
Delft University of Technology
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft Institute of Applied Mathematics

Comparison of Two-Level Preconditioners using
Deflation Techniques applied to Flow Problems.

Report for the
Delft Institute of Applied Mathematics

as part of

MASTER OF SCIENCE
in

APPLIED MATHEMATICS

by

Jenny Tjan

Delft, Netherlands
August 2018

Copyright © 2018 by Jenny Tjan. All rights reserved.

Comparison of Two-Level Preconditioners
using Deflation Techniques applied to Flow

Problems.

by

Jenny Tjan

to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Thursday August 30, 2018 at 11:00 AM.

Student number: 4321375
Project duration: November 27, 2017 – August 30, 2018
Thesis committee: Prof. dr. ir. C. Vuik, Delft University of Technology, supervisor

MSc. G.B. Diaz Cortes, Delft University of Technology, supervisor
Dr. D. Pasetto, Swiss Federal Institute of Technology
Dr.ir. H. Schuttelaars, Delft University of Technology

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract

We investigate the simulation of one-phase and two-phase flow through heterogeneous
porous media. The derived matrix, resulting from reservoir simulation of groundwater
flow problems, can result in a large and ill-conditioned system, i.e. the matrix has
a high condition number, and the modelling takes large computation time. In this
thesis report, the Two-Level Preconditioned Conjugate Gradient method with deflation
techniques will be considered and have been investigated by [25, 30]. Recently, new
Two-Level preconditioners are constructed using the AMG approach [21]. In this re-
search we compare this approach with the standard Two-Level preconditioners. We
found that the performance of these methods can be improved by using a special start-
ing vector and previous time-step as initial condition. From the results we see that
the performance and the memory storage of the methods are similar. However, the
cheapest methods per iteration resulted DEF1, DEF2, R-BNN2, and ROM.

iii

Acknowledgements

This thesis project is a collaboration between Delft University of Technology and Uni-
versity of Padova, whom I like to refer to as our Italian friends. I have been working
on this thesis for 9 months and I don’t want to brag or anything, but this report looks
pretty good. This would not have been possible on my own and I want to use this part
of my thesis to thank them all.

I remember my first meeting with Kees, one of my supervisors. After I told him that
I am only an ordinary student, he told me that after a few years I will look back and
be amazed by what I have done. To be honest, I can say that I am already amazed
by looking at this report. This kind of positivity is what I have received during those
months. I want to thank both of my supervisors, Kees and Gabriela, for their patience,
enthusiasm, feedback, putting up with my bad humour, and encouraging me.

NEXT, I want to thank our Italian friends, especially Damiano, for being part of the re-
search. It was great meeting you all in France and sharing the results of my research.
As an inexperience grasshopper, this feels like I am really part of the big people’s world
of research.

THEN, I would like to thank Anne, Roel and Mike, who have taken the time and effort
to proofread my thesis. Still, I believe Gabi should get the crown for this job.

FINALLY, I want to thankmy parents and friends. My parents for the amazing food and
making sure I am staying healthy. My friends for listening to my continuous rambling
and struggles about my thesis. Special shoutout to Merel, Marieke, Roy and Amey for
the food and coffee breaks. Especially my lovely sister Joanne, who only understands
a small part of my research and still listens to help whenever she can and wherever
she is. For the interested, the flops can be found in Appendix C.

Thank you for reading and now it is time to end this acknowledgement with a cheesy
quote:

‘Whatever good things we build end up building us.’

Jenny Tjan,
Rotterdam, August 2018

v

Contents

Abstract iii

Acknowledgements v

1 Introduction 1

2 Preliminaries 3
2.1 Notation . 3
2.2 Definition . 3
2.3 Lemma . 4

3 Reservoir Simulation 7
3.1 Porous Media . 7
3.2 Single-Phase Flow . 7

3.2.1 Mathematical Model . 8
3.2.2 Boundary Conditions . 9
3.2.3 Incompressible Model . 9

3.3 Two-Phase flow. 10
3.4 Well Model . 10

4 Iterative Numerical Methods 13
4.1 Newton-Raphson . 13
4.2 Basic Iterative Method . 15
4.3 Conjugate Gradient. 16
4.4 Preconditioner . 16

4.4.1 Preconditioned Conjugate Gradient . 17
4.5 Deflation Method . 18
4.6 Deflated Preconditioned Conjugated Gradient . 19
4.7 Comparison of Deflated Methods with the Original Matrix 20
4.8 Overview of Methods I . 21

5 Deflation Subspace-Vectors Z 23
5.1 Subdomain Vectors. 23
5.2 Eigenvectors . 25
5.3 Proper Orthogonal Decomposition. 25

6 Two-Level Preconditioner Conjugate Gradient 27
6.1 Additive Preconditioner. 27
6.2 Multiplicative Preconditioner . 27
6.3 Deflation method . 28
6.4 Adapted Deflation methods . 29
6.5 Reduced Order Model-based . 29
6.6 Abstract Balancing Methods . 29
6.7 Overview of methods II . 30

7 Theoretical Comparison between Two-Level Preconditioners 33
7.1 Computational Complexity . 33
7.2 Memory Storage . 34
7.3 Comparison of the Spectrum . 34

7.3.1 Theoretical Comparison of the A-DEF2 method and the ROM method 35
7.3.2 Spectra Analysis of Deflation Methods . 36
7.3.3 Spectrum Analysis of SROM. 38

vii

viii Contents

7.4 Concluding Remarks . 42

8 Test cases 43
8.1 Test Case 1: Laplace Equation . 43
8.2 Test Case 2: Multilayer Problem. 44
8.3 Test Case 3: SPE10 Model . 45
8.4 Termination Criterion . 46

9 Comparison between Two-Level Preconditioners using Numerical Experiments 47
9.1 Test Case 1: Laplace Equation . 47

9.1.1 Subdomain as Deflation Vectors. 48
9.1.2 Eigenvectors as Deflation Vectors . 50

9.2 Test Case 2: Layered Problem . 52
9.2.1 Subdomain vectors as deflation vectors. 52
9.2.2 Complexity . 53
9.2.3 Special Starting Vector . 54
9.2.4 Eigenvectors as Deflation Vectors . 57
9.2.5 Spectra Analysis . 59

9.3 Test Case 3: SPE10 . 61
9.3.1 Eigenvectors as Deflation Vectors . 63
9.3.2 POD Basis vectors as Deflation Vectors . 66
9.3.3 Difference using Eigenvectors of the Preconditioned Matrix or POD basis vectors

as Deflation Vectors . 68
9.3.4 Initial Vector. 68

9.4 Concluding Remarks . 70

10 Conclusion 71

A Nomenclature 73

B Compressible Model 75
B.1 Constant Compressibility. 75
B.2 Discretization of the Compressible Model . 76

C Computational Complexity 77
C.1 Conjugate Gradient. 79
C.2 Preconditioned Conjugate Gradient . 80
C.3 Deflation Method . 81
C.4 Deflation Variant . 83
C.5 Adapted Deflation Variant . 86
C.6 Reduced BNN . 89
C.7 ROM-based Preconditioner . 92
C.8 SROM-based Preconditioner . 94
C.9 Conclusion . 96

Bibliography 99

1
Introduction

Oil production starts with extracting crude oil from underground reservoirs. If the oil
reservoir has been found, one of the techniques to extract as much as possible is to
pump water in the reservoir to maintain the pressure of the production wells. This
is an example of a two-phase flow through porous media studied by [6, 7, 21, 28],
among others. This can be described with mathematical models and solved to find the
solution. There has been great interest to model this phenomenon.

This report investigates the simulating of one-phase and two-phase flow through het-
erogeneous porous media. For this simulation, a geological model for the porousmedia
and the mathematical model of the flow are needed. The result of the mathematical
model of the flow problem can be linearized in a system of linear equations that can
be written in the form:

Ax = b. (1.1)

This system can be solved using e.g. iterative solvers. The derived matrix A, result-
ing from reservoir simulation or groundwater flow problems, can result in a large and
ill-conditioned system, i.e. the condition number of the matrix A is high. Therefore,
solving the system 1.1 takes a large computation time.

The iterative solvers can be improved using deflation techniques. In this thesis re-
port, the method Two-Level Preconditioned Conjugate Gradient will be considered to
solve this system. The flow problem can be reformulated in a general system:

𝒫𝒜x = b, 𝒫,𝒜 ∈ ℝᑟ×ᑟ (1.2)

Where 𝒫 is a traditional combination of an SPD preconditionerM and a correction ma-
trix Q. The matrix 𝒜 is a combination of deflation matrix P and the original matrix A.
For this method, a set of deflation vectors are needed to construct Two-Level precon-
ditioners. The choices for deflation vectors are subdomain vectors and eigenvectors.

Recently, Proper Orthogonal Decomposition (POD) based on known information has
been found to be a good approach to accelerate the solving process [4, 21, 28, 30]. The
POD method requires a set of snapshots, i.e. solutions of the linear system Ax = b, to
construct POD basis vectors. These basis vectors are used as deflation vectors.

1

2 1. Introduction

Research Question
The performance of the deflation techniques can be optimized by choosing the right de-
flation vectors. This will help to reduce the number of iterations and the computation
time for solving. The deflation methods have been investigated by [25, 30]. Recently,
new Two-Level preconditioners were constructed by using the AMG approach [21]. In
this report, we want to find the similarities and differences between the new Two-Level
preconditioners with the standard Two-Level preconditioners.

Outline of this Report
The outline of this thesis report is as follows. First, the preliminaries are given in
Chapter 2. Secondly, a brief overview of the mathematical model of reservoir simula-
tion is given in Chapter 3. Then, a small introduction is given to the iterative solvers
and deflation techniques in Chapter 4. Thereafter, in Chapter 5, several choices of
deflation vectors are presented that are used as deflation methods. Continuing, the
Two-Level preconditioners method is presented in Chapter 6. In Chapter 7, theoreti-
cal results about the Two-Level preconditioners are presented. Further, we present in
Chapter 8 three test cases that are used to perform numerical experiments in Chapter
9. Finally, the conclusion and discussion are given in Chapter 10.

2
Preliminaries

This section gives a brief introduction of linear algebra theory that will be used in this
thesis report.

2.1. Notation
The column vector x ∈ ℝᑟ will be denoted as

x = (
𝑥Ꮃ
⋮
𝑥ᑟ
) . (2.1)

The matrix A ∈ ℝᑟ×ᑞ will be denoted as

A = (
𝑎ᎳᎳ … 𝑎Ꮃᑞ
⋮ ⋱ ⋮
𝑎ᑟᎳ … 𝑎ᑟᑞ

) . (2.2)

2.2. Definition
Definition 2.2.1. Let A be an 𝑛×𝑛 matrix. 𝜆 is called an eigenvalue of A if there exists an v ≠ 0
such that

Av = 𝜆v. (2.3)

The set of eigenvalues of A is given by

𝜎(A) = {𝜆Ꮃ, … , 𝜆ᑟ}, (2.4)

where 𝜆ᑚ is an eigenvalue of A.

Definition 2.2.2. Let A be an 𝑛 × 𝑛 matrix, A is called symmetric positive definite (SPD) if for
every x ∈ ℝᑟ\{0}

xᏁAx > 0. (2.5)

A is called symmetric positive semi definite (SPSD) if for every x ∈ ℝᑟ

xᏁAx ≥ 0. (2.6)

Definition 2.2.3. Let x,y ∈ ℝᑟ, the inner product is defined as

⟨x,y⟩ = xᏁy. (2.7)

3

4 2. Preliminaries

Definition 2.2.4. Let A be an 𝑛 × 𝑛 matrix, the 2-norm is defined as

‖A‖Ꮄ = √𝜆max(AᏁA). (2.8)

Definition 2.2.5. Let x,y ∈ ℝᑟ, and A is SPD, the A-norm and A-inner product is defined
respectively as

‖x‖A = √⟨Ax,x⟩ and ⟨x,y⟩A = ⟨Ax,y⟩ . (2.9)

Definition 2.2.6. Let A be an 𝑛 × 𝑛 matrix with eigenvalues 𝜆Ꮃ, … , 𝜆ᑟ. The condition number of
𝐴 is defined as

𝜅Ꮄ(A) = ‖A‖Ꮄ‖AᎽᎳ‖ Ꮄ. (2.10)

If A is SPD with real eigenvalues 𝜆Ꮃ, … , 𝜆ᑟ, then

𝜅Ꮄ(A) =
𝜆max(A)
𝜆min(A)

, (2.11)

where 𝜆max(A) =maxᎳᐶᑚᐶᑟ 𝜆ᑚ and 𝜆min(A) =minᎳᐶᑚᐶᑟ 𝜆ᑚ.

2.3. Lemma
In this section, a lemma from linear algebra will be given that are used to prove theo-
rems in Section 7.3.2. Assume A ∈ ℝᑟ×ᑟ has spectrum

𝜎(A) = {𝜆Ꮃ, … , 𝜆ᑟ}. (2.12)

Then, we have the following Lemma:

Lemma 2.3.1. Let A,B ∈ ℝᑟ×ᑟ be arbitrary matrices. Now, the following equalities hold:

(a) 𝜎(AB) = 𝜎(BA) ,

(b) 𝜎(A+ 𝛼I) = 𝜎(A) + 𝛼𝜎(I), where 𝛼 ∈ ℝ,

(c) 𝜎(A) = 𝜎(AᏁ).

Proof. (a) Let v be an eigenvector corresponding to eigenvalue 𝜆 of matrix AB. Two cases will
be considered and proven separately.

(i) If 𝜆 = 0, then
det(AB) = det(BA) = 0. (2.13)

It follows that 𝜆 = 0 is an eigenvalue of BA.
(ii) If 𝜆 ≠ 0, then

ABv = 𝜆v (2.14)
BABv = 𝜆Bv (2.15)
BAw = 𝜆w, (2.16)

where w = Bv ≠ 0.

It follows that 𝜆 is an eigenvalue of BA.

2.3. Lemma 5

(b) Let v be an eigenvector corresponding to eigenvalue 𝜆 of matrix A+𝛼I, where 𝛼 ∈ ℝ. Next,
we get

(A+ 𝛼I)v = 𝜆v (2.17)
A = (𝜆 − 𝛼)v (2.18)

A = 𝜇v, (2.19)

where 𝜇 = (𝜆−𝛼). Clearly, if 𝜆 is an eigenvalue of A+𝛼I, then 𝜆+𝛼 is an eigenvalue of A.

(c) It follows from the definition of determinants that

det(A− 𝜆I) = det(AᏁ − 𝜆I) (2.20)

for all 𝜆.

3
Reservoir Simulation

Two models are needed to describe phase flow through porous media, these are the
mathematical model and the geological model [13]. The mathematical model consists
of a set of partial differential equations to describe flow through porous media [8, 13].
The equations are derived from for the mass-conservation law and Darcy’s law, which
will be further explained in Section 3.2.1. The geological model describe the rock
formation using rock porosity and rock permeability, more will be explained in Section
3.1.

3.1. Porous Media
The geological model describes the porous media rock formation, and it is constructed
such that it reproduces geological heterogeneity in the reservoir rock. The rock for-
mation is defined by rock porosity 𝜑, i.e. the volume fraction of the pores, and the
rock permeability K, i.e. the ability to transport fluid. The porosity 𝜑 is defined as the
percentage of void in the porous media and 1 − 𝜑 is the percentage of solid material,
i.e. rock matrix. There are interconnected pore spaces in the porous media where
fluid can flow through and disconnected pores where fluid can only be stored. Since
the disconnected pores do not contribute to the flow, the effective porosity that will be
considered is associated with connected pores where fluid can flow through. The rock
permeability K describes the basic flow of porous media and it measures its ability to
transmit a single fluid when the void space is filled with the fluid. Mathematically, the
ability of a fluid to flow in a direction is described using a tensor.

This thesis report will only consider a mesoscopic model of the problem. The fun-
damental equations of the mathematical model describe the fluid flow as continuity of
fluid phases and use Darcy’s law to describe the speed of the fluid in porous media.

3.2. Single-Phase Flow
In this section, we give a basic review of the mathematical model of a single-phase
flow through porous media, and the general model of the physical problem will be
derived. However, obtaining a detailed solution of the general model requires a lot
of computational time.To get a good approximation, it is sufficient to describe the
physical problem with general trends in the reservoir flow pattern. Therefore, a few
assumptions will be made to reduce the complexity of the model.

7

8 3. Reservoir Simulation

3.2.1. Mathematical Model
Themathematical model of a single-phase inflow and outflow through a porousmedium
is used to predict and analyse fluid flow, while considering conservation of mass:

𝛼𝜕(𝜌𝜑)𝜕𝑡 + ∇(𝛼𝜌v) = 𝛼𝜌q, (3.1)

where 𝜌(𝑡,x) is the fluid density, 𝛼(x) is a geometric factor, 𝑔 is the gravitational con-
stant and 𝑞(𝑡,x) is a source term. The geometric factor depends on the dimension of
the problem. For the 1D problem, we have 𝛼(𝑥) = 𝐴(𝑥), where 𝐴 is the cross-sectional
area. For the 2D problem, the geometric factor 𝛼(x) = ℎ(𝑥, 𝑦), where ℎ is the reservoir
height. We consider a two-dimensional model of the problem where 𝛼(x) = ℎ(𝑥, 𝑦) is
constant. The mesoscopic model considers Darcy’s velocity v(𝑡,x), that is defined as

v = −K𝜇 (∇p− 𝜌𝑔∇d), (3.2)

where 𝑝(𝑡,x) is the pressure, 𝜇 is the fluid viscosity, K(x) is the rock permeability and
𝑑(x) is the reservoir depth. Combining (3.1) and (3.2) gives

𝜕(𝜌𝜑)
𝜕𝑡 − ∇(𝜌K𝜇 (∇𝑝 − 𝜌𝑔∇𝑑)) = 𝜌𝑞. (3.3)

The fluid viscosity and rock permeability hardly depend on the pressure in our case,
so they will be taken independent of the pressure. Assuming the fluid density depends
on the pressure, the liquid compressibility 𝑐ᑝ can be defined as

𝑐ᑝ(𝑝) ∶=
1
𝜌
d𝜌
d𝑝 . (3.4)

Similarly, the relation between rock porosity and pressure can be defined with the
rock compressibility 𝑐ᑣ

𝑐ᑣ(𝑝) ∶=
1
𝜑
d𝜑
d𝑝 . (3.5)

Note that Equation (3.4) and (3.5) are first order ordinary differential equations. The
total compressibility 𝑐ᑥ be defined as

𝑐ᑥ = 𝑐ᑣ + 𝑐ᑝ. (3.6)

Since fluid density and rock porosity depends on the pressure, the following relation
is obtained by

𝜕(𝜌𝜑)
𝜕𝑡 = 𝜑𝜕𝜌𝜕𝑝

𝜕𝑝
𝜕𝑡 + 𝜌

𝜕𝜑
𝜕𝑝
𝜕𝑝
𝜕𝑡 = 𝜌𝜑

𝜕𝑝
𝜕𝑡 (

1
𝜌
𝜕𝜌
𝜕𝑝 +

1
𝜑
𝜕𝜑
𝜕𝑝). (3.7)

Then, we substitute Equation (3.6) in Equation (3.3) using Equation (3.7) to get the
general result given in Equation (3.8).

The general nonlinear partial differential equation for the dependent variable pressure
𝑝 is given by

𝑐ᑥ𝜌𝜑
𝜕𝑝
𝜕𝑡 − ∇(𝜌

K
𝜇 (∇𝑝 − 𝜌𝑔∇𝑑)) = 𝜌𝑞. (3.8)

The quantities and dimensions of the used variables are given in Appendix A.

3.2. Single-Phase Flow 9

3.2.2. Boundary Conditions
In reservoir simulation, one would describe a closed flow system and provide boundary
conditions to obtain a unique solution. For a closed flow system, the pressure related
boundary conditions are Dirichlet boundary conditions. The homogeneous boundary
condition is defined as:

𝑝 = 0 for x ∈ 𝜕Ω, (3.9)

where 𝜕Ω denotes the boundary of the porous media Ω. Another type of boundary
condition that is often prescribed for this flow problem are in- and outflow related
conditions, that corresponds to Neumann boundary conditions:

v ⋅ n = 0 for x ∈ 𝜕Ω, (3.10)

where n is defined as a normal vector orthogonal to the boundary 𝜕Ω.

The boundary conditions should be chosen such that the solution is well-posed.

3.2.3. Incompressible Model
The basic model for simulating one-phase flow through porous media is assuming the
density and the porosity are pressure independent, i.e. ᒟᒖ

ᒟᑡ =
ᒟᒛ
ᒟᑡ = 0. Therefore, the

incompressible model is also time-independent and Equation (3.8) becomes:

− ∇(𝜌K𝜇 (∇𝑝 − 𝜌𝑔∇𝑑)) = 𝜌𝑞. (3.11)

Assuming isotropic permeability, constant depth, fluid with constant velocity and den-
sity, Equation (3.11) becomes

− 1𝜇∇(K∇𝑝) = 𝑞. (3.12)

Equation (3.12) is an example of an elliptic equation with constant coefficients 𝜇,K.
This will be solved numerically using numerical solver given in Chapter 4 and Chapter
6. The numerical experiments in this thesis only consider incompressible models. For
the compressible model of the one-phase flow, it can be found in Appendix B.

Discretization of the Incompressible Model
The method of lines is used to solve Equation (3.12). A finite difference scheme with
cell central differences is used to approximate spatial derivatives. Assume a uniform
grid with grid size Δ𝑥, Δ𝑦, Δ𝑧 for the dimension 𝑥, 𝑦, 𝑧, respectively. Let (𝑖, 𝑗, 𝑙) be the cell
for the 𝑥-direction, 𝑦-direction and 𝑧-direction respectively. The pressure in the cell
(𝑖, 𝑗, 𝑙) is defined as 𝑝(𝑥ᑚ, 𝑦ᑛ, 𝑧ᑝ) = 𝑝ᑚ,ᑛ,ᑝ.

Equation 3.12 can be rewritten as

− 1𝜇[
𝜕
𝜕𝑥(𝑘

𝜕𝑝
𝜕𝑥) +

𝜕
𝜕𝑦(𝑘

𝜕𝑝
𝜕𝑦) +

𝜕
𝜕𝑧(𝑘

𝜕𝑝
𝜕𝑧)] = 𝑞. (3.13)

The first term in the equation in 𝑥-direction can be approximated as

𝜕
𝜕𝑥(𝑘

𝜕𝑝
𝜕𝑥) ≈

𝑘ᑚᎼ ᎳᎴ ,ᑛ,ᑝ(𝑝ᑚᎼᎳ,ᑛ,ᑝ − 𝑝ᑚ,ᑛ,ᑝ) − 𝑘ᑚᎽ ᎳᎴ ,ᑛ,ᑝ(𝑝ᑚ,ᑛ,ᑝ − 𝑝ᑚᎽᎳ,ᑛ,ᑝ)
(Δ𝑥)Ꮄ + 𝒪((Δ𝑥)Ꮄ), (3.14)

10 3. Reservoir Simulation

where 𝑘ᑚᎼ ᎳᎴ ,ᑛ,ᑝ denotes the harmonic averaging of grid-block permeabilities (𝑖 + 1, 𝑗, 𝑙)
and (𝑖, 𝑗, 𝑙) given by

𝑘ᑚᎼ ᎳᎴ ,ᑛ,ᑝ =
2

Ꮃ
ᑜᑚᎼᎳ,ᑛ,ᑝ +

Ꮃ
ᑜᑚ,ᑛ,ᑝ

. (3.15)

Let the transmissibility between cell (𝑖 + 1, 𝑗, 𝑙) and (𝑖, 𝑗, 𝑙) be given by

𝑇ᑚᎼ ᎳᎴ ,ᑛ,ᑝ ∶=
1
𝜇
2Δ𝑦Δ𝑧
Δ𝑥 𝑘ᑚᎼ ᎳᎴ ,ᑛ,ᑝ. (3.16)

Similar expressions can be obtained for the 𝑦, 𝑧-direction.

For a cell (𝑖, 𝑗, 𝑙) the discretization of Equation (3.13) is given by

−𝑝ᑚᎽᎳ,ᑛ,ᑝ𝑇ᑚᎽ ᎳᎴ ,ᑛ,ᑝ − 𝑝ᑚ,ᑛᎽᎳ,ᑝ𝑇ᑚ,ᑛᎽ ᎳᎴ ,ᑝ − 𝑝ᑚ,ᑛ,ᑝᎽᎳ𝑇ᑚ,ᑛ,ᑝᎽ ᎳᎴ
+𝑝ᑚᎽᎳ,ᑛ,ᑝ(𝑇ᑚᎽ ᎳᎴ ,ᑛ,ᑝ + 𝑇ᑚ,ᑛᎽ ᎳᎴ ,ᑝ + 𝑇ᑚ,ᑛ,ᑝᎽ ᎳᎴ + 𝑇ᑚᎼ ᎳᎴ ,ᑛ,ᑝ + 𝑇ᑚ,ᑛᎼ ᎳᎴ ,ᑝ + 𝑇ᑚ,ᑛ,ᑝᎼ ᎳᎴ) (3.17)

−𝑝ᑚᎼᎳ,ᑛ,ᑝ𝑇ᑚᎼ ᎳᎴ ,ᑛ,ᑝ − 𝑝ᑚ,ᑛᎼᎳ,ᑝ𝑇ᑚ,ᑛᎼ ᎳᎴ ,ᑝ − 𝑝ᑚ,ᑛ,ᑝᎼᎳ𝑇ᑚ,ᑛ,ᑝᎼ ᎳᎴ = Δ𝑥Δ𝑦Δ𝑧 𝑞ᑚ,ᑛ,ᑝ.

The transmissibility matrix T can be constructed with the latter equation and the given
boundary conditions. Finally, Equation (3.12) can be written as

Tp = q, (3.18)

which is a system of linear equations.

3.3. Two-Phase flow

𝛼𝜕(𝜌ᑨ𝜑𝑆ᑨ)𝜕𝑡 + ∇(𝛼𝜌ᑨvᑨ) = 𝛼𝜌ᑨ𝑞ᑨ, (3.19)

𝛼𝜕(𝜌ᑠ𝜑𝑆ᑠ)𝜕𝑡 + ∇(𝛼𝜌ᑠvᑠ) = 𝛼𝜌ᑠ𝑞ᑠ, (3.20)

where the subscript 𝑤, 𝑜 denotes water and oil respectively. The difference of the mod-
els between one-phase flow and two-phase flow is the addition of saturation 𝑆ᑨ, 𝑆ᑠ,
i.e. the fraction of the pore space occupied by the respective phase. Since we only
consider 2D problems, we choose as geometric factor 𝛼(x) = ℎ(𝑥, 𝑦), where ℎ is the
reservoir height. The Darcy’s law for this model is defined as

vᑨ = −
𝑘ᑣᑨ
𝜇ᑨ

(∇𝑝ᑨ − 𝜌ᑨ𝑔∇𝑑), (3.21)

vᑠ = −
𝑘ᑣᑠ
𝜇ᑠ
(∇𝑝ᑠ − 𝜌ᑠ𝑔∇𝑑), (3.22)

where 𝑘ᑣᑨ, 𝑘ᑣᑠ are the relative permeabilities. This represents the additional resistance
to flow of a phase caused by a different phase [8]. More details and information can
be found in [3, 8].

3.4. Well Model
Usually, in reservoir simulation, the closed flow system is described in combination
with a well model as source term. Fluids are injected or produced in a well at constant

3.4. Well Model 11

bottom-hole pressure or at a constant rate. The inflow performance is defined by the
bottom-hole pressure with surface flow rate. The simplest model is the Peaceman
linear model [3, 8, 13, 22], which is defined by

𝑞ᑚ,ᑛ,ᑝ = 𝐽(𝑝ᑚ,ᑛ,ᑝ − pᑓᑙᑚ,ᑛ,ᑝ), (3.23)

where pᑓᑙᑚ,ᑛ,ᑝ is the bottom-hole pressure in cell (𝑖, 𝑗, 𝑙) and 𝐽 is the well production or
injection productivity index.

4
Iterative Numerical Methods

The partial differential equation of a one-phase constant compressible flow has been
discretized in the following form:

V
d𝜌(p)
d𝑡 + Tp = q(p), (4.1)

where V ∈ ℝᑟ×ᑟ is the accumulation matrix which is strictly positive, T is the transmis-
sibility matrix which is SPD, p is the pressure which is unknown and q is the source
vector. The unknown time variable dp

dᑥ is approximated by using the Euler Backwards
method. Let the time step size be defined by Δ𝑡ᑜ = 𝑡ᑜᎼᎳ−𝑡ᑜ. Equation (4.1) is discretized
in time by

V
𝜌(pᑜᎼᎳ) − 𝜌(pᑜ)

Δ𝑡ᑜ + TpᑜᎼᎳ = q(pᑜᎼᎳ). (4.2)

The equation is nonlinear and is solved to find the unknown pressure p by using
linearization methods, i.e. Newton-Raphson. For every timestep, it can be written as
a system of linear equations in the form of

Ax = b, (4.3)

where A is a large SPD matrix, which makes it suitable to use iterative methods.
This section will start with explaining Newton-Raphson and defining Amore precisely.
Thereafter, iteration methods like the Conjugate Gradient, preconditioner techniques
and deflation methods will be explained.

4.1. Newton-Raphson
The Newton-Raphson method is used to linearize nonlinear equations. Firstly, for a
one-dimensional case, function ℎ(𝑥) would be defined such that ℎ(𝑥) = 0. The iteration
steps are found by using a Taylor expansion. Start with an initial guess 𝑥Ꮂ and for
each iteration step, compute

𝑥ᑜᎼᎳ = 𝑥ᑜ − ℎ(𝑥ᑜ)
ℎᖤ(𝑥ᑜ) , (4.4)

while assuming ℎᖤ(𝑥ᑜ) ≠ 0 for every step 𝑘. Depending on the initial guess, this method
will converge. For the multidimensional case, the same process can be used. Let f(x)

13

14 4. Iterative Numerical Methods

be an 𝑛-dimensional function. Assume x∗ = xᑜ + 𝛿x where f(x∗) = 0, then the Taylor
expansion around point xᑜ is

f(xᑜ + 𝛿x) ≈ f(xᑜ) + Jf(xᑜ)𝛿x, (4.5)

where Jf is the Jacobian of f. Recall, f(x∗) = 0, thus to find 𝛿x one needs to solve the
linear system

Jf(xᑜ)𝛿x = −f(xᑜ). (4.6)

Thereafter, update xᑜᎼᎳ = xᑜ + 𝛿x. The algorithm for every iteration is defined as

Algorithm 1 Newton-Raphson
1: Initial: pᎲ, 𝜀
2: while |pᑜᎼᎳ − pᑜ| > 𝜀 do
3: Solve: Jf(pᑜ)𝛿p = −f(pᑜ)
4: Update: pᑜᎼᎳ = pᑜ + 𝛿p
5: 𝑘 = 𝑘 + 1

Example
The heat equation with nonlinear source term is defined as

𝜕𝑇
𝜕𝑡 =

𝜕Ꮄ𝑇
𝜕𝑥Ꮄ + 𝑇(𝑇 − 1) for 0 < 𝑥 < 1, 𝑡 > 0, (4.7)

with homogeneous Dirichlet boundary conditions 𝑇(0) = 𝑇(1) = 0. To illustrate how
Newton-Raphson works, only the steady state of the problem will be solved, i.e. ᒟᑋ

ᒟᑥ = 0.
The analytic solution for this problem is

𝑇(𝑥) = 0 for 0 < 𝑥 < 1. (4.8)

To solve this problem numerically, we use a uniform gridsize 𝑛 = 4 with Δ𝑥 = 0.25.
Hence, the function f(T) can be defined as

f(T) = 1
Δ𝑥Ꮄ

⎡
⎢
⎢
⎢
⎢
⎣

−2 1
1 −2 1

1 −2 1
1 −2 1

1 −2

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

𝑇Ꮃ
𝑇Ꮄ
𝑇Ꮅ
𝑇Ꮆ
𝑇Ꮇ

⎤
⎥
⎥
⎥
⎥
⎦

(4.9)

+

⎡
⎢
⎢
⎢
⎢
⎣

𝑇Ꮃ(𝑇Ꮃ − 1)
𝑇Ꮄ(𝑇Ꮄ − 1)

𝑇Ꮅ(𝑇Ꮅ − 1)
𝑇Ꮆ(𝑇Ꮆ − 1)

𝑇Ꮇ(𝑇Ꮇ − 1)

⎤
⎥
⎥
⎥
⎥
⎦

.

Newton-Raphson will be used to solve f(T). The Jacobian matrix is defined as

Jf(T) =
1
Δ𝑥Ꮄ

⎡
⎢
⎢
⎢
⎢
⎣

−2 1
1 −2 1

1 −2 1
1 −2 1

1 −2

⎤
⎥
⎥
⎥
⎥
⎦

+ 2

⎡
⎢
⎢
⎢
⎢
⎣

𝑇Ꮃ
𝑇Ꮄ

𝑇Ꮅ
𝑇Ꮆ

𝑇Ꮇ

⎤
⎥
⎥
⎥
⎥
⎦

−

⎡
⎢
⎢
⎢
⎢
⎣

1
1
1
1
1

⎤
⎥
⎥
⎥
⎥
⎦

. (4.10)

4.2. Basic Iterative Method 15

Choose as initial condition

Tint = [0.25 0.25 0.25 0.25 0.25]Ꮑ (4.11)

with stop criteria 10ᎽᎶ. After 6 iterations the steady state solution is

Tss ≈ [0 0 0 0 0]Ꮑ , (4.12)

with error 2.4559 ⋅ 10ᎽᎵᎳ. The solution found with the numerical scheme is close to the
analytic solution with a small error.

For the original problem, Equation (4.2) is nonlinear and multidimensional. Define
the function

f(pᑜᎼᎳ;pᑜ) = V
𝜌(pᑜᎼᎳ) − 𝜌(pᑜ)

Δ𝑡ᑜ + TpᑜᎼᎳ − q̄(pᑜᎼᎳ). (4.13)

This will be used to find the solution for the pressure p.

4.2. Basic Iterative Method
It is time-consuming to solve the system Ax = b with direct solvers for A ∈ ℝᑟ×ᑟ.
Therefore, another way to solve the system is by using iterative methods. The basic
iterative method goes as follows: Split A = M − N such that MᎽᎳ exists. The iterative
condition for x can be derived from

Ax = b ⇒Mx = b+ Nx. (4.14)

Thus, the result is
xᑜᎼᎳ = xᑜ +MᎽᎳrᑜ, (4.15)

where rᑜ = b − Axᑜ is the residual. The residual denotes the difference between the
iterative solution and true solution. There are different possible choices for M. The
Jacobi method uses M = 𝑑𝑖𝑎𝑔(A) and Gauss-Seidel uses M = L, where L is the lower
triangle of A. The iterative method goes as follows: Choose initial guess xᎲ and after 𝑘
iterations the iterative solution can be written as.

xᎲ = xᎲ

xᎳ = xᎳ +MᎽᎳrᎳ = xᎲ +MᎽᎳrᎲ

xᎴ = xᎴ +MᎽᎳrᎴ

= … = xᎲ +MᎽᎳAMᎽᎳrᎲ + 2MᎽᎳrᎲ

etc.

It follows that the iterative solution can be written as

xᑜ = xᎲ + span{MᎽᎳrᎲ,MᎽᎳAMᎽᎳrᎲ, … , (MᎽᎳA)ᑜᎽᎳMᎽᎳrᎲ}. (4.16)

The Krylov subspace of dimension 𝑘 is defined as

𝒦ᑜ(A, r) ∶= span{Ar,AᎴr, … ,AᑜᎽᎳr}. (4.17)

Hence, the iterative solution can be written as

xᑜ = xᎲ +𝒦k(MᎽᎳA,MᎽᎳrᎲ). (4.18)

The matrix M is also called a preconditioner, which will be explained in Section 4.4. In
the following section, the Conjugate Gradient method will be explained by usingM = I.

16 4. Iterative Numerical Methods

4.3. Conjugate Gradient
Conjugate Gradient (CG) is an iterative method that is used for SPD matrices. The
purpose of CG is to construct a sequence {xᑜ} such that it minimizes the A-norm of
the error:

min
xᑜ∈𝒦ᑜ(A,rᎲ)

‖x− xᑜ‖ A, (4.19)

where x is the true solution. CG uses search vectors {pᑚ} that are defined such that
⟨Apᑚ,pᑛ⟩ = 0 for every 𝑖 ≠ 𝑗. Also, the residuals should be orthogonal, hence ⟨rᑚ, rᑛ⟩ = 0
for every 𝑖 ≠ 𝑗. With every iteration step, there will be updates for the solution and
residual, defined as

xᑜᎼᎳ = xᑜ + 𝛼ᑜpᑜ and rᑜᎼᎳ = rᑜ − 𝛼ᑜApᑜ, (4.20)

respectively, where 𝛼ᑜ is chosen such that it minimizes Equation (4.19). Therefore

𝛼ᑜ =
⟨rᑜ ,rᑜ⟩
⟨Apᑜ ,pᑜ⟩ . The search vectors are updated as

pᑜᎼᎳ = rᑜᎼᎳ + 𝛽ᑜpᑜ. (4.21)

The method is summarized in Algorithm 2 and can be found in [23, 24].

Algorithm 2 Conjugate Gradient
1: Initial: xᎲ, 𝜀
2: Compute: rᎲ = b− AxᎲ and pᎲ = rᎲ
3: for 𝑘 = 0,… do
4: while rᑜ > 𝜀 do
5: 𝛼ᑜ =

⟨rᑜ ,rᑜ⟩
⟨Apᑜ ,pᑜ⟩

6: xᑜᎼᎳ = xᑜ + 𝛼ᑜpᑜ
7: rᑜᎼᎳ = rᑜ − 𝛼ᑜApᑜ

8: 𝛽ᑜ =
⟨rᑜᎼᎳ ,rᑜᎼᎳ⟩
⟨rᑜ ,rᑜ⟩

9: pᑜᎼᎳ = rᑜᎼᎳ + 𝛽ᑜpᑜ

Convergence
It can be proven that the CG method converges and the prove can be found in [23, 25,
31]. It depends mainly on the condition number. After 𝑘 iterations, the error in the
A-norm is bounded by

‖x− xᑜ‖ A ≤ 2‖x− xᎲ‖ A(
√𝜅Ꮄ(A) − 1
√𝜅Ꮄ(A) + 1

)
ᑜ

. (4.22)

4.4. Preconditioner
The convergence depends on the condition number of the matrix. Preconditioners
can be used to achieve a faster convergence by reducing the condition number. The
preconditioner matrix M is applied to the system Ax = b as

MᎽᎳAx =MᎽᎳb. (4.23)

4.4. Preconditioner 17

In the system given in Equation (4.23), MᎽᎳA is not necessary SPD, thus the system is
redefined as

Ax = b, (4.24)

where A = MᎽ ᎳᎴAMᎽ ᎳᎴ , x = M
Ꮃ
Ꮄx and b = MᎽ ᎳᎴb. We need the extra conditions that M

should be SPD and MᎽ ᎳᎴ should exists and be symmetric to ensure convergence. It
follows that A is SPD, the proof can be found in [25]. There are many matrices that
can be used as preconditioner. If M = I, then this is the iterative method from before
and the condition number remain unchanged. IfM = A, the condition number is equal
to 1 and the solution can be found in one step. It is often hard to compute AᎽᎳ, so it
is often not chosen as preconditioner.

This report uses Incomplete Cholesky as preconditioner, that will be denoted by MᑀᐺᎲ.
This preconditioner is an SPD approximation of the Cholesky factorization where the
number of fill-in is chosen. This entails a decomposition of the form A = LLᏁ − Aᑣ,
where L is the lower triangle with the same zero pattern as matrix A and Aᑣ is the
residual or error of the factorization. The matrix A is approximated with LLᏁ. More
information can be found in [23, 31].

4.4.1. Preconditioned Conjugate Gradient
The new system using a preconditioner is defined as

Ax = b, (4.25)

where A is SPD, thus Conjugate Gradient algorithm can be used. The derivation of
this method, also called Preconditioned Conjugate Gradient (PCG), can also be found
in [25] and is given in Algorithm 3.

Algorithm 3 Preconditioned Conjugate Gradient
1: Initial: xᎲ, 𝜀
2: Compute: rᎲ = b− AxᎲ,zᎲ =MᎽᎳrᎲ and pᎲ = zᎲ
3: for 𝑘 = 0,… do
4: while rᑜ > 𝜀 do
5: zᑜᎼᎳ =MᎽᎳrᑜ

6: 𝛼ᑜ =
⟨rᑜ ,zᑜ⟩
⟨Apᑜ ,pᑜ⟩

7: xᑜᎼᎳ = xᑜ + 𝛼ᑜpᑜ
8: rᑜᎼᎳ = rᑜ − 𝛼ᑜApᑜ

9: 𝛽ᑜ =
⟨zᑜᎼᎳ ,rᑜᎼᎳ⟩
⟨zᑜ ,rᑜ⟩

10: pᑜᎼᎳ = zᑜᎼᎳ + 𝛽ᑜpᑜ

To use preconditioned Conjugate Gradient method in practise it is needed that MᎽᎳ is
inexpensive to apply and cheap to compute.

Convergence
The error is bounded by the next inequality:

‖x− xᑜ‖ A ≤ 2‖x− xᎲ‖ A(
√𝜅Ꮄ(MᎽᎳA) − 1
√𝜅Ꮄ(MᎽᎳA) + 1

)
ᑜ

. (4.26)

18 4. Iterative Numerical Methods

The advantages of choosing a good preconditioner is that the condition number is
being lowered and a faster convergence is achieved.

4.5. Deflation Method
The eigenvalues of the preconditioned systemMᎽᎳAx =MᎽᎳb are not always favourable
and using PCG does not nearly lead to iteration numbers as low as required. Hence,
deflation methods will be considered to accelerate the solving process. See [2, 9, 10,
32, 33] The deflation method reduces the condition number by setting the extreme
eigenvalues equal to zero such that the convergence bound is small. The method is
defined by using the next definition:

Definition 4.5.1. Given an A ∈ ℝᑟ×ᑟ which is SPD and given a deflation-subspace matrix Z of
size 𝑛 ×𝑚 where 𝑚 ≪ 𝑛, the deflation method is defined as

P = I− AQ P ∈ ℝᑟ×ᑟ, Q ∈ ℝᑟ×ᑟ, (4.27)

where Q = ZEᎽᎳZᏁ with Z ∈ ℝᑟ×ᑞ, E = ZᏁAZ and E ∈ ℝᑞ×ᑞ. The columns of the deflation-
subspace matrix Z are called deflation vectors. The deflation vectors are chosen such that the
matrix E, also known as coarse matrix, is nonsingular. This matrix is used to construct the
correction matrix Q. The choices for deflation subspace matrix Z will be discussed in Chapter
5. Then we state the following properties:

Lemma 4.5.1. Let A,P,Q and Z be defined as in Definition 4.5.1. Then,

a. PᎴ = P

b. PA = APᏁ

c. QA = I− PᏁ

d. PᏁZ = PᏁQ = 0

e. PAZ = PAQ = 0

f. QᏁ = Q

g. QAQ = Q

h. QAPᏁ = 0

i. QP = 0

j. QAZ = Z

The proof can be found in [26, Sect. 3].

Assume we have the system
Ax = b, (4.28)

where A ∈ ℝᑟ×ᑟ is sparse and SPD, x,b ∈ ℝᑟ. We decompose x as:

x = (I− PᏁ)x+ PᏁx (4.29)

to obtain

Ax = b (4.30)
⇒ A(I− PᏁ)x+ APᏁx = b (4.31)
⇒ AQb+ APᏁx = b (4.32)
⇒ APᏁx = (I− AQ)b (4.33)
⇒ PAx̃ = Pb. (4.34)

It follows from Lemma 4.5.1d. that PA is a singular matrix since it contains zero
eigenvalues. Hence, after using the deflation method, the system can be written as

PAx̂ = Pb, (4.35)

4.6. Deflated Preconditioned Conjugated Gradient 19

where x̂ is the non-unique solution of the deflated system. The solution of the original
system Ax = b is found by using [25]

x = Qb+ PᏁx̂. (4.36)

4.6. Deflated Preconditioned Conjugated Gradient
This was proposed by [25, 30, 34] and the method uses the basis matrix as deflation-
subspace matrix to reduce the amount of iterations required to solve the system. The
system Ax = b is solved by defining the following system:

P̃Ã ̃x̂ = P̃b̃, (4.37)

with
Ã ∶=MᎽ ᎳᎴAMᎽ ᎳᎴ , ̃𝑥̂ ∶=M

Ꮃ
Ꮄ x̂, b̃ ∶=MᎽ ᎳᎴb (4.38)

and
P̃ ∶= I− ÃQ̃, Q̃ ∶= Z̃ẼᎽᎳZ̃Ꮑ, Ẽ ∶= Z̃ᏁÃZ̃, (4.39)

where ̃x̂ is the non-unique deflation solution. The true solution of the deflation method
can be found with:

x̃ ∶= Q̃b̃+ P̃Ꮑ ̃x̂. (4.40)

Therefore, the true solution of the system Ax = b is

x =MᎽ ᎳᎴ x̃. (4.41)

This is summarized and given in Algorithm 4.

Algorithm 4 Deflated Preconditioned Conjugated Gradient
1: Initial: x̂Ꮂ, 𝜀
2: Compute: r̃Ꮂ = b̃− Ãx̃Ꮂ, ̂r̃Ꮂ = P̃r̃Ꮂ and p̃Ꮂ = ̂r̃Ꮂ
3: for 𝑘 = 0,… do
4: while r̃ᑜ > 𝜀 do
5: ̂z̃ᑜ = P̃Ãp̃ᑜ

6: 𝛼ᑜ =
⟨r̃ᑜ ,r̃ᑜ⟩

⟨p̃ᑜ , ̂z̃ᑜ⟩

7: ̂x̃ᑜᎼᎳ = ̂x̃ᑜ + 𝛼ᑜp̃ᑜ

8: 𝛽ᑜ =
⟨ ̂x̃ᑜᎼᎳ , ̂x̃ᑜᎼᎳ⟩

⟨ ̂x̃ᑜ , ̂x̃ᑜ⟩

9: ̂r̃ᑜᎼᎳ = ̂r̃ᑜ − 𝛼ᑜ ̂z̃ᑜ
10: p̃ᑜᎼᎳ = ̂r̃ᑜᎼᎳ + 𝛽ᑜp̃ᑜ
11: x̃ᑜᎼᎳ ∶= Q̃b̃+ P̃Ꮑ ̃x̂ᑜᎼᎳ

12: xᑜᎼᎳ =MᎽ ᎳᎴ x̃ᑜᎼᎳ

Algorithm 4 is not being used since it is not practical. A more practical algorithm
is given by [25] and is found in Algorithm 5.

20 4. Iterative Numerical Methods

Algorithm 5 Deflated Preconditioned Conjugated Gradient (Practical version)
1: Initial: xᎲ, 𝜀
2: Compute: rᎲ = b− AxᎲ, r̂Ꮂ = PrᎲ,zᎲ =MᎽᎳr̂Ꮂ and pᎲ = zᎲ
3: for 𝑘 = 0,… do
4: while rᑜ > 𝜀 do
5: 𝛼ᑜ =

⟨r̂ᑜ ,zᑜ⟩
pᑜ ,PApᑜ

6: x̂ᑜᎼᎳ = x̂ᑜ + 𝛼ᑜpᑜ
7: r̂ᑜᎼᎳ = r̂ᑜ − 𝛼ᑜPApᑜ
8: ẑᑜᎼᎳ =MᎽᎳr̂ᑜ

9: 𝛽ᑜ =
⟨r̂ᑜᎼᎳ ,zᑜᎼᎳ⟩
⟨r̂ᑜ ,zᑜ⟩

10: pᑜᎼᎳ = zᎲ + 𝛽ᑜpᑜ
11: x = Qb+ PᏁxᑜᎼᎳ

Accuracy/Convergence
By using DCG, from Lemma 4.5.1 follows that the smallest eigenvalue will be equal to
zero. Thus, another condition number will be defined for the convergence.

Definition 4.6.1. Assume PA is SPSD with eigenvalues 𝜆Ꮃ, … , 𝜆ᑟ. The effective condition num-
ber is defined as

𝜅ᑖᑗᑗ(PA) =
𝜆max(PA)
𝜆min(PA)

, (4.42)

where 𝜆min is the smallest nonzero eigenvalue.

The error in the A-norm is given by

‖x− xᑜ‖ A ≤ 2‖x− xᎲ‖ A(
√𝜅ᑖᑗᑗ(MᎽᎳPA) − 1
√𝜅ᑖᑗᑗ(MᎽᎳPA) + 1

)
ᑜ

. (4.43)

4.7. Comparison of Deflated Methods with the Original Matrix
The convergence of the methods depends on the condition number. In this section, we
show that the conditioned number of the deflated system is smaller or equal than the
original system, i.e. the spectrum of PA is smaller or equal than the original matrix A.
See the following Theorem:

Theorem 4.7.1. Let A and P be given as in Definition 4.5.1, then the next inequality holds:

𝜅ᑖᑗᑗ(PA) ≤ 𝜅(A), (4.44)

for all deflation vectors Z.

The proof can be found in [25, Sect. 3]. Theorem 4.7.1 can be generalized by using
an arbitrary SPD preconditioner M. This results in Theorem 4.7.2:

Theorem 4.7.2. Let A and P be given as in Definition 4.5.1. LetM be an arbitrary SPD precon-
ditioner matrix, then the next inequality holds:

𝜅ᑖᑗᑗ(MᎽᎳPA) ≤ 𝜅(MᎽᎳA), (4.45)

for all deflation vectors Z.

4.8. Overview of Methods I 21

The proof and details can be found in [25, 26]. It follows from Theorem 4.7.2 that the
condition number of the deflation preconditioned system MᎽᎳPA is smaller or equal to
the preconditioned system MᎽᎳA. Therefore, the convergence speed of using DPCG is
faster or equal to PCG.

4.8. Overview of Methods I
The mathematical model for water simulation is an nonlinear equation. The equation
is solved using an iterative method Newton-Raphson. After linearization, the equation
can be written in the form:

Ax = b. (4.46)

Since A is SPD, we use iterative solvers to solve the system. The discussed methods are
the CG method using a preconditioner with deflation techniques. Deflation-subspace
matrix Z is needed for the deflation method. This will be discussed in Chapter 5.

5
Deflation Subspace-Vectors Z

The reason to apply deflation techniques is to accelerate the solving process and re-
ducing the number of iterations. Note that the deflation matrix P is defined as:

P = I− AQ P ∈ ℝᑟ×ᑟ, Q ∈ ℝᑟ×ᑟ, (5.1)

where Q = ZEᎽᎳZᏁ with Z ∈ ℝᑟ×ᑞ, E = ZᏁAZ and E ∈ ℝᑞ×ᑞ. To construct the deflation
matrix P, the deflation-subspace matrix Z is needed. As proposed in [25], the optimal
deflation vectors should satisfy the following requirements:

• The deflation-subspace vectors of Z are sparse

• The deflation-subspace vectors approximate the eigenspace corresponding to the
unfavourable eigenvalues

• The costs of constructing the deflation vectors is cheap

• The approach is easily implemented with the Two-Level PCG method.

As proposed in [25], there are several choices to choose as deflation vectors. The most
common choices for deflation vectors for the deflation-subspace matrix are

1. Deflation Subdomain vectors

2. Eigenvectors corresponding to the smallest eigenvalues of matrix MᎽᎳA

3. POD-based basis vectors

This section will review the different deflation vectors.

5.1. Subdomain Vectors
The first possibility is to use subdomain vectors. The underlying idea is dividing the
domain Ω in several domains Ωᑚ. Each subdomain Ωᑚ corresponds to one subdomain
vector. The discretization of the subdomain is denoted with Ωᑙᑚ. Each subdomain
consist of ones for grid points in the interior of the discretization of subdomain Ωᑙᑚ
and zero for other domains Ωᑙᑛ, where 𝑗 ≠ 𝑖. The subdomain vectors are relative cheap
to construct and orthogonal. This will be illustrated with two examples. More details
can be found in [1, 20, 25, 27, 34].

23

24 5. Deflation Subspace-Vectors Z

Example: Test case 1
Suppose we have the Laplace Equation. The mesh is divided into three subdomains
Ωᑚ that is described in Figure 5.1.

ΩᎳ

ΩᎴ

ΩᎵ

Figure 5.1: Domain divided into 3 subdomains.

Note that the domain consist of one type of layer. The number of subdomain vectors
does not affect the solving process, that will be showed in Section 9.1.1. Suppose the
matrix A ∈ ℝᎻ×Ꮋ and we use lexicography numbering. The discretization of each sub-
domain Ωᑙᑚ , 𝑖 = 1, 2, 3, contain 3 grid points. Then, the mathematical representation
of the deflation-subspace matrix Z ∈ ℝᎻ×Ꮅ is given as:

Z = [
1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1

]
Ꮑ

(5.2)

Example: Test case 2
The domain defined in Test case 2 contains two different layers that has a huge con-
trast in permeability coefficient. Therefore, the number of layers is chosen such that
one layer corresponds with a layer with the same rock permeability.

ΩᎳ

ΩᎴ

ΩᎵ

ΩᎶ

Figure 5.2: Domain in 4 subdomains.

Suppose the matrix A ∈ ℝᎳᎸ×ᎳᎸ. and we use lexicography numbering. The discretiza-
tion of each subdomain Ωᑙᑚ , 𝑖 = 1, 2, 3, 4, contain 4 grid points. Then, the mathematical
representation of the layers for deflation-subspace matrix Z ∈ ℝᎳᎸ×Ꮆ is:

Z =
⎡
⎢
⎢
⎣

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

⎤
⎥
⎥
⎦

Ꮑ

(5.3)

5.2. Eigenvectors 25

5.2. Eigenvectors
Choosing the eigenvectors corresponding to the unfavourable eigenvalues of the pre-
conditioned matrix MᎽᎳA ensures that the smallest eigenvalues will be transformed to
zero for the deflated system, as in [25, 30]. The disadvantages of choosing eigenvectors
is the cost of obtaining the eigenvectors. If the matrix A is large, it would be hard to
obtain the exact eigenvectors. Therefore, using approximated eigenvectors can be a
good substitution. For this report, we use exact eigenvectors for eigenvalue analysis.
More details can be found in Section 7.3.

5.3. Proper Orthogonal Decomposition
Another choice is to use the Proper Orthogonal Decomposition (POD) method [4, 12,
18, 21, 28–30] to construct deflation vectors. Hence, an overview will be given in this
section. The POD method is a Model Order Reduction-based method (MOR), which
reduces a large system to a smaller system such that it is easier to solve. The solution
of the system can be approximated by

x ≈
ᑞ

∑
ᑚᎾᎳ

cᑚ𝜓ᑚ, (5.4)

where 𝑐ᑚ ∈ ℝ and {𝜓ᑚ} are basis vectors of the basis matrix 𝜓, which will be specified
later on.

The POD basis will be constructed as follows: First, we define 𝑙 different right-hand
sides bᑚ. Then, we solve the system Axᑚ = bᑚ to obtain xᑚ. The set {xᑚ} is called snap-
shots. Next, the correlation matrix is defined as:

R = 1
𝑙 XX

Ꮑ, (5.5)

where X = [xᎳ … xᑝ]. Note that the correlation matrix R ∈ ℝᑟ×ᑟ is SPSD.

Proof. Let y ∈ ℝᑟ, then

yᏁRy = yᏁ
1
𝑙 XX

Ꮑy = 1
𝑙 (X

Ꮑy)(XᏁy) = 1
𝑙 (X

Ꮑy)Ꮄ ≥ 0, (5.6)

where 𝑙 > 0. Also,

RᏁ = (1𝑚XX
Ꮑ)

Ꮑ
= 1
𝑚XX

Ꮑ = R. (5.7)

Hence, R is SPSD.

The eigenvectors of R are used as vectors for the basis matrix 𝜓. Note that R ∈ ℝᑟ×ᑟ,
instead of computing the eigenvalues and eigenvectors of the correlation matrix R, it
is easier to find the eigenvalues and eigenvectors of

R̃ ∶= 1
𝑙 X

ᏁX, (5.8)

since the dimension is 𝑙 × 𝑙 and 𝑙 ≪ 𝑛. Assume R̃ has eigenvalues defined as

𝜆Ꮃ > 𝜆Ꮄ > … > 𝜆ᑝ. (5.9)

26 5. Deflation Subspace-Vectors Z

The relation between the eigenvectors of R̃ and R is as follows. If v is an eigenvector
of R̃, then Xv is an eigenvector of R. Not every eigenvector is used as basis vector,
the dimension 𝑚 is chosen such that it only represents the 𝑚 largest eigenvalues of R,
where 𝑚 ≪ 𝑙 ≪ 𝑛. The quantity 𝑚 is chosen such that the next equality holds

max
Ꮃᐶᑞᐶᑝ

ᑞ
∑
ᑚᎾᎳ
𝜆ᑚ(R)

ᑝ
∑
ᑚᎾᎳ
𝜆ᑚ(R)

≤ 𝛼, (5.10)

where 0 < 𝛼 ≤ 1 is close to 1. Therefore, the basis matrix 𝜓 ∈ ℝᑟ×ᑞ is defined as

𝜓 ∶= [𝜓Ꮃ … 𝜓ᑞ] , (5.11)

where {𝜓ᑚ} are eigenvectors of the matrix R.

6
Two-Level Preconditioner Conjugate

Gradient

The Two-Level Preconditioned Conjugate Gradient method is defined as

𝒫𝒜x = b, 𝒫,𝒜 ∈ ℝᑟ×ᑟ (6.1)

where 𝒫 is called an operator and the matrix𝒜 is a combination of the deflation matrix
P and the original matrix A. The operator 𝒫 is known as a Two-Level preconditioner
since it combines a traditional preconditioner M and a correction matrix Q. Examples
of traditional preconditioners are Jacobi matrixM = 𝑑𝑖𝑎𝑔(A) and incomplete Cholesky
preconditioner with zero fill in M = MᑀᐺᎲ. See Definition 4.5.1 for the definition of the
correction matrix. If 𝒫 = I is the identity matrix, 𝒜 = A, x = x and b = b, we get the
standard Conjugate Gradient method. If 𝒫 = MᎽᎳ is a preconditioner and b = MᎽᎳb,
Equation 6.1 reduces to the Preconditioned Conjugate Gradient method. There are
multiple ways to construct the operator 𝒫. This can be done in an additive way or
multiplicative way. More details can be found in [26, Sect. 2].

6.1. Additive Preconditioner
Assume that CᎳ,CᎴ are arbitrary symmetric positive semi-definite (SPSD) precondi-
tioners, then the additive combination

𝒫ᑒᎴ = CᎳ + CᎴ (6.2)

is an SPSD preconditioner. Therefore, a linear combination of different precondition-
ers with different weight is a preconditioner. As a consequence, the generalization is
written as

𝒫ᑒᑜ =
ᑜ

∑
ᑚᎾᎳ
𝑐ᑚCᑚ, (6.3)

where 𝑐ᑚ > 0 and Cᑚ is an SPSD preconditioner.

6.2. Multiplicative Preconditioner
Assume CᎳ,CᎴ are arbitrary SPSD preconditioners, then the two preconditioners can
be combined in the following way:

xᑚᎼ
Ꮃ
Ꮄ = xᑚ + CᎳ(b− Axᑚ), (6.4)

xᑚᎼᎳ = xᑚᎼ
Ꮃ
Ꮄ + CᎴ(b− AxᑚᎼ

Ꮃ
Ꮄ). (6.5)

27

28 6. Two-Level Preconditioner Conjugate Gradient

With this method, we obtain the following preconditioner

𝒫ᑞᎴ = CᎳ + CᎴ − CᎴACᎳ. (6.6)

𝒫ᑞᎴ can be interpreted as a multiplicative operator constructed from two precondition-
ers [25, 26]. Similarly, we can combine three preconditioners CᎳ,CᎴ,CᎵ to get

𝒫ᑞᎵ ዆ CᎳ ዄCᎴ ዄCᎵ ዅCᎴACᎳ ዅCᎵACᎴ ዅCᎵACᎳ ዄCᎵACᎴACᎳ. (6.7)

This method can also be generalized to 𝒫ᑞᑜ by using 𝑘 preconditioners.

6.3. Deflation method
Recall that the Deflated Preconditioned Conjugated Gradient (DPCG) has been defined
in Section 4.6 and is written as:

MᎽᎳPAx̂ =MᎽᎳPb, (6.8)

where x̂ is the non unique solution of this system. The unique solution of the original
system Ax = b is found by using

x = Qb+ PᏁx̂, (6.9)

This method can be written in the form of a Two-Level PCG method by substituting

𝒫 =MᎽᎳ, 𝒜 = PA and b =MᎽᎳPb. (6.10)

This method is also known as ”Deflation Variant 1” (DEF1).

An alternative way to describe the deflation technique has been proposed by [11, 25,
26]: Let x be an arbitrary starting vector and we define the special starting vector as

xᎲ = Qb+ PᏁx. (6.11)

Then, the solution of the system Ax = b can be constructed in the form:

x = xᎲ + PᏁy, (6.12)

where y is the unique solution of the deflated system:

APᏁy = rᎲ, rᎲ ∶= b− AxᎲ. (6.13)

The latter expression can be solved using a preconditioner, leading to

MᎽᎳAPᏁy =MᎽᎳrᎲ, (6.14)

after which Equation (6.12) to find solution x. Multiplying with PᏁ on both sides will
give us

PᏁMᎽᎳAx = PᏁMᎽᎳb. (6.15)

The resulting algorithm will be referred to ”Deflation Variant 2” (DEF2).

The difference between DEF1 and DEF2 lies in their flipped two-level preconditioner.
To obtain the unique solution, the operation w = Qb+PᏁw is executed after the itera-
tion steps in the DEF1 method, while it is executed before in the DEF2 method. There-
fore, the methods have different robustness properties. More details can be found in
[25, 26].

6.4. Adapted Deflation methods 29

6.4. Adapted Deflation methods
If we use CᎳ = Q and CᎴ = MᎽᎳ in Equation (6.6), where M is a traditional precondi-
tioner, we obtain as preconditioner

𝒫A-DEF1 =MᎽᎳP+Q. (6.16)

This method will be called Adapted Deflation Variant 1 (A-DEF1). Similarly, 𝒫A-DEF2
can be constructed by using CᎳ =MᎽᎳ and CᎴ = Q in Equation (6.6) to obtain

𝒫A-DEF2 = PᏁMᎽᎳ +Q. (6.17)

As a consequence, the operators of the adapted methods are not symmetric. The
difference between the DEF method and the A-DEF method lies in the addition of the
correction matrix Q.

6.5. Reduced Order Model-based
The operator 𝒫 can be constructed by using the algebraic multi-grid methods (AMG)
approach. This two-level preconditioner 𝒫ROM is an approximation of the inverse of A
and has been proposed by [21]. The preconditioner is given by:

𝒫ROM =MᎽᎳ +Q(1 − AMᎽᎳ), (6.18)

where Q = ZᏁEᎽᎳZ and E = ZᏁAZ are defined in Definition 4.5.1. Note that 𝒫ROM is not
always symmetric. To obtain the SPD variant, using the formula AᎼAᏁ

Ꮄ is considered
instead. The symmetric version of the operator of the ROM method is defined as:

𝒫SROM =MᎽᎳ +Q− 12(QAM
ᎽᎳ +MᎽᎳAQ). (6.19)

We prove in Lemma 7.3.2 of Section 7.3.1 that the Two-Level preconditioner of ROM
is the same as A-DEF2. Hence, 𝒫SROM is an additive preconditioner consisting of the
operator 𝒫A-DEF1 and 𝒫A-DEF2 and can also be written as

𝒫SROM =
1
2(𝒫A-DEF1 + 𝒫A-DEF2). (6.20)

6.6. Abstract Balancing Methods
As mentioned above, 𝒫A-DEF1, 𝒫A-DEF2 are not always symmetric operators. Another
way to construct a symmetric operator is using the multiplicative method with three
preconditioners. If we uses CᎳ = Q, CᎴ = MᎽᎳ and CᎵ = Q in Equation 6.7, the result
is

𝒫BNN = PᏁMᎽᎳP+Q. (6.21)
The operator 𝒫BNN is known as the Balancing-Neumann-Neumann (BNN) operator and
a well-known operator in the Domain Decomposition Method (DDM) and investigated
by [15–17]. This operator is symmetric and therefore, an SPD preconditioner. More-
over, we will consider a reduced version of the BNN operator by removing the correction
matrix Q. This will give us

𝒫R-BNN1 = PᏁMᎽᎳP, (6.22)
which still is a symmetric preconditioner. Furthermore, if we reduce the precondi-
tioner, we obtain

𝒫R-BNN2 = PᏁMᎽᎳ. (6.23)
This is similar to DEF2 and the only difference lies in the implementation of the
method. Both 𝒫R-BNN1 and 𝒫R-BNN2 have the same properties as 𝒫BNN with the spe-
cial starting vector. More details can be found in [25, 26].

30 6. Two-Level Preconditioner Conjugate Gradient

6.7. Overview of methods II
The formula for the Two-level Preconditioned Conjugated Gradient method is given by

𝒫𝒜x = b, 𝒫,𝒜 ∈ ℝᑟ×ᑟ. (6.24)

Let A be the original system, P the deflation matrix, Q the correction matrix, Z the
deflation subspace matrix and M the traditional SPD preconditioner. For the Two-
Level PCG method, let 𝒜 = A and 𝒫 be the preconditioner operator. We define x = x
and b = 𝒫b. The various mentioned methods with initial condition are given in Table
6.1.

Table 6.1: Overview of the various methods

Name Method Initial xᎲ Operator 𝒫
PREC Traditional Preconditioned CG x MᎽᎳ

DEF1 Deflation Variant 1 x MᎽᎳP
DEF2 Deflation Variant 2 Qb+ PᏁx PᏁMᎽᎳ

A-DEF1 Adapted Deflation Variant 1 x MᎽᎳP+Q
A-DEF2 Adapted Deflation Variant 2 Qb+ PᏁx PᏁMᎽᎳ +Q
BNN Balancing-Neumann-Neumann x PᏁMᎽᎳP+Q
R-BNN1 Reduced Balancing Variant 1 Qb+ PᏁx PᏁMᎽᎳP
R-BNN2 Reduced Balancing Variant 2 Qb+ PᏁx PᏁMᎽᎳ

ROM ROM-based preconditioner x MᎽᎳ +Q(1 − AMᎽᎳ)
SROM SROM-based preconditioner x MᎽᎳ +Q− Ꮃ

Ꮄ(QAMᎽᎳ +MᎽᎳAQ)

The algorithm of the Two-Level preconditioners is presented in Algorithm 6 and the
corresponding matrices of each method are given in Table 6.2. This implementation
is used for the numerical experiments in Chapter 9.

Algorithm 6 Generalized Two-Level Preconditioner Method
1: Initial: x, 𝒱start,ℳᎳ,ℳᎴ,ℳᎵ, 𝒱end, 𝜀
2: Set xᎲ = 𝒱start
3: Compute: rᎲ = b− AxᎲ, zᎲ =ℳᎳrᎲ and pᎲ =ℳᎴzᎲ
4: for 𝑘 = 0,… do
5: while rᑜ > 𝜀 do
6: wᑜ =ℳᎵAp

7: 𝛼ᑜ =
⟨rᑜ ,zᑜ⟩
⟨pᑜ ,wᑜ⟩

8: xᑜᎼᎳ = xᑜ + 𝛼ᑜpᑜ
9: rᑜᎼᎳ = rᑜ − 𝛼ᑜApᑜ

10: zᑜᎼᎳ =ℳᎳrᑜᎼᎳ

11: 𝛽ᑜ =
⟨zᑜᎼᎳ ,rᑜᎼᎳ⟩
⟨zᑜ ,rᑜ⟩

12: pᑜᎼᎳ =ℳᎴzᑜᎼᎳ + 𝛽ᑜpᑜ
13: xᑚᑥ = 𝒱end

6.7. Overview of methods II 31

Table 6.2: Choices for parameters for various method used in Algorithm 6.

Name 𝒱start ℳᎳ ℳᎴ ℳᎵ 𝒱end
PREC x MᎽᎳ I I xᑜᎼᎳ
DEF1 x MᎽᎳ I P Qb+ PᏁxᑜᎼᎳ
DEF2 Qb+ PᏁx MᎽᎳ PᏁ I xᑜᎼᎳ
A-DEF1 x MᎽᎳP+Q I I xᑜᎼᎳ
A-DEF2 Qb+ PᏁx PᏁMᎽᎳ +Q I I xᑜᎼᎳ
BNN x PᏁMᎽᎳP+Q I I xᑜᎼᎳ
R-BNN1 Qb+ PᏁx PᏁMᎽᎳP I I xᑜᎼᎳ
R-BNN2 Qb+ PᏁx PᏁMᎽᎳ I I xᑜᎼᎳ
ROM x MᎽᎳ +Q(1 − AMᎽᎳ) I I xᑜᎼᎳ
SROM x MᎽᎳ +Q− Ꮃ

Ꮄ(QAMᎽᎳ +MᎽᎳAQ) I I xᑜᎼᎳ

7
Theoretical Comparison between

Two-Level Preconditioners

In this Chapter, different Two-Level preconditioners discussed above are compared.
First, we compare the costs of computational complexity of each method. This will
be done for the initial step and iteration step. Thereafter, we also show the memory
storage of each method. The computational complexity depends on the sparsity of the
matrix and the number of deflation vectors. Next, we present the eigenvalue distri-
bution corresponding to the preconditioned matrix using a Two-Level preconditioner
and equivalence lemma’s will be proved. Finally, concluding remarks will be given.

7.1. Computational Complexity
The number of flops per iteration has been calculated and more details can be found
in Appendix C. The matrix A ∈ ℝᑟ×ᑟ has a sparsity of 𝑠𝑛 per row and the deflation
subspace-matrix Z ∈ ℝᑟ×ᑞ is a full matrix. The overview of the flops can be found in
Table 7.1 and the memory storage can be found in Table 7.3.

Table 7.1: Overview table of the flop count of the above discussed methods.

Methods Flops
Initial Iterations

CG (ኼ፬ ዄ ኼ)፧ ዅ ኻ (ኼ፬ ዄ ዃ)፧
PCG Ꮃ

Ꮄ(ኻኻ፬ ዄ ኻ)፧ ዅ ኻ (ኾ፬ ዄ ኻኺ)፧
DCG (ዀ፦ ዄ ኼ፬ ዄ ዃ)፦፧ ዄ (ኼ፬ ዄ ኼ)፧ ዄ Ꮃ

Ꮅ፦Ꮅ ዅ፦Ꮄ ዅ ኽ፦ ዅ ኻ (ኾ፦ ዄ ኼ፬ ዄ ዃ)፧ ዅ፦
DEF1 (ዀ፦ ዄ ኼ፬ ዄ ዃ)፦፧ ዄ Ꮃ

Ꮄ(ኻኻ፬ ዄ ኻ)፧ ዄ Ꮃ
Ꮅ፦Ꮅ ዅ፦Ꮄ ዅ ኽ፦ ዅ ኻ (ኾ፦ ዄ ኾ፬ ዄ ኻኺ)፧ ዅ፦

DEF2 (ዀ፦ ዄ ኼ፬ ዄ ዃ)፦፧ ዄ Ꮃ
Ꮄ(ኻኻ፬ ዄ ኻ)፧ ዄ Ꮃ

Ꮅ፦Ꮅ ዅ፦Ꮄ ዅ ኽ፦ ዅ ኻ (ኾ፦ ዄ ኾ፬ ዄ ኻኺ)፧ ዅ፦
A-DEF1 (ዀ፦ ዄ ኼ፬ ዄ ኽ)፦፧ ዄ Ꮃ

Ꮄ(ኻኻ፬ ዄ ኽ)፧ ዄ Ꮃ
Ꮅ፦Ꮅ ዅ፦Ꮄ ዅ፦ ዅ ኻ (ዀ፦ ዄ ኾ፬ ዄ ኻኺ)፧ ዅ፦

A-DEF2 (ዀ፦ ዄ ኼ፬ ዄ ኻኽ)፦፧ ዄ Ꮃ
Ꮄ(ኻኻ፬ ዄ ኽ)፧ ዄ Ꮃ

Ꮅ፦Ꮅ ዅ፦Ꮄ ዅ ኾ፦ ዅ ኻ (ዂ፦ ዄ ኾ፬ ዄ ኻኺ)፧ ዅ ኼ፦
BNN (ዀ፦ ዄ ኼ፬ ዄ ዃ)፦፧ ዄ Ꮃ

Ꮄ(ኻኻ፬ ዄ ኽ)፧ ዄ Ꮃ
Ꮅ፦Ꮅ ዅ፦Ꮄ ዅ ኽ፦ ዅ ኻ (ኻኼ፦ ዄ ኾ፬ ዄ ኻኺ)፧ ዅ ኽ፦

R-BNN1 (ዀ፦ ዄ ኼ፬ ዄ ኻኽ)፦፧ ዄ Ꮃ
Ꮄ(ኻኻ፬ ዄ ኽ)፧ ዄ Ꮃ

Ꮅ፦Ꮅ ዅ፦Ꮄ ዅ ኾ፦ ዅ ኻ (ዂ፦ ዄ ኾ፬ ዄ ኻኺ)፧ ዅ ኼ፦
R-BNN2 (ዀ፦ ዄ ኼ፬ ዄ ዃ)፦፧ ዄ Ꮃ

Ꮄ(ኻኻ፬ ዄ ኽ)፧ ዄ Ꮃ
Ꮅ፦Ꮅ ዅ፦Ꮄ ዅ ኾ፦ ዅ ኻ (ኾ፦ ዄ ኾ፬ ዄ ኻኺ)፧ ዅ፦

ROM (ኾ፦ ዄ ኼ፬ ዄ ኼ)፦፧ ዄ Ꮃ
Ꮄ(ኻ኿፬ ዄ ኽ)፧ ዄ Ꮃ

Ꮅ፦Ꮅ ዅ፦Ꮄ ዅ፦ ዅ ኻ (ኾ፦ ዄ ዀ፬ ዄ ኻኺ)፧ ዅ፦
SROM (ኼ፦ ዄ ኾ፬ ዄ ዂ)፦፧ ዄ Ꮃ

Ꮄ(ኻኻ፬ ዄ ዁)፧ ዄ Ꮃ
Ꮅ፦Ꮅ ዄ ኽ፦Ꮄ ዅ ኻ (ዂ፦ ዄ ኾ፬ ዄ ኻኼ)፧ ዄ ኾ፦Ꮄ

We focus on the number of flops per iterations. The flops in terms of order 𝑛 are given
in Table 7.2.

33

34 7. Theoretical Comparison between Two-Level Preconditioners

Table 7.2: Overview table of the iteration flop count of the above discussed methods in order ፧.

Methods Flops per Iteration
CG (2𝑠 + 9)𝑛
PCG (4𝑠 + 10)𝑛
DCG (4𝑚 + 2𝑠 + 9)𝑛
DEF1 (4𝑚 + 4𝑠 + 10)𝑛
DEF2 (4𝑚 + 4𝑠 + 10)𝑛
A-DEF1 (6𝑚 + 4𝑠 + 10)𝑛
A-DEF2 (8𝑚 + 4𝑠 + 10)𝑛
BNN (12𝑚 + 4𝑠 + 10)𝑛
R-BNN1 (8𝑚 + 4𝑠 + 10)𝑛
R-BNN2 (4𝑚 + 4𝑠 + 10)𝑛
ROM (4𝑚 + 6𝑠 + 10)𝑛
SROM (8𝑚 + 4𝑠 + 12)𝑛

Clearly, the cheapest methods per iteration of the deflation methods are the DEF1
method, the DEF2 method, the ROM method and the R-BNN2 method, all using
𝒪(4𝑚𝑛) flops per iteration. The most expensive method is the BNN method. Then,
the R-BNN1 method and the SROM PCG method are expensive with using 𝒪(8𝑚𝑛)
flops per iteration.

7.2. Memory Storage
The memory storage of each method can be found in Table 7.3. All the deflation meth-
ods use approximately the same memory storage. For more details, we refer to Ap-
pendix C.

Table 7.3: Overview table of the memory storage of the above discussed methods.

Methods Memory positions
CG (5 + 𝑠)𝑛 + 4
PCG Ꮃ

Ꮄ(3𝑠 + 13)𝑛 + 4
DCG (4𝑚 + 𝑠 + 6)𝑛 + 4
DEF1 Ꮃ

Ꮄ(8𝑚 + 3𝑠 + 13)𝑛 + 4
DEF2 Ꮃ

Ꮄ(8𝑚 + 3𝑠 + 13)𝑛 + 4
A-DEF1 Ꮃ

Ꮄ(8𝑚 + 3𝑠 + 13)𝑛 + 4
A-DEF2 Ꮃ

Ꮄ(8𝑚 + 3𝑠 + 13)𝑛 + 4
BNN Ꮃ

Ꮄ(8𝑚 + 3𝑠 + 13)𝑛 + 4
R-BNN1 Ꮃ

Ꮄ(8𝑚 + 3𝑠 + 13)𝑛 + 4
R-BNN2 Ꮃ

Ꮄ(8𝑚 + 3𝑠 + 13)𝑛 + 4
ROM Ꮃ

Ꮄ(6𝑚 + 3𝑠 + 13)𝑛 + 4
SROM Ꮃ

Ꮄ(6𝑚 + 3𝑠 + 13)𝑛 +
Ꮃ
Ꮄ(𝑚 + 1)𝑚 + 4

7.3. Comparison of the Spectrum
The convergence of the methods depends on the condition number of the matrix. Using
the right Two-Level preconditioner, 𝒫A will have a smaller conditioner number and
resulting faster convergence. It is shown in Section 4.7 that the condition number
of using the DEF1 method is equal or lower than the preconditioned system. In this
section, the theoretical behaviour of the eigenvalues of the Two-Level preconditioner

7.3. Comparison of the Spectrum 35

applied to the matrix A will be analyzed. Recall, the definition of deflation method is
given by:

Definition 7.3.1. Given an A ∈ ℝᑟ×ᑟ which is SPD and given a deflation-subspace matrix Z of
size 𝑛 ×𝑚 where 𝑚 ≪ 𝑛, the deflation method is defined as

P = I− AQ P ∈ ℝᑟ×ᑟ, Q ∈ ℝᑟ×ᑟ, (7.1)

where Q = ZEᎽᎳZᏁ with Z ∈ ℝᑟ×ᑞ, E = ZᏁAZ and E ∈ ℝᑞ×ᑞ. This results in the following
properties:

Lemma 7.3.1. Let A,P,Q and Z be defined as in Definition 7.3.1. Then,

a. PᎴ = P

b. PA = APᏁ

c. QA = I− PᏁ

d. PᏁZ = PᏁQ = 0

e. PAZ = PAQ = 0

f. QᏁ = Q

g. QAQ = Q

h. QAPᏁ = 0

i. QP = 0

j. QAZ = Z

The proofs can be found in [26, Sect. 3].

7.3.1. Theoretical Comparison of the A-DEF2 method and the ROM method
The Two-Level preconditioner of the A-DEF2 method and the ROMmethod are similar,
as will be proven in the next Lemma:

Lemma 7.3.2. The A-DEF2 method and the ROM method have the same Two-Level precondi-
tioners.

Proof. Recall that the Two-Level preconditioners are defined as

𝒫A-DEF2 = PᏁMᎽᎳ +Q
𝒫ROM = MᎽᎳ +Q(I− AMᎽᎳ).

Continuing,

𝒫A-DEF2 = PᏁMᎽᎳ +Q (7.2)
= (I−QA)MᎽᎳ +Q (7.3)
= MᎽᎳ −QAMᎽᎳ +Q (7.4)
= MᎽᎳ +Q(I− AMᎽᎳ) (7.5)
= 𝒫ROM. (7.6)

The difference between these two methods is the different starting vector. For the A-
DEF2 method, it is needed to solve it for the first step by using the special starting
vector given in Equation (6.11). The ROM uses the initial condition as starting vector.

36 7. Theoretical Comparison between Two-Level Preconditioners

7.3.2. Spectra Analysis of Deflation Methods
In this section, the relation of the spectra between the Two-Level preconditioner ap-
plied to the matrix A is shown. First, we show that using certain Two-Level precon-
ditioners belongs to a class. We will prove that DEF1, DEF2, R-BNN1 and R-BNN2
belongs to the same class. Then, another class consists of A-DEF1, A-DEF2, ROM
and BNN. Thereafter, we will prove a lemma that connects these two classes in Lemma
7.3.5. Finally, we will investigate the spectra after applying the SROM Two-Level pre-
conditioner using specific deflation vectors.

Lemma 7.3.3. The spectra corresponding to the Two-Level preconditioners of DEF1, DEF2,
R-BNN1 and R-BNN2 applied to the original matrix A are the same. i.e.

𝜎(MᎽᎳPA) = 𝜎(PᏁMᎽᎳA) = 𝜎(PᏁMᎽᎳPA) (7.7)

Proof. It is known that DEF2 and R-BNN2 have the same Two-Level preconditioner, this is given
in Table 6.1 in Section 6.7. Hence, the spectra of these methods are the same. Now, we prove
the first equality.

𝜎(MᎽᎳPA) ᑃ.Ꮄ.Ꮅ.Ꮃᑒ= 𝜎(AMᎽᎳP) (7.8)
ᑃ.Ꮄ.Ꮅ.Ꮃᑔ= 𝜎(PᏁMᎽᎳA). (7.9)

For the second equality we have:

𝜎(MᎽᎳPA) ᑃ.Ꮉ.Ꮅ.Ꮃᑒ= 𝜎(MᎽᎳPᎴA) (7.10)
ᑃ.Ꮉ.Ꮅ.Ꮃᑓ= 𝜎(MᎽᎳPAPᏁ) (7.11)
ᑃ.Ꮄ.Ꮅ.Ꮃᑒ= 𝜎(PᏁMᎽᎳPA). (7.12)

Next, we prove that the spectra of A-DEF1, A-DEF2, ROM and BNN are the same.
Clearly, it has been shown that the Two-Level preconditioners of the A-DEF2 method
and the ROM method are the same. Therefore, it is only needed to prove that A-DEF1,
A-DEF2, and BNN have the same spectrum. This is proven in the following Lemma:

Lemma 7.3.4. The spectra corresponding to the Two-Level preconditioners of A-DEF1, A-
DEF2, ROM and BNN applied to the original matrix A are the same, i.e.

𝜎(PᏁMᎽᎳA+QA) = 𝜎(MᎽᎳPA+QA) = 𝜎(PᏁMᎽᎳPA+QA) (7.13)

Proof. As shown in Lemma 7.3.2, the Two-Level preconditioners of A-DEF2 and ROM are the
same. We prove the first equality.

𝜎(PᏁMᎽᎳA+QA) ᑃ.Ꮉ.Ꮅ.Ꮃᑔ= 𝜎(PᏁMᎽᎳA+ I− PᏁ) (7.14)
ᑃ.Ꮄ.Ꮅ.Ꮃᑓ= 𝜎(PᏁ(MᎽᎳA− 𝐼)) + 𝜎(I) (7.15)
ᑃ.Ꮄ.Ꮅ.Ꮃᑒ= 𝜎((MᎽᎳA− 𝐼)PᏁ) + 𝜎(I) (7.16)
ᑃ.Ꮄ.Ꮅ.Ꮃᑓ= 𝜎(MᎽᎳAPᏁ − PᏁ + I) (7.17)
ᑃ.Ꮉ.Ꮅ.Ꮃᑓ= 𝜎(MᎽᎳPA− PᏁ + I) (7.18)
ᑃ.Ꮉ.Ꮅ.Ꮃᑔ= 𝜎(MᎽᎳPA+QA). (7.19)

7.3. Comparison of the Spectrum 37

For the following equality we have

𝜎(PᏁMᎽᎳPA+QA) ᑃ.Ꮉ.Ꮅ.Ꮃᑔ= 𝜎(PᏁMᎽᎳPA+ I− PᏁ) (7.20)
ᑃ.Ꮄ.Ꮅ.Ꮃᑓ= 𝜎(PᏁMᎽᎳPA− PᏁ) + 𝜎(I) (7.21)
ᑃ.Ꮉ.Ꮅ.Ꮃᑓ= 𝜎(PᏁMᎽᎳAPᏁ − PᏁ) + 𝜎(I) (7.22)
ᑃ.Ꮄ.Ꮅ.Ꮃᑔ= 𝜎(PAMᎽᎳP− P) + 𝜎(I) (7.23)
= 𝜎(P(AMᎽᎳP− 𝐼)) + 𝜎(I) (7.24)

ᑃ.Ꮄ.Ꮅ.Ꮃᑒ= 𝜎((AMᎽᎳP− I)P) + 𝜎(I) (7.25)
= 𝜎(AMᎽᎳPᎴ − P) + 𝜎(I) (7.26)

ᑃ.Ꮉ.Ꮅ.Ꮃᑒ= 𝜎(AMᎽᎳP− P) + 𝜎(I) (7.27)
ᑃ.Ꮄ.Ꮅ.Ꮃᑔ= 𝜎(PᏁMᎽᎳA− PᏁ) + 𝜎(I) (7.28)
ᑃ.Ꮄ.Ꮅ.Ꮃᑓ= 𝜎(PᏁMᎽᎳA− PᏁ + I) (7.29)
ᑃ.Ꮉ.Ꮅ.Ꮃᑔ= 𝜎(PᏁMᎽᎳA−QA) (7.30)

This concludes the proof.

Because of the result of the previous lemma, it is not needed to investigate the spec-
trum of every method separately. The methods can be divided into different classes.
The first class consists of DEF1, DEF2, R-BNN1 and R-BNN2. While another class
consists of BNN, A-DEF1, A-DEF2 and ROM. Therefore, it is enough to prove using
one method of each class, i.e. DEF1 and BNN. Then, we arrive to the next Lemma.

Lemma 7.3.5. Let the spectra of DEF1 and BNN applied to the original system A be given by:

𝜎(MᎽᎳPA) = {𝜆Ꮃ, … , 𝜆ᑟ}, 𝜎(PᏁMᎽᎳPA+QA) = {𝜇Ꮃ, … , 𝜇ᑟ} (7.31)

respectively. Then, the eigenvalues within these spectra can be reordered such that

𝜆ᑚ = 0, 𝜇ᑚ = 1, 𝑖 = 1,… ,𝑚 (7.32)

and
𝜆ᑚ = 𝜇ᑚ, 𝑖 = 𝑚 + 1,… , 𝑛. (7.33)

Proof. First, we consider the Two-Level preconditioner of BNN and it follows from Lemma 7.3.1
that

(PᏁMᎽ1P+Q)AZ = PᏁMᎽ1PAZ+QAZ ᑃ.Ꮉ.Ꮅ.Ꮃᑖ= 0+QAZ ᑃ.Ꮉ.Ꮅ.Ꮃᑛ= Z. (7.34)

Then, applying this to the Two-Level preconditioner of DEF1 we get

MᎽ1PAZ ᑃ.Ꮉ.Ꮅ.Ꮃᑖ= 0. (7.35)

It follows that de columns of Z are the eigenvectors of𝒫BNNA correspond to the eigenvalue equal
to 1. The same set of vectors are eigenvectors of 𝒫DEF1A corresponding to the eigenvalue equal
to 0. Next, from Theorem 2.8 found in [19], it is sufficient to proof that if

𝜎(PᏁMᎽ1PA+QA) = {1,… , 1, 𝜇ᑞᎼᎳ, … , 𝜇ᑟ} (7.36)

holds, then
𝜎(MᎽ1PA) = {0,… , 0, 𝜇ᑞᎼᎳ, … , 𝜇ᑟ}. (7.37)

38 7. Theoretical Comparison between Two-Level Preconditioners

Let the eigenvalue 𝜇ᑚ correspond with vᑚ, where 𝑖 = 𝑚 + 1,…𝑛. Then

(PᏁMᎽ1P+Q)Avᑚ = 𝜇ᑚvᑚ (7.38)

implies
PᏁ(PᏁMᎽ1P+Q)Avᑚ = 𝜇ᑚPᏁvᑚ. (7.39)

Now, we rewrite the left-hand side of Equation (7.39) to get

PᏁ(PᏁMᎽ1P+Q)A = (PᏁ)2MᎽ1PA+ PᏁQA (7.40)
ᑃ.Ꮉ.Ꮅ.Ꮃᑒ= PᏁMᎽ1P2A+ PᏁQA (7.41)
ᑃ.Ꮉ.Ꮅ.Ꮃᑓ= PᏁMᎽ1PAPᏁ + PᏁQA (7.42)
ᑃ.Ꮉ.Ꮅ.Ꮃᑕ= PᏁMᎽ1PAPᏁ. (7.43)

Equation (7.39) can now be written as

PᏁMᎽ1PAwᑚ = 𝜇ᑚwᑚ, (7.44)

where wᑚ ∶= PᏁvᑚ. Note that wᑚ ≠ 0 since that follows from Lemma 7.3.1d and vᑚ ∉ Col(Z).
Hence, 𝜇ᑚ is also an eigenvalue of PᏁMᎽ1PA. Therefore, from Lemma 7.3.5 we have

𝜎(MᎽ1PA) = 𝜎(PᏁMᎽ1PA) (7.45)

such that 𝜇ᑚ is an eigenvalue of DEF1.

7.3.3. Spectrum Analysis of SROM
Recall that the Two-Level preconditioner of SROM is a linear combination of A-DEF1
and A-DEF2. To investigate this Two-Level preconditioner, we start by using the iden-
tity as traditional matrix and the eigenvectors of A as deflation matrix. Then, the
theorem using an arbitrary traditional preconditioner can be generalized by using
eigenvectors of the preconditioned matrix MᎽᎳA.

Eigenvectors as Deflation Vectors
In this section, we use eigenvectors of A as deflation vectors and proof a few properties
given in Theorem 7.3.1.

Theorem 7.3.1. Suppose we have A ∈ ℝᑟ×ᑟ with spectrum 𝜎(𝐴) = {𝜆Ꮃ, … , 𝜆ᑟ}. The eigenvec-
tors {vᎳ, … ,vᑟ} are chosen to be orthogonal, i.e. vᏁᑚ vᑛ = 𝛿ᑚᑛ, so that

Avᑚ = 𝜆ᑚvᑚ. (7.46)

Suppose the deflation subspace-matrix Z ∈ ℝᑟ×ᑞ consists of 𝑚 eigenvectors of A, i.e.

Z = [vᎳ…vᑞ] . (7.47)

The complement of the deflation sub-space matrix is defined as

Zc = [vᑞᎼᎳ…vᑟ] . (7.48)

Let Λ = diag(𝜆Ꮃ, … , 𝜆ᑞ) ∈ ℝᑞ×ᑞ and Λc = diag(𝜆ᑞᎼᎳ, … , 𝜆ᑟ). Let the inverse be denoted by
ΛᎽᎳ = diag(𝜆ᎽᎳᎳ , … , 𝜆ᎽᎳᑞ). Then the following statements hold:

(a) AZ = ZΛ

7.3. Comparison of the Spectrum 39

(b) E = Λ and EᎽᎳ = ΛᎽᎳ.

(c) QZ = ZΛᎽᎳ and QZc = 0

(d) PZ = 0 and PZc = Zc

(e) PᏁZ = 0 and PᏁZc = Zc

Proof. (a) AZ = ZΛ

AZ = A [vᎳ…vᑞ] = [AvᎳ…Avᑞ] = [𝜆ᎳvᎳ…𝜆ᑞvᑞ] = [vᎳ…vᑞ] Λ = ZΛ (7.49)

(b) E = Λ and EᎽᎳ = ΛᎽᎳ.
E = ZᏁAZ = ZᏁZΛ = Λ (7.50)

The last equality holds because of the orthogonality property. Because Λ is a diagonal
matrix, we have that

EᎽᎳ = ΛᎽᎳ (7.51)

(c) First, we prove Qvᑚ = {
Ꮃ
ᒐᑚvᑚ for vᑚ ∈ Z
0 for vᑚ ∉ Z

Let vᑚ ∈ Col(Z), then

Qvᑚ = ZEᎽᎳZᏁvᑚ (7.52)

= [vᎳ…vᑞ] ΛᎽᎳ [vᎳ…vᑞ]
Ꮑ vᑚ (7.53)

= [vᎳ…vᑞ] ΛᎽᎳeᑚ (7.54)

= [vᎳ…vᑞ]
1
𝜆ᑚ
= 1
𝜆ᑚ
vᑚ. (7.55)

where eᑚ is a unit vector with 1 on position 𝑖. If vᑚ ∉ Col(Z), we know that ZᏁvᑚ = 0 because
of the orthogonality property. It follows that

QZ = [QvᎳ…Qvᑞ] = [ᎳᒐᎳvᎳ…
Ꮃ
ᒐᑞvᑞ] = ZΛᎽᎳ (7.56)

and
QZc = 0. (7.57)

(d) We know that
P = I− AQ. (7.58)

Thus,
PZ = (I− AQ)Z = Z− AQZ = Z− AZΛᎽᎳ = Z− Z = 0. (7.59)

Likewise,

PZc = (I− AQ)Zc = Zc − AQZc = Zc. (7.60)

The last equality follows from Theorem 7.3.1c.

(e) We know from Lemma 7.3.1d that

PᏁZ = 0 (7.61)

40 7. Theoretical Comparison between Two-Level Preconditioners

On the other hand,

PᏁZc = (I−QA)Zc = Zc −QAZc (7.62)
= Zc −QZcΛc (7.63)
= Zc (7.64)

The last equality follows from Theorem 7.3.1c.

Lemma 7.3.1 will be used to investigate the spectrum of 𝒫SROMA.

Lemma 7.3.6. Assume A ∈ ℝᑟ×ᑟ has eigenvalues 𝜎(𝜆Ꮃ, … , 𝜆ᑟ) with 𝜆ᑚ corresponding to eigen-
vector vᑚ and let M = I be the traditional preconditioner. If the deflation subspace matrix is
defined as Z = [vᎳ…vᑞ], then 𝒫SROMA has eigenvalues {1, … , 1, 𝜆ᑞᎼᎳ, … , 𝜆ᑟ} and the same
eigenvectors as A.

Proof. First, we prove Z are eigenvectors of 𝒫SROMA.

𝒫SROMAZ = [I+Q− 12(QA+ AQ)]AZ (7.65)

= AZ+QAZ− 12(QA+ AQ)AZ (7.66)

ᑃ.Ꮉ.Ꮅ.Ꮃᑔ= AZ+QAZ− 12(2I− P
Ꮑ − P)AZ (7.67)

= AZ+QAZ− AZ+ 12P
ᏁAZ+ 12PAZ (7.68)

ᑃ.Ꮉ.Ꮅ.Ꮃᑖ,ᑛ= Z+ 12P
ᏁAZ (7.69)

ᑋᑙᑞ.Ꮉ.Ꮅ.Ꮃᑒ= Z+ 12P
ᏁZΛ (7.70)

ᑋᑙᑞ.Ꮉ.Ꮅ.Ꮃᑕ= Z (7.71)

It follows that vᑚ ∈ Col(Z) are eigenvectors corresponding to eigenvalues 1. Continuing,

𝒫SROMAZc = [I+Q− 12(QA+ AQ)]AZ
c (7.72)

= AZc +QAZc − 12(QA+ AQ)AZ
c (7.73)

ᑃ.Ꮉ.Ꮅ.Ꮃᑔ= AZc +QAZc − 12(2I− P
Ꮑ − P)AZc (7.74)

ᑃ.Ꮉ.Ꮅ.Ꮃᑔ= AZc +QAZc − AZc + 12P
ᏁAZc + 12PAZ

c (7.75)

ᑃ.Ꮉ.Ꮅ.Ꮃᑒ= QZcΛc + 12P
ᏁZcΛc + 12PZ

cΛc (7.76)

ᑃ.Ꮉ.Ꮅ.Ꮃᑔ,ᑖ= 1
2Z

cΛc + 12Z
cΛc = ZcΛc (7.77)

= [𝜆ᑞᎼᎳvᑞᎼᎳ…𝜆ᑟvᑟ] . (7.78)

It follows that vᑚ ∈ Col(Zc) are eigenvectors corresponding to eigenvalue 𝜆ᑚ, where 𝑖 = 𝑚 +
1,…𝑛.

7.3. Comparison of the Spectrum 41

It follows from Lemma 7.3.6 that the SROM method could belong to the same class
as the ROM method, i.e. 𝜎(𝒫SROMA) = {1,… , 1, 𝜆ᑞᎼᎳ, … , 𝜆ᑟ}. We generalize Lemma 7.3.6
with using MᎽᎳ as a traditional preconditioner, i.e. M is SPD, to obtain Lemma 7.3.7.

Lemma 7.3.7. Assume MᎽᎳA ∈ ℝᑟ×ᑟ has eigenvalues 𝜎(𝜆Ꮃ, … , 𝜆ᑟ) with 𝜆ᑚ corresponding to
eigenvector vᑚ of the preconditioned matrix MᎽᎳA and take M as a traditional SPD precondi-
tioner. If the deflation-subspace matrix is defined as Z = [vᎳ…vᑞ], then

𝜎(𝒫SROMA) = {1,… , 1, 𝜆ᑞᎼᎳ, … , 𝜆ᑟ}. (7.79)

Proof. First, we assume that the spectrum of SROM applied to the original system A is defined
by

𝜎(𝒫SROMA) = {𝜇ᑚ, … , 𝜇ᑟ}, (7.80)

and the spectrum of DEF2 is defined by

𝜎(PᏁMᎽᎳA) = {𝜈Ꮃ, … , 𝜈ᑟ}, (7.81)

where the eigenvalues are ordered such that 𝜈ᑚ = 0 for 𝑖 = 1,… ,𝑚 and 𝜈ᑚ = 𝜆ᑚ for 𝑖 = 𝑚+1,… , 𝑛.
Using Lemma 7.3.1c and the definition of deflation method we obtain the following expression:

𝒫SROM =MᎽᎳ +Q− 12(QAM
ᎽᎳ +MᎽᎳAQ) = Q+ 12(P

ᏁMᎽᎳ +MᎽᎳP). (7.82)

Let vᑚ ∈ Col(𝑍), then

𝒫SROMAvᑚ = [Q+ 12(P
ᏁMᎽᎳ +MᎽᎳP)]Avᑚ (7.83)

= QAvᑚ +
1
2P

ᏁMᎽᎳAvᑚ +
1
2M

ᎽᎳPAvᑚ (7.84)

ᑃ.Ꮉ.Ꮅ.Ꮃᑖ,ᑛ= vᑚ +
1
2P

ᏁMᎽᎳAvᑚ (7.85)

= vᑚ +
1
2𝜆ᑚP

Ꮑvᑚ (7.86)

ᑃ.Ꮉ.Ꮅ.Ꮃᑕ= vᑚ (7.87)

Continuing, let vᑚ ∉ Col(𝑍) be an eigenvector corresponding to eigenvalue 𝜇ᑚ:

[Q+ 12(P
ᏁMᎽᎳ +MᎽᎳP)]Avᑚ = 𝜇ᑚvᑚ (7.88)

⇒ QAvᑚ +
1
2P

ᏁMᎽᎳAvᑚ +
1
2M

ᎽᎳPAvᑚ = 𝜇ᑚvᑚ (7.89)

PᏁ
⇒ PᏁQAvᑚ +

1
2(P

Ꮑ)ᎴMᎽᎳAvᑚ +
1
2P

ᏁMᎽᎳPAvᑚ = 𝜇ᑚPᏁvᑚ (7.90)

ᑃ.Ꮉ.Ꮅ.Ꮃᑒ,ᑓ,ᑕ
⇒ 1

2P
ᏁMᎽᎳAvᑚ +

1
2P

ᏁMᎽᎳAPᏁvᑚ = 𝜇ᑚPᏁvᑚ (7.91)

⇒ 1
2𝜆ᑚP

Ꮑvᑚ +
1
2P

ᏁMᎽᎳAPᏁvᑚ = 𝜇ᑚPᏁvᑚ (7.92)

wᑚ∶ᎾP
Ꮑvᑚ⇒ 1

2𝜆ᑚwᑚ +
1
2P

ᏁMᎽᎳAwᑚ = 𝜇ᑚwᑚ (7.93)

⇒ PᏁMᎽᎳAwᑚ = (2𝜇ᑚ − 𝜆ᑚ)wᑚ (7.94)

42 7. Theoretical Comparison between Two-Level Preconditioners

Recall that we have wᑚ ≠ 0 since vᑚ ∉ Col(Z). It follows that, an eigenvector of 𝒫SROMA is
an eigenvector of PᏁMᎽᎳA. The eigenvector vᑚ corresponds to eigenvalue 2𝜇ᑚ − 𝜆ᑚ = 𝜈ᑚ, thus
𝜇ᑚ = Ꮃ

Ꮄ(𝜈ᑚ + 𝜆ᑚ). Recall that the spectrum is ordered such that 𝜈ᑚ = 0 for 𝑖 = 1,… ,𝑚 and 𝜈ᑚ = 𝜆ᑚ.
Thus, the spectrum of 𝒫SROMA is given by

𝜎(𝒫SROMA) = {1,… , 1, 𝜆ᑞᎼᎳ, … , 𝜆ᑟ}. (7.95)

We suspect that the Two-Level preconditioner of SROM belongs in the same class as
A-DEF1, A-DEF2, ROM and BNN. This is certainly true for using eigenvectors of the
preconditioned system as deflation vectors. The theory will be tested with numerical
experiments in Section 9.2.5.

7.4. Concluding Remarks
In this chapter, we discussed theoretical aspects of the studied methods. For the com-
putational complexity, the cheapest methods per iteration are DEF1, DEF2, ROM and
R-BNN2, using 𝒪(4𝑚𝑛) flops per iteration. The most expensive method per iteration
is BNN using 𝒪(12𝑚𝑛) flops per iteration. The memory storage of each method are
similar. For the spectral analysis, the methods can be divided into two classes. One
class sets some eigenvalues to zero (DEF1, DEF2, R-BNN1 and R-BNN2), while the
other class sets the same eigenvalues to one (BNN, A-DEF1, A-DEF2 and ROM). The
relation between those two classes is summarized in Lemma 7.3.5. We have proven
that 𝑛−𝑚 eigenvalues the spectra of the two classes are the same. The spectral of the
Two-Level preconditioner of SROM applied to the system A belongs in the same class
as A-DEF1,A-DEF2,BNN,ROM under certain conditions.

8
Test cases

The mathematical model are presented in Chapter 3 and the numerical methods are
given in Chapter 4 and Chapter 6. In this section, we discusses different test cases to
investigate the methods using Two-Level Preconditioner. We will consider three test
cases:

1. Laplace Equation

2. Multilayer Problem

3. SPE10

The Laplace equation is an example of an incompressible model with constant rock
permeability. The Multilayer Problem is an example of an incompressible model with
different rock permeabilities. Both cases are one-phase flow problem. The SPE10 is
an example of a incompressible model of a two-phase problem. The domain of all test
cases are two-dimensional. The various methods will be applied to these Test cases.
Numerical experiments using these test cases will be given in Chapter 9

8.1. Test Case 1: Laplace Equation
The simple problem of simulating one-phase flow through porous media with a con-
stant rock permeability is the Laplace equation problem. The Laplace equation is a
well-known problem and will be explained below.

Problem Statement

(0,0) (0,1)

(1,0) (1,1)

Ω

Figure 8.1: Porous Media

43

44 8. Test cases

Consider the Laplace equation on the unit square Ω = [0, 1] × [0, 1] with homogeneous
boundary conditions and rock permeability K = 1. The problem is formulated as:

{ −Δp = q for x ∈ Ω
p = 0 for x ∈ 𝜕Ω , (8.1)

where p is the pressure and q is the source vector.

Discretization Scheme
Suppose that we divide each axis of Ω into 𝑛 equal subintervals with length ℎ = 1/𝑛.
The matrix A is constructed by eliminating the boundary conditions. It follows that
the size of A is (𝑛 − 1)Ꮄ × (𝑛 − 1)Ꮄ. For this problem, we use lexicographic ordering
(𝑖, 𝑗) ↦ 𝑖 + (𝑗 − 1)(𝑛 − 1) for 1 ≤ 𝑖, 𝑗 ≤ 𝑛 − 1 and define p(𝑥ᑚ, 𝑦ᑛ) = pᑚ,ᑛ. For the internal
nodes of the problem, we use the central difference approximation that is defined as:

𝜕Ꮄ𝑝
𝜕𝑥Ꮄ ≈

pᑚᎽᎳ,ᑛ − 2pᑚ,ᑛ + pᑚᎼᎳ,ᑛ
ℎᎴ + 𝒪(ℎᎴ). (8.2)

A Similar expression can be obtained for the 𝑦-direction. For a cell (𝑖, 𝑗) the discretiza-
tion of second order is given by:

−pᑚᎽᎳ,ᑛ − pᑚ,ᑛᎽᎳ + 4pᑚ,ᑛ − pᑚᎼᎳ,ᑛ − pᑚ,ᑛᎼᎳ
ℎᎴ = qᑚ,ᑛ. (8.3)

This can be summarized in a matrix A so that:

Ap = q, (8.4)

where the source vector q is a random vector for this problem.

Properties
The matrix A is SPD and sparse. Figure 8.2 illustrates the sparsity of A. Figure 8.2a
shows that A has size 100 × 100 and contains 460 nonzero elements. If the size is
increased to A ∈ ℝᎻᎲᎲ×ᎻᎲᎲ, the sparsity structure remains the same and it contains
4380 nonzero elements. This can be found in Figure 8.2b.

8.2. Test Case 2: Multilayer Problem
The structure of the porous media of the previous problem only consists of constant
rock permeability. In this section, the rock formulation of the porous media consists
of two types of layers with different rock permeability.

Problem Statement

Ω

Figure 8.3: Porous media with multiple layers and different permeability

Consider the incompressible model given in Equation (3.12) defined on the unit square
Ω = [0, 1]× [0, 1]. The boundary conditions are described with p=𝑝ᑓᑔᎳ bar at the bottom

8.3. Test Case 3: SPE10 Model 45

(a) ፀ is ኻኺኺ × ኻኺኺ (b) ፀ is ዃኺኺ × ዃኺኺ

Figure 8.2: Nonzero structure of A different sizes for ፧

part of the porous media, p=𝑝ᑓᑔᎴ bar at the top part of the porous media and no-flow
conditions elsewhere. The flow problem is formulated by:

⎧

⎨
⎩

−∇(K∇p) = q for x ∈ Ω
p(𝑥, 0) = 𝑝ᑓᑔᎳ for 0 ≤ 𝑥 ≤ 1
p(𝑥, 1) = 𝑝ᑓᑔᎴ for 0 ≤ 𝑥 ≤ 1
⃗⃗⃗v ⋅ 𝑛 = 0 Elsewhere

, (8.5)

where K is the rock permeability matrix, p is the pressure and q is the source vector.

Discretization Scheme
Suppose we divide each axis of Ω into 𝑛 equal subintervals with length ℎ = 1/𝑛. It
follows that the size of A is 𝑛Ꮄ × 𝑛Ꮄ. For this problem, we use lexicographic ordering
(𝑖, 𝑗) ↦ 𝑖 + (𝑗 −1)𝑛 for 1 ≤ 𝑖, 𝑗 ≤ 𝑛 and define p(𝑥ᑚ, 𝑦ᑛ) = pᑚ,ᑛ. For the internal nodes of the
problem, we use central difference approximation defined in test case 1. This can be
summarized in a matrix A such that:

Ap = q, (8.6)

with the source vector q. The properties of A are the same as those of the Laplace
Equation defined in Test Case 1, i.e. A is sparse and SPD. The difference lies in the
fact that the matrix A is ill-conditioned due to the high contrast in rock permeability
K. More details will be explained in Section 9.2.

8.3. Test Case 3: SPE10 Model
In this section, we perform a two-phase (oil and water) flow simulation for the SPE10
model. It consists of 5 wells, the injection well I is located in the middle of the domain
and the other wells are production wells P1-P4. The wells and permeability field is
presented in Figure 8.4.

46 8. Test cases

Figure 8.4: Rock permeability of the upper layer of the SPE10 model.

More information about the SPE10 model can be found as Model 1 in [14].

8.4. Termination Criterion
For all three test cases, the system that is solved is of the form

Ap = q. (8.7)

For the termination criterion of the numerical methods we specify the stopping crite-
rion and maximum number of iterations. The relative residual is defined as:

‖q− Apᑜ‖ Ꮄ
‖q‖Ꮄ

≤ 𝜖, (8.8)

where 𝜖 is the stopping criterion. The norm of the relative error is defined as:

Error =
‖p− pᑜ‖ Ꮄ
‖p‖ Ꮄ

(8.9)

to compare the numerical solution with the true solution.

For all methods, we terminate the iterative process if the relative residual has reached
the stopping criterion or if the maximum number of iterations has been reached.

9
Comparison between Two-Level
Preconditioners using Numerical

Experiments

In this Chapter, several numerical experiments will be performed for the test cases
defined in Section 8. The chosen initial vector p is a random vector for all test cases.
Recall that the system to solve is

Ap = q, (9.1)

where p is the pressure and q is the source vector. Two-Level preconditioners will be
applied to this system to show the differences between the methods and to validate
the theory presented in Section 7.

9.1. Test Case 1: Laplace Equation
For this Test Case, the system is defined as a matrix A ∈ ℝᎻᎲᎲ×ᎻᎲᎲ and the source vector
q ∈ ℝᎻᎲᎲ is a random vector. The approximated solution for Test Case 1 can be found
in Figure 9.1.

Figure 9.1: True solution of TC1: Laplace Equation

The exact solution is obtained using direct methods and will be denoted as the true
solution p, which will be used as reference for the solutions obtained by the different

47

48 9. Comparison between Two-Level Preconditioners using Numerical Experiments

numerical methods. The system Ap = q will be solved with the Two-Level PCGmethod.
For this method, two choices of deflation vectors will be used: subdomain vectors and
eigenvectors of the systemMᎽᎳA. The traditional preconditioner matrixM that is being
used is the incomplete Cholesky with zero fill-in.

9.1.1. Subdomain as Deflation Vectors

The used stopping criterion is 𝜖 = 10ᎽᎳᎴ and the maximum number of iterations is
200. The domain is divided into 4 subdomains. Each subdomain vector corresponds
with one subdomain. The results are presented in Figure 9.2 and the overview table
can be found in Table 9.1.

(a) Relative error versus number of iterations

(b) Relative Residuals versus number of iterations

Figure 9.2: Visualization of the results for Test Case 1 using 4 subdomain vectors.

9.1. Test Case 1: Laplace Equation 49

Table 9.1: Overview Table: Test Case 1 using 4 subdomain vectors as deflation vectors.

Method Error Residuals # Iterations Flops Time
Iteration s

CG 1.51e-13 8.03e-12 128 19𝑛 0.00980
PCG 3.06e-13 6.82e-12 47 30𝑛 0.00620
DCG 3.66e-13 9.51e-12 133 35𝑛 0.01117
DEF1 2.01e-13 3.75e-12 43 46𝑛 0.00598
DEF2 1.89e-13 3.47e-12 43 46𝑛 0.00726
A-DEF1 6.67e-13 4.66e-12 50 54𝑛 0.00723
A-DEF2 1.94e-13 3.47e-12 43 62𝑛 0.00600
BNN 2.01e-13 3.47e-12 43 78𝑛 0.00618
R-BNN1 1.95e-13 3.48e-12 43 62𝑛 0.00593
R-BNN2 1.91e-13 3.45e-12 43 46𝑛 0.00546
ROM 9.51e-13 9.82e-12 58 56𝑛 0.00805
SROM 1.83e-13 4.43e-12 43 64𝑛 0.00794

The number of iterations required to reach the stopping criterion is 128 for CG and
133 for DCG. Because of the high accuracy, 𝜖 = 10ᎽᎳᎴ, DCG needs more iterations
than CG. In general, as can be seen from both Figure 9.2 and Table 9.1, the number
of iterations used for the deflation methods does not differ much from the PCGmethod.
The number of iterations needed for when using the Two-Level preconditioners is at
least 43 iterations (DEF1, DEF2, A-DEF2, BNN, R-BNN1, R-BNN2 and SROM) and the
maximum number is 58 iterations (ROM). Furthermore, we increase the number of
subdomain to show that the number of subdomain vectors does not lead to a large
reduction in iterations. The result can be found in Table9.2.

Table 9.2: Representation of the difference in flop counts using different numbers of subdomain vectors (፦).

𝑚 = 4 𝑚 = 100
Method Flops #Iteration # Iteration

Initial Iteration
CG 12𝑛 19𝑛 128 128
PCG 28𝑛 30𝑛 47 47
DCG 184𝑛 35𝑛 133 88
DEF1 200𝑛 46𝑛 43 36
DEF2 200𝑛 46𝑛 43 36
A-DEF1 177𝑛 54𝑛 50 43
A-DEF2 217𝑛 62𝑛 43 36
BNN 201𝑛 78𝑛 43 36
R-BNN1 217𝑛 62𝑛 43 36
R-BNN2 201𝑛 46𝑛 43 36
ROM 151𝑛 56𝑛 58 48
SROM 175𝑛 64𝑛 43 37

As can be seen in Table 9.2 that using 100 subdomain vectors is that the flops per
iteration and initial flop will increase [25]. Therefore, adding more subdomain vectors
will reduce the number of iterations, but also increase the number of flops.

50 9. Comparison between Two-Level Preconditioners using Numerical Experiments

9.1.2. Eigenvectors as Deflation Vectors

We repeat the process of the previous section using eigenvectors of the preconditioned
matrix MᎽᎳA as deflation vectors. The eigenvectors are chosen such that they corre-
sponds to the smallest eigenvalues. The result can be found in Figure 9.3 and Table
9.3.

(a) Relative error versus number of iterations

(b) Relative Residuals versus number of iterations

Figure 9.3: Visualization of the results for Test Case 1 using 4 eigenvectors as deflation vectors.

9.1. Test Case 1: Laplace Equation 51

Table 9.3: Overview Table: Test Case 1 using 4 eigenvectors as deflation vectors.

Method Error Residuals # Iterations Flops Time
Iteration s

CG 1.51e-13 8.03e-12 128 19𝑛 0.00907
PCG 3.06e-13 6.82e-12 47 30𝑛 0.00586
DCG 7.35e-13 8.18e-12 110 35𝑛 0.00905
DEF1 3.56e-13 8.54e-12 36 46𝑛 0.00497
DEF2 3.56e-13 8.57e-12 36 46𝑛 0.00446
A-DEF1 3.61e-13 8.53e-12 36 54𝑛 0.00570
A-DEF2 3.59e-13 8.56e-12 36 62𝑛 0.00477
BNN 3.59e-13 8.52e-12 36 78𝑛 0.00523
R-BNN1 3.56e-13 8.55e-12 36 62𝑛 0.00509
R-BNN2 3.56e-13 8.57e-12 36 46𝑛 0.00454
ROM 3.57e-13 8.52e-12 36 56𝑛 0.00687
SROM 3.59e-13 8.54e-12 36 64𝑛 0.00702

The advantage of using eigenvectors compared to using subdomain vectors is that the
costs per iterations stays the same, but the number of iterations is lower for eigen-
vectors. The computation times are similar, because the problem is not large. We
increase the number of eigenvectors to 100 and the result can be found in Table 9.4.

Table 9.4: Representation of the difference of flop counts using different number of eigenvectors

𝑚 = 4 𝑚 = 100
Method Flops # Iteration Flops # Iteration

Initial Iteration Initial Iteration
CG 12𝑛 19𝑛 128 12𝑛 19𝑛 128
PCG 28𝑛 30𝑛 47 28𝑛 30𝑛 47
DCG 184𝑛 35𝑛 110 61912𝑛 419𝑛 42
DEF1 200𝑛 46𝑛 36 61928𝑛 430𝑛 14
DEF2 200𝑛 46𝑛 36 61928𝑛 430𝑛 14
A-DEF1 177𝑛 54𝑛 36 61329𝑛 630𝑛 14
A-DEF2 217𝑛 62𝑛 36 62329𝑛 830𝑛 14
BNN 201𝑛 78𝑛 36 61929𝑛 1230𝑛 14
R-BNN1 217𝑛 62𝑛 36 62329𝑛 830𝑛 14
R-BNN2 201𝑛 46𝑛 36 61929𝑛 430𝑛 14
ROM 151𝑛 56𝑛 36 41239𝑛 440𝑛 14
SROM 175𝑛 64𝑛 36 22831𝑛 832𝑛 14

We note that in Table 9.4, that using 100 eigenvectors of the preconditioned matrix
MᎽᎳA, is that the flops per iteration and initial flop costs are much higher. For ex-
ample, BNN needs almost 16 times more flops per iteration and 310 times more flops
to construct the initial matrices, while the number of iterations saved is 10. There is
a noticeable difference for the DCG method. Still, the number of iterations is almost
two times the number of the PCG method. Therefore, adding more eigenvectors as
deflation vectors will reduce the number of iterations, but also increase the the flop
costs.

52 9. Comparison between Two-Level Preconditioners using Numerical Experiments

Remark
In Test Case 1, we used subdomain vectors and eigenvectors of the preconditioned
system MᎽᎳA as deflation vectors. If we only compare the Two-Level preconditioners.
The maximum number of iterations needed to achieve convergence using subdomain
vectors is 58 for the ROM method. The minimum number of iterations needed is 43
for DEF1, A-DEF2, BNN, R-BNN1, R-BNN2, and SROM. If eigenvectors are used, the
maximum number of iterations is 36 for all methods. The eigenvectors are the best
choice as deflation vectors for Test Case 1, assuming the eigenvectors of the precon-
ditioned system MᎽᎳA are already obtained. All methods needs the same number of
iterations, the preferred method would be the one who needs the least number of flops.
It follows that DEF1, DEF2, R-BNN2 and ROM would fit this criterion needing at most
56n flops for 4 deflation vectors and 440n flops for 100 deflation vectors per iteration.

For Test Case 2 and Test Case 3, we neglect the CG method and the DCG method
in the numerical experiments. Only the PCG method is used as guideline while com-
paring the deflation techniques.

9.2. Test Case 2: Layered Problem
Test Case 2 is defined as a layered problem consisting of 4 layers with 2 different
permeability values, where the order of the constract between them is 𝒪(10Ꮈ). The
rock permeability field can be found in Figure 9.4a.

(a) Porous Media with 2 different layers (b) Solution of the pressure

Figure 9.4: Test Case 2: Layered problem

The model of Test case 2 is modelled using the software package MATLAB Reservoir
Simulation Toolbox (MRST) found in [13]. The mesh of the problem is chosen where the
x-axis and y-axis is equally divided in 40 . Therefore, the size of A is 1600 × 1600. The
two different layers have permeabilities of 0.510ᎽᎵ Darcy and 100 Darcy respectively.
The condition number of A is 𝜅(A) ≈ 𝒪(10Ꮊ). The boundary conditions are pressures
on the boundary given as 𝑝ᑓᑔᎳ = 100 bars and 𝑝ᑓᑔᎴ = 50 bars. The approximated
solution of the pressure field can be found in Figure 9.4b.

9.2.1. Subdomain vectors as deflation vectors
The porous media contains 4 layers and it is a natural choice to use 4 subdomain
vectors. The result can be found in Figure 9.5 and Table 9.5.

9.2. Test Case 2: Layered Problem 53

(a) Relative error versus number of iterations

(b) Relative residuals versus number of iterations

Figure 9.5: Visualization of the results for Test Case 2 using 4 subdomain vectors as deflation vectors.

Table 9.5: Overview Table: Test case 2 using 4 subdomain vectors as deflation vectors.

Method Error Residuals # Iterations Flops Time
Iteration s

PCG 1.94e-09 5.84e-12 64 30𝑛 0.01175
DEF1 8.12e-09 9.17e-12 24 46𝑛 0.00462
DEF2 8.12e-09 9.17e-12 24 46𝑛 0.00421
A-DEF1 8.13e-09 9.59e-12 24 54𝑛 0.00505
A-DEF2 8.10e-09 9.17e-12 24 62𝑛 0.00447
BNN 8.06e-09 9.32e-12 24 78𝑛 0.00536
R-BNN1 8.11e-09 9.17e-12 24 62𝑛 0.00486
R-BNN2 8.12e-09 9.17e-12 24 46𝑛 0.00456
ROM 1.58e-06 1.10e-06 NC 56𝑛 0.02070
SROM 2.84e-09 8.66e-12 41 64𝑛 0.00862

9.2.2. Complexity
To test the dependence of the computation time on the size of the matrix, we enlarge
the size by a factor of 4. In the previous case, the domain contains 4 distinct layers.

54 9. Comparison between Two-Level Preconditioners using Numerical Experiments

The choice for the deflation vectors using 4 subdomain vectors remains. The results
are given in Table 9.6.

Table 9.6: Overview of the amount of flops and the needed computational time using 4 subdomain vectors. The size
of the matrices are A ∈ ℝᎳᎸᎲᎲ×ᎳᎸᎲᎲ and A ∈ ℝᎸᎶᎲᎲ×ᎸᎶᎲᎲ

Methods 𝑛 Flops Iterations Time (s)
Initial Iteration Initial Iteration Total

PCG 1600 28𝑛 30𝑛 64 0.00013 0.00016 0.01045
6400 NC 0.00141 0.00077 0.07860

DEF1 1600 200𝑛 46𝑛 24 0.00040 0.00017 0.00445
6400 32 0.00335 0.00074 0.02693

DEF2 1600 200𝑛 46𝑛 24 0.00074 0.00015 0.00441
6400 32 0.00234 0.00070 0.02473

A-DEF1 1600 177𝑛 54𝑛 24 0.00123 0.00015 0.00480
6400 32 0.00592 0.00069 0.02784

A-DEF2 1600 217𝑛 62𝑛 24 0.00047 0.00017 0.00448
6400 32 0.00298 0.00074 0.02653

BNN 1600 201𝑛 78𝑛 24 0.00045 0.00018 0.00465
6400 32 0.00541 0.00083 0.03205

R-BNN1 1600 217𝑛 62𝑛 24 0.00039 0.00017 0.00444
6400 32 0.00217 0.00075 0.02608

R-BNN2 1600 201𝑛 46𝑛 24 0.00037 0.00016 0.00426
6400 32 0.00109 0.00062 0.02085

ROM 1600 151𝑛 56𝑛 NC 0.00122 0.00016 0.01754
6400 NC 0.00582 0.00084 0.08962

SROM 1600 175𝑛 64𝑛 41 0.00130 0.00016 0.00789
6400 75 0.00623 0.00076 0.06317

The studied matrix is enlarged by 4 and the number of iterations has increased by
a factor of 1.5-2 for al methods that has reach convergence. For most methods, the
amount of time is increased by a factor of 6. We observe two exceptions; The ROM
method and the SROM method. The ROM method did not converge in both cases
therefore the time only increased by 4. For the SROMmethod, the number of iterations
has increased by a factor of 2. It follows that the time is increased by a factor of 8.

9.2.3. Special Starting Vector
The chosen initial condition for Test Case 2 is a random vector. For some methods,
the starting vector is the same as the initial condition or has been changed into the
special starting vector using the formula

pᎲ = Qq+ PᏁp, (9.2)

where p is the initial vector. This special starting vector will ensure convergence for
all methods. In practice, the test cases are time dependent and the previous time-step
is used as initial condition, see Section 9.3.4. If we use a random vector as initial
condition, it could happen that some methods performs worse than PCG. To illustrate
the difference, we use Test Case 2 with 4 subdomain vectors as deflation vectors.
This will be applied to the ROM method and the SROM method. The differences are
illustrated in Figure 9.6. We will denote the method with SV if the method uses the
special starting vector.

9.2. Test Case 2: Layered Problem 55

(a) Relative Residuals of the ROM method

(b) Relative Residuals of the SROM method

Figure 9.6: The differences using different starting vectors applied to the ROM method and the SROM method

Table 9.7: Comparison of the ROM and SROM method using different starting vectors.

Method Error Residuals Flops # Iterations
Initial Iteration

ROM 1.58e-06 1.10e-06 151𝑛 56𝑛 NC
ROM SV 8.12e-09 9.17e-12 211𝑛 56𝑛 24
SROM 2.84e-09 8.66e-12 175𝑛 64𝑛 41
SROM SV 7.45e-09 9.05e-12 299𝑛 64𝑛 24

The error, residual, flops and number of iterations are presented in Table 9.7. There
is a noticeable difference between using a special starting for both the ROM method
and the SROM method. If the special starting vector is used, the number of iterations
decreases and with a small increases of the initial flops. We observe that using the
special starting vectors guarantees convergence of the ROM method.

Comparison of the A-DEF2 method and the ROM method
In Section 7.3.1, we proved that the Two-Level preconditioner of A-DEF2 and ROM
are the same in Lemma 7.3.2. In this experiments, we compare the A-DEF2 method
with the ROM method using 4 subdomain vectors as deflation vectors. The A-DEF2

56 9. Comparison between Two-Level Preconditioners using Numerical Experiments

method always uses the special starting vector. We only change the starting vector
of the ROM method and compare that with the A-DEF2. The result for ROM using
different starting vector is given in Figure 9.7a and using special starting vector is
given in Figure 9.7b.

(a) ROM uses initial condition as starting vector.

(b) ROM uses special starting vector.

Figure 9.7: Relative error versus number of iterations. Comparison of A-DEF2 and ROM.

Table 9.8: Comparison of A-DEF2 and ROM method using different starting vector

Without special starting vector
Method Error Residuals Flops # Iterations

Initial Iteration
A-DEF2 8.10e-09 9.17e-12 217𝑛 62𝑛 24
ROM 1.58e-06 1.10e-06 151𝑛 56𝑛 NC

Using special starting vector
Method Error Residuals Flops # Iterations

Initial Iteration
A-DEF2 8.10e-09 9.17e-12 217𝑛 62𝑛 24
ROM 8.10e-09 9.17e-12 211𝑛 56𝑛 24

9.2. Test Case 2: Layered Problem 57

First, convergence is achieved for ROM when using the special starting vector. It can
be seen from Table 9.8 that the result for A-DEF2 and ROM are the same. This verifies
what we have proven in Section 7.3.1.

9.2.4. Eigenvectors as Deflation Vectors

As a second choice for the deflation vectors are eigenvectors of the preconditioned
matrix MᎽᎳA. We study a problem of size A ∈ ℝᎳᎸᎲᎲ×ᎳᎸᎲᎲ. For this experiment we
use 4 eigenvectors will be used as deflation vectors. The termination conditions are:
𝜖 = 10ᎽᎳᎳ and the maximum number of iterations is 100. The results are presented in
Figure 9.8 and Table 9.9.

(a) Relative error versus number of iterations

(b) Relative Residuals versus number of iterations

Figure 9.8: Visualization of the results for Test Case 2 using 4 eigenvectors as deflation vectors.

58 9. Comparison between Two-Level Preconditioners using Numerical Experiments

Table 9.9: Overview Table: Test Case 2 using 4 eigenvectors as deflation vectors.

Method Error Residuals # Iterations Flops Time
Iteration s

PCG 1.94e-09 5.84e-12 64 30𝑛 0.01305
DEF1 2.00e-09 5.44e-12 33 46𝑛 0.01251
DEF2 2.00e-09 5.44e-12 33 46𝑛 0.01138
A-DEF1 2.06e-09 5.47e-12 33 54𝑛 0.00970
A-DEF2 2.07e-09 5.44e-12 33 62𝑛 0.00930
BNN 2.02e-09 5.47e-12 33 78𝑛 0.00956
R-BNN1 2.00e-09 5.44e-12 33 62𝑛 0.00957
R-BNN2 2.00e-09 5.44e-12 33 46𝑛 0.00598
ROM 2.07e-09 5.47e-12 33 56𝑛 0.00937
SROM 2.04e-09 5.47e-12 33 64𝑛 0.01007

We observe that the number of iterations are the same for all methods. Using eigen-
vectors needed 33 iterations while using subdomain vectors needed 24 vectors for all
method except ROM and SROM. This could happen due to the huge contrast between
the eigenvalues.

Different number of eigenvectors
For this experiments, we increase the size of the matrix to A ∈ ℝᎸᎶᎲᎲ×ᎸᎶᎲᎲ and obtain the
eigenvectors of the preconditioned matrix MᎽᎳA. We vary the number of eigenvectors
from 5 to 250. The termination condition remains the same: the stopping criterion is
𝜖 = 10ᎽᎳᎴ and the maximum number of iterations is 100. The result can be found in
Figure 9.9.

(a) Number of eigenvectors ofMᎽᎳA versus Num-
ber of iterations

(b) Number of eigenvectors of MᎽᎳA versus time
(s)

Figure 9.9: Visualization of the results for Test Case 2 using different numbers of eigenvectors.

It follows from Figure 9.9a that if the number of eigenvectors are increased, the number
of iterations decreases. However, increasing eigenvectors also increase the computa-
tion time and initial flops. The method that needs the most time is the BNN method
and the one that needs the less is the DEF1 method. This can be found in Figure 9.9b
and this result is expected from the within computational complexity in Chapter 7.

9.2. Test Case 2: Layered Problem 59

9.2.5. Spectra Analysis
In this section, we verify the Lemma’s defined in Section 7. The parameters for this nu-
merical experiments are: the size of the problem A ∈ ℝᎶᎲᎲ×ᎶᎲᎲ, as traditional precondi-
tionerM we choose the incomplete Cholesky with zero fill-in and we use 20 subdomain
vectors as deflation vectors. The spectrum can be found in Figure 9.10.

(a) The spectrum of DEF1, DEF2, R-BNN1, R-
BNN2.

(b) The spectrum of Class A-DEF1, A-DEF2,
BNN, ROM.

Figure 9.10: Visualization of the spectrum of different methods using 20 subdomain vectors as deflation vectors.

This validates Lemma 7.3.3 and Lemma 7.3.4. The methods can be sorted into two
classes. The methods in one class sets the eigenvalues equal to zero and the methods
of the other class sets the eigenvalues equal to 1. To investigate the spectrum, it is
enough to choose a representative, DEF1 for the class that sets the eigenvalue equal
to zero and A-DEF1 for the class that sets the eigenvalue equal to 1, and compare
them. This result can be found in Figure 9.11.

(a) Comparison using 20 subdomain vectors as
deflation vectors.

(b) Comparison using 20 eigenvectors of precon-
ditioned systemMᎽᎳA as deflation vectors.

Figure 9.11: Visualization of the comparison between the two different classes using 20 eigenvectors of the precon-
ditioned systemMᎽᎳA and subdomain vectors as deflation vectors.

We observe that some eigenvalues are set to 0 for one class and the eigenvalues are
set to 1 for the other class. This validates Lemma 7.3.5.

60 9. Comparison between Two-Level Preconditioners using Numerical Experiments

Spectra Analysis of the SROM method
We suspect that the SROM method applied to the matrix A has the same spectrum as
BNN, A-DEF1, A-DEF2 and ROM.We will verify this with two different types of deflation
vectors: eigenvectors of the preconditioned systemMᎽᎳA and subdomain vectors. The
number of deflation vectors for this experiment is equal to 50. The size of the matrix
A ∈ ℝᎶᎲᎲ×ᎶᎲᎲ remains the same. First, we use M = I as traditional preconditioner. The
result can be found in Figure 9.12

(a) Comparison using 50 subdomain vectors as
deflation vectors.

(b) Comparison using 50 eigenvectors of precon-
ditioned system A as deflation vectors.

Figure 9.12: Visualization of the spectrum of SROM applied to matrix A compared to A-DEF1 applied to the matrix
A. We use 50 eigenvectors of preconditioned system A and subdomain vectors as deflation vectors.

We repeat this using M to be incomplete Cholesky with zero fill-in as traditional pre-
conditioner.

(a) Comparison using 50 subdomain vectors as
deflation vectors.

(b) Comparison using 50 eigenvectors of pre-
conditioned systemMᎽᎳA as deflation vectors.

Figure 9.13: Visualization of the spectrum of SROM applied to matrix A compared to A-DEF1 applied to the matrix
A. We use 50 eigenvectors of preconditioned systemMᎽᎳA and subdomain vectors as deflation vectors.

If we use M = I, it can be seen from Figure 9.12 that the result is what we would
expect from theory. If we use M to be the incomplete Cholesky with zero fill-in. We
observe from Figure 9.13a that using subdomain vectors, it does not align fully with
the spectrum of A-DEF1. If eigenvectors of the preconditioned matrix is used, we

9.3. Test Case 3: SPE10 61

observe from Figure 9.13b that the result is as expected from theory.

Remark
For Test Case 2, it is logical to use 4 subdomain vectors because the porous media
domain consists of 4 layers. The result showed that by using deflation methods de-
creases the number of iterations. The computation complexity increases linear with
the size of the matrix. We have investigated the starting vector by using the initial
vector and special starting vector. We have observed that the use of special start-
ing vector improves the methods ROM and SROM. Therefore, we only use the special
starting vector as starting vector. The advantages of using the special starting vector
is that it ensure convergences for all methods. If the special starting vector is used,
then the operators of A-DEF2 and ROM are the same.

For Test Case 2, eigenvectors of the preconditioned matrix MᎽᎳA are used as defla-
tion vectors. For all the methods, they need less iterations than using subdomain
vectors. If the number of eigenvectors is increased, the computation time increases
and the number of iterations hardly decreases. We compared the spectra of different
methods applied to the matrix A to validate the theory. We observe that the theory
and numerical experiments align.

9.3. Test Case 3: SPE10
In this section, we perform a two-phase flow simulation for the upper layer of SPE10
model, injecting water into the reservoir using an injection well I located the centre of
the domain and producing oil through four production wells P1-P4, see Figure 9.14a.
The permeability field of the full model is presented in Figure 9.14a and solution of
the pressure in Figure 9.14b.

(a) Rock permeability of
the upper layer.

(b) The pressure field of
the upper layer.

Figure 9.14: Visualization of the results for Test Case 3 using 5 eigenvectors as deflation vectors.

We study the upper layer of the domain with 60 × 220 cells. It follows that the matrix

62 9. Comparison between Two-Level Preconditioners using Numerical Experiments

of the SPE10 model is large, A ∈ ℝᎳᎵᎴᎲᎲ×ᎳᎵᎴᎲᎲ. The condition number of the original
matrix is 𝜅(A) ≈ 10Ꮊ. The termination criteria of this Test Case is chosen as follows:
The stopping criterion is 𝜖 = 10ᎽᎹ and the maximum number of iterations is 1500.
We use eigenvectors of the preconditioned matrix MᎽᎳA and POD basis vectors as
deflation vectors. For all methods, the initial vector is a random vector and we use
special starting vector as starting vector defined in Section 9.2.3 for ROM and SROM.

9.3. Test Case 3: SPE10 63

9.3.1. Eigenvectors as Deflation Vectors

It is known from Section 7 that the chosen eigenvectors set the corresponding eigen-
value equal to zero or one. The eigenvalues of the preconditioned matrix MᎽᎳA can be
found in Figure 9.15.

Figure 9.15: Eigenvalues of the preconditioned systemMᎽᎳA

It follows from Figure 9.15 that the extreme eigenvalues are the smallest eigenvalues.
Therefore we use the eigenvectors corresponding to the smallest eigenvalues as defla-
tion vectors. First we use 5 eigenvectors of the preconditioned matrix MᎽᎳA and later
we increase the number to 10. The result can be found in Figure 9.16.

64 9. Comparison between Two-Level Preconditioners using Numerical Experiments

(a) Relative error versus number of iterations

(b) Relative Residuals versus number of iterations

Figure 9.16: Visualization of the results for Test Case 3 using 5 eigenvectors as deflation vectors.

Table 9.10: Overview Table: Test Case 3 using 5 eigenvectors as deflation vectors.

Method Error Residuals # Iterations Flops Time
Iteration s

PCG 5.02e-08 7.68e-08 252 30𝑛 0.31223
DEF1 5.16e-08 8.30e-08 114 50𝑛 0.13650
DEF2 5.16e-08 8.30e-08 114 50𝑛 0.12845
A-DEF1 5.19e-08 8.29e-08 114 60𝑛 0.25791
A-DEF2 5.16e-08 8.30e-08 114 70𝑛 0.13348
BNN 5.19e-08 8.29e-08 114 90𝑛 0.15014
R-BNN1 5.16e-08 8.30e-08 114 70𝑛 0.13692
R-BNN2 5.16e-08 8.30e-08 114 50𝑛 0.13075
ROM 5.16e-08 8.30e-08 114 60𝑛 0.25014
SROM 5.16e-08 8.30e-08 114 72𝑛 0.26389

The PCG method needs 252 iterations to reach the stopping criterion. We observe
using eigenvectors of the preconditioner systemMᎽᎳA as deflation vectors, the number
of iterations decreases. For all methods, 114 iterations are needed, which is half of
the iterations needed compare to the PCG method. For some methods, around half
of the computational time is needed compared to PCG, the methods are DEF1, DEF2,
A-DEF2, BNN, R-BNN1 and R-BNN2. If we increase the number of eigenvectors to 10

9.3. Test Case 3: SPE10 65

and 20, less iterations are needed. The result can be found in Table 9.10.

Table 9.11: Representation of the difference of flop counts using different number of eigenvectors

Method 𝑚 Flops # Iterations Time
Initial Iterations Initial Iteration Total

PCG 28𝑛 30𝑛 252 0.00083 0.00124 0.31223
DEF1 5 273𝑛 50𝑛 114 0.00207 0.00118 0.13650

10 818𝑛 70𝑛 76 0.00591 0.00136 0.10947
20 2808𝑛 110𝑛 51 0.01062 0.00170 0.09747

DEF2 5 273𝑛 50𝑛 114 0.00218 0.00111 0.12845
10 818𝑛 70𝑛 76 0.00650 0.00126 0.10239
20 2808𝑛 110𝑛 51 0.01144 0.00141 0.08327

A-DEF1 5 244𝑛 60𝑛 114 0.12520 0.00116 0.25791
10 759𝑛 90𝑛 76 0.13241 0.00139 0.23790
20 2689𝑛 150𝑛 51 0.13303 0.00160 0.21467

A-DEF2 5 294𝑛 70𝑛 114 0.00218 0.00115 0.13348
10 859𝑛 110𝑛 76 0.00549 0.00126 0.10123
20 2889𝑛 190𝑛 51 0.01115 0.00277 0.15221

BNN 5 274𝑛 90𝑛 114 0.00214 0.00130 0.15014
10 819𝑛 150𝑛 76 0.00575 0.00142 0.11392
20 2809𝑛 270𝑛 51 0.00994 0.00186 0.10469

R-BNN1 5 294𝑛 70𝑛 114 0.00220 0.00118 0.13692
10 859𝑛 110𝑛 76 0.00699 0.00135 0.10954
20 2889𝑛 190𝑛 51 0.01039 0.00158 0.09098

R-BNN2 5 274𝑛 50𝑛 114 0.00209 0.00113 0.13075
10 819𝑛 70𝑛 76 0.00595 0.00121 0.09797
20 2809𝑛 110𝑛 51 0.01018 0.00140 0.08140

ROM 5 284𝑛 60𝑛 114 0.11541 0.00119 0.25014
10 829𝑛 80𝑛 76 0.12029 0.00118 0.20792
20 2819𝑛 120𝑛 51 0.12005 0.00140 0.18734

SROM 5 414𝑛 72𝑛 114 0.11956 0.00129 0.26389
10 1289𝑛 112𝑛 76 0.12058 0.00134 0.21872
20 4539𝑛 192𝑛 51 0.12570 0.00164 0.20243

If the number of eigenvectors is increased, the computational complexity increases and
the number of iterations decreases. The difference using 5 or 10 eigenvectors is more
noticeable. The number of iterations dropped almost a third compared to a quarter
from increasing 10 to 20 eigenvectors. In the end, the time to reach convergence
decreases for all methods.

66 9. Comparison between Two-Level Preconditioners using Numerical Experiments

9.3.2. POD Basis vectors as Deflation Vectors

In this experiment, we use POD basis vectors as deflation vectors. The POD basis vec-
tors are obtained as follows: The pressure at the injection well is maintained constant
at 𝐼 = 1100 bars. The pressure of the production wells P1-P4 is varied between 137.5 -
275 bars for every 2 time steps. The initial pressure is set to 𝑃Ꮂ = 500 bars. Then, we
run a simulation of 600 time steps, with every time step of 100 days, until the water
reaches the production wells. See [5, 30, 35]. The solutions of this simulation are
use to construct the POD basis vectors. We choose 5 and 10 POD basis vectors as
deflation vectors in this experiment.

(a) Relative error versus number of iterations

(b) Relative Residuals versus number of iterations

Figure 9.17: Visualization of the results for Test Case 3 using 5 POD basis vectors.

9.3. Test Case 3: SPE10 67

Table 9.12: Overview Table: Test Case 3 using 5 POD basis vectors as deflation vectors.

Method Error Residuals # Iterations Flops Time
Iteration s

PCG 5.02e-08 7.68e-08 252 30𝑛 0.30960
DEF1 1.15e-07 9.80e-08 117 50𝑛 0.14375
DEF2 1.15e-07 9.80e-08 117 50𝑛 0.15931
A-DEF1 9.14e-08 8.07e-08 121 60𝑛 0.24939
A-DEF2 1.15e-07 9.80e-08 117 70𝑛 0.14747
BNN 1.15e-07 9.75e-08 117 90𝑛 0.15156
R-BNN1 1.15e-07 9.80e-08 117 70𝑛 0.14885
R-BNN2 1.15e-07 9.80e-08 117 50𝑛 0.12603
ROM 1.15e-07 9.80e-08 117 60𝑛 0.24190
SROM 7.93e-08 7.74e-08 118 72𝑛 0.25865

The number of POD vectors will be increased to 10.

Table 9.13: Representation of the difference in flop counts using different numbers of POD basis vectors.

Method 𝑚 Flops # Iterations Time
Initial Iterations Initial Iteration Total

PCG 28𝑛 30𝑛 252 0.00084 0.00123 0.30960
DEF1 5 273𝑛 50𝑛 117 0.00393 0.00120 0.14375

10 818𝑛 70𝑛 101 0.00592 0.00126 0.13274
DEF2 5 273𝑛 50𝑛 117 0.00217 0.00134 0.15931

10 818𝑛 70𝑛 101 0.00585 0.00120 0.12725
A-DEF1 5 244𝑛 60𝑛 121 0.11380 0.00112 0.24939

10 759𝑛 90𝑛 104 0.11544 0.00122 0.24258
A-DEF2 5 294𝑛 70𝑛 117 0.00243 0.00124 0.14747

10 859𝑛 110𝑛 101 0.00568 0.00139 0.14573
BNN 5 274𝑛 90𝑛 117 0.00309 0.00127 0.15156

10 819𝑛 150𝑛 101 0.00874 0.00140 0.15021
R-BNN1 5 294𝑛 70𝑛 117 0.00251 0.00125 0.14885

10 859𝑛 110𝑛 101 0.00590 0.00127 0.13412
R-BNN2 5 274𝑛 50𝑛 117 0.00212 0.00106 0.12603

10 819𝑛 70𝑛 101 0.00551 0.00114 0.12092
ROM 5 284𝑛 60𝑛 117 0.11176 0.00112 0.24190

10 829𝑛 80𝑛 101 0.11652 0.00121 0.23637
SROM 5 414𝑛 72𝑛 118 0.11538 0.00122 0.25865

10 1289𝑛 112𝑛 102 0.11756 0.00138 0.25458

As can be seen from Figure 9.13, if the number of POD basis vectors is increased,
the number of flops increases for the initialization and iteration. The computation
time increases linear with the number of basis vectors. Note that fewer iterations are
needed for each method. For the deflation methods (DEF1, DEF2, A-DEF1, A-DEF2),
20 iterations or less are needed before it reaches convergence and hence, the time
remains fairly constant. We observe that the number of flops needed for the initializa-
tion doubles or triples, which matches with the fact that the times also increased with
the similar constant. This also holds for the BNN methods (BNN, R-BNN1, R-BNN2).
For ROM, the number of iterations is reduced a half and the time needed to reach

68 9. Comparison between Two-Level Preconditioners using Numerical Experiments

convergence also reduces a half.

9.3.3. Difference using Eigenvectors of the Preconditioned Matrix or POD basis
vectors as Deflation Vectors

The noticeable difference after one iteration step is the order of the residuals. The
order of the residual using eigenvectors of the preconditioned system MᎽᎳA is 10ᎽᎳ
while using POD basis vectors the order of the residual is 10ᎽᎴ. We illustrate the
difference using the A-DEF2 method and 5 deflation vector each. The result can be
found in Figure 9.18 and Table 9.14.

(a) Relative error versus number of iterations (b) Relative Residuals versus number of iterations

Figure 9.18: Visualization of the results for Test Case 3 using 5 eigenvectors and 5 POD vectors applied to A-DEF2
method.

Table 9.14: Test Case 3: The difference using 5 eigenvectors and 5 POD vectors applied to A-DEF2 method.

Deflation 𝑚 Error Residuals # Iterations Flops Time
vector Iteration s
Eigenvectors 5 5.16e-08 8.30e-08 114 70𝑛 0.14465
POD basis vectors 5 1.15e-07 9.80e-08 117 70𝑛 0.14961

We have proved that using eigenvectors of the preconditioned matrix would be the best
choice since we can manipulate the extreme eigenvalues to zero. The advantages of
using POD basis vectors is the start solution in the beginning. The order of the residual
starts at 𝒪(10ᎽᎴ), while using eigenvectors, it starts at 𝒪(10ᎽᎳ). It is due to the fact that
POD basis vectors already contain information of the previous time-steps. Since using
eigenvectors removes extreme eigenvalues in the methods, the convergence is steeper
than using POD basis vectors. Note that 10ᎽᎺ is a high accuracy. If the accuracy is
lowered, using POD basis vectors will need less iterations than using eigenvectors.

9.3.4. Initial Vector
The initial vector used in the previous numerical experiments are random vectors. In
practise, it is more realistic to reuse the solution of the previous time-step as initial
vector. In this numerical experiment we use 5 POD basis vectors as deflation vectors
and the same termination conditions. The result can be found in Figure 9.19.

9.3. Test Case 3: SPE10 69

(a) The initial vector is the previous time-step and the starting vector is the same as the initial vector.

(b) The initial vector is the previous time-step and the starting vector is the special starting vector.

(c) The initial vector is a random vector and the starting vector is the special starting vector.

Figure 9.19: Visualization of the relative residual for Test Case 3 using a random vector and previous time-step as
initial vector.

There are a few advantages using the previous time-step compared using a random
vector. The first observation is that the number of iterations is half of the number
needed for the random vector. The other observation is that the order of the residual
starts at 𝒪(10ᎽᎷ) instead of 𝒪(10ᎽᎴ). Finally, there is hardly any difference between

70 9. Comparison between Two-Level Preconditioners using Numerical Experiments

using a special starting vector or initial vector as starting vector. The number of iter-
ations stays below 60.

Remark
For Test Case 3, we use eigenvectors of the preconditioned system MᎽᎳA and POD
basis vectors as deflation vectors. Comparing these two types of deflation vectors,
eigenvectors are a better option because less iterations are needed and the residuals
reach the stopping criterion faster. The advantages of using POD basis vectors is
a smaller residual obtained after one iteration and they are relative cheap to obtain
compared to eigenvectors. For both cases, increasing the number of deflation vectors
will decrease the number of iterations, but the computation time remains the same.
We have compared the performance of the methods using the previous time-step as
initial condition compared to using a random vector. The residual has an order of
𝒪(10ᎽᎷ) for using the previous time-step as initial vector. The accuracy is higher than
only using the special starting vector. The difference in magnitude is of order 𝒪(10Ꮅ).
This results hold for all studied methods and need less iterations to converge.

9.4. Concluding Remarks
In this section, we have tried several choices for deflation vectors. It can be concluded
that the number of iterations of using the eigenvectors of the preconditioned system
MᎽᎳA is lower compared to using subdomain or POD basis vectors. In general, increas-
ing the number of deflation vectors, decreases the number of iterations and increases
the computation time.

From the studied methods, we observe that the BNN method needs the most num-
ber of flops per iteration and computation time. The method who needs the least
number of flops and computation time is the DEF1 method. The other methods are
DEF2, A-DEF1, R-BNN2 and ROM, they need around the same number of flops per
iteration.

There are several ways to improve the methods. In this chapter we observe that using
the right deflation vector can make a difference. In Test Case 2, using special starting
vector instead of initial vector improves the methods ROM and SROM. In Test Case
3, we observe that using POD basis vectors wins a magnitude of 𝒪(10Ꮃ) compared to
using eigenvectors of the preconditioned system. For the same test case, we changed
the initial condition to the previous time-step. After one iteration, the difference in
magnitude is an order of 𝒪(10Ꮅ) compared to using a random vector.

10
Conclusion

In this research, we focussed on the iterative solvers used for water simulation. We
have presented a mathematical model for the one-phase and two-phase flow through
porous media. Then, we linearized this model using the Newton-Raphson method to
obtain a linear system. This results in a system of linear equations that is solved with
Two-Level Preconditioned Conjugate Gradient method. For this method, we need to
specify deflation vectors. The choices for deflation vectors considered in this report:
subdomain vectors, eigenvectors and POD basis vectors. The Two-Level precondition-
ers we compared in this thesis report are: Deflation method (DEF1, DEF1), Adapted
Deflation method (A-DEF1, A-DEF2), Reduced Order Model methods (ROM, SROM)
and Balancing Neumann Neumann (BNN, R-BNN1, R-BNN2). These are compared
theoretically and three test cases are used for the numerical experiments.

From the theoretical results, we have observed the computational complexity, memory
storage and condition number of the various Two-Level PCG methods. The cheapest
method per iteration is DEF1, while the most expensive one is BNN. For the memory
storage, the cheapest method is DEF1, DEF2, R-BNN2, and ROM. The method that
takes the most memory storage is BNN. We have also proven that A-DEF2 and ROM
have the same Two-Level preconditioners. Then, we have compared the spectra of the
methods. DEF1, DEF2, R-BNN1, and R-BNN2 have the same spectrum transforming
some eigenvalues equal to 0. A-DEF1, A-DEF2, BNN, ROM, and possibly SROM have
the same spectrum.

In the numerical experiments, we have tested the computational complexity and spec-
tra using various deflation vectors to test the theory. We increased the number of
deflation vectors and it makes a small difference in performance. We have observed
that using the starting vectors improved the performance of ROM and SROM and using
the previous time step as initial condition improved the performance for all methods
by three orders of magnitude. If we use POD basis vectors instead of eigenvectors we
can win an order of magnitude after one iteration. In general, the number of iterations
for all methods is similar.

From the results we see that the performance and the memory storage of the meth-
ods are similar. However, the cheapest methods per iteration resulted DEF1, DEF2,
R-BNN2, and ROM.

71

72 10. Conclusion

Future research
Deflation methods are fairly new compared to the Conjugate Gradient method and
more research is needed for full understanding them. The recommendations for future
research can be formulated as follows:

• Another criterion that this report did not consider is the accuracy of the methods.
The stopping criterion was fixed for every test case. If we change the accuracy, it
is possible that not every method will reach the convergence criterion.

• The only spectrum we did not prove for all deflation vectors is the SROM method.
We have seen that the use of eigenvectors gives the result we expect from theory
and numerical experiments. More research is needed to fully understand the
spectrum of this method.

• The adapted deflation methods are an improvement to the deflation methods.
In general, we could improve the methods by setting specific eigenvalues to the
largest eigenvalue of the preconditioned system instead to 1. This could improve
the performance of the deflation methods.

• In this report, we did not focus on the use of the POD basis as deflation vectors.
More research on this could improve the methods.

A
Nomenclature

The list of notations defined in Section 3 is given in this Appendix.

Table A.1: Notation

Symbol Quantity SI Unit
𝜌 Fluid density kg/mᎵ

𝜙 Rock porosity
𝑞 Source term
⃗⃗⃗𝑣 Darcy’s velocity m/d
𝑝 Pressure Pa
𝐾 Rock permeability Darcy (D)
𝜇 Fluid viscosity Pa
𝑔 Gravity m/sᎴ
𝑑 reservoir depth m
𝑐ᑝ Liquid compressibility PaᎽᎳ
𝑐ᑣ Rock compressibility PaᎽᎳ

73

B
Compressible Model

The compressible model is, unlike the incompressible model, time-dependent. For this
model, it is more complex to derive the discretization to solve the problem numerically.
This means that it would take more computational time to obtain a solution of the flow
problem. Therefore, only the constant compressible model will be explained. More
information can be found in [8, 13].

B.1. Constant Compressibility
Assume that the fluid density and rock porosity are constant compressible, i.e. 𝑐ᑝ, 𝑐ᑣ ∈
ℝ. Then, the total compressibility is also constant. Therefore, the fluid density and
porosity are linearly dependent on the pressure. The initial condition for the pressure
is defined as 𝑝|ᑥᎾᎲ = 𝑝Ꮂ, without loss of generality let 𝑝Ꮂ = 0. Now, the initial conditions
for rock porosity and fluid density are:

𝜌|
ᑡᎾᑡᎲ

= 𝜌Ꮂ and 𝜑|
ᑡᎾᑡᎲ

= 𝜑Ꮂ. (B.1)

Inserting the initial conditions in Equation (3.5) and Equation (3.4) gives:

𝜑 = 𝜑Ꮂ𝑒ᑔᑣᑡ and 𝜌 = 𝜌Ꮂ𝑒ᑔᑝᑡ. (B.2)

For small values of the fluid compressibility, the fluid density can be written as

𝜌 ≈ 𝜌Ꮂ(1 + 𝑐ᑝ𝑝) (B.3)

using linearization. If the rock porosity is pressure independent, Equation (3.8) can
be written as

𝜑𝜕𝜌(𝑝)𝜕𝑡 − ∇(𝜌(𝑝)K𝜇 (∇𝑝 − 𝜌(𝑝)𝑔∇𝑑)) = 𝜌(𝑝)𝑞. (B.4)

Assuming isotropic permeability, constant depth and fluid with constant velocity re-
duces to

𝜑𝜕𝜌(𝑝)𝜕𝑡 − 𝜌Ꮂ𝜇 ∇(K∇𝑝) −
𝜌Ꮂ𝑐ᑝ
𝜇 ∇(𝑝K∇𝑝) = 𝜌(𝑝)𝑞. (B.5)

If the fluid compressibility is sufficiently small, in the sense that 𝑐ᑝ∇(𝑝K∇𝑝) ≪ ∇(K∇𝑝),
the term 𝑐ᑝ∇(𝑝K∇𝑝) can be neglected. Finally, the result is

𝜑𝜕𝜌(𝑝)𝜕𝑡 − 𝜌Ꮂ𝜇 ∇(K∇𝑝) = 𝜌(𝑝)𝑞. (B.6)

75

76 B. Compressible Model

B.2. Discretization of the Compressible Model
The compressible model is time dependent while the incompressible model is not.
Therefore, Equation (B.6) contains the time derivative as a term. The spatial part of
Equation (B.6) can be discretized in the same manner as in the incompressible case,
and written in the form:

𝜑𝜕𝜌(p)𝜕𝑡 + Tp = q(p), (B.7)

where the source term is defined as q̄(p) ∶= 𝜌(p)q and T is the transmissibility matrix.
In this case, Euler Backwards will be used to perform numerical time integration and
the equation will be rewritten as

V
𝜌(pᑜᎼᎳ) − 𝜌(pᑜ)

Δ𝑡ᑜ + TpᑜᎼᎳ = q̄(pᑜᎼᎳ), (B.8)

where Δ𝑡ᑜ = 𝑡ᑜᎼᎳ − 𝑡ᑜ and v is the accumulation matrix defined as

v = Δ𝑥Δ𝑦Δ𝑧Iᑟ, (B.9)

where Iᑟ ∈ ℝᑟ×ᑟ is the identity matrix.

C
Computational Complexity

In this Chapter, the floating-point operations (flops) and memory storage of each
method are given. First, the algorithm is given and then we give the number of flops
for each operation. The assumptions are:

Assumptions
• A ∈ ℝᑅ×ᑅ is sparse with 𝑠 nonzero elements per row.

• M = LLᏁ is the incomplete Cholesky preconditioner with zero fill-in of A.flops

• Z ∈ ℝᑅ×ᑄ is a full matrix.

• E ∈ ℝᑄ×ᑄ is a full matrix.

• E = CCᏁ is the Cholesky decomposition of E.

We construct the following matrices:

V = AZ, V ∈ ℝᑅ×ᑄ (C.1)
W = ZEᎽᎳ, W ∈ ℝᑅ×ᑄ (C.2)
B = AV, B ∈ ℝᑅ×ᑄ. (C.3)
H = MᎽᎳV, H ∈ ℝᑅ×ᑄ (C.4)

For each iteration, these matrices are computed. It would be cheaper to compute
them before each iteration and store the matrices. For the deflation methods we do
not compute the Cholesky decomposition of E. For these method, we construct the
inverse of E and this will be used to compute W,B. The basic operations are given in
Table C.1.

77

78 C. Computational Complexity

Table C.1: Basic operations with the number of flops

Operation Flops
x+ y 𝑁
⟨x,y⟩ 2𝑁 − 1
Ax (2𝑠 − 1)𝑁
Construct L Ꮃ

Ꮄ(3𝑠 − 3)𝑁
SolveMx = y (2𝑠 + 1)𝑁
Construct V = AZ (2𝑠 − 1)𝑀𝑁
Construct E = ZᏁV (2𝑁 − 1)𝑀Ꮄ

Construct C Ꮃ
Ꮅ𝑀Ꮅ

Solve Ex = y 2𝑀Ꮄ

ConstructW = ZEᎽᎳ (2𝑀 − 1)𝑀𝑁
Construct B = VEᎽᎳ (2𝑀 − 1)𝑀𝑁
Construct H =MᎽᎳV (2𝑠 + 1)𝑀𝑁

The frequently used operations are Qx = y and Px = y. The number of flops of these
operations are given in Table C.2.

Table C.2: The number of flops of Qx ዆ y,Px ዆ y and PᏁx ዆ y.

Operation Flops
Qx = y (4𝑀 − 1)𝑁 −𝑀
Px = y 4𝑀𝑁 −𝑀
PᏁx = y 4𝑀𝑁 −𝑀

Proof. The calculation shown in Table C.2 will be proved. First, compute Qx = y where Q is
given by:

Q = ZEᎽᎳZᏁ =WZᏁ. (C.5)
The number of flops is calculated as follows:

Table C.3: The number of flops of Qx ዆ y

Qx = y
yᎳ = ZᏁx 2𝑀𝑁 −𝑀
y =WyᎳ (2𝑀 − 1)𝑁
Total (4𝑀 − 1)𝑁 −𝑀

The process is repeated for Px = y and PᏁx = y. The deflation matrix P and its transpose PᏁ
is given by:

P = I− AQ = I− BZᏁ, PᏁ = I−QA = I− ZBᏁ. (C.6)

Table C.4: The number of flops of Px ዆ y and PᏁx ዆ y

Px = y
yᎳ = ZᏁx 2𝑀𝑁 −𝑀
y = x− ByᎳ 2𝑀𝑁
Total 4𝑀𝑁 −𝑀

PᏁx = y
yᎳ = BᏁx (2𝑀 − 1)𝑁
y = x− ZyᎳ (2𝑀 + 1)𝑁 −𝑀
Total 4𝑀𝑁 −𝑀

C.1. Conjugate Gradient 79

C.1. Conjugate Gradient
The algorithm, the number of flops per iteration and memory storage of the Conjugate
Gradient method are given in this section.

Algorithm

Algorithm 7 Conjugate Gradient
1: Initial: x, 𝜀
2: Compute: xᎲ = x, rᎲ = b− AxᎲ and pᎲ = rᎲ
3: for 𝑘 = 0,… do
4: while rᑜ > 𝜀 do
5: 𝛼ᑜ =

⟨rᑜ ,rᑜ⟩
⟨Apᑜ ,pᑜ⟩

6: xᑜᎼᎳ = xᑜ + 𝛼ᑜpᑜ
7: rᑜᎼᎳ = rᑜ − 𝛼ᑜApᑜ

8: 𝛽ᑜ =
⟨rᑜᎼᎳ ,rᑜᎼᎳ⟩
⟨rᑜ ,rᑜ⟩

9: pᑜᎼᎳ = rᑜᎼᎳ + 𝛽ᑜpᑜ
10: xᑚᑥ = xᑜᎼᎳ

Computational Efficiency

Table C.5: The number of flops and memory storage of the Conjugate Gradient method

Operation Flops
2. xᎲ = x

rᎲ = b− AxᎲ 2𝑠𝑁
pᎲ = rᎲ
𝛾Ꮂ = ⟨rᎲ, rᎲ⟩ 2𝑁 − 1

5a. wᑜ = Apᑜ (2𝑠 − 1)𝑁
5. 𝛼ᑜ = ᒈᑜ

⟨wᑜ ,pᑜ⟩ 2𝑁
6. xᑜᎼᎳ = xᑜ + 𝛼ᑜpᑜ 2𝑁
7. rᑜᎼᎳ = rᑜ − 𝛼ᑜwᑜ 2𝑁
8a. 𝛾ᑜᎼᎳ = ⟨rᑜᎼᎳ, rᑜᎼᎳ⟩ 2𝑁 − 1
8. 𝛽ᑜ = ᒈᑜᎼᎳ

ᒈᑜ 1
9. pᑜᎼᎳ = rᑜᎼᎳ + 𝛽ᑜpᑜ 2𝑁
10. xᑚᑥ = xᑜᎼᎳ

Total Initial (2𝑠 + 2)𝑁 − 1
Iteration (2𝑠 + 9)𝑁

Memory positions
Scalars 𝛼ᑜ 1

𝛽ᑜ 1
𝛾ᑜ 1
𝛾ᑜᎼᎳ 1

Vectors xᑜ 𝑁
b 𝑁
pᑜ 𝑁
rᑜ 𝑁
wᑜ 𝑁

Matrices A 𝑠𝑁
Total (5 + 𝑠)𝑁 + 4

80 C. Computational Complexity

C.2. Preconditioned Conjugate Gradient
The algorithm, the number of flops per iteration and memory storage of the Precon-
ditioned Conjugate Gradient method are given in this section. The algorithm is given
by:

Algorithm 8 Preconditioned Conjugate Gradient
1: Initial: x, 𝜀
2: Compute: xᎲ = x, rᎲ = b− AxᎲ, zᎲ =MᎽᎳrᎲ and pᎲ = zᎲ
3: for 𝑘 = 0,… do
4: while rᑜ > 𝜀 do
5: zᑜᎼᎳ =MᎽᎳrᑜ

6: 𝛼ᑜ =
⟨rᑜ ,zᑜ⟩
⟨Apᑜ ,pᑜ⟩

7: xᑜᎼᎳ = xᑜ + 𝛼ᑜpᑜ
8: rᑜᎼᎳ = rᑜ − 𝛼ᑜApᑜ

9: 𝛽ᑜ =
⟨zᑜᎼᎳ ,rᑜᎼᎳ⟩
⟨zᑜ ,rᑜ⟩

10: pᑜᎼᎳ = zᑜᎼᎳ + 𝛽ᑜpᑜ
11: xᑚᑥ = xᑜᎼᎳ

Computational Efficiency

Table C.6: The number of flops and memory storage of the Preconditioned Conjugate Gradient method

Operation Flops
1. Construct L Ꮃ

Ꮄ(3𝑠 − 3)𝑁
2. xᎲ = x

rᎲ = b− AxᎲ 2𝑠𝑁
zᎲ =MᎽᎳrᎲ (2𝑠 + 1)𝑁
pᎲ = zᎲ
𝛾Ꮂ = ⟨zᎲ, rᎲ⟩ 2𝑁 − 1

5a. wᑜ = Apᑜ (2𝑠 − 1)𝑁
5. zᑜᎼᎳ =MᎽᎳrᑜ (2𝑠 + 1)𝑁
6. 𝛼ᑜ = ᒈᑜ

⟨wᑜ ,pᑜ⟩ 2𝑁
7. xᑜᎼᎳ = xᑜ + 𝛼ᑜpᑜ 2𝑁
8. rᑜᎼᎳ = rᑜ − 𝛼ᑜwᑜ 2𝑁
9a. 𝛾ᑜᎼᎳ = ⟨zᑜᎼᎳ, rᑜᎼᎳ⟩ 2𝑁 − 1
9. 𝛽ᑜ = ᒈᑜᎼᎳ

ᒈᑜ 1
10. pᑜᎼᎳ = zᑜᎼᎳ + 𝛽ᑜpᑜ 2𝑁
11. xᑚᑥ = xᑜᎼᎳ

Total Initial Ꮃ
Ꮄ(11𝑠 + 1)𝑁 − 1

Iteration (4𝑠 + 10)𝑁

Memory positions
Scalars 𝛼 1

𝛽 1
𝛾ᑜ 1
𝛾ᑜᎼᎳ 1

Vectors xᑜ 𝑁
b 𝑁
pᑜ 𝑁
rᑜ 𝑁
wᑜ 𝑁
zᑜ 𝑁

Matrices A 𝑠𝑁
L Ꮃ

Ꮄ(𝑠 + 1)𝑁
Total Ꮃ

Ꮄ(3𝑠 + 13)𝑁 + 4

C.3. Deflation Method 81

C.3. Deflation Method

The algorithm, the number of flops per iteration and memory storage of the Deflated
Conjugate Gradient method are given in this section.

Algorithm

Algorithm 9 Deflated Conjugated Gradient
1: Initial: x, 𝜀
2: Compute: xᎲ = x, rᎲ = b− AxᎲ, r̂Ꮂ = PrᎲ and pᎲ = r̂Ꮂ
3: for 𝑘 = 0,… do
4: while rᑜ > 𝜀 do
5: 𝛼ᑜ =

⟨r̂ᑜ ,r̂ᑜ⟩
⟨pᑜ ,PApᑜ⟩

6: x̂ᑜᎼᎳ = x̂ᑜ + 𝛼ᑜpᑜ
7: r̂ᑜᎼᎳ = r̂ᑜ − 𝛼ᑜPApᑜ

8: 𝛽ᑜ =
⟨r̂ᑜᎼᎳ ,r̂ᑜᎼᎳ⟩
⟨r̂ᑜ ,r̂ᑜ⟩

9: pᑜᎼᎳ = r̂ᑜᎼᎳ + 𝛽ᑜpᑜ
10: xᑚᑥ = Qb+ PᏁxᑜᎼᎳ

82 C. Computational Complexity

Computational Efficiency

Table C.7: The number of flops and memory storage of the Deflated Conjugate Gradient method

Operation Flops
1. Construct V ዆ AZ (ኼ፬ ዅ ኻ)ፌፍ

Construct E ዆ ZᏁV (ኼፍ ዅ ኻ)ፌᎴ

Construct C Ꮃ
ᎵፌᎵ

ConstructW ዆ ZEᎽᎳ (ኼፌ ዅ ኻ)ፌፍ
Construct B ዆ VEᎽᎳ (ኼፌ ዅ ኻ)ፌፍ

2. xᎲ ዆ x
rᎲ ዆ b ዅ AxᎲ ኼ፬ፍ
r̂Ꮂ ዆ PrᎲ ኾፌፍ ዅፌ
pᎲ ዆ r̂Ꮂ
᎐Ꮂ ዆ ⟨r̂Ꮂ, r̂Ꮂ⟩ ኼፍ ዅ ኻ

5a. wᑜ ዆ PApᑜ (ኾፌ ዄ ኼ፬ ዅ ኻ)ፍ ዅፌ
5. ᎎᑜ ዆ ᒈᑜ

⟨pᑜ ,wᑜ⟩
ኼፍ

6. x̂ᑜᎼᎳ ዆ x̂ᑜ ዄ ᎎᑜpᑜ ኼፍ
7. r̂ᑜᎼᎳ ዆ r̂ᑜ ዅ ᎎᑜwᑜ ኼፍ
8a. ᎐ᑜᎼᎳ ዆ ⟨r̂ᑜᎼᎳ, r̂ᑜᎼᎳ⟩ ኼፍ ዅ ኻ
8. ᎏᑜ ዆ ᒈᑜᎼᎳ

ᒈᑜ ኻ
9. pᑜᎼᎳ ዆ r̂ᑜᎼᎳ ዄ ᎏᑜpᑜ ኼፍ
10. xᑚᑥ ዆ Qb ዄ PᏁx̂ᑜᎼᎳ ዂፌፍ ዅ ኼፌ
Total Initial (ዀፌ ዄ ኼ፬ ዄ ዃ)ፌፍ ዄ (ኼ፬ ዄ ኼ)ፍ ዄ Ꮃ

ᎵፌᎵ ዅፌᎴ ዅ ኽፌ ዅ ኻ
Iteration (ኾፌ ዄ ኼ፬ ዄ ዃ)ፍ ዅፌ

Memory positions
Scalars ᎎ 1

ᎏ 1
᎐ᑜ 1
᎐ᑜᎼᎳ 1

Vectors xᑜ ፍ
b ፍ
pᑜ ፍ
rᑜ ፍ
wᑜ ፍ

Matrices A ፬ፍ
Z ፌፍ
V ፌፍ
W ፌፍ
B ፌፍ
Total (ኾፌ ዄ ፬ ዄ ዀ)ፍ ዄ ኾ

C.4. Deflation Variant 83

C.4. Deflation Variant

The algorithm, the number of flops per iteration and memory storage of the Deflated
Preconditioned Conjugate Gradient method are given in this section.

Algorithm

Algorithm 10 Deflation Variant 1 (DEF1)
1: Initial: x, 𝜀
2: Compute: xᎲ = x, rᎲ = b− AxᎲ, r̂Ꮂ = PrᎲ, zᎲ =MᎽᎳr̂Ꮂ and pᎲ = zᎲ
3: for 𝑘 = 0,… do
4: while rᑜ > 𝜀 do
5: zᑜᎼᎳ =MᎽᎳr̂ᑜ

6: 𝛼ᑜ =
⟨r̂ᑜ ,zᑜ⟩

⟨pᑜ ,PApᑜ⟩
7: x̂ᑜᎼᎳ = x̂ᑜ + 𝛼ᑜpᑜ
8: r̂ᑜᎼᎳ = r̂ᑜ − 𝛼ᑜPApᑜ

9: 𝛽ᑜ =
⟨r̂ᑜᎼᎳ ,zᑜᎼᎳ⟩
⟨r̂ᑜ ,zᑜ⟩

10: pᑜᎼᎳ = zᑜᎼᎳ + 𝛽ᑜpᑜ
11: xᑚᑥ = Qb+ PᏁxᑜᎼᎳ

Algorithm 11 Deflation Variant 2 (DEF2)
1: Initial: x, 𝜀
2: Compute: xᎲ = Qb+ PᏁx, rᎲ = b− AxᎲ, zᎲ =MᎽᎳrᎲ and pᎲ = PᏁzᎲ
3: for 𝑘 = 0,… do
4: while rᑜ > 𝜀 do
5: zᑜᎼᎳ =MᎽᎳrᑜ

6: 𝛼ᑜ =
⟨rᑜ ,zᑜ⟩
⟨pᑜ ,Apᑜ⟩

7: xᑜᎼᎳ = xᑜ + 𝛼ᑜpᑜ
8: rᑜᎼᎳ = rᑜ − 𝛼ᑜApᑜ

9: 𝛽ᑜ =
⟨rᑜᎼᎳ ,zᑜᎼᎳ⟩
⟨rᑜ ,zᑜ⟩

10: pᑜᎼᎳ = zᑜᎼᎳ + 𝛽ᑜpᑜ
11: xᑚᑥ = xᑜᎼᎳ

84 C. Computational Complexity

Computational Efficiency

Table C.8: The number of flops and memory storage of the DEF1 method method

DEF1
Operation Flops

1. Construct L Ꮃ
Ꮄ(ኽ፬ ዅ ኽ)ፍ

Construct V ዆ AZ (ኼ፬ ዅ ኻ)ፌፍ
Construct E ዆ ZᏁV (ኼፍ ዅ ኻ)ፌᎴ

Construct C Ꮃ
ᎵፌᎵ

ConstructW ዆ ZEᎽᎳ (ኼፌ ዅ ኻ)ፌፍ
Construct B ዆ VEᎽᎳ (ኼፌ ዅ ኻ)ፌፍ

2. xᎲ ዆ x
rᎲ ዆ b ዅ AxᎲ ኼ፬ፍ
r̂Ꮂ ዆ PrᎲ ኾፌፍ ዅፌ
zᎲ ዆MᎽᎳr̂Ꮂ (ኼ፬ ዄ ኻ)ፍ
pᎲ ዆ zᎲ
᎐Ꮂ ዆ ⟨r̂Ꮂ,zᎲ⟩ ኼፍ ዅ ኻ

5. zᑜᎼᎳ ዆MᎽᎳr̂ᑜ (ኼ፬ ዄ ኻ)ፍ
6a. wᑜ ዆ PApᑜ (ኾፌ ዄ ኼ፬ ዅ ኻ)ፍ ዅፌ
6. ᎎᑜ ዆ ᒈᑜ

⟨pᑜ ,wᑜ⟩
ኼፍ

7. x̂ᑜᎼᎳ ዆ x̂ᑜ ዄ ᎎᑜpᑜ ኼፍ
8. r̂ᑜᎼᎳ ዆ r̂ᑜ ዅ ᎎᑜwᑜ ኼፍ
9a. ᎐Ꮂ ዆ ⟨r̂Ꮂ,zᎲ⟩ ኼፍ ዅ ኻ
9. ᎏᑜ ዆ ᒈᑜᎼᎳ

ᒈᑜ 1
10. pᑜᎼᎳ ዆ zᑜᎼᎳ ዄ ᎏᑜpᑜ ኼፍ
11. xᑚᑥ ዆ Qb ዄ PᏁxᑜᎼᎳ ዂፌፍ ዅ ኼፌ
Total Initial (ዀፌ ዄ ኼ፬ ዄ ዃ)ፌፍ ዄ Ꮃ

Ꮄ(ኻኻ፬ ዄ ኻ)ፍ ዄ Ꮃ
ᎵፌᎵ ዅፌᎴ ዅ ኽፌ ዅ ኻ

Iteration (ኾፌ ዄ ኾ፬ ዄ ኻኺ)ፍ ዅፌ

Memory positions
Scalars ᎎ 1

ᎏ 1
᎐ᑜ 1
᎐ᑜᎼᎳ 1

Vectors xᑜ ፍ
b ፍ
pᑜ ፍ
rᑜ ፍ
wᑜ ፍ
zᑜ ፍ

Matrices A ፬ፍ
L Ꮃ

Ꮄ(፬ ዄ ኻ)ፍ
Z ፌፍ
V ፌፍ
W ፌፍ
B ፌፍ
Total Ꮃ

Ꮄ(ዂፌ ዄ ኽ፬ ዄ ኻኽ)ፍ ዄ ኾ

C.4. Deflation Variant 85

Table C.9: The number of flops and memory storage of the DEF2 method method

DEF2
Operation Flops

1. Construct L Ꮃ
Ꮄ(ኽ፬ ዅ ኽ)ፍ

Construct V ዆ AZ (ኼ፬ ዅ ኻ)ፌፍ
Construct E ዆ ZᏁV (ኼፍ ዅ ኻ)ፌᎴ

Construct C Ꮃ
ᎵፌᎵ

ConstructW ዆ ZEᎽᎳ (ኼፌ ዅ ኻ)ፌፍ
Construct B ዆ VEᎽᎳ (ኼፌ ዅ ኻ)ፌፍ

2. xᎲ ዆ Qb ዄ PᏁx ዂፌፍ ዅ ኼፌ
rᎲ ዆ b ዅ AxᎲ ኼ፬ፍ
zᎲ ዆MᎽᎳrᎲ (ኼ፬ ዄ ኻ)ፍ
pᎲ ዆ PᏁzᎲ ኾፌፍ ዅፌ
᎐Ꮂ ዆ ⟨rᎲ,zᎲ⟩ ኼፍ ዅ ኻ

5a. wᑜ ዆ Apᑜ (ኼ፬ ዅ ኻ)ፍ
5. ᎎᑜ ዆ ᒈᑜ

⟨pᑜ ,wᑜ⟩
ኼፍ

6. xᑜᎼᎳ ዆ xᑜ ዄ ᎎᑜpᑜ ኼፍ
7. rᑜᎼᎳ ዆ rᑜ ዅ ᎎᑜwᑜ ኼፍ
8. zᑜᎼᎳ ዆MᎽᎳrᑜᎼᎳ (ኼ፬ ዄ ኻ)ፍ
9a. ᎐ᑜᎼᎳ ዆ ⟨rᑜᎼᎳ,zᑜᎼᎳ⟩ ኼፍ ዅ ኻ
9. ᎏᑜ ዆ ᒈᑜᎼᎳ

ᒈᑜ 1
10. pᑜᎼᎳ ዆ PᏁzᑜᎼᎳ ዄ ᎏᑜpᑜ (ኾፌ ዄ ኼ)ፍ ዅፌ
11. xᑚᑥ ዆ xᑜᎼᎳ

Total Initial (ዀፌ ዄ ኼ፬ ዄ ዃ)ፌፍ ዄ Ꮃ
Ꮄ(ኻኻ፬ ዄ ኻ)ፍ ዄ Ꮃ

ᎵፌᎵ ዅፌᎴ ዅ ኽፌ ዅ ኻ
Iteration (ኾፌ ዄ ኾ፬ ዄ ኻኺ)ፍ ዅፌ

Memory positions
Scalars ᎎ 1

ᎏ 1
᎐ᑜ 1
᎐ᑜᎼᎳ 1

Vectors xᑜ ፍ
b ፍ
pᑜ ፍ
rᑜ ፍ
wᑜ ፍ
zᑜ ፍ

Matrices A ፬ፍ
L Ꮃ

Ꮄ(፬ ዄ ኻ)ፍ
Z ፌፍ
V ፌፍ
B ፌፍ

Total Ꮃ
Ꮄ(ዂፌ ዄ ኽ፬ ዄ ኻኽ)ፍ ዄ ኾ

86 C. Computational Complexity

C.5. Adapted Deflation Variant

The number of flops of the operator 𝒫A-DEF1 and 𝒫A-DEF2 are given first. Then, we replace
the preconditioner in the preconditioner algorithm.

𝒫A-DEF1 =MᎽᎳP+Q, 𝒫A-DEF2 = PᏁMᎽᎳ +Q (C.7)

The number of flops of these operators are given by:

Table C.10: The number of flops of Adapted Deflation Variant

x = (MᎽᎳP+Q)y
xᎳ = ZᏁy 2𝑀𝑁 −𝑀
xᎴ =WxᎳ (2𝑀 − 1)𝑁
xᎵ = y− BxᎳ 2𝑀𝑁
xᎶ =MᎽᎳxᎵ (2𝑠 + 1)𝑁
x = xᎶ + xᎴ 𝑁
Total (6𝑀 + 2𝑠 + 1)𝑁 −𝑀

x = (PᏁMᎽᎳ +Q)y
xᎳ = Qy (4𝑀 − 1)𝑁 −𝑀
xᎴ =MᎽᎳy (2𝑠 + 1)𝑁
xᎵ = PᏁxᎴ 4𝑀𝑁 −𝑀
x = xᎳ + xᎵ 𝑁
Total (8𝑀 + 2𝑠 + 1)𝑁 − 2𝑀

Algorithm

Algorithm 12 Adapted Deflation Variant 1 (A-DEF1)
1: Initial: x, 𝜀
2: Compute: xᎲ = x, rᎲ = b− AxᎲ, zᎲ = (MᎽᎳP+Q)rᎲ and pᎲ = zᎲ
3: for 𝑘 = 0,… do
4: while rᑜ > 𝜀 do
5: zᑜᎼᎳ = (MᎽᎳP+Q)rᑜ

6: 𝛼ᑜ =
⟨rᑜ ,zᑜ⟩
⟨Apᑜ ,pᑜ⟩

7: xᑜᎼᎳ = xᑜ + 𝛼ᑜpᑜ
8: rᑜᎼᎳ = rᑜ − 𝛼ᑜApᑜ

9: 𝛽ᑜ =
⟨zᑜᎼᎳ ,rᑜᎼᎳ⟩
⟨zᑜ ,rᑜ⟩

10: pᑜᎼᎳ = zᑜᎼᎳ + 𝛽ᑜpᑜ
11: xᑚᑥ = xᑜᎼᎳ

C.5. Adapted Deflation Variant 87

Algorithm 13 Adapted Deflation Variant 2 (A-DEF2)
1: Initial: x, 𝜀
2: Compute: xᎲ = Qb+ PᏁx, rᎲ = b− AxᎲ, zᎲ = (PᏁMᎽᎳ +Q)rᎲ and pᎲ = zᎲ
3: for 𝑘 = 0,… do
4: while rᑜ > 𝜀 do
5: zᑜᎼᎳ = (PᏁMᎽᎳ +Q)rᑜ

6: 𝛼ᑜ =
⟨rᑜ ,zᑜ⟩
⟨Apᑜ ,pᑜ⟩

7: xᑜᎼᎳ = xᑜ + 𝛼ᑜpᑜ
8: rᑜᎼᎳ = rᑜ − 𝛼ᑜApᑜ

9: 𝛽ᑜ =
⟨zᑜᎼᎳ ,rᑜᎼᎳ⟩
⟨zᑜ ,rᑜ⟩

10: pᑜᎼᎳ = zᑜᎼᎳ + 𝛽ᑜpᑜ
11: xᑚᑥ = xᑜᎼᎳ

Computational Efficiency

Table C.11: The number of flops and memory storage of the A-DEF1 method

Operation Flops
1. Construct L Ꮃ

Ꮄ(ኽ፬ ዅ ኽ)ፍ
Construct V ዆ AZ (ኼ፬ ዅ ኻ)ፌፍ
Construct E ዆ ZᏁV (ኼፍ ዅ ኻ)ፌᎴ

Construct C Ꮃ
ᎵፌᎵ

ConstructW ዆ ZEᎽᎳ (ኼፌ ዅ ኻ)ፌፍ
Construct B ዆ VEᎽᎳ (ኼፌ ዅ ኻ)ፌፍ

2. xᎲ ዆ x
rᎲ ዆ b ዅ AxᎲ ኼ፬ፍ
zᎲ ዆ (MᎽᎳP ዄQ)rᎲ (ዀፌ ዄ ኼ፬ ዄ ኻ)ፍ ዅፌ
pᎲ ዆ zᎲ
᎐Ꮂ ዆ ⟨zᎲ, rᎲ⟩ ኼፍ ዅ ኻ

5a. wᑜ ዆ Apᑜ (ኼ፬ ዅ ኻ)ፍ
5. zᑜᎼᎳ ዆ (MᎽᎳP ዄQ)rᑜ (ዀፌ ዄ ኼ፬ ዄ ኻ)ፍ ዅፌ
6. ᎎᑜ ዆ ᒈᑜ

⟨wᑜ ,pᑜ⟩
ኼፍ

7. xᑜᎼᎳ ዆ xᑜ ዄ ᎎᑜpᑜ ኼፍ
8. rᑜᎼᎳ ዆ rᑜ ዅ ᎎᑜwᑜ ኼፍ
9a. ᎐ᑜᎼᎳ ዆ ⟨zᑜᎼᎳ, rᑜᎼᎳ⟩ ኼፍ ዅ ኻ
9. ᎏᑜ ዆ ᒈᑜᎼᎳ

ᒈᑜ ኻ
10. pᑜᎼᎳ ዆ zᑜᎼᎳ ዄ ᎏᑜpᑜ ኼፍ
11. xᑚᑥ ዆ xᑜᎼᎳ

Total Initial (ዀፌ ዄ ኼ፬ ዄ ኽ)ፌፍ ዄ Ꮃ
Ꮄ(ኻኻ፬ ዄ ኽ)ፍ ዄ Ꮃ

ᎵፌᎵ ዅፌᎴ ዅፌ ዅ ኻ
Iteration (ዀፌ ዄ ኾ፬ ዄ ኻኺ)ፍ ዅፌ

Memory positions
Scalars ᎎ 1

ᎏ 1
᎐ᑜ 1
᎐ᑜᎼᎳ 1

Vectors xᑜ ፍ
b ፍ
pᑜ ፍ
rᑜ ፍ
wᑜ ፍ
zᑜ ፍ

Matrices A ፬ፍ
L Ꮃ

Ꮄ(፬ ዄ ኻ)ፍ
Z ፌፍ
V ፌፍ
W ፌፍ
B ፌፍ
Total Ꮃ

Ꮄ(ዂፌ ዄ ኽ፬ ዄ ኻኽ)ፍ ዄ ኾ

88 C. Computational Complexity

Table C.12: The number of flops and memory storage of the A-DEF2 method

Operation Flops
1. Construct L Ꮃ

Ꮄ(ኽ፬ ዅ ኽ)ፍ
Construct V ዆ AZ (ኼ፬ ዅ ኻ)ፌፍ
Construct E ዆ ZᏁV (ኼፍ ዅ ኻ)ፌᎴ

Construct C Ꮃ
ᎵፌᎵ

ConstructW ዆ ZEᎽᎳ (ኼፌ ዅ ኻ)ፌፍ
Construct B ዆ VEᎽᎳ (ኼፌ ዅ ኻ)ፌፍ

2. xᎲ ዆ PᏁx ዄQb ዂፌፍ ዅ ኼፌ
rᎲ ዆ b ዅ AxᎲ ኼ፬ፍ
zᎲ ዆ (PᏁMᎽᎳ ዄQ)rᎲ (ዂፌ ዄ ኼ፬ ዄ ኻ)ፍ ዅ ኼፌ
pᎲ ዆ zᎲ
᎐Ꮂ ዆ ⟨zᎲ, rᎲ⟩ ኼፍ ዅ ኻ

5a. wᑜ ዆ Apᑜ (ኼ፬ ዅ ኻ)ፍ
5. zᑜᎼᎳ ዆ (PᏁMᎽᎳ ዄQ)rᑜ (ዂፌ ዄ ኼ፬ ዄ ኻ)ፍ ዅ ኼፌ
6. ᎎᑜ ዆ ᒈᑜ

⟨wᑜ ,pᑜ⟩
ኼፍ

7. xᑜᎼᎳ ዆ xᑜ ዄ ᎎᑜpᑜ ኼፍ
8. rᑜᎼᎳ ዆ rᑜ ዅ ᎎᑜwᑜ ኼፍ
9a. ᎐ᑜᎼᎳ ዆ ⟨zᑜᎼᎳ, rᑜᎼᎳ⟩ ኼፍ ዅ ኻ
9. ᎏᑜ ዆ ᒈᑜᎼᎳ

ᒈᑜ ኻ
10. pᑜᎼᎳ ዆ zᑜᎼᎳ ዄ ᎏᑜpᑜ ኼፍ
11. xᑚᑥ ዆ xᑜᎼᎳ

Total Initial (ዀፌ ዄ ኼ፬ ዄ ኻኽ)ፌፍ ዄ Ꮃ
Ꮄ(ኻኻ፬ ዄ ኽ)ፍ ዄ Ꮃ

ᎵፌᎵ ዅፌᎴ ዅ ኾፌ ዅ ኻ
Iteration (ዂፌ ዄ ኾ፬ ዄ ኻኺ)ፍ ዅ ኼፌ

Memory positions
Scalars ᎎ 1

ᎏ 1
᎐ᑜ 1
᎐ᑜᎼᎳ 1

Vectors xᑜ ፍ
b ፍ
pᑜ ፍ
rᑜ ፍ
wᑜ ፍ
zᑜ ፍ

Matrices A ፬ፍ
L Ꮃ

Ꮄ(፬ ዄ ኻ)ፍ
Z ፌፍ
V ፌፍ
W ፌፍ
B ፌፍ
Total Ꮃ

Ꮄ(ዂፌ ዄ ኽ፬ ዄ ኻኽ)ፍ ዄ ኾ

C.6. Reduced BNN 89

C.6. Reduced BNN
The number of flops of the operator 𝒫R-BNN1 and 𝒫R-BNN2 are given first. Then, we
replace the preconditioner in the preconditioner algorithm.

𝒫R-BNN1 = PᏁMᎽᎳP, 𝒫R-BNN2 = PᏁMᎽᎳ (C.8)

The number of flops of this operator is given by:

Table C.13: The number of flops of PᏁMᎽᎳPy and PᏁMᎽᎳy

x = PᏁMᎽᎳPy
xᎳ = Py 4𝑀𝑁 −𝑀
xᎴ =MᎽᎳxᎳ (2𝑠 + 1)𝑁
x = PᏁxᎴ 4𝑀𝑁 −𝑀
Total (8𝑀 + 2𝑠 + 1)𝑁 − 2𝑀

x = PᏁMᎽᎳy
xᎳ =MᎽᎳy (2 + 1)𝑠𝑁
x = PᏁxᎳ 4𝑀𝑁 −𝑀
Total (4𝑀 + 2𝑠 + 1)𝑁 −𝑀

Algorithm

The algorithm is the same as the PCGmethod. The only difference is the starting vector
being changed before the iteration. The operator 𝒫 is given and is different depending
using 𝒫R-BNN1 or 𝒫R-BNN2.

Algorithm 14 Reduced BNN
1: Initial: x, 𝜀
2: Compute: xᎲ = Qb+ PᏁx, rᎲ = b− AxᎲ, zᎲ = 𝒫rᎲ and pᎲ = zᎲ
3: for 𝑘 = 0,… do
4: while rᑜ > 𝜀 do
5: zᑜᎼᎳ = 𝒫rᑜ

6: 𝛼ᑜ =
⟨rᑜ ,zᑜ⟩
⟨Apᑜ ,pᑜ⟩

7: xᑜᎼᎳ = xᑜ + 𝛼ᑜpᑜ
8: rᑜᎼᎳ = rᑜ − 𝛼ᑜApᑜ

9: 𝛽ᑜ =
⟨zᑜᎼᎳ ,rᑜᎼᎳ⟩
⟨zᑜ ,rᑜ⟩

10: pᑜᎼᎳ = zᑜᎼᎳ + 𝛽ᑜpᑜ
11: xᑚᑥ = xᑜᎼᎳ

90 C. Computational Complexity

Computational Efficiency

Table C.14: The number of flops and memory storage of the R-BNN1 method

Operation Flops
1. Construct L Ꮃ

Ꮄ(ኽ፬ ዅ ኽ)ፍ
Construct V ዆ AZ (ኼ፬ ዅ ኻ)ፌፍ
Construct E ዆ ZᏁV (ኼፍ ዅ ኻ)ፌᎴ

Construct C Ꮃ
ᎵፌᎵ

ConstructW ዆ ZEᎽᎳ (ኼፌ ዅ ኻ)ፌፍ
Construct B ዆ VEᎽᎳ (ኼፌ ዅ ኻ)ፌፍ

2. xᎲ ዆ PᏁx ዄQb ዂፌፍ ዅ ኼፌ
rᎲ ዆ b ዅ AxᎲ ኼ፬ፍ
zᎲ ዆ PᏁMᎽᎳPrᎲ (ዂፌ ዄ ኼ፬ ዄ ኻ)ፍ ዅ ኼፌ
pᎲ ዆ zᎲ
᎐Ꮂ ዆ ⟨zᎲ, rᎲ⟩ ኼፍ ዅ ኻ

5a. wᑜ ዆ Apᑜ (ኼ፬ ዅ ኻ)ፍ
5. zᑜᎼᎳ ዆ PᏁMᎽᎳPrᑜ (ዂፌ ዄ ኼ፬ ዄ ኻ)ፍ ዅ ኼፌ
6. ᎎᑜ ዆ ᒈᑜ

⟨wᑜ ,pᑜ⟩
ኼፍ

7. xᑜᎼᎳ ዆ xᑜ ዄ ᎎᑜpᑜ ኼፍ
8. rᑜᎼᎳ ዆ rᑜ ዅ ᎎᑜwᑜ ኼፍ
9a. ᎐ᑜᎼᎳ ዆ ⟨zᑜᎼᎳ, rᑜᎼᎳ⟩ ኼፍ ዅ ኻ
9. ᎏᑜ ዆ ᒈᑜᎼᎳ

ᒈᑜ ኻ
10. pᑜᎼᎳ ዆ zᑜᎼᎳ ዄ ᎏᑜpᑜ ኼፍ
11. xᑚᑥ ዆ xᑜᎼᎳ

Total Initial (ዀፌ ዄ ኼ፬ ዄ ኻኽ)ፌፍ ዄ Ꮃ
Ꮄ(ኻኻ፬ ዄ ኽ)ፍ ዄ Ꮃ

ᎵፌᎵ ዅፌᎴ ዅ ኾፌ ዅ ኻ
Iteration (ዂፌ ዄ ኾ፬ ዄ ኻኺ)ፍ ዅ ኼፌ

Memory positions
Scalars ᎎ 1

ᎏ 1
᎐ᑜ 1
᎐ᑜᎼᎳ 1

Vectors xᑜ ፍ
b ፍ
pᑜ ፍ
rᑜ ፍ
wᑜ ፍ
zᑜ ፍ

Matrices A ፬ፍ
L Ꮃ

Ꮄ(፬ ዄ ኻ)ፍ
Z ፌፍ
V ፌፍ
W ፌፍ
B ፌፍ
Total Ꮃ

Ꮄ(ዂፌ ዄ ኽ፬ ዄ ኻኽ)ፍ ዄ ኾ

C.6. Reduced BNN 91

Table C.15: The number of flops of the R-BNN2 method

Operation Flops
1. Construct L Ꮃ

Ꮄ(ኽ፬ ዅ ኽ)ፍ
Construct V ዆ AZ (ኼ፬ ዅ ኻ)ፌፍ
Construct E ዆ ZᏁV (ኼፍ ዅ ኻ)ፌᎴ

Construct C Ꮃ
ᎵፌᎵ

ConstructW ዆ ZEᎽᎳ (ኼፌ ዅ ኻ)ፌፍ
Construct B ዆ VEᎽᎳ (ኼፌ ዅ ኻ)ፌፍ

2. xᎲ ዆ PᏁx ዄQb ዂፌፍ ዅ ኼፌ
rᎲ ዆ b ዅ AxᎲ ኼ፬ፍ
zᎲ ዆ PᏁMᎽᎳrᎲ (ኾፌ ዄ ኼ፬ ዄ ኻ)ፍ ዅፌ
pᎲ ዆ zᎲ
᎐Ꮂ ዆ ⟨zᎲ, rᎲ⟩ ኼፍ ዅ ኻ

5a. wᑜ ዆ Apᑜ (ኼ፬ ዅ ኻ)ፍ
5. zᑜᎼᎳ ዆ PᏁMᎽᎳrᑜ (ኾፌ ዄ ኼ፬ ዄ ኻ)ፍ ዅፌ
6. ᎎᑜ ዆ ᒈᑜ

⟨wᑜ ,pᑜ⟩
ኼፍ

7. xᑜᎼᎳ ዆ xᑜ ዄ ᎎᑜpᑜ ኼፍ
8. rᑜᎼᎳ ዆ rᑜ ዅ ᎎᑜwᑜ ኼፍ
9a. ᎐ᑜᎼᎳ ዆ ⟨zᑜᎼᎳ, rᑜᎼᎳ⟩ ኼፍ ዅ ኻ
9. ᎏᑜ ዆ ᒈᑜᎼᎳ

ᒈᑜ ኻ
10. pᑜᎼᎳ ዆ zᑜᎼᎳ ዄ ᎏᑜpᑜ ኼፍ
11. xᑚᑥ ዆ xᑜᎼᎳ

Total Initial (ዀፌ ዄ ኼ፬ ዄ ዃ)ፌፍ ዄ Ꮃ
Ꮄ(ኻኻ፬ ዄ ኽ)ፍ ዄ Ꮃ

ᎵፌᎵ ዅፌᎴ ዅ ኾፌ ዅ ኻ
Iteration (ኾፌ ዄ ኾ፬ ዄ ኻኺ)ፍ ዅፌ

Memory positions
Scalars ᎎ 1

ᎏ 1
᎐ᑜ 1
᎐ᑜᎼᎳ 1

Vectors xᑜ ፍ
b ፍ
pᑜ ፍ
rᑜ ፍ
wᑜ ፍ
zᑜ ፍ

Matrices A ፬ፍ
L Ꮃ

Ꮄ(፬ ዄ ኻ)ፍ
Z ፌፍ
V ፌፍ
W ፌፍ
B ፌፍ
Total Ꮃ

Ꮄ(ዂፌ ዄ ኽ፬ ዄ ኻኽ)ፍ ዄ ኾ

92 C. Computational Complexity

C.7. ROM-based Preconditioner

The algorithm, the number of flops per iteration and memory storage of the Precondi-
tioned Conjugate Gradient method are given in this section. The preconditioner used
in this section is different than the one used in the PCG method. Therefore, we refer
to section C.2 for the algorithm.

Algorithm

The operation steps is the same as the PCG method. The only difference is replacing
the preconditioner at step 5. The ROM-based preconditioner is given by:

𝒫ROM =MᎽᎳ +Q(I− AMᎽᎳ) (C.9)

Table C.16: The number of flops of constructing ROM-based preconditioner

x = 𝒫ROMy
x =MᎽᎳy (2𝑠 + 1)𝑁
r = y− Ax 2𝑠𝑁
r = ZᏁr 2𝑀𝑁 −𝑀
e =Wr (2𝑀 − 1)𝑁
x = x+ e 𝑁
Total (4𝑀 + 4𝑠 + 1)𝑁 −𝑀

C.7. ROM-based Preconditioner 93

Computational Efficiency

Table C.17: The number of flops of the Preconditioned Conjugate Gradient method using ROM-based preconditioner

Operation Flops
1. Construct L Ꮃ

Ꮄ(ኽ፬ ዅ ኽ)ፍ
Construct V ዆ AZ (ኼ፬ ዅ ኻ)ፌፍ
Construct E ዆ ZᏁV (ኼፍ ዅ ኻ)ፌᎴ

Construct C Ꮃ
ᎵፌᎵ

ConstructW ዆ ZEᎽᎳ (ኼፌ ዅ ኻ)ፌፍ
2. xᎲ ዆ x

rᎲ ዆ b ዅ AxᎲ ኼ፬ፍ
zᎲ ዆ 𝒫ROMrᎲ (ኾፌ ዄ ኾ፬ ዄ ኻ)ፍ ዅፌ
pᎲ ዆ zᎲ
᎐Ꮂ ዆ ⟨zᎲ, rᎲ⟩ ኼፍ ዅ ኻ

5a. wᑜ ዆ Apᑜ (ኼ፬ ዅ ኻ)ፍ
5. zᑜᎼᎳ ዆ 𝒫ROMrᑜ (ኾፌ ዄ ኾ፬ ዄ ኻ)ፍ ዅፌ
6. ᎎᑜ ዆ ᒈᑜ

⟨wᑜ ,pᑜ⟩
ኼፍ

7. xᑜᎼᎳ ዆ xᑜ ዄ ᎎᑜpᑜ ኼፍ
8. rᑜᎼᎳ ዆ rᑜ ዅ ᎎᑜwᑜ ኼፍ
9a. ᎐ᑜᎼᎳ ዆ ⟨zᑜᎼᎳ, rᑜᎼᎳ⟩ ኼፍ ዅ ኻ
9. ᎏᑜ ዆ ᒈᑜᎼᎳ

ᒈᑜ ኻ
10. pᑜᎼᎳ ዆ zᑜᎼᎳ ዄ ᎏᑜpᑜ ኼፍ
11. xᑚᑥ ዆ xᑜᎼᎳ

Total Initial (ኾፌ ዄ ኼ፬ ዄ ኼ)ፌፍ ዄ Ꮃ
Ꮄ(ኻ኿፬ ዄ ኽ)ፍ ዄ Ꮃ

ᎵፌᎵ ዅፌᎴ ዅፌ ዅ ኻ
Iteration (ኾፌ ዄ ዀ፬ ዄ ኻኺ)ፍ ዅፌ

Memory positions
Scalars ᎎ 1

ᎏ 1
᎐ᑜ 1
᎐ᑜᎼᎳ 1

Vectors xᑜ ፍ
b ፍ
pᑜ ፍ
rᑜ ፍ
wᑜ ፍ
zᑜ ፍ

Matrices A ፬ፍ
L Ꮃ

Ꮄ(፬ ዄ ኻ)ፍ
Z ፌፍ
V ፌፍ
W ፌፍ
Total Ꮃ

Ꮄ(ዀፌ ዄ ኽ፬ ዄ ኻኽ)ፍ ዄ ኾ

94 C. Computational Complexity

C.8. SROM-based Preconditioner

The algorithm, the number of flops per iteration and memory storage of the Precondi-
tioned Conjugate Gradient method are given in this section. The preconditioner used
in this section is different than the one used in the PCG method. Therefore, we refer
to section C.2 for the algorithm.

Algorithm

The operation steps is the same as PCG method. The only difference is replacing the
preconditioner at step 5. The symmetric ROM-based preconditioner is given by:

𝒫SROM =MᎽᎳ +Q− 12(QAM
ᎽᎳ +MᎽᎳAQ) (C.10)

Table C.18: The number of flops of constructing SROM-based preconditioner

x = 𝒫SROMy
x =MᎽᎳy (2𝑠 + 1)𝑁
rᎳ = ZᏁy 2𝑀𝑁 −𝑀
rᎴ = rᎳ − Ꮃ

ᎴH
Ꮑy 2𝑀𝑁 +𝑀

eᎳ = EᎽᎳrᎳ 2𝑀Ꮄ

eᎴ = EᎽᎳrᎴ 2𝑀Ꮄ

eᎳ = Ꮃ
ᎴHeᎳ 2𝑀𝑁

eᎴ = ZeᎴ 2𝑀𝑁 − 𝑁
x = x− eᎳ + eᎴ 3𝑁
Total (8𝑀 + 2𝑠 + 3)𝑁 + 4𝑀Ꮄ

C.8. SROM-based Preconditioner 95

Computational Efficiency

Table C.19: The number of flops of the Preconditioned Conjugate Gradient method using SROM-based precondi-
tioner

Operation Flops
1. Construct L Ꮃ

Ꮄ(ኽ፬ ዅ ኽ)ፍ
Construct V ዆ AZ (ኼ፬ ዅ ኻ)ፌፍ
Construct E ዆ ZᏁV (ኼፍ ዅ ኻ)ፌᎴ

Construct C Ꮃ
ᎵፌᎵ

Construct H ዆MᎽᎳV (ኼ፬ ዄ ኻ)ፌፍ
2. xᎲ ዆ x

rᎲ ዆ b ዅ AxᎲ ኼ፬ፍ
zᎲ ዆ 𝒫SROMrᎲ (ዂፌ ዄ ኼ፬ ዄ ኽ)ፍ ዄ ኾፌᎴ

pᎲ ዆ zᎲ
᎐Ꮂ ዆ ⟨zᎲ, rᎲ⟩ ኼፍ ዅ ኻ

5a. wᑜ ዆ Apᑜ (ኼ፬ ዅ ኻ)ፍ
5. zᑜᎼᎳ ዆ 𝒫SROMrᑜ (ዂፌ ዄ ኼ፬ ዄ ኽ)ፍ ዄ ኾፌᎴ

6. ᎎᑜ ዆ ᒈᑜ
⟨wᑜ ,pᑜ⟩

ኼፍ
7. xᑜᎼᎳ ዆ xᑜ ዄ ᎎᑜpᑜ ኼፍ
8. rᑜᎼᎳ ዆ rᑜ ዅ ᎎᑜwᑜ ኼፍ
9a. ᎐ᑜᎼᎳ ዆ ⟨zᑜᎼᎳ, rᑜᎼᎳ⟩ ኼፍ ዅ ኻ
9. ᎏᑜ ዆ ᒈᑜᎼᎳ

ᒈᑜ ኻ
10. pᑜᎼᎳ ዆ zᑜᎼᎳ ዄ ᎏᑜpᑜ ኼፍ
11. xᑚᑥ ዆ xᑜᎼᎳ

Total Initial (ኼፌ ዄ ኾ፬ ዄ ዂ)ፌፍ ዄ Ꮃ
Ꮄ(ኻኻ፬ ዄ ዁)ፍ ዄ Ꮃ

ᎵፌᎵ ዄ ኽፌᎴ ዅ ኻ
Iteration (ዂፌ ዄ ኾ፬ ዄ ኻኼ)ፍ ዄ ኾፌᎴ

Memory positions
Scalars ᎎ 1

ᎏ 1
᎐ᑜ 1
᎐ᑜᎼᎳ 1

Vectors xᑜ ፍ
b ፍ
pᑜ ፍ
rᑜ ፍ
wᑜ ፍ
zᑜ ፍ

Matrices A ፬ፍ
L Ꮃ

Ꮄ(፬ ዄ ኻ)ፍ
C Ꮃ

Ꮄ(ፌ ዄ ኻ)ፌ
Z ፌፍ
V ፌፍ
H ፌፍ

Total Ꮃ
Ꮄ(ዀፌ ዄ ኽ፬ ዄ ኻኽ)ፍ ዄ Ꮃ

Ꮄ(ፌ ዄ ኻ)ፌ ዄ ኾ

96 C. Computational Complexity

C.9. Conclusion
The overview of the number of flops can be found in Table C.20 and memory storage
can be found in C.21.

Table C.20: Overview table of the number of flops of the above discussed methods.

Methods Flops
Initial Iterations

CG (ኼ፬ ዄ ኼ)ፍ ዅ ኻ (ኼ፬ ዄ ዃ)ፍ
PCG Ꮃ

Ꮄ(ኻኻ፬ ዄ ኻ)ፍ ዅ ኻ (ኾ፬ ዄ ኻኺ)ፍ
DCG (ዀፌ ዄ ኼ፬ ዄ ዃ)ፌፍ ዄ (ኼ፬ ዄ ኼ)ፍ ዄ Ꮃ

ᎵፌᎵ ዅፌᎴ ዅ ኽፌ ዅ ኻ (ኾፌ ዄ ኼ፬ ዄ ዃ)ፍ ዅፌ

DEF1 (ዀፌ ዄ ኼ፬ ዄ ዃ)ፌፍ ዄ Ꮃ
Ꮄ(ኻኻ፬ ዄ ኻ)ፍ ዄ Ꮃ

ᎵፌᎵ ዅፌᎴ ዅ ኽፌ ዅ ኻ (ኾፌ ዄ ኾ፬ ዄ ኻኺ)ፍ ዅፌ
DEF2 (ዀፌ ዄ ኼ፬ ዄ ዃ)ፌፍ ዄ Ꮃ

Ꮄ(ኻኻ፬ ዄ ኻ)ፍ ዄ Ꮃ
ᎵፌᎵ ዅፌᎴ ዅ ኽፌ ዅ ኻ (ኾፌ ዄ ኾ፬ ዄ ኻኺ)ፍ ዅፌ

A-DEF1 (ዀፌ ዄ ኼ፬ ዄ ኽ)ፌፍ ዄ Ꮃ
Ꮄ(ኻኻ፬ ዄ ኽ)ፍ ዄ Ꮃ

ᎵፌᎵ ዅፌᎴ ዅፌ ዅ ኻ (ዀፌ ዄ ኾ፬ ዄ ኻኺ)ፍ ዅፌ
A-DEF2 (ዀፌ ዄ ኼ፬ ዄ ኻኽ)ፌፍ ዄ Ꮃ

Ꮄ(ኻኻ፬ ዄ ኽ)ፍ ዄ Ꮃ
ᎵፌᎵ ዅፌᎴ ዅ ኾፌ ዅ ኻ (ዂፌ ዄ ኾ፬ ዄ ኻኺ)ፍ ዅ ኼፌ

BNN (ዀፌ ዄ ኼ፬ ዄ ዃ)ፌፍ ዄ Ꮃ
Ꮄ(ኻኻ፬ ዄ ኽ)ፍ ዄ Ꮃ

ᎵፌᎵ ዅፌᎴ ዅ ኽፌ ዅ ኻ (ኻኼፌ ዄ ኾ፬ ዄ ኻኺ)ፍ ዅ ኽፌ
R-BNN1 (ዀፌ ዄ ኼ፬ ዄ ኻኽ)ፌፍ ዄ Ꮃ

Ꮄ(ኻኻ፬ ዄ ኽ)ፍ ዄ Ꮃ
ᎵፌᎵ ዅፌᎴ ዅ ኾፌ ዅ ኻ (ዂፌ ዄ ኾ፬ ዄ ኻኺ)ፍ ዅ ኼፌ

R-BNN2 (ዀፌ ዄ ኼ፬ ዄ ዃ)ፌፍ ዄ Ꮃ
Ꮄ(ኻኻ፬ ዄ ኽ)ፍ ዄ Ꮃ

ᎵፌᎵ ዅፌᎴ ዅ ኾፌ ዅ ኻ (ኾፌ ዄ ኾ፬ ዄ ኻኺ)ፍ ዅፌ

ROM (ኾፌ ዄ ኼ፬ ዄ ኼ)ፌፍ ዄ Ꮃ
Ꮄ(ኻ኿፬ ዄ ኽ)ፍ ዄ Ꮃ

ᎵፌᎵ ዅፌᎴ ዅፌ ዅ ኻ (ኾፌ ዄ ዀ፬ ዄ ኻኺ)ፍ ዅፌ
SROM (ኼፌ ዄ ኾ፬ ዄ ዂ)ፌፍ ዄ Ꮃ

Ꮄ(ኻኻ፬ ዄ ዁)ፍ ዄ Ꮃ
ᎵፌᎵ ዄ ኽፌᎴ ዅ ኻ (ዂፌ ዄ ኾ፬ ዄ ኻኼ)ፍ ዄ ኾፌᎴ

Table C.21: Overview table of the memory storage of the above discussed methods.

Methods Memory positions
CG (5 + 𝑠)𝑁 + 4
PCG Ꮃ

Ꮄ(3𝑠 + 13)𝑁 + 4
DCG (4𝑀 + 𝑠 + 6)𝑁 + 4

DEF1 Ꮃ
Ꮄ(8𝑀 + 3𝑠 + 13)𝑁 + 4

DEF2 Ꮃ
Ꮄ(8𝑀 + 3𝑠 + 13)𝑁 + 4

A-DEF1 Ꮃ
Ꮄ(8𝑀 + 3𝑠 + 13)𝑁 + 4

A-DEF2 Ꮃ
Ꮄ(8𝑀 + 3𝑠 + 13)𝑁 + 4

BNN Ꮃ
Ꮄ(8𝑀 + 3𝑠 + 13)𝑁 + 4

R-BNN1 Ꮃ
Ꮄ(8𝑀 + 3𝑠 + 13)𝑁 + 4

R-BNN2 Ꮃ
Ꮄ(8𝑀 + 3𝑠 + 13)𝑁 + 4

ROM Ꮃ
Ꮄ(6𝑀 + 3𝑠 + 13)𝑁 + 4

SROM Ꮃ
Ꮄ(6𝑀 + 3𝑠 + 13)𝑁 +

Ꮃ
Ꮄ(𝑀 + 1)𝑀 + 4

Focusing on number of iterations of each method, the flops in term of order 𝑁 is given
in Table C.22. Clearly, the cheapest method per iteration of the deflation methods is
the DEF1 method, the DEF2 method, the ROMmethod and the R-BNN2 method using
𝒪(4𝑀𝑁) flops per iteration.
It has been proven that the A-DEF2 method and the ROM method. The only difference
lies in the way of implementing the operators. The value depends on the size of the
deflation-subspace matrix Z ∈ ℝᑅ×ᑄ and sparsity 𝑠.
The most expensive method is the BNN method. Then, the R-BNN1 method and the
SROM method are expensive with using 𝒪(8𝑀𝑁) flopsper iteration.

C.9. Conclusion 97

Table C.22: Overview table of the iteration the number of flops of the above discussed methods of order ፍ.

Methods Flops
CG (2𝑠 + 9)𝑁
PCG (4𝑠 + 10)𝑁
DCG (4𝑀 + 2𝑠 + 9)𝑁

DEF1 (4𝑀 + 4𝑠 + 10)𝑁
DEF2 (4𝑀 + 4𝑠 + 10)𝑁
A-DEF1 (6𝑀 + 4𝑠 + 10)𝑁
A-DEF2 (8𝑀 + 4𝑠 + 10)𝑁

BNN (12𝑀 + 4𝑠 + 10)𝑁
R-BNN1 (8𝑀 + 4𝑠 + 10)𝑁
R-BNN2 (4𝑀 + 4𝑠 + 10)𝑁

ROM (4𝑀 + 6𝑠 + 10)𝑁
SROM (8𝑀 + 4𝑠 + 12)𝑁

Bibliography
[1] Jonsthovel TB A, van Gijzen Martin B, Vuik Cornelis, and Scarpas. On the Use of Rigid

Body Modes in the Deflated Preconditioned Conjugate Gradient Method. SIAM Jour-
nal on Scientific Computing, 35(1):B207–B225, 2013. ISSN 1064-8275. doi: 10.1137/
100803651. URL http://epubs.siam.org/doi/10.1137/100803651.

[2] Jönsthövel TB A, Van Gijzen MB, MacLachlan S, Vuik C, and Scarpas. Compari-
son of the deflated preconditioned conjugate gradient method and algebraic multigrid
for composite materials. Computational Mechanics, 50(3):321–333, 2011. ISSN 0178-
7675. doi: 10.1007/s00466-011-0661-y. URL http://link.springer.com/10.1007/
s00466-011-0661-y.

[3] Khalid Aziz and Antoni Settati. Petroleum Reservoir Simulation. Chapman & Hall, 1979.

[4] V. Forstall and K. Carlberg R. Tuminaro. Krylov-subspace recycling via the {POD}-
augmented conjugate-gradient algorithm. arXiv:1512.05820 [math], 37(3):1–32, 2015.
ISSN 0895-4798. doi: 10.1137/16M1057693. URL http://arxiv.org/abs/1512.
05820.

[5] G.B. Diaz Cortes, C. Vuik and J.D. Jansen. POD-based deflation techniques for the solu-
tion of two-phase flow problems in large and highly heterogeneous porous media. Tech-
nical Report 18-1, Delft University of Technology, Delft Institute of Applied Mathematics,
Delft, 2018.

[6] A.W. Heemink and P.T.M. Vermeulen C.B.M. Te Stroet. Reduced models for linear
groundwater flow models using empirical orthogonal functions. Advances in Water Re-
sources, 27(1):57–69, 2004. ISSN 03091708. doi: 10.1016/j.advwatres.2003.09.008.
URL http://linkinghub.elsevier.com/retrieve/pii/S0309170803001490.

[7] T Heijn, R Markovinović, J D Jansen, and et al. Generation of Low-Order Reservoir Models
Using System-Theoretical Concepts. In SPE Journal, volume 9, pages 3–5. Society of
Petroleum Engineers, 2004. ISBN 1111111111. doi: 10.2118/88361-PA.

[8] Jan Dirk Jansen. A systems description of flow through porous media. Springer, (April):
130, 2013. doi: 10.1007/978-3-319-00260-6.The. URL http://link.springer.com/
content/pdf/10.1007/978-3-319-00260-6.pdf.

[9] Jocelyne and Y. SaadM. Yeung J. Erhel F. Guyomarc’h. A deflated version of the conjugate
gradient algorithm. SIAM Journal on Scientific Computing, 21(5):1909–1926, 2000. ISSN
1064-8275. doi: 10.1137/s1064829598339761.

[10] K. Kahl and H. Rittich. The Deflated Conjugate Gradient Method: Convergence, Per-
turbation and Accuracy. Linear Algebra and its Applications, 515:111–129, 2012. URL
http://arxiv.org/abs/1209.1963.

[11] L Yu Kolotilina. Preconditioning of systems of linear algebraic equations by means of
twofold deflation. I. Theory. J. Math. Sci, 89:1652–1689, 1998.

[12] K. Kunisch and S. Volkwein. Galerkin Proper Orthogonal Decomposition Methods for a
General Equation in Fluid Dynamics. SIAM Journal on Numerical Analysis, 40(2):492–
515, 2002. ISSN 0036-1429. doi: 10.1137/S0036142900382612. URL http://epubs.
siam.org/doi/10.1137/S0036142900382612.

99

http://epubs.siam.org/doi/10.1137/100803651
http://link.springer.com/10.1007/s00466-011-0661-y
http://link.springer.com/10.1007/s00466-011-0661-y
http://arxiv.org/abs/1512.05820
http://arxiv.org/abs/1512.05820
http://linkinghub.elsevier.com/retrieve/pii/S0309170803001490
http://link.springer.com/content/pdf/10.1007/978-3-319-00260-6.pdf
http://link.springer.com/content/pdf/10.1007/978-3-319-00260-6.pdf
http://arxiv.org/abs/1209.1963
http://epubs.siam.org/doi/10.1137/S0036142900382612
http://epubs.siam.org/doi/10.1137/S0036142900382612

100 Bibliography

[13] Knut-Andreas. Lie. An introduction to reservoir simulation using MATLAB - user guide for
the Matlab Reservoir Simulation Toolbox (MRST). SINTEF ICT, 2014.

[14] M.A. Christie and M.J. Blunt. Tenth SPE Comparative Solution Project: a Comparison of
Upscaling Techniques. SPE Reservoir Engineering and Evaluation, 4(4):308–317, 2001.

[15] Jan Mandel. Balancing domain decomposition. Communications in Numerical Meth-
ods in Engineering, 9(3):233–241. doi: 10.1002/cnm.1640090307. URL https://
onlinelibrary.wiley.com/doi/abs/10.1002/cnm.1640090307.

[16] Jan MANDEL. Hybrid Domain Decomposition with Unstructured Subdomains. Contem-
porary Mathematics, 157, 1994.

[17] Jan Mandel and Marian Brezina. Balancing domain decomposition for problems with
large jumps in coefficients. Mathematics of Computation of the American Mathematical
Society, 65(216):1387–1401, 1996.

[18] R. Markovinović and J. van Doren J.D. Jansen. Reduced-order optimal control of water
flooding using proper orthogonal decomposition. Computational Geosciences, 10(1):137–
158, 2006. ISSN 1420-0597. doi: 10.1007/s10596-005-9014-2. URL http://link.
springer.com/10.1007/s10596-005-9014-2.

[19] R Nabben and C Vuik. A Comparison of Deflation and Coarse Grid Correction Applied to
Porous Media Flow. SIAM Journal on Numerical Analysis, 42(0):1631–1647, 2004. ISSN
0036-1429. doi: 10.1137/S0036142903430451.

[20] R. A. Nicolaides. Deflation of conjugate gradients with applications to boundary value
problems. URL https://epubs.siam.org/doi/pdf/10.1137/0724027.

[21] Damiano Pasetto, Massimiliano Ferronato, and Mario Putti. A reduced order model-
based preconditioner for the efficient solution of transient diffusion equations. Inter-
national Journal for Numerical Methods in Engineering, 109(8):1159–1179, 2017. ISSN
10970207. doi: 10.1002/nme.5320. URL https://onlinelibrary.wiley.com/doi/
abs/10.1002/nme.5320#.

[22] D.W. Peaceman. Interpretation of Well-Block Pressures in Numerical Reservoir Simula-
tion(includes associated paper 6988). Society of Petroleum Engineers Journal, 18(03):
183–194, 1978. ISSN 0197-7520. doi: 10.2118/6893-PA. URL http://www.onepetro.
org/doi/10.2118/6893-PA.

[23] Y Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied
Mathematics Philadelphia, PA, USA. SIAM, 2nd edition, 2003.

[24] Jonathan Richard Shewchuk. An Introduction to the Conjugate Gradient Method Without
the Agonizing Pain. Technical Report CS-94-125, 1994. URL http://citeseerx.ist.
psu.edu/viewdoc/download?doi=10.1.1.110.418&rep=rep1&type=pdf%
5Cnhttp://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf.

[25] J. M. Tang. Two-level Preconditioned Conjugate Gradient Methods with Applications to
Bubbly Flow Problems. PhD thesis, Delft University of Technology, 2008.

[26] J M Tang, R Nabben, C Vuik, and Y A Erlangga. REPORT 07-04 THEORETICAL AND
NUMERICAL COMPARISON OF VARIOUS PROJECTION METHODS DERIVED FROMDE-
FLATION, DOMAIN DECOMPOSITION AND MULTIGRID METHODS. 2007. ISSN 1389-
6520.

[27] F J Vermolen, C Vuik, and A Segal. Deflation in preconditioned conjugate gra-
dient methods for Finite Element Problems. pages 1–22, 2002. doi: 10.1007/
978-3-642-18560-1{_}7.

https://onlinelibrary.wiley.com/doi/abs/10.1002/cnm.1640090307
https://onlinelibrary.wiley.com/doi/abs/10.1002/cnm.1640090307
http://link.springer.com/10.1007/s10596-005-9014-2
http://link.springer.com/10.1007/s10596-005-9014-2
https://epubs.siam.org/doi/pdf/10.1137/0724027
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.5320#
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.5320#
http://www.onepetro.org/doi/10.2118/6893-PA
http://www.onepetro.org/doi/10.2118/6893-PA
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.110.418&rep=rep1&type=pdf%5Cnhttp://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.110.418&rep=rep1&type=pdf%5Cnhttp://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.110.418&rep=rep1&type=pdf%5Cnhttp://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf

Bibliography 101

[28] J.C. Vink and P. Astrid G. Papaioannou J.D. Jansen. Pressure Preconditioning Using
Proper Orthogonal Decomposition. In SPE Reservoir Simulation …, number February,
pages 21–23, 2011. ISBN 9781617823862. URL http://www.onepetro.org/mslib/
servlet/onepetropreview?id=SPE-141922-MS.

[29] C. Vuik and G.B. Diaz Cortes J.D. Jansen. Physics-based pre-conditioners for large-scale
subsurface flow simulation. Technical report, Delft University of Technology, Department
of Applied Mathematics, 2016.

[30] C. Vuik and G.B. Diaz Cortes J.D. Jansen. On POD-based Deflation Vectors for DPCG
applied to porous media problems. Technical Report 17-1, Delft University of Technology,
Delft Institute of Applied Mathematics, 2018. URL http://engineering.purdue.edu/
~mark/puthesis.

[31] C Vuik and D J P Lahaye. Scientific Computing (wi4201). 2015.

[32] C. Vuik and J.M. Tang R. Nabben Y. Erlangga. Theoretical and Numerical Comparison of
Various Projection Methods derived from Deflation, Domain Decomposition and Multigrid
Methods 1. Journal of scientific computing, 31429621(3):1–30, 2007.

[33] C. Vuik, A. Segal, and J. A. Meijerink. An efficient preconditioned cg method for the
solution of a class of layered problems with extreme contrasts in the coefficients. Journal
of Computational Physics, 152(1):385–403, 1999. ISSN 00219991. doi: 10.1006/jcph.
1999.6255.

[34] C Vuik, A Segal, J.A Meijerink, and G.T Wijma. The Construction of Projection Vectors for
a Deflated ICCG Method Applied to Problems with Extreme Contrasts in the Coefficients.
Journal of Computational Physics, 172(2):426–450, 9 2001. ISSN 0021-9991. doi: 10.
1006/JCPH.2001.6795. URL https://www.sciencedirect.com/science/article/
pii/S0021999101967956.

[35] K. Willcox and P. Astrid S. Weiland T. Backx. Missing Point Estimation in Models De-
scribed by Proper Orthogonal Decomposition. Autom. Control. IEEE Trans., 53(10):2237–
2251, 2008. ISSN 0018-9286. doi: 10.1109/TAC.2008.2006102.

http://www.onepetro.org/mslib/servlet/onepetropreview?id=SPE-141922-MS
http://www.onepetro.org/mslib/servlet/onepetropreview?id=SPE-141922-MS
http://engineering.purdue.edu/~mark/puthesis
http://engineering.purdue.edu/~mark/puthesis
https://www.sciencedirect.com/science/article/pii/S0021999101967956
https://www.sciencedirect.com/science/article/pii/S0021999101967956

	Abstract
	Acknowledgements
	Introduction
	Preliminaries
	Notation
	Definition
	Lemma

	Reservoir Simulation
	Porous Media
	Single-Phase Flow
	Mathematical Model
	Boundary Conditions
	Incompressible Model

	Two-Phase flow
	Well Model

	Iterative Numerical Methods
	Newton-Raphson
	Basic Iterative Method
	Conjugate Gradient
	Preconditioner
	Preconditioned Conjugate Gradient

	Deflation Method
	Deflated Preconditioned Conjugated Gradient
	Comparison of Deflated Methods with the Original Matrix
	Overview of Methods I

	Deflation Subspace-Vectors Z
	Subdomain Vectors
	Eigenvectors
	Proper Orthogonal Decomposition

	Two-Level Preconditioner Conjugate Gradient
	Additive Preconditioner
	Multiplicative Preconditioner
	Deflation method
	Adapted Deflation methods
	Reduced Order Model-based
	Abstract Balancing Methods
	Overview of methods II

	Theoretical Comparison between Two-Level Preconditioners
	Computational Complexity
	Memory Storage
	Comparison of the Spectrum
	Theoretical Comparison of the A-DEF2 method and the ROM method
	Spectra Analysis of Deflation Methods
	Spectrum Analysis of SROM

	Concluding Remarks

	Test cases
	Test Case 1: Laplace Equation
	Test Case 2: Multilayer Problem
	Test Case 3: SPE10 Model
	Termination Criterion

	Comparison between Two-Level Preconditioners using Numerical Experiments
	Test Case 1: Laplace Equation
	Subdomain as Deflation Vectors
	Eigenvectors as Deflation Vectors

	Test Case 2: Layered Problem
	Subdomain vectors as deflation vectors
	Complexity
	Special Starting Vector
	Eigenvectors as Deflation Vectors
	Spectra Analysis

	Test Case 3: SPE10
	Eigenvectors as Deflation Vectors
	POD Basis vectors as Deflation Vectors
	Difference using Eigenvectors of the Preconditioned Matrix or POD basis vectors as Deflation Vectors
	Initial Vector

	Concluding Remarks

	Conclusion
	Nomenclature
	Compressible Model
	Constant Compressibility
	Discretization of the Compressible Model

	Computational Complexity
	Conjugate Gradient
	Preconditioned Conjugate Gradient
	Deflation Method
	Deflation Variant
	Adapted Deflation Variant
	Reduced BNN
	ROM-based Preconditioner
	SROM-based Preconditioner
	Conclusion

	Bibliography

