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 a b s t r a c t

Cost-effective decarbonisation of the built environment is a stepping stone to achieving net-zero carbon emissions 
since buildings are globally responsible for more than a quarter of global energy-related CO2 emissions. Improving 
energy utilisation and decreasing costs requires considering multiple domain-specific performance criteria. The 
resulting problem is often computationally infeasible.
The paper proposes an approach based on decomposition and selection of significant operating conditions to 
achieve a formulation with reduced computational complexity. We present a robust framework to optimise the 
physical design, the controller, and the operation of residential buildings in an integrated fashion, considering 
external weather conditions and time-varying electricity prices. The framework explicitly includes operational 
constraints and increases the utilisation of the energy generated by intermittent resources.
A case study illustrates the potential of co-design in enhancing the reliability, flexibility and self-sufficiency of a 
system operating under different conditions. Specifically, numerical results demonstrate reductions in costs up 
to 30% compared to a deterministic formulation. Furthermore, the proposed approach achieves a computational 
time reduction of at least 10 times lower compared to the original problem with a deterioration in the performance 
of only 0.6%.

1.  Introduction

1.1.  Motivation

Achieving net-zero carbon emissions necessitates the cost-effective 
design and operation of energy-efficient buildings capable of inte-
grating with complex energy systems characterized by renewable 
sources, storage technologies, and dynamic market conditions. The 
most critical difficulties in addressing the decarbonization challenge 
stem from the exponential growth of energy demand, the complex-
ity of the involved systems, and multiple uncertainties affecting en-
ergy production and usage. Active participation of buildings in the 
whole energy system to achieve emission targets is extremely valu-
able since commercial and residential buildings are responsible for 
about 38% of global CO2 emissions [1]. Active support of buildings 
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for the whole energy system necessitates adopting renewable resources,
various storage technologies, and smart devices. It also requires con-
sumers’ participation in dynamic electricity markets characterised by 
time-varying prices. The design of flexible and cost-efficient build-
ings requires optimising the technologies’ size considering the dweller 
needs and how the system operates under different plausible condi-
tions. Frequently, the effect of how the system is operated is neglected 
in the design process, usually because including the optimal closed-
loop operation of the system in the sizing problem and considering 
the uncertainty in the operating conditions leads to a computationally 
challenging problem. Nevertheless, neglecting operational uncertainty 
and the behaviour of closed-loop systems may lead to a suboptimal
design.

Motivated by the requirement for buildings to increase their energy 
efficiency at affordable costs, we propose a framework for optimally de-
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$_2$


\begin {equation}\label {eq:1} \dot {x}(t)=f(x(t),u(t),w(t),p,t)\end {equation}


$f(\cdot )$


$x(t) \in \reals ^{n_x}$


$u(t)\in \reals ^{n_u}$


$p \in \reals ^{n_p}$


$w(t) \in \reals ^{n_w}$


$\mathbb {W}(t)$


$w(t)$


$w(\cdot )\in \mathcal {W} : =\{\textrm {measurable bounded functions } w :[0, \infty ) \rightarrow \reals ^{n_w} \;: \; w(t) \in \mathbb {W}(t) \}$


$p$


$t_f$


$t$


\begin {equation}\label {cost-contr} \displaystyle { \int _{t}^{t+t_f} \ell (x(\tau ),u(\tau ),w(\tau ),p,\tau )\mathrm {d}\tau }\end {equation}


\begin {align}& \dot {x}(\tau )=f(x(\tau ),u(\tau ), w(\tau ),p,\tau ),& \quad \forall \tau \in \mathcal {T} \ \text {a.e.}, \label {eqn:dyns}\\ & g(\dot {x}(\tau ),x(\tau ),\dot {u}(\tau ),u(\tau ), w(\tau ),p,\tau ) \leq 0,\ & \quad \forall \tau \in \mathcal {T} \ \text {a.e.}, \label {eqn:ineqs}\\ & c(\dot {x}(\tau ),x(\tau ),\dot {u}(\tau ),u(\tau ),p, \tau ) = 0,\ & \quad \forall \tau \in \mathbb {T}, \label {eqn:wp-const}\\ & \psi (x(t),x(t+t_f),p,t,t_f)\leq 0, & \label {eqn:terminal-ineq}\end {align}


$\mathcal {T}:=[t,t+t_f]\subset \mathbb {R}$


$t$


$t_f$


$\mathbb {T} \subset \mathcal {T}$


$\mathcal {T}$


$g:\mathbb {R}^{n_x} \times \mathbb {R}^{n_x} \times \mathbb {R}^{n_u} \times \mathbb {R}^{n_u} \times \mathbb {R}^{n_p} \times \mathbb {R} \to \mathbb {R}^{n_g}$


$n_g$


$\psi :\mathbb {R}^{n_x} \times \mathbb {R}^{n_x} \times \mathbb {R}^{n_p} \times \mathbb {R} \times \mathbb {R} \to \mathbb {R}^{n_I}$


$n_I$


$\mathbb {X}$


$\mathbb {U}$


$t$


$p$


$w(\cdot )$


$[t, ~t+t_f]$


\begin {equation}\label {eq:BuildingEMPCcost} \ell (x(t),u(t),w(t),t,p) := c^{el}(t)u^{b}(t)- 0.9c^{el}(t) u^s(t)+c_{CO_2} c^{em}(t)u^{b}(t)\end {equation}


$Z$


$\mathcal {R} : Z \rightarrow \; (-\infty ,\infty )$


$E[Z]$


$\max (Z)$


$t=t_i$


$i=0,1,\ldots ,~$


$\mathcal {T}^d :=\{ \tau _0, \tau _1,\ldots , \tau _N \}$


$\tau _0=t_i < \tau _1 <\ldots < \tau _N=t_i+t_f$


$T^{(s)}:=t_{i+1}-t_i$


$i$


$T_{k}^{(d)}:=\tau _{k+1}-\tau _k$


$\tau _k \in \mathcal {T}^d$


$k=0,1,\ldots , N$


$n_d$


$T^{(s)}=n_d T_{0}^{(d)}$


$T^{(s)}$


$\tilde {~}$


$x_i$


$t_i$


$\mathbf {\tilde {w}}_{[\tau _0,\tau _N]}=( \tilde {w}(\tau _0),\tilde {w}(\tau _1), \ldots , \tilde {w}(\tau _N))$


$N$


\begin {equation}J^{(D)}(\mathbf {\tilde {u}},\mathbf {\tilde {w}}_{[\tau _0,\tau _N]},t,t_f,p,x_i)=\sum _{k=0}^N \ell ^{D}(\tilde {x}(\tau _k),\tilde {u}(\tau _k),\tilde {w}(\tau _k),p,t) \label {Xeqn3-7}\end {equation}


\begin {equation}\label {eq:opt-u} \begin {array}{@{}l@{}} \mathbf {\tilde {u}^*}(x_i,t_i;\mathbf {\tilde {w}}_{[\tau _0,\tau _N]},p,p_c)= \; ( \tilde {u}^*(\tau _0;\mathbf {\tilde {w}}_{[\tau _0,\tau _N]},x_i,p,p_c),\\[3pt]\quad \tilde {u}^*(\tau _1;\mathbf {\tilde {w}}_{[\tau _0,\tau _N]},x_i,p,p_c),\ldots ,\tilde {u}^*(\tau _{N};\mathbf {\tilde {w}}_{[\tau _0,\tau _N]},x_i,p,p_c)) \end {array}\end {equation}


\begin {equation}\label {eq:opt-x} \begin {array}{@{}l@{}} \mathbf {\tilde {x}^*}(x_i,t_i;\mathbf {\tilde {w}}_{[\tau _0,\tau _N]},p,p_c)= \; ( \tilde {x}^*(\tau _0;\mathbf {\tilde {w}}_{[\tau _0,\tau _N]},x_i,p,p_c),\\[3pt]\quad \tilde {x}^*(\tau _1;\mathbf {\tilde {w}}_{[\tau _0,\tau _N]},x_i,p,p_c),\ldots ,\tilde {x}^*(\tau _{N};\mathbf {\tilde {w}}_{[\tau _0,\tau _N]},x_i,p,p_c)) \end {array}\end {equation}


$p_c$


$\kappa _N(t,x_i,t_i;\mathbf {\tilde {w}}_{[\tau _0,\tau _N]},p,p_c)$


$\overline {k}$


$\mathbf {\tilde {u}^*}(x_i,t_i;\mathbf {\tilde {w}}_{[\tau _0,\tau _N]},p,p_c)$


$t \in [t_i,t_i+ T^{(s)}]$


\begin {equation}\label {feedback} \begin {array}{@{}l@{}} \kappa _N(t,x_i,t_i;\mathbf {\tilde {w}}_{[\tau _0,\tau _N]},p,p_c):= \\[3pt] \quad \phi (t,[\tilde {u}^*(\tau _0;\mathbf {\tilde {w}}_{[\tau _0,\tau _N]},x_i,p,p_c), \ldots ,\tilde {u}^*(\tau _{\overline {k}};\mathbf {\tilde {w}}_{[\tau _0,\tau _N]},x_i,p,p_c)]) \end {array}\end {equation}


$\overline {k}$


$\tau _{\overline {k}} = t_i+T^{(s)}$


$\phi (\cdot )$


$V_{cl}(\cdot )$


$[t_i, t_i+T^{(s)}]$


\begin {equation}\label {discr-cost} \begin {array}{@{}l@{}} V_{cl}(x_i,t_i,\mathbf {w}_{[t_i,t_{i+N}] } ,p,p_c)=\\[2pt] \quad \displaystyle { \int _{t_i}^{ t_i+T^{(s)}} \ell (x(\tau ),\kappa _N(\tau ,x_i,t_i; \mathbf {\tilde {w}}_{[t_i,t_{i+N}]},p,p_c) ,w(\tau ),p)\mathrm {d}\tau } \end {array}\end {equation}


$x(t)$


$\mathbf {w}_{[a,b]}$


$[a,b]$


\begin {equation}\label {economic} J^{(1)}(p,p_c):=\mathcal {R}\left (\sum _{i=0}^{N_y}V_{cl}(x_i,t_i,\mathbf {w}_{[t_i,t_{i+N}]},p,p_c) +V_I(p)\right )\end {equation}


$\mathcal {R}$


$V_I(p)$


$N_y$


$x_i$


$V_{cl}(x_j^r,t_j,\mathbf {w}_{[t_j,t_{j+N}]},p,p_c^r)$


$j=0, \ldots , N_y^r$


$r$


\begin {equation}\begin {array}{@{}l@{}} \mathbf {V_M}(x_0,t_0,\mathbf {w}_{[t_0,t_{M+N-1}]},p,p_c):=\\ [2pt]\quad [V_{cl}(x_0,t_0,\mathbf {w}_{[t_0,t_{N}]},p,p_c), \ldots ,V_{cl}(x_{M-1},t_{M-1},\mathbf {w}_{[t_{M-1},t_{M+N-1}]},p,p_c)]' \end {array} \label {Xeqn9-13}\end {equation}


$'$


\begin {equation}\label {cl-loop-performance} \begin {array}{@{}l@{}} J^{(2)}(p,p_c):=\\[2pt] \quad \mathcal {R}(D(\mathbf {V_{N_y}}(x_0,t_0,\mathbf {w}_{[t_0,t_{N_y+N-1}]},p,p_c),\mathbf {V_{N_y}}(x_0,t_0,\mathbf {w}_{[t_0,t_{N_y+N-1}]},p,p_c^r))) \end {array}\end {equation}


$D(\cdot )$


\begin {equation}\label {MPC-param} J^{(3)}(p,p_c):=\mathcal {R}(Q(p_c;\mathbf {w}_{[t_0,t_{N_y}]}))\end {equation}


$Q(\cdot )$


$\mathbf {V_{N_y}}(x_0,t_0,\mathbf {w}_{[t_0,t_{N_y+N-1}]},p,p_c)$


$Q(\cdot )$


$\mathbf {w}_{[t_0,t_{N_y}]}$


\begin {align}\label {MOO-co-design} &\min _{p,p_c}(J^{(1)}(p,p_c),J^{(2)}(p,p_c), J^{(3)}(p,p_c))\nonumber \\ & \textrm {subject to}\nonumber \\ & p \in \mathcal {P}, p_c \in \mathcal {P}_c\end {align}


$\mathcal {P}$


$\mathcal {P}_c$


$J^{(1)}(p,p_c$


$J^{(2)}(p,p_c)$


$J^{(3)}(p,p_c)$


$p$


$p_c$


$\mathcal {R}(\cdot )$


$\max $


$p$


$\mathcal {P}_c$


$\mathcal {P}$


$p^*$


$\mathbb {P}^{\mathcal {CD}}$


$p_c^*$


$\mathcal {H}_c$


\begin {equation}\label {size-design} \min _{p\in \mathcal {P}} \mathcal {R}\left (\sum _{i \in \mathcal {H}_c} \nu _i \mathbf {1'_{N_i}}\mathbf {V_{N_i}}(\hat {x}_i,t^{(i)},\mathbf {S^{(i)}},p,p_c^*)\right ) +V_I(p)\end {equation}


$\mathbb {P}^{\mathcal {CD}}$


$p^*$


$\mathcal {R}$


$k_{ \max }$


$\mathbf {w}^r_{[t_0,t_{N^r+N-1}]}$


$p_c^r$


$m_p$


$p^{(i)}\in \mathcal {P}$


$i=1,\ldots ,m_p$


$m_x$


$x_0^{(j,i)} \in \mathcal {X}_{p^{(i)}}$


$j=1,\ldots , m_x$


$i=1,\ldots ,m_p$


$\mathbf {S^{h}}$


$h=1,\ldots ,m$


$m$


$\hat {x}_h$


$p_c^*$


$\mathcal {J}$


$J^{(2)}(p,p_c)$


$J^{(3)}(p,p_c)$


$p$


$\mathbb {P}^{\mathcal {C}}$


\begin {align}\label {MOO-auto-tuning} &\min _{p_c}\mathcal {R}_p((J^{(2)}(p,p_c), J^{(3)}(p,p_c))\nonumber \\ &\textrm {subject to}\nonumber \\ & p_c \in \mathcal {P}_c, \; p \in \mathcal {P},\end {align}


$\mathcal {R}_p$


$p$


$p\in \mathcal {P}$


$\max $


$\mathcal {P}$


$p_c$


$p^*_c$


$\mathbb {P}^{\mathcal {C}}$


$J^{(2)}(p,p_c)$


$\mathbf {w}^r_{[t_0,t_{N^r+N-1}]}$


$\mathbf {w}^r_{[t_0,t_{N^r+N-1}]}$


$\mathbf {w}^r_{[t_0,t_{N^r+N-1}]}$


$\mathcal {X}_{p}\subseteq \mathbb {X}$


$p$


$m_x$


$p^*_c$


$R_h$


${\mathcal {S}}:=\{\mathbf {S^{(1)}}, \mathbf {S^{(2)}}, \ldots \mathbf {S^{(m)}}\}$


$m$


$\mathbf {w}_{[t_0,T]}$


$T$


$\mathbf {S^{(h)}}$


$N_h+N-1$


$N_h$


$\mathbb {P}_{h}^{\mathcal {S}}$


$\mathbf {S^{(h)}}$


\begin {align}\label {importance-pb} &V^*_h(\hat {x}_h,p_c^*)=\min \limits _{p} R_h \mathbf {1'_{N_h}}\mathbf {V_{N_h}}(\hat {x}_h,t^{(h)}_0,\mathbf {S^{(h)}},p,p_c^*)+V_I(p)\nonumber \\ &\textrm {subject to } p \in \mathcal {P},\end {align}


$\mathbf {1_{N_h}}$


$N_h$


$t^{(h)}_0$


$\mathbf {S^{(h)}}$


$\hat {x}_h$


$p$


$p_c^*$


$\hat {x}_h$


$\hat {x}_h$


$\mathbb {P}_{h}^{\mathcal {S}}$


$\mathbb {P}_{h}^{\mathcal {S}}$


$h=1, \ldots , m$


$V^*_h(\hat {x}_h,p_c^*)$


$p$


$|\mathcal {G}_i|$


$\mathcal {G}_i$


$d(\cdot )$


$S^{PV}$


$S^B$


$p:=[S^{PV}, \; S^B ]$


$x(t):= [T(t), \; SoC(t) ]'$


$T(t)$


$SoC(t)$


$u(t):=[u^{eH}(t), \; u^{CeH}(t), \; u^{dch}(t), \; u^{ch}(t), \; u^{b}(t), \; u^{s}(t) ]'$


$u^{eH}(t)$


$u^{CeH}(t)$


$u^{ch}(t)$


$u^{dch}(t)$


$u^{b}(t)$


$u^{s}(t)$


$w(t):=[T^e(t), \; I(t), \; c^{el}(t), \; c^{em}(t)]$


$T^e(t)$


$I(t)$


$c^{el}(t)$


$c^{em}(t)$


\begin {equation}\label {building-dynamic} \begin {array}{@{}l@{}} \left [\begin {array}{@{}l@{}} \dot {T}(t) \\ \dot {SoC}(t)\\ \end {array} \right ]= \left [\begin {array}{@{}ll@{}} -\,(U A+\rho _{air} V C_{air}^p n_{ac})/C_{build} & 0 \\ 0 & 0 \\ \end {array} \right ]\left [\begin {array}{@{}l@{}} T(t)\\ SoC(t)\\ \end {array} \right ]\\[8pt]\qquad \qquad \quad + \left [\begin {array}{@{}llll@{}} COP(T^e(t))/C_{build} & -COP_{cool}/C_{build} & 0 & 0 \\ 0 & 0 & -1/\eta ^{ds} & \eta ^{ch} \\ \end {array} \right ]\\[8pt]\quad \qquad \qquad \times \,\left [\begin {array}{@{}l@{}} u^{eH}(t) \\ u^{CeH}(t) \\ u^{dch}(t) \\ u^{ch}(t) \end {array} \right ]+\xi (t), \end {array}\end {equation}


\begin {equation}\xi (t)= \left [ \begin {array}{@{}l@{}} T^e(t)(U A+\rho _{air} V C_{air}^p n_{ac})/C_{build} \\ 0 \end {array} \right ] \label {Xeqn17-21}\end {equation}


$\text {COP}(T^e(t))=m_{\text {COP}} (T^e(t)-7) +3$


\begin {align}& \underline {T}(t) \leq T(t) \leq \overline {T}(t) \label {comfort}\\ & 0 \leq SoC(t) \leq S^B \leq \overline {SoC} \label {bound-SB} \\ & 0 \leq u^{dch}(t), u^{ch}(t) \leq S^B /T_{ds} \label {battery-B}\\ & P^{PV}(t)=\theta _1(1+\theta _2 I(t) + \theta _2 T^e(t))I(t) S^{PV} \label {pv-power}\\ & u^b(t)-u^s(t)+u^{dch}(t)-u^{ch}(t)+P^{PV}(t)=u^{eH}(t)+u^{CeH}(t)\\ & 0 \leq u^b(t) \leq \overline {u}^b, \; 0 \leq u^s(t) \leq \overline {u}^s \\ & 0 \leq u^{eH}(t) \leq \overline {u}^{eH}, \; 0 \leq u^{CeH}(t) \leq \overline {u}^{CeH} \\ &\text {COP}(T_t^e) u_t^{eH} \leq \overline {Q}^{HP}\\ & 0 \leq S^{PV} \leq S_F, \label {QoST}\end {align}


$\underline {T}(t)$


$\overline {T}(t)$


$T_{ds}$


$P^{PV}(t)$


$c^{el}(t)$


$c_{CO_2}$


$V_I(p)=c_B S^B+c_{PV} S^{PV}$


$c_B$


$c_{PV}$


\begin {equation*}a_{y,r}=\frac {1-\frac {1}{(1+r)^y}}{r}\end {equation*}


$1 \,\textrm {kWh}$


$1.68 \,\textrm {m}^2$


$c^{el}(t)$


$15$


$11$


$T^{(d)}_k=T^{(s)}=15\,$


$k=0,1,\ldots , N$


$t_f=24 \,$


$T^{(d)}_k=T^{(s)}=15$


$k=0,1,\ldots , N$


$t_f=24$


$11$


$11$


$11$


$T^{(d)}_k=T^{(s)}=15$


$k=0,1,\ldots , N$


$t_f=24$


$p$


$p$


$30\,\%$


$p=[9, ~44]$


$574$


$574$


$356.7$


$347.6$


$13 \,$


$89.0 \,$


${}^2$


$10$


$0.6\,\%$


$50$


$50$


$50$


$[-60, ~ 60]$


$50$


$n_s$


$n_x$


$n_f$


\begin {align}& T^{(s)}:=n_s T^{(d)} \\ & \delta _T:=n_x T^{(s)} \\ & t_f= n_f\end {align}


$\delta _T$


\begin {equation*}T^{(d)}=\frac {\delta _T}{n_x n_s}.\end {equation*}


\begin {align}& 1\leq n_s \leq \frac {\delta _T}{ \underline {T}^{(d)}} \\ & 1\leq n_x \leq \frac {\delta _T}{ \underline {T}^{(d)}}\\ & n_s n_x \leq \frac {\delta _T}{ \underline {T}^{(d)}}\end {align}


$\underline {T}^{(d)}$


$Q(p_c):=n_f-1/(4n_x)-1/(4 n_x n_s)$


$p_c=[n_s, n_x, n_f]$


$\underline {T}^{(d)}$


$5$


$J^{(2)}(p,p_c)$


$T^{(d)}=T^{(s)} =5$


$t_f=3$


$\pounds \,0.15$


$T^{(d)}=5$


$T^{(s)} =15$


$t_f=17$


$T^{(d)}=T^{(s)} =15$


$t_f=24$


$\pounds \, 1.31$


$T_f$


$T^{(d)}_k=T^{(s)}=15$


$\pounds \,0.15$


$15$


$16$


$10$
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signing the system and the controller parameters considering uncertain 
operating conditions.

1.2.  Existing works

Addressing the decarbonization challenge requires buildings to oper-
ate near their performance limits and explicitly account for constraints. 
Model Predictive Control (MPC) is recognized as a natural choice for op-
erating buildings [2]. Furthermore, the availability of near-term weather 
forecasts and the prospective participation of consumers in dynamic 
electricity markets characterised by time-varying prices makes Eco-
nomic Model Predictive Control (EMPC) [3,4] the natural choice for 
a dweller to improve performance while optimising the electricity cost. 
However, the performance of predictive controllers depends on tuning 
their parameters, such as prediction horizon, sampling time and dis-
cretisation step. Traditionally, the success of the tuning process relied 
on experience. In Khusainov et al. [5], an automatic tuning of the MPC 
is proposed in a co-design framework to achieve an optimal trade-off be-
tween performance and computational resources in nominal conditions. 
Their approach automates the MPC and hardware co-design using the 
Bi-objective Mesh Adaptive Direct Search algorithm (BiMADS) to handle 
discrete variables.

However, optimising the building design in isolation from its oper-
ation can be suboptimal. Such a limitation motivates the control co-
design concept, which considers the simultaneous design of the systems 
and the controller to push a system’s performance to its achievable lim-
its. Recently, Garcia-Sanz[6] recognized the importance of adopting a 
control co-design concept to push the system’s performance to its achiev-
able limits. The control co-design framework considers multidisciplinary 
subsystem interactions in a unified manner, enabling the opportunity to 
improve performance substantially. In the 1980s, the co-design idea was 
integrated with optimisation schemes to identify control and parame-
ters [7]. Frameworks co-optimising closed-loop software implementa-
tion and hardware performance appear in Suardi et al. [8], Kircher and 
Zhang[9] where the co-design consists of a multi-objective formulation 
since the decision variables span different time scales and belong to dif-
ferent areas. A survey on control co-design applications is provided in 
Diangelakis et al. [10]. The optimal equipment selection considering the 
system operation is critical to increasing the energy efficiency of large 
heating systems, as pointed out in Henze et al. [11], Powell et al. [12].

The co-design problem requires identifying several significant oper-
ating conditions to achieve a reliable system design. The description of 
such operating conditions necessitates several years of exogenous data 
to obtain a set of annual scenarios and a useful uncertainty model of 
the time-varying exogenous variables. The amount of data often leads 
to challenging numerical problems, so a common approach is consid-
ering a limited data set. However, a naive choice of subsets of data in 
most cases results in a solution far from optimal [13,14]. Many selec-
tion methods and aggregation techniques select and aggregate typical 
subsamples without considering what might be relevant to the problem 
under consideration, and they easily neglect extreme events. The im-
portance subsampling is an approach that extracts fewer observations 
(subsamples) from long time series through systematic identification of 
timesteps carrying essential information for the problem under consid-
eration by assigning to each subsample a measure of its importance in 
realising the problem output. Recent importance subsample techniques 
[14,15] identify extreme events that are significant for the problem of 
interest, looking at their effect on the problem output, achieving a de-
sign choice capable of good performance on a more extensive set of 
operating conditions at a reduced computational burden.

1.3.  Novelty

Existing co-design approaches often suffer from computational in-
tractability, particularly when accounting for uncertainty and controller 
tuning. As a result, their practical application in building design has 

remained limited. We propose a computationally tractable co-design 
framework that jointly optimises technology sizing and EMPC controller 
parameters, while ensuring robustness to uncertain operating conditions 
through scenario-based evaluation. The work builds on the approaches 
[5,14,16], considering performance, uncertainty and control tuning at 
the same time. The proposed framework explicitly addresses disconti-
nuities arising from the discrete nature of sizing parameters and accom-
modates time-varying, piecewise-constant electricity prices within the 
EMPC cost function, leveraging techniques from Khusainov et al. [5]. Im-
portance sub-sampling techniques are used to decompose the problem 
to ensure computational tractability without significant performance 
impact. Furthermore, this work extends the deterministic formulation 
from Falugi et al. [16] and proposes a multi-objective co-design frame-
work that automates technology selection while incorporating uncer-
tainty and control parameter tuning. In contrast to previous works, the 
present formulation introduces robustness to uncertainty and automated 
control tuning as integral components of the co-design framework. In-
corporating uncertainty necessitates alternative problem formulations 
and solution strategies compared to deterministic approaches. To ad-
dress such challenges, the framework adopts a scenario-based optimi-
sation strategy inspired by the subsample selection methodology intro-
duced in Hilbers et al. [14]. This concept is further extended here to 
consider the impact of highly uncertain, time-varying electricity prices 
and dynamic correlation of variables at different time instants through 
the predictive feedback controller capability.

The rest of the paper is structured as follows. Section 2 introduces 
the problem formulation and the numerical challenges due to uncer-
tainty and possible discontinuities. Section 3 presents the decomposi-
tion techniques adopted in this paper to improve the numerical proper-
ties of the algorithm and describes the proposed co-design framework. 
Section 4 presents numerical results of the proposed framework applied 
to a residential building case study. The paper ends with conclusions in
Section 5.

2.  Problem formulation

The co-design framework must use building models to consider the 
building operation managed by the MPC. To obtain such models, we 
can follow a systematic workflow starting from a detailed physics-based 
model followed by low-order control-oriented modelling and heating 
system component modelling. The model complexity is reduced using 
model order reduction methods [17]. The models used in the design 
phase have structures analogous to electrical circuits composed of resis-
tors and capacitors [18], with heat flows and temperature differences 
represented as currents and voltages. Such structures are commonly 
used to represent the thermal behaviour of a building in both simu-
lation [19] and control [20] applications. Reviews of such methods can 
be found in Harish and Kumar[21]. Where data are available, param-
eterisation can be achieved through system identification methods. At 
the design stage, or more generally, in the absence of data, model pa-
rameters can be chosen based on the building fabric dimensions and 
materials. For our design-oriented framework, the latter case is most 
relevant. The last section illustrates the co-design framework on a three-
bedroom dwelling with a high insulation level, adopting a single-zone 
lumped-capacitance method with the model described as ordinary dif-
ferential equations [22]. Future work could include calibration against 
monitoring data when transitioning from the design to the implementa-
tion phase.

2.1.  System dynamics

The system is described by
𝑥̇(𝑡) = 𝑓 (𝑥(𝑡), 𝑢(𝑡), 𝑤(𝑡), 𝑝, 𝑡) (1)

where 𝑓 (⋅) is continuous, 𝑥(𝑡) ∈ ℝ𝑛𝑥  is the system state, 𝑢(𝑡) ∈ ℝ𝑛𝑢  the 
control input, 𝑝 ∈ ℝ𝑛𝑝  a vector of constant design parameters, and 𝑤(𝑡) ∈
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Fig. 1. Notation of time variables.

ℝ𝑛𝑤  a vector of uncertain time-varying exogenous inputs belonging to a 
time-varying uncertainty set 𝕎(𝑡). The exogenous inputs 𝑤(𝑡) define the 
system’s operating conditions. The aim is to design a system and a con-
troller to achieve high performance under plausible operating conditions 
described by 𝑤(⋅) ∈  ∶= {measurable bounded functions 𝑤 ∶ [0,∞) →
ℝ𝑛𝑤 ∶ 𝑤(𝑡) ∈ 𝕎(𝑡)}. The uncertainty on the short time scale in real-time 
forecasting is assumed to be implicitly counteracted by the MPC con-
troller operated in closed-loop. We are primarily interested in large un-
certainties captured by scenarios characterising significant operational 
differences.

Given the sizing parameter 𝑝 and the prediction horizon 𝑡𝑓 , the 
closed-loop controller at time 𝑡 minimizes the performance cost with 
Eq. (2):

∫

𝑡+𝑡𝑓

𝑡
𝓁(𝑥(𝜏), 𝑢(𝜏), 𝑤(𝜏), 𝑝, 𝜏)d𝜏 (2)

while satisfying the constraints Eqs. (3)–(6):
𝑥̇(𝜏) = 𝑓 (𝑥(𝜏), 𝑢(𝜏), 𝑤(𝜏), 𝑝, 𝜏), ∀𝜏 ∈  a.e., (3)

𝑔(𝑥̇(𝜏), 𝑥(𝜏), 𝑢̇(𝜏), 𝑢(𝜏), 𝑤(𝜏), 𝑝, 𝜏) ≤ 0, ∀𝜏 ∈  a.e., (4)

𝑐(𝑥̇(𝜏), 𝑥(𝜏), 𝑢̇(𝜏), 𝑢(𝜏), 𝑝, 𝜏) = 0, ∀𝜏 ∈ 𝕋 , (5)

𝜓(𝑥(𝑡), 𝑥(𝑡 + 𝑡𝑓 ), 𝑝, 𝑡, 𝑡𝑓 ) ≤ 0, (6)

where ‘a.e.’ stands for ‘almost everywhere’ in the Lebesgue sense on 
the interval  ∶= [𝑡, 𝑡 + 𝑡𝑓 ] ⊂ ℝ, where 𝑡 and 𝑡𝑓  denote, respectively, 
the initial time and the prediction horizon. The set 𝕋 ⊂   is a finite 
subset of  . The inequality constraints Eq. (4), where 𝑔 ∶ ℝ𝑛𝑥 ×ℝ𝑛𝑥 ×
ℝ𝑛𝑢 ×ℝ𝑛𝑢 ×ℝ𝑛𝑝 ×ℝ → ℝ𝑛𝑔  and 𝑛𝑔 indicate the number of constraints, 
describe general constraints on the variables. General boundary equal-
ity and inequality constraints can be imposed through Eq. (6), where 
𝜓 ∶ ℝ𝑛𝑥 ×ℝ𝑛𝑥 ×ℝ𝑛𝑝 ×ℝ ×ℝ → ℝ𝑛𝐼  and 𝑛𝐼  is the number of terminal 
constraints.

It is assumed that the states and inputs lie in compact sets 𝕏 and 
𝕌, respectively, which are included in Eq. (4). The optimal closed-loop 
policy at time 𝑡 is obtained by minimising Eq. (2) subject to the con-
straints Eqs. (3)–(6). Such a closed-loop policy, and consequently its 
performance, is determined by the system design parameters 𝑝, the re-
alisation of the uncertainty 𝑤(⋅) in the interval [𝑡, 𝑡 + 𝑡𝑓 ] and the imple-
mented algorithm computing the optimal controller, which necessitates 
the selection of several parameters such as prediction horizon, discreti-
sation step, and sampling time. The systematic choice of these parame-
ters is the objective of the algorithm proposed in this work.

2.2.  Risk measures

The system is required to provide good performance under a large 
variety of operating conditions that are unknown at the design stage. 
The cost Eq. (31) and in consequence Eq. (2) changes for different reali-
sations of the uncertainty, and as a result, a measure of risk providing a 
surrogate for the overall cost is adopted [23]. In particular, the measure 

of risk assigning a single value to an uncertain variable 𝑍 is a functional 
 ∶ 𝑍 → (−∞,∞), which is required to be a coherent measure of risk to 
be a good risk quantifier [23]. Examples of coherent risk measures are 
the expectation 𝐸[𝑍] and the worst-case realisation max(𝑍). The choice 
of risk measures in this work will be discussed in Section 3.

2.3.  Numerical solution

An algorithmic implementation of the optimisation problem 
Eqs. (2)–(6), given the information on the system state and its envi-
ronment, computes a control law at time instants 𝑡 = 𝑡𝑖 for 𝑖 = 0, 1,… ,
and imposes the conditions Eqs. (3)–(6) on a discrete set  𝑑 ∶=
{𝜏0, 𝜏1,… , 𝜏𝑁} of time instances satisfying 𝜏0 = 𝑡𝑖 < 𝜏1 <… < 𝜏𝑁 = 𝑡𝑖 +
𝑡𝑓  (Fig. 1). Denote 𝑇 (𝑠) ∶= 𝑡𝑖+1 − 𝑡𝑖 as the sampling time for all 𝑖 and 
𝑇 (𝑑)
𝑘 ∶= 𝜏𝑘+1 − 𝜏𝑘 the discretization steps where 𝜏𝑘 ∈  𝑑 , 𝑘 = 0, 1,… , 𝑁 . 
For the sake of simplicity, we assume that there exists a positive integer 
𝑛𝑑 such that 𝑇 (𝑠) = 𝑛𝑑𝑇

(𝑑)
0 .

The parameter 𝑇 (𝑠) describes how often new measurements are re-
trieved, and an optimisation problem is solved to compute the con-
trol law. The finite parametrisation of the problem involves a finite 
parametrisation of all the trajectories that we highlight, adding the tilde 
symbol ̃  to their definition. The control algorithm, given the state 𝑥𝑖 at 
time 𝑡𝑖 and the sequence 𝐰̃[𝜏0 ,𝜏𝑁 ] = (𝑤̃(𝜏0), 𝑤̃(𝜏1),… , 𝑤̃(𝜏𝑁 )) over the hori-
zon 𝑁 , minimizes a discretized formulation of the problem Eqs. (2)–(6) 
with a cost

𝐽 (𝐷)(𝐮̃, 𝐰̃[𝜏0 ,𝜏𝑁 ], 𝑡, 𝑡𝑓 , 𝑝, 𝑥𝑖) =
𝑁
∑

𝑘=0
𝓁𝐷(𝑥̃(𝜏𝑘), 𝑢̃(𝜏𝑘), 𝑤̃(𝜏𝑘), 𝑝, 𝑡) (7)

that depends on the discretisation method [24]. We denote as
𝐮̃∗(𝑥𝑖, 𝑡𝑖; 𝐰̃[𝜏0 ,𝜏𝑁 ], 𝑝, 𝑝𝑐 ) = (𝑢̃∗(𝜏0; 𝐰̃[𝜏0 ,𝜏𝑁 ], 𝑥𝑖, 𝑝, 𝑝𝑐 ),

𝑢̃∗(𝜏1; 𝐰̃[𝜏0 ,𝜏𝑁 ], 𝑥𝑖, 𝑝, 𝑝𝑐 ),… , 𝑢̃∗(𝜏𝑁 ; 𝐰̃[𝜏0 ,𝜏𝑁 ], 𝑥𝑖, 𝑝, 𝑝𝑐 ))
(8)

and

𝐱̃∗(𝑥𝑖, 𝑡𝑖; 𝐰̃[𝜏0 ,𝜏𝑁 ], 𝑝, 𝑝𝑐 ) = (𝑥̃∗(𝜏0; 𝐰̃[𝜏0 ,𝜏𝑁 ], 𝑥𝑖, 𝑝, 𝑝𝑐 ),

𝑥̃∗(𝜏1; 𝐰̃[𝜏0 ,𝜏𝑁 ], 𝑥𝑖, 𝑝, 𝑝𝑐 ),… , 𝑥̃∗(𝜏𝑁 ; 𝐰̃[𝜏0 ,𝜏𝑁 ], 𝑥𝑖, 𝑝, 𝑝𝑐 ))
(9)

the optimal input and state sequences, respectively, returned by the con-
trol algorithm. The optimal sequences Eqs. (8) and (9) depend on the 
vector 𝑝𝑐 of the controller parameters of interest, such as the prediction 
horizon, the sampling time, and the discretisation step.

The control law 𝜅𝑁 (𝑡, 𝑥𝑖, 𝑡𝑖; 𝐰̃[𝜏0 ,𝜏𝑁 ], 𝑝, 𝑝𝑐 ), applied to the system is de-
termined by the first 𝑘 elements of the sequence 𝐮̃∗(𝑥𝑖, 𝑡𝑖; 𝐰̃[𝜏0 ,𝜏𝑁 ], 𝑝, 𝑝𝑐 )
in the time interval 𝑡 ∈ [𝑡𝑖, 𝑡𝑖 + 𝑇 (𝑠)] as follows
𝜅𝑁 (𝑡, 𝑥𝑖, 𝑡𝑖; 𝐰̃[𝜏0 ,𝜏𝑁 ], 𝑝, 𝑝𝑐 ) ∶=

𝜙(𝑡, [𝑢̃∗(𝜏0; 𝐰̃[𝜏0 ,𝜏𝑁 ], 𝑥𝑖, 𝑝, 𝑝𝑐 ),… , 𝑢̃∗(𝜏𝑘; 𝐰̃[𝜏0 ,𝜏𝑁 ], 𝑥𝑖, 𝑝, 𝑝𝑐 )])
(10)

where 𝑘 satisfies 𝜏𝑘 = 𝑡𝑖 + 𝑇 (𝑠) and the interpolation function 𝜙(⋅) is de-
termined by the discretization method that was used. The achieved 
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closed-loop cost 𝑉𝑐𝑙(⋅) in the interval [𝑡𝑖, 𝑡𝑖 + 𝑇 (𝑠)] is
𝑉𝑐𝑙(𝑥𝑖, 𝑡𝑖,𝐰[𝑡𝑖 ,𝑡𝑖+𝑁 ], 𝑝, 𝑝𝑐 ) =

∫

𝑡𝑖+𝑇 (𝑠)

𝑡𝑖
𝓁(𝑥(𝜏), 𝜅𝑁 (𝜏, 𝑥𝑖, 𝑡𝑖; 𝐰̃[𝑡𝑖 ,𝑡𝑖+𝑁 ], 𝑝, 𝑝𝑐 ), 𝑤(𝜏), 𝑝)d𝜏

(11)

where 𝑥(𝑡) refers to the closed-loop trajectory obtained by applying the 
control law Eq. (10) and 𝐰[𝑎,𝑏] is the vector of exogenous signals in the 
interval [𝑎, 𝑏].

2.4.  Multi-objective co-design problem

The optimisation of a building’s performance requires considering 
multiple objectives.

2.4.1.  Multiple objectives
An essential performance criterion in designing and operating  a 

building is its economic cost, which consists of investment and operat-
ing costs given by time-varying electricity prices. Thus, the first objec-
tive is the minimisation of the system present value cost [25, Appendix 
A] given by

𝐽 (1)(𝑝, 𝑝𝑐 ) ∶= 
⎛

⎜

⎜

⎝

𝑁𝑦
∑

𝑖=0
𝑉𝑐𝑙(𝑥𝑖, 𝑡𝑖,𝐰[𝑡𝑖 ,𝑡𝑖+𝑁 ], 𝑝, 𝑝𝑐 ) + 𝑉𝐼 (𝑝)

⎞

⎟

⎟

⎠

(12)

with a chosen risk measure , where 𝑉𝐼 (𝑝) considers investment costs 
and 𝑁𝑦 is the number of samples required to cover a whole year. The 
initial condition 𝑥𝑖 can also be considered as an uncertain parameter. 
Since the performance accounts for a time-varying economic criterion, 
the choice of the controller parameters requires the inclusion of addi-
tional objectives considering the performance of the closed-loop system 
with respect to a reference performance [4].

Even though extensive research has been performed on EMPC, little 
has been said about closed-loop performance for the time-varying case 
[3,26]. In general, it is not straightforward to identify feasible trajecto-
ries and, consequently, a reference performance 𝑉𝑐𝑙(𝑥𝑟𝑗 , 𝑡𝑗 ,𝐰[𝑡𝑗 ,𝑡𝑗+𝑁 ], 𝑝, 𝑝𝑟𝑐 )
for 𝑗 = 0,… , 𝑁𝑟

𝑦 for time-varying formulations. The superscript 𝑟 denotes 
a reference term. For this reason, the reference performance is deter-
mined by physically meaningful controller parameters from which we 
expect to achieve the best closed-loop performance defined by Eq. (2). 
The achieved asymptotic average cost is no worse than the one provided 
by the reference trajectory. The sensitivity analysis of the optimal cost 
with respect to these parameters can also indicate whether their choice 
is adequate. Note that a reference is deemed suitable if the associated 
performance is not too sensitive to small parameter changes, especially 
including, as an additional design parameter, a degree of tightening in 
the terminal constraints to enforce a robustness margin at the opera-
tional level. Let
𝐕𝐌(𝑥0, 𝑡0,𝐰[𝑡0 ,𝑡𝑀+𝑁−1], 𝑝, 𝑝𝑐 ) ∶=

[𝑉𝑐𝑙(𝑥0, 𝑡0,𝐰[𝑡0 ,𝑡𝑁 ], 𝑝, 𝑝𝑐 ),… , 𝑉𝑐𝑙(𝑥𝑀−1, 𝑡𝑀−1,𝐰[𝑡𝑀−1 ,𝑡𝑀+𝑁−1], 𝑝, 𝑝𝑐 )]
′ (13)

where ′ indicates the transpose of a vector. The cost accounting for the 
controller closed-loop performance over a year is defined as
𝐽 (2)(𝑝, 𝑝𝑐 ) ∶=

(𝐷(𝐕𝐍𝐲
(𝑥0, 𝑡0,𝐰[𝑡0 ,𝑡𝑁𝑦+𝑁−1], 𝑝, 𝑝𝑐 ),𝐕𝐍𝐲

(𝑥0, 𝑡0,𝐰[𝑡0 ,𝑡𝑁𝑦+𝑁−1], 𝑝, 𝑝
𝑟
𝑐 )))

(14)

where 𝐷(⋅) denotes the norm of choice. Other choices could be relevant 
to perform the auto-tuning of the controller [27], but for simplicity, we 
consider that the discretisation time can only assume values for which 
the approximating error of the system dynamics is acceptable.

Another important tuning criterion is the computational resources 
required by the controller. The MPC tuning requires a trade-off between 
closed-loop performance improvements and the additional computa-
tional effort needed to provide such performance improvements. Long 
prediction horizons and small sampling and discretisation steps might 
be unnecessary to achieve good performance while still determining the 
complexity of the problem to be solved. Consequently, the third cost 

accounts for the preference for short horizons and large sampling and 
discretisation steps
𝐽 (3)(𝑝, 𝑝𝑐 ) ∶= (𝑄(𝑝𝑐 ;𝐰[𝑡0 ,𝑡𝑁𝑦 ]

)) (15)

where 𝑄(⋅) indicates a cost of choice depending on the controller pa-
rameters. For example, a possible choice consists of the computational 
time required to compute the objective 𝐕𝐍𝐲

(𝑥0, 𝑡0,𝐰[𝑡0 ,𝑡𝑁𝑦+𝑁−1], 𝑝, 𝑝𝑐 ) that 
highlights the potential dependence of the cost 𝑄(⋅) on the specific real-
ization of 𝐰[𝑡0 ,𝑡𝑁𝑦 ]

.

2.4.2.  Co-design problem
The co-design problem is formulated as the following multi-objective 

problem

min
𝑝,𝑝𝑐

(𝐽 (1)(𝑝, 𝑝𝑐 ), 𝐽 (2)(𝑝, 𝑝𝑐 ), 𝐽 (3)(𝑝, 𝑝𝑐 ))

subject to
𝑝 ∈  , 𝑝𝑐 ∈ 𝑐 (16)

where  and 𝑐 describe the feasible spaces for the sizing and controller 
parameters, respectively. Note that the costs 𝐽 (1)(𝑝, 𝑝𝑐 , 𝐽 (2)(𝑝, 𝑝𝑐 ) and 
𝐽 (3)(𝑝, 𝑝𝑐 ) depend on the closed-loop system performance. The multi-
objective problem Eq. (16) with conflicting objectives does not have 
a single solution that simultaneously optimises each objective, but a 
set of possible optimal solutions known as the Pareto frontier [5,28]. 
A solution is Pareto optimal if the improvement in one objective’s value 
degrades some other objective values. All Pareto optimal solutions are 
equally good, and a single choice relies on preference or additional cri-
teria. In this work, preferences and the proposed approach determine 
the final optimal solution.

Problem Eq. (16) is computationally complex since it requires nu-
merous function evaluations consisting of time-consuming simulations 
to evaluate the closed-loop behaviour under different operating condi-
tions. Problem Eq. (16) is a bi-level optimisation task, where the objec-
tive functions are evaluated via black-box simulations, hence gradient 
information isunavailable. Their values are determined by performing 
black-box simulations [29]. The derivative information on the objective 
functions is not available since some of the design parameters included 
in 𝑝 and 𝑝𝑐 can only assume a finite number of values, and the time-
varying electricity prices are piece-wise constant. Moreover, the chosen 
risk measure can also induce discontinuities in the objective function, 
for example, if the chosen (⋅) is the max operator.

3.  Problem decomposition and importance subsamples

To mitigate the computational burden of solving problem Eq. (16), 
we propose a decomposition-based approach that enables efficient iden-
tification of near-optimal design parameters through control tuning and 
scenario subsampling. In the present framework, we extend the idea of 
importance subsampling, proposed in Hilbers et al. [14], to problems pre-
senting dynamics correlating variables at different time instants. Since 
time-varying electricity prices induce a large variability in the costs and 
the optimal design choices, we determine the importance of a subsample 
based on the associated optimal cost and the design parameter 𝑝.

3.1.  MPC tuning with subsample selection

Even if the multi-objective problem Eq. (16) operates on reduced 
data sets, such a problem is still computationally demanding and re-
quires trade-off choices. Therefore, we propose decomposing the prob-
lem Eq. (16) into two problems. In particular, we note that the con-
straints 𝑐 and  on the controller and sizing parameters, respectively, 
are independent. The proposed co-design framework aims to mitigate 
the computational complexity by decoupling multiple objectives and 
solving multiple optimisation problems of reduced size.
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Fig. 2. Iterative co-design flowchart.

In particular, the design parameter 𝑝∗ is a solution to the follow-
ing problem ℙ, which uses the information obtained by running MPC 
tuning 𝑝∗𝑐  and subsample selection 𝑐 :

min
𝑝∈



(

∑

𝑖∈𝑐

𝜈𝑖𝟏′𝐍𝐢
𝐕𝐍𝐢

(𝑥̂𝑖, 𝑡(𝑖),𝐒(𝐢), 𝑝, 𝑝∗𝑐 )
)

+ 𝑉𝐼 (𝑝) (17)

The problem ℙ provides a design parameter 𝑝∗ that has a degree of 
robustness that is the result of a compromise between computational 
complexity and modelling accuracy.

The flowchart in Fig. 2 shows the full co-design procedure with four 
main elements:
À Manual setup that includes:

• Choosing the risk measure ;
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Fig. 3. MPC tuning.

• Choosing the dataset;
• Choosing the preferred criterion to find a trade-off between com-
putational complexity of the controller and its performance [30];

• Choosing clustering method;
• Choosing the maximal number of clusters 𝑘max;
• Setting up the numerical methods from Section 2.3.

Á Preparation of data for control and MPC tuning. Data preparation for 
controller tuning includes:

• Choosing a persistently exciting dataset 𝐰𝑟[𝑡0 ,𝑡𝑁𝑟+𝑁−1]
;

• Choosing controller reference parameter 𝑝𝑟𝑐 ;
• Picking 𝑚𝑝 values 𝑝(𝑖) ∈  , 𝑖 = 1,… , 𝑚𝑝;
• Picking 𝑚𝑥 initial states 𝑥(𝑗,𝑖)0 ∈ 𝑝(𝑖) , 𝑗 = 1,… , 𝑚𝑥, 𝑖 = 1,… , 𝑚𝑝.
The details of MPC tuning are in Section 3.2 and the correspond-

ing flowchart is in Fig. 3.
Â Preparation of data for subsampling that includes:

• Choosing the initial subsamples 𝐒𝐡, ℎ = 1,… , 𝑚;
• Setting 𝑚 initial states 𝑥̂ℎ.

Ã Subsample selection, optimisation, and validation that are presented 
in Section 3.3 and shown in the flowchart in Fig. 4. The controller 
𝑝∗𝑐  obtained from MPC tuning Á and the data preparation for sub-
sampling Â are used to find the optimal solution, if the selected per-
formance threshold   is reached (arrow Performance checks com-
plete), or to require manual adjustments of the selected criteria, if 
all data have been used and the performance threshold has not been 
reached (arrow Data checks complete).

3.2.  MPC tuning

The automatic tuning of the MPC controller is given by a trade-
off between the objectives 𝐽 (2)(𝑝, 𝑝𝑐 ), accounting for the closed loop 
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Fig. 4. Subsample selection, optimisation, and validation.

performance, and 𝐽 (3)(𝑝, 𝑝𝑐 ), considering the controller computational
complexity, where 𝑝 is a-priori unknown and consequently considered 
an uncertain parameter.

The tuning problem ℙ is defined as

min
𝑝𝑐

𝑝((𝐽 (2)(𝑝, 𝑝𝑐 ), 𝐽 (3)(𝑝, 𝑝𝑐 ))

subject to
𝑝𝑐 ∈ 𝑐 , 𝑝 ∈  , (18)

where we have introduced the risk measure 𝑝 with respect to 𝑝 since 
the optimal controller parameters need to be a good choice for all 𝑝 ∈  . 
In particular, in problem Eq. (18), we use as a risk measure the max op-
erator to guarantee the performances on the Pareto frontier for all possi-
ble system configurations described by the compact set  . The optimal 

𝑝𝑐 , denoted as 𝑝∗𝑐 , is a preferred choice determined by a compromise 
between closed-loop performance and computational complexity. The 
formulation of the problem ℙ can be further simplified since the eval-
uation of the cost function 𝐽 (2)(𝑝, 𝑝𝑐 ) can be reliably performed on per-
sistently exciting [31] training data sets 𝐰𝑟[𝑡0 ,𝑡𝑁𝑟+𝑁−1]

 of limited length. 
The persistently exciting requirement on 𝐰𝑟[𝑡0 ,𝑡𝑁𝑟+𝑁−1]

 consists of asking 
for a sufficiently rich data set that guarantees the system controlled by 
the MPC visits all the operating conditions of interest. The training data 
sets 𝐰𝑟[𝑡0 ,𝑡𝑁𝑟+𝑁−1]

 are created from the full time-series, making sure of 
selecting the relevant features of the signals. Their length must be at 
least twice as long as the reference MPC prediction horizon since per-
formance is evaluated on the closed-loop system across the length of 
the MPC prediction horizon. Persistently exciting conditions can be val-
idated on the computed reference trajectory. Note that tuning on short 
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datasets might depend on the system’s initial state. For this reason, the 
proposed simplified algorithm considers the effect of the initial state.

Let 𝑝 ⊆ 𝕏 be the state constraint set depending on the value of the 
design parameter 𝑝. Algorithm 1 details the MPC tuning procedure for a 
training set. The procedure can be repeated on additional training sets 
if the system behaviour is significantly variable. The final parameter 
choice verifies that the desired performances are guaranteed in all the 
investigated operating conditions.

Note that when the states are related to the stored energy in the sys-
tem, the number 𝑚𝑥 of needed initial conditions is often small. Indeed, 
the most demanding operating conditions for energy storage often sit 
on the extremes given by minimal or maximal low energy levels, which 
require higher control effort to balance internal energy requirements. 
In addition, the optimal 𝑝∗𝑐  also gives information on the length of the 
importance subsample, which cannot be shorter than twice the length 
of the MPC prediction horizon.

3.3.  Importance subsample

Classic data reduction approaches use individual years or cluster data 
into representative days and lead to significant errors in estimates of 
optimal system design due to data omissions affecting the output of the 
problem since they neglect how the problem depends on the data [15]. 
Conversely, the importance subsampling approach selects and groups 
subsamples according to their effect on the problem output, as discussed 
in Hilbers et al. [15] for models without interdependence between the 
sampled data.

3.3.1.  Subsample definition
In the present contribution, the importance of a subsample is eval-

uated by optimising the system investment and operation cost com-
puted, considering the closed-loop operation across a short subsample 
of weather and electricity prices. Note that the subsample length, as 
pointed out in the previous subsection, needs to be longer than twice 
the MPC prediction horizon to consider the correlation between time 
instants through the MPC prediction horizon on the closed-loop perfor-
mance. The operation cost of the closed-loop system across the short 
subsample is weighted by 𝑅ℎ according to the subsample length to esti-
mate the annual operational cost, assuming that the considered operat-
ing conditions repeat across the year.

Let  ∶= {𝐒(𝟏),𝐒(𝟐),…𝐒(𝐦)} be a collection of 𝑚 subsamples of 𝐰[𝑡0 ,𝑇 ]
where 𝑇  accounts for the full length of the time-series. Each 𝐒(𝐡) has 
𝑁ℎ +𝑁 − 1 samples where 𝑁ℎ is the simulation length. The problem, 
denoted as ℙ

ℎ , evaluating the importance of the subsample 𝐒(𝐡) is de-
fined as

𝑉 ∗
ℎ (𝑥̂ℎ, 𝑝

∗
𝑐 ) = min

𝑝
𝑅ℎ𝟏′𝐍𝐡

𝐕𝐍𝐡
(𝑥̂ℎ, 𝑡

(ℎ)
0 ,𝐒(𝐡), 𝑝, 𝑝∗𝑐 ) + 𝑉𝐼 (𝑝)

subject to 𝑝 ∈  , (19)

where 𝟏𝐍𝐡
 is a vector of ones of length 𝑁ℎ, 𝑡(ℎ)0  is the initial time of 𝐒(𝐡)

and 𝑥̂ℎ is the assigned initial state. Solving Eq. (19) corresponds to find-
ing the parameters 𝑝 that give the smallest closed-loop cost for a given 
controller described by 𝑝∗𝑐  and for the initial condition 𝑥̂ℎ. The choice of 
𝑥̂ℎ should represent a condition providing a degree of robustness accord-
ing to a risk measure. A natural simplifying choice for energy-related 
problems is considering the initial state returning the ℙ

ℎ  with a higher 
cost.

If the specific problem instance is solvable for a prediction horizon 
covering the whole subsample, a meaningful choice is to consider the 
initial state a decision variable and impose an equality constraint with 
the state at the end of the subsample. The selection of subsamples re-
quires the optimal solution of ℙ

ℎ  for ℎ = 1,… , 𝑚 and the definition 
of criteria to determine their importance. The criterion is a problem-
dependent choice, and the most common choices consider the opti-
mal cost 𝑉 ∗

ℎ (𝑥̂ℎ, 𝑝
∗
𝑐 ) as discussed in Hilbers et al. [14,15]. However, the 

volatility of electricity prices can render optimal cost alone an insuffi-
cient measure of subsample importance. Therefore, we propose choosing 
the importance subsample using the optimal cost and the design param-
eters 𝑝. This is because, independently of the achievable prices, they 
represent the design choice of interest for the problem under consider-
ation.

In Algorithm 4, |𝑖| denotes the cardinality of the set 𝑖 and the 
function 𝑑(⋅) computes the distance between points. Various distance 
measures and methods appear in the literature to evaluate the quality 
of a cluster [32,33]. A commonly used distance is the within-cluster 
sum of squares, which estimates cluster tightness and accounts for the 
variance of the data, but different distance measure choices are possible.

The choice of the number of clusters depends on more than just the 
desired clustering resolution, but is a separate task from clustering. The 
shape of the clusters and the scale of the distribution of data points are 
important factors, as the case study shows in Section 4.

The most popular partitioning algorithms are known as k-means and 
k-medoids, and they minimise the sum over each cluster of the squared 
distance between the selected cluster centre and candidate points of the 
cluster. The k-medoid algorithm has the advantage that the centre is an 
element of the cluster, and it is more robust to outliers and noise [34], 
and was chosen in this work.

4.  Case study: residential building co-design

The proposed framework from Section 3 is now applied to a residen-
tial building.

4.1.  Residential building operating with time-varying energy prices

4.1.1.  Building dynamics
The co-design framework is illustrated on a residential building con-

tributing to a grid with time-varying energy prices. The thermal dy-
namics of a three-bedroom dwelling with a high insulation level are 
modelled by adopting a single-zone lumped-capacitance method [22]. 
The building is equipped with electrically driven heat pumps (HP), 
providing temperature regulation. We consider the option of installing 
photovoltaic panels (PV) and rechargeable lithium batteries. The sur-
face area 𝑆𝑃𝑉  covered by the PV panels and the battery capacity 𝑆𝐵
are the design parameters defining 𝑝 ∶= [𝑆𝑃𝑉 , 𝑆𝐵]. The system state 
𝑥(𝑡) ∶= [𝑇 (𝑡), 𝑆𝑜𝐶(𝑡)]′ includes the building internal temperature 𝑇 (𝑡)
and the battery state of charge 𝑆𝑜𝐶(𝑡).

The input 𝑢(𝑡) ∶= [𝑢𝑒𝐻 (𝑡), 𝑢𝐶𝑒𝐻 (𝑡), 𝑢𝑑𝑐ℎ(𝑡), 𝑢𝑐ℎ(𝑡), 𝑢𝑏(𝑡), 𝑢𝑠(𝑡)]′ con-
sists of the electricity power 𝑢𝑒𝐻 (𝑡) and 𝑢𝐶𝑒𝐻 (𝑡) consumed by the heating 
and cooling pumps, respectively, the battery charging 𝑢𝑐ℎ(𝑡) and dis-
charging 𝑢𝑑𝑐ℎ(𝑡) rates and the bought 𝑢𝑏(𝑡) and sold 𝑢𝑠(𝑡) power. The 
uncertain exogenous vector 𝑤(𝑡) ∶= [𝑇 𝑒(𝑡), 𝐼(𝑡), 𝑐𝑒𝑙(𝑡), 𝑐𝑒𝑚(𝑡)] considers 
the external temperature 𝑇 𝑒(𝑡), solar irradiance 𝐼(𝑡), electricity prices 
𝑐𝑒𝑙(𝑡) and carbon emissions 𝑐𝑒𝑚(𝑡). The dynamics of the building are:
[

𝑇̇ (𝑡)
̇𝑆𝑜𝐶(𝑡)

]

=
[

− (𝑈𝐴 + 𝜌𝑎𝑖𝑟𝑉 𝐶
𝑝
𝑎𝑖𝑟𝑛𝑎𝑐 )∕𝐶𝑏𝑢𝑖𝑙𝑑 0

0 0

][

𝑇 (𝑡)
𝑆𝑜𝐶(𝑡)

]

+
[

𝐶𝑂𝑃 (𝑇 𝑒(𝑡))∕𝐶𝑏𝑢𝑖𝑙𝑑 −𝐶𝑂𝑃𝑐𝑜𝑜𝑙∕𝐶𝑏𝑢𝑖𝑙𝑑 0 0
0 0 −1∕𝜂𝑑𝑠 𝜂𝑐ℎ

]

×

⎡

⎢

⎢

⎢

⎢

⎣

𝑢𝑒𝐻 (𝑡)
𝑢𝐶𝑒𝐻 (𝑡)
𝑢𝑑𝑐ℎ(𝑡)
𝑢𝑐ℎ(𝑡)

⎤

⎥

⎥

⎥

⎥

⎦

+ 𝜉(𝑡),

(20)

where

𝜉(𝑡) =
[

𝑇 𝑒(𝑡)(𝑈𝐴 + 𝜌𝑎𝑖𝑟𝑉 𝐶
𝑝
𝑎𝑖𝑟𝑛𝑎𝑐 )∕𝐶𝑏𝑢𝑖𝑙𝑑

0

]

(21)

where COP(𝑇 𝑒(𝑡)) = 𝑚COP(𝑇 𝑒(𝑡) − 7) + 3. The values of all parameters are 
given in Table 1.
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Table 1 
Dwelling parameters.
 Description  Parameter  Value  Unit
 Average U-value 𝑈 0.93195  W/(m2 K)
 Wall surface area 𝐴 82.06959707  m2

 Air density 𝜌𝑎𝑖𝑟 1.225  kg/m3

 Building volume 𝑉 224.05  m3

 Air heat capacity 𝐶𝑝
𝑎𝑖𝑟 1.005  kJ/(kg K)

 Air changes per hour 𝑛𝑎𝑐 1  h−1
 Building thermal mass 𝐶𝑏𝑢𝑖𝑙𝑑 15286.6114  kJ/K
 Floor surface area 𝑆𝐹 89.62  m2

 HP electricity bound 𝑢𝑒𝐻 4  kW
 CP electricity bound 𝑢𝑐𝑒𝐻 6  kW
 HP capacity 𝑄

𝐻𝑃
6  kW

The input and state constraints are
𝑇 (𝑡) ≤ 𝑇 (𝑡) ≤ 𝑇 (𝑡) (22)

0 ≤ 𝑆𝑜𝐶(𝑡) ≤ 𝑆𝐵 ≤ 𝑆𝑜𝐶 (23)

0 ≤ 𝑢𝑑𝑐ℎ(𝑡), 𝑢𝑐ℎ(𝑡) ≤ 𝑆𝐵∕𝑇𝑑𝑠 (24)

𝑃 𝑃𝑉 (𝑡) = 𝜃1(1 + 𝜃2𝐼(𝑡) + 𝜃2𝑇 𝑒(𝑡))𝐼(𝑡)𝑆𝑃𝑉 (25)

𝑢𝑏(𝑡) − 𝑢𝑠(𝑡) + 𝑢𝑑𝑐ℎ(𝑡) − 𝑢𝑐ℎ(𝑡) + 𝑃 𝑃𝑉 (𝑡) = 𝑢𝑒𝐻 (𝑡) + 𝑢𝐶𝑒𝐻 (𝑡) (26)

0 ≤ 𝑢𝑏(𝑡) ≤ 𝑢𝑏, 0 ≤ 𝑢𝑠(𝑡) ≤ 𝑢𝑠 (27)

0 ≤ 𝑢𝑒𝐻 (𝑡) ≤ 𝑢𝑒𝐻 , 0 ≤ 𝑢𝐶𝑒𝐻 (𝑡) ≤ 𝑢𝐶𝑒𝐻 (28)

COP(𝑇 𝑒𝑡 )𝑢
𝑒𝐻
𝑡 ≤ 𝑄

𝐻𝑃
(29)

0 ≤ 𝑆𝑃𝑉 ≤ 𝑆𝐹 , (30)

where 𝑇 (𝑡) and 𝑇 (𝑡) define thermal comfort limits according to standards 
[35], 𝑇𝑑𝑠 is the number of hours required to fully discharge the battery at 
the maximum rate and 𝑃 𝑃𝑉 (𝑡) is the power produced by the PV panels. 
All the parameters used in the study are reported in Table 2.

The nonlinear function Eq. (25) is a good model of the maximum 
power generated by PV panels [36,37], while the operating limits refer 
to the design specs for the multi-crystalline JAP6 4BB module range 
produced by JA [38].

The stage cost used by the EMPC depends on the electricity prices
𝓁(𝑥(𝑡), 𝑢(𝑡), 𝑤(𝑡), 𝑡, 𝑝) ∶= 𝑐𝑒𝑙(𝑡)𝑢𝑏(𝑡) − 0.9𝑐𝑒𝑙(𝑡)𝑢𝑠(𝑡) + 𝑐𝐶𝑂2

𝑐𝑒𝑚(𝑡)𝑢𝑏(𝑡) (31)

where 𝑐𝑒𝑙(𝑡) are time-varying electricity prices, 𝑐𝐶𝑂2
 is the carbon price.

The expenditures 𝑉𝐼 (𝑝) = 𝑐𝐵𝑆𝐵 + 𝑐𝑃𝑉 𝑆𝑃𝑉  faced to buy the technolo-
gies use annualised capital costs 𝑐𝐵 and 𝑐𝑃𝑉  computed by dividing the 
capital cost (CAPEX) by the “present value of annuity factor”:

𝑎𝑦,𝑟 =
1 − 1

(1+𝑟)𝑦

𝑟

Table 2 
Problem parameters.
 Description  Parameter  Value  Unit
 HP COP slope 𝑚COP 0.067 ◦C
 CP COP COP𝑐𝑜𝑜𝑙 0.7  -
 Battery charging 𝜂𝑐ℎ 0.88  -
 Battery discharging 𝜂𝑑𝑠 0.88  -
 Discharging hours 𝑇𝑑𝑠 2  h
 Bought power bound 𝑢𝑏 30  kW
 Sold power bound 𝑢𝑠 30  kW
 Max battery size 𝑆𝑜𝐶 60  kWh
 Power/(𝐼𝑟) gain 𝜃1 0.12  kW/m2

 Power/(𝐼𝑟) correction 𝜃2 −1.345𝑒−4  -
 Power/(𝑇 𝐼𝑟) correction 𝜃2 −3.25𝑒−3  -
 Carbon price 𝑐𝐶𝑂2

100  /(ton CO2e)
 Battery lifespan 𝑦 15  years
 PV lifespan 𝑦 30  years
 Battery CAPEX 𝐶𝐵 460  /kWh
 PV CAPEX 𝐶𝑃𝑉 325  /m2

 Interest rate 𝑖𝑟  2%  -

Table 3 
Deterministic sizing for 𝑇 (𝑑)

𝑘 = 𝑇 (𝑠) = 15 min for all 𝑘 = 0, 1,… , 𝑁
and 𝑡𝑓 = 24 h.
Data 
year

Battery 
(kWh)

PV area 
(m2)

Optimal cost 
( £/year)

Mean 
cost(£/year)

 2008  60  89.0 -563.6  415.3
 2009  60  0.0  248.1  491.0
 2010  0  3.4  451.1  386.1
 2011  0  89.0  261.3  379.5
 2012  0  8.4  411.8  381.6
 2013  51  89.0  350.4  393.9
 2014  0  1.7  316.4  388.1
 2015  0  1.7  309.6  388.1
 2016  60  5.6  237.6  491.0
 2017  0  0.0  382.4  390.5
 2018  9  89.0  208.8  361.2

considering the technology lifespan and the interest rate reported in 
Table 2. The technologies come in units of 1 kWh for the battery capacity 
and 1.68m2 for the PV panel dimension.

4.1.2.  Pricing and weather data
The time-varying electricity prices 𝑐𝑒𝑙(𝑡) in Eq. (31) are piece-wise 

constant with 15 minutes resolution. The price data assumes the Octopus 
Agile tariff pricing mechanism [39] using the Market Index Price and 
data from BSC[40]. The significant volatility of the prices is illustrated 
by the boxplots and histograms in Fig. 5, which shows data over 11 
years grouped by month. The histograms also highlight that rare events 
are not uncommon, confirming the importance of developing a design 
approach that considers their impact on overall performance. Weather 
data have been obtained from the Centre for Environmental Analysis 
(CEDA) archive [41]. Fig. 7 reports the monthly boxplots and frequency 
distributions of the temperature. Fig. 6 reports irradiance frequency and 
relative boxplots without zero irradiance values to enhance the visibility 
of non-zero values. The grid CO2 intensity is based on data from the 
Carbon Intensity API developed by the ESO National Grid [42]. Statistics 
on Carbon prices are illustrated in Fig. 8 The adopted risk measure in 
the cost Eq. (12) is the expectation over 11 scenarios corresponding to 
the available data. Energy demand consists of the energy needed to meet 
the imposed thermal comfort requirements. It is determined by the MPC 
controller, which manages energy storage, consumption, and comfort 
while optimising economic performance.

4.2.  Numerical results

The framework has been implemented in MATLAB. In particular, the 
EMPC formulation realising the closed-loop simulation uses ICLOCS2.5 
[43] with the solver IPOPT [44] while NOMAD [45] has been used to 
solve the black-box optimisation problems. The adopted transcription 
method is explicit Euler since it allows input discontinuities. The clus-
ters were computed using the MATLAB function kmedoids. The studies 
were performed on a server with an AMD EPYC 7443 24-core processor 
running Windows Server 2019.

4.2.1.  Deterministic and robust solution
In the first study, we compare the technology sizing using multiple 

scenarios against the deterministic case to demonstrate the importance 
of considering different operating conditions. For this study we have set 
𝑇 (𝑑)
𝑘 = 𝑇 (𝑠) = 15min for all 𝑘 = 0, 1,… , 𝑁 and 𝑡𝑓 = 24h.
Table 3 reports 11 optimal technology designs according to a deter-

ministic formulation using the information of a single year. For each 
year, the mean cost in Table 3 corresponds to the annual mean cost 
achieved by applying the obtained optimal deterministic design across 
the 11 years with the different realisations of the exogenous signals. The 
results show a large variability in the size choice depending on the year 
under consideration. The mean cost over the considered 11 years is much 
higher than the optimal cost of the planning phase.
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Fig. 5. Statistics of electricity prices.

Fig. 6. Statistics of irradiance.

Table 4 
Technology sizing using robust formulations with pre-defined EMPC parameters 𝑇 (𝑑)

𝑘 = 𝑇 (𝑠) = 15 min for all 𝑘 =
0, 1,… , 𝑁 and 𝑡𝑓 = 24 h.

 Scaling in  PV area  Effective mean  Estimated mean  Comp. time
 Co-design Problem (Pb)  sub-sampling  Battery (kWh)  (m2)  cost( £/year)  cost(£/year)  (days)
 Pb Eq. (16)  -  16  89.0  347.1  -  45
 Pb Eq. (17) 𝑛𝑐 = 574  no  13  89.0  347.6  356.7  30
 Pb Eq. (17) 𝑛𝑐 = 50  no  23  89.0  349.3  378.2  4
 Pb Eq. (17) 𝑛𝑐 = 50  yes  14  89.0  347.3  303.4  2.8
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Fig. 7. Statistics of the external temperature.

Fig. 8. Statistics of carbon prices.

Conversely, the solution returned by the robust formulation, re-
ported in Table 4, is substantially different from the solutions to the 
deterministic problem. In Table 4, the cost denoted as “Effective mean 
cost” is the optimal cost achieved by solving the co-design problem 
Eq. (16) using the mean as the risk measure and optimising the parame-
ters 𝑝 or fixing the value of 𝑝 to the solution returned by the optimisation 
problem Eq. (19). The optimal cost obtained by solving Eq. (19) for dif-
ferent cluster choices appears in Table 4 as “Estimated mean cost”. The 
robust formulations achieve a better cost in all cases, up to a reduction 
of about 30% in some cases.

Table 4 also compares the optimal sizing and the computational 
times obtained by solving the co-design problem Eq. (16) warm started 
with the value 𝑝 = [9, 44] against the robust co-design problem Eq. (19) 

by exploiting parallel computation. Despite the warm starting, solving 
Eq. (16) required over 10 times more computational time (last column) 
than using the proposed approach from Eq. (19). Moreover, the decom-
posed robust formulation Eq. (19) returns optimal solutions with per-
formance comparable to the optimal solution to Eq. (16). 

The problem considering a parallel implementation over 574 sub-
samples returns an optimal solution close to the original problem in 
terms of technology sizes and optimal cost. In particular, the solution to 
problem Eq. (17), considering 574 week-long subsamples (second row in 
Table 4), returns a mean cost of 356.7 £/year which is a close estimate of 
the effective cost of 347.6 £/year achieved by the optimisation problem 
Eq. (16) using a battery of 13 kWh and 89.0m2 of PV panels (first row in 
Table 4). The difference in the optimal solution is due to the building’s 
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Fig. 9. Data points (coloured dots) consisting in the optimal cost and technolo-
gies’ size solution to Eq. (19) clustered in 50 groups differentiated by colours. 
Circles indicate the clusters’ centroids. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this 
article.)

Fig. 10. Within-cluster sums of point-to-medoid distances of the clusters in 
Fig. 9.

initial state condition. The potential implications of the sensitivity will 
be discussed in Section 5.1.

Table 4 also reports the optimal design applying the importance sub-
sample technique described in Section 3.3. The computational time is 
about 10 times lower compared to problem Eq. (16), with a deterioration 
in the performance of only 0.6%.

4.2.2.  Clustering performance
The clusters are determined on data points considering the optimal 

costs and sizes computed by solving the problem Eq. (19). The output 
of Algorithm 4 considering 50 groups is reported in Fig. 9.

The large variability in the values of the optimal costs gives a large 
sum of distances between a data point and the center of its cluster, as 
shown in Fig. 10. In particular, Fig. 10 reports the sum of the Euclidean 
distances from the centers, called centroids, considering 50 clusters.

The cluster spread can be only reduced by substantially increasing 
the number of clusters, as shown in Fig. 11.

Moreover, the clustering algorithm returns different outputs every 
time the algorithm is executed, as shown in Fig. 11, depending on the 
choice of the first centroid. Even if the clustering routine uses the K-

means++ algorithm [46] to avoid the problem of sensitivity to the 
initialisation, different runs of the clustering algorithm return different 
centroids with substantially different sizing solutions. Also, note that 
in Fig. 9, the selected centroids do not adequately represent all data 
points due to the dominance of the high-cost values in the clustering
procedure. Consequently, the clustering has been performed on data 
points with a scaled cost assuming values in [−60, 60] to assign the 
same importance to all the quantities and reduce sensitivity to the ini-
tialisation. The centroids, obtained by rescaling the data points, cover 
the space more uniformly, reducing the sizing’s sensitivity to the spe-
cific clustering output. Scaling essentially defines the importance of a 
quantity in the clustering process and regularises data considering their 
semantic meaning.

Fig. 12(a) shows the sum of the squared distances. The optimal num-
ber of clusters is commonly identified as the value associated with a 
sharp slope change (the Elbow method [47]) in the sum of squared 
distance as a function of the number of clusters. However, Fig. 12(a) 
does not show any sharp slope change. Thus, the elbow method is 
inconclusive because the error keeps decreasing with the number of 
clusters. Instead, the maximum of the summed point-to-centroid dis-
tances in Fig. 12(b) highlights the variability of the clustering outcome. 
Figs. 12(b) and 13 suggest that a clusters’ number larger than 50 reduces 
uncertainty, because the maximal centroid distance is less spread along 
the vertical axis for all experiments. Each boxplot in Fig. 13 considers 
100 runs of the clustering algorithm using the maximum of the summed 
point-to-centroid distances.

4.2.3.  Technology-specific MPC tuning
An interesting outcome of the case studies is that the choice of MPC 

parameters depends on the technology size. The MPC tuning of the sam-
pling time, discretisation step and prediction horizon, considering the 
constraints induced by the discontinuities at the changes in the electric-
ity prices, uses the discrete variables 𝑛𝑠, 𝑛𝑥 and 𝑛𝑓  characterising the 
variables of interest
𝑇 (𝑠) ∶= 𝑛𝑠𝑇

(𝑑) (32)

𝛿𝑇 ∶= 𝑛𝑥𝑇
(𝑠) (33)

𝑡𝑓 = 𝑛𝑓 (34)

where 𝛿𝑇  denotes the time interval at which the change in the price 
occurs. A resolution of an hour in the prediction horizon is reasonable 
for the co-design problem as a first approximation to limit the compu-
tational burden. The discretisation step is implicitly defined as

𝑇 (𝑑) =
𝛿𝑇
𝑛𝑥𝑛𝑠

.

The physical limitations on the tuning parameters induce the following 
bounds on the decision variables

1 ≤ 𝑛𝑠 ≤
𝛿𝑇
𝑇 (𝑑)

(35)

1 ≤ 𝑛𝑥 ≤
𝛿𝑇
𝑇 (𝑑)

(36)

𝑛𝑠𝑛𝑥 ≤
𝛿𝑇
𝑇 (𝑑)

(37)

where 𝑇 (𝑑) denotes the lower bound of the discretization step. The per-
formed studies consider as objective Eq. (15) 𝑄(𝑝𝑐 ) ∶= 𝑛𝑓 − 1∕(4𝑛𝑥) −
1∕(4𝑛𝑥𝑛𝑠) with 𝑝𝑐 = [𝑛𝑠, 𝑛𝑥, 𝑛𝑓 ], corresponding to minimising the predic-
tion horizon and maximising the sampling time and the discretisation 
step. The value of 𝑇 (𝑑) is 5 minutes, and the reference trajectory used 
in the objective 𝐽 (2)(𝑝, 𝑝𝑐 ) considers 𝑇 (𝑑) = 𝑇 (𝑠) = 5 min and 𝑡𝑓 = 3 days. 
The tuning algorithm runs the closed-loop MPC considering a whole 
week.

Fig. 14 shows the Pareto fronts for two different technology sizes.
It is interesting to observe that the choice of the MPC parameters 

depends on the technology size. The co-design requires a controller that 
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Fig. 11. Within-cluster sums of point-to-medoid distances for different numbers of clusters’ choices.

Fig. 12. Error analysis.

provides good performance for all possible sizes. Conversely, once the 
system design is completed, the controller parameter needs to perform 
well only for the specific size. Consequently, the final decision can com-
promise accuracy with real-time computational efficiency. The results 
indicate that a closed-loop cost error of £ 0.15 per week can be achieved 
by 𝑇 (𝑑) = 5 min 𝑇 (𝑠) = 15 min and 𝑡𝑓 = 17, which corresponds to a solu-
tion considering the maximum size of the technologies used. Instead, the 
choice of 𝑇 (𝑑) = 𝑇 (𝑠) = 15 min and 𝑡𝑓 = 24 hours gives a closed-loop cost 
of £ 1.31 per week Fig. 15. Such a choice provides a closed-loop error of 
0.046 per week if the technology’s size is halved, and a closed-loop er-
ror of £ 0.15 per week can be achieved for a smaller prediction horizon 
of 15 and 16 hours. The Pareto front of the cost error performed only 
considering the prediction horizon as a tuning parameter is illustrated 
in Fig. 15. The studies highlight the importance of tuning the controller 
in an integrated fashion with the building design.

4.3.  Implementation challenges

The implementation of the designed buildings under the proposed 
framework presents several challenges, the main one being the practi-
cal implementation of the MPC. Despite the extensive body of research 
demonstrating the potential benefits of MPC, its widespread adoption 
in the building industry is limited. The limited commercial implementa-
tion of MPC is due to the complexities of the predictive model design, the 
time constraints associated with developing and deploying these mod-
els, and the computational complexities that arise during online opti-
misation. However, the practical MPC implementation does not need 
to use the same prediction model used for the design but can rely on 
data-driven approaches [48–50].

Data-driven approaches offer a pathway to reduce the labour-
intensive effort associated with modelling and improve scalability. The 
feasibility of implementing Model Predictive Control locally within 
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Fig. 13. Maximum of errors’ boxplots as functions of the number of clusters with scaling for multiple experiments.

Fig. 14. MPC tuning - Pareto front for the maximum technology size (red *) 
and half technology size (blue o). (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.)

buildings has been significantly enhanced by the continuous advance-
ments in the computational power of Building Automation Systems 
(BAS) and the growing accessibility of monitored building data [51].

Furthermore, the proliferation of smart meters and sensors within 
buildings has led to an exponential increase in the availability of real-
time operational data, providing the necessary information for MPC al-
gorithms to make informed control decisions [51]. In parallel with these 
hardware advancements, the field of Artificial Intelligence (AI), partic-
ularly machine learning (ML) and deep learning (DL) techniques, has 
witnessed remarkable progress; these AI-based control algorithms are 
often used to enhance accuracy and robustness in building energy man-
agement systems by effectively modeling complex energy patterns, pre-
dicting demand fluctuations, and optimising control actions.

The implementation of MPC relies heavily on the availability of accu-
rate and timely data, particularly real-time electricity pricing and short-

Fig. 15. The Pareto front for tuning of the prediction horizon 𝑇𝑓  with 𝑇 (𝑑)
𝑘 =

𝑇 (𝑠) = 15 min.

term weather forecasts. Various sources, from public to commercial, 
offer APIs that provide this information, with different pricing models 
and levels of accessibility. Time-of-use electricity tariffs with public APIs 
are becoming more widely available, offering users access to dynamic 
pricing data (Table 5). While the availability of electricity pricing and 
weather forecast data is a crucial prerequisite for MPC, the successful 
implementation of these advanced control strategies also hinges on the 
ability to integrate these data streams with other relevant information 
from within the building, such as occupancy levels, sensor readings from 
HVAC and lighting systems, and data from the Building Management 
System (BMS).

This integration process often presents a significant challenge due 
to the inherent diversity in data formats, communication protocols, and 
update frequencies across these various sources. Furthermore, the raw 
data obtained from sensors and external APIs often requires extensive
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Table 5 
Electricity (E) and weather (W) data providers.

 Provider  Data type  Geographic coverage Cost Key features
 Agile Octopus  E  London Based on wholesale cost + 

premium (4-7pm)
Dynamic pricing based on half-
hourly wholesale energy prices

 EPEX SPOT  E  UK (London) Subscription (contact sales for 
details)

Day-ahead and intraday auction 
data, real-time market data ser-
vices

 Trading Economics  E  UK (London) API Gateway (Subscription 
plans available)

Real-time spot benchmark elec-
tricity price

 FlatPeak  E  Global (UK) Not specified Real-time access to customer’s tar-
iff and grid carbon intensity

 Commodities-API  E  EU (UK) Subscription Real-time and historical electric-
ity rates data

 LSEG  E  Europe (UK) Subscription (contact sales for 
details)

Daily and weekly OTC price as-
sessments, wholesale prices, re-
newable energy info

 UK Elec Costs API  E  Great Britain (London) Free Estimated half-hourly electricity 
costs

 Weatherstack  W  Global (London) Free (limited), Paid (from 
$8.99/month)

Real-time, historical, up to 14-day 
forecast

 WeatherAPI  W  Global (London) Free (limited), Paid (from 
$7/month)

Real-time, 3 to 14-day forecast, 
historical data

 OpenWeatherMap  W  Global (London) Free (limited), Paid (from 
$40/month)

Real-time, hourly/daily forecast, 
historical data, weather maps

 Visual Crossing  W  Global (London) Free (limited), Paid (from 
$35/month)

Real-time, historical, 15-day fore-
cast, climate normals

 Meteomatics  W  Global (London) Quote-based Real-time, forecasts (up to 15 
days), historical, climate data, 
various models

preprocessing, cleaning, and validation to ensure its quality and accu-
racy before MPC algorithms can effectively utilize it [52]. Issues such 
as missing data points, sensor noise, and data inconsistencies can com-
promise the reliability of the MPC system if not adequately addressed. 
Another layer of complexity is introduced when integrating newer MPC 
technologies with existing building automation systems, particularly 
legacy systems that may employ outdated or proprietary communication 
protocols incompatible with modern open standards. Achieving data ex-
change between these disparate systems might necessitate using spe-
cialized gateways or middleware solutions capable of translating data 
between different protocols, adding to the complexity and cost of im-
plementation. The increasing reliance on data collection and analysis 
for optimising building energy management through MPC raises ethical 
and privacy concerns that must be addressed [53].

Robust data privacy and security measures, such as anonymization 
techniques to de-identify personal information, strong encryption pro-
tocols to secure data both at rest and during transmission, and strict 
access controls to prevent unauthorized access or misuse, are essential 
for mitigating privacy risks and ensuring compliance with data protec-
tion regulations like the General Data Protection Regulation (GDPR) and 
the California Consumer Privacy Act (CCPA).

Addressing implementation challenges requires a multidisciplinary 
effort involving control engineers, building scientists, data scientists, 
policymakers, and building owners working collaboratively to advance 
the field and facilitate the transition towards a more energy-efficient 
and sustainable built environment.

Another important implementation aspect is ensuring reliable opera-
tion under unexpected conditions within the proposed MPC framework. 
This relies on a combination of robust co-design that accounts for un-
certainties, thorough validation against unseen scenarios, the potential 
integration of safety fail-safe mechanisms, and the system’s ability to 
adapt to changing conditions over time. The framework aims to create 
a system that is inherently more resilient to variations by optimising 
the physical design, the controller, and the building’s operation in an 
integrated manner. The framework includes a validation step where the 
performance of the optimised system is tested against different datasets 
not used in the design process. This step is crucial for assessing the ro-
bustness and adaptability of the designed system to unseen conditions. 

If the performance is unsatisfactory under specific unexpected scenarios 
encountered during validation, the framework allows for incorporating 
these problematic scenarios and re-optimising the system enhancing, 
system reliability. Another aspect to consider for reliable operation is 
the intrinsic adaptability of the data-driven MPC system over time, ad-
justing control parameters in response to changes in the building’s be-
havior or external conditions. 

5.  Discussion and conclusions

The achievement of net-zero carbon emissions requires decarbon-
ising the entire housing stock. Improved environmental performance 
is achieved by including renewable energy sources in the way build-
ings are operated. However, the intermittent nature of the renewables 
often requires additional equipment, such as batteries. Choosing ap-
propriate equipment is a trade-off between the needs of the building 
and the costs. Furthermore, the environmental performance of a build-
ing with the additional equipment will be affected by the way the 
building is operated. Model Predictive Controllers have been widely 
used in building control because they leverage predictions of future 
operating conditions to ensure optimal operation while satisfying con-
straints [2]. In particular, long prediction horizons allow accounting 
for weather seasonality and uncertainty in energy prices, inherent in 
the modern energy landscape. However, MPC performance is often lim-
ited by available computational capacities, because a long prediction 
horizon leads to large optimal control problems that need to be solved 
numerically. We have presented a robust framework to simultane-
ously optimise the design, controller, and operation of residential build-
ings, considering external weather conditions and electricity prices that
vary over time.

Scalability of the proposed co-design framework is a known chal-
lenge due to the inherent exponential complexity introduced by high-
dimensional systems, multiple long temporal scales and uncertainty 
modelling. However, the framework’s architecture and modular decom-
position are designed to mitigate complexities due to multiple temporal 
scales and uncertainties and enable potential applications to larger sys-
tems, such as commercial buildings or even components of smart city 
infrastructure. The framework decouples the tuning of the controller 
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(MPC) from the sizing problem by leveraging importance-based subsam-
ple selection, allowing larger systems to be handled by solving smaller 
subproblems concurrently, rather than relying on a monolithic formu-
lation. With careful aggregation of thermal zones and technology clus-
ters, the framework can be adapted to commercial settings without a 
prohibitive increase in computational burden.

From an economic perspective, the proposed co-design framework 
aligns with national and international energy objectives. It can enable 
long-term operational savings and higher grid responsiveness by lever-
aging dynamic electricity tariffs, PV-battery storage, and demand flexi-
bility. However, financial barriers such as upfront capital requirements 
and technical complexity may limit near-term adoption. Policy tools, 
such as subsidies, performance-based incentives, and integrated design 
software, could lower these barriers, encouraging developers and home-
owners to adopt such optimisation techniques in practice. 
5.1.  Discussion

Case studies demonstrate the ability of the presented co-design 
framework to seek trade-offs in an integrated fashion with a tem-
poral resolution spanning years to minutes. In particular, the case 
study reported lower costs for the robust co-design framework than 
for the deterministic approach in all cases, up to a reduction of about 
30% in some cases. The developed approximations and solution ap-
proaches report a computational time reduction at least 10 times lower 
than the original problem, with a performance deterioration of only 
0.6%. The obtained computational time improvements make the pre-
sented framework suitable for extension to non-residential/ commercial
cases.

The results show the optimal solution’s sensitivity to data and ini-
tial conditions. The optimal solution to the problem that simulates the 
closed-loop for short periods is very sensitive to the choice of the ini-
tial condition. The initial condition describes the energy available in the 
building at the beginning of the period, and its value affects the overall 
control outcome. The performed studies consider an empty battery and 
the temperature at its minimum value at the beginning of each subsam-
ple. The used initial state describes the worst condition in the winter 
season and adds a degree of robustness to the design process. The com-
putation time achieved by the parallel implementation, including all the 
available data, is lower but still substantial.

The high sensitivity also demonstrates that the range of price varia-
tions is such that the value of the initial energy stored is comparable to 
the savings achieved. It also suggests that the combination of the consid-
ered technologies is only convenient in highly dynamic and uncertain 
electricity markets unless other sources of revenue, such as ancillary 
services, are accounted for as possible additional income.

5.2.  Conclusions

The proposed framework allows solving the co-design problem over 
a longer time horizon than traditional approaches. By selecting relevant 
samples from the entire dataset, the approach limits the size of the opti-
misation problem that needs to be solved, thus improving computational 
efficiency.

The simultaneous optimisation of the design, control and operation 
of a building considering uncertainty is a computationally challenging 
optimisation problem. The challenges are primarily related to the multi-
objective nature of the operation of a building, as well as to long op-
erating timescales and corresponding exogenous data. The framework 
proposed in this paper mitigates the computational complexity by de-
coupling multiple objectives and iteratively solving reduced-size optimi-
sation problems. Furthermore, to reduce complexity further, we sample 
the data sets of the exogenous data to include data with the most critical 
information for the decision process.

The performance of the proposed framework was validated for a 
residential building. However, the framework was developed for co-

design for Model Predictive Control regardless of the application do-
main. Thus, the framework can be used for co-design in other sys-
tems with complicated dynamics and long-time operating horizon, such 
as power systems, modern transports, robotics, medical devices and 
manufacturing processes. Overall, the flexibility of MPC and the opti-
mal design of residential buildings indicate that the presented frame-
work is a good candidate for future work. The importance subsam-
ple approach and the MPC tuning algorithm require further analy-
sis and improvements in terms of their accuracy and computational
performance.

Future work could explore the integration of hybrid optimisation 
methods, such as surrogate-assisted metaheuristics and multi-objective 
evolutionary algorithms, which could enhance scalability in high-
dimensional settings. Additionally, real-world implementation will re-
quire model calibration using sensor data and a robust interface with 
building automation systems.
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