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Abstract

This thesis explores the application of ahead-of-time parser generation to improve the throughput of

big data ingestion. To investigate parser generation, this work produced several libraries related to the

conversion of CSV to Apache Arrow. The code that this work has produced is available on GitHub[37].

First, an ahead-of-time parser generator was developed in the form of a Rust derive macro and a

supporting library. Using a derive macro, a schema can be defined by a Rust struct definition for which a

CSV to Arrow reader is derived. With the knowledge of the schema at compile-time, extra optimizations

were possible. For instance, when the types in a schema are known to be of fixed size, estimates for the

number of records in an input buffer could be made. With this principle, input bound checks could be

reduced.

Experiments showed that ahead-of-time generated parsers outperformed state-of-the-art frameworks

such as Apache Arrow[40], Polars[25], and DuckDB[5]. Benchmarks for single types revealed that for

integers, unbuffered and buffered generated parsers achieved a throughput of at least 1.5x compared

to Apache Arrow, with the reduction of size bound checks sometimes even reaching a throughput of

3x. For floating point numbers, the buffered parser performed slightly better than Arrow. However,

the unbuffered, and buffered with reduced size bound checking, parser achieved a throughput of

at least 1.5x. For strings, the buffered parser performed similar to Apache Arrow since it uses the

same efficient buffered string parsing. The unbuffered parser only achieved half the performance.

Furthermore, benchmarks for parsing the TPC-H[46] and TPC-DS[45] datasets showed that the buffered

parser generated ahead-of-time performed better for real-world datasets compared to the frameworks

mentioned above. The unbuffered parser was only able to achieve a higher throughput for datasets

larger than 100 MB. For the datasets, the throughput varied based on the distribution of types.

Additionally, this work explored, but did not integrate, the use of multi-threaded CSV parsing. However,

experiments revealed that the performance of parallelization depends on how fast CSV can be scanned

for record positions whilst correctly checking character escaping. An experiment with a custom

multi-threaded parser implementation showed that when scaling the number of parse threads, the

throughput is limited by scanning rather than parsing. This characteristic was also found for Polars and

DuckDB, which support multi-threading. The scanning was shown to be possibly improved by using

SIMD[18], which allowed scanning record delimiters at 2.8 GB/s using AVX2. This is approximately

1.5x more than the maximum throughput that Polars or DuckDB achieved.
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1
Introduction

1.1. Context
Since the introduction of the internet, the amount of data generated and processed has been increasing

steadily. This is compounded by recent developments with the increasing demand for AI services. In

2024, the ITU (International Telecommunication Union) [47] estimated that there would be approximately

6 ZB of data in fixed broadband traffic, which is a 20% increase in data traffic compared to the previous

year. This represents data that needs to be processed at some point in time. Whilst the data traffic

is growing rapidly, Moore’s law seems to come to an end, making it more difficult to handle the

throughput needed for processing this data. For this reason, it is essential to explore new areas in

compute optimizations to keep up with demand.

A critical part in processing data is serializing and deserializing data interchange formats, often received

from, or sent to, network or storage devices. Such formats are useful for sequential data transfers or

stores. For instance, JSON is often used for network communication between a client and a server.

This format represents data textually, however, some values might need to be parsed because they do

not represent text (i.e. a format such as JSON has to be parsed to a native representation for data to

be correctly available). Conversely, native data might have to be converted to JSON. This is known as

deserialization and serialization, respectively. It allows data to be converted from, and to, a sequential

format such as JSON to, and from, a native data format accessible in memory. When a large amount

of data needs to be processed, deserialization and serialization might account for a significant time in

compute. Not only because it has to process all the data, but also because it happens every time the data

is read. In fact, in the current age of big data analytics, the total data processing time is bottlenecked

by reading the data rather than processing it [2, 4, 48, 23]. Consequently, reducing the number of

(de)serializations, or increasing their throughput, could significantly help reduce compute costs.

A solution to reduce repeated (de)serializations is Apache Arrow [40], which is a standardized data

format and eco system that allows for efficient processing of data. Its main goal is to eliminate the

serialization and deserialization overhead that arises when multiple processes want to share their

data. Traditionally, these processes, with their programs possibly written in different languages, would

have to serialize and deserialize data if it is to be shared between two programs as seen in Figure 1.1a.

Data would first have to be converted from an in-memory representation to a sequential data format

so that it can be sent to a receiver. This receiver would then have to deserialize the data back to an

in-memory representation. This serialization and deserialization would have to occur every time data is

shared. By introducing the Apache Arrow format as a common interface for different programming

languages, data can be simply shared in-memory. Figure 1.1b shows how Apache Arrow removes the

need for serialization and deserialization beyond the initial serialization. Consequently, unnecessary

processing is avoided, allowing for a higher overall processing throughput in a data pipeline. Moreover,

the Apache Arrow format makes use of column-oriented data storage as opposed to row-oriented data

storage (i.e. the data are stored contiguously in a memory buffer for each column). This unlocks high

performance processing of fields, as operations on a column can be highly parallelized using SIMD.

1
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The contiguous data can be directly loaded into SIMD registers or offloaded to a GPU, which makes it

particularly useful for scanning or mapping records in large datasets. This would not be possible in a

row-oriented storage format, because the fields are not stored contiguously. Additionally, Apache Arrow

has libraries available in multiple programming languages that implement its format and convenient

utilities. Because of this and its performance benefits, several data analytics frameworks use this format

internally. Some popular frameworks include Pandas, DataFusion and Polars.

...

Serial data

Process 1

...

Process 2 Process NDeserialization

Serialization

Deserialization · · ·

(a) Naive sharing of data between processes. Each share involves serialization and deserialization by the sender and receiver respectively.

...

Serial data

Process 1 Process 2 Process NDeserialization
Share processed data
directly in memory

· · ·

(b) Sharing data using the Apache Arrow format. Data is deserialized once, data can then be passed in memory without (de)serialization.

Figure 1.1: The difference between naive data sharing (a) and using the Apache Arrow format (b).

Two of the most widely used formats for storing big data in the field are JSON and CSV. Despite their

simple text based format and large size, they remain extensively used in practice for data communication,

transport and storage.

JSON format
In their pursuit to accelerate deserializing JSON to Apache Arrow, Peltenburg et al. [24] found that a

handwritten parser could outperform the standard Arrow implementation. The difference between

their handwritten parser and the default parser was the grammar they accept. The default JSON parser

has to accept the complete JSON grammar whilst the tailored handwritten parser only had to accept a

grammar instance for its use-case (i.e. the handwritten parser is stricter and could reject valid JSON

instances). Even though its strictness might be undesirable for general purpose processing, it could

perform well for processing consistent data. Data for which their values can change but their schema, or

structure, cannot. For example, Figure 1.2 shows two different JSON documents which both contain

logs, each from a different system. Figure 1.2a and 1.2b show the measured temperature and relative

humidity values respectively. Both of these documents are structurally equivalent
1

but have different

values. Consequently, writing a parser that accepts one will also accept the other. For such applications,

there is no need for a general purpose parser that recognizes the complete grammar, which is something

a handwritten parser could do, thereby making it potentially faster.

Whilst writing a parser by hand might improve performance, it introduces extra development costs.

Whenever the schema of a document changes, a developer has to update their parser to accept this

schema, which adds to development time but also adds to the risk of introducing bugs. Hence, it would

be more convenient to have a program or framework that helps generate the parser with minimal effort

and low risk. Several parsing frameworks exist that provide building blocks for defining a custom

parser (see Section 2.2). Nevertheless, they do not provide a way to store the parsed values directly into

the Apache Arrow format. As a result, a developer would still need to adapt the parser.

Peltenburg et al. [24] showed that a custom parser performs well for JSON [3]. JSON, or JavaScript object

notation, is a text-based, human-readable and object-oriented format. It is commonly used in IoT and

web applications as a communication protocol between different programs. The format can be difficult

1
Note that in Figure 1.2 the number of elements in the array does not change its structure or schema.
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[
{

"time": "2025-01-03 17:45",
"value": 20.1

},
{

"time": "2025-01-03 18:00",
"value": 19.95

}
]

(a) A JSON log containing temperature values.

[
{

"time": "2025-03-14 11:58",
"value": 55.1

},
{

"time": "2025-03-14 12:03",
"value": 60.2

}
]

(b) A JSON log containing relative humidity values.

Figure 1.2: Two different JSON documents each containing different values but both adhering to the same data schema or

structure.

to parse because of its grammar, which allows for dynamic types such as nested objects and arrays,

which require more sophisticated checks when parsing, such as matching the delimiters. Additionally,

they make the grammar that a parser (generator) needs to support significantly larger.

CSV format
CSV [32] is a text-based, human-readable and tabular format. Its intended use case was sharing tabular

data between spreadsheet programs. However, because of its simplicity it is also commonly used as

a data storage format. For the European data repository [6], 19% of the datasets are CSV and for the

American government repository [1] this is 8%. The data in a CSV [32] document is formatted as a table,

it has rows and columns. Each row describes a record and each column describes a field of such a record.

Columns, or fields, are separated by a comma. Rows, or records, are separated by a newline character.

However, different delimiters could be used in practice, since the RFC-4180 [32] is not a single fixed

standard. For instance, in some regions of the world, a semicolon character is used for field delimiters

rather than a comma. Moreover, any value in CSV is stored as plain text, often as UTF-8 or UTF-16

characters. The value can be optionally enclosed by double quotes, allowing for characters to be escaped

that are otherwise illegal. For example, storing a comma or newline character when these are field and

record delimiter respectively. Furthermore, CSV allows the use of a double quote in a value, given that

the value is enclosed by double quotes and that the double quote is escaped. A double quote can be

escaped by preceding it with another double quote. An example, representing the same data in JSON

from Figure 1.2, can be represented in CSV as seen in Figure 1.3. The figure shows that the data can

have a header which is defined in the top-most row. Furthermore, it shows that values can be quoted,

which does not have to change their representation or schema. Furthermore, it is important to note that

the values in a CSV document assume no type. The format only considers textual values, which have to

be interpreted by the reader (i.e. parser) of the document.

time,value
2025-01-03 17:45,20.1
2025-01-03 18:00,19.95

(a) A CSV log containing temperature values.

time,value
"2025-03-14 11:58","55.1"
"2025-03-14 12:03","60.2"

(b) A CSV log containing relative humidity values.

Figure 1.3: Two different CSV documents each containing different values but both adhering to the same data schema or structure.

In practice many variations of the CSV format according to the RFC-4180 [32] exist. This can vary from

different delimiter characters and support for a header or comments. To focus on finding the potential

of a parser generator, and not trying to support every variation, it is important to limit the scope of the

CSV format. For this reason, the generated parser should support the general rules of the RFC-4180 with

several assumptions. First, the field and record delimiters are assumed to be the comma and newline

character respectively. Second, the character set will be limited to UTF-8 rather than UTF-16. Third, no

comments are allowed. Finally, headers might be supported, but they would not provide any benefit in

terms of performance. These parameters, or assumptions, are well supported by major frameworks that
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parse CSV (e.g. Pandas, Arrow or Polars).

1.2. Challenges
There are several challenges that need to be resolved in order to reduce deserialization overhead by

means of a parser generator. First, there is the main challenge of transforming textual CSV data to the

Apache Arrow format. Second, is the code generation that needs to adhere to certain standards or

rules for it to be viable. Finally, there is the challenge of parallelizing CSV parsing which, when solved,

could provide a solution to deserialization overhead. The following sections elaborate on each of these

challenges.

1.2.1. Transforming CSV to Arrow
For CSV to be transformed or parsed into the Apache Arrow format, it has to follow a set of steps. This

process can be split into three distinct steps, for which each step imposes their own challenge. The first

step is parsing the CSV, for which data is purely text-based. For a human, this data may seem structured

but for a machine it is a sequence of bytes (Figure 1.4a). Consequently, the CSV data has to be parsed, to

identify the field and record positions (Figure 1.4b). The process in Figure 1.4 shows the CSV characters

as a sequence. In order to parse this sequence, we need to find a structure for the data. The result allows

data from the original text blob to be split into segments that represent fields or records.
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(a) A CSV document when read into memory, interpreted as an

arbitrary sequence of characters.
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(b) A CSV document read into memory, then parsed to identify

the end of fields and records (indicated by the highlighted index).

Figure 1.4: The process of parsing raw CSV data (a) to identify field and record positions (b). Essentially providing a structure for

the previously unstructured sequence of bytes.

When CSV data is structured, it has to be restructured to fit the Apache Arrow format. CSV is naturally

a row-oriented data format since it stores the values of a record as a row (i.e. the columns of a

record instance are always stored together). Figure 1.5a shows this row-oriented storage, where the

different colors indicate the different fields or columns. Conversely, the Apache Arrow format is a

column-oriented data format. The value of a column for each record is stored in a buffer dedicated for

that column. Figure 1.5b displays column-oriented storage, where the different colors also indicate the

different fields or columns. Converting between the two storage orientations in Figure 1.5 means that

the data must move significantly. Nevertheless, column- and row-oriented data storage can be mapped

to each other.

Another step required to convert from CSV to Arrow is parsing the textual values to native values.

For example, a number is textually represented, often in decimals. Consequently, for a program to

perform calculations, this number has to be parsed and stored as a native number rather than a string. A

challenge in parsing these values is not knowing their type. This is solved by either providing a schema

to the parser or by inferring the schema through an analysis.

Finally, it is worth noting that the conversion of data orientation and the parsing of the text values can be

swapped. The order of these steps is a subject to design choice and each order has its own advantages,

and disadvantages, and is discussed later in this work.
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(a) Row-oriented storage; each column in a record is stored

sequentially. Each color indicates a unique field.
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(b) Column-oriented storage; each column per record is stored in

a dedicated column buffer. Each color indicates a unique field.

Figure 1.5: Two different orientations for storing records, row-oriented (a) and column-oriented (b) storage. The sequential

numbers mean sequential in memory.

1.2.2. Generating parsers
A parser generator needs to construct a program that takes CSV data as input and produces an Apache

Arrow data structure as output. It should replace the role of a developer that would write a parser by

hand. Consequently, a developer has little insight into how the generated code came to be. This moves

the risk of introducing bugs into a parser to the parser generator. For this reason, the design of tools

used for a parser generator should try to minimize or reduce this risk.

1.2.3. Parallel parsing
The textual characteristic of CSV makes parallel parsing difficult. The standard approach to parallelize

processing is by dividing the work into multiple pieces and run them in parallel. Consequently, a naive

solution to parsing CSV would be to split the CSV document into arbitrarily sized chunks and start

parsing these chunks in parallel. The result of each chunk could then be accumulated into a single

Apache Arrow record batch. Unfortunately, it is not that trivial for CSV. As mentioned above, CSV

allows for escaping a value, which may then contain delimiters or other special characters. This escaped

value needs to be enclosed by double quotes. This characteristic makes parallelization using a simple

divide and conquer approach impossible. The reason for this is as follows.

Consider that each chunk of CSV data follows some other chunk except for the first chunk. Whilst

parsing each chunk, a state is needed to track its progress. First, it needs to maintain whether it is in a

field or not. This is to correctly validate a delimiter such as a field or record delimiter. Second, it needs

to maintain whether the current field is escaped. This is to assert if special characters are allowed to be

present in the current value. Finally, in case of an escaped field, the presence of a preceding double

quote needs to be stored, to validate a correct ending of an escaped field, or to validate an escaped

double quote.

For the first CSV chunk, an initial state is used but any subsequent chunks require the resulting state

of the previous chunk. Alternatively, if every chunk would start with a blank state, there could be

instances in which they start in the middle of an escaped field. This is because a CSV row/record is not

a fixed size and splitting CSV into arbitrary sized chunks could therefore result in chunks starting at

random positions in a record. Without knowing that a chunk starts in an escaped field, it will result

in undefined behavior when parsing. For instance, the ending double quote of the escaped field is

encountered, for which it detects the start of an escaped field at that position. Likewise, an escaped

double quote could be encountered, resulting in either an empty string if it is followed by a delimiter or

an error if it is not. Both examples are only two of many possible variations in which parsing random

positions without any context results in undefined behavior.

A naive solution to the problem of not knowing the previous state is to skip input characters until a

record delimiter is encountered. A record delimiter indicates that the following character is the first field

of a record. However, remember that an escaped value is allowed to contain record or field delimiters.

Consequently, when starting to parse in an escaped field, a record delimiter could be encountered that

does not represent the end of a record. This would result in the same problem as above.
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1.3. Research questions
The goal of this research is to evaluate the performance of CSV to Arrow parsers generated ahead-of-time.

In order to achieve this goal, a parser generator framework will be developed. For which, several of the

previously mentioned challenges should be solved. This work will try to answer the following research

questions:

1. What challenges are there in parsing CSV or CSV to Arrow?

2. How does the performance of a generated parser compare to other parsers?

3. What unique optimizations can a parser generator leverage?

4. What are the pitfalls of a generated parser?

These questions will be answered by two methods. First, by the process of implementing the parser

generator. Second, by running the generated parser against different types of datasets.

1.4. Outline
This paper tries to answer the research questions step-by-step, doing so in the following order. First,

Chapter 2 will describe the background for parsing and parser generation. This includes state-of-the-art

CSV parsing techniques, popular frameworks for constructing parsers and popular data analytics

framework. In doing so, concepts can be taken for inspiration and comparison in future chapters.

Chapter 3 will then discuss the different solutions for the parser generator and the generated parser.

Furthermore, Chapter 4 will describe the implementation of the solution for a CSV to Arrow parser

generator. Chapter 5 will describe the setup and experiments carried out on the state-of-the-art CSV

parsers and the generated parsers. Additionally, it will provide results for other possible optimizations

such as using SIMD. Finally, Chapter 6 will answer the research questions, summarize the work and

propose future work.



2
Background

2.1. State-of-the-art CSV parsers
To generate a performant CSV to Arrow parser, it is important to explore state-of-the-art CSV parsers.

However, there are few innovative parser implementations due to the simplicity of the CSV format.

Exploring the implementations of CSV parsers inside data analytics frameworks (from Section 2.3)

revealed that most parsers are simple code defined state machines (i.e. CSV is parsed by simply

looking for the delimiters). Whilst this is a valid approach, it is neither state-of-the-art nor complex.

Consequently, this work will not explore these parsers because they are trivial.

2.1.1. Finite automata
A finite automaton is a computational model that is useful for recognizing patterns [33]. It is a model

that takes a string as input and either accepts or rejects it. This functionality is what makes a finite

automaton applicable for parsing, since it can decide if an input adheres to a format. But before applying

the finite automaton model, it is important to understand its definition and workings. A finite automaton

is formally defined by a 5-tuple as seen in Equation 2.1. Each of the elements in this tuple is explained

in Table 2.1.

𝑀 = (𝑄,Σ, 𝛿, 𝑞0 , 𝐹) (2.1)

Symbol Definition
𝑄 The finite set of all possible states.

Σ The finite set of all possible input characters, also known as the alphabet.

𝛿 The transition function, formally defined as 𝛿 : 𝑄 × Σ → 𝑄. This function describes how

the automaton can transition from one state to another, given an input character from the

alphabet.

𝑞0 The initial state, or start state. Formally defined as 𝑞0 ∈ 𝑄, meaning that the start state is

in the set of all possible states.

𝐹 The set of final states, or accept states. Formally defined as 𝐹 ⊆ 𝑄, meaning that there can

be multiple final states from the set of all possible states.

Table 2.1: The definitions of each item in the formal definition of a finite automaton (see Equation 2.1).

To illustrate how a finite automaton works and how it is formally defined, two visual examples are

provided in Figure 2.1. Consider the example in Figure 2.1a. It depicts a finite automaton with a binary

string input that only accepts strings containing an odd number of ones (e.g. it will accept the string

1101 but not the string 0110). It can be formally described using Equation 2.1. Observing Figure 2.1a, the

set of all possible states contains three states {𝑞0 , 𝑞1 , 𝑞2}. Of these states, 𝑞0 is marked as the initial state

and 𝑞2 as the only final state, therefore 𝑞0 = 𝑞0 and 𝐹 = {𝑞2}. Moreover, the input type is only binary,

resulting in an alphabet of 0, 1. Finally, the transition function can be expressed by a transition table

7
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as seen in Table 2.2a. The left most column indicates the current state and the top most row the input

character. Each of these combinations describes the next state, which represents the formal transition

function 𝛿 : 𝑄 × Σ → 𝑄. In summary, the finite automaton that recognizes binary strings containing an

odd number of ones can be formally defined by Equation 2.2.
1

𝑀𝑜𝑑𝑑_𝑜𝑛𝑒𝑠 = {{𝑞0 , 𝑞1 , 𝑞2}, 𝛿𝑡𝑎𝑏𝑙𝑒2.2𝑎 , {0, 1}, 𝑞0 , {𝑞2}} (2.2)

The same process can be applied to the other, more simple, