the definition of û and rewriting:

= E0,x

[
Iτ≤tû(s, x+ z∗)2z∗=z01(τ),s=t−τ

]
. (47)

= E0,x

[
Iτ≤tû(t− τ, x+ z01(τ))2

]
.

Now integrate out τ

= E0,x

[∫ t

0

û(t− s, x+ z01(s))2ds

]
. (48)

Adding the two terms together gives:

û(t, x) = E0,x

[
f(x+ z01(t))

]
e−t + E0,x

[∫ t

0

e−sû2(t− s, x+ z01(s))ds

]
. (49)

This is exactly the stochastic representation of u (36), thus û is a solution to (35).

4.3 Branching Particle Process

A branching diffusion process zt0,x0(t) is a stochastic process starting with a single particle at time t0 and location
x0 moving according to the Itô generator L. The particle dies after exponentially distributed time τ , with parameter
β.

P{τ < t} =

∫ t

0

e−β(s)sds (50)

When the particle dies it produces n ≥ 0 descendants at its location, where:

P {n = k} = pk, 0 ≤ pk ≤ 1∀k ∈ Z+,

∞∑
k=0

pk = 1. (51)

The descendant particles behave in the same way as the original particle, id est, moving according to L, dying
after random time τ and producing descendants according to (51). Note that the number of particles can increase
exponentially if

∑∞
k=1 kpk > 1.

4.3.1 Stochastic Rates

In case of a (stochastic) rate process being used, the branching particle process considered, zt,xt,rt , is slightly changed.
If the Itô generator of the equation corresponds to a geometric Brownian motion with parameters µ and σ each particle
zi will move according to:

dzi(t) = ri(t)zi(t)dt+ σzi(t)dWi. (52)

Where each particle will have its own stochastic rate process ri(t), starting with the value of the rate process of the
parent particle at its death.

15

4.3.2 Stochastic Default Rates

If the default rate is not constant but a stochastic parameter, the process is extended to include this. Each particle i
will decay after random time τi, where τi has the following distribution:

P{τi ≤ t} =

∫ t

0

βi(s)e
−βi(s)sds. (53)

Where βi(t) will behave according to its own random process where its starting value is the value of the β of the
parent process at the time of its death, similar to the stochastic rate process.

4.3.3 Immortal Descendants

The branch and bound algorithm for type II problems will often use a slightly different branching particle process
yt0,x0 . This process is defined in the same way as zt0,x0 , however particles of the second generation (the particles
generated by the first decay) will not decay themselves, id est they become immortal.

4.4 Branch and Bound

The branch and bound algorithm is the first attempt to approximate the solution to (16), this requires extending the
technique used in Section 4.2 and using a P∞ approximation, where the coefficients sum to one, of FI .

∞∑
k=0

pku
k(t,Xt) ≈ FI(u), (54)

∞∑
k=0

pk = 1, 0 ≤ pk ≤ 1∀k.

Using this polynomial approximation the type I PDE of (15) is approximated by:

∂u

∂t
(t,Xt) + rXt

∂u

∂x
+ σ2X2

t

1

2

∂2u

∂x2
+ β

(∞∑
k=0

pku
k(t,Xt)− u(t,Xt)

)
= 0, (55)

u(T,XT) = g(XT),
∞∑
k=0

pk = 1, 0 ≤ pk ≤ 1∀k,

β ≥ 0.

Equation (55) can be rewritten to a stochastic form using a Feynman Kac type argument:

u(t,Xt) = Et,x [Iτ>T f(XT)] + Et,x

[
Iτ≤T

∞∑
k=0

pku
k(τ,Xτ)

]
(56)

To approximate the solution of a type I PDE, using FI as payoff at default define a branching particle process zt,Xt

as in section 4.3 using the pk’s from (55), default rate β and the following dynamics for the particles:

dzi(t) = rzi(t)dt+ σzi(t)dWi. (57)

Now consider the following expectation û(t, x) similar to (37):

û(t, x) = Et,x

n(zt,x)(T)∏
i=1

g(zt,xi (T))

 . (58)

16

Assume ||g||L∞ ≤ 1 to guarantee boundedness and split the expectation where τ is the time of death of the original
particle.

= Et,x

Iτ>T n(zt,x)(T)∏
i=1

g(zt,xi (T))

+ Et,x

Iτ≤T n(zt,x)(T)∏
i=1

g(zt,xi (T))

 . (59)

Using a similar argument as before the left part of (59):

Et,x

Iτ>T n(zt,x)(T)∏
i=1

g(zt,xi (T))

 = Et,x [g(XT)] e−β(T−t). (60)

For the second term in (58) use iterated expectations again:

Et,x

Iτ≤T n(zt,x)(T)∏
i=1

g(zt,xi (T))

 = Et,x

Et,x
Iτ≤T n(zt,x)(T)∏

i=1

g(zt,xi (T))|Fτ

 . (61)

The indicator Iτ≤T is Fτ measurable and can be taken out of the inner expectation.

= Et,x

Iτ≤TEt,x
n(zt,x)(T)∏

i=1

g(zt,xi (T))|Fτ

 . (62)

The first particle dies at time τ ≤ T and leaves k descendants with probability pk.

= Et,x

Iτ≤T ∞∑
k=0

pkEt,x

 k∏
j=1

n(zt,x,j)(T)∏
i=1

g(zt,x1 (τ) · zτ,1,ji (T))|Fτ

 . (63)

Where zτ,1,j is the branching particle process corresponding with the j-th descendent of the first particle starting at
time τ and location 1. Note that all the k descendant particle processes are identically independently distributed (
i.i.d.) with the same distribution as zs,1(T), where s = τ , and are independent of Fτ . The conditional expectation
above can now be replaced by an expectation in a point.

= Et,x

Iτ≤T ∞∑
k=0

pkEt,x

 k∏
j=1

n(zs,x,j)(T)∏
i=1

g(z∗ · zs,1,ji (T))


z∗=zt,x1 (τ),s=τ

 . (64)

Al the terms in
∏n(zt,x,j)(T)
i=1 g(z∗ · zs,1,ji (T)) are independent thus the expectation of the product equals the product

of expectations.

= Et,x

Iτ≤T ∞∑
k=0

pk

k∏
j=1

Et,x

n(zs,x,j)(T)∏
i=1

g(z∗ · zs,1,ji (T))


z∗=zt,x1 (τ),s=τ

 . (65)

Using the fact that all zs,1,ji (T) are identically distributed to zs,1i (T).

= Et,x

Iτ≤T ∞∑
k=0

pkEt,x

n(zs,x,)(T)∏
i=1

g(z∗ · zs,1,ji (T))

k
z∗=zt,x1 (τ),s=τ

 (66)

17

Using the definition of û(t, x) gives:

= Et,x

[
Iτ≤T

∞∑
k=0

pkû(z∗, s)k
z∗=zt,x1 (τ),s=τ

]
, (67)

= Et,x

[
Iτ≤T

∞∑
k=0

pkû(zt,x1 , τ)k

]
.

Adding the two terms together gives:

û(t, x) = Et,x [g(XT)] e−β(T−t) + Et,x

[
Iτ≤T

∞∑
k=0

pkû(zt,x1 , τ)k

]
. (68)

This is the stochastic form of (55), thus û(t, x) is a solution. Similarly the Type II PDE (22) can be approximated by
using a polynomial approximation of FII :

∂u

∂t
(t,Xt) + rXt

∂u

∂x
+ σ2X2

t

1

2

∂2u

∂x2
+ β

(∞∑
k=0

pkv
k(t,Xt)− u(t,Xt)

)
= 0, (69)

u(T,XT) = g(XT),
∞∑
k=0

pk = 1, 0 ≤ pk ≤ 1∀k,

β ≥ 0.

Where v is the solution to:

∂v

∂t
(t,Xt) + rXt

∂v

∂x
+ σ2X2

t

1

2

∂2v

∂x2
= 0, (70)

v(T,XT) = g(XT),
∞∑
k=0

pk = 1, 0 ≤ pk ≤ 1∀k,

β ≥ 0.

Equation (69) can be rewritten to a stochastic form by a Feynman Kac type argument:

u(t,Xt) = Et,x [Iτ>T f(XT)] + Et,x

[
Iτ≤T

∞∑
k=0

pkv
k(τ,Xτ)

]
. (71)

To approximate the solution of a type II PDE using FII as payoff at default, define a branching particle process yt,x

as in section 4.3 using the pk’s from (55), default rate β and the following dynamics for the particles:

dyi(t) = ryi(t)dt+ σyi(t)dWi. (72)

Note that in this case the first decay produces immortal descending particles. Now consider the following expectation
û(t, x) similar to (58):

û(t, x) = Et,x

n(yt,x)(T)∏
i=1

g(yt,xi (T))

 . (73)

18

Assume ||g||L∞ ≤ 1 to guarantee boundedness and split the expectation where τ is the time of death of the original
particle.

= Et,x

Iτ>T n(yt,x)(T)∏
i=1

g(yt,xi (T))

+ Et,x

Iτ≤T n(yt,x)(T)∏
i=1

g(yt,xi (T))

 . (74)

The left part is similar to the left part of (59):

Et,x

Iτ>T n(yt,x)(T)∏
i=1

g(zt,xi (T))

 = Et,x [g(XT)] e−β(T−t). (75)

For the second term in (74) use iterated expectations again:

Et,x

Iτ≤T n(yt,x)(T)∏
i=1

g(yt,xi (T))

 = Et,x

Et,x
Iτ≤T n(yt,x)(T)∏

i=1

g(yt,xi (T))|Fτ

 . (76)

The indicator Iτ≤T is Fτ measurable and can be taken out of the inner expectation.

= Et,x

Iτ≤TEt,x
n(yt,x)(T)∏

i=1

g(yt,xi (T))|Fτ

 . (77)

The first particle dies at time τ ≤ T and leaves k immortal descendants with probability pk

= Et,x

Iτ≤T ∞∑
k=0

pkEt,x

 k∏
j=1

n(yt,x,j)(T)∏
i=1

g(yt,x1 (τ) · yτ,1,ji (T))|Fτ

 . (78)

Note that n(yt,x,j)(T) = 1 since these particles will not produce any more particles.

= Et,x

Iτ≤T ∞∑
k=0

pkEt,x

 k∏
j=1

g(yt,x1 (τ) · yτ,1,j1 (T))|Fτ

 . (79)

Each yτ,1,j1 (T) is i.i.d. independent of Fτ . The expectation of the product can be written as the product of expectations
and can be taken together since they are i.i.d.

