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ARTICLE INFO ABSTRACT

Keywords: Cost-effective decarbonisation of the built environment is a stepping stone to achieving net-zero carbon emissions
Integrated optimisation of building sizing & since buildings are globally responsible for more than a quarter of global energy-related CO, emissions. Improving
operation

energy utilisation and decreasing costs requires considering multiple domain-specific performance criteria. The
resulting problem is often computationally infeasible.

The paper proposes an approach based on decomposition and selection of significant operating conditions to
achieve a formulation with reduced computational complexity. We present a robust framework to optimise the
physical design, the controller, and the operation of residential buildings in an integrated fashion, considering
external weather conditions and time-varying electricity prices. The framework explicitly includes operational
constraints and increases the utilisation of the energy generated by intermittent resources.

A case study illustrates the potential of co-design in enhancing the reliability, flexibility and self-sufficiency of a
system operating under different conditions. Specifically, numerical results demonstrate reductions in costs up
to 30% compared to a deterministic formulation. Furthermore, the proposed approach achieves a computational
time reduction of at least 10 times lower compared to the original problem with a deterioration in the performance
of only 0.6 %.

Energy efficiency & economic optimisation
Uncertain operating conditions
Closed-loop predictive control
Decomposition approach

Computational tractability

1. Introduction
1.1. Motivation

Achieving net-zero carbon emissions necessitates the cost-effective
design and operation of energy-efficient buildings capable of inte-
grating with complex energy systems characterized by renewable
sources, storage technologies, and dynamic market conditions. The
most critical difficulties in addressing the decarbonization challenge
stem from the exponential growth of energy demand, the complex-
ity of the involved systems, and multiple uncertainties affecting en-
ergy production and usage. Active participation of buildings in the
whole energy system to achieve emission targets is extremely valu-
able since commercial and residential buildings are responsible for
about 38% of global CO, emissions [1]. Active support of buildings

for the whole energy system necessitates adopting renewable resources,
various storage technologies, and smart devices. It also requires con-
sumers’ participation in dynamic electricity markets characterised by
time-varying prices. The design of flexible and cost-efficient build-
ings requires optimising the technologies’ size considering the dweller
needs and how the system operates under different plausible condi-
tions. Frequently, the effect of how the system is operated is neglected
in the design process, usually because including the optimal closed-
loop operation of the system in the sizing problem and considering
the uncertainty in the operating conditions leads to a computationally
challenging problem. Nevertheless, neglecting operational uncertainty
and the behaviour of closed-loop systems may lead to a suboptimal
design.

Motivated by the requirement for buildings to increase their energy
efficiency at affordable costs, we propose a framework for optimally de-
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$_2$


\begin {equation}\label {eq:1} \dot {x}(t)=f(x(t),u(t),w(t),p,t)\end {equation}


$f(\cdot )$


$x(t) \in \reals ^{n_x}$


$u(t)\in \reals ^{n_u}$


$p \in \reals ^{n_p}$


$w(t) \in \reals ^{n_w}$


$\mathbb {W}(t)$


$w(t)$


$w(\cdot )\in \mathcal {W} : =\{\textrm {measurable bounded functions } w :[0, \infty ) \rightarrow \reals ^{n_w} \;: \; w(t) \in \mathbb {W}(t) \}$


$p$


$t_f$


$t$


\begin {equation}\label {cost-contr} \displaystyle { \int _{t}^{t+t_f} \ell (x(\tau ),u(\tau ),w(\tau ),p,\tau )\mathrm {d}\tau }\end {equation}


\begin {align}& \dot {x}(\tau )=f(x(\tau ),u(\tau ), w(\tau ),p,\tau ),& \quad \forall \tau \in \mathcal {T} \ \text {a.e.}, \label {eqn:dyns}\\ & g(\dot {x}(\tau ),x(\tau ),\dot {u}(\tau ),u(\tau ), w(\tau ),p,\tau ) \leq 0,\ & \quad \forall \tau \in \mathcal {T} \ \text {a.e.}, \label {eqn:ineqs}\\ & c(\dot {x}(\tau ),x(\tau ),\dot {u}(\tau ),u(\tau ),p, \tau ) = 0,\ & \quad \forall \tau \in \mathbb {T}, \label {eqn:wp-const}\\ & \psi (x(t),x(t+t_f),p,t,t_f)\leq 0, & \label {eqn:terminal-ineq}\end {align}


$\mathcal {T}:=[t,t+t_f]\subset \mathbb {R}$


$t$


$t_f$


$\mathbb {T} \subset \mathcal {T}$


$\mathcal {T}$


$g:\mathbb {R}^{n_x} \times \mathbb {R}^{n_x} \times \mathbb {R}^{n_u} \times \mathbb {R}^{n_u} \times \mathbb {R}^{n_p} \times \mathbb {R} \to \mathbb {R}^{n_g}$


$n_g$


$\psi :\mathbb {R}^{n_x} \times \mathbb {R}^{n_x} \times \mathbb {R}^{n_p} \times \mathbb {R} \times \mathbb {R} \to \mathbb {R}^{n_I}$


$n_I$


$\mathbb {X}$


$\mathbb {U}$


$t$


$p$


$w(\cdot )$


$[t, ~t+t_f]$


\begin {equation}\label {eq:BuildingEMPCcost} \ell (x(t),u(t),w(t),t,p) := c^{el}(t)u^{b}(t)- 0.9c^{el}(t) u^s(t)+c_{CO_2} c^{em}(t)u^{b}(t)\end {equation}


$Z$


$\mathcal {R} : Z \rightarrow \; (-\infty ,\infty )$


$E[Z]$


$\max (Z)$


$t=t_i$


$i=0,1,\ldots ,~$


$\mathcal {T}^d :=\{ \tau _0, \tau _1,\ldots , \tau _N \}$


$\tau _0=t_i < \tau _1 <\ldots < \tau _N=t_i+t_f$


$T^{(s)}:=t_{i+1}-t_i$


$i$


$T_{k}^{(d)}:=\tau _{k+1}-\tau _k$


$\tau _k \in \mathcal {T}^d$


$k=0,1,\ldots , N$


$n_d$


$T^{(s)}=n_d T_{0}^{(d)}$


$T^{(s)}$


$\tilde {~}$


$x_i$


$t_i$


$\mathbf {\tilde {w}}_{[\tau _0,\tau _N]}=( \tilde {w}(\tau _0),\tilde {w}(\tau _1), \ldots , \tilde {w}(\tau _N))$


$N$


\begin {equation}J^{(D)}(\mathbf {\tilde {u}},\mathbf {\tilde {w}}_{[\tau _0,\tau _N]},t,t_f,p,x_i)=\sum _{k=0}^N \ell ^{D}(\tilde {x}(\tau _k),\tilde {u}(\tau _k),\tilde {w}(\tau _k),p,t) \label {Xeqn3-7}\end {equation}


\begin {equation}\label {eq:opt-u} \begin {array}{@{}l@{}} \mathbf {\tilde {u}^*}(x_i,t_i;\mathbf {\tilde {w}}_{[\tau _0,\tau _N]},p,p_c)= \; ( \tilde {u}^*(\tau _0;\mathbf {\tilde {w}}_{[\tau _0,\tau _N]},x_i,p,p_c),\\[3pt]\quad \tilde {u}^*(\tau _1;\mathbf {\tilde {w}}_{[\tau _0,\tau _N]},x_i,p,p_c),\ldots ,\tilde {u}^*(\tau _{N};\mathbf {\tilde {w}}_{[\tau _0,\tau _N]},x_i,p,p_c)) \end {array}\end {equation}


\begin {equation}\label {eq:opt-x} \begin {array}{@{}l@{}} \mathbf {\tilde {x}^*}(x_i,t_i;\mathbf {\tilde {w}}_{[\tau _0,\tau _N]},p,p_c)= \; ( \tilde {x}^*(\tau _0;\mathbf {\tilde {w}}_{[\tau _0,\tau _N]},x_i,p,p_c),\\[3pt]\quad \tilde {x}^*(\tau _1;\mathbf {\tilde {w}}_{[\tau _0,\tau _N]},x_i,p,p_c),\ldots ,\tilde {x}^*(\tau _{N};\mathbf {\tilde {w}}_{[\tau _0,\tau _N]},x_i,p,p_c)) \end {array}\end {equation}


$p_c$


$\kappa _N(t,x_i,t_i;\mathbf {\tilde {w}}_{[\tau _0,\tau _N]},p,p_c)$


$\overline {k}$


$\mathbf {\tilde {u}^*}(x_i,t_i;\mathbf {\tilde {w}}_{[\tau _0,\tau _N]},p,p_c)$


$t \in [t_i,t_i+ T^{(s)}]$


\begin {equation}\label {feedback} \begin {array}{@{}l@{}} \kappa _N(t,x_i,t_i;\mathbf {\tilde {w}}_{[\tau _0,\tau _N]},p,p_c):= \\[3pt] \quad \phi (t,[\tilde {u}^*(\tau _0;\mathbf {\tilde {w}}_{[\tau _0,\tau _N]},x_i,p,p_c), \ldots ,\tilde {u}^*(\tau _{\overline {k}};\mathbf {\tilde {w}}_{[\tau _0,\tau _N]},x_i,p,p_c)]) \end {array}\end {equation}


$\overline {k}$


$\tau _{\overline {k}} = t_i+T^{(s)}$


$\phi (\cdot )$


$V_{cl}(\cdot )$


$[t_i, t_i+T^{(s)}]$


\begin {equation}\label {discr-cost} \begin {array}{@{}l@{}} V_{cl}(x_i,t_i,\mathbf {w}_{[t_i,t_{i+N}] } ,p,p_c)=\\[2pt] \quad \displaystyle { \int _{t_i}^{ t_i+T^{(s)}} \ell (x(\tau ),\kappa _N(\tau ,x_i,t_i; \mathbf {\tilde {w}}_{[t_i,t_{i+N}]},p,p_c) ,w(\tau ),p)\mathrm {d}\tau } \end {array}\end {equation}


$x(t)$


$\mathbf {w}_{[a,b]}$


$[a,b]$


\begin {equation}\label {economic} J^{(1)}(p,p_c):=\mathcal {R}\left (\sum _{i=0}^{N_y}V_{cl}(x_i,t_i,\mathbf {w}_{[t_i,t_{i+N}]},p,p_c) +V_I(p)\right )\end {equation}


$\mathcal {R}$


$V_I(p)$


$N_y$


$x_i$


$V_{cl}(x_j^r,t_j,\mathbf {w}_{[t_j,t_{j+N}]},p,p_c^r)$


$j=0, \ldots , N_y^r$


$r$


\begin {equation}\begin {array}{@{}l@{}} \mathbf {V_M}(x_0,t_0,\mathbf {w}_{[t_0,t_{M+N-1}]},p,p_c):=\\ [2pt]\quad [V_{cl}(x_0,t_0,\mathbf {w}_{[t_0,t_{N}]},p,p_c), \ldots ,V_{cl}(x_{M-1},t_{M-1},\mathbf {w}_{[t_{M-1},t_{M+N-1}]},p,p_c)]' \end {array} \label {Xeqn9-13}\end {equation}


$'$


\begin {equation}\label {cl-loop-performance} \begin {array}{@{}l@{}} J^{(2)}(p,p_c):=\\[2pt] \quad \mathcal {R}(D(\mathbf {V_{N_y}}(x_0,t_0,\mathbf {w}_{[t_0,t_{N_y+N-1}]},p,p_c),\mathbf {V_{N_y}}(x_0,t_0,\mathbf {w}_{[t_0,t_{N_y+N-1}]},p,p_c^r))) \end {array}\end {equation}


$D(\cdot )$


\begin {equation}\label {MPC-param} J^{(3)}(p,p_c):=\mathcal {R}(Q(p_c;\mathbf {w}_{[t_0,t_{N_y}]}))\end {equation}


$Q(\cdot )$


$\mathbf {V_{N_y}}(x_0,t_0,\mathbf {w}_{[t_0,t_{N_y+N-1}]},p,p_c)$


$Q(\cdot )$


$\mathbf {w}_{[t_0,t_{N_y}]}$


\begin {align}\label {MOO-co-design} &\min _{p,p_c}(J^{(1)}(p,p_c),J^{(2)}(p,p_c), J^{(3)}(p,p_c))\nonumber \\ & \textrm {subject to}\nonumber \\ & p \in \mathcal {P}, p_c \in \mathcal {P}_c\end {align}


$\mathcal {P}$


$\mathcal {P}_c$


$J^{(1)}(p,p_c$


$J^{(2)}(p,p_c)$


$J^{(3)}(p,p_c)$


$p$


$p_c$


$\mathcal {R}(\cdot )$


$\max $


$p$


$\mathcal {P}_c$


$\mathcal {P}$


$p^*$


$\mathbb {P}^{\mathcal {CD}}$


$p_c^*$


$\mathcal {H}_c$


\begin {equation}\label {size-design} \min _{p\in \mathcal {P}} \mathcal {R}\left (\sum _{i \in \mathcal {H}_c} \nu _i \mathbf {1'_{N_i}}\mathbf {V_{N_i}}(\hat {x}_i,t^{(i)},\mathbf {S^{(i)}},p,p_c^*)\right ) +V_I(p)\end {equation}


$\mathbb {P}^{\mathcal {CD}}$


$p^*$


$\mathcal {R}$


$k_{ \max }$


$\mathbf {w}^r_{[t_0,t_{N^r+N-1}]}$


$p_c^r$


$m_p$


$p^{(i)}\in \mathcal {P}$


$i=1,\ldots ,m_p$


$m_x$


$x_0^{(j,i)} \in \mathcal {X}_{p^{(i)}}$


$j=1,\ldots , m_x$


$i=1,\ldots ,m_p$


$\mathbf {S^{h}}$


$h=1,\ldots ,m$


$m$


$\hat {x}_h$


$p_c^*$


$\mathcal {J}$


$J^{(2)}(p,p_c)$


$J^{(3)}(p,p_c)$


$p$


$\mathbb {P}^{\mathcal {C}}$


\begin {align}\label {MOO-auto-tuning} &\min _{p_c}\mathcal {R}_p((J^{(2)}(p,p_c), J^{(3)}(p,p_c))\nonumber \\ &\textrm {subject to}\nonumber \\ & p_c \in \mathcal {P}_c, \; p \in \mathcal {P},\end {align}


$\mathcal {R}_p$


$p$


$p\in \mathcal {P}$


$\max $


$\mathcal {P}$


$p_c$


$p^*_c$


$\mathbb {P}^{\mathcal {C}}$


$J^{(2)}(p,p_c)$


$\mathbf {w}^r_{[t_0,t_{N^r+N-1}]}$


$\mathbf {w}^r_{[t_0,t_{N^r+N-1}]}$


$\mathbf {w}^r_{[t_0,t_{N^r+N-1}]}$


$\mathcal {X}_{p}\subseteq \mathbb {X}$


$p$


$m_x$


$p^*_c$


$R_h$


${\mathcal {S}}:=\{\mathbf {S^{(1)}}, \mathbf {S^{(2)}}, \ldots \mathbf {S^{(m)}}\}$


$m$


$\mathbf {w}_{[t_0,T]}$


$T$


$\mathbf {S^{(h)}}$


$N_h+N-1$


$N_h$


$\mathbb {P}_{h}^{\mathcal {S}}$


$\mathbf {S^{(h)}}$


\begin {align}\label {importance-pb} &V^*_h(\hat {x}_h,p_c^*)=\min \limits _{p} R_h \mathbf {1'_{N_h}}\mathbf {V_{N_h}}(\hat {x}_h,t^{(h)}_0,\mathbf {S^{(h)}},p,p_c^*)+V_I(p)\nonumber \\ &\textrm {subject to } p \in \mathcal {P},\end {align}


$\mathbf {1_{N_h}}$


$N_h$


$t^{(h)}_0$


$\mathbf {S^{(h)}}$


$\hat {x}_h$


$p$


$p_c^*$


$\hat {x}_h$


$\hat {x}_h$


$\mathbb {P}_{h}^{\mathcal {S}}$


$\mathbb {P}_{h}^{\mathcal {S}}$


$h=1, \ldots , m$


$V^*_h(\hat {x}_h,p_c^*)$


$p$


$|\mathcal {G}_i|$


$\mathcal {G}_i$


$d(\cdot )$


$S^{PV}$


$S^B$


$p:=[S^{PV}, \; S^B ]$


$x(t):= [T(t), \; SoC(t) ]'$


$T(t)$


$SoC(t)$


$u(t):=[u^{eH}(t), \; u^{CeH}(t), \; u^{dch}(t), \; u^{ch}(t), \; u^{b}(t), \; u^{s}(t) ]'$


$u^{eH}(t)$


$u^{CeH}(t)$


$u^{ch}(t)$


$u^{dch}(t)$


$u^{b}(t)$


$u^{s}(t)$


$w(t):=[T^e(t), \; I(t), \; c^{el}(t), \; c^{em}(t)]$


$T^e(t)$


$I(t)$


$c^{el}(t)$


$c^{em}(t)$


\begin {equation}\label {building-dynamic} \begin {array}{@{}l@{}} \left [\begin {array}{@{}l@{}} \dot {T}(t) \\ \dot {SoC}(t)\\ \end {array} \right ]= \left [\begin {array}{@{}ll@{}} -\,(U A+\rho _{air} V C_{air}^p n_{ac})/C_{build} & 0 \\ 0 & 0 \\ \end {array} \right ]\left [\begin {array}{@{}l@{}} T(t)\\ SoC(t)\\ \end {array} \right ]\\[8pt]\qquad \qquad \quad + \left [\begin {array}{@{}llll@{}} COP(T^e(t))/C_{build} & -COP_{cool}/C_{build} & 0 & 0 \\ 0 & 0 & -1/\eta ^{ds} & \eta ^{ch} \\ \end {array} \right ]\\[8pt]\quad \qquad \qquad \times \,\left [\begin {array}{@{}l@{}} u^{eH}(t) \\ u^{CeH}(t) \\ u^{dch}(t) \\ u^{ch}(t) \end {array} \right ]+\xi (t), \end {array}\end {equation}


\begin {equation}\xi (t)= \left [ \begin {array}{@{}l@{}} T^e(t)(U A+\rho _{air} V C_{air}^p n_{ac})/C_{build} \\ 0 \end {array} \right ] \label {Xeqn17-21}\end {equation}


$\text {COP}(T^e(t))=m_{\text {COP}} (T^e(t)-7) +3$


\begin {align}& \underline {T}(t) \leq T(t) \leq \overline {T}(t) \label {comfort}\\ & 0 \leq SoC(t) \leq S^B \leq \overline {SoC} \label {bound-SB} \\ & 0 \leq u^{dch}(t), u^{ch}(t) \leq S^B /T_{ds} \label {battery-B}\\ & P^{PV}(t)=\theta _1(1+\theta _2 I(t) + \theta _2 T^e(t))I(t) S^{PV} \label {pv-power}\\ & u^b(t)-u^s(t)+u^{dch}(t)-u^{ch}(t)+P^{PV}(t)=u^{eH}(t)+u^{CeH}(t)\\ & 0 \leq u^b(t) \leq \overline {u}^b, \; 0 \leq u^s(t) \leq \overline {u}^s \\ & 0 \leq u^{eH}(t) \leq \overline {u}^{eH}, \; 0 \leq u^{CeH}(t) \leq \overline {u}^{CeH} \\ &\text {COP}(T_t^e) u_t^{eH} \leq \overline {Q}^{HP}\\ & 0 \leq S^{PV} \leq S_F, \label {QoST}\end {align}


$\underline {T}(t)$


$\overline {T}(t)$


$T_{ds}$


$P^{PV}(t)$


$c^{el}(t)$


$c_{CO_2}$


$V_I(p)=c_B S^B+c_{PV} S^{PV}$


$c_B$


$c_{PV}$


\begin {equation*}a_{y,r}=\frac {1-\frac {1}{(1+r)^y}}{r}\end {equation*}


$1 \,\textrm {kWh}$


$1.68 \,\textrm {m}^2$


$c^{el}(t)$


$15$


$11$


$T^{(d)}_k=T^{(s)}=15\,$


$k=0,1,\ldots , N$


$t_f=24 \,$


$T^{(d)}_k=T^{(s)}=15$


$k=0,1,\ldots , N$


$t_f=24$


$11$


$11$


$11$


$T^{(d)}_k=T^{(s)}=15$


$k=0,1,\ldots , N$


$t_f=24$


$p$


$p$


$30\,\%$


$p=[9, ~44]$


$574$


$574$


$356.7$


$347.6$


$13 \,$


$89.0 \,$


${}^2$


$10$


$0.6\,\%$


$50$


$50$


$50$


$[-60, ~ 60]$


$50$


$n_s$


$n_x$


$n_f$


\begin {align}& T^{(s)}:=n_s T^{(d)} \\ & \delta _T:=n_x T^{(s)} \\ & t_f= n_f\end {align}


$\delta _T$


\begin {equation*}T^{(d)}=\frac {\delta _T}{n_x n_s}.\end {equation*}


\begin {align}& 1\leq n_s \leq \frac {\delta _T}{ \underline {T}^{(d)}} \\ & 1\leq n_x \leq \frac {\delta _T}{ \underline {T}^{(d)}}\\ & n_s n_x \leq \frac {\delta _T}{ \underline {T}^{(d)}}\end {align}


$\underline {T}^{(d)}$


$Q(p_c):=n_f-1/(4n_x)-1/(4 n_x n_s)$


$p_c=[n_s, n_x, n_f]$


$\underline {T}^{(d)}$


$5$


$J^{(2)}(p,p_c)$


$T^{(d)}=T^{(s)} =5$


$t_f=3$


$\pounds \,0.15$


$T^{(d)}=5$


$T^{(s)} =15$


$t_f=17$


$T^{(d)}=T^{(s)} =15$


$t_f=24$


$\pounds \, 1.31$


$T_f$


$T^{(d)}_k=T^{(s)}=15$


$\pounds \,0.15$


$15$


$16$


$10$
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signing the system and the controller parameters considering uncertain
operating conditions.

1.2. Existing works

Addressing the decarbonization challenge requires buildings to oper-
ate near their performance limits and explicitly account for constraints.
Model Predictive Control (MPC) is recognized as a natural choice for op-
erating buildings [2]. Furthermore, the availability of near-term weather
forecasts and the prospective participation of consumers in dynamic
electricity markets characterised by time-varying prices makes Eco-
nomic Model Predictive Control (EMPC) [3,4] the natural choice for
a dweller to improve performance while optimising the electricity cost.
However, the performance of predictive controllers depends on tuning
their parameters, such as prediction horizon, sampling time and dis-
cretisation step. Traditionally, the success of the tuning process relied
on experience. In Khusainov et al. [5], an automatic tuning of the MPC
is proposed in a co-design framework to achieve an optimal trade-off be-
tween performance and computational resources in nominal conditions.
Their approach automates the MPC and hardware co-design using the
Bi-objective Mesh Adaptive Direct Search algorithm (BiMADS) to handle
discrete variables.

However, optimising the building design in isolation from its oper-
ation can be suboptimal. Such a limitation motivates the control co-
design concept, which considers the simultaneous design of the systems
and the controller to push a system’s performance to its achievable lim-
its. Recently, Garcia-Sanz [6] recognized the importance of adopting a
control co-design concept to push the system’s performance to its achiev-
able limits. The control co-design framework considers multidisciplinary
subsystem interactions in a unified manner, enabling the opportunity to
improve performance substantially. In the 1980s, the co-design idea was
integrated with optimisation schemes to identify control and parame-
ters [7]. Frameworks co-optimising closed-loop software implementa-
tion and hardware performance appear in Suardi et al. [8], Kircher and
Zhang [9] where the co-design consists of a multi-objective formulation
since the decision variables span different time scales and belong to dif-
ferent areas. A survey on control co-design applications is provided in
Diangelakis et al. [10]. The optimal equipment selection considering the
system operation is critical to increasing the energy efficiency of large
heating systems, as pointed out in Henze et al. [11], Powell et al. [12].

The co-design problem requires identifying several significant oper-
ating conditions to achieve a reliable system design. The description of
such operating conditions necessitates several years of exogenous data
to obtain a set of annual scenarios and a useful uncertainty model of
the time-varying exogenous variables. The amount of data often leads
to challenging numerical problems, so a common approach is consid-
ering a limited data set. However, a naive choice of subsets of data in
most cases results in a solution far from optimal [13,14]. Many selec-
tion methods and aggregation techniques select and aggregate typical
subsamples without considering what might be relevant to the problem
under consideration, and they easily neglect extreme events. The im-
portance subsampling is an approach that extracts fewer observations
(subsamples) from long time series through systematic identification of
timesteps carrying essential information for the problem under consid-
eration by assigning to each subsample a measure of its importance in
realising the problem output. Recent importance subsample techniques
[14,15] identify extreme events that are significant for the problem of
interest, looking at their effect on the problem output, achieving a de-
sign choice capable of good performance on a more extensive set of
operating conditions at a reduced computational burden.

1.3. Novelty
Existing co-design approaches often suffer from computational in-

tractability, particularly when accounting for uncertainty and controller
tuning. As a result, their practical application in building design has
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remained limited. We propose a computationally tractable co-design
framework that jointly optimises technology sizing and EMPC controller
parameters, while ensuring robustness to uncertain operating conditions
through scenario-based evaluation. The work builds on the approaches
[5,14,16], considering performance, uncertainty and control tuning at
the same time. The proposed framework explicitly addresses disconti-
nuities arising from the discrete nature of sizing parameters and accom-
modates time-varying, piecewise-constant electricity prices within the
EMPC cost function, leveraging techniques from Khusainov et al. [5]. Im-
portance sub-sampling techniques are used to decompose the problem
to ensure computational tractability without significant performance
impact. Furthermore, this work extends the deterministic formulation
from Falugi et al. [16] and proposes a multi-objective co-design frame-
work that automates technology selection while incorporating uncer-
tainty and control parameter tuning. In contrast to previous works, the
present formulation introduces robustness to uncertainty and automated
control tuning as integral components of the co-design framework. In-
corporating uncertainty necessitates alternative problem formulations
and solution strategies compared to deterministic approaches. To ad-
dress such challenges, the framework adopts a scenario-based optimi-
sation strategy inspired by the subsample selection methodology intro-
duced in Hilbers et al. [14]. This concept is further extended here to
consider the impact of highly uncertain, time-varying electricity prices
and dynamic correlation of variables at different time instants through
the predictive feedback controller capability.

The rest of the paper is structured as follows. Section 2 introduces
the problem formulation and the numerical challenges due to uncer-
tainty and possible discontinuities. Section 3 presents the decomposi-
tion techniques adopted in this paper to improve the numerical proper-
ties of the algorithm and describes the proposed co-design framework.
Section 4 presents numerical results of the proposed framework applied
to a residential building case study. The paper ends with conclusions in
Section 5.

2. Problem formulation

The co-design framework must use building models to consider the
building operation managed by the MPC. To obtain such models, we
can follow a systematic workflow starting from a detailed physics-based
model followed by low-order control-oriented modelling and heating
system component modelling. The model complexity is reduced using
model order reduction methods [17]. The models used in the design
phase have structures analogous to electrical circuits composed of resis-
tors and capacitors [18], with heat flows and temperature differences
represented as currents and voltages. Such structures are commonly
used to represent the thermal behaviour of a building in both simu-
lation [19] and control [20] applications. Reviews of such methods can
be found in Harish and Kumar [21]. Where data are available, param-
eterisation can be achieved through system identification methods. At
the design stage, or more generally, in the absence of data, model pa-
rameters can be chosen based on the building fabric dimensions and
materials. For our design-oriented framework, the latter case is most
relevant. The last section illustrates the co-design framework on a three-
bedroom dwelling with a high insulation level, adopting a single-zone
lumped-capacitance method with the model described as ordinary dif-
ferential equations [22]. Future work could include calibration against
monitoring data when transitioning from the design to the implementa-
tion phase.

