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From Validation of Medical Devices towards 
Validation of Adaptive Cyber-Physical Systems 

Jože Tavčara*, Jože Duhovnika, and Imre Horváthb 
a Faculty of Mechanical Engineering, University of Ljubljana, Ljubljana, Slovenia 
b Faculty of Industrial Design Engineering, Delft University of Technology, Delft, Netherlands  

Abstract Conventionally, designing of a technical system is completed in the product development phase in terms 
of all details and aspects. This can be done if the expected behavior and the conditions of operation are known in 
advance and can be validated before the product is launched on the market. Validation is typically based on a 
predictive analysis or simulation of the designed operation. However, this contradicts with the case of smart 
systems, such as smart cyber-physical systems (CPSs), which self-manage their operation or at least a part of it. 
Being able to adapt at run-time and evolve over time, smart CPSs cannot be validated using conventional 
deterministic approaches. This is especially true for smart CPSs used as instrumentation in the medical field. This 
gave the stimulation of our background research, the results of which are concisely summarized and critically 
concluded in this paper. The literature has been found fairly narrow in terms of novel validation approaches for 
self-managing smart systems. The main finding is that the tasks of operational and behavioral validation should 
be shared among the system designers and the designed systems. Designers need prognostic approaches, while 
systems need to construct validation plans and execute them at run-time. This needs validation-specific 
functionalities and context dependent mechanisms such as run-time validation frameworks or meta-models, 
objective-sensitive self-monitoring mechanisms, self-constraining and self-supporting mechanisms, and other 
enablers. Extensive foundational research and system prototype testing are deemed to be indispensable. To make 
the first small step in this direction, this paper proposes a concept for validation of smart medical CPSs. This relies 
on the following hypothesis: If a system has freedom for self-adaptation, then it should also be equipped with self-
control mechanism, meta-knowledge and a supervisory controller. It all together enables a purpose- and context 
dependent semantic reasoning about the operational and behavioral objectives. The paper suggests a number of 
topics for future research towards a run-time validation engine. 

Keywords: Smart cyber-physical system, operational and behavioural validation, run-time validation, validation 
strategy, research issues 

1. Introduction 

1.1 Setting the stage for discussion 
Each system needs to be verified and validated in some way before put into operation. Validation 

succeeds verification, which concerns the realization of the design objectives and the overall 
requirements. Certain aspects of validation can be considered during verification of designs, but design 
verification is not a substitute for validation. It is a prelude of it. Verification informs about if a system 
is improper, inconsistent and/or faulty and then it cannot be validated as appropriate for a given purpose. 
Validation ensures that the technical expectations of the users and the operational environment are met 
and that the intended uses can be fulfilled in a consistent manner (Katz, and Campbell, 2012). In other 
words, validation checks if a system will operate consistently according to a predetermined specification 
and fulfil the operational and behavioral requests of customers. Validation requires decision making on 
the operational qualities, identifying the possible influential factors, planning the tests, setting the 
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measurement parameters, and the evaluation of fitness for purpose. Likewise, the results of validation, 
these are included in a documented execution and evaluation plan.  

The issue of assuring that complex systems, such as a smart cyber-physical system (CPS), will work 
properly under all circumstances, especially in safety critical situations, is often referred to as a challenge 
in the literature, but also in the practice. Validation is of high importance in the case of health/medical 
systems, unmanned vehicles, aircrafts and aerospace systems, smart manufacturing systems, etc. These 
systems typically change the objective and characteristics of their operation according to their state and 
the influence of the operational environment. This ability is referred to as adaptation. Contrary to their 
run-time adaptation, they should be kept under control, i.e. they should work safely and achieve optimal 
performance under varying circumstances. Existing mainstream model checking techniques and tools 
were not conceived for run-time usage; hence they hardly meet the constraints imposed by on-the-fly 
analysis in terms of execution time and memory usage (Filieri et al., 2016). 

There has been a knowledge gap recognized between the traditional validation practices and the 
necessary validation approaches for smart systems, which feature novel behavioral and self-adaptation 
abilities. Due to the only partially foreseeable adaptation, the traditional, deterministic, and human-
completed way of validation does not work in the case of smart CPSs. Furthermore, validation is also 
challenging not only due to the growing intelligence of the systems, but also due to the growing 
complexity of systems. System complexity implies an overwhelming number of states to be checked 
and this can often not be done in an acceptable time and cost frame. There is an intention to use smart 
CPSs more and more in safety critical applications. However, the traditional control that is usually based 
on the principle of ‘human in the loop’ needs to be replaced by some sort of ‘control automatism’ in 
these applications. Currently, the issue of concurrent validation and dynamic trust building are the main 
obstacles for moving in this direction. On the other hand, developing systems which have the ability of 
self-awareness, self-generation of operational constraints, and run-time self-validation is a promising 
way forward (Mitsch, and Platzer, 2014). 

This paper starts out from an overview of the possibilities, limitations and open issues of 
conventional system validation procedures. The next subsection discusses the distinguishing 
characteristics of smart cyber-physical systems and sketches up the latest academic results and the 
industrial principles of the current validation practice. Section 2 analyses the validation process of 
traditional technical systems. Section 3 discusses the current approaches and implementation of 
validation of CPSs. Specifically, it focusses on the issues of run-time monitoring of complex systems, 
run-time monitoring of software operation, fault discovery and elimination, and considers platforms, 
smart components, and decentralized control as enablers. Based on the findings, it proposes a 
comprehensive approach that considers system verification as an essential prerequisite of behavioral 
validation. The proposal includes a checklist for system verification as well as methods for assessment 
of risk, checking the building blocks and sub-systems, and construction of a validation plan. Run-time 
validation model proposal is a specific topic. The execution process of validation is discussed, together 
with the issues of reporting, the corrective actions, and final decision making.  The paper is focused on 
the approach “done by human and done in design phase”. Based on these, the proposed approach can be 
operationalized in the industrial practice of validation of smart CPSs. Due to space limitation and 
ongoing research this paper only partly covers open issues related to “done by system and done in run-
time phase”. 

1.2 Characteristics of smart cyber-physical systems 
The first generation CPSs are able to self-adjust or self-tune their task execution to pre-set operational 

objectives during operation. The architecture and the default operation of these systems are defined in 
the design phase. These systems have conventional control mechanisms by means of which they can 
regulate parameters in a given range (Horváth et al., 2017). The main distinguishing characteristics of 
smart CPS are purpose-driven and context-dependent awareness building and reasoning that make 
architectural and functional adaptation and evolution possible - provided they are equipped with or can 
acquire the needed resources. Adaptation and evolution mean that smart CPSs change their features and 
configuration run-time, or even during the entire system life cycle, respectively, in a way that was not 
completely known in the design time (Horváth, and Gerritsen, 2012).  



3 
 

Quasi-smartly behaving CPSs establish the entry level of second generation CPSs and mean a 
transition step toward truly smarty behaving CPSs (Horváth et al., 2017). The main difference between 
them is in the level of self-management with regard to setting their operational objectives and building 
a control model. Quasi-smart CPSs has the ability to change the predefined control algorithms during 
the exploitation period (Fig. 1). However, the adaptation can happen without fundamentally changing 
the control model, or only inside a predefined parameter interval or an envelope, and with resources 
constrained because of safety or any other reasons determined in the design phase. The primary enabling 
asset of CPSs is cyber-physical computing (CPC), which is based on processing run-time obtained data, 
information and knowledge (Aßmann et al., 2014).  

Smart CPSs are complex, partially autonomous systems, showing emergence, dynamics, non-
linearity, and other behaviors not present in the elements (Marwedel, 2011). Truly smart CPSs represent 
the second generation of this family of systems, why cognizant CPSs belong to the third generation of 
CPSs. Depending on the nature and application context, smart CPSs may show both non-linear operation 
and emergent behavior in run-time that may be associated with their hardware, software, and cyberware 
constituents. From the point of view of system control, they implement two recurrent and intertwined 
cycles of computing, namely: (i): the basic control cycle, which includes ‘sensing → monitoring → 
reasoning → actuating’ activities, and (ii) the (self-)enhancement cycle, comprising ‘reasoning → 
learning → adapting → evolving’ activities (Fig. 1). This entails that multi-actor S-CPSs are not fully 
deterministic systems. They have some level of freedom in setting the objectives of system operations, 
as well as the capability of adapting themselves to varying tasks, situations, and contexts (Tavčar, and 
Horváth, 2018).  

1.3 Limitations and open issues of current validation practices 
It is widely known that formal theories, frameworks and methodologies of system level verification 

and validation are somewhat unconsolidated. There are three major reasons for it: (i) verification, but in 
particular validation, may have numerous objectives and aspects for testing, (ii) the indicators of validity 
strongly depend on the field of application that works against uniformity, and (iii) complexity and 
heterogeneity of systems make the standardization complicated. This is reflected by the majority of the 
papers we analyzed in our literature study. For instance, verification and validation of urban driving 
systems are an unsolved problem (Toben et al., 2012), even though significant progress has been made 
in recent years (Urmson et al., 2008). It is expected that research in unmanned vehicles will make an 
important contribution for civil applications if there will be fewer restrictions by the military (Finn, and 
Scheding, 2010). Current flight control systems are already based on a reasoning mechanism for run-
time selection of the right mode of control. But truly adaptive control systems using learning algorithms 
during their life cycle have not been utilized in commercial deployment. The reason is that the 

 
Fig. 1. Dual control cycles of S-CPSs 
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Entire product life-cycle 

certification process for adaptive flight control software has not yet been decided upon (Jacklin, 2008). 
In a different field, the regulatory regime currently used by the U.S. Food and Drug Administration 
(FDA) to approve medical devices is becoming too lengthy and will be prohibitively expensive with 
increased complexity (Lee et al., 2012). 

The traditional approach of guaranteeing software reliability is fault avoidance, which uses formal 
specification and verification methods, as well as rigorous software development processes such as the 
DO-178C standard for flight control software. Verification is performed by reviews, analyses or tests. 
The first two steps are purely intellectual, while the latter basically includes the execution of the program 
to be verified and the checking whether the results of this execution are those expected (Souyris et al., 
2009). Certification is estimated to consume more than 50% of the resources required to develop new, 
safety-critical systems in the aviation industry (Baheti, and Gill, 2011). As system complexity grows, 
the space of scenarios, modes, and conditions that must be tested also grows exponentially. According 
to the results of the recent Air Force-funded Verification and Validation of Intelligent and Adaptive 
Control Systems (VVIACS) Program, design-time testing already consumes 27% of the total system 
development costs. According to the VVIACS study, emerging flight control system development may 
increase V&V to 67% of total development costs without using new technologies (Schierman et al., 
2008).  

The paper of Graessler introduced a new V-model for engineering smart system (Graessler, 2018). 
The applied approaches consider the specificities of smart systems. In the engineering practice, 
requirements and the required parameter values change during the product development process due to 
external as well as internal reasons. This means that requirements cannot be fixed at the beginning of a 
development project. Model-based engineering approaches have been developed in research and 
become widely used (de facto standard) in the industrial practice. As shown in Fig. 2, modelling & 
analysis should cover the entire product life-cycle. Consequently, the proposed new V-Model is coupled 
with a product life cycle model. The extended V-model represents the inherent logical relationships 
between the tasks, but without specifying the sequence of the steps of the process (Graessler, 2018). 

For open adaptive systems, it is typically impossible to predict their structure or behavior completely 
already in the design phase. Schneider and Trapp (2011) showed how to operationalize the concepts 
based on conditional safety certificates and corresponding run-time analyses with dynamic safety 
evaluations. It was also pointed that, to make the autonomous vehicle scenario a reality, human 

 
Fig. 2. V-model proposed for engineering smart systems (Graessler, 2018). 
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monitoring should be replaced by a certified bounding algorithm that is able to provide ‘absolute’ 
guarantees on the safety of the vehicles in a highly dynamic environment, such as urban streets (Clark 
et al., 2013). Critical properties and lower limits on performance can be ensured by using formally 
verified: (i) complexity controlling architecture patterns, and (ii) simple components for essential 
services. The application cannot be corrupted by faults of the unverified complex software components. 
It was found that a modular architecture can limit fault propagation and can support the verification of 
critical components. 

Zhu and Sangiovanni-Vincentelli argued that, due to the complexity of the problems at hand, the use 
of automated co-design tools is necessary. They discussed both the needs and the challenges that are 
associated with developing modeling, simulation, synthesis, verification and validation tools for CPS 
co-design. According to them, modeling and simulation tools make it possible for designers (i) to capture 
the behavior of various cyber and physical components, (ii) to specify design requirements and 
objectives, (iii) to evaluate and validate design options based on simulations, and (iv) to identify design 
factors that are critical for synthesis and verification (Zhu, and Sangiovanni-Vincentelli, 2018).  

The above succinct review of the current validation practice exemplifies that validation of complex 
systems is problematic from both financial and reliability points of view. It also points the fact that the 
progress is very limited with regard to validation of smart CPSs, which have the ability of adapting 
themselves or evolving in the exploitation phase of their life-cycle. It is emphasized by a number of 
authors that new validation principles are needed, which takes smartness and self-adaptability into 
consideration. The new solution for smart CPSs will be applicable also for complex systems with a 
certain level of unpredictability in environment conditions or in process parameters. Below, a short 
overview of the validation approaches for traditional technical systems is presented. Medical devices, 
which are frequently used in health care, will be used as reference cases, and as subjects of analysis and 
comparison. 

2. Validation of traditional technical systems 

A large part of medical systems manifests as assistive medical devices. Their verification and 
validation processes should be executed in the design phase. The aspects and measures are specified by 
various regulations and specification (Cooper, 2017). The processes can be generalized as shown in Fig. 
3. The regulations intend to operationalize the so-called current good manufacturing practice (cGMP), 
which includes the Validation Master Plan as the background document of validation (Fig. 3) (FDA, 
cGMP, 1996). This document is company-specific and provides guidelines for engineers in terms of 
how to execute validation fast and in a reliable way.  

 

Fig. 3. Validation procedure of traditional engineering systems. 
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First, for each product and process, a specific validation plan needs to be prepared that contains a 
detailed specification of what to validate and how to validate. The most important inputs for constructing 
a validation plan are the specification of the product design and the assessment of risks. ISO 14971 
provides a risk management frame work for manufacturers to predict the probability of occurrence of 
risks and their consequences (Teferra, 2017). The functions of the system, the users’ requests, and the 
responses expected from the system need to be described unambiguously. As a result of the risk 
assessment, information about the recognized weak points of the system is available. Though sub-
systems and components of the system may have been tested in themselves, often there is a need to retest 
them as active constituents embedded in the system. The validation plan should identify those operation 
modes of the system, which may be critical for the operation of these constituents. A proper validation 
plan should also determine how a system, as a whole, needs to be validated. 

As a second step, the validation team has to execute the validation plan and examine if the system 
responds with the predefined outputs on the specific inputs. The response of the system is expected to 
be deterministic and to fall inside the predefined limits. As an essential part of quality assurance, 
equipment validation is often split into installation qualification (IQ), operational qualification (OQ), 
and performance qualification (PQ). IQ verifies that the qualified instrument or equipment, as well as 
its sub-systems, have been delivered, installed and configured in accordance with the manufacturer’s 
specifications or installation checklist. Once each IQ protocol has been met, OQ is performed to check 
if the performance of the equipment is consistent with the specified user requirements, within the 
manufacturer-specified operating ranges. During OQ, all items included in the test plan are individually 
tested and their performance is documented. PQ is the final step in the equipment qualification process. 
This step involves the verification and documentation if the equipment works correctly and reproducibly 
within a specified working range. Before a final confirmation of validity, corrective actions need to be 
implemented concerning all potential non-conformities. 

There have been various methods developed to improve the validation process. For instance, the 
Design for Validation (DFV) V-model promotes thinking ahead to capture all verification and validation 
requirements. A good validation design practice extends to checking if the requirements are verifiable 
(Alexander, and Clarkson, 2002). Model-based generative techniques have also been developed, which 
allow performing verification early in the design process, and extending the guarantees of verification 
to the implementation through code generation (Rajhans et al., 2009). The literature provides evidences 
that conventional validation approaches work well in the case of less complex and deterministic systems. 
Validation is conducted systematically, but based on the assumption that specific input parameters shall 
generate known outputs. If the system complexity increases, then difficulties may be encountered. It is 
difficult or expensive to check all possible inputs and working conditions. A partial solution is to focus 
only on those critical situations that are recognized during risk assessment. Validation cannot consider 
all possible combinations in the various system operation modes. If any component of the system fails, 
or any environmental parameter changes, then a new situation is caused that is still to be validated. 

3. Approaches to validation of CPSs 

In the current industrial practice, the first generation, plant-type, self-regulating CPSs are dominant. 
There is only a very limited number of second generation CPSs, which indeed have the ability of smart 
self-adaptation. Even much less has the ability of self-evolution in the exploitation phase of their life 
cycle. Validation of such systems is recently recognized as a challenging topic. It is understood that the 
road to validation approaches for the second generation CPSs leads through the validation for the first 
generation CPSs. In the rest of the paper, we also adopt and follow this rationale. First, we overview the 
procedural elements of validation for the first generation CPSs. Later on we focus on the issues of 
validating second generation CPSs and some of these procedural elements will be directly applied, or 
applied with adaptation to smart CPSs. 

3.1 Run-time monitoring of operation of control sub-systems 
Monitoring the states, operation condition, and performance indicators of the first generation CPSs 

is a starting point of validation. ModelPlex provides correctness guarantees for execution of CPS 
operations at run-time. It combines offline verification of CPS models with run-time validation of the 
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execution of system operation in compliance with the system model. If the observed behavior no longer 
complies with the model (that is, the offline verification results no longer apply), ModelPlex initiates 
provably safe fallback actions (Mitsch, and Platzer, 2014). Other promising concepts have also been 
proposed based on conditional safety certificates and corresponding run-time analyses (Cheng et al., 
2014). Operationalization of some of these concepts is done by transforming the safety certificates into 
suitable run-time models, and by dynamic safety evaluations (Schneider, and Trapp, 2011).  

It has been proposed that performing complete safety analyses or complex quality checks at run-time 
is not reasonable. It would require too much intelligence and creativity to be performed autonomously 
by a system (Schneider, and Trapp, 2011). Current-generation controllers are reaching a level of 
complexity that makes verification and validation (V&V) complicated. Nevertheless, the existing 
approaches are inadequate for next-generation of intelligent systems. One possible solution is to 
combine run-time monitoring of advanced components with simple backup modules that provide a safe 
reversionary mode if undesirable behavior is detected. Such an architecture allows the V&V to be 
partitioned into design-time V&V (for the relatively simple monitoring and fail-safe subsystems), and 
run-time V&V (for the fully complex controller) (Schierman et al., 2008). 

Wei et al. presented a supervised reinforcement learning-based framework for controlling 
longitudinal vehicle dynamics by a cooperative adaptive cruise control sub-system (CACC). 
Incorporating a supervised network (trained by real driving data) into the actor-critical framework, 
improves the success rate of training. Furthermore, the driver’s characteristics can be learned by the 
actor to achieve a human-like CACC controller (Wei et al., 2018). There are several validation 
challenges for adaptive control, including proving convergence over long durations, guaranteeing 
controller stability, using new tools to compute statistical error bounds, identifying problems in fault-
tolerant software, and testing in the presence of adaptation (Jacklin et al., 2004).  

Kloes et al. (2018-2) proposed an algorithm that efficiently calculates the quantitative “distance” 
between a system state and the system goals. The various goal types, context-dependent importance, 
and dependency relations are organized in a hierarchical goal model. Due to its modular structure, goals 
can easily be added, removed and changed at runtime. The proposed approach enables the measurement 
of the impact of autonomous decisions at runtime, and the efficient runtime management of changing 
system goals. Jiang et al. (2017) conducted a study on applying runtime verification to cooperate with 
current decision support system (DSS) based on real-time data. A runtime verification technique is 
proposed and formalized to strengthen the medical DSS. It combines formal methods in software 
engineering and practice guidelines in medicine to rigorous verify runtime temporal properties 
automatically.  

Koelemeijer (2018) research aims to develop an evaluation methodology, which is capable of 
evaluating systems by reviewing dynamic architectures in real time. The evaluation methodology relies 
on a tool and an assurance case argument patterns catalogue, which enhance the automated construction 
and evaluation of assurance cases to determine the performance of critical adaptive systems. Pinisetty 
et al. (2017) introduced a method for predictive runtime verification of timed properties where the 
system is not entirely a black-box but something about its behavior is known a priori. A priori knowledge 
about the behavior of the system allows the verification monitor to foresee the satisfaction (or violation) 
of the monitored property.  

3.2 Run-time monitoring of operation of software 
Software means are the enablers of and can be a source of inspiration for CPSs, in which several 

software constituents need to operate without interruption. However, run-time monitoring and control 
are needed to achieve this (Morin et al., 2009). In the context of highly reliable and/or safety critical 
systems, one would actually want to monitor the execution of programs during operation and to 
determine whether it conforms to the specifications. Any violation of the specifications can then be used 
to guide the execution of the program into a safe state (Rosu, and Havelund, 2005). In the case of 
Monitoring-Oriented Programming (MOP), run-time monitoring is encouraged and supported as a 
fundamental principle for building reliable systems. Monitors are automatically synthesized from 
specified properties and are used in conjunction with the original system to check its dynamic behaviors. 
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When a specification is violated or validated at run-time, user defined actions will be triggered, which 
may concern any code (e.g. information logging or run-time recovery) (Meredith et. al., 2012). 
Models@run.time systems are a new class of reflective systems, which are characterized by tractability 
(due to abstraction), and their ability to predict certain aspects of their own behavior in the future. Of 
particular interest is the possibility to realize safe adaptive systems (Aßmann et al., 2014). The key 
problem of such systems is the contradiction between safety and adaptiveness. To ensure safety, all 
variants of the software system have to be checked against possible threats, usually at design time. In 
highly adaptive software systems, the number of system variants usually grows exponentially. This 
extends the safety check to an unfeasible degree. The reasoner component of models@run.time systems 
allows postponing safety checks to the run-time of the system (Aßmann et al., 2014).  

The commonly used wireless links among smart software objects or towards the Internet are typically 
slow and subject to high packet loss. Such operational characteristics pose challenges in terms of both 
software running on smart objects and the network protocols, which smart objects use to communicate 
(Zikria et al., 2018). Mukherjee et al. have developed an end-to-end security middleware between edge 
devices and a core cloud of an IoT application system. The proposed middleware of the cloud-fog 
communication platform is based on a flexible security scheme tailored to application needs. 
Additionally, the intermittent security copes with unreliable network connections (Mukherjee et al., 
2015). 

Automotive cyber-physical systems (ACPS) should deal with joint challenges of heterogeneity, 
dynamics, parallelism, safety, and criticality. Xie et al. presented a fairness-based and adaptive dynamic 
scheduling algorithm on multiple-functional mixed-criticality. Directed acyclic graph (DAG) is used as 
a task graph to represent distributed automotive functions and to construct a model according to the 
characteristics of the concerned ACPS (Xie et al., 2017). Another reference, the AUTOSAR adaptive 
platform is a heterogeneous platform that integrates parallel computing, real-time requirements, safety, 
criticality, and existing functions into a heterogeneous architecture (Fuerst, and Bechter, 2016). 

Verification of a cyber-physical system is done from a schedulability analysis perspective that is the 
main target in real-time theory (García-Valls et al., 2018). Kloes et al. extended the Monitor-Analyze-
Plan-Execute—Knowledge (MAPE-K) feedback loop architecture by imposing a structure and 
requirements on the knowledge base and by introducing a meta-adaptation layer. This enables a 
continuous evaluation of the accuracy of previous adaptations, learn new adaptation rules based on 
executable run-time models, and verify the correctness of the adaptation logic in the current system 
context (Kloes et al., 2018-1). García-Valls et al. (2018) presented a solution for designing quasi-
adaptive CPSs by using parametric models that are verified during the system execution, so that 
adaptation decisions are made based on the timing requirements of each particular adaptation event. 

Inckia and Aria (2018) elaborated on the utilization of a model-based runtime monitoring approach 
for providing reliable service. Message sequence charts is used, later it allows the practitioners to express 
expected behavior of an application in terms of complex-event processing patterns. The presented 
approach is enabling a non-intrusive monitoring of IoT behavior at runtime. Pradhan et al. (2016) 
described the work on improving runtime support for autonomous resilience via self-reconfiguration. A 
runtime infrastructure governs the self-reconfiguration mechanisms. Adaptation methods starts with 
goal setting.  

3.3 Increasing validity by fault-tolerant techniques 
In the case of complex and highly automated systems, the probability of faults is bigger. A 

conventional feedback control design may result in an unsatisfactory performance in the event of 
malfunctions in the actuators, sensors, or other components (Sollazzo et al., 2010). It is necessary to 
design control methods that ensure nominal performance, when the occurrence of faults is taken into 
account (Noura et al., 2009), (Hwang et al., 2010). Fault tolerance in the flight control system of the 
Airbus 320/330/340 family is based on an error detection and compensation technique, using the N-self-
checking software approach. Each flight control computer is designed to be self-checking, with respect 
to both physical and design faults, to form a fail-safe subsystem (Powell, 2011). The primary goal of the 
fault tolerant aircraft flight control is to recover or maintain safe flight, when failures have occurred. 
However, due to the significant changes that may take place as a consequence of failure, the 
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aerodynamic model of the aircraft will obviously be different from the nominal one. In order to enhance 
the capabilities of automatic flight control systems, failures will have to be detected and identified on 
board during the flight in real-time (Chu et al., 2010). 

The Simplex architecture is an often used approach to increasing validity by a fault-tolerant 
technique. Its strategy is to support the use of simplicity to control complexity. The architecture is based 
on a simple and reliable core component that ensures the fulfilment of the critical functions of the system 
despite the failure of non-core software components (Sha, 2001). “Use but do not depend” is a key 
principle of the Simplex architecture, which minimizes the use of safety critical components, while 
maximizing the safe utilization of non-critical components (Sha, and Meseguer, 2008). Thus, non-safety 
critical devices can be added, modified, and replaced in the Simplex architecture without jeopardizing 
safety, provided that the architecture design rules are followed.  

Lin et al. developed a resilient monitoring and control (ReMAC) system by using a previously 
developed resilient condition assessment and monitoring system and a Kalman filter-based diagnostic 
method, and integrating them with a supervisory controller. The ReMAC system is able to make correct 
plant and component health assessments despite sensor malfunction and make decisions (Lin et al., 
2014). There exist two radically different approaches to design-fault tolerance according to the goal 
sought: (i) to prevent the failure of a task from causing the failure of the whole system, and (ii) to 
maintain service continuity (with so-called ‘design diversity’) (Powell, 2011). The protection scheme 
called Run-time Enhancement of Trusted Computing (RETC) enhances trust in CPSs containing 
untrusted software and hardware. RETC is complementary to design-time verification approaches. This 
policy-based approach is based on decoupling policies from system-specific implementations and 
optimizations. Interface guards enable in-line monitoring and enforcement of critical system 
computations at run-time. Trust is required in only a small set of simple, self-contained, and verifiable 
guard components (Farag, 2012).  

“Golden rules” used at Airbus to design a fault-tolerant aircraft combine a stringent development 
process, rules for hardware design, run-time monitoring, and a safe-mode of operation (Goupil, 2010). 
Abid et al. (2014) discussed the application of the TS fuzzy approach to fault detection in CPSs. The 
current methods of performing software and system verification and validation require exhaustive 
offline testing of every possible state space scenario. However, this is an impossible task for adaptive, 
non-deterministic, and near infinite state algorithms. The approach proposed by Alho and Mattila (2015) 
utilises the loosely coupled nature of services to implement fault tolerance for CPSs. Based on the 
concepts of fault isolation and recovery at the service level, the approach is without significant overhead. 

According to Gerostathopoulos et al. (2019) failures may appear when self-adaptive a CPS operates 
under environment condition, which they are not specifically designed for. The homeostasis of CPS was 
improved by introducing run-time changes to the architecture-based self-adaptation strategies according 
to environment stimuli. Four mechanisms that reify the idea was introduced: (i) collaborative sensing, 
(ii) faulty component isolation from adaptation, (iii) enhancing mode switching, and (iv) adjusting 
guards in mode switching. 

3.4 Platforms, smart components, and decentralized control 
Several efforts are documented in the literature that strived after the development of enablers and 

facilitators of system validity. Below we concentrate on issues concerning frameworks, platforms, smart 
components, and decentralized control. Zheng, Deng et al. (2016) presented a cross-layer codesign 
framework that addressed the tradeoff between security and control performance, while guaranteeing 
platform schedulability for CPSs. Security techniques, such as message encryption, are applied to 
mitigate risk. The CONVINCE framework, proposed by Zheng, Lin et al. (2016), included mathematical 
models, synthesis, verification and validation algorithms, and a heterogeneous simulator in a holistic 
environment. It considered a variety of design options with respect to constraints and objectives across 
system layers, and took into consideration of environment disturbance and possible security attacks. 

The genuine idea is to divide the problem of verifying CPSs into two collaborative sub-problems: (i) 
functional verification under constraints and invariants guaranteed by synthesis (e.g., verifying safety 
property when assuming sensor-to-actuator delay is within certain bound, and (ii) software/hardware 
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platform synthesis under constraints and invariants specified by verification on sensor-to-actuator-delay. 
Seiger et al. (2015) presented an object-oriented workflow language for formalizing processes within 
heterogeneous and dynamic environments. The proposed component-based meta-model enables a 
hierarchical composition of processes as well as of process variants.  

Even conventional CPSs often include smart components that use local adaptation to improve the 
performance of the whole system or to provide response in case of damage. Gallagher et al. (2017) 
argued that evolvable and adaptive hardware (EAH) components are enabling means for smart system 
development. They presented an approach that addresses many verification and validation questions 
related to the use of EAH smart components. Our observation is that the cyberware constituents 
(knowledge, ontologies, and reasoning mechanisms) have not received attention yet from the perspective 
of ensuring system validity and faultless operation. 

It has been experienced that centralized control is hardly adequate to manage the whole of complex, 
multi-actor, distributed systems. On the other hand, self-adaptation was recognized as an effective 
approach to manage the complexity and dynamics inherent to CPSs. In the case of large and 
heterogeneous systems, multiple MAPE components might coordinate with each another to decentralize 
the control (Weyns et al., 2013). D'Angelo et al. (2017) proposed MAPE-K components as first-class 
modeling abstractions and provided a framework supporting the design, development, and validation of 
decentralized self-adaptive cyber-physical systems.  

Proposed by Zavala et al. (2018), the Smart Adaptation through Contextual REquirements (SACRE) 
approach is the combination of a successful technique for supporting the adaptation of self-adaptive 
systems contextual requirements in the presence of runtime uncertainty and extended well known 
architectural styles for enabling the application of the adaptation technique in self-adaptive systems. 
Zheng et al. (2017) argued that existing formal method techniques and simulation are insufficient for 
supporting the development of entire general-purpose CPS. The current state of the practice in CPS 
verification and validation remains an ad hoc trial and error process. There are still significant gaps 
between the formal models of computing and the formal models of physics that underpin today’s CPS 
systems. 

Based on the above concise survey, we can conclude that run-time monitoring, reliable operation 
principles, and fault tolerant technics are already known enablers in the context of conventional CPSs. 
However, transferring these to the domain of smart and self-adapting systems is not straightforward. 
The mentioned systems often operate in unpredictable environments and therefore in a not deterministic 
manner. Faults of critical or less critical components, disturbances in network connections, deviations 
from the set operational targets are the realistic operation conditions for them. Emergent faults and 
variation of the operation parameters can hardly be anticipated and encountered during the development 
phase of these systems. Therefore, only a limited subset of the existing validation approaches and 
methods are directly applicable to smart CPSs. It needs further inquiries and investigations to learn 
which approaches can be in one way or other adapted to the needs of validation of smart CPSs. 

These studies are necessary for the reason that the level of unpredictability and adaptation capability 
is much higher in the case of these systems. on the other hand, transdisciplinary knowledge may also be 
helpful. For instance, it is expected that, having fewer restrictions, the results of the research in validation 
of unmanned vehicles for military purposes will make a significant contribution to the validation of 
unmanned vehicles for civil applications (Finn, and Scheding, 2010). It is also an issue how the self-
awareness building, self-learning and self-evolving abilities can be utilized for operation validation in 
the exploitation phase and how dynamic behavioral models can be autonomously generated to maintain 
purposeful operation under various circumstances. It can also be concluded that the issue of run-time 
resource management and using this affordance in providing adaptation solutions is not addressed in the 
current literature. 

4. Toward validation of a smart CPS 

4.1 The procedural framework 
Smart CPSs implement a higher level of integration of hardware, software, and cyberware 
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technologies than any other type of systems previously (Horváth, and Gerritsen, 2012). The systems 
knowledge also plays a crucial role in that. Smart CPSs are typically deeply embedded and having 
numerous internal/external relationships with natural or engineered environments. Though smart CPSs 
are open systems from both architectural and operational viewpoints, they implement a high level of 
synergy with regard to all dynamically changing functionalities and components. Based on the collected 
data, they can build awareness of the states and contexts of operation. In addition, on the basis of this 
acquired awareness, they can better interact with humans cognitively/semantically and influence their 
personal routine and/or social life, which in turn may influence the supervisory control provided by them 
(Marwedel, 2011). These all underline our motivational hypothesis that smart CPSs are not deterministic 
systems, therefore their operation cannot be validated in the conventional ways. This gave floor to the 
research question: What is a dedicated validation approach (a validation methodology or a set of 
methods) for performance validation of smart CPSs? 

It cannot be expected that fully-fledged and detailed validation procedures dedicated to smart CPSs 
will be implemented overnight. Only a step-by-step evolution comprehension and advancement can be 
anticipated. In order to contribute to the discussions about this important issue and to the progress in 
this context, below we propose a framework procedural for a systematic performance validation of smart 
CPSs. It is shown in Fig. 4. This procedural framework includes seven steps, which are all analytic and 
prescriptive in nature. The conventional validation approach tries to forecast and regulate the system’s 
operation based on the knowledge and experiences available concerning the developed system. 
However, the proposed approach intends to share the tasks of validation between the designers and the 
concerned systems. It means the overall validation process includes a design phase validation (DPV) 
part, which is executed by experienced designers/engineers, and a run-time phase validation (RPV) part, 
which is done during operation by the system. The resources needed for this purpose may be availed by 
the developers in the design phase, together with the resources needed for adaptation of the system, 
and/or may be obtained by the system during its operation. In addition, procedurally, it suggests a set of 
activities for ‘verification of properness’ (VoP), and a set of activities for ‘validation of appropriateness 
(VoA). 

The outcome of the literature review presented in the previous section was used as a starting point 
for conceptualization of the procedural framework shown in Fig. 4. Furthermore, the steps of validation 

 
Fig. 4. The procedural framework of performance validation of smart CPSs 
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that are used in the case of complex systems and conventional CPSs were considered as the basis of the 
concept of the validation process. Specific attention was paid to checking the smartness and reliability 
of the building blocks and the system as a whole. Based on the explanation provided above, it is 
evidential now that run-time validation-specific additional functionalities and context dependent 
reasoning mechanisms should be included in smart CPSs, such as objective-sensitive self-monitoring 
mechanisms, self-constraining and self-supporting mechanisms, and other enablers, e.g. run-time 
validity evaluator and resource manager. 

Additional information concerning the identified steps of performance validation process will be 
provided in the next sub-sections. However, it could not be intended to provide all low level information 
about operationalization and implementation of the procedural framework. For the sake of conformity, 
we use the terminology and definitions according to FDA, cGMP, 1996. System verification is 
understood as confirmation by examination and provisioning objective evidence that the specified 
requirements have been fulfilled (i.e. the system is what it is supposed to be). System validation means 
establishing objective evidence that the system specification conforms to the user needs as well as to the 
intended use (i.e. the system performs what it is supposed to do). Verification precedes validation to 
ensure that the user needs and the intended usage can be fulfilled in a consistent manner. 

4.2 System verification 
A prerequisite of a successful performance of a system is a correct theoretical underpinning and a 

proper system design that provides reliable and fault-tolerant operation. The goal of verification is to 
check and safeguard these characteristics. In an optimal situation, this extends also to the investigation 
of the design principles and the potential risks. During verification of the system design it is checked if 
(i) the requirements were comprehensively defined and considered in the design process, and (ii) proper 
design practice and design principles were applied. This can be done by complying with a detailed check 
list. There are several examples for constructing and using detailed check-list in the daily practice. A 
relevant example is the check-list used at Airbus, which includes rules for designing a fault-tolerant 
aircraft (Goupil, 2010). 

The considered basic design principles are such as hardware redundancy, real-time monitoring, safe-
mode operation, dissimilarity, and robustness with regard to different disturbances. The check-list in 
Table 1 is an extended version of the check-list mentioned above. The extension captures the specific 
expectations towards smart CPSs, which were identified in the literature review and included in Table 
1 rows 8, 9 and 10. The check-list is supposed to give answer to the question how well the development 

Table 1. Check-list for verification of smart CPSs 

No. Verification of the principles of system design  

1 System safety assessment and investigation of the effects of each functional failure 

2 
Formal development process with planning, development, system modelling and simulation, 
verification, configuration management, quality assurance issues 

3 Hardware redundancy for all safety critical building blocks 

4 Real-time monitoring of sensors, computers, and system operations 

5 
Switching into safe mode operation in real-time in the case of failure or any safety critical building 
block or sub-system, or in the case the system operates outside predefined limits; application of 
simplex architecture 

6 
Application of dissimilarity of a critical subsystem (two different computers and software) and 
installation segregation 

7 Robustness of system and equipment on environmental disturbances 

8 Implementation of self-constraining rules in the case of self-evolution 

9 Run-time validation function (self-checking of safety critical situations) 

10 Tools and methods for self-awareness; the capability to adapt to new circumstances 
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process was informed and conducted. A systematic development process that apply appropriate tools 
and methods in multidisciplinary team get to better results. 

System verification is actually not part of validation, but it is a necessary prerequisite. A system 
without robust architecture and without required functionality cannot pass validation test. Each smart 
CPS has to have capability of run-time validation that needs to be executed regularly during the 
exploitation phase of the system. Smart CPSs can in general evolve during the life-cycle therefore they 
have to be able to constrain themselves. In the case of changes in environment the system needs self-
awareness functions.  

4.3 Risk assessment 
The proposed second step of the performance validation process is a combined risk analysis 

(exploration) and assessment (evaluation) (Fig. 4). Risk assessment is an important part of each 
validation process. Obviously, all possible cases cannot be checked in real life, even if automatic 
execution of tests and control are possible. On the other hand, it is required to recognize all safety critical 
situations and assess their consequences. By a proper system configuration, and design and real time 
monitoring of the consequences of such situations have to be minimized or even eliminated. In addition, 
the risk assessment should take into account (i) the fault of critical components, (ii) the faults of the 
infrastructure and communication, (iii) misuse by end-users, (iv) changes in environment, and (v) the 
changes due to system adaptation and evolution. 

The communication channels and possible cyber-attacks need special attention. The outcome of risk 
assessment forms a kind of background (context) in the next steps of the validation plan. In the case of 
a smart CPS, self-control, adaptation, robustness of operation and safety also need special attention. The 
main issue is whether the system mechanisms for self-constraining are appropriate and whether they 
will function properly even in the case of adaptation and/or reconfiguration of the CPS? Additional 
research is needed in this area. In the near future it is realistic to count on a safety-critical super control 
mechanism, which allows system adaptation only within predefined limits (and do not violate the 
operation of already verified safety mechanisms). 

4.4 Verification of the sub-systems and building blocks 
CPSs and smart CPSs are complex arrangements that consist of a large number of sub-systems, 

building blocks, and components and that may lend themselves to different configuration options and 
application combinations. The entirety of a complex system cannot be checked for all arrangements and 
settings. The current trend is to manage and control the complexity of the system by applying smart and 
autonomous building blocks. The system as a whole has to detect the state of all sub-systems and 
components in real time. It means that some form of supervisory smartness is needed on both sub-system 
and component levels. The sub-systems and the components need to communicate with each other. 
Interoperating sensors can inform the system about the state of operation, and provide data for setting 
the values of the system/component parameters. 

In the overwhelming majority of cases, a number of key building blocks determine the functionality 
and safety of the whole system. This entails that verification of the sub-systems and building blocks may 
be reduced to confirmation of the reliability of these critical components. The critical components have 
to be recognized and additionally verified. However, the consequences of possible faults need to be 
checked. Classification of building blocks based on their operational criticality enables focusing on those 
that need more attention from the perspective of a safe operation. Associated with this is the question 
about the level of intelligence and autonomy of building blocks. Paradoxically, it reduces the complexity 
of validation if verification can be done on the component level, but it does not guarantee higher 
confidence in the reliability of the entire system. For instance, in terms of safety, only certain level of 
probability can be expected.  

4.5 Constructing a validation plan 
A validation plan is based on system specifications, risk assessment, and criticality classification of 

the building blocks. The plan explains how to check the key sub-systems and components that enable 
the overall functioning of the system and provides safe operation. It is not possible to cover all 
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combinations of configurations and working conditions by the validation plan. It can focus on the 
mechanisms that enable self-control and resilience against faults. Table 2 presents the list of activities 
that need to be included in a validation plan. 

4.6 Execution of validation 
The validation team needs to have competences for an objective and critical assessment of a 

developed system, and they need to be independent from the development team, at least concerning the 
final approval. The process of validation needs to be organized according to the approved validation 
plan. The completion and the results of each validation step have to be well documented. Manual step-
by-step checking of smart CPSs is not possible in most cases because of complexity. Validation 
procedures need to be executed as a set of commands written in a script file. The validation team is, first 
of all checking the system responses and approve generated records. The experts need to assess if self-
awareness and system resilience to environment disturbances works well. The system shall behave 
according to specification in safety critical situations.  The core of the self-validation procedure is 
conducted autonomously; it has to be part of the system.  

The requested functionality of smart CPSs is run-time validation. The system has to demonstrate that 
it is able to adapt to new circumstances and new configuration in run-time. Validation procedure needs 
to contain elements of random generation of testing conditions to simulate realistic circumstances for 
real application.  

4.7 Reporting, corrective actions, and a final decision 
New findings shall trigger additional checking or corrective actions. Validation can be repeated in 

several iterations. At the end, the validation team needs to approve that the smart CPS has capabilities 
of self-control and self-validation even in new, at this moment unknown circumstances. It is a challenge 
to approve such capabilities. Real technical systems always have some residual risks. The validation 
team has to take a decision if advanced solutions have been used to maximize safety, and if design 
validation and risk assessment considers different aspects of application. In adaptive and non-
deterministic systems, we cannot talk about absolute safety. The new paradigm requires a change of 
mind from deterministic and hierarchical controlled systems into adaptive and autonomously controlled 
mechanisms. The new approach has to be considered at taking decisions for system validation. 

4.8 Run-time validation 
Formal validation at the end of system design is only the first validation step in the system life cycle. 

Table 2. Check-list included in a validation plan for smart CPSs 

No. Activity 

1 
Installation qualification; verification of building blocks – are they according to specification; Is 

capacity of the infrastructure appropriate? 

2 
Checking of the system functions under normal conditions; does it work according to specifications? 
Checking system performance at overload 

3 Checking of run-time monitoring functions; short and long term  

4 
Does the save-mode of operation work? Checking of switching to the safe-mode from recognized 
critical situations in real-time 

5 Checking of system resilience in the case of failure, or any safety critical building block or sub-system 

6 
Checking of system resilience in the case it operates outside of predefined limits, and in the case of 
environment disturbances 

7 Checking of self-constraining mechanisms. How does the system control its own evolution? 

8 
Checking of safety critical situations. If the system is resilient to the worst cases, it shall work well 
under normal conditions. It is important to define such critical cases that cover all others situations. 
This part represents a backbone for self-validation. 

9 
Checking Tools and methods for self-awareness and checking the capability to adapt self-control to 
new circumstances. This is a part of the self-validation. 

10 
Checking of the self-validation module in real time (run-time validation) or off-line; according to the 
specification 

11 
The operator or end-user can give the system wrong instructions; how safe and resilient is the system 
in the case of such failures? 
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The system has to prove that it is capable of self-constraining and self-validation during the whole life 
cycle. The key function of the smart CPS is run-time validation. A system needs to be able to execute 
run-time validation in real-time and before/after implementation of any modification in system 
configuration that could influence the way of operation. Validation of run-time validation capability is 
an open topic that requires additional research. Validation needs to confirm that the system is able to 
adapt and self-control even outside of the current working limits. For less demanding systems self-
validation can be done periodically during idle periods. In the advanced systems that require continuous 
operation, run-time validation has to be executed in real-time while the system works as part of regular 
system monitoring and checking. 

Figure 5 presents a generic model for run-time validation. It is based on run-time monitoring, 

Table 3. Comparison of validation principles between traditional medical devices,  
first generation CPSs, and smart CPSs 

 Validation principles 

Criteria 
Traditional medical 

devices 
First generation CPSs Smart CPSs 

Component level Verified components 
Smart and self-aware 
components 

Smart and self-aware 
components, smart sub-
systems 

System design Numerical simulations, 
functional testing 

Design for validation, 
System simulation 

Algorithms for self-control 
constraints 

Verification and 
validation methods 

Design verification, 
Risk assessment, 
Validation plan, 
Life span testing 

Design verification, 
Risk assessment, 
Validation plan, 
Smart self-control 

Design verification, 
Risk assessment, 
Validation criteria, 
Smart self-control, 
Self-constraining 
mechanisms 

Execution of 
validation 

Execution of validation 
plan 

Fault tolerant testing, 
Switching to safe mode 
of operation, 
Run-time monitoring, 
Run-time validation 

Fault tolerant testing, 
Switching to safe mode of 
operation, 
Run-time monitoring, 
Run-time validation, 
Testing of self-constraining 
algorithms 

Validation during 
system exploitation 

Components checking, 
Periodic functional tests, 
Periodic maintenance 

Run-time monitoring, 
Functional tests of sub-
systems, 
Switching to safe mode 
operation 

Run-time validation, 
Testing of self-constraining 
algorithms, 
Checking of safety criteria 
and development policy 

 
Fig. 5. General model for run-time validation 
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reasoning about system behavior and incremental execution of adaptation. The CPS need to be resilient 
to changes in environment and have capability for self-evolving. The feedback loop that can react on 
changes in environment in real-time is the core of the system. The monitoring system controls input 
parameters and system situation in real time. Some of input parameters can be set in deterministic way, 
others are random and depend on the context. The activities presented in Fig. 5 are executed concurrently 
and in small incremental steps that enables system control in each moment. 

Adaptation can be done (i) in the first control loop or (ii) in the second self-enhancement loop. In the 
case that environment parameters trigger control loop, adaptation plan is prepared first. Control 
parameters are checked according to system policy and system consistency. In the case the adaptation 
is approved new setting of parameters is conducted. The preferred mode of parameters setting in 
incremental change from current value to the target one. System and environment parameter values are 
monitored during such incremental adaptation. In the case of inconsistency, the system can be switched 
to the save mode of operation or it can be rollback to previous state. Continuous monitoring and prompt 
reaction can avoid safety critical situation even it is a new combination of parameters that have not been 
verified before. 

Each control parameter adaptation is included into the learning loop. The system situation is assessed 
after each parameters setting and system knowledge is after that upgraded with a new combination. 
During the exploitation phase of the CPS the system knowledge is expanding in small steps. In the case 
a system and safety policy allows extension of the parameter range, a new knowledge enables system 
operation under new circumstances that have been not validated in the design phase.  

The proposed run-time validation model is based on context and system awareness and on self-
learning capability. The system needs reliable detection of critical situations in real-time and switching 
to the safe mode of operation. That mean safety need to be integrated into the system from the beginning. 

5. Discussion 

CPSs can be split into first generation, second generation, and higher generation CPSs. For transition 
from the first to second generation, quasi-smart CPSs are allowed to adapt only within pre-defined 
limits. In most cases the validation approach for conventional CPSs can be applied to quasi-smart CPSs. 
The adaptation details of the quasi-smart CPSs are not known in the design phase. However, they shall 
not threaten safety and the expected functions of the system. Adaptations of the quasi-smart CPSs in the 
system life cycle are some kind of extrapolation from the design phase defined basic system structure. 
Several design principles that make systems more reliable and fault-tolerant known from first generation 
of CPSs can be applied to quasi-smart CPSs. Literature and regulation review has shown very narrow 
evidence on validation procedures of smart CPSs. The new V-model for Engineering Smart System 
(Graessler, 2018) is a step in the right direction. The V-model conducts requirements setting, modelling 
& analysis through the entire product life-cycle. However, there are no specific instructions for 
validation.  

The proposed model for validation of smart CPS pays attention to robust system configuration; the 
first step is system verification. An important message of this paper is that system designers need to be 
aware about validation requests through all phases of the design process. A prerequisite for validation 
of smart CPS is run-time monitoring and fault tolerant design.  The second part is new and is based on 
smartness and self-constraining. In the section 4.8, the model proposed for run-time validation is 
presented. What are open issues of implementation? Run-time validation is based on real-time reaction 
in the case of new circumstances. That means safety depends on timely execution of all operations. 
System configuration shall guaranty reliable communication and prompt response in all situations and 
detection of critical situations. García-Valls et al. (2018) presented a solution for designing adaptive 
cyber-physical systems by using parametric models that are verified during the system execution, so 
that adaptation decisions are made based on the timing requirements of each particular adaptation event. 
Their approach allows the system to undergo timely adaptations that exploit the potential parallelism of 
the software and its execution over multicore processors.  

During verification phase all critical elements need to be recognized and risk assessment shall foresee 
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failure of critical elements. Later system monitoring shall assure availability of all safety critical 
elements. It includes also elements for switching into safe mode operation. Reliability and risk analyses 
in the case of particular elements failure is an open issue also in the systems without run-time validation. 
In the autonomous CPS environment and system awareness and smart reaction is expected to avoid any 
uncontrolled situation.  

The proposed incremental parameter setting works well in linear systems. In the case of non-linear 
system and discrete parameter setting additional safety mechanisms need to be implemented such as 
strict considering of the predefined parameters ranges. The important safety mechanism is switching 
into safe mode of operation. However, there are non-linear systems and situations that after passing 
specific limit cannot return to safe mode of operation. Risk assessment shall recognize and avoid such 
situations.  

Designers of smart CPSs need prognostic approaches, while systems need run-time constructed 
validation plan generation. Truly smart CPSs evolve in their life cycle more radically, and they can also 
activate new resources and system functions. Such changes cannot be managed inside fixed constraints 
defined in the system design phase. Smart CPSs need to have the ability to set constraints to themselves, 
and also to evolve validation methods. The validation process needs to focus attention on this self-
controlling ability. The initial settings are not deterministic control mechanisms, but more general rules: 
what is the requested safety level, guidelines for system evolution, and the policy for self-control. It does 
not mean that those general rules cannot be updated during the system life cycle. Validation process of 
smart CPS is complex and demanding activity. We propose future research towards a run-time validation 
engine that will make validation faster, more accurate and more reliable for the whole system. 

This paper presents in section 4 comparison between traditional medical devices, first generation 
CPSs, and smart CPSs. The basic principles are the same for all kinds of systems. However, smart CPSs 
need specific approaches that need to be developed and tested in the future. The proposed model 
recognized new functions for smart systems, such as self-constraining mechanisms, run-time validation 
and testing of self-constraining algorithms, safety criteria and development policy. A requested feature 
for smart systems is the capability of run-time self-validation. That mean validation is not once only 
conducted procedure at the end of design process, it is a core function of the system that needs to be 
permanently maintained and executed.  

In most cases the initial safety criteria and validation methods can be applied, that already have been 
defined during the design process. There is evidence in the analyzed examples that smartness has to 
replace complexity first in the first generation CPSs. It is not realistic to check all options and 
combinations in a complex CPS, and to consider all circumstances because of disturbances in 
environment (Filho, 2017). The context aware system with a certain level of intelligence can adapt to 
new circumstances much better than a deterministic hierarchical system. Therefore, we propose 
developing and applying of smart control first to the first generation CPSs. After proving the efficiency 
of smart control in several applications in practice, it will also show the way and give a certain level of 
self-confidence for smart CPSs. 

6. Conclusions 

Smart CPSs are purpose-driven and context-dependent behavior and reasoning that make 
architectural and functional adaptation and evolution possible. Smart CPSs cannot be validated with the 
conventional deterministic approaches. The traditional control that is usually based on the human in the 
loop principle needs to be replaced by some sort of automatism in these applications. Validation of smart 
CPSs is a necessary step before more spread use of smart CPSs can happen. The survey has shown a 
gap in advanced validation methods that could be applied for smart CPSs. The new methods and 
approaches have been recognized that enable validation of higher level of adaptability, system and 
environment awareness, and self-control of constraints and resources in real-time, and run-time 
validation. The contribution of this paper is comprehensive overview of the state of the art, the working 
proposal of validation steps for smart CPSs, and model for run-time validation. 

The presented proposal for validation of smart CPSs is still far away from application from the point 
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of view of current practice, and legislation. Development of complex and smart CPSs is demanding new 
approaches. If a system has freedom for self-adaptation, then it should also be equipped with meta-
knowledge and a supervisory controller that context dependent semantic reasoning about the operational 
and behavioral objectives and about the fulfilment of requirements possible.  Smartness needs to replace 
deterministic control and principles of self-validation has to be further developed from theoretical and 
practical points of view. These radical changes need to be integrated into the validation process. 

This paper is focused on the approach “done by human and done in design phase”. Due to unfinished 
ongoing research and space limitations open issues related to “done by system and done in run-time 
phase” are only partly covered. The paper proposes future research towards a run-time validation engine 
that will make validation faster, more accurate and at the whole system more reliable. It is expected that 
the described transformation will happen as an evolution in several steps, and not as an overnight change. 
The proposed concept toward validation of smart CPSs is presenting the framework. The principals for 
self-constraining need to be developed and later approved in practice. 
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