= Et,x

[
Iτ≤T

∞∑
k=0

pkEt,x
[
g(yt,x1 (τ) · yτ,1,11 (T))|Fτ

]k]
. (80)

Note that yt,x1 (τ) · yτ,1,11 (T) is just XT .

= Et,x

[
Iτ≤T

∞∑
k=0

pkEt,x [g(XT)|Fτ]
k

]
. (81)

Using the definition of v and the fact that v it is a martingale gives the desired result.

19

= Et,x

[
Iτ≤T

∞∑
k=0

pkEt,x [v(τ,Xτ |Fτ]
k

]
, (82)

= Et,x

[
Iτ≤T

∞∑
k=0

pkv(τ,Xτ)k

]
. (83)

Adding the two terms together gives:

u(t,Xt) = Et,x [Iτ>T f(XT)] + Et,x

[
Iτ≤T

∞∑
k=0

pkv
k(τ,Xτ)

]
. (84)

This is the stochastic representation of (69), thus û solves the PDE.

4.5 Marked Branch and Bound

The marked branch and bound approach, as described by [?] puts no restrictions on the coefficients in the approxi-
mating polynomial. This allows for greater flexibility in choosing the polynomial, however a finite polynomial should
be used. This is not really a limitation since it has to be implemented, so a finite order polynomial will be used
anyway. Determining the polynomial to be used and possible bounds on the error introduced by this approximating
polynomial are given in Section 5. Start with the following type I PDE:

∂u

∂t
(x, t) + rXt

∂x

∂ux
1(x, t) +

1

2
σ2X2

t

∂2u

∂x2
(x, t) + β

(
m∑
k=0

aku
k(x, t)− u(x, t)

)
= 0, (85)

u(T, x) = f(x),

β ≥ 0.

Where
∑m
k=0 aku

k(x, t) ≈ FI(u). Now choose probabilities such that

pk =
|ak| · ||g||k∞∑∞
i=0 |ai| · ||g||i∞

. (86)

The above choice of pk’s is optimal as it will minimize the variance of ũ [Henry-Labordére et al., 2013]. Equation (85)
can be written in a stochastic form using a Feynman Kac like argument:

u(t, x) = Et,x [f(XT)] e−β(T−t) + Et,x

[
Iτ<T

m∑
k=0

akû
k(τ,Xτ)

]
. (87)

Define a branching particle process zt,Xt as before using the pk’s from (86) and the following dynamics:

dzi(t) = rzi(t)dt+ σzi(t)dW
i
t . (88)

Now consider the following expectation û(t, x) similar to the previous section:

û(t, x) = Et,x

n(zt,x)(T)∏
i=1

g(zt,xi (T))

m∏
j=1

(
aj
pj

)#j(z
t,x)(T)

 . (89)

Where #j(z
t,x)(T) equals the total number of events, leaving j new particles, of the whole branching particle process

zt,x up to and including time T . Assume ||g||L∞ ≤ 1 to guarantee boundedness and split the expectation where τ is
the time of death of the original particle.

20

= Et,x

Iτ>T n(zt,x)(T)∏
i=1

g(zt,xi (T))

m∏
j=1

(
aj
pj

)#j(z
t,x)(T)

+ Et,x

Iτ≤T n(zt,x)(T)∏
i=1

g(zt,xi (T))

m∏
j=1

(
aj
pj

)#j(z
t,x)(T)

 . (90)

Using a similar argument as before the left part of (89):

Et,x

Iτ>T n(zt,x)(T)∏
i=1

g(zt,xi (T))

 = Et,x [g(XT)] e−β(T−t). (91)

For the second part use the tower property and take Iτ≤T out of the inner expectation:

Et,x

Iτ≤T n(zt,x)(T)∏
i=1

g(zt,xi (T))

m∏
j=1

(
aj
pj

)#j(z
t,x)(T)

 = Et,x

Iτ≤TEt,x
n(zt,x)(T)∏

i=1

g(zt,xi (T))

m∏
j=1

(
aj
pj

)#j(z
t,x)(T)

|Fτ

 .
(92)

The first particle dies at time τ ≤ T and leaves k descendants:

= Et,x

Iτ≤T m∑
k=0

pk
ak
pk

Et,x

 k∏
j=1

n(zτ,x,j)(T)∏
i=1

(
g(zt,x1 (τ) · zτ,1,ji (T))

m∏
l=1

(
al
pl

)#l(z
τ,1,j)(T)

)
|Fτ

 . (93)

The braces over the term of the second product are added to indicate that the third product is part of it. Where zτ,1,j

is the branching particle process corresponding with the j-th descendant of the first particle, starting at time τ and
location 1. Note the following regarding an event at time τ leaving k particles:

#l(z
t,x)(T) =

k∑
j=1

#l(z
τ,1,j)(T) + Ik=l, ∀l ∈ {0, 1, . . . , k}. (94)

Note that all the k descendant particle processes are i.i.d. with the same distribution as zs,1(T), where s = τ , and are
independent of Fτ . The conditional expectation can now be replaced by an expectation in a point as before.

= Et,x

Iτ≤T m∑
k=0

akEt,x

 k∏
j=1

n(zs,x,j)(T)∏
i=1

(
g(z∗ · zs,1,ji (T))

m∏
l=1

(
al
pl

)#l(z
s,1,j)(T)

)
z∗=zt,x1 (τ),s=τ

 . (95)

Al the terms of the product
∏k
j=1 . . . i.i.d thus the expectation of the product equals the product of expectations.

= Et,x

Iτ≤T m∑
k=0

akEt,x

n(zs,x,j)(T)∏
i=1

(
g(z∗ · zs,1,1i (T))

m∏
l=1

(
al
pl

)#l(z
s,1,1)(T)

)k
z∗=zt,x1 (τ),s=τ

 . (96)

Using the definition of û(t, x) gives:

= Et,x

[
Iτ≤T

m∑
k=0

akû(s, z∗)k
z∗=zt,x1 (τ),s=τ

]
, (97)

= Et,x

[
Iτ≤T

m∑
k=0

akû(τ, zt,x1 (τ))k

]
.

21

Adding the two terms together gives:

u(t, x) = Et,x [g(XT)] e−β(T−t) + Et,x

[
Iτ<T

m∑
k=0

akû
k(τ,Xτ)

]
. (98)

This is the stochastic form of (85), thus û(t, x) is the solution for the type I PDE. Now consider the type II PDE:

∂u

∂t
(x, t) + rXt

∂u

∂x
(x, t) +

1

2
σ2X2

t

∂2u

∂x2
(x, t) + β

(
m∑
k=0

akv
k(x, t)− u(x, t)

)
= 0, (99)

u(T, x) = g(x),

β ≥ 0.

Where
∑m
k=0 akv

k(x, t) ≈ FII(v). With v the solution of:

∂v

∂t
(x, t) + rXt

∂v

∂x
(x, t) +

1

2
σ2X2

t

∂2v

∂x2
(x, t) = 0, (100)

v(T, x) = g(x).

(101)

Now choose the same probabilities as for the Type I PDE. Than (99) can be written in a stochastic form using a
Feynman Kac like argument:

u(t, x) = Et,x [g(XT)] e−β(T−t) + Et,x

[
Iτ<T

m∑
k=0

akv
k(τ,Xτ)

]
. (102)

Define a branching particle process yt,Xt , with immortal descendants, as before using the pk’s from (86) and the
following dynamics:

dyi(t) = ryi(t)dt+ σyi(t)dW
i
t . (103)

Now consider the following expectation û(t, x):

û(t, x) = Et,x

n(yt,x)(T)∏
i=1

g(yt,xi (T))

m∏
j=1

(
aj
pj

)#j(y
t,x)(T)

 . (104)

Where #j(y
t,x)(T) equals the total number of events, leaving j new particles, of the whole branching particle process

yt,x up to and including time T . Assume ||g||L∞ ≤ 1 to guarantee boundedness and split the expectation where τ is
the time of death of the original particle.

= Et,x

Iτ>T n(yt,x)(T)∏
i=1

g(yt,xi (T))

m∏
j=1

(
aj
pj

)#j(y
t,x)(T)

+ Et,x

Iτ≤T n(yt,x)(T)∏
i=1

g(yt,xi (T))

m∏
j=1

(
aj
pj

)#j(y
t,x)(T)

 . (105)

Using a similar argument as before the left part of (104):

Et,x

Iτ>T n(yt,x)(T)∏
i=1

g(yt,xi (T))

 = Et,x [g(XT)] e−β(T−t). (106)

22

For the second part use the tower property and take Iτ≤T out of the inner expectation:

Et,x

Iτ≤T n(yt,x)(T)∏
i=1

g(yt,xi (T))

m∏
j=1

(
aj
pj

)#j(y
t,x)(T)

 = Et,x

Iτ≤TEt,x
n(yt,x)(T)∏

i=1

g(yt,xi (T))

m∏
j=1

(
aj
pj

)#j(y
t,x)(T)

|Fτ

 .
(107)

The first particle dies at time τ ≤ T and leaves k immortal descendants:

= Et,x

Iτ≤T m∑
k=0

pk
ak
pk

Et,x

 k∏
j=1

g(yt,x1 (τ) · yτ,1,j1 (T))|Fτ

 . (108)

Proceeding as before by i.i.d. property and martingale property of v.

= Et,x

[
Iτ≤T

m∑
k=0

akv(τ,Xτ)k

]
. (109)

Adding the two terms together gives:

û(t, x) = Et,x [g(XT)] e−β(T−t) + Et,x

[
Iτ<T

m∑
k=0

akv
k(τ,Xτ)

]
. (110)

The above equation is identical to (102), thus û solves the type II PDE (99).

4.6 Convergence Considerations and Conditions

The condition on g : ||g||∞ ≤ 1 can easily be relaxed by considering ũ u
||g||∞ with ũ(T,XT) = | g(XT)||g||∞ | ≤ 1. This implies

that any bounded payoff g can be used (possible rescaled) by the branch and bound algorithms. In practice this means
that bounding the payoff of a derivate by some large number N and possibly rescaling guarantees functionality of the
algorithm.

23

5 Polynomial Approximation

The branch and bound approaches discussed in the previous section are valid approximations given that x+ can be
approximated well by a polynomial Pn(x) on an interval [−a, a]:

Pn(x) =

n∑
i=0

cix
i. (111)

This section will deal with finding such an approximating polynomial as well as lower and upper bounds for the error
made by the approximation. Several animations are included in the digital version. Readers of a printed version are
directed to appendix C for snapshots of the frames.