2.1. System dynamics

The system is described by
x(1) = f(x@®), u@®), w(®), p, 1) (€)]

where f(-) is continuous, x(¢) € R"x is the system state, u(r) € R" the
control input, p € R"» a vector of constant design parameters, and w(t) €
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Fig. 1. Notation of time variables.

R"w a vector of uncertain time-varying exogenous inputs belonging to a
time-varying uncertainty set W(r). The exogenous inputs w(t) define the
system’s operating conditions. The aim is to design a system and a con-
troller to achieve high performance under plausible operating conditions
described by w(-) € W := {measurable bounded functions w : [0, ) —
R" : w(t) € W(r)}. The uncertainty on the short time scale in real-time
forecasting is assumed to be implicitly counteracted by the MPC con-
troller operated in closed-loop. We are primarily interested in large un-
certainties captured by scenarios characterising significant operational
differences.

Given the sizing parameter p and the prediction horizon ¢, the
closed-loop controller at time ¢ minimizes the performance cost with
Eq. (2):

t+ip
/t £ (x(7), u(r), w(r), p, T)dr (2)
while satisfying the constraints Eqs. (3)-(6):
x(z) = f(x(1), u(z), w(), p, 7), VreT ae., 3)
g(x(1), x(7), (), u(r), w(r), p,7) <0, VreT ae., 4
c(x(z), x(7), u(z),u(z), p,7) = 0, VreT, 5)
w(x(0),x(t+17),p,1,1) <0, (6)

where ‘a.e.’ stands for ‘almost everywhere’ in the Lebesgue sense on
the interval 7 :=[t,r+1,] C R, where ¢ and ¢, denote, respectively,
the initial time and the prediction horizon. The set T C 7 is a finite
subset of 7. The inequality constraints Eq. (4), where g : R"x x R"x x
R™ x R™ x R" x R — R"s and n, indicate the number of constraints,
describe general constraints on the variables. General boundary equal-
ity and inequality constraints can be imposed through Eq. (6), where
y o R X R XR" X RXR — R" and n; is the number of terminal
constraints.

It is assumed that the states and inputs lie in compact sets X and
U, respectively, which are included in Eq. (4). The optimal closed-loop
policy at time ¢ is obtained by minimising Eq. (2) subject to the con-
straints Egs. (3)-(6). Such a closed-loop policy, and consequently its
performance, is determined by the system design parameters p, the re-
alisation of the uncertainty w(-) in the interval [, ¢ +7,] and the imple-
mented algorithm computing the optimal controller, which necessitates
the selection of several parameters such as prediction horizon, discreti-
sation step, and sampling time. The systematic choice of these parame-
ters is the objective of the algorithm proposed in this work.

2.2. Risk measures

The system is required to provide good performance under a large
variety of operating conditions that are unknown at the design stage.
The cost Eq. (31) and in consequence Eq. (2) changes for different reali-
sations of the uncertainty, and as a result, a measure of risk providing a
surrogate for the overall cost is adopted [23]. In particular, the measure

of risk assigning a single value to an uncertain variable Z is a functional
R : Z - (—o0, ), which is required to be a coherent measure of risk to
be a good risk quantifier [23]. Examples of coherent risk measures are
the expectation E[Z] and the worst-case realisation max(Z). The choice
of risk measures in this work will be discussed in Section 3.

2.3. Numerical solution

An algorithmic implementation of the optimisation problem
Egs. (2)-(6), given the information on the system state and its envi-
ronment, computes a control law at time instants t = ¢; for i =0, 1, ...,
and imposes the conditions Eqs. (3)-(6) on a discrete set 79 :=
{79, 71, ..., 7y} Of time instances satisfying 7y =1, <7; <... <ty =t; +
t, (Fig. 1). Denote T® :=1,,, — 1, as the sampling time for all i and
T,id) ‘= 7,4, — 7, the discretization steps where 7, € 79, k=0,1,..., N.
For the sake of simplicity, we assume that there exists a positive integer
n, such that 7 = ndTO(d).

The parameter T® describes how often new measurements are re-
trieved, and an optimisation problem is solved to compute the con-
trol law. The finite parametrisation of the problem involves a finite
parametrisation of all the trajectories that we highlight, adding the tilde
symbol ~ to their definition. The control algorithm, given the state x; at
time ¢; and the sequence W[ro,rN] = (W(ty), W(z), ..., W(Ty)) over the hori-
zon N, minimizes a discretized formulation of the problem Egs. (2)-(6)
with a cost

N
TP @, Wy o6t px) = Z P& (zy), (), W(zy), pr 1) @)
k=0

that depends on the discretisation method [24]. We denote as

WX, 15 Wy o010 P D) = (@ (705 Wiy 1 Xis Py Pe)s

_ - _ - (8
T (T3 Wigg oy 1 Xio P P)s - B (TN Wi 201 X4 D5 D))

and

XX 13 Wigg 01 P P) = (R7(T03 Wigy o 10 Xio Ps Pe)s ©

(15 W[T(JJN]’ Xjs Py De)s - X (T W[T[)J'N]’ X, P, Pc))

the optimal input and state sequences, respectively, returned by the con-
trol algorithm. The optimal sequences Egs. (8) and (9) depend on the
vector p, of the controller parameters of interest, such as the prediction
horizon, the sampling time, and the discretisation step.

The control law xn (#, x;, 1;; Wi, 1, P P. ), applied to the system is de-
termined by the first k elements of the sequence 0*(x;, #;; Wiz 1, P Pc)
in the time interval ¢ € [t;,; + T®] as follows
KN(I, X,-,l,-;V?’[,U‘,NJ,P,PC) =

e~ s n (10)
D [0 (203 Wigy oy 1 Xio Py Peds oo (T3 Wigy 015 X4 D5 D))

where k satisfies tz =1, +T® and the interpolation function ¢(-) is de-
termined by the discretization method that was used. The achieved
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closed-loop cost V,,(-) in the interval [t;,t; + T®] is

Ver (% tis Wi, 1, v 19 P> Pe) =

14T 11)
/ (x(1), kn (7, X;, ti;v?’[,i’,
1

i

on 1P D), w(z), p)dz

where x(¢) refers to the closed-loop trajectory obtained by applying the
control law Eq. (10) and wi, ;) is the vector of exogenous signals in the
interval [a, b].

2.4. Multi-objective co-design problem

The optimisation of a building’s performance requires considering
multiple objectives.

2.4.1. Multiple objectives

An essential performance criterion in designing and operating a
building is its economic cost, which consists of investment and operat-
ing costs given by time-varying electricity prices. Thus, the first objec-
tive is the minimisation of the system present value cost [25, Appendix
A] given by

102 + Vi (p) 12)

N}'
TO,p) 1= R Y. Voot Wy i
i=0
with a chosen risk measure R, where V;(p) considers investment costs
and N, is the number of samples required to cover a whole year. The
initial condition x; can also be considered as an uncertain parameter.
Since the performance accounts for a time-varying economic criterion,
the choice of the controller parameters requires the inclusion of addi-
tional objectives considering the performance of the closed-loop system
with respect to a reference performance [4].

Even though extensive research has been performed on EMPC, little
has been said about closed-loop performance for the time-varying case
[3,26]. In general, it is not straightforward to identify feasible trajecto-
ries and, consequently, a reference performance VL.I(x;, 1 Wiy on 1 P o)
forj=0,..., N; for time-varying formulations. The superscript r denotes
a reference term. For this reason, the reference performance is deter-
mined by physically meaningful controller parameters from which we
expect to achieve the best closed-loop performance defined by Eq. (2).
The achieved asymptotic average cost is no worse than the one provided
by the reference trajectory. The sensitivity analysis of the optimal cost
with respect to these parameters can also indicate whether their choice
is adequate. Note that a reference is deemed suitable if the associated
performance is not too sensitive to small parameter changes, especially
including, as an additional design parameter, a degree of tightening in
the terminal constraints to enforce a robustness margin at the opera-
tional level. Let

Vm(xo, fo, Witotpran—11> P> pe) =
Ver (o 20 Witguin 1o P Peds s Vet 1 Ear— 1 Wiy anraw g1 P POT

(13)

where / indicates the transpose of a vector. The cost accounting for the
controller closed-loop performance over a year is defined as

J(z)(lb pc) = (14)
R(D(VNy (o, fo,W[TO,,Ny+N_1],P, Pc),VNy (xg, IO,W[,O,,N}H_N_]],P’ )

where D(-) denotes the norm of choice. Other choices could be relevant
to perform the auto-tuning of the controller [27], but for simplicity, we
consider that the discretisation time can only assume values for which
the approximating error of the system dynamics is acceptable.

Another important tuning criterion is the computational resources
required by the controller. The MPC tuning requires a trade-off between
closed-loop performance improvements and the additional computa-
tional effort needed to provide such performance improvements. Long
prediction horizons and small sampling and discretisation steps might
be unnecessary to achieve good performance while still determining the
complexity of the problem to be solved. Consequently, the third cost
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accounts for the preference for short horizons and large sampling and
discretisation steps

IO, pe) :=R(OPe; Wiy, 1)) (15)

where Q(-) indicates a cost of choice depending on the controller pa-
rameters. For example, a possible choice consists of the computational
time required to compute the objective VNy (05 g, W, DNy -]’ p. p.) that
highlights the potential dependence of the cost O(-) on the specific real-
ization of Witg iy, 1"

2.4.2. Co-design problem
The co-design problem is formulated as the following multi-objective
problem

min(/V(p, po), S V@, o). IV . pe)

subject to
pPEP,p. €P, (€19)]

where P and P, describe the feasible spaces for the sizing and controller
parameters, respectively. Note that the costs JV(p, p,, J@(p,p.) and
J®(p, p,) depend on the closed-loop system performance. The multi-
objective problem Eq. (16) with conflicting objectives does not have
a single solution that simultaneously optimises each objective, but a
set of possible optimal solutions known as the Pareto frontier [5,28].
A solution is Pareto optimal if the improvement in one objective’s value
degrades some other objective values. All Pareto optimal solutions are
equally good, and a single choice relies on preference or additional cri-
teria. In this work, preferences and the proposed approach determine
the final optimal solution.

Problem Eq. (16) is computationally complex since it requires nu-
merous function evaluations consisting of time-consuming simulations
to evaluate the closed-loop behaviour under different operating condi-
tions. Problem Eq. (16) is a bi-level optimisation task, where the objec-
tive functions are evaluated via black-box simulations, hence gradient
information isunavailable. Their values are determined by performing
black-box simulations [29]. The derivative information on the objective
functions is not available since some of the design parameters included
in p and p, can only assume a finite number of values, and the time-
varying electricity prices are piece-wise constant. Moreover, the chosen
risk measure can also induce discontinuities in the objective function,
for example, if the chosen R(-) is the max operator.

3. Problem decomposition and importance subsamples

To mitigate the computational burden of solving problem Eq. (16),
we propose a decomposition-based approach that enables efficient iden-
tification of near-optimal design parameters through control tuning and
scenario subsampling. In the present framework, we extend the idea of
importance subsampling, proposed in Hilbers et al. [14], to problems pre-
senting dynamics correlating variables at different time instants. Since
time-varying electricity prices induce a large variability in the costs and
the optimal design choices, we determine the importance of a subsample
based on the associated optimal cost and the design parameter p.

3.1. MPC tuning with subsample selection

Even if the multi-objective problem Eq. (16) operates on reduced
data sets, such a problem is still computationally demanding and re-
quires trade-off choices. Therefore, we propose decomposing the prob-
lem Eq. (16) into two problems. In particular, we note that the con-
straints P, and P on the controller and sizing parameters, respectively,
are independent. The proposed co-design framework aims to mitigate
the computational complexity by decoupling multiple objectives and
solving multiple optimisation problems of reduced size.
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Set the "opti-
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MPC tuning
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Subsample selection

o Add unused
optimisation
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Validation no
1

Performance check? Data check?

Set “optimised" to true

Fig. 2. Iterative co-design flowchart.

In particular, the design parameter p* is a solution to the follow- The problem PP provides a design parameter p* that has a degree of
ing problem PP, which uses the information obtained by running MPC robustness that is the result of a compromise between computational
tuning p} and subsample selection H,: complexity and modelling accuracy.

The flowchart in Fig. 2 shows the full co-design procedure with four
main elements:

néig R( Z Vill,\IiVNi (%, 19,8 p, pj)) +Vi(p) 17) ® Manual setup that includes:
P i€H, ¢ Choosing the risk measure R;
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From earlier stages

l

Prepare data for tuning

Seti = 1
1< my no

yes

s Select p* from all Pareto frontiers
et =1

according to the desired criterion

To later stages
j < my no

yes

Find the reference closed-loop cost

Ve (2§ to, W 0@

Setj = j+1

|

Find the initial condition z] with the

maximal closed-loop cost, set xg = 7

l

Solve problem P¢ and

get i-th Pareto frontier

Seti = i+ 1

Fig. 3. MPC tuning.

e Choosing the dataset; e Choosing the initial subsamples S", h = 1,...,m;
¢ Choosing the preferred criterion to find a trade-off between com- e Setting m initial states %,.
putational complexity of the controller and its performance [30]; @ Subsample selection, optimisation, and validation that are presented
¢ Choosing clustering method; in Section 3.3 and shown in the flowchart in Fig. 4. The controller
¢ Choosing the maximal number of clusters k,,,; p: obtained from MPC tuning @ and the data preparation for sub-
¢ Setting up the numerical methods from Section 2.3. sampling ® are used to find the optimal solution, if the selected per-
@ Preparation of data for control and MPC tuning. Data preparation for formance threshold J is reached (arrow Performance checks com-
controller tuning includes: plete), or to require manual adjustments of the selected criteria, if
e Choosing a persistently exciting dataset wf totnr Nl all data have been used and the performance threshold has not been
* Choosing controller reference parameter p/; reached (arrow Data checks complete).
e Picking m, values p) € P,i=1,....m;
¢ Picking m, initial states xg'i) EXyp,j=1..,m,i=1...m, 3.2. MPC tuning

The details of MPC tuning are in Section 3.2 and the correspond-
ing flowchart is in Fig. 3.

The automatic tuning of the MPC controller is given by a trade-
® Preparation of data for subsampling that includes:

off between the objectives J@(p, p.), accounting for the closed loop
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max

Data checks complete

Fig. 4. Subsample selection, optimisation, and validation.

performance, and J®(p, p,), considering the controller computational
complexity, where p is a-priori unknown and consequently considered
an uncertain parameter.

The tuning problem PC is defined as

min R,(TP,p), TP (p, p.)

subject to
p.€EP.,peEP, (18)

where we have introduced the risk measure R, with respect to p since
the optimal controller parameters need to be a good choice for all p € P.
In particular, in problem Eq. (18), we use as a risk measure the max op-
erator to guarantee the performances on the Pareto frontier for all possi-
ble system configurations described by the compact set P. The optimal

p., denoted as p}, is a preferred choice determined by a compromise
between closed-loop performance and computational complexity. The
formulation of the problem P¢ can be further simplified since the eval-
uation of the cost function J@(p, p.) can be reliably performed on per-
sistently exciting [31] training data sets W toinreni] of limited length.
The persistently exciting requirement on W, P
for a sufficiently rich data set that guarantees the system controlled by
the MPC visits all the operating conditions of interest. The training data
sets wfrUYthNil] are created from the full time-series, making sure of
selecting the relevant features of the signals. Their length must be at
least twice as long as the reference MPC prediction horizon since per-
formance is evaluated on the closed-loop system across the length of
the MPC prediction horizon. Persistently exciting conditions can be val-

idated on the computed reference trajectory. Note that tuning on short

consists of asking
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datasets might depend on the system’s initial state. For this reason, the
proposed simplified algorithm considers the effect of the initial state.

Let X, C X be the state constraint set depending on the value of the
design parameter p. Algorithm 1 details the MPC tuning procedure for a
training set. The procedure can be repeated on additional training sets
if the system behaviour is significantly variable. The final parameter
choice verifies that the desired performances are guaranteed in all the
investigated operating conditions.

Note that when the states are related to the stored energy in the sys-
tem, the number m, of needed initial conditions is often small. Indeed,
the most demanding operating conditions for energy storage often sit
on the extremes given by minimal or maximal low energy levels, which
require higher control effort to balance internal energy requirements.
In addition, the optimal p} also gives information on the length of the
importance subsample, which cannot be shorter than twice the length
of the MPC prediction horizon.

3.3. Importance subsample

Classic data reduction approaches use individual years or cluster data
into representative days and lead to significant errors in estimates of
optimal system design due to data omissions affecting the output of the
problem since they neglect how the problem depends on the data [15].
Conversely, the importance subsampling approach selects and groups
subsamples according to their effect on the problem output, as discussed
in Hilbers et al. [15] for models without interdependence between the
sampled data.

3.3.1. Subsample definition

In the present contribution, the importance of a subsample is eval-
uated by optimising the system investment and operation cost com-
puted, considering the closed-loop operation across a short subsample
of weather and electricity prices. Note that the subsample length, as
pointed out in the previous subsection, needs to be longer than twice
the MPC prediction horizon to consider the correlation between time
instants through the MPC prediction horizon on the closed-loop perfor-
mance. The operation cost of the closed-loop system across the short
subsample is weighted by R, according to the subsample length to esti-
mate the annual operational cost, assuming that the considered operat-
ing conditions repeat across the year.

Let S := {SMV,8@ ... SM} be a collection of m subsamples of Wit 1]
where T accounts for the full length of the time-series. Each S has
N, + N — 1 samples where N, is the simulation length. The problem,
denoted as P7, evaluating the importance of the subsample S™ is de-
fined as

PPN . a h
Vi Geno ) = min Ry 1 Vi, G167 8™, 5.5 + Vi )
subject to p € P, 19

where 1y, is a vector of ones of length N, tg‘) is the initial time of S®
and %, is the assigned initial state. Solving Eq. (19) corresponds to find-
ing the parameters p that give the smallest closed-loop cost for a given
controller described by p* and for the initial condition %,. The choice of
%, should represent a condition providing a degree of robustness accord-
ing to a risk measure. A natural simplifying choice for energy-related
problems is considering the initial state returning the Pf with a higher
cost.

If the specific problem instance is solvable for a prediction horizon
covering the whole subsample, a meaningful choice is to consider the
initial state a decision variable and impose an equality constraint with
the state at the end of the subsample. The selection of subsamples re-
quires the optimal solution of [F"f for h=1,...,m and the definition
of criteria to determine their importance. The criterion is a problem-
dependent choice, and the most common choices consider the opti-
mal cost V(% p}) as discussed in Hilbers et al. [14,15]. However, the
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volatility of electricity prices can render optimal cost alone an insuffi-
cient measure of subsample importance. Therefore, we propose choosing
the importance subsample using the optimal cost and the design param-
eters p. This is because, independently of the achievable prices, they
represent the design choice of interest for the problem under consider-
ation.

In Algorithm 4, |G;| denotes the cardinality of the set G, and the
function d(-) computes the distance between points. Various distance
measures and methods appear in the literature to evaluate the quality
of a cluster [32,33]. A commonly used distance is the within-cluster
sum of squares, which estimates cluster tightness and accounts for the
variance of the data, but different distance measure choices are possible.

The choice of the number of clusters depends on more than just the
desired clustering resolution, but is a separate task from clustering. The
shape of the clusters and the scale of the distribution of data points are
important factors, as the case study shows in Section 4.

The most popular partitioning algorithms are known as k-means and
k-medoids, and they minimise the sum over each cluster of the squared
distance between the selected cluster centre and candidate points of the
cluster. The k-medoid algorithm has the advantage that the centre is an
element of the cluster, and it is more robust to outliers and noise [34],
and was chosen in this work.

4. Case study: residential building co-design

The proposed framework from Section 3 is now applied to a residen-
tial building.

4.1. Residential building operating with time-varying energy prices

4.1.1. Building dynamics

The co-design framework is illustrated on a residential building con-
tributing to a grid with time-varying energy prices. The thermal dy-
namics of a three-bedroom dwelling with a high insulation level are
modelled by adopting a single-zone lumped-capacitance method [22].
The building is equipped with electrically driven heat pumps (HP),
providing temperature regulation. We consider the option of installing
photovoltaic panels (PV) and rechargeable lithium batteries. The sur-
face area S*V covered by the PV panels and the battery capacity .S?
are the design parameters defining p :=[S¥Y, S&]. The system state
x(t) :=[T(@®), SoC(®)]" includes the building internal temperature 7T'(r)
and the battery state of charge SoC(r).

The input u(r) := [wH (), uCeH (@), uih (1), uh (1), ub@), w*))’ con-
sists of the electricity power u¢f (r) and u“°* () consumed by the heating
and cooling pumps, respectively, the battery charging u°"(t) and dis-
charging u“"(t) rates and the bought u’(f) and sold u*(f) power. The
uncertain exogenous vector w(t) := [T°(¢), I(¢), c? (1), ¢®™(1)] considers
the external temperature T°(¢), solar irradiance I(¢), electricity prices
c¢(t) and carbon emissions c®”(¢). The dynamics of the building are:

T(I) N (UA + pairvcf,'rnac)/cbuild 0 T(t)
SoC(r)] ~ [0 0f [SoC()
+ COP(T*1)/Chuita —COPreoot/Cpuita 0 0
0 0 _l/ndx nch
ueH (l)
uCeH (I)
x udeh gy + &),
u”’(l)
(20)
where
e P
&) = T*OWA+ pairVCairnac)/Cbuild 21

0

where COP(T*(1)) = mqop(T°(t) — 7) + 3. The values of all parameters are
given in Table 1.
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Table 1
Dwelling parameters.

Description Parameter ~ Value Unit

Average U-value U 0.93195 W/(m? K)

Wall surface area A 82.06959707  m?

Air density Pair 1.225 kg/m?

Building volume vV 224.05 m?

Air heat capacity cr 1.005 kJ/(kg K)

Air changes per hour R 1 h!

Building thermal mass ~ C,,;4 15286.6114 kJ/K

Floor surface area Se 89.62 m?

HP electricity bound i 4 kw

CP electricity bound wet 6 kw

HP capacity o 6 kw

The input and state constraints are
I <TO <T@ (22)
0 < SoC(t) < S® < SoC 23)
0 < (1), uh(r) < SB/T,, (24)
PPY (1) = 0,(1 + 0,1(t) + 0, T () I(1)STV (25)
ub(t) =t (O) + udr (@) — uh () + PPV (1) = utH (1) + uCeH (1) (26)
0w <@, 0<uw () <W @7)
0<uf@y<u®, 0 <uCHqr) <utt (28)
—HP

COP(TH M < Q (29)
0< S <sg, (30)

where T'(¢) and T(¢) define thermal comfort limits according to standards
[351, T, is the number of hours required to fully discharge the battery at
the maximum rate and P*Y () is the power produced by the PV panels.
All the parameters used in the study are reported in Table 2.

The nonlinear function Eq. (25) is a good model of the maximum
power generated by PV panels [36,37], while the operating limits refer
to the design specs for the multi-crystalline JAP6 4BB module range
produced by JA [38].

The stage cost used by the EMPC depends on the electricity prices

£, u(t), w(@), 1, p) := ¥ (uP(1) = 0.9¢ (D’ (1) + coo, ¢ MU’ (®)  (31)
where ¢ (t) are time-varying electricity prices, cco, 1s the carbon price.
The expenditures V;(p) = cgSE + ¢p, STV faced to buy the technolo-
gies use annualised capital costs ¢z and cp;, computed by dividing the
capital cost (CAPEX) by the “present value of annuity factor”:
1

Ty
ayr = B

Table 2

Problem parameters.
Description Parameter Value Unit
HP COP slope Mcop 0.067 °C
CP COP cop,,, 0.7
Battery charging neh 0.88
Battery discharging ns 0.88
Discharging hours Ty, 2 h
Bought power bound u 30 kw
Sold power bound u 30 kW
Max battery size SoC 60 kWh
Power/(I,) gain 0, 0.12 kW/m?

Power/(I,) correction 0, —1.345¢74

Power/(T 1,) correction 0, —3.25¢73

Carbon price cco, 100 /(ton CO2e)
Battery lifespan y 15 years

PV lifespan y 30 years
Battery CAPEX Cy 460 /kWh

PV CAPEX Cpy 325 /m?

Interest rate i 2%
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Table 3
Deterministic sizing for Tk(‘“ =T7T® =15 min for all k=0,1,...,N
andt, =24 h.
Data Battery PV area Optimal cost Mean
year (kWh) (m?) ( £/year) cost(£/year)
2008 60 89.0 -563.6 415.3
2009 60 0.0 248.1 491.0
2010 0 3.4 451.1 386.1
2011 0 89.0 261.3 379.5
2012 0 8.4 411.8 381.6
2013 51 89.0 350.4 393.9
2014 0 1.7 316.4 388.1
2015 0 1.7 309.6 388.1
2016 60 5.6 237.6 491.0
2017 0 0.0 382.4 390.5
2018 9 89.0 208.8 361.2

considering the technology lifespan and the interest rate reported in
Table 2. The technologies come in units of 1 kWh for the battery capacity
and 1.68 m? for the PV panel dimension.

4.1.2. Pricing and weather data

The time-varying electricity prices c®(¢) in Eq. (31) are piece-wise
constant with 15 minutes resolution. The price data assumes the Octopus
Agile tariff pricing mechanism [39] using the Market Index Price and
data from BSC[40]. The significant volatility of the prices is illustrated
by the boxplots and histograms in Fig. 5, which shows data over 11
years grouped by month. The histograms also highlight that rare events
are not uncommon, confirming the importance of developing a design
approach that considers their impact on overall performance. Weather
data have been obtained from the Centre for Environmental Analysis
(CEDA) archive [41]. Fig. 7 reports the monthly boxplots and frequency
distributions of the temperature. Fig. 6 reports irradiance frequency and
relative boxplots without zero irradiance values to enhance the visibility
of non-zero values. The grid CO2 intensity is based on data from the
Carbon Intensity API developed by the ESO National Grid [42]. Statistics
on Carbon prices are illustrated in Fig. 8 The adopted risk measure in
the cost Eq. (12) is the expectation over 11 scenarios corresponding to
the available data. Energy demand consists of the energy needed to meet
the imposed thermal comfort requirements. It is determined by the MPC
controller, which manages energy storage, consumption, and comfort
while optimising economic performance.

4.2. Numerical results

The framework has been implemented in MATLAB. In particular, the
EMPC formulation realising the closed-loop simulation uses ICLOCS2.5
[43] with the solver IPOPT [44] while NOMAD [45] has been used to
solve the black-box optimisation problems. The adopted transcription
method is explicit Euler since it allows input discontinuities. The clus-
ters were computed using the MATLAB function kmedoids. The studies
were performed on a server with an AMD EPYC 7443 24-core processor
running Windows Server 2019.

4.2.1. Deterministic and robust solution

In the first study, we compare the technology sizing using multiple
scenarios against the deterministic case to demonstrate the importance
of considering different operating conditions. For this study we have set
T,id) =T® = 15min forall k =0,1,..., N and 1, =24h.

Table 3 reports 11 optimal technology designs according to a deter-
ministic formulation using the information of a single year. For each
year, the mean cost in Table 3 corresponds to the annual mean cost
achieved by applying the obtained optimal deterministic design across
the 11 years with the different realisations of the exogenous signals. The
results show a large variability in the size choice depending on the year
under consideration. The mean cost over the considered 11 years is much
higher than the optimal cost of the planning phase.
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Table 4

Technology sizing using robust formulations with pre-defined EMPC parameters T,fd) =T® =15 min for all k=

0,1,...,N and 1y =24h.

Scaling in PVarea  Effective mean  Estimated mean  Comp. time
Co-design Problem (Pb)  sub-sampling  Battery (kWh)  (m?) cost( £/year) cost(£/year) (days)
Pb Eq. (16) - 16 89.0 347.1 - 45
Pb Eq. (17) n, =574 no 13 89.0 347.6 356.7 30
Pb Eq. (17) n, =50 no 23 89.0 349.3 378.2 4
Pb Eq. (17) n, =50 yes 14 89.0 347.3 303.4 2.8

10
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Conversely, the solution returned by the robust formulation, re-
ported in Table 4, is substantially different from the solutions to the
deterministic problem. In Table 4, the cost denoted as “Effective mean
cost” is the optimal cost achieved by solving the co-design problem
Eq. (16) using the mean as the risk measure and optimising the parame-
ters p or fixing the value of p to the solution returned by the optimisation
problem Eq. (19). The optimal cost obtained by solving Eq. (19) for dif-
ferent cluster choices appears in Table 4 as “Estimated mean cost”. The
robust formulations achieve a better cost in all cases, up to a reduction
of about 30 % in some cases.

Table 4 also compares the optimal sizing and the computational
times obtained by solving the co-design problem Eq. (16) warm started
with the value p = [9, 44] against the robust co-design problem Eq. (19)

11

by exploiting parallel computation. Despite the warm starting, solving
Eq. (16) required over 10 times more computational time (last column)
than using the proposed approach from Eq. (19). Moreover, the decom-
posed robust formulation Eq. (19) returns optimal solutions with per-
formance comparable to the optimal solution to Eq. (16).

The problem considering a parallel implementation over 574 sub-
samples returns an optimal solution close to the original problem in
terms of technology sizes and optimal cost. In particular, the solution to
problem Eq. (17), considering 574 week-long subsamples (second row in
Table 4), returns a mean cost of 356.7 £/year which is a close estimate of
the effective cost of 347.6 £/year achieved by the optimisation problem
Eq. (16) using a battery of 13kWh and 89.0 m? of PV panels (first row in
Table 4). The difference in the optimal solution is due to the building’s
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Fig. 10. Within-cluster sums of point-to-medoid distances of the clusters in
Fig. 9.

initial state condition. The potential implications of the sensitivity will
be discussed in Section 5.1.

Table 4 also reports the optimal design applying the importance sub-
sample technique described in Section 3.3. The computational time is
about 10 times lower compared to problem Eq. (16), with a deterioration
in the performance of only 0.6 %.

4.2.2. Clustering performance

The clusters are determined on data points considering the optimal
costs and sizes computed by solving the problem Eq. (19). The output
of Algorithm 4 considering 50 groups is reported in Fig. 9.

The large variability in the values of the optimal costs gives a large
sum of distances between a data point and the center of its cluster, as
shown in Fig. 10. In particular, Fig. 10 reports the sum of the Euclidean
distances from the centers, called centroids, considering 50 clusters.

The cluster spread can be only reduced by substantially increasing
the number of clusters, as shown in Fig. 11.

Moreover, the clustering algorithm returns different outputs every
time the algorithm is executed, as shown in Fig. 11, depending on the
choice of the first centroid. Even if the clustering routine uses the K-
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means+ + algorithm [46] to avoid the problem of sensitivity to the
initialisation, different runs of the clustering algorithm return different
centroids with substantially different sizing solutions. Also, note that
in Fig. 9, the selected centroids do not adequately represent all data
points due to the dominance of the high-cost values in the clustering
procedure. Consequently, the clustering has been performed on data
points with a scaled cost assuming values in [-60, 60] to assign the
same importance to all the quantities and reduce sensitivity to the ini-
tialisation. The centroids, obtained by rescaling the data points, cover
the space more uniformly, reducing the sizing’s sensitivity to the spe-
cific clustering output. Scaling essentially defines the importance of a
quantity in the clustering process and regularises data considering their
semantic meaning.

Fig. 12(a) shows the sum of the squared distances. The optimal num-
ber of clusters is commonly identified as the value associated with a
sharp slope change (the Elbow method [47]) in the sum of squared
distance as a function of the number of clusters. However, Fig. 12(a)
does not show any sharp slope change. Thus, the elbow method is
inconclusive because the error keeps decreasing with the number of
clusters. Instead, the maximum of the summed point-to-centroid dis-
tances in Fig. 12(b) highlights the variability of the clustering outcome.
Figs. 12(b) and 13 suggest that a clusters’ number larger than 50 reduces
uncertainty, because the maximal centroid distance is less spread along
the vertical axis for all experiments. Each boxplot in Fig. 13 considers
100 runs of the clustering algorithm using the maximum of the summed
point-to-centroid distances.

4.2.3. Technology-specific MPC tuning

An interesting outcome of the case studies is that the choice of MPC
parameters depends on the technology size. The MPC tuning of the sam-
pling time, discretisation step and prediction horizon, considering the
constraints induced by the discontinuities at the changes in the electric-
ity prices, uses the discrete variables ng, n, and n, characterising the
variables of interest

T® ;= n,T@ (32)
6y i=n, T 33)
tp=ng 34)

where 6; denotes the time interval at which the change in the price
occurs. A resolution of an hour in the prediction horizon is reasonable
for the co-design problem as a first approximation to limit the compu-
tational burden. The discretisation step is implicitly defined as

T _ o1

Ny hg

The physical limitations on the tuning parameters induce the following
bounds on the decision variables

5T
1<ng < W (35)
5T
1 < ny < W (36)
6T
nSnx S W (37)

where T@ denotes the lower bound of the discretization step. The per-
formed studies consider as objective Eq. (15) O(p,) :=n, —1/(4n,) -
1/(4n.ny) with p, = [ng, n,, n,], corresponding to minimising the predic-
tion horizon and maximising the sampling time and the discretisation
step. The value of T is 5 minutes, and the reference trajectory used
in the objective J@(p, p,) considers T = T = 5 min and 7, = 3 days.
The tuning algorithm runs the closed-loop MPC considering a whole
week.

Fig. 14 shows the Pareto fronts for two different technology sizes.

It is interesting to observe that the choice of the MPC parameters
depends on the technology size. The co-design requires a controller that
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provides good performance for all possible sizes. Conversely, once the
system design is completed, the controller parameter needs to perform
well only for the specific size. Consequently, the final decision can com-
promise accuracy with real-time computational efficiency. The results
indicate that a closed-loop cost error of £0.15 per week can be achieved
by T =5 min T = 15 min and ¢, = 17, which corresponds to a solu-
tion considering the maximum size of the technologies used. Instead, the
choice of T = T = 15 min and 1, = 24 hours gives a closed-loop cost
of £1.31 per week Fig. 15. Such a choice provides a closed-loop error of
0.046 per week if the technology’s size is halved, and a closed-loop er-
ror of £0.15 per week can be achieved for a smaller prediction horizon
of 15 and 16 hours. The Pareto front of the cost error performed only
considering the prediction horizon as a tuning parameter is illustrated
in Fig. 15. The studies highlight the importance of tuning the controller
in an integrated fashion with the building design.
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4.3. Implementation challenges

The implementation of the designed buildings under the proposed
framework presents several challenges, the main one being the practi-
cal implementation of the MPC. Despite the extensive body of research
demonstrating the potential benefits of MPC, its widespread adoption
in the building industry is limited. The limited commercial implementa-
tion of MPC is due to the complexities of the predictive model design, the
time constraints associated with developing and deploying these mod-
els, and the computational complexities that arise during online opti-
misation. However, the practical MPC implementation does not need
to use the same prediction model used for the design but can rely on
data-driven approaches [48-50].

Data-driven approaches offer a pathway to reduce the labour-
intensive effort associated with modelling and improve scalability. The
feasibility of implementing Model Predictive Control locally within



Fig. 14. MPC tuning - Pareto front for the maximum technology size (red *)
and half technology size (blue o). (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

buildings has been significantly enhanced by the continuous advance-
ments in the computational power of Building Automation Systems
(BAS) and the growing accessibility of monitored building data [51].

Furthermore, the proliferation of smart meters and sensors within
buildings has led to an exponential increase in the availability of real-
time operational data, providing the necessary information for MPC al-
gorithms to make informed control decisions [51]. In parallel with these
hardware advancements, the field of Artificial Intelligence (AI), partic-
ularly machine learning (ML) and deep learning (DL) techniques, has
witnessed remarkable progress; these Al-based control algorithms are
often used to enhance accuracy and robustness in building energy man-
agement systems by effectively modeling complex energy patterns, pre-
dicting demand fluctuations, and optimising control actions.

The implementation of MPC relies heavily on the availability of accu-
rate and timely data, particularly real-time electricity pricing and short-
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term weather forecasts. Various sources, from public to commercial,
offer APIs that provide this information, with different pricing models
and levels of accessibility. Time-of-use electricity tariffs with public APIs
are becoming more widely available, offering users access to dynamic
pricing data (Table 5). While the availability of electricity pricing and
weather forecast data is a crucial prerequisite for MPC, the successful
implementation of these advanced control strategies also hinges on the
ability to integrate these data streams with other relevant information
from within the building, such as occupancy levels, sensor readings from
HVAC and lighting systems, and data from the Building Management
System (BMS).

This integration process often presents a significant challenge due
to the inherent diversity in data formats, communication protocols, and
update frequencies across these various sources. Furthermore, the raw
data obtained from sensors and external APIs often requires extensive
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Table 5
Electricity (E) and weather (W) data providers.
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Provider Data type Geographic coverage Cost Key features
Agile Octopus E London Based on wholesale cost + Dynamic pricing based on half-
premium (4-7pm) hourly wholesale energy prices
EPEX SPOT E UK (London) Subscription (contact sales for Day-ahead and intraday auction
details) data, real-time market data ser-
vices
Trading Economics E UK (London) API Gateway (Subscription Real-time spot benchmark elec-
plans available) tricity price
FlatPeak E Global (UK) Not specified Real-time access to customer’s tar-
iff and grid carbon intensity
Commodities-API E EU (UK) Subscription Real-time and historical electric-
ity rates data
LSEG E Europe (UK) Subscription (contact sales for Daily and weekly OTC price as-
details) sessments, wholesale prices, re-
newable energy info
UK Elec Costs API E Great Britain (London) Free Estimated half-hourly electricity
costs
Weatherstack ' Global (London) Free (limited), Paid (from Real-time, historical, up to 14-day
$8.99/month) forecast
WeatherAPI w Global (London) Free (limited), Paid (from Real-time, 3 to 14-day forecast,
$7/month) historical data
OpenWeatherMap w Global (London) Free (limited), Paid (from Real-time, hourly/daily forecast,
$40/month) historical data, weather maps
Visual Crossing w Global (London) Free (limited), Paid (from Real-time, historical, 15-day fore-
$35/month) cast, climate normals
Meteomatics w Global (London) Quote-based Real-time, forecasts (up to 15

days), historical, climate data,
various models

preprocessing, cleaning, and validation to ensure its quality and accu-
racy before MPC algorithms can effectively utilize it [52]. Issues such
as missing data points, sensor noise, and data inconsistencies can com-
promise the reliability of the MPC system if not adequately addressed.
Another layer of complexity is introduced when integrating newer MPC
technologies with existing building automation systems, particularly
legacy systems that may employ outdated or proprietary communication
protocols incompatible with modern open standards. Achieving data ex-
change between these disparate systems might necessitate using spe-
cialized gateways or middleware solutions capable of translating data
between different protocols, adding to the complexity and cost of im-
plementation. The increasing reliance on data collection and analysis
for optimising building energy management through MPC raises ethical
and privacy concerns that must be addressed [53].

Robust data privacy and security measures, such as anonymization
techniques to de-identify personal information, strong encryption pro-
tocols to secure data both at rest and during transmission, and strict
access controls to prevent unauthorized access or misuse, are essential
for mitigating privacy risks and ensuring compliance with data protec-
tion regulations like the General Data Protection Regulation (GDPR) and
the California Consumer Privacy Act (CCPA).

Addressing implementation challenges requires a multidisciplinary
effort involving control engineers, building scientists, data scientists,
policymakers, and building owners working collaboratively to advance
the field and facilitate the transition towards a more energy-efficient
and sustainable built environment.

Another important implementation aspect is ensuring reliable opera-
tion under unexpected conditions within the proposed MPC framework.
This relies on a combination of robust co-design that accounts for un-
certainties, thorough validation against unseen scenarios, the potential
integration of safety fail-safe mechanisms, and the system’s ability to
adapt to changing conditions over time. The framework aims to create
a system that is inherently more resilient to variations by optimising
the physical design, the controller, and the building’s operation in an
integrated manner. The framework includes a validation step where the
performance of the optimised system is tested against different datasets
not used in the design process. This step is crucial for assessing the ro-
bustness and adaptability of the designed system to unseen conditions.
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If the performance is unsatisfactory under specific unexpected scenarios
encountered during validation, the framework allows for incorporating
these problematic scenarios and re-optimising the system enhancing,
system reliability. Another aspect to consider for reliable operation is
the intrinsic adaptability of the data-driven MPC system over time, ad-
justing control parameters in response to changes in the building’s be-
havior or external conditions.

5. Discussion and conclusions

The achievement of net-zero carbon emissions requires decarbon-
ising the entire housing stock. Improved environmental performance
is achieved by including renewable energy sources in the way build-
ings are operated. However, the intermittent nature of the renewables
often requires additional equipment, such as batteries. Choosing ap-
propriate equipment is a trade-off between the needs of the building
and the costs. Furthermore, the environmental performance of a build-
ing with the additional equipment will be affected by the way the
building is operated. Model Predictive Controllers have been widely
used in building control because they leverage predictions of future
operating conditions to ensure optimal operation while satisfying con-
straints [2]. In particular, long prediction horizons allow accounting
for weather seasonality and uncertainty in energy prices, inherent in
the modern energy landscape. However, MPC performance is often lim-
ited by available computational capacities, because a long prediction
horizon leads to large optimal control problems that need to be solved
numerically. We have presented a robust framework to simultane-
ously optimise the design, controller, and operation of residential build-
ings, considering external weather conditions and electricity prices that
vary over time.

Scalability of the proposed co-design framework is a known chal-
lenge due to the inherent exponential complexity introduced by high-
dimensional systems, multiple long temporal scales and uncertainty
modelling. However, the framework’s architecture and modular decom-
position are designed to mitigate complexities due to multiple temporal
scales and uncertainties and enable potential applications to larger sys-
tems, such as commercial buildings or even components of smart city
infrastructure. The framework decouples the tuning of the controller
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(MPC) from the sizing problem by leveraging importance-based subsam-
ple selection, allowing larger systems to be handled by solving smaller
subproblems concurrently, rather than relying on a monolithic formu-
lation. With careful aggregation of thermal zones and technology clus-
ters, the framework can be adapted to commercial settings without a
prohibitive increase in computational burden.

From an economic perspective, the proposed co-design framework
aligns with national and international energy objectives. It can enable
long-term operational savings and higher grid responsiveness by lever-
aging dynamic electricity tariffs, PV-battery storage, and demand flexi-
bility. However, financial barriers such as upfront capital requirements
and technical complexity may limit near-term adoption. Policy tools,
such as subsidies, performance-based incentives, and integrated design
software, could lower these barriers, encouraging developers and home-
owners to adopt such optimisation techniques in practice.

5.1. Discussion

Case studies demonstrate the ability of the presented co-design
framework to seek trade-offs in an integrated fashion with a tem-
poral resolution spanning years to minutes. In particular, the case
study reported lower costs for the robust co-design framework than
for the deterministic approach in all cases, up to a reduction of about
30% in some cases. The developed approximations and solution ap-
proaches report a computational time reduction at least 10 times lower
than the original problem, with a performance deterioration of only
0.6 %. The obtained computational time improvements make the pre-
sented framework suitable for extension to non-residential/ commercial
cases.

The results show the optimal solution’s sensitivity to data and ini-
tial conditions. The optimal solution to the problem that simulates the
closed-loop for short periods is very sensitive to the choice of the ini-
tial condition. The initial condition describes the energy available in the
building at the beginning of the period, and its value affects the overall
control outcome. The performed studies consider an empty battery and
the temperature at its minimum value at the beginning of each subsam-
ple. The used initial state describes the worst condition in the winter
season and adds a degree of robustness to the design process. The com-
putation time achieved by the parallel implementation, including all the
available data, is lower but still substantial.

The high sensitivity also demonstrates that the range of price varia-
tions is such that the value of the initial energy stored is comparable to
the savings achieved. It also suggests that the combination of the consid-
ered technologies is only convenient in highly dynamic and uncertain
electricity markets unless other sources of revenue, such as ancillary
services, are accounted for as possible additional income.

5.2. Conclusions

The proposed framework allows solving the co-design problem over
a longer time horizon than traditional approaches. By selecting relevant
samples from the entire dataset, the approach limits the size of the opti-
misation problem that needs to be solved, thus improving computational
efficiency.

The simultaneous optimisation of the design, control and operation
of a building considering uncertainty is a computationally challenging
optimisation problem. The challenges are primarily related to the multi-
objective nature of the operation of a building, as well as to long op-
erating timescales and corresponding exogenous data. The framework
proposed in this paper mitigates the computational complexity by de-
coupling multiple objectives and iteratively solving reduced-size optimi-
sation problems. Furthermore, to reduce complexity further, we sample
the data sets of the exogenous data to include data with the most critical
information for the decision process.

The performance of the proposed framework was validated for a
residential building. However, the framework was developed for co-
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design for Model Predictive Control regardless of the application do-
main. Thus, the framework can be used for co-design in other sys-
tems with complicated dynamics and long-time operating horizon, such
as power systems, modern transports, robotics, medical devices and
manufacturing processes. Overall, the flexibility of MPC and the opti-
mal design of residential buildings indicate that the presented frame-
work is a good candidate for future work. The importance subsam-
ple approach and the MPC tuning algorithm require further analy-
sis and improvements in terms of their accuracy and computational
performance.

Future work could explore the integration of hybrid optimisation
methods, such as surrogate-assisted metaheuristics and multi-objective
evolutionary algorithms, which could enhance scalability in high-
dimensional settings. Additionally, real-world implementation will re-
quire model calibration using sensor data and a robust interface with
building automation systems.
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