

Delft University of Technology

Optimizing performance of GATK workflows using Apache Arrow In-Memory data
framework

Ahmad, Tanveer; Ahmed, Nauman; Al-Ars, Zaid; Hofstee, H. Peter

DOI
10.1186/s12864-020-07013-y
Publication date
2020
Document Version
Final published version
Published in
BMC Genomics

Citation (APA)
Ahmad, T., Ahmed, N., Al-Ars, Z., & Hofstee, H. P. (2020). Optimizing performance of GATK workflows
using Apache Arrow In-Memory data framework. BMC Genomics, 21, 1-14. Article 683.
https://doi.org/10.1186/s12864-020-07013-y

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1186/s12864-020-07013-y
https://doi.org/10.1186/s12864-020-07013-y

Ahmad et al. BMC Genomics 2020, 21(Suppl 10):683
https://doi.org/10.1186/s12864-020-07013-y

SOFTWARE Open Access

Optimizing performance of GATK
workflows using Apache Arrow In-Memory
data framework
Tanveer Ahmad1*, Nauman Ahmed1, Zaid Al-Ars1* and H. Peter Hofstee1,2

From The 18th Asia Pacific Bioinformatics Conference
Seoul, Korea. 18–20 August 2020

Abstract

Background: Immense improvements in sequencing technologies enable producing large amounts of high
throughput and cost effective next-generation sequencing (NGS) data. This data needs to be processed efficiently for
further downstream analyses. Computing systems need this large amounts of data closer to the processor (with low
latency) for fast and efficient processing. However, existing workflows depend heavily on disk storage and access, to
process this data incurs huge disk I/O overheads. Previously, due to the cost, volatility and other physical constraints of
DRAM memory, it was not feasible to place large amounts of working data sets in memory. However, recent
developments in storage-class memory and non-volatile memory technologies have enabled computing systems to
place huge data in memory to process it directly from memory to avoid disk I/O bottlenecks. To exploit the benefits of
such memory systems efficiently, proper formatted data placement in memory and its high throughput access is
necessary by avoiding (de)-serialization and copy overheads in between processes. For this purpose, we use the newly
developed Apache Arrow, a cross-language development framework that provides language-independent columnar
in-memory data format for efficient in-memory big data analytics. This allows genomics applications developed in
different programming languages to communicate in-memory without having to access disk storage and avoiding
(de)-serialization and copy overheads.

Implementation: We integrate Apache Arrow in-memory based Sequence Alignment/Map (SAM) format and its
shared memory objects store library in widely used genomics high throughput data processing applications like BWA-
MEM, Picard and GATK to allow in-memory communication between these applications. In addition, this also allows
us to exploit the cache locality of tabular data and parallel processing capabilities through shared memory objects.

Results: Our implementation shows that adopting in-memory SAM representation in genomics high throughput
data processing applications results in better system resource utilization, low number of memory accesses due to
(Continued on next page)

*Correspondence: t.ahmad@tudelft.nl; z.al-ars@tudelft.nl
1Accelerated Big Data Systems Group, Quantum & Computer Engineering
Department, Delft University of Technology, Delft The Netherlands
Full list of author information is available at the end of the article

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-020-07013-y&domain=pdf
mailto: t.ahmad@tudelft.nl
mailto: z.al-ars@tudelft.nl
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Ahmad et al. BMC Genomics 2020, 21(Suppl 10):683 Page 2 of 14

(Continued from previous page)

high cache locality exploitation and parallel scalability due to shared memory objects. Our implementation focuses on
the GATK best practices recommended workflows for germline analysis on whole genome sequencing (WGS) and
whole exome sequencing (WES) data sets. We compare a number of existing in-memory data placing and sharing
techniques like ramDisk and Unix pipes to show how columnar in-memory data representation outperforms both. We
achieve a speedup of 4.85x and 4.76x for WGS and WES data, respectively, in overall execution time of variant calling
workflows. Similarly, a speedup of 1.45x and 1.27x for these data sets, respectively, is achieved, as compared to the
second fastest workflow. In some individual tools, particularly in sorting, duplicates removal and base quality score
recalibration the speedup is even more promising.

Availability: The code and scripts used in our experiments are available in both container and repository form at:
https://github.com/abs-tudelft/ArrowSAM.

Keywords: Genomics, Whole Genome/Exome Sequencing, Big Data, Apache Arrow, In-Memory Data, GATK Best
Practices

Introduction
The genome of an organism is the complete set of its
genetic material represented by its DNA sequence. Each
cell in a human body contains a complete replication
of the approximately 3 billion base pairs (bps) of DNA.
The genomics field emphasizes on the understanding of
structure, mapping and function of individuals genes (the
genome) to get insights into their interaction and evolu-
tion with respect to one’s environment. In comparative
genomics, complete genome features of different spices
are extensively compared (for example with a reference
genome) using computational tools. These comparisons
can lead to fully characterize the resemblances and differ-
ences in one’s genomic features, trace down their origin or
lineage, how the change or loss emerges throughout the
evolutionary lineages and discover ways to cure diseases
caused by genetic variations and developing personalized
medicine and improving environmental health [1].

Variant calling is indispensable for comparative
genomics as it reveals deep insights into nucleotide-level
organismal differences in some specific traits among pop-
ulations from an individual genome sequence data. Vari-
ant calling discerns genetic variations in three categories
like, single nucleotide polymorphisms (SNPs), insertions
and deletions (indels), and/or structural variants (SVs,
may also include Copy Number Variants (CNVs), dupli-
cation, translocation, etc). An SNP reports a single base
change in two genomes while the DNA around that base
remains unchanged. Indels are single bases which have
been inserted, or deleted in a genome when aligning
to another reference genome. Structural variants are
observed in organism’s chromosome structures. Generally
defined as a region of DNA approximately 1 kbp or larger
in size having variations in the form of inversions, translo-
cations or deletions, insertions and CNVs (also called
duplications). DNA sequencing reveals that CNVs are
commonly observed in various organisms, particularly in
human, which vary from individual to individual. Approx-

imately two third of whole human genome is composed of
such repeats.

DNA can mutate in any of the somatic cells or in ger-
minal cells (germ cells); such variations are referred as
somatic and germinal mutations, respectively. Somatic
analysis identifies the variations in normal and tumor
affected tissues. Somatic mutations/variations can cause
cancer or other diseases. In germline analysis the vari-
ations in an individual’s DNA inherited from parents are
analyzed to identify presence of inherited disease.

In whole-genome sequencing (WGS) the complete set
of DNA sequences (both the entire protein coding and
the non-coding regions of the genome) of an organism are
determined. This gives a comprehensive and precise fin-
gerprint of the whole DNA. Whole-exome sequencing
(WES) instead just focuses on collecting DNA sequences
of some specific regions (like protein coding). WES sam-
ples are typically sequenced at 100X or 30X coverage
which focuses on less than ∼5% of the complete genome.
Both techniques have their own benefits. WES saves
costs and also gives more DNA coverage resulting in
higher accuracy. WGS covers the complete genome which
is good for fully characterizing and understanding the
genome.

Genome/Exome pre-processing
The pre-processed genomics data can be used for timely
identification of gene mutation, diagnosis of disease as
well as the development of targeted therapies. Gener-
ally pre-processing steps include alignment, sorting and
duplicate reads removal from target genome sequence
data. Many tools have been developed for analysis of
high throughput sequencing data, from local alignment
database search tools like BLAST [2], FASTA [3] to pair-
wise alignment tools like MALIGN [4], EMBOSS [5],
tools like BLAT [6] Bowtie2 [7] and BWA [8] for short
read sequence alignments and Minimap and Miniasm
[9], DALIGNER [10] and DARWIN [11] tools for long

https://github.com/abs-tudelft/ArrowSAM

Ahmad et al. BMC Genomics 2020, 21(Suppl 10):683 Page 3 of 14

reads alignment and mapping. Tools like SAMTools [12],
Picard [13], Sambamba [14] and samblaster [15] are devel-
oped for alignment post-processing stages like indexing,
sorting, duplicates removal in SAM/BAM (Binary Align-
ment/Map) files.

Variant callers
GATK and Freebayes are commonly used open-source
tools for germline variant calling analysis. Tools like
VarScan [16], VarDict [17], MuTect2 [18] are used for
somatic variant calling analysis. FreeBays [19], SNVer [20]
and LoFreq [21] are also used for both germline and
somatic variant calling analysis. Pisces [22] and Strelka2
[23] are recently developed open source tools by Illum-
nia for short variant calling to analyze both germline and
somatic variations. DeepVariant [24] is deep convolutional
neural network based variant caller. Both Strelka2 and
DeepVariant variant callers outperform GATK, FreeBays
and samtools in PrecisionFDA (pFDA) Challenges for pre-
cision and accuracy on indels and SNVs for different data
sets. The output of these tools is generated in the variant
calling format (VCF) to visualize and further analyze the
detected variations.

Challenges in genomics data processing
Comparative genomics is a young field. To process and
analyze genomics data, the research community is actively
working to develop new, efficient and optimized algo-
rithms, techniques and tools, usually programmed in a
variety of languages, such as C, Java or Python. As we have
mentioned earlier, in order to construct a whole workflow
for complete genome analysis, one has to use a combina-
tion of different open-source tools. These tools share the
following common characteristics that impose limitations
on the performance achievable by the genomics workflow.

• These tools are developed to use traditional I/O file
systems, which incur a huge I/O bottleneck in
computation due to disk bandwidth [25]. Each tool
reads from the I/O disks, computes and writes back
to disk.

• Due to the virtualized nature of some popular
languages used to develop genomics tools (such as
Java and Python), these tools cannot exploit modern
hardware features like multi-core parallelization,
Single instruction, multiple data (SIMD)
vectorization and accelerators (like GPU or FPGAs)
performance very well.

• In between processes data communication developed
in different languages, a huge (de)-serialization and
copy overheads incur.

Motivation
New storage-class memory (SCM) technologies will soon
replace the existing long latency and block-based data

transfer HDDs/SSDs storage. Intel’s phase-change mem-
ory (PCM) based Optane DC (Data Center) Persistent
Memory is one of the first candidates in this paradigm to
accelerate big data workloads for in-memory analytics and
provide fast startup-times for legacy applications/virtual
machines in cloud environments [26–28]. Using these
memories to store SAM data in columnar format and
shared memory objects can provide benefit in many
aspects to improve overall system throughout:

• One is related to the tabular nature of genomics data
(SAM) in-memory.

• Second is related to underlying hardware technology
to exploit the maximum cache spatial locality and
SIMD vectorization capabilities of modern
multi-core systems.

• Third is to avoid (de)serialization of data when
processing in different languages. Shared memory
objects of SAM data can be processed in parallel.

We use DRAM as an alternative to such memory tech-
nologies for evaluation purpose because of its same
characteristics of byte-addressability (load/store access to
memory) and lower latency.

Background
This section provides a short description of widely-
adopted GATK variant calling workflow, NGS technolo-
gies and the amount of data they produce and the chal-
lenges in processing this data. A brief introduction to the
Apache Arrow framework and its Plasma shared memory
API is also given.

Genome Analysis Toolkit (GATK)
GATK [29] from the Broad Institute is considered as
a benchmark for variant calling discovery. As the SAM
[30] is a de-facto format for storing NGS data, its com-
pressed and indexed BAM [30] version is used in GATK
tools as input file(s). GATK tools produce variant call-
ing outputs in many different formats like VCF, GVCF
and different useful statistics in text format. GATK inter-
nal architecture is based on the philosophy of MapRe-
duce [31] functional programming paradigm to achieve
maximum parallel efficiency by distributing data among
processes. In MapReduce programming, the computa-
tions are accomplished in two steps; first the problem is
divided into many discrete independent tasks which are
fed to the map function. After completion of tasks their
respective outputs are merged into a reduce function to
generate a final output product. GATK reads/writes data
files through htsjdk library, divides and prepares data in
traversals then processes in walker modules. The walker
modules provide the map and reduce functions for data
consumption [32].

Ahmad et al. BMC Genomics 2020, 21(Suppl 10):683 Page 4 of 14

Fig. 1 Left: An example where (de)serialization and copy takes place when data is exchanged between different languages and platforms. Right:
Apache Arrow provides a unified in-memory format for data placement which can be used in many languages and platforms avoiding the
(de)serialization and copy overhead

GATK best practices workflows
For the analysis and interpretation of NGS data to be
used in clinical settings, different tools and workflows
have been created. GATK recommended best practices for
variant calling proposes BWA-MEM for mapping reads,
while Picard or Sambamba can be used for sorting and
mark duplicates removal in the reads. Base Quality Score
Recalibration (BQSR) in GATK adjusts the quality score
of reads by employing machine learning algorithm. The
following common GATK workflows [33, 34] are avail-
able in GATK4 for different types of variant calling. 1. For

identifying germline short variants (SNPs and indels) in
one or more individuals the Haplotypecaller algorithm is
used to generate a joint callset in VCF format. 2. Sim-
ilarly Mutect2 is used for somatic short variants (SNVs
and indels) identification in one or more tumor samples
in a single individual, with or without a matched normal
sample. 3. For germline short variants (SNPs and indels)
discovery in human exome sequencing data the workflow
uses intervals file in BED format while the Haplotype-
caller algorithm is used to generate a joint callset in VCF
format.

Fig. 2 In-memory architecture of GATK best practices recommended workflow using Arrow in-memory SAM representation for all intermediate steps

Ahmad et al. BMC Genomics 2020, 21(Suppl 10):683 Page 5 of 14

Next-generation sequencing: technologies and data
The first ever Human Genome Project [1990—2003] con-
cluded an initial sequence draft of human genome consist-
ing of approximately 2.85 billion nucleotides [35]. Since
then, genomics data has been increasing rapidly due to
the innovations in genome sequencing technologies and
analysis methods. Second Generation Sequencing (NGS)
technologies like Illumina’s HiSeqX and NextSeq produce
whole genome, high throughput and high quality short
read data at a total cost of $1K per genome, which is
expected to drop down below $100 for more advanced
sequencing technologies. Third generation sequencing
technologies are now capable of sequencing reads of more
than 10 kilo-base-pairs (kbp) in length, such as Oxford
Nanopore, Single Molecule Real-Time and Pacific Bio-
Sciences sequencing technologies. The ongoing pace of
these technologies promises even more longer reads of
∼100 kbp on average. Long reads produced by third gen-
eration sequencing technologies provide the prospect to
fully characterize genomes at high resolution for precision
medicine [36].

Apache Arrow
The Apache Arrow [37] project was initiated by the
Apache Foundation in 2016. This framework provides an
open and a common standardized format for different
programming languages for reading/writing tabular data
in-memory. Through language-specific libraries, multiple
languages can share data without any copying or serial-
ization. This in-memory access of data through Apache
Arrow is illustrated in Fig. 1. At the time of writing,
Apache Arrow supports the following languages: Go,
C, C++, C#, Java, JavaScript, R, Rust, MATLAB, Ruby
and Python. Interfaces exist for GPGPU programming,
through Arrow CUDA interfaces. External tools to sup-
port FPGA accelerators also exist through the Fletcher
project [38]. In the Arrow format, data entries (records)
are stored in a table called a RecordBatch. Each record
field is stored in a separate column of the RecordBatch
table in a manner that is as contiguous as possible in mem-
ory. This is called an Arrow Array which can store data of
different types—i.e., int, float, strings, binary, timestamps
and lists, but also nested types (such as lists of lists, etc.).
Arrays may have different types of physical buffers to store
data. This layout provides higher spatial locality when
iterating over column contiguous data entries for better
CPU cache performance. SIMD (Single instruction, mul-
tiple data) vector operations can also benefit from such a
layout as vector elements are already aligned properly in
memory.

Plasma in-memory object store
Plasma is an inter-process communication (IPC) compo-
nent of Arrow, that handles shared memory pools across

different heterogeneous systems [39]. To perform IPC,
processes can create Plasma objects inside the shared
memory pool, that are typically data buffers underlying an
Arrow RecordBatch. Through the shared memory pool,
Plasma enables zero-copy data sharing between processes.

Implementation
In order to enable genome pre-processing applications
and GATK (Fig. 2) to use in-memory SAM data, two main
optimization are required. First, we need to define an in-
memory Arrow representation of the SAM data. Second,
the applications need to be adapted to access the new in-
memory SAM data. These applications access, update and
create new data fields as shown in Fig. 3. In the following,
these two optimizations are discussed.

In-memory SAM format
The SAM file format is an ASCII based, tab delimited text
format to represent DNA sequence data. We create an
in-memory SAM representation using the Apache Arrow
columnar format that consists of the same fields (columns)
used in SAM to store the corresponding data, this for-
mat is also explicitly explained in our previous work [40].
We call this the ArrowSAM format, this stores the data
in RecordBatches. Each RecordBatch is a combination
of a schema, which specifies the types of data fields of
ArrowSAM and the data itself, more details of in-memory
Arrow data representation can be found in [40].

Genomics applications can use ArrowSAM to create
RecordBatches of genomics data in-memory.

RecordBatch columnar data can be deleted/updated in
the same application but to make data usable in other
applications we have to use shared memory flat buffers.

BWA-MEM integration
BWA-MEM is the most popular alignment algorithms
in the bioinformatics community due to its efficient and
accurate alignment of raw FASTQ data against a large ref-
erence genome. After performing alignment of each read,
it creates a SAM record of twelve data fields as shown in
Fig. 3. Instead of writing these records in a SAM file, we
modified BWA-MEM to use the ArrowSAM format and
Arrow libraries to store these records in Arrow Buffers.
We have created as many such buffers as number of chro-
mosomes. So we check the reference name (RNAME) of
each record and insert to its respective buffer. At the end
of the alignment process, all the buffers are converted to
RecordBatches which are inserted into shared memory
pool.

Sorting through pandas dataframes
Randomly generated SAM reads need to be sorted by
their respective chromosome and individual coordinates
(begin positions) within a chromosome. Pandas is a pow-

Ahmad et al. BMC Genomics 2020, 21(Suppl 10):683 Page 6 of 14

Fig. 3 In-memory SAM data placement for all chromosomes (1-22, X, Y and M) in GATK best practices workflow. Applications access it through
shared memory plasma objects. For higher sequencing coverage data i.e, WGS data, each chromosomes with size more than 2GB are further
divided for scalability

erful and easy to use python library, which provides data
structures, data cleaning and analysis tools. Dataframes
is an in-memory data library that provides structures to
store different types of data in tabular format to perform
operations on the data in columns/rows. Any row in a
dataframe can be accessed with its index, while a col-
umn can be accessed by its name. A column can also be
a series in pandas. Using dataframes with python arrow
bindings (PyArrow) illustrates the powerful capabilities of
in-memory data representation. Tools like Picard, Sam-
tools and Sambamba are used to sort the reads in a
SAM file according to the chromosome name and start
positions of each read. This type of sorting becomes com-
putationally intensive when the whole SAM file needs
to be parsed and sorted based on these two fields. In
contrast, our implementation uses pandas dataframes to
sort each individual chromosome based on the start posi-
tion of reads in that particular chromosome. This reduces
the computational effort needed to sort the reads since
we already assign them to the RecordBatch that belongs
to their own chromosome. Therefore, we only need to
sort them based on their position. We create new Record-
Batches for each chromosome with sorted data as shown
in Fig. 3.

All shared memory objects of chromosomes are fed
to pandas dataframes to sort in parallel. After sorting,
the new sorted chromosomes RecordBatches are stored
in shared memory by deleting previous shared memory
objects, to be used by subsequent applications.

Picard MarkDuplicate integration
After sorting the reads by their coordinates, the dupli-
cate reads with low quality should be removed. The
MarkDuplicate tool in the Picard package is considered
as a standard algorithm for duplicate reads removal. This
tool reads the SAM files two times, first when build-
ing the sorted read end lists and second when removing
marked duplicates from those lists by comparing each
individual read in the file. This tool has two main lim-
itations: first it reads SAM data sequentially from the
input file, second it converts all input file reads data into
their corresponding SAM records. SAM files are usu-
ally stored in disk in compressed format (called BAM)
that has a compression ratio of about 30%. This means
every time we read and write these files to disk, we
have to incur a the overhead of compression and decom-
pression. To overcome these overheads, we just read
the data as ArrowSAM format in-memory once, access-
ing only five fields (QNAME, FLAG, RNAME, POS,
CIGAR and RNEXT) as shown in Fig. 3, which are actu-
ally needed to perform the MarkDuplicate operation. For
this purpose, We have modified the htsjdk (a java API
used in Picard, GATK and many other tools for manag-
ing I/O access of high-throughput sequencing data files)
to access shared memory stored plasma objects, and parse
them to their respective RecordBatch. Each SAM read
with the above mentioned five fields is accessed via index.
Each shared memory object contains one chromosome
SAM data. To take advantage of this, our implementation

Ahmad et al. BMC Genomics 2020, 21(Suppl 10):683 Page 7 of 14

processes all chromosomes in parallel by initiating as
many Picard instances as number of chromosomes. After
processing reads, MarkDuplicate sets the duplicate bit
in the FLAG field, so only the FLAG field is updated in
this process which is written in a separate shared mem-
ory object for each chromosome. After completion of the
MarkDuplicate stage, the sorted and updated duplicate
flag data is available in shared memory objects for further
analysis.

GATK BaseRecalibration integration
Variant calling heavily relies on the assigned base quality
scores per base in individual reads. These scores are esti-
mates of sequencing machine errors in producing bases.
However, these scores are also affected due to system-
atic errors in the sequencing machines. BaseRecalibration
finds systematic error patterns by analyzing how these
errors vary over all bases. Only seven fields are accessed:
six fields (RNAME, POS, MAPQ, CIGAR, SEQ and
QUAL) from ArrowSAM records of shared memory
objects created in the ’Sorting’ process, and one (FLAG)
field created in MarkDuplicate process as shown in Fig. 3.
We have also modified the access to the htsjdk library for
this application similar to the MarkDuplicate application.
All shared memory objects of individual chromosomes are
processed in parallel by initiating as many as BaseRecali-
bration instances as number of chromosomes. All relevant
information generated by this tool is recorded in tables.

GATK ApplyBQSR integration
ApplyBQSR applies numerical corrections to each indi-
vidual basecall based on the patterns identified in BaseRe-
calibration tables. This application generates new QUAL
and INDEX fields which are written in a separate
shared memory object. In this application, the same
seven fields are accessed: six fields (RNAME, POS,
MAPQ, CIGAR, SEQ and QUAL) from in-memory
SAM records of shared memory objects created in ’Sort-
ing’ process and one (FLAG) field created in MarkDu-
plicate process as shown in Fig. 3. We have also modified
htsjdk library for this process similar to previous pro-
cesses except in generating output. Because we limit our
processing to specific parts of the genome by filtering
out unused intervals as provided in a special filtering file
(called bed file), only those reads which fall in these spe-
cific intervals are forwarded for further processing. To
properly map the newly created QUAL field output with
that of original in-memory ArrowSAM data of the sort-
ing process (to be used in the next application), we have
appended an additional field ’index’. This field stores the
index of the original read. All shared memory objects of
individual chromosomes are processed in parallel by initi-
ating as many as ApplyBQSR instances as the number of
chromosomes.

GATK HaplotypeCaller integration
HaplotypeCaller calls SNPs and Indels through local de-
novo assembly in active regions. Active regions are those
which have some sufficient probability of variation. Here
eight fields are accessed: five fields (RNAME, POS,
MAPQ, CIGAR and SEQ) from ArrowSAM records of
shared memory objects created in the ’Sorting’ appli-
cation, one (FLAG) field created in the MarkDuplicate
application and two (QUAL and INDEX) field created in
the ApplyBQSR application as shown in Fig. 3. We have
also modified access to the htsjdk library for this pro-
cess similar to previous processes like ApplyBQSR. First,
the INDEX field is checked as an alternative to intervals,
so that particular index in the original ArrowSAM object
created in the ’Sorting’ process is accessed. This indexing
technique has one benefit and also one drawback. In terms
of benefit, using the index field, we access only those fields
which fall in given bed file intervals for exome analysis.
Drawback is related to cache performance. Due to repeat-
edly changing the index during reads access, the cache
spatial locality cannot be exploited efficiently. The output
of this process is generated in VCF file format. Because we
are processing all the shared memory objects of individual
chromosomes in parallel, separate chromosome files are
generated which need to be merged for further variants
analysis.

Methods
We compare our ArrowSAM-based workflow to a number
of popular workflows used in the field. For alignment we
use BWA-MEM for all workflows due to its high accuracy
and efficiency. For sorting and duplicate removal, Picard,
Sambamba and elPrep (sfm) have been used. GATK and
elPrep are used for the base recalibration and variant dis-
covery stages. The reason behind selecting elPrep for per-
formance comparison is the fact that it uses in-memory,
and multi-threading techniques for pre-processing and
variant discovery, while reporting to produce the same
accuracy as that of GATK [41]. In contrast, our imple-
mentation also facilitates in-memory and multi-threading
features while using the exact same Picard and GATK
applications. The reason for selecting Sambamba for the
comparison is its multi-threaded nature and for being
more efficient than other open source tools available for
sorting and mark duplicate operations with the same
accuracy as Picard.

In the following subsections, we discuss the workflows
used in comparison to ArrowSAM based implementation.

Storage (BWA-MEM - Picard - GATK)
This combination of tools is used in almost all GATK
recommended best practices workflows for both whole
genome and whole exome sequencing analysis. Both ref-
erence and query raw data sets are placed in local storage

Ahmad et al. BMC Genomics 2020, 21(Suppl 10):683 Page 8 of 14

and all applications access data through local disk I/O. All
the immediate results of each application are also written
in local disk in standard SAM/BAM files.

Storage (BWA-MEM - Sambamba - GATK)
Sambamba is used here as an alternative to Picard for
sorting and mark duplicates operations. Sambamba as
mentioned earlier is faster than Picard for both of these
applications because of multi-threading. But unfortu-
nately parallel performance of Sambamba is limited and
not scalable due to I/O saturation. All data sets and imme-
diate results of each application are using local storage for
I/O.

ramDisk (BWA-MEM - Sambamba - GATK)
In this workflow, we use ramDisk (memory-mapped disk)
instead of local storage, since we can improve perfor-
mance of these applications by placing data closer to
the processor. This way, all data sets and immediate
results of each application are kept in ramDisk in standard
SAM/BAM files.

ramDisk (BWA-MEM - Sambamba - GATK (Parallel))
We can use some sort of naive parallelism for performance
improvement in some GATK applications. For example in
whole exome sequencing, BaseRecalibration application
uses an interval file with -L option. If we split the interval
file for each chromosome and pass the individual interval
files to multiple instances of the BaseRecalibration appli-
cation each executed for an individual chromosome in
parallel, it will generate output ‘tables’ separate for each
chromosome. Then, ApplyBQSR can also use the individ-
ual chromosomes interval files and ‘tables’. So running the
ApplyBQSR instances in parallel will generate new BAM
files for each individual chromosome separately. These
individual chromosome BAMs and interval files can be
passed to parallel instances of HaplotypeCaller, which will
generate separate VCF files for individual chromosomes.
These VCF files can then be merged in GATK.

ramDisk (BWA-MEM - Sambamba (Pipes) - GATK (Parallel))
We can use Unix pipes in some intermediate applications
to redirect their standard output to other application in
the workflow as their input to save the I/O time and disk
resources of local storage. Using Unix pipes, the output
of an application is not stored in disk, but is buffered
in memory temporarily until it is consumed by the next
application in the pipe. We also naive parallelism for per-
formance improvement in some GATK applications as
mentioned in above method.

ArrowSAM
This is our implementation proposed by this paper which
uses in-memory ArrowSAM format and shared mem-

ory plasma objects to exploit cache spatial locality and
multi-core efficiency. 1) Alignment is done in BWA-MEM
which has already multi-threading support and output
ArrowSAM data is placed in shared memory objects in
respective chromosomes boundaries, 2) followed by coor-
dinates based sorting using Plasma dataframes on all
chromosomes (chromosomes greater than 2GB in WGS
data sets are further divided with zero-copy overhead) to
run sorting algorithm in parallel. 3) Picard MarkDupli-
cate is then run on resulting shared memory data chunks
in parallel creating new FLAG field in-memory. 4) GATK
BaseRecalibration generates tables for all ArrowSAM data
chunks in parallel, 5) ApplyBQSR creates QUAL field by
running parallel on all ArrowSAM data chunks and finally
HaplotypeCaller generates separate VCF files for each
chromosome/chunk (in case chromosome greater than
2GB). These files are merged to generate a final VCF using
GTAK for futher analysis.

elPrep
As discussed earlier, elPrep [41] is a multi-threaded pre-
processing tool to operate on SAM/BAM data in-memory.
In this tool, sorting, duplicate marking and base quality
score recalibration algorithms are optimized for paral-
lel execution. This tool has two runtime options, one is
sfm, which uses less memory as compare to the other
one called filter, which uses a large memory pool for in-
memory processing. As reported in the paper, this tool has
the same accuracy for pre-processing of SAM/BAM data
as that of the GATK recommended best practices work-
flow. Therefore, we included this workflow for speedup
comparison with all other workflows as this tool is more
closely related to our implementation in the context of
multi-threading and in-memory data placement and exe-
cution. Finally, GATK HaplotypeCaller is used for variant
calling.

Results
For evaluation of our in-memory SAM format and Apache
Arrow integration into BWA-MEM, Picard and GATK
tools, we have created a number of different workflows
using state-of-the-art tools and techniques in accordance
with GATK best practices workflow for whole genome
and exome sequencing. We have run all these workflows
with their recommended settings. In the “Performance
evaluation” section below we describe the measured per-
formance, while we discuss the results in the “Discussion”
section.

The individual applications execution times of the var-
ious workflows for WES are shown in Fig. 4 while Fig. 5
shows the execution times for individual application for
WGS. Similarly, the total execution times of the workflows
are shown in Figs. 6 and 7 for WES and WGS data sets,
respectively.

Ahmad et al. BMC Genomics 2020, 21(Suppl 10):683 Page 9 of 14

Fig. 4 Runtimes (in seconds) of individual variant calling applications on whole exome data set using different workflow options (i.e, ramDisk, Pipes
for Sambamba and chromosome wise parallelism in GATK)

Performance evaluation
In this section, we compare execution time of our GATK
recommended best practices variant calling workflow
using ArrowSAM with other state-of-the-art workflows as
discussed in the “Methods” section on high throughput
genome and exome data sets.

Storage (BWA-MEM - Picard - GATK)
This represents the baseline workflow. The main perfor-
mance bottleneck in this workflow is single-threaded disk
I/O access of SAM/BAM file(s) by the htsjdk library which
is used in Picard and GATK tools. This workflow takes

highest runtime from pre-processing to variant calling
among all workflows.

Storage (BWA-MEM - Sambamba - GATK)
Replacing Picard with Sambamba for sorting and dupli-
cate removal gives significant speedup in overall workflow
execution as shown in Figs. 4 and 5. But Sambamba’s
performance does not scale very well since increasing
the number of threads above 12 for sorting and mark
duplicate gives no performance improvement. Still, the
individual time of sorting and mark duplicate is signifi-
cantly less than the baseline with 12 threads resulting in

Fig. 5 Runtimes (in minutes) of individual variant calling applications on whole genome data set using different workflow options (i.e, ramDisk,
Pipes for Sambamba and chromosome wise parallelism in GATK)

Ahmad et al. BMC Genomics 2020, 21(Suppl 10):683 Page 10 of 14

Fig. 6 Total execution-times (in seconds) for complete variant calling workflows using different efficient options (i.e, ramDisk, Pipes for Sambamba
and chromosome wise parallelism in GATK) on whole exome data set

an overall execution time speedup of 1.5x as compared to
the baseline for whole workflow.

ramDisk (BWA-MEM - Sambamba - GATK)
ramDisk is frequently suggested as an alternative for fast
processing. We have observed that for GATK, only a small
performance improvement is achieved. In the case of

using ramDisk with Sambamba, there is even a reduction
in performance for WES.

ramDisk (BWA-MEM - Sambamba - GATK (Parallel))
Using ramDisk for Sambamba while running GATK in
parallel for all chromosomes is able to achieve a better
performance improvement as compared to all previous

Fig. 7 Total execution-times (in minutes) for complete variant calling workflows using different efficient options (i.e, ramDisk, Pipes for Sambamba
and chromosome wise parallelism in GATK) on whole genome data set

Ahmad et al. BMC Genomics 2020, 21(Suppl 10):683 Page 11 of 14

workflows. The speedup is 3.5x and 3x for WES and WGS
data as compared to the baseline workflow, respectively.

ramDisk (BWA-MEM - Sambamba (Pipes) - GATK (Parallel))
Redirecting output of BWA-MEM to Sambamba using
Unix pipes slightly improves the performance of ramDisk.
This is the best possible scenario of performance improve-
ment as compared to previous workflows. It gives an
overall speedup of 3.7x and 3.1x for WES and WGS data
over the baseline workflow, respectively.

ArrowSAM
ArrowSAM based workflow is the fastest among all work-
flows. This workflow is made as scalable as possible by
employing widely used pre-processing and variant calling
algorithms of Picard and GATK. We achieve a speedup of
4.76x and 4.85x for WES and WGS data in overall execu-
tion time as compared to baseline workflow, respectively.
Compared to the fastest parallelized workflow (ramDisk
(BWA-MEM - Sambamba (Pipes) - GATK (Parallel))), our
ArrowSAM workflow achieves a speedup of 1.27x and
1.45x with WES and WGS data, respectively.

elPrep
elPrep is a single application that can be used as a plug-
in replacement for all pre-processing tools. That is the
reason individual applications runtime is not shown in
Figs. 4 and 5. When using the sfm option, elPrep gives
a speedup of 2.49x and 3.26x over the baseline for WES
and WGS data, respectively. However, it is 1.91x and 1.45x
slower than ArrowSAM for WES and WGS data, respec-
tively. This tool also has a filter option, which gives 4.7x
speedup over the baseline and is only slightly slower than
ArrowSAM for WES data at the expense of using 4x more
memory than ArrowSAM. We are not able to run the filter
option on WGS data due to large memory requirement.
In the elPrep paper [41], the authors also do not show the
results with the filter option for WGS data.

Evaluation system
All experiments and comparisons are performed on a
dual socket Intel Xeon Server with E5-2680 v4 CPU run-
ning at 2.40GHz. Each processor has 14 physical cores
with support of 28 hyper-threading jobs. Both proces-
sors are connected through Intel QuickPath Interconnect
and share memory through non-uniform memory access
architecture. A total of 192-GBytes of DDR4 DRAM with
a maximum of 76.8 GB/s bandwidth is available for the
whole system. A local storage of 1-TBytes and the same
amount of network attached storage is available on the
system. CentOS 7.3 Minimal Server operating system is
installed. All workflows are executed through bash scripts.

Tools
The Apache Arrow framework and all its related libraries
(like cglib, pyarrow and arrow-java) are installed in a

Singularity container for ease of use to external users. The
installed tools are listed in Table 1 with their versions for
future reference.

Datasets
We use Illumina HiSeq generated NA12878 dataset [42]
with paired-end reads of WES of human with 30x
sequencing coverage. Similarly for WGS, we use Illumina
HiSeq generated NA12878 dataset sample SRR622461
with paired-end reads with sequencing coverage of 6x (we
further lower the coverage to 2x due to memory limit
on our evaluation system). Read length of 100 base-pairs
is used for all data. Genome Human Genome Reference,
Build 37 (GRCh37/hg19) is used as a reference genome.
All workflows in our experiments use this data set for both
WES and WGS.

Memory footprint
Our implementation is solely memory based, so all the
data between BWA-MEM and HaplotypeCaller applica-
tions remains in memory. We only compare runtime
peak memory utilization of elPrep and ArrowSAM since
in-memory resource requirements vary for intermediate
operations. Table 2 lists the memory usage for both tools.
elPrep uses almost the same memory as ArrowSAM on
WES data with the sfm option enabled and uses 4x more
memory with the filter option. For WGS data elPrep (sfm)
and ArrowSAM have the same memory footprint but
elPrep (filter) memory footprint is not available due to
the large memory requirements beyond available system
memory resources. This use case is also not covered in the
original elPrep paper. The results show that ArrowSAM
only uses memory that is comparable to the size of the
SAM file for both WES and WGS data sets.

Discussion
Here we discuss some characteristics and limitations of
our implementation in context of future perspective of in-
memory data formats and processing for variant calling
applications.

Table 1 Tools and libraries used in the experimental setup

Tools/APIs Version

BWA-MEM [8] 0.7.17

Picard [13] 2.18.14

GATK [29] 4.0.12.0

Sambamba [14] 0.6.8

elPrep [41] 4.1.5

Arrow C/C++/Java [37] 0.11.0

PyArrow [50] 0.11.0

Plasma Object Store [39] 0.11.0

Ahmad et al. BMC Genomics 2020, 21(Suppl 10):683 Page 12 of 14

Table 2 Peak memory usage for in-memory processing tools

Tool Exome Genome

elPrep (sfm) 6.8GB 68GB

elPrep (filter) 26GB X

ArrowSAM 7.2GB 69GB

Parallelization and scalability
In ArrowSAM, all applications are capable to process data
in parallel. The chunks of SAM data can be based on
chromosomes or on the required data size. So that the
memory plasma objects can be shared between different
applications, which results in a large speedup in the overall
runtime of individual applications.

CPU utilization
Depending on data partition in ArrowSAM, the maxi-
mum number of CPUs can be used for processing data in
individual applications.

Cache locality
Due to the in-memory columnar data format, our imple-
mentation is able to exploit cache locality efficiently. All
levels of cache accesses decrease in the sorting and mark
duplicate applications, particularly due to the fewer num-
ber of in-memory fields (mostly integer type) access as
discussed in [40]. Cache miss rate also decreases in all
cache levels and particularly in level-1 cache. In BaseRe-
calibration, ApplyBQSR and HaplotypeCaller applications
we also exploit cache locality but it is not much signifi-
cant as compared to previous applications because of two
reasons, 1. algorithms for these tools are not developed in
such a way to exploit cache locality efficiently, and 2. base
sequences (SEQ) and qualities (QUAL) fields are also
being accessed which pollute cache lines early in these
applications.
Accuracy
We did not change any part of actual algorithms in all
Picard and GATK applications. Therefore, our results are
exactly the same as in the original implementation of both
tools.

Code and scripts availability
The code for the in-memory ArrowSAM representa-
tion, all related Apache Arrow libraries for C, Java and
Python languages and plasma shared memory process are
installed on a singularity container which is freely avail-
able at https://github.com/abs-tudelft/ArrowSAM. The
scripts for running all workflows are also available in the
same root directory.

Related work
Many in-memory workflows have been presented in
the literature. Many of these implementations are clus-
ter scaled and do not exploit single node performance

taking advantage of the Apache Spark framework [43]
for in-memory data management like SparkGA [44] and
ADAM [45]. These implementations are not discussed in
this paper. Our focus is to exploit the performance of
single node systems.

Aginome IMP Platform [46], a GPU based sequence
analysis tool set which uses in-memory database to
store intermediate results for further analysis. To use
in-memory database, the IMP Platform modifies Free-
Bayes [19] and GATK for use in variant calling. IMP with
GATK speeds up the variant detection workflow by 30x,
while IMP with FreeBayes improves the performance by
100x as compared to the BWA-GATK workflow. However,
this tool is not open-sourced. The Sentieon Genomics
Tools [47], report 10x performance improvement over
GATK, MuTect and MuTect2 workflows by eliminating
intermediate files merging. This tool also reports improv-
ing the performance of BWA-MEM by 1.9x times. How-
ever, this tool is also not available publicly and the paper
does not discuss the details of the implementation.

elPrep [48], is a set of tools for pre-processing
SAM/BAM files for variant calling. It is a multi-threaded,
single command plug-in replacement tool which pro-
cesses the data in-memory instead of reading and writing
to I/O for each operation. In elPrep 4 [41], the authors
reported 13x speedup over GATK best practices workflow
for whole-exome and 7.4x speedup for whole-genome
data using maximum memory and storage footprints, at
the expense of excessive memory utilization. They also
compare the results for a cluster deployment to show
the scalability for high performance computing infras-
tructure. In memory-driven computing, a large pool of
different types of memories are created and connected to
the processing resources through the Gen-Z communica-
tion protocol. The memory is shared across the processes
being executed to avoid intermediate I/O operations. This
systems also allows byte-addressability and load/store
instructions to access memory. [49] used a Gen-Z enabled
platform for genomics and reported 5.9x speedup over the
SAMtools baseline implementation for a number of DNA
assembly algorithms. The source code is not available.

Some researchers use high-performance hardware
accelerators such as GPUs [51] and FPGAs [52] to acceler-
ate computationally intensive parts of genomics pipelines,
but availability of such accelerators in the field remains
limited.

Conclusion
In this work, we integrate our Apache Arrow in-memory
SAM representation (ArrowSAM) into genomics pre-
processing and variant calling applications.

Our implementation shows that adopting in-memory
SAM representation in genomics high throughput data
processing applications results in better system resource

https://github.com/abs-tudelft/ArrowSAM

Ahmad et al. BMC Genomics 2020, 21(Suppl 10):683 Page 13 of 14

utilization, low number of memory accesses due to high
cache locality exploitation and parallel scalability due
to shared memory objects. We compare a number of
existing in-memory data placing and sharing techniques
like ramDisk and Unix pipes to show how columnar
in-memory data representation outperforms both. We
achieve a speedup of 4.85x and 4.76x for WGS and WES
data sets in overall execution time of variant calling work-
flows, respectively. Similarly, a speedup of 1.45x and 1.27x
for these data sets is achieved, as compared to the second
fastest workflow.

In future work, to feed processor fast and properly for-
matted data, in-memory data management techniques
will be explored more rigorously to leverage the benefits
of modern hardware features like multi-cores, vector units
and to exploit caches locality in the presence of persistent
memory technologies. We also plan to use ArrowSAM in
big data frameworks like Spark for cluster level scalability
of genomics applications.

Acknowledgements
Thanks to Peter van’t Hof from Leiden University Medical Center (LUMC),
Netherlands for fruitful discussions which motivated us to adopt the Apache
Arrow Framework for genomics in-memory data representation and
processing.

About this supplement
This article has been published as part of BMC Genomics Volume 21 Supplement
10, 2020: Selected articles from the 18th Asia Pacific Bioinformatics Conference
(APBC 2020): genomics. The full contents of the supplement are available online
at https://bmcgenomics.biomedcentral.com/articles/supplements/volume-
21-supplement-10.

Authors’ contributions
All authors read and approved the final manuscript.

Funding
The PhD research of Tanveer Ahmad and publication of this article is
generously funded by Punjab Educational Endowment Fund (PEEF), Pakistan.

Availability of data and materials
All the codes and scripts are publicly available at: https://github.com/abs-
tudelft/ArrowSAM.

Competing interests
The authors declare that they have no competing interests.

Author details
1Accelerated Big Data Systems Group, Quantum & Computer Engineering
Department, Delft University of Technology, Delft The Netherlands. 2IBM
Research Austin, Texas, USA.

Published: 18 November 2020

References
1. Xia X. Comparative Genomics; 2013. https://doi.org/10.1007/978-3-642-

37146-2.
2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local

alignment search tool. J Mol Biol. 1990;215(3):403–10. https://doi.org/10.
1016/S0022-2836(05)80360-2.

3. J Lipman D, Pearson W. Rapid and sensitive protein similarity searches.
Science (New York, N.Y.) 1985;227:1435–41. https://doi.org/10.1126/
science.2983426.

4. Wheeler WC, S. Gladstein D. Malign: A multiple sequence alignment
program. J Hered. 1994;85:. https://doi.org/10.1093/oxfordjournals.jhered.
a111492.

5. Rice P, Longden I, Bleasby A. Emboss: The european molecular biology
open software suite. Trends Genet TIG. 2000;16:276–7. https://doi.org/10.
1016/S0168-9525(00)02024-2.

6. James Kent W. Blat - the blast-like alignment tool. Genome Res. 2002;12:
656–64. https://doi.org/10.1101/gr.229202..

7. Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2.
Nat Methods. 2012;9(4):357–9. https://doi.org/10.1038/nmeth.1923.

8. Li H, Durbin R. Fast and accurate short read alignment with
Burrows–Wheeler transform. Bioinformatics. 2009;25(14):1754–60. https://
doi.org/10.1093/bioinformatics/btp324.

9. Li H. Minimap and miniasm: fast mapping and de novo assembly for noisy
long sequences. Bioinformatics. 2016;32(14):2103–10. https://doi.org/10.
1093/bioinformatics/btw152.

10. Myers G. Efficient local alignment discovery amongst noisy long reads. In:
Brown D, Morgenstern B, editors. Algorithms in Bioinformatics. Berlin,
Heidelberg: Springer; 2014. p. 52–67.

11. Turakhia Y, Bejerano G, Dally WJ. Darwin: A genomics co-processor
provides up to 15,000x acceleration on long read assembly. SIGPLAN Not.
2018;53(2):199–213. https://doi.org/10.1145/3296957.3173193.

12. Li H. The sequence alignment/map format and samtools. Bioinformatics.
2009;25:2078–9.

13. Picard toolkit. Broad Institute, GitHub repository. 2019. http://
broadinstitute.github.io/picard/. Accessed 11 Apr 2019.

14. Tarasov A, Vilella AJ, Cuppen E, Nijman IJ, Prins P. Sambamba: fast
processing of ngs alignment formats. Bioinformatics. 2015;31(12):2032–4.
https://doi.org/10.1093/bioinformatics/btv098.

15. Faust GG, Hall IM. Samblaster: fast duplicate marking and structural
variant read extraction. Bioinformatics. 2014;30(17):2503–5. https://doi.
org/10.1093/bioinformatics/btu314.

16. Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, Miller
CA, Mardis ER, Ding L, Wilson RK. VarScan 2: Somatic mutation and copy
number alteration discovery in cancer by exome sequencing. Genome
Res. 2012;22(3):568–76. https://doi.org/10.1101/gr.129684.111.

17. Lai Z, Markovets A, Ahdesmaki M, Chapman B, Hofmann O, McEwen R,
Johnson J, Dougherty B, Barrett JC, Dry JR. VarDict: a novel and versatile
variant caller for next-generation sequencing in cancer research. Nucleic
Acids Res. 2016;44(11):108. https://doi.org/10.1093/nar/gkw227.

18. Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, Sougnez C,
Gabriel S, Meyerson M, Lander ES, Getz G. Sensitive detection of somatic
point mutations in impure and heterogeneous cancer samples. Nat
Biotechnol. 2013;31:213.

19. Garrison E, Marth G. Haplotype-based variant detection from short-read
sequencing. 2012. http://arxiv.org/abs/arXiv:1207.3907. Accessed 11 Apr
2019.

20. Wei Z, Wang W, Hu P, Lyon GJ, Hakonarson H. SNVer: a statistical tool for
variant calling in analysis of pooled or individual next-generation
sequencing data. Nucleic Acids Res. 2011;39(19):132–132. https://doi.org/
10.1093/nar/gkr599.

21. Wilm A, Aw PPK, Bertrand D, Yeo GHT, Ong SH, Wong CH, Khor CC,
Petric R, Hibberd ML, Nagarajan N. LoFreq: a sequence-quality aware,
ultra-sensitive variant caller for uncovering cell-population heterogeneity
from high-throughput sequencing datasets. Nucleic Acids Res.
2012;40(22):11189–201. https://doi.org/10.1093/nar/gks918.

22. Dunn T, Berry G, Emig-Agius D, Jiang Y, Lei S, Iyer A, Udar N, Chuang
H-Y, Hegarty J, Dickover M, Klotzle B, Robbins J, Bibikova M, Peeters M,
Strömberg M. Pisces: an accurate and versatile variant caller for somatic
and germline next-generation sequencing data. Bioinformatics.
2018;35(9):1579–81. https://doi.org/10.1093/bioinformatics/bty849.

23. Kim S, Scheffler K, Halpern AL, Bekritsky MA, Noh E, Källberg M, Chen X,
Kim Y, Beyter D, Krusche P, Saunders CT. Strelka2: fast and accurate
calling of germline and somatic variants. Nat Methods. 2018;15(8):591–4.
https://doi.org/10.1038/s41592-018-0051-x.

24. Poplin R, Chang P-C, Alexander D, Schwartz S, Colthurst T, Ku A,
Newburger D, Dijamco J, Nguyen N, Afshar PT, Gross SS, Dorfman L,
McLean CY, DePristo MA. A universal snp and small-indel variant caller
using deep neural networks. Nat Biotechnol. 2018;36:983.

25. Diao Y, Roy A, Bloom T. Building Highly-Optimized, Low-Latency
Pipelines for Genomic Data Analysis. In: CIDR; 2015.

https://bmcgenomics.biomedcentral.com/articles/supplements/volume-21-supplement-10
https://bmcgenomics.biomedcentral.com/articles/supplements/volume-21-supplement-10
https://github.com/abs-tudelft/ArrowSAM
https://github.com/abs-tudelft/ArrowSAM
https://doi.org/10.1007/978-3-642-37146-2
https://doi.org/10.1007/978-3-642-37146-2
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1016/S0022-2836(05)80360-2
https://doi.org/10.1126/science.2983426
https://doi.org/10.1126/science.2983426
https://doi.org/10.1093/oxfordjournals.jhered.a111492
https://doi.org/10.1093/oxfordjournals.jhered.a111492
https://doi.org/10.1016/S0168-9525(00)02024-2
https://doi.org/10.1016/S0168-9525(00)02024-2
https://doi.org/10.1101/gr.229202.
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1093/bioinformatics/btw152
https://doi.org/10.1093/bioinformatics/btw152
https://doi.org/10.1145/3296957.3173193
http://broadinstitute.github.io/picard/
http://broadinstitute.github.io/picard/
https://doi.org/10.1093/bioinformatics/btv098
https://doi.org/10.1093/bioinformatics/btu314
https://doi.org/10.1093/bioinformatics/btu314
https://doi.org/10.1101/gr.129684.111
https://doi.org/10.1093/nar/gkw227
http://arxiv.org/abs/arXiv:1207.3907
https://doi.org/10.1093/nar/gkr599
https://doi.org/10.1093/nar/gkr599
https://doi.org/10.1093/nar/gks918
https://doi.org/10.1093/bioinformatics/bty849
https://doi.org/10.1038/s41592-018-0051-x

Ahmad et al. BMC Genomics 2020, 21(Suppl 10):683 Page 14 of 14

26. Wong H-P, Raoux S, Kim S, Liang J, Reifenberg JP, Rajendran B, Asheghi
M, Goodson KE. Phase change memory. Proc IEEE. 2010;98(12):2201–27.
https://doi.org/10.1109/JPROC.2010.2070050.

27. Burr G, J. Breitwisch M, Franceschini M, Garetto D, Gopalakrishnan K,
Jackson B, Kurdi B, Lam C, A. Lastras L, Padilla A, Rajendran B, Raoux S,
S. Shenoy R. Phase change memory technology. J Vac Sci Technol B
Microelectron Nanometer Struct Process Meas Phenom Off J Am Vac Soc.
2010;28:. https://doi.org/10.1116/1.3301579.

28. Condit J, Nightingale EB, Frost C, Ipek E, Lee B, Burger D, Coetzee D.
Better i/o through byte-addressable, persistent memory. In: Proceedings
of the ACM SIGOPS 22Nd Symposium on Operating Systems Principles.
SOSP ’09. New York: ACM; 2009. p. 133–46. https://doi.org/10.1145/
1629575.1629589.

29. Broad Institute. Genome Analysis Toolkit. 2010. https://software.
broadinstitute.org/gatk/. Accessed 11 Apr 2019.

30. The SAM/BAM Format Specification Working Group. Sequence
Alignment/Map Format Specification. 2010. https://samtools.github.io/
hts-specs/SAMv1.pdf. Accessed 11 Apr 2019.

31. Dean J, Ghemawat S. Mapreduce: Simplified data processing on large
clusters. Commun ACM. 2008;51(1):107–13. https://doi.org/10.1145/
1327452.1327492.

32. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A,
Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA. The genome
analysis toolkit: a mapreduce framework for analyzing next-generation
dna sequencing data. Genome Res. 2010. https://doi.org/10.1101/gr.
107524.110.

33. Broad Institute. GATK Best Practices Workflows. 2010. https://github.com/
gatk-workflows. Accessed 11 Apr 2019.

34. Institute B. GATK Variant Calling Pipelines. https://software.broadinstitute.
org/gatk/best-practices/.

35. Consortium IHGS. Finishing the euchromatic sequence of the human
genome. Nature. 2004;431(7011):931–45. https://doi.org/10.1038/
nature03001.

36. Gurdasani D, Sandhu MS, Porter T, Pollard MO, Mentzer AJ. Long reads:
their purpose and place. Hum Mol Genet. 2018;27(R2):234–41. https://doi.
org/10.1093/hmg/ddy177.

37. Apache. Apache Arrow: A Cross-language Development Platform for
In-memory Data. 2019. https://arrow.apache.org/. Accessed 29 Dec 2019.

38. Peltenburg J, van Straten J, Brobbel M, Hofstee HP, Al-Ars Z. Supporting
columnar in-memory formats on fpga: The hardware design of fletcher
for apache arrow. In: Hochberger C, Nelson B, Koch A, Woods R, Diniz P,
editors. Applied Reconfigurable Computing. Cham: Springer; 2019. p.
32–47.

39. Apache. Plasma In-Memory Object Store. 2019. https://arrow.apache.org/
blog/2017/08/08/plasma-in-memory-object-store/. Accessed 29 Dec
2019.

40. Ahmad T, Peltenburg J, Ahmed N, Al Ars Z. Arrowsam: In-memory
genomics data processing through apache arrow framework. 2019.
https://doi.org/10.1101/741843.

41. Herzeel C, Costanza P, Decap D, Fostier J, Verachtert W. elPrep 4: A
multithreaded framework for sequence analysis. PLOS ONE. 2019;14(2):
0209523. https://doi.org/10.1371/journal.pone.0209523.

42. Illumina. Illumina Cambridge Ltd. 2012. http://ftp.1000genomes.ebi.ac.uk/
vol1/ftp/phase3/data/NA12878/sequence_read/. Accessed 24 May 2019.

43. Apache. Apache Spark: Lightning-fast Unified Analytics Engine. 2019.
https://spark.apache.org/. Accessed 2 Apr 2019.

44. Mushtaq H, Liu F, Costa C, Liu G, Hofstee P, Al-Ars Z. Sparkga: A spark
framework for cost effective, fast and accurate dna analysis at scale. In:
Proceedings of the 8th ACM International Conference on Bioinformatics,
Computational Biology,and Health Informatics. ACM-BCB ’17. New York:
ACM; 2017. p. 148–57. https://doi.org/10.1145/3107411.3107438.

45. Massie M, Nothaft F, Hartl C, Kozanitis C, Schumacher A, Joseph AD,
Patterson DA. ADAM: Genomics formats and processing patterns for
cloud scale computing. Technical report, UCB/EECS-2013-207, EECS
Department, University of California, Berkeley. 2013.

46. Wang S, Yang W, Zhang X, Yu R. Performance evaluation of imp: A rapid
secondary analysis pipeline for ngs data; 2018. p. 1170–6. https://doi.org/
10.1109/BIBM.2018.8621573.

47. Freed DN, Aldana R, Weber JA, Edwards JS. The sentieon genomics tools
- a fast and accurate solution to variant calling from next-generation
sequence data. 2017. https://doi.org/10.1101/115717.

48. Herzeel C, Costanza P, Decap D, Fostier J, Reumers J. elPrep:
High-performance preparation of sequence alignment/map files for

variant calling. PLOS ONE. 2015;10(7):0132868. https://doi.org/10.1371/
journal.pone.0132868.

49. Becker M, Chabbi M, Warnat-Herresthal S, Klee K, Schulte-Schrepping J,
Biernat P, Guenther P, Bassler K, Craig R, Schultze H, Singhal S, Ulas T,
Schultze JL. Memory-driven computing accelerates genomic data
processing. 2019. https://doi.org/10.1101/519579.

50. ApacheFoundation. Python library for Apache Arrow. 2019. https://pypi.
org/project/pyarrow/. Accessed 29 Dec 2019.

51. Shanshan R, Koen B, Zaid Al-Ars. Efficient Acceleration of the Pair-HMMs
Forward Algorithm for GATK HaplotypeCaller on Graphics Processing
Units. Evol Bioinforma. 2018;14:. https://doi.org/10.1177/
1176934318760543.

52. Ernst JH, Vlad-Mihai S, Koen B, Zaid Al-Ars. Hardware acceleration of
BWA-MEM genomic short read mapping for longer read lengths.
Computa Biol Chem. 2018;75:54–64.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1109/JPROC.2010.2070050
https://doi.org/10.1116/1.3301579
https://doi.org/10.1145/1629575.1629589
https://doi.org/10.1145/1629575.1629589
https://software.broadinstitute.org/gatk/
https://software.broadinstitute.org/gatk/
https://samtools.github.io/hts-specs/SAMv1.pdf
https://samtools.github.io/hts-specs/SAMv1.pdf
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1101/gr.107524.110
https://doi.org/10.1101/gr.107524.110
https://github.com/gatk-workflows
https://github.com/gatk-workflows
https://software.broadinstitute.org/gatk/best-practices/
https://software.broadinstitute.org/gatk/best-practices/
https://doi.org/10.1038/nature03001
https://doi.org/10.1038/nature03001
https://doi.org/10.1093/hmg/ddy177
https://doi.org/10.1093/hmg/ddy177
https://arrow.apache.org/
https://arrow.apache.org/blog/2017/08/08/plasma-in-memory-object-store/
https://arrow.apache.org/blog/2017/08/08/plasma-in-memory-object-store/
https://doi.org/10.1101/741843
https://doi.org/10.1371/journal.pone.0209523
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/NA12878/sequence_read/
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/NA12878/sequence_read/
https://spark.apache.org/
https://doi.org/10.1145/3107411.3107438
https://doi.org/10.1109/BIBM.2018.8621573
https://doi.org/10.1109/BIBM.2018.8621573
https://doi.org/10.1101/115717
https://doi.org/10.1371/journal.pone.0132868
https://doi.org/10.1371/journal.pone.0132868
https://doi.org/10.1101/519579
https://pypi.org/project/pyarrow/
https://pypi.org/project/pyarrow/
https://doi.org/10.1177/1176934318760543
https://doi.org/10.1177/1176934318760543

	Abstract
	Background
	Implementation
	Results
	Availability
	Keywords

	Introduction
	Genome/Exome pre-processing
	Variant callers
	Challenges in genomics data processing
	Motivation

	Background
	Genome Analysis Toolkit (GATK)
	GATK best practices workflows
	Next-generation sequencing: technologies and data
	Apache Arrow
	Plasma in-memory object store

	Implementation
	In-memory SAM format
	BWA-MEM integration
	Sorting through pandas dataframes
	Picard MarkDuplicate integration
	GATK BaseRecalibration integration
	GATK ApplyBQSR integration
	GATK HaplotypeCaller integration

	Methods
	Storage (BWA-MEM - Picard - GATK)
	Storage (BWA-MEM - Sambamba - GATK)
	ramDisk (BWA-MEM - Sambamba - GATK)
	ramDisk (BWA-MEM - Sambamba - GATK (Parallel))
	ramDisk (BWA-MEM - Sambamba (Pipes) - GATK (Parallel))
	ArrowSAM
	elPrep

	Results
	Performance evaluation
	Storage (BWA-MEM - Picard - GATK)
	Storage (BWA-MEM - Sambamba - GATK)
	ramDisk (BWA-MEM - Sambamba - GATK)
	ramDisk (BWA-MEM - Sambamba - GATK (Parallel))
	ramDisk (BWA-MEM - Sambamba (Pipes) - GATK (Parallel))
	ArrowSAM
	elPrep
	Evaluation system
	Tools
	Datasets
	Memory footprint
	Discussion
	Parallelization and scalability
	CPU utilization
	Cache locality
	Accuracy

	Code and scripts availability

	Related work
	Conclusion
	Acknowledgements
	About this supplement
	Authors' contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