5.1 Interval

To find the optimal polynomial Pn the L2[−a, a] norm of the difference is minimized. Note that minimizing L2
2[−a, a]

is equivalent since a norm is always greater or equal to zero and f(x) = x2 is nondecreasing on R+. Suppose that Pn
is the optimal polynomial on [−1, 1], using aPn(xa) to approximate x+ on [−a, a]:

min
c0...cn

||aPn(
x

a
)− x+||2L2[−a,a] = min

c0...cn

∫ a

−a

(
aPn

(x
a

)
− a

(x
a

)+)2

dx, (112)

= a2 min
c0...cn

∫ a

−a

(
Pn

(x
a

)
−
(x
a

)+)2

dx,

= a2 min
c0...cn

∫ 1

−1

(
Pn(x)− x+

)2 1

a
dx,

= a min
c0...cn

∫ 1

−1

(
Pn(x)− x+

)2
dx,

= a min
c0...cn

||Pn(x)− x+||2L2[−1,1].

The above shows that it is sufficient to have the polynomial approximation Pn on [−1, 1], since aPn(xa) can be used
on [−a, a].

5.2 Example

The minimization can be solved exactly by working out the integral and solving for all partial derivatives equal to
zero. Consider the following worked out example for P4:

||x+ − P4(x)||2L2[−1,1] = ||x+ − (c0 + c1x+ c2x
2 + c3x

3 + c4x
4)||L2(−1,1), (113)

=

∫ 1

−1
(x+ − (c0 + c1x+ c2x

2 + c3x
3 + c4x

4))2dx,

=

∫ 0

−1
(c0 + c1x+ c2x

2 + c3x
3 + ex4)2dx+

∫ 1

0

(c0 + (c1 − 1)x+ c2x
2 + c3x

3 + c4x
4)2dx,

=
1

3
− c0 + 2c20 −

2

3
c1 +

2

3
c21 −

1

2
c2 +

2

5
c22 −

2

5
c3 +

2

7
c23 −

1

3
c4 +

2

9
c24 +

4

3
c0c2 +

4

5
c0c4 +

4

5
c1c3 +

4

7
c2c4.

Taking partial derivatives equal to zero gives a solvable system of five linear equations and five unknowns :

24

∂

∂c0
= −1 + 4c0 +

4

3
c2 +

4

5
c4 = 0 ⇒ c0 =

15

256
, (114)

∂

∂c1
= −2

3
+

4

3
c1 +

4

5
c3 = 0 ⇒ c1 =

1

2
,

∂

∂c2
= −1

2
+

4

5
c2 +

4

3
c0 +

4

7
c4 = 0 ⇒ c2 =

105

128
,

∂

∂c3
= −2

5
+

4

7
c3 +

4

5
c1 = 0 ⇒ c3 = 0,

∂

∂c4
= −1

3
+

4

9
c4 +

4

5
c0 +

4

7
c2 = 0 ⇒ c4 = −105

256
.

Generalizing this for any n, up to n = 25, gives the polynomial approximation given in Figure 1. Note that higher
order approximation can easily be constructed, however problems occur due to machine precision, especially when the
approximation is scaled to a larger sized interval.

Figure 1: Pn(x) approximation of x+ on [−1, 1]

The polynomial approximation performs well in general, however it struggles around x = 0 because of the discontinuity
in the derivative of x+ at zero. Note that most functions can be approximated this way. [Weierstrass, 1885] gives
convergence in L∞ norm on [-1,1] for all continuous functions, this implies L2 norm convergence on a [-1,1].

5.2.1 Two Sided Payoffs

If the underlying derivative has a two sided payoff x+ is no longer sufficient and the following function will need to be
approximated:

f(x) = Rx+ − x−. (115)

If the counterparty defaults we are expected to pay the full value of the derivative if it has a negative value from our
perspective, while we expect to receive a portion of the money owned to us if the counterparty defaults. Note that
x− = (−x)+ thus if Pn is the polynomial used to approximate x+ then

f̃n = RPn(x)− Pn(−x). (116)

25

Note that f̃n is optimal if Pn is optimal:

||f̃n −Rx+ − x−||2L2[−1,1] =

∫ 0

−1
(RPn(x)− Pn(−x)− x)

2
dx+

∫ 1

0

(RPn(x)− Pn(−x)−Rx)
2

dx, (117)

=

∫ 0

−1
R2P 2

n(x) + P 2
n(−x) + x2 − 2RPn(x)Pn(−x)− 2xRPn(x) + 2xPn(−x)dx

+

∫ 1

0

R2P 2
n(x) + P 2

n(−x) +R2x2 − 2xR2Pn(x)Pn(−x)− 2xRPn(x) + 2xRPn(−x)dx,

= R2

∫ 0

−1
P 2
n(x)dx+

∫ 0

−1
P 2
n(−x) + x2 + 2xPn(−x)dx

+R2

∫ 1

0

P 2
n(x) + x2 − 2xPn(x)dx+

∫ 1

0

P 2
n(−x)dx,

= (R2 + 1)

(∫ 0

−1
P 2
n(x)dx+

∫ −1
0

P 2
n(x) + x2 − 2xPn(x)dx

)
,

= (R2 + 1)

∫ 1

−1

(
Pn(x)− x+

)2
dx,

= (R2 + 1)||Pn(x)− x+||2L2[−1,1].

An animation of the approximations and errors made, using R = 0.4, is given below:

Figure 2: f̃n approximation of Rx+ − x− on [−1, 1]

5.3 Bounds

To get an estimate of the error made using the polynomial approximation in the previous section, u+ or any other
function can also be approximated from below and above by polynomials Pn and Pn, by minimizing the distance as
before and adding constraints.

min ||x+ − Pn)||2L2[−1,1] subject to

∫ 1

−1
IPn<x+dx = 0, (118)

min ||x+ − Pn)||2L2[−1,1] subject to

∫ 1

−1
IPn>x+dx = 0. (119)

[Weierstrass, 1885] guarantees convergence again. If f(x) = Rx+ − x− can be approximated to within ε in L∞ norm
on [-1,1] by fn given n sufficiently large. Than fn− ε is a lower bound with error max 2ε in L∞ norm on [-1,1] for any
ε. Approximations from above can be made similarly. An analytic solution of the minimization is no longer available,
however if the problem is discretized it can be rewritten in a more manageable form. Instead of working with L2[−1, 1],
l2 used on the discretized, x0, x1, · · · , xm interval [-1,1]. For the approximation from below this results in:

26

min

m∑
i=0

(x+i − Pn(xi))
2, subject to Pn(xi) ≤ x+i ,∀i ∈ {0, 1, · · · ,m}, (120)

min

m∑
i=0

(x+i − (c0 + c1xi + c2x
2
i + · · · cnxni))2, subject to c0 + c1xi + c2x

2
i + · · · cnxni ≤ x+i ,∀i ∈ {0, 1, · · · ,m}.

Matrix notation:

min

m∑
i=0

[
c0 c1 c2 · · · cn

]


1 xi x2i · · · xni
xi x2i x3i · · · xn+1

i

x2i x3i x4i · · · xn+2
i

...
...

...
. . .

...
xni xn+1

i xn+2
i · · · x2ni




c0
c1
c2
...
cn

+ 2


−x+i
−(x+i)2

−(x+i)3

...
−(x+i)n



T 
c0
c1
c2
...
cn

+ (x+i)2, (121)

subject to


1 x1 x21 · · · xn1
1 x2 x22 · · · xn2
1 x3 x23 · · · xn3
...

...
...

. . .
...

1 xm x2m · · · xnm




c0
c1
c2
...
cn

 ≤

x+0
x+1
x+2
...
x+m

 .

The last term to be minimized is independent of c so can be ignored. Dividing the objective function by 2 and
summing the matrices results in the following form for Pn and Pn:

min
1

2
cTHc + vT c, subject to Ac ≤ b, (122)

min
1

2
cTHc + vT c, subject to −Ac ≤ −b.

Where:

Hj,k = Hk,j =

m∑
i=0

xj+k−2i , (123)

Aj,k = xk−1j .

The form in (122), with H symmetric, is well known and can be efficiently approximated by quadprog in Matlab for
example, see [Mehrotra, 1992]. The resulting approximations are given below:

Figure 3: Pn and Pn approximation of x+ on [−1, 1]

Figure 3 shows the errors made by the approximating polynomials Pn, Pn and Pn. The smoothness of these polynomials
guarantees that the constraints are not violated to0 much in between discretization points.

27

5.3.1 Bounds on Two Sided Payoffs

If Pn(x) is an approximation from below of x+, then −Pn(−x) is an approximation from above of x−, therefore f̃n
can be bounded as follows:

f
n
(x) = RPn(x)− Pn(−x), (124)

fn(x) = RPn(x)− Pn(−x).

A bound on the error made using the polynomial approximation f̃n can be obtained by implementing a branch and
bound algorithm for both of the above bounds and examining the difference between the two.

28

6 Interest Rates

In this section the marked branch and bound algorithm will be extended to include a stochastic rate process. A
product of payoff functions taking discounting into account will be used and shown to solve type I and type II PDE’s
including stochastic interest rates.

Consider the following type I PDE, similar to (13):

∂u

∂t
(t,Xt) + r(t)Xt

∂u

∂X
(t,Xt) + σ2X2

t

1

2

∂2u

∂X2
(t,Xt) + β(FI(u(t,Xt))− u(t,Xt))− r(t)u(t,Xt) = 0, (125)

u(T,XT) = g(x).

Now approximate FI by a polynomial as before:

∂u

∂t
(t,Xt) + r(t)Xt

∂u

∂X
(t,Xt) + σ2X2

t

1

2

∂2u

∂X2
(t,Xt) + β

(
m∑
k=1

aku
k(t,Xt)− u(t,Xt)

)
− r(t)u(t,Xt) = 0, (126)

u(T,XT) = g(x).

The solution to (126) can be represented stochastically by using a Feynman Kac type derivation.

u(t,Xt) = Et,x
[
g(XT)e−

∫ T
t
r(s)ds

]
e−β(T−t) + Et,x

[
Iτ<T e

−
∫ τ
t
r(s)ds

m∑
k=0

aku
k(τ,Xτ)

]
. (127)

The above can intuitively be interpreted as the value of the derivative u equals the expected discounted payoff times
the probability that the counterparty does not default before maturity T plus a discounted payoff at default times the
probability of the counterparty defaulting at that time. The marked branch and bound algorithm is extended to use
the following expected product of discounted payoffs:

û(t,Xt) = Et,x

n(zt,xt,rt)(T)∏
i=1

g(zt,xt,rti (T))

m∏
j=1

(
aj
pj

)#j(z
t,xt,rt)(T)

e−
∫ T
t

∑n(zt,xt,rt)(s)
h=1 rh(z

t,xt,rt)(s)ds

 . (128)

Where rh(zt,xt,rt)(s) represents the rate process corresponding with the h-th particle of the particle process zt,xt,rt

at time s. Using pk’s as defined in Section 4.5, a branching particle process zt,xt,rt with the following dynamics for
zi:

dzi(t) = ri(t)zi(t)dt+ σzi(t)dW
i
t , (129)

and one of the following dynamics for the corresponding ri as defined in [Brigo and Mercurio, 2006] and [Hull,
2012].

Constant dr(t) = 0, r(t0) = r(t) = r0 > 0, (130)

Hull White dr(t) = κ(θ − r(t))dt+ ηdWQ
r , r(t0) = r0 > 0, (131)

CIR dr(t) = κ(θ − r(t))dt+ η
√
r(t)dWQ

r , r(t0) = r0 > 0. (132)

For the purpose of this thesis the stochastic rate processes above suffice. The aim is to show that the marked branch
and bound algorithm can be extended to include a stochastic rate process and subsequent discounting. Note that the
Hull White and CIR process can be extended to fit a whole market curve by introducing a time dependency in the
long term mean, θ(t). Proceeding as in Section 4.5, assume ||g||L∞ ≤ 1, the expectation in (128) is split.

29

û(t,Xt) = Et,x

Iτ>T n(zt,xt,rt)(T)∏
i=1

g(zt,xi (T))

m∏
j=1

(
aj
pj

)#j(z
t,x)(T)

e−
∫ T
t

∑n(zt,xt,rt)(s)
h=1 rh(z

t,xt,rt)(s)ds

 , (133)

+ Et,x

Iτ≤T n(zt,xt,rt)(T)∏
i=1

g(zt,xi (T))

m∏
j=1

(
aj
pj

)#j(z
t,x)(T)

e−
∫ T
t

∑n(zt,xt,rt)(s)
h=1 rh(z

t,xt,rt)(s)ds

 .
Using a similar argument as before the left part of (128) can be simplified considerably since it deals with only a single
particle:

Et,x

Iτ>T n(zt,xt,rt)(T)∏
i=1

g(zt,xt,rti (T))

m∏
j=1

(
aj
pj

)#j(z
t,xt,rt)(T)

e−
∫ T
t

∑n(zt,xt,rt)(s)
h=1 rh(z

t,xt,rt)(s)ds

 , (134)

= Et,x
[
g(XT)e−

∫ T
t
r(s)ds

]
e−β(T−t).

For the second part use the tower property and take Iτ≤T out of the inner expectation:

Et,x

Iτ≤TEt,x
n(zt,xt,rt)(T)∏

i=1

g(zt,xt,rti (T))

m∏
j=1

(
aj
pj

)#j(z
t,xt,rt)(T)

e−
∫ T
t

∑n(zt,xt,rt)(s)
h=1 rh(z

t,xt,rt)(s)ds|Fτ

 . (135)

The first particle dies at time τ ≤ T and leaves k descendants:

Et,x

[
Iτ≤T

m∑
k=0

pk
ak
pk
e−

∫ τ
t
r(zt,xt,rt)(s)ds ·

Et,x

 k∏
j=1

n(zτ,x,j)(T)∏
i=1

(
g(zt,xt,rt1 (τ) · zτ,1,ji (T))

m∏
l=1

(
al
pl

)#l(z
τ,1,j)(T)

e−
∫ T
τ

∑n(zτ,1,j)(s)
h=1 rh(z

τ,1,j)(s)ds

)
|Fτ

 . (136)

Where zτ,1,j represents the j-th descendant of zt,xt,rt1 defaulting at time τ , with a corresponding rate process rj(z
t,1,j)

starting with the value of the parent particle at default rj(z
t,1,j)(τ) = r1(zt,xt,rt)(τ). Note the following regarding the

discounting term, given that the first particle dies at time τ and leaves k descendants:

e−
∫ T
t

∑n(zt,xt,rt)(s)
h=1 rh(z

t,xt,rt)(s)ds = e−
∫ τ
t
r1(z

t,xt,rt)(s)ds
k∏
j=1

e−
∫ T
τ

∑n(zτ,1,j)(s)
h=1 rh(z

τ,1,j)(s)ds. (137)

Up to time τ there is only a single particle, while after time τ multiple particle processes exist, possibly descending
new particles. Now note that all the k descendant particle processes are i.i.d. with the same distribution as zs,1,rs(T),
where s = τ and are independent of Fτ . The conditional expectation can now be replaced by an expectation in a
point as before.

Et,x

[
Iτ≤T

m∑
k=0

ake
−

∫ τ
t
r(zt,xt,rt)(s)ds ·

Et,x

 k∏
j=1

n(zs,x,j)(T)∏
i=1

(
g(z∗ · zs,1,ji (T))

m∏
l=1

(
al
pl

)#l(z
s,1,j)(T)

e−
∫ T
τ

∑n(zs,1,j)(s)
h=1 rh(z

s,1,j)(s)ds

)
z∗=z

t,xt,rt
1 (τ),s=τ

 . (138)

Al the terms of the product
∏k
j=1 . . . above are i.i.d thus the expectation of the product equals the product of

expectations.

30

Et,x

[
Iτ≤T

m∑
k=0

ake
−

∫ τ
t
r(zt,xt,rt)(s)ds ·

Et,x

n(zs,x,1)(T)∏
i=1

(
g(z∗ · zs,1,1i (T))

m∏
l=1

(
al
pl

)#l(z
s,1,1)(T)

e−
∫ T
τ

∑n(zs,1,1)(s)
h=1 rh(z

s,1,1)(s)ds

)k
z∗=z

t,xt,rt
1 (τ),s=τ

 . (139)

Using the definition of û(t, x) gives:

= Et,x

[
Iτ≤T

m∑
k=0

ake
−

∫ τ
t
r(zt,xt,rt)(s)dsû(s, z∗)k

z∗=z
t,xt,rt
1 (τ),s=τ

]
, (140)

= Et,x

[
Iτ≤T

m∑
k=0

ake
−

∫ τ
t
r(zt,xt,rt)(s)dsû(τ, zt,x1 (τ))k

]
.

Adding the two terms together gives:

u(t,Xt) = Et,x
[
g(XT)e−

∫ T
t
r(s)ds

]
e−β(T−t) + Et,x

[
Iτ<T e

−
∫ τ
t
r(s)ds

m∑
k=0

aku
k(τ,Xτ)

]
. (141)

This is the stochastic form of (146), thus û(t, x) is the solution for the type I PDE (126). Now consider the type II
PDE extended in a similar way to (125):

∂u

∂t
(t,Xt) + r(t)Xt

∂u

∂X
(t,Xt) + σ2X2

t

1

2

∂2u

∂X2
(t,Xt) + β(FII(v(t,Xt))− u(t,Xt))− r(t)u(t,Xt) = 0, (142)

u(T,XT) = g(X).

Where v is the solution to the Black and Scholes equation:

∂v

∂t
(t,Xt) + r(t)Xt

∂v

∂X
(t,Xt) + σ2X2

t

1

2

∂2v

∂X2
(t,Xt)− r(t)v(t,Xt) = 0, (143)

v(T,XT) = g(X).

v can be represented stochastically, by Feynman Kac as :

v(t, x) = Et,x
[
g(XT)e−

∫ T
t
r(s)ds

]
. (144)

Approximate FII by a polynomial as before:

∂u

∂t
(t,Xt) + r(t)Xt

∂u

∂X
(t,Xt) + σ2X2

t

1

2

∂2u

∂X2
(t,Xt) + β

(
m∑
k=1

akv
k(t,Xt)− u(t,Xt)

)
− r(t)u(t,Xt) = 0, (145)

u(T,XT) = g(x).

The solution to (145) can be represented stochastically by using a Feynman Kac type derivation.

u(t,Xt) = Et,x
[
g(XT)e−

∫ T
t
r(s)ds

]
e−β(T−t) + Et,x

[
Iτ<T e

−
∫ τ
t
r(s)ds

m∑
k=0

akv
k(τ,Xτ)

]
. (146)

31

Now choose probabilities as for the Type I PDE and define a branching particle process yt,xt,rt , with immortal
descendants, as before using the pk’s from (86) and the following dynamics for the particles:

dyi(t) = r(t)yi(t)dt+ σyi(t)dW
i
t . (147)

Where ri(t) behaves according to (130), (131) or (132). Consider the following expectation û(t, x):

û(t,Xt) = Et,x

n(yt,xt,rt)(T)∏
i=1

g(yt,xt,rti (T))

m∏
j=1

(
aj
pj

)#j(y
t,xt,rt)(T)

e−
∫ T
t

∑n(yt,xt,rt)(s)
h=1 rh(y

t,xt,rt)(s)ds

 . (148)

Assume ||g||L∞ ≤ 1 to guarantee boundedness and split the expectation where τ is the time of death of the original
particle.

û(t,Xt) = Et,x

Iτ>T n(yt,xt,rt)(T)∏
i=1

g(yt,xt,rti (T))

m∏
j=1

(
aj
pj

)#j(y
t,xt,rt)(T)

e−
∫ T
t

∑n(yt,xt,rt)(s)
h=1 rh(y

t,xt,rt)(s)ds


+ Et,x

Iτ≤T n(yt,xt,rt)(T)∏
i=1

g(yt,xt,rti (T))

m∏
j=1

(
aj
pj

)#j(y
t,xt,rt)(T)

e−
∫ T
t

∑n(yt,xt,rt)(s)
h=1 rh(y

t,xt,rt)(s)ds

 . (149)

Using a similar argument as before the left part equals:

Et,x
[
g(XT)e−

∫ T
t
r(s)ds

]
e−β(T−t).

For the second part use the tower property and take Iτ≤T out of the inner expectation:

Et,x

Iτ≤TEt,x
n(yt,xt,rt)(T)∏

i=1

g(yt,xt,rti (T))

m∏
j=1

(
aj
pj

)#j(y
t,xt,rt)(T)

e−
∫ T
t

∑n(yt,xt,rt)(s)
h=1 rh(z

t,xt,rt)(s)ds|Fτ

 . (150)

The first particle dies at time τ ≤ T and leaves k immortal descendants:

Et,x

[
Iτ≤T

m∑
k=0

pk
ak
pk
e−

∫ τ
t
r(yt,xt,rt)(s)ds ·

Et,x

 k∏
j=1

n(yτ,x,j)(T)∏
i=1

(
g(yt,xt,rt1 (τ) · yτ,1,ji (T))

m∏
l=1

(
al
pl

)#l(y
τ,1,j)(T)

e−
∫ T
τ

∑n(yτ,1,j)(s)
h=1 rh(y

τ,1,j)(s)ds

)
|Fτ

 . (151)

These descendants produce no more particles themselves, n(yτ,x,j)(T) = 1.

Et,x

Iτ≤T m∑
k=0

pk
ak
pk
e−

∫ τ
t
r(yt,xt,rt)(s)dsEt,x

 k∏
j=1

g(yt,xt,rt1 (τ) · yτ,1,ji (T))e−
∫ T
τ
r1(y

τ,1,1)(s)ds|Fτ

 . (152)

Proceeding as before by i.i.d. property and martingale property of v.

= Et,x

[
Iτ≤T

m∑
k=0

ake
−

∫ τ
t
r(yt,xt,rt)(s)dsv(τ,Xτ)k

]
. (153)

32

Adding the two terms together gives:

û(t,Xt) = Et,x
[
g(XT)e−

∫ T
t
r(s)ds

]
e−β(T−t) + Et,x

[
Iτ<T e

−
∫ τ
t
r(s)ds

m∑
k=0

akv
k(τ,Xτ)

]
. (154)

Identical to (146), thus û solves the type II PDE (142) and a product expression is found incorporating discounting
to solve PDE’s (125) and (142) of type I and type II.

33

7 Analytical Results

In this section analytical solutions of u as function of v, with u and v as in the previous section, will be derived in the
case of one sided payoffs, g ≥ 0 for both type I and type II. These can be used in combination with analytic solutions
of v when available to get exact analytical solutions for type I and type II problems to evaluate the results of the
branching algorithms. Note that if g ≤ 0, a one sided negative payoff at maturity T , u = v.

7.1 Type I

For type I PDE’s with one sided positive payoffs the polynomial approximation of FI can be simplified to Ru, since
Ru = −u− +Ru if u ≥ 0. Consider the stochastic representation of the type I PDE (125):

u(t,Xt) = Et,x
[
g(XT)e−

∫ T
t
r(s)ds

]
e−β(T−t) + Et,x

[
Iτ<T e

−
∫ τ
t
r(s)dsFI(uτ)

]
. (155)

Recognize the first part of the above as the stochastic representation of v as defined in (142).

u(t,Xt) = v(t,Xt)Et,Xt [Iτ1>T] + Et,Xt
[
Iτ1<T e

−
∫ τ1
t r(s)dsRu(τ1, Xτ1)

]
. (156)

Where τi = t+
∑i
j=1 τ

′
i with τ ′i i.i.d. with an exponential distribution with parameter β. Continuing with the iteration

first used in Section 3 and using the martingale property of discounted v results in:

= v(t,Xt)Et,Xt [Iτ1>T] +REt,Xt
[
Iτ1<T e

−
∫ τ1
t r(s)dsu(τ1, Xτ1)

]
, (157)

= v(t,Xt)Et,Xt [Iτ1>T] +REt,Xt
[
Iτ1<T e

−
∫ τ1
t r(s)ds

(
v(τ1, Xτ1)Eτ1,Xτ1 [Iτ2>T] +REτ1,Xτ1

[
Iτ2<T e

−
∫ τ2
τ1

r(s)ds
u(τ2, Xτ2)

])]
,

= v(t,Xt)Et,Xt [Iτ1>T] +Rv(t,Xt)Et,Xt [Iτ2>T] +R2Et,Xt [Iτ2>Tu(τ2, Xτ2)] ,

=

∞∑
i=0

Riv(t,Xt)Et,Xt
[
Iτi<T<τi+1

]
.

Note that Et,Xt
[
Iτi<T<τi+1

]
equals a Poisson distribution with parameter β(T − t).

u(t,Xt) = v(t,Xt)E [Rp] . (158)

Where p is Poisson distributed with parameter β. Rewriting gives the definition of the characteristic function φP
evaluated at −i log(R). Using the known characteristic function of a Poisson variable gives:

E [Rp] = E
[
elog(R)p

]
, (159)

= φp(−i log(R)),

= eβ(T−t)(e
i(−i log(R))),

= eβ(T−t)(R−1).

Applying the above gives the following if g is a nonnegative payoff function at maturity:

u(t,Xt) = eβ(T−t)(R−1)v(t,Xt). (160)

34

7.2 Type II

Similarly to the previous section, type II PDE’s with one sided positive payoffs allow the polynomial approximation
of FII to be simplified to Rv, since Rv = −v− + Rv if u ≥ 0. Consider the stochastic representation of the type II
PDE (142):

u(t,Xt) = Et,x
[
g(XT)e−

∫ T
t
r(s)ds

]
e−β(T−t) + Et,x

[
Iτ<T e

−
∫ τ
t
r(s)dsFII(vτ)

]
. (161)

Recognize the first part as the stochastic representation of v as defined in (142) and integrate against the density of
τ in the second part.

u(t,Xt) = Et,x
[
g(XT)e−

∫ T
t
r(s)ds

]
e−β(T−t) + Et,x

[
Iτ<T e

−
∫ τ
t
r(s)dsRv(τ,Xτ)

]
, (162)

= v(t,Xt)e
−β(T−t) +REt,x

[∫ T

t

βe−β(z−s)e−
∫ z
t
r(s)dsv(s,Xs)dz

]
.

Assuming g is bounded as before, integration and expectation can be interchanged by boundedness of the inner
term.

u(t,Xt) = v(t,Xt)e
−β(T−t) +R

∫ T

t

Et,x
[
βe−β(z−s)e−

∫ z
t
r(s)dsv(s,Xs)

]
dz, (163)

= v(t,Xt)e
−β(T−t) +R

∫ T

t

βe−β(z−s)Et,x
[
e−

∫ z
t
r(s)dsv(s,Xs)

]
dz.

Now use the martingale property of e−
∫ z
t
r(s)dsv(s,Xs):

u(t,Xt) = v(t,Xt)e
−β(T−t) +R

∫ T

t

βe−β(z−s)v(t,Xt)dz, (164)

= v(t,Xt)e
−β(T−t) +Rv(t,Xt)

∫ T

t

βe−β(z−s)v(t,Xt)dz,

= v(t,Xt)e
−β(T−t) +Rv(t,Xt)(1− e−β(T−t)),

= v(t,Xt)
(
e−β(T−t) +R(1− e−β(T−t))

)
.

7.3 Exact Solutions for the Constant and Hull White Interest Rate Models

The analytic expressions of u as a function of v found in the previous section are only useful if v can be found
analytically or via an efficient simulation. In the case of a constant or Hull White rate process v has an exact solution
for several common derivatives. These exact solutions are given below. Where a binary call pays out 0 or 1 at maturity,
IS>K :

Call: vC(t0, S0,K) = S0N (d1)−Ke−r(T−t0)N (d2), (165)

Put: vP (t0, S0,K) = Ke−r(T−t0)N (−d2)− S0N (−d1),

Binary Call: vBC(t0, S0,K) = e−r(T−t0)N (d2),

Binary Put: vBP (t0, S0,K) = e−r(T−t0)N (−d2).

Where:

d1 =
log(S/K) + r

σ
√
T − t0

+
1

2
σ
√
T − t0, (166)

d2 =
log(S/K) + r

σ
√
T − t0

− 1

2
σ
√
T − t0,

= d1 − σ
√
T − t0.

35

Hull White:

Call: vC(t0, S0,K) = S0N (d1)−KP (r0, t0)N (d2), (167)

Put: vP (t0, S0,K) = KP (r0, t0)N (−d2)− S0N (−d1),

Binary Call: vBC(t0, S0,K) = P (r0, t0)N (d2),

Binary Put: vBP (t0, S0,K) = P (r0, t0)N (−d2).

Where:

d1 =
log(S/K)− log(P (r0, t0))√

σ2 + η2
√
T − t0

+
1

2

√
σ2 + η2

√
T − t0, (168)

d2 = d1 −
√
σ2 + η2

√
T − t0,

A(t0, T) = exp

(
θ(t0 − T)− η2

2κ2

(
(t0 − T)− 2

κ
(eκ(t0−T) − 1) +

1

2κ
(e2κ(t0−T) − 1)

))
,

B(t0, T) =
1− eκ(t0−T)

κ
,

P (r0, t0) = A(t0, T)e−(r0−θ)B(t0,T).

Note that even if an analytic solution is not available it is often easier to find an expression for v than for u, therefore
the results in this section should be used to compute u in the case of a non negative payoff function g for types I and
II.

36

8 Implementation

This section should be considered as a short note on the implementation without going into to much detail. The choice
for Matlab and C++ is motivated as well as some of the challenges faced in the implementation.

programming structure
multithreading
whole pricing surface at once
bounding of g to a and approximating u at interval should be done, current implementation not effectet by this
because of small probability of mass ending up in region, propability decreases exponentialy while payoff increases
polynominally.

8.1 Matlab

The estimation of the coefficients of the approximating polynomials Pn, Pn and Pn are implemented in Matlab.
because of the results in Section ?? this only has be computed once to get the correct coefficients after that these
can be scaled for any interval needed. This is done from an ease of implementation perspective. Matlab can easily
compute and solve the algebraic equations needed in (112) while its matrix and quadprog implementations allow for
the minimizations to be computed fast and correct.

8.2 C++

The remainder of the implementation has been done in C++. The reasons for this are threefold: Firstly yours truly
wanted to expand his programming knowledge and learn the financial industry standard language. Secondly the object
orientated nature of C++ lends itself well for the implementation of branch and bound type algorithms. Also the
speed increase compared to Matlab is a welcome benefit since branch and bound type algorithms typically require
large amounts of non trivial simulations. A disadvantage of C++ is its complexity and learning curve, especially
grasping and applying the concepts of object based programming. However multiple sources exist to aid on during
this process, for example [Koenig and Moo, 2000] [Lippman, 2002] and [Meyers, 2005].

8.3 Functionality

The Mersennene Twister mt19937, part of the standard library in C11, is used for random number generation. Also
note that a whole pricing surface (even for multiple derivative payoffs) can be computed simultaneously by pausing
the branching particle processes at the relevant strike times and evaluating the payoffs. Almost all implementations of
the evolving random processes are implemented using an Euler forwards discretization technique [Seydel, 2009]. The
OpenMP framework is used to implement the multi threaded Monte Carlo simulations.

37

9 Results

The extended branching diffusion algorithm from Section 6 is implemented for both type I and type II PDE’s using
a constant, Hull White or a CIR interest rate process. The derivatives used are a put, call, binary put, binary call
and a forward agreement. If an analytic solution is available it is computed as well as a plot of the errors made in the
pricing of the derivative. A plot of the standard deviation of the branching algorithm is given as well. A bound for
the error introduced by the polynomial approximation Pn of F is estimated by computing and subtracting the results
generated by the extended branching diffusion algorithm implemented with Pn and Pn. The results using the Hull
White interest rate model will be discussed in this section, while the results from the constant and CIR rate processes
are given in Appendix B.

9.1 Parameters

All results are generated using approximating polynomials of order 15 on the interval [-3,3] and the following common
parameters, similar to market parameters:

β = 0.05, Default rate, (169)

R = 0.4, Recovery rate,

δt = 0.025, Timestep used in Euler discretization,

n = 106, Number of Monte Carlo simulations of the extended marked branching diffusion process,

t = 0, Starting time,

X0 = 1, Location of (normalized) underlying at inception,

σ = 0.2, σ of underlying X.

9.2 Hull White Rates

The Hull White interest rate model is used to discuss the results because it is stochastic but still allows for the analytic
solutions of Section 7, and all relevant findings are observable.

9.2.1 Parameters

The Hull White interest rate models has the following specific parameters:

r0 = 0.05 Interest rate at inception, (170)

κ = 0.2 Mean reverting parameter,

θ = 0.05 Long term mean,

σr = 0.051.5 σ used for the dynamics of the rate process.

9.2.2 Type I

First the results in the case of a type I default convention are examined. A pricing surface of a put with maturity
T and strike value K is given below. The analytic solution and the extended marked branching diffusion solution
are given. Next to that the error is plotted on the same grid. The third picture shows the standard deviation of the
extended marked branching diffusion results. While the lower right plot is of the polynomial bounds introduced by
the approximation of FI . After that the same figure is give for a call in Figure 5.

38

0

1

2

3

0

2

4

6
0

0.5

1

1.5

2

KT

V

BB
Exact

(a) Pricing surface

0

1

2

3

0

2

4

6
−0.03

−0.02

−0.01

0

0.01

KT

V

Error

(b) Pricing error

0

1

2

3

0

2

4

6
0

0.5

1

1.5

2

x 10
−3

KT

V

stdBB

(c) Standard deviation

0

1

2

3

0

2

4

6
−0.03

−0.02

−0.01

0

0.01

0.02

KT

V

Polynomial error bound

(d) Max polynomial error

Figure 4: Put

39

0

1

2

3

0

2

4

6
0

0.2

0.4

0.6

0.8

1

KT

V

BB
Exact

(a) Pricing surface

0

1

2

3

0

2

4

6
−0.03

−0.02

−0.01

0

0.01

KT

V

Error

(b) Pricing error

0

1

2

3

0

2

4

6
0

1

2

3

4

5

x 10
−3

KT

V

stdBB

(c) Standard deviation

0

1

2

3

0

2

4

6
0

0.005

0.01

0.015

0.02

0.025

KT

V

Polynomial error bound

(d) Max polynomial error

Figure 5: Call

The performance of the branching diffusion algorithm is not bad, notice how the pricing surface is estimated to within
approximately 0.02. There is a consistent error when the pricing surface is close to zero. The standard deviation
of the results increases a the price increases this is to be expected since the branching diffusion algorithm depends
on evaluating a product of payoffs. Also notice that the polynomial bounds give a good upper bound for the error
made if the standard deviation is not to high (since the lower and upper approximation suffer from a similar standard
deviation. The next two figures are of a binary put and binary call

40

0

1

2

3

0

2

4

6
0

0.2

0.4

0.6

0.8

1

KT

V

BB
Exact

(a) Pricing surface

0

1

2

3

0

2

4

6
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

KT

V

Error

(b) Pricing error

0

1

2

3

0

2

4

6
0

1

2

3

4

5

6

x 10
−4

KT

V

stdBB

(c) Standard deviation

0

1

2

3

0

2

4

6
−5

0

5

10

15

x 10
−3

KT

V

Polynomial error bound

(d) Max polynomial error

Figure 6: Binary Put

41

0

1

2

3

0

2

4

6
0

0.2

0.4

0.6

0.8

1

KT

V

BB
Exact

(a) Pricing surface

0

1

2

3

0

2

4

6
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

KT

V

Error

(b) Pricing error

0

1

2

3

0

2

4

6
0

1

2

3

4

5

6

x 10
−4

KT

V

stdBB

(c) Standard deviation

0

1

2

3

0

2

4

6
−5

0

5

10

15

x 10
−3

KT

V

Polynomial error bound

(d) Max polynomial error

Figure 7: Binary Call

The performance for the binary call and binary put are even better than for the normal put and call. This is to
be expected since their payoff is bounded by one. The error and the standard deviation of the branching diffusion
algorithm are very low. The polynomial error is again an upper bound of the error made and is larger in the region
where the price is close to zero.

42

Results for the forward are given in figure 8. No analytic solution is known, however the performance seems similar
to the results for the call and put. the polynomial error bound is of similar size and takes on its larges values around
the area where the price is cloe to zero. Again the standard deviation of the estimates increases as the price increases
in absolute value.

0

1

2

3

0

2

4

6
−2

−1.5

−1

−0.5

0

0.5

1

KT

V
BB

(a) Pricing surface

0

1

2

3

0

2

4

6
0

0.05

0.1

0.15

0.2

KT

V

stdBB

(b) Standard deviation

0

1

2

3

0

2

4

6
−0.04

−0.02

0

0.02

0.04

0.06

KT

V

Polynomial error bound

(c) Max polynomial error

Figure 8: Forward

9.2.3 Type II

The results for the pricing of derivatives including a type II CVA are given below. The findings and errors are very
similar to the type I results discussed before. The main difference compared to the type I results are the slightly higher
valuations as expected, since a default nets a portion of a risk free derivative in stead of a risky derivative.

43

0

1

2

3

0

2

4

6
0

0.5

1

1.5

2

KT

V

BB
Exact

(a) Pricing surface

0

1

2

3

0

2

4

6
−0.015

−0.01

−0.005

0

0.005

0.01

KT

V

Error

(b) Pricing error

0

1

2

3

0

2

4

6
0

0.5

1

1.5

2

x 10
−3

KT

V

stdBB

(c) Standard deviation

0

1

2

3

0

2

4

6
−5

0

5

10

15

x 10
−3

KT

V

Polynomial error bound

(d) Max polynomial error

Figure 9: Put

44

0

1

2

3

0

2

4

6
0

0.2

0.4

0.6

0.8

1

KT

V

BB
Exact

(a) Pricing surface

0

1

2

3

0

2

4

6
−0.01

−0.005

0

0.005

0.01

KT

V

Error

(b) Pricing error

0

1

2

3

0

2

4

6
0

0.5

1

1.5

x 10
−3

KT

V

stdBB

(c) Standard deviation

0

1

2

3

0

2

4

6
0

0.002

0.004

0.006

0.008

0.01

0.012

KT

V

Polynomial error bound

(d) Max polynomial error

Figure 10: Call

45

0

1

2

3

0

2

4

6
0

0.2

0.4

0.6

0.8

1

KT

V

BB
Exact

(a) Pricing surface

0

1

2

3

0

2

4

6
−0.015

−0.01

−0.005

0

0.005

0.01

KT

V

Error

(b) Pricing error

0

1

2

3

0

2

4

6
0

1

2

3

4

5

6

x 10
−4

KT

V

stdBB

(c) Standard deviation

0

1

2

3

0

2

4

6
0

0.005

0.01

0.015

KT

V

Polynomial error bound

(d) Max polynomial error

Figure 11: Binary Put

46

0

1

2

3

0

2

4

6
0

0.2

0.4

0.6

0.8

1

KT

V

BB
Exact

(a) Pricing surface

0

1

2

3

0

2

4

6
−0.015

−0.01

−0.005

0

0.005

0.01

KT

V

Error

(b) Pricing error

0

1

2

3

0

2

4

6
0

1

2

3

4

5

6

x 10
−4

KT

V

stdBB

(c) Standard deviation

0

1

2

3

0

2

4

6
0

0.005

0.01

0.015

KT

V

Polynomial error bound

(d) Max polynomial error

Figure 12: Binary Call

47

0

1

2

3

0

2

4

6
−2

−1.5

−1

−0.5

0

0.5

1

KT

V

BB

(a) Pricing surface

0

1

2

3

0

2

4

6
0

1

2

3

4

x 10
−3

KT

V

stdBB

(b) Standard deviation

0

1

2

3

0

2

4

6
−0.01

0

0.01

0.02

0.03

0.04

KT

V

Polynomial error bound

(c) Max polynomial error

Figure 13: Forward

48

10 Conclusions

The inclusion of CVA when pricing OTC derivatives without collateral postings is needed in current markets. Using
the type I and type II default agreements[Brigo and Morini, 2011] the marked branching diffusion algorithm [Henry-
Labordére, 2012] is extended to include stochastic rate processes. The research questions from the introduction are
repeated below and answered individually.

Can the marked branching diffusion approach be used to price deals including CVA?
Yes, if Type I or type II default assumptions are made the algorithm will generate credible derivative values. However
if the payoff at maturity is nonnegative or nonpositive the analytical results from Section 7 should be used since finding
the price of a derivative without CVA is often a much simpler task. Also great care should be taken when pricing
derivatives with possible large sections of the pricing surface close to zero. The polynomial approximation struggles
with the discontinuity of the derivative of x+ at x = 0. This can lead to an incorrect increases in value of a derivative
by adding CVA. An estimate of the maximum effect of this can be derived by looking at the difference in valuation with
the use of a polynomial upper and lower approximation of the payoff at default. However these bounds are the result
of branching diffusion process themselves so should only be used when the process has converged sufficiently.

Can the marked branching diffusion approach be extended to include stochastic interest rates?
Yes, the method can be extended to include stochastic rates by “equipping” each particle with its own stochastic rate
process and adapting the product of payoff functions to include discounting.

What are the advantages and disadvantages of using the marked branching diffusion approach?
The marked branching approach allows for valuation of derivatives of Type I with a possible two sided payoff without
needing nested Monte Carlo iterations or nested numerical integration. In Type II situations with a two sided payoff
it is comparable to a Monte Carlo method. Also the method works best when the payoff range of a derivative is
relatively small and bounded. This allows for a good polynomial approximation used for the payoff at default. The
complexity of the marked branching diffusion approach is somewhat of a disadvantage. It is harder to implement
and understand, thus more prone to errors, than a relatively straightforward Monte Carlo approach where paths are
simulated and payoffs evaluated.

10.1 Future research

Further research could look into extensions and implementation to other asset classes. As well as determining calibra-
tion methods to get reliable parameters. The method can easily be expanded to include multiple stochastic underlying
sources of risk. This would allow the algorithms to be used on a portfolio of derivatives based on multiple underlying
stocks with a single counterparty to get a market to market valuation of the whole portfolio with this counterparty.
Path dependent payoffs have not been considered in this thesis, these could be included by assuming that the particles
alive at maturity have “walked” the path of their parent particles. The frame work can also be extended to include
stochastic default rates and possible modeling of counterparty stock. By introducing a correlation structure between
the default rate, counterparty stock and underlying stock, more advanced dynamics can be replicated. As mentioned
before DVA and funding costs (for both parties) can be added as well.

49

A Personal Note

This thesis is the result of my internship at ING within the MRM quant team. I am thankful for their support and
feedback and I will miss the weekly puzzles and riddles. Special thanks are due to Dmytro and Jasper, my supervisors
at ING and TUDelft without whom I would have been lost in direction and C++ programming. I am grateful for
Teun’s critical evaluation of my drafts and motivation during the more difficult times. Lastly I want to thank my wife
Marijn without whom I would have never finished my thesis nor achieve anything.

50

B Results Continued

B.1 Constant Rates

B.1.1 Parameters

The constant interest rate models has the following specific parameters:

r0 = 0.05 Interest rate, (171)

(172)

B.1.2 Type I

0

1

2

3

0

2

4

6
0

0.5

1

1.5

2

KT

V

BB
Exact

(a) Pricing surface

0

1

2

3

0

2

4

6
−0.02

−0.01

0

0.01

0.02

0.03

KT

V

Error

(b) Pricing error

0

1

2

3

0

2

4

6
0

0.005

0.01

0.015

0.02

KT

V

stdBB

(c) Standard deviation

0

1

2

3

0

2

4

6
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

KT

V

Polynomial error bound

(d) Max polynomial error

Figure 14: Put

51

0

1

2

3

0

2

4

6
0

0.2

0.4

0.6

0.8

1

KT

V

BB
Exact

(a) Pricing surface

0

1

2

3

0

2

4

6
−0.015

−0.01

−0.005

0

0.005

0.01

KT

V

Error

(b) Pricing error

0

1

2

3

0

2

4

6
0

0.005

0.01

0.015

0.02

KT

V

stdBB

(c) Standard deviation

0

1

2

3

0

2

4

6
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

KT

V

Polynomial error bound

(d) Max polynomial error

Figure 15: Call

52

0

1

2

3

0

2

4

6
0

0.2

0.4

0.6

0.8

1

KT

V

BB
Exact

(a) Pricing surface

0

1

2

3

0

2

4

6
−0.01

−0.005

0

0.005

0.01

KT

V

Error

(b) Pricing error

0

1

2

3

0

2

4

6
0

1

2

3

4

5

6

x 10
−4

KT

V

stdBB

(c) Standard deviation

0

1

2

3

0

2

4

6
0

0.005

0.01

0.015

KT

V

Polynomial error bound

(d) Max polynomial error

Figure 16: Binary Put

53

0

1

2

3

0

2

4

6
0

0.2

0.4

0.6

0.8

1

KT

V

BB
Exact

(a) Pricing surface

0

1

2

3

0

2

4

6
−0.01

−0.005

0

0.005

0.01

KT

V

Error

(b) Pricing error

0

1

2

3

0

2

4

6
0

1

2

3

4

5

6

x 10
−4

KT

V

stdBB

(c) Standard deviation

0

1

2

3

0

2

4

6
−5

0

5

10

15

x 10
−3

KT

V

Polynomial error bound

(d) Max polynomial error

Figure 17: Binary Call

54

0

1

2

3

0

2

4

6
−3

−2

−1

0

1

KT

V

BB

(a) Pricing surface

0

1

2

3

0

2

4

6
0

0.5

1

1.5

KT

V

stdBB

(b) Standard deviation

0

1

2

3

0

2

4

6
−1

−0.5

0

0.5

KT

V

Polynomial error bound

(c) Max polynomial error

Figure 18: Forward

55

B.1.3 Type II

0

1

2

3

0

2

4

6
0

0.5

1

1.5

2

KT

V

BB
Exact

(a) Pricing surface

0

1

2

3

0

2

4

6
−5

0

5

10

x 10
−3

KT

V

Error

(b) Pricing error

0

1

2

3

0

2

4

6
0

1

2

3

4

x 10
−3

KT

V

stdBB

(c) Standard deviation

0

1

2

3

0

2

4

6
−0.01

−0.005

0

0.005

0.01

0.015

KT

V

Polynomial error bound

(d) Max polynomial error

Figure 19: Put

56

0

1

2

3

0

2

4

6
0

0.2

0.4

0.6

0.8

1

KT

V

BB
Exact

(a) Pricing surface

0

1

2

3

0

2

4

6
−0.01

−0.005

0

0.005

0.01

KT

V

Error

(b) Pricing error

0

1

2

3

0

2

4

6
0

0.005

0.01

0.015

0.02

KT

V

stdBB

(c) Standard deviation

0

1

2

3

0

2

4

6
−0.05

0

0.05

0.1

0.15

KT

V

Polynomial error bound

(d) Max polynomial error

Figure 20: Call

57

0

1

2

3

0

2

4

6
0

0.2

0.4

0.6

0.8

1

KT

V

BB
Exact

(a) Pricing surface

0

1

2

3

0

2

4

6
−2

0

2

4

6

8

10

x 10
−3

KT

V

Error

(b) Pricing error

0

1

2

3

0

2

4

6
0

1

2

3

4

5

6

x 10
−4

KT

V

stdBB

(c) Standard deviation

0

1

2

3

0

2

4

6
0

0.005

0.01

0.015

KT

V

Polynomial error bound

(d) Max polynomial error

Figure 21: Binary Put

58

0

1

2

3

0

2

4

6
0

0.2

0.4

0.6

0.8

1

KT

V

BB
Exact

(a) Pricing surface

0

1

2

3

0

2

4

6
−4

−2

0

2

4

6

8

x 10
−3

KT

V

Error

(b) Pricing error

0

1

2

3

0

2

4

6
0

1

2

3

4

5

6

x 10
−4

KT

V

stdBB

(c) Standard deviation

0

1

2

3

0

2

4

6
0

0.005

0.01

0.015

KT

V

Polynomial error bound

(d) Max polynomial error

Figure 22: Binary Call

59

0

1

2

3

0

2

4

6
−2

−1.5

−1

−0.5

0

0.5

1

KT

V

BB

(a) Pricing surface

0

1

2

3

0

2

4

6
0

0.002

0.004

0.006

0.008

0.01

KT

V

stdBB

(b) Standard deviation

0

1

2

3

0

2

4

6
−0.02

0

0.02

0.04

0.06

0.08

0.1

KT

V

Polynomial error bound

(c) Max polynomial error

Figure 23: Forward

B.2 CIR Rates

B.2.1 Parameters

The CIR interest rate models has the following specific parameters:

r0 = 0.05 Interest rate at inception, (173)

κ = 0.2 Mean reverting parameter,

θ = 0.05 Long term mean,

σr = 0.051.5 σ used for the dynamics of the rate process.

60

B.2.2 Type I

0

1

2

3

0

2

4

6
0

0.5

1

1.5

2

KT

V

BB

(a) Pricing surface

0

1

2

3

0

2

4

6
0

1

2

3

4

5

6

x 10
−3

KT

V

stdBB

(b) Standard deviation

0

1

2

3

0

2

4

6
−0.01

−0.005

0

0.005

0.01

0.015

KT

V

Polynomial error bound

(c) Max polynomial error

Figure 24: Put

61

0

1

2

3

0

2

4

6
0

0.2

0.4

0.6

0.8

1

KT

V

BB

(a) Pricing surface

0

1

2

3

0

2

4

6
0

0.002

0.004

0.006

0.008

0.01

0.012

KT

V

stdBB

(b) Standard deviation

0

1

2

3

0

2

4

6
−0.02

−0.01

0

0.01

0.02

KT

V

Polynomial error bound

(c) Max polynomial error

Figure 25: Call

62

0

1

2

3

0

2

4

6
0

0.2

0.4

0.6

0.8

1

KT

V

BB

(a) Pricing surface

0

1

2

3

0

2

4

6
0

1

2

3

4

5

6

x 10
−4

KT

V

stdBB

(b) Standard deviation

0

1

2

3

0

2

4

6
0

0.005

0.01

0.015

KT

V

Polynomial error bound

(c) Max polynomial error

Figure 26: Binary Put

63

0

1

2

3

0

2

4

6
0

0.2

0.4

0.6

0.8

1

KT

V

BB

(a) Pricing surface

0

1

2

3

0

2

4

6
0

1

2

3

4

5

6

x 10
−4

KT

V

stdBB

(b) Standard deviation

0

1

2

3

0

2

4

6
0

0.005

0.01

0.015

KT

V

Polynomial error bound

(c) Max polynomial error

Figure 27: Binary Call

64

0

1

2

3

0

2

4

6
−2

−1.5

−1

−0.5

0

0.5

1

KT

V

BB

(a) Pricing surface

0

1

2

3

0

2

4

6
0

0.002

0.004

0.006

0.008

0.01

0.012

KT

V

stdBB

(b) Standard deviation

0

1

2

3

0

2

4

6
−0.1

−0.05

0

0.05

0.1

KT

V

Polynomial error bound

(c) Max polynomial error

Figure 28: Forward

65

B.2.3 Type II

0

1

2

3

0

2

4

6
0

0.5

1

1.5

2

KT

V

BB

(a) Pricing surface

0

1

2

3

0

2

4

6
0

0.5

1

1.5

2

2.5

x 10
−3

KT

V

stdBB

(b) Standard deviation

0

1

2

3

0

2

4

6
0

0.002

0.004

0.006

0.008

0.01

0.012

KT

V

Polynomial error bound

(c) Max polynomial error

Figure 29: Put

66

0

1

2

3

0

2

4

6
0

0.2

0.4

0.6

0.8

1

KT

V

BB

(a) Pricing surface

0

1

2

3

0

2

4

6
0

1

2

3

4

5

x 10
−3

KT

V

stdBB

(b) Standard deviation

0

1

2

3

0

2

4

6
−5

0

5

10

15

x 10
−3

KT

V

Polynomial error bound

(c) Max polynomial error

Figure 30: Call

67

0

1

2

3

0

2

4

6
0

0.2

0.4

0.6

0.8

1

KT

V

BB

(a) Pricing surface

0

1

2

3

0

2

4

6
0

1

2

3

4

5

6

x 10
−4

KT

V

stdBB

(b) Standard deviation

0

1

2

3

0

2

4

6
0

0.005

0.01

0.015

KT

V

Polynomial error bound

(c) Max polynomial error

Figure 31: Binary Put

68

0

1

2

3

0

2

4

6
0

0.2

0.4

0.6

0.8

1

KT

V

BB

(a) Pricing surface

0

1

2

3

0

2

4

6
0

1

2

3

4

5

6

x 10
−4

KT

V

stdBB

(b) Standard deviation

0

1

2

3

0

2

4

6
−5

0

5

10

15

x 10
−3

KT

V

Polynomial error bound

(c) Max polynomial error

Figure 32: Binary Call

69

0

1

2

3

0

2

4

6
−2

−1.5

−1

−0.5

0

0.5

1

KT

V

BB

(a) Pricing surface

0

1

2

3

0

2

4

6
0

1

2

3

4

5

x 10
−3

KT

V

stdBB

(b) Standard deviation

0

1

2

3

0

2

4

6
−0.01

0

0.01

0.02

0.03

0.04

KT

V

Polynomial error bound

(c) Max polynomial error

Figure 33: Forward

70

C Animation frames

Snapshots of the animations in Sections 5 are given below:

−1 −0.5 0 0.5 1

0

0.5

1

x

y

Order:5

P5

x+

(a) P5 approximation of x+ on [−1, 1]

−1 −0.5 0 0.5 1

0

0.5

1

x

y

Order:10

P10

x+

(b) P10 approximation of x+ on [−1, 1]

−1 −0.5 0 0.5 1

0

0.5

1

x

y

Order:15

P15

x+

(c) P15 approximation of x+ on [−1, 1]

−1 −0.5 0 0.5 1

0

0.5

1

x

y
Order:25

P25

x+

(d) P25 approximation of x+ on [−1, 1]

Figure 34: Pn approximation of x+ on [−1, 1]

71

−1 −0.5 0 0.5 1

−1

0

1

x

y
Order:5

f̃5
f

−1 −0.5 0 0.5 1
−2

−1

0

1

2
·10−2

x

y

error(
f̃5 − f

)

(a) f̃5 approximation of x+ on [−1, 1]

−1 −0.5 0 0.5 1

−1

0

1

x

y

Order:10

f̃10
f

−1 −0.5 0 0.5 1
−2

−1

0

1

2
·10−2

x

y

error(
f̃10 − f

)

(b) f̃10 approximation of x+ on [−1, 1]

−1 −0.5 0 0.5 1

−1

0

1

x

y

Order:15

f̃15
f

−1 −0.5 0 0.5 1
−2

−1

0

1

2
·10−2

x

y

error(
f̃15 − f

)

(c) f̃15 approximation of x+ on [−1, 1]

−1 −0.5 0 0.5 1

−1

0

1

x

y

Order:25

f̃25
f

−1 −0.5 0 0.5 1
−2

−1

0

1

2
·10−2

x

y

error(
f̃25 − f

)

(d) f̃25 approximation of x+ on [−1, 1]

Figure 35: f̃n approximation of x+ on [−1, 1]

72

−1 −0.5 0 0.5 1

0

0.5

1

x

y
Order:5

P 5

P 5

u+

−1 −0.5 0 0.5 1

−4

−2

0

2

4

·10−2

x

y

Error of Polynomials of order:5

P 5 − x+

P 5 − x+

(a) P 5 and P 5 approximation of x+ on [−1, 1]

−1 −0.5 0 0.5 1

0

0.5

1

x

y

Order:10

P 10

P 10

u+

−1 −0.5 0 0.5 1

−4

−2

0

2

4

·10−2

x

y

Error of Polynomials of order:10

P 10 − x+

P 10 − x+

(b) P 10 and P 10 approximation of x+ on [−1, 1]

−1 −0.5 0 0.5 1

0

0.5

1

x

y

Order:15

P 15

P 15

u+

−1 −0.5 0 0.5 1

−4

−2

0

2

4

·10−2

x

y

Error of Polynomials of order:15

P 15 − x+

P 15 − x+

(c) P 15 and P 5 approximation of x+ on [−1, 1]

−1 −0.5 0 0.5 1

0

0.5

1

x

y

Order:24

P 24

P 24

u+

−1 −0.5 0 0.5 1

−4

−2

0

2

4

·10−2

x

y

Error of Polynomials of order:24

P 24 − x+

P 24 − x+

(d) P 24 and P 24 approximation of x+ on [−1, 1]

Figure 36: Pn and Pn approximation of x+ on [−1, 1]

73

D Pn Coefficients

Coefficients of P15 used throughout the implementation.

cn Pn Pn Pn
c0 0.0206 -0 0.0303
c1 0.5000 0.5000 0.5000
c2 2.4476 2.8876 2.2750
c3 0 0 0
c4 -15.5016 -19.7819 -13.8681
c5 0 0 0
c6 65.1065 84.7573 57.5044
c7 0 0 0
c8 -152.8010 -200.0238 -133.9469
c9 0 0 0
c10 198.0754 259.2135 172.6211
c11 0 0 0
c12 -132.5959 -172.9508 -114.9500
c13 0 0 0
c14 35.7550 46.3981 30.8409
c15 0 0 0

Table 1: Coefficients of Pn, Pn and Pn.

74

References

Damiano Brigo and Fabio Mercurio. Interest Rate Models - Theory and Practice With Smile, Inflation and Credit.
Springer, 2006.

Damiano Brigo and Massimo Morini. Close-out convention tensions. Risk, December 2011.

Micheal G. Crandall, Hitoshi Ishii, and Pierre-Louis Lions. User’s guide to viscosity solutions of second order partial
differential equations. American Mathematical Society, 1992.

Ibrahim Ekren, Nizar Touzi, and Jianfeng Zhang. Viscosity solutions of fully nonlinear parabolic path dependent pdes:
Part i. arXiv:1210.0006v2, 2013a.

Ibrahim Ekren, Nizar Touzi, and Jianfeng Zhang. Viscosity solutions of fully nonlinear parabolic path dependent pdes:
Part ii. arXiv:1210.0007v2, 2013b.

Paul Glasserman. Monte Carlo Methods in Financial Engineering. Springer, 2003.

Jon Gregory. Counterparty Credit Risk. Wiley, 2010.

Julien Guyon and Pierre Henry-Labordére. Nonlinear Option Pricing. Chapman & Hall/CRC, 2014.

Pierre Henry-Labordére. Analysis, geometry and Modeling in Finance, Advanced Methods in Option Pricing. Chapman
& Hall/CRC, 2009.

Pierre Henry-Labordére. Counterparty risk valuation: A marked branching diffusion approach. arXiv:1203.2369v1,
2012.

Pierre Henry-Labordére, Xiaolu Tan, and Nizar Touzi. A numerical algorithm for a class of bsdes via brancing process.
arXiv:1302.4624v3, 2013.

John C. Hull. Options, Futures and other Derivatives. Pearson, 2012.

Andrew Koenig and Barbara E. Moo. Accelerated C++ Practical Programming by Example. Addison Wesley, 2000.

Stanley B. Lippman. Essential C++. Addison Wesley, 2002.

H. P. McKean. Application of brownian motion to the equation of kolmogorv-petrovskii-piskunov. Communications
on Pure and Applied Mathematics, XXVIII, 1975.

Sanjay Mehrotra. On the implementation of a primal-dual interior point method. SIAM Journal on optimization,
1992.

Scott Meyers. Effective C++ Third Edition 55 Specific Ways to Improve Your Programs and Designs. Addison Wesley,
2005.

Sheldon M. Ross. Stochastic Processes. Wiley, 1996.

Rüdiger U. Seydel. Tools for Computational Finance. Springer, 2009.

Steven E. Shreve. Stochastic Calculus for Finance II, Continuous - Time Models. Springer, 2004.

J. Micheal Steele. Stochastic Calculus and Financial Applications. Springer, 2001.

Karl Weierstrass. On the analytic representability of so called arbitrary functions of a real variable. (uber die analytis-
che darstellbarkeit sogenamter willk urlicher functionen einer reellen ver anderlichen). Sitzungsberichte der Akademie
zu Berlin, 1885.

75

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	0.10:
	0.11:
	0.12:
	0.13:
	0.14:
	0.15:
	0.16:
	0.17:
	0.18:
	0.19:
	0.20:
	0.21:
	0.22:
	0.23:
	anm0:
	0.EndLeft:
	0.StepLeft:
	0.PlayPauseLeft:
	0.PlayPauseRight:
	0.StepRight:
	0.EndRight:
	0.Minus:
	0.Reset:
	0.Plus:
	1.0:
	1.1:
	1.2:
	1.3:
	1.4:
	1.5:
	1.6:
	1.7:
	1.8:
	1.9:
	1.10:
	1.11:
	1.12:
	1.13:
	1.14:
	1.15:
	1.16:
	1.17:
	1.18:
	1.19:
	1.20:
	1.21:
	1.22:
	1.23:
	anm1:
	1.EndLeft:
	1.StepLeft:
	1.PlayPauseLeft:
	1.PlayPauseRight:
	1.StepRight:
	1.EndRight:
	1.Minus:
	1.Reset:
	1.Plus:
	2.0:
	2.1:
	2.2:
	2.3:
	2.4:
	2.5:
	2.6:
	2.7:
	2.8:
	2.9:
	2.10:
	2.11:
	2.12:
	2.13:
	2.14:
	2.15:
	2.16:
	2.17:
	2.18:
	2.19:
	2.20:
	2.21:
	2.22:
	anm2:
	2.EndLeft:
	2.StepLeft:
	2.PlayPauseLeft:
	2.PlayPauseRight:
	2.StepRight:
	2.EndRight:
	2.Minus:
	2.Reset:
	2.Plus:

