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Abstract
This paper describes miscible displacement upon air injection in a porous medium saturated with oil corresponding to
conditions of high-pressure air injection (HPAI). We assume that injection fluids and produced fluids are fully miscible with
the oil at the prevailing high pressure. We use three pseudo-components, viz., oxygen, oil, and an inert component, which
includes nitrogen, carbon dioxide, etc. To model the fingering instabilities, we follow a similar procedure as proposed by
Koval (SPE J. 3(02):145–154, 1963) and include the reaction between oxygen and oil in the Koval model. The equations
are solved numerically, using a finite element software package (COMSOL). The results show that a combustion wave is
formed. We study the performance at low and high viscosities and show that the reaction improves the speed and degree of
recovery at later times.

Keywords High-pressure air injection · In-situ combustion · Koval model · Miscible displacement · Porous media

1 Introduction

There is a large body of literature describing the use of high-
pressure air injection (HPAI) to recover oil [3, 8, 10, 15,
21, 22]. Application of HPAI, above 100 bars, is confined
to reservoirs at large depths. Its effectiveness depends on
the prevailing conditions [9] including the displacement
efficiency and the areal and vertical sweep efficiency, oil
swelling, oil viscosity reduction, and thermal effects due to
the oxidation reactions. An improved understanding of the
HPAI process is required in order to prevent the oxygen
from reaching the production wells, which is considered a
safety hazard [14].

We consider a miscible HPAI process aimed to enhance
recovery of light oil, where in situ combustion and (flue)
gas miscible flooding are the main mechanisms depending
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on gas miscibility and depth of the reservoir [1, 11, 24,
27]. Miscible displacement suffers from a poor areal sweep
efficiency and fingering because some factors such as longi-
tudinal dispersion (microscopic heterogeneity), channeling
(macroscopic heterogeneity), viscosity (injection of a less
viscous solvent), and gravity differences (less dense solvent
override) affect the instability of the process at reservoir
conditions.

The Koval model [17] considers miscible displacement
as if it was an immiscible displacement process where a
solvent phase is “diluted” with the initial oil at a proportion
of 78% oil and 22% solvent. The viscosity for the mixture
can be calculated by the fourth root mixing rule. The
relative permeabilities are taken as being proportional to
the respective saturations of the phases. This model has
been proven to be able to describe viscous fingering at a
macroscopic level as confirmed experimentally [4].

The objective of this paper is to develop a model for
the reactive miscible displacement of oil by air injection
and to show that such mechanism can enhance recovery.
Our special focus will be on the inclusion of the effect of
fingering using the Koval procedure, which shares some
similarities with the Buckley–Leverett model. Our basic
assumptions in this model are summarized as the system
is one dimensional and the injected air is miscible with
oil in the first contact at all proportions, as expected at
high pressure. The fluids are assumed to be ideal; therefore,
there will be no heat and volume effects upon mixing. The
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injected oxygen in the air stream reacts with oil, generating
a heat wave. The numerical solution provides the average
concentrations of oil, oxygen, and inert components as
functions of distance and time, where the inert component
includes all combustion products.

The structure of the paper is as follows. First, we describe
the physical model and present the governing equations.
Next, we give a theoretical description of waves that
appear in the solution. Afterwards, we introduce empirical
parameters into the model to take into account the fingering
behavior and perform numerical simulations for different
reservoir conditions. We also perform 2D simulations to
show, qualitatively, that the Koval model describes well
the macroscopic behavior. Finally, we draw the main
conclusions of this study.

2Modeling HPAI with the Koval model

Our interest is in considering the case when the injected
and produced gases become completely miscible with the
oil at sufficiently high pressures. This occurs, e.g., when the
injected fluid forms a developed miscible process. In this
process, the methane dissolved in the oil helps to develop a
methane bank, which is miscible with the injected air on the
trailing side and miscible with the oil to be recovered on the
leading side [26].

We study a 1D flow problem involving a miscible flow
when air is injected into porous rock filled with oil at
high pressures. The injected fluid (air) consists of oxygen
and inert components. A simple model includes three
pseudo-components characterizing oil, oxygen, and inert
component. The respective volumetric fractions are denoted
by coil , cox , and cin with the unit sum, coil + cox + cin = 1.

2.1 Koval model

The Koval model [17] considers miscible displacement
characterized by fingering of the solvent into the oil, as if
there are two phases. The first phase is a solvent, which
contains air and reaction products with the saturation cs =
cox + cin. The second phase is the initial oil, which has
saturation coil = 1 − cs . To incorporate the miscibility
in 1D displacement process, it was proposed to use
linear relative permeabilities proportional to the respective
saturations. The fractional-flow function in the Buckley–
Leverett equation for the solvent is therefore replaced by

fs(cs, T ) = cs/μmix

cs/μmix + coil/μoil
, (1)

where μoil(T ) is the oil viscosity and μmix(T ) is
the specially chosen (effective) solvent phase viscosity

dependent on the temperature T (see Eq. 26). Taking coil =
1 − cs , Eq. 1 is rearranged as

fs(cs, T ) = Kcs

1 + cs(K − 1)
, (2)

where K(T ) = HE is the Koval factor. This factor is
defined as the viscosity ratio E(T ) = μoil/μmix multiplied
by an experimentally determined heterogeneity factor H

[4, 5, 17]. The latter accounts for the higher mobility ratio
due to reservoir heterogeneity and can be related to the
Dykstra–Parsons’ coefficient VDP .

From the experimental data [4], it was found that a
reasonable effective viscosity of the displacing solvent
phase corresponds to the mixture of 78% oil and 22%
air [17]. The solvent viscosity can be calculated by the
fourth root mixing rule

μ
−1/4
mix = 0.78μ

−1/4
oil + 0.22μ

−1/4
air , (3)

where μair(T ) is the viscosity of the mixture of oxygen
and inert components assumed to be independent of a
composition. We refer to the original work by Koval [17]
and the thesis of Booth [6] for further details.

2.2 Governing equations

The oil reacts with oxygen. It is convenient to include
reaction products into the inert pseudo-component and,
therefore, to model the reaction as

νoil [oil] + νox [O2] → νin [inert components], (4)

with the corresponding stoichiometric coefficients. Denot-
ing the reaction rate by R, the modified Buckley–Leverett
equation for the reacting solvent reads

ϕ
∂cs

∂t
+ ∂

∂x
(ufs) = (νin − νox)R, (5)

where ϕ is the porosity and the fractional-flow function is
given in Eq. 2. The analogous equation for the oil phase has
the form

ϕ
∂coil

∂t
+ ∂

∂x
(ufoil) = −νoilR, foil = 1 − fs . (6)

Summing the two Eqs. 5 and 6 and using the conditions
cs + coil = 1 and fs + foil = 1 yields the equation
determining the Darcy velocity as

∂u

∂x
= (νin − νox − νoil)R. (7)

We will also need the balance law determining the
oxygen fraction cox, which is a part of the solvent phase. It
reads

ϕ
∂cox

∂t
+ ∂

∂x
(ufox) = −νoxR, fox = cox

cs

fs . (8)
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The fraction of inert components is expressed by cin =
1 − coil − cox. In writing (5–8), we disregarded molecular
diffusion and dispersion.

Assuming that the temperature of solid rock, liquid, and
gas are equal, we write the heat balance equation as

∂

∂t
(Cm�T +ϕCo�T )+ ∂

∂x
(Cou�T ) = λ

∂2T

∂x2
+QR, (9)

where �T = T − Tini is the temperature relative to the
initial reservoir, λ is the thermal conductivity, Q is the
heat of the combustion reaction, and Cm is the rock matrix
heat capacity. The volumetric heat capacity of liquids is
approximately Co ≈ 2 × 106 J/m3/K, and therefore, we
assume that it can be taken independent of composition. We
disregard any volume change due to reactions, temperature
expansion, and compositional mixing. The pressure drop
is considered to be small with respect to the prevailing
pressure P and is therefore disregarded.

We consider the reaction rate as

R = ϕArcoilc
n
ox exp

(
−Tac

T

)
, (10)

where Ar is the frequency factor for the oxidation rate of oil
and n is the order of reaction with respect to oxygen. We use
Tac to denote the activation temperature for the oxidation
rate. The activation temperature is related to the activation
energy Eac by Tac = Eac/R.

2.3 Initial and boundary conditions

The initial reservoir is saturated with oil at temperature Tini.
Thus, we choose the initial conditions as

t = 0, x ≥ 0 : coil = 1, cox = 0, T = Tini. (11)

At the injection side, x = 0, the air injection boundary
conditions are

x = 0, t ≥ 0 : coil = 0, cox = c
inj
ox , T = Tini, u = uinj.

(12)

The oxygen fraction in the injected air is c
inj
ox = 0.21.

2.4 Dimensionless equations

The governing system includes Eqs. 5, 7, 8, and 9. In order
to render these equations dimensionless, we introduce the
ratios

t̃ = t

t∗
, x̃ = x

x∗ , θ = T − Tini

�T ∗ , ũ = u

ϕv∗ , (13)

where the characteristic values are given by

t∗ = !x
∗

v∗ , x∗ = λ

Cmv∗ , v∗ = Quinj

Cm�T ∗ , �T ∗ =T ∗−Tini,

(14)

and T ∗ is some characteristic temperature.
We also introduce the following dimensionless parame-

ters

αo = ϕCo

Cm

, σ = ϕv∗

uinj
. (15)

As a result, we obtain the following set of dimensionless
equations (we drop the tildes for simplicity)

∂cs

∂t
+ ∂ufs

∂x
= (νin − νox)r, (16)

∂cox

∂t
+ ∂ufox

∂x
= −νoxr, (17)

∂u

∂x
= (νin − νox − νoil)r, (18)

∂

∂t
(1 + αo)θ + ∂

∂x
αouθ = ∂2θ

∂x2
+ σr, (19)

where the dimensionless reaction rate is r = t∗R/ϕ. The
initial and boundary conditions (11) and (12) remain the
same except for the last relation u = uinj , which takes the
dimensionless form u = 1/σ .

3 Solution as a wave sequence

We seek a solution in terms of a series of traveling waves.
In analogy with the in situ combustion for lower pressures,
which is represented by a multi-phase flow model [2, 12, 13,

Fig. 1 Wave sequence solution:
the slower thermal wave (TW),
the intermediate combustion
wave (CW), and the faster
rarefaction wave (RW). The
dimensionless temperature θ , oil
fraction coil, and oxygen
fraction cox are shown

0

1

TW

CW
RW
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16, 18, 19], we assume that a combustion wave is developed
along with two additional waves: a slower thermal wave
upstream and a faster Buckley–Leverett (rarefaction or
shock) wave downstream, shown schematically in Fig. 1.
Such wave solution is asymptotic, i.e., it develops at
sufficiently large times (and sufficiently long distances)
after the initial transient behavior.

In this section, we show that the faster wave located
downstream is a rarefaction wave that occurs due to mixing
between oil and inert miscible components. The slower
wave, located upstream, is the thermal wave, where only the
injected air (with no oil) is present. These two waves allow
analytical description presented below.

In between, there is a combustion wave, where reaction
between oxygen and oil takes place. So far, no analytical
theory is developed for the combustion wave in the fully
miscible HPAI process. This combustion wave will be
studied numerically in the next section, and we expect that
these results facilitate future theoretical developments.

3.1 Thermal wave

In the thermal wave, upstream, no reaction takes place, i.e.,
r = 0; Fig. 1. Therefore, the energy equation is given by

(1 + αo)
∂

∂t
θ + αo

∂

∂x
uθ = ∂2θ

∂x2
. (20)

The total mass conservation (18) with the injection
boundary condition u = 1/σ yields the constant velocity
u ≡ 1/σ within the whole thermal wave. Therefore, we
have the following equation valid for the thermal wave

∂θ

∂t
+ αo

σ(1 + αo)

∂θ

∂x
= 1

(1 + αo)

∂2θ

∂x2
. (21)

This equation has a well-known solution (see, e.g., [7])

θ(x, t) = θh

(
1

2
+ 1

2
erf

[
x − xT − vT t

2
√

t/(1 + αo)

])
, (22)

where vT = αo/(σ (1 + αo)) is the wave speed, xT is an
arbitrary number specifying the wave position, and erf(x)

is the error function. We conclude that the thermal wave
travels with the constant speed vT , while its width increases
with a rate proportional to

√
t/(1 + αo).

3.2 Rarefaction wave

In the region downstream of the combustion wave, the
reservoir has constant temperature equal to the initial value,
θ = 0. Also, no oxygen is present, cox = 0, which
means that the flow is nonreactive, r = 0. Therefore,
the flow represents the miscible displacement at constant
temperature with just two components: the oil with fraction
coil and the remaining inert components with cs = cin =
1 − coil . The Darcy velocity given by Eq. 18 is constant

in this region, u ≡ ur . In general, the value ur may be
different from the injection velocity due to the reaction in
the combustion wave upstream.

The dynamics is governed by the equation following
from Eqs. 2 and 16 as

∂cs

∂t
+ ur

∂fs

∂x
= 0, fs(cs) = K0cs

1 + cs(K0 − 1)
, (23)

with the Koval factor K0 computed at θ = 0. Equation 23
is the classical Buckley–Leverett equation [25] (see also [6]
for its application to miscible flows).

In the case of practical interest, we have μoil > μmix

and, therefore, K0 > 1. One can verify that the function
fs(cs) in Eq. 23 is concave, i.e., d2fs/dc2s < 0. The solvent
fraction cs must decrease in downstream direction from
some positive value to zero (initial reservoir is filled by
oil). Under such conditions, solution of Eq. 23 represents a
self-similar rarefaction wave of the form [25]

cs(x, t) = F(ξ), coil(x, t) = 1 − F(ξ), ξ = x

t
, (24)

where F(ξ) is the function to be determined and ξ changes
in some finite interval. After substituting (24) into (23) and
dropping the common factor F ′, elementary manipulations
yield

F(ξ) =
√

K0ur/ξ − 1

K0 − 1
. (25)

Expressions (24) and (25) describe the rarefaction wave
solution explicitly. This solution is determined in the
interval ξ1 ≤ ξ ≤ ξ2. The downstream limit is obtained
from the condition that cs = 0, which yields ξ2 = K0ur .
The upstream limit ξ1 can be obtained similarly if the
corresponding fraction of the solvent is known.

4 Numerical modeling

We consider a fully coupled, implicit numerical solution
approach based on finite-elements, which is solved with the
COMSOL software. We apply the mathematical module of
COMSOL to introduce the model equations in weak form.

We consider the spatial domain 0 ≤ x ≤ L of length
L = 50 m, where the Neumann boundary condition is taken
at the production side, x = L for the modified Buckley–
Leverett equation. The grid size in the numerical simulation
is 0.01 m, which corresponds to 5000 grid cells. This is fine
enough to capture the multi-scale processes and is capable
of resolving the salient features.

We consider reservoir parameter values given in Table 1.
Parameters of the reaction rate vary considerably depending
on specific conditions, but the availability of reaction rate
data is limited. Our choice corresponds to heptane (C7H16)
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Table 1 Values of reservoir
parameters for heptane as a
model oil

Ar 4060 1/s frequency factor for the reaction

Cm 2 MJ/m 3K rock matrix heat capacity

Co 1.5 MJ/m3K volumetric heat capacity of liquids

H 1 heterogeneity factor

n 1 order of reaction

Q 440 kJ/mol heat of combustion reaction

Tac 7066 K activation temperature

Tini 300K initial reservoir temperature

uinj 8.0 × 10−7 m/s injection Darcy velocity

λ 3 W/mK thermal conductivity

νoil 0.090 [mol/mol] stoichiometric coefficient for oil

νox 1 [mol/mol] stoichiometric coefficient for oxygen

νin 1.36 [mol/mol] stoichiometric coefficient for reaction products

ϕ 0.3 porosity

as a combustion fuel [12, 13, 20]. For the viscosities (in cP
with T in K), we use

μoil(T ) = exp

(
1335.8

T
− 4.6329

)
, μair(T ) = 7.5

T + 120

(
T

291

)3/2

.

(26)

viz., Sutherland’s formula for the gas (air) viscosity and the
Arrhenius model for liquid viscosities [23].

Expressions (26) define the viscosity of the base case for
our numerical simulations. The other cases correspond to
the oil of high viscosity (ten times the base case) and low
viscosity (one-third of the base case).

4.1 Base case

Numerical results for the base case are shown in Fig. 2.
Here, the numerical solution features three different waves:
thermal, combustion, and rarefaction. The thermal wave,
which has been described theoretically in Section 3.1,
corresponds to the rise of temperature T without changing

the flow composition as can be seen in the interval between
0 − 7m in the left and between 0 − 15m in the right
panel of Fig. 2. The thermal wave is the slowest one, and it
travels in the section of the reservoir where the oil is already
displaced, coil = 0, and the miscible phase is composed of
the injected oxygen and inert components whose fractions
are constant and equal to their values at the injection side
along the thermal wave. The temperature changes from the
initial value T = Tini to some larger value in the plateau.

At x = 8m in the left and x = 31m in the right of Fig. 2,
the reaction between oxygen and oil in a single miscible
phase creates the combustion wave. The injected oxygen is
consumed completely in this region, leading to a sharp peak
of the inert component concentration. No reaction occurs
in the plateau downstream of this wave, where the oxygen
fraction cox is zero. The oil fraction downstream of the
combustion wave is coil ≈ 0.7. This value characterizes
the constant oil flux between the combustion wave and the
rarefaction wave downstream. Since no oil is left upstream
of the combustion wave, one can attribute coil ≈ 0.7 to the
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Fig. 2 Simulation of HPAI into a porous media filled with oil. The left
panel corresponds to the time t = 5 × 106 s, and the right panel to
t = 2 × 107 s. Left y-axis shows the fraction. Indicated are the distri-
butions of the temperature T , oil fraction coil, oxygen fraction cox, and

inert components fraction cin. In the solution profiles, one observes the
formation of thermal, combustion, and rarefaction waves
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Fig. 3 Simulation for HPAI into a porous media filled with oil when the reaction is not present. Same variables are shown at the same times as in
Fig. 2. Left y-axis shows the fraction

fraction of oil produced via the combustion wave (see also
Fig. 9 below).

Downstream of the combustion wave, there is a rarefac-
tion wave. As described in Section 3.2, the rarefaction wave
features the miscible displacement of inert components and
oil at the constant temperature (see the left figure of Fig. 2)
in the region of 14−45 m (in the right panel, the rarefaction
wave already has left the simulation domain). This wave is
the fastest one and responsible for the initial oil recovery.
In the rarefaction region, temperature has its initial value of
T = Tini and no reaction occurs.

We used the same parameters for another simulation of
miscible gas injection, where no reaction was present. The
results have been shown in Fig. 3 at two different times, t =
5× 106 s and t = 2× 107 s. In this case, there is no thermal
and combustion waves as there are no reaction involved
in the process. The only present wave is the rarefaction
wave, which is responsible for oil recovery. The shape of
this wave is due to the Koval model equations. The oxygen
and inert components decrease gradually from their injected
upstream values to zero downstream, while the miscible
air is pushing the oil out. The corresponding gradual

increase of oil recovery will be shown in Fig. 9 below,
which is less efficient than the reactive recovery at later
times.

4.2 Effect of viscosity

In this section, we study the effect of the viscosity on the
wave structure in the high-pressure miscible air injection
process. We consider two different situations: a high oil
viscosity (ten times the base case) and a low oil viscosity
(one-third of the base case). The numerical results are
shown in Fig. 4 for higher viscosity oil and in Fig. 5 for
lower viscosity oil at the same times as in the base case. One
observes that the sequence of waves is preserved. In Fig. 4,
the temperature (T ≈ 850K) is higher than the base case
due to the slow movement of the fuel leading to combustion.
The left panel in Fig. 4 reveals that a smaller amount of oil
(�coil ≈ 0.2) is attributed to miscible displacement in a
rarefaction wave, while a big bank of the oil with coil ≈ 0.8 is
located downstream of the combustion wave. This behavior
will also be confirmed by the recovery factors shown in
Fig. 9 below.
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Fig. 4 Simulation for HPAI into a porous media filled with oil of higher viscosity. Same variables are shown at the same times as in Fig. 2. Left
y-axis shows the fraction
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Fig. 5 Simulation for HPAI into a porous media filled with oil of lower viscosity. Same variables are shown at the same times as in Fig. 2. Left
y-axis shows the fraction

Similar wave sequences are shown in Fig. 5 for the
simulation with a lower viscosity oil. Now, a considerably
larger fraction of the oil is produced by miscible gas
flooding in the rarefaction wave (�coil ≈ 0.45). The
combustion wave is responsible for the occurrence of an
oil bank located downstream of the combustion wave with
coil ≈ 0.55. The highest temperature in this case is T ≈
480K, which is lower than in the base case due to the higher
velocity of the combustion wave. In all the cases, no oil
is left upstream of the combustion and rarefaction waves,
leading to the complete recovery.

As shown in Fig. 4 (left panel), the breakthrough of
miscible inert components at the production side occurs at
earlier times, compared to the breakthrough for both the
base case in Fig. 2 and the lower viscosity oil in Fig. 5.

4.3 Two-dimensional numerical simulation

In this section, we consider a 2D numerical simulation
approach to model the miscible air injection. The model

includes three components characterizing oil, oxygen,
and inert compounds. We consider miscible phase which
contains oxygen, oil, and reaction products with the
saturation of cox, coil, and cin. In this section, we have not
applied Koval method. Therefore, we test basic assumptions
of the Koval method by the direct observationof fingering
instabilities in the combustion process. The set of governing
equations are given by

ϕ
∂coil

∂t
+ ∇ · (ucoil − ϕDoil∇coil) = −νoilR, (27)

ϕ
∂cox

∂t
+ ∇ · (ucox − ϕDox∇cox) = −R, (28)

ϕ
∂cin

∂t
+ ∇ · (ucin − ϕDin∇cin) = νinR, (29)

∇ · u =(νin−νoil−1)R, (30)

(Cm+ϕCo)
∂T

∂t
+∇ · (CouT ) =∇ · (λ∇T )+QR. (31)

Fig. 6 2D simulation for HPAI into a porous media filled with oil. Indicated by color are the distribution of oil fraction coil (left) and oxygen
fraction cox (right)
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Fig. 7 2D simulation for HPAI into a porous media filled with oil. Indicated by color is the temperature T

Equation 30 determines the pressure field through Darcy’s
law

u = − K

μmix
∇p. (32)

The parameters are given by

μoil = exp

(
1335.8

T
− 4.6329

)
, μox = μin = 7.5

T + 120

(
T

291

)3/2

, (33)

Fig. 8 Oil, oxygen, and inert
products fractions and
temperature profiles of 2D
simulation, averaged in the
direction y transverse to the
flow. One can qualitatively
distinguish the regions that can
be attributed to the thermal,
combustion, and rarefaction
waves
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1

μ
1/4
mix

= coil

μ
1/4
oil

+ cox

μ
1/4
ox

+ cin

μ
1/4
in

. (34)

Due to limitation caused by instabilities in numerical
scheme, the simulation is performed with increased values

of diffusion coefficientsDoil =Dox =Din = 0.5×10−9 m2/s.
The reaction is given by

R = ϕArρcoilcox

(
P0

Patm

)n

exp

(
−Tac

T

)
, (35)

whereas the initial conditions are given by

Fig. 9 Recovery factors
obtained by simulations for
HPAI for different oil
viscosities. One of the curves
(base case (no reaction))
demonstrates the results when
the reaction is not included in
the model
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t = 0, x ≥ 0 : T = 300 K, coil = 1, cox = cin = 0, p = 106 Pa (36)

and the boundary conditions by

t > 0, x = 0 : T = 300 K, coil = 0, cox = 0.21, cin = 0.79, p = 1.01 × 106 Pa (37)

For the upper y = 10 m and lower y = 0 m part of
the domain, we consider no flux boundary conditions for
all variables. 2D numerical simulation results are shown
in Figs. 6 and 7. The 2D results show the fingering of
the miscible reaction products into the oil. As a result, a
mixture of the oil and inert products travels downstream
the combustion front. The profiles of all components
and temperature, averaged in the transverse y-direction,
are presented in Fig. 8. Three different regions can be
distinguished, which correspond to the thermal wave (large
temperature increase at no change in saturations), the
combustion wave (full oxygen consumption) and, after a
short nearly constant state the rarefaction wave (change of
saturations at low temperatures).

The performed 2D simulation captures the formation of
just two fingers, which makes it under-resolved for a
detailed quantitative comparison with the Koval approxima-
tion. Certainly, both a considerable increase in the physical
domain and a more detailed statistical analysis are neces-
sary, and we leave this nontrivial numerical problem for
future work. Still, from the performed simulation, one can

conclude that satisfactory qualitative agreement is demon-
strated with the results of the previous sections, therefore,
suggesting that both 2D physical model and Koval model
are capable of capturing viscous fingering on a macroscopic
level including reaction.

4.4 Efficiency of the combustion wave andmiscible
gas flooding

The amount of oil recovered relative to the amount of initial
oil in place (recovery factor) versus time is shown in Fig. 9
for all cases, i.e., the base case, with and without reaction,
and for oils with higher or lower viscosities. One can clearly
distinguish two stages of the recovery history. The first
stage is characterized by approximately constant recovery
rates (slopes). The recovery mechanism is controlled by
the rarefaction wave (miscible gas flow), which reaches the
production side in about 100−170 days. The reservoir states
corresponding to this early stage are presented in the left
figures of all cases in Figs. 2–5. This initial recovery is
not affected by thermal effects, because the temperature is
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constant along the rarefaction wave. The second recovery
stage is less steep and it is controlled by the combustion
wave. In this process, the recovery factor increases until
it reaches the maximum value of 1 corresponding to the
complete oil recovery. In the case of no reaction, the process
is controlled by the rarefaction wave at all times. In this
case, the recovery process is much less efficient at later
times, when the growth of the recovery factor is hampered.

5 Conclusions

It is possible to use Koval’s theory to study miscible
displacement including combustion of oil for high-pressure
conditions (HPAI) using a simplified model that considers
only three components, viz. oxygen, oil, and an inert
component that includes nitrogen, carbon dioxide, etc. The
model is capable of grasping viscous instabilities (fingering)
on a macroscopic level and to include the reaction between
oxygen and oil. The equations can be solved numerically,
using a finite element software package (COMSOL). The
results show that a combustion wave is formed both for
high and low viscosity oil. Moreover, it is shown that the
reaction improves the speed and degree of recovery, which
attains values of 100% in a reasonable time after 1.4 PV air
injected.
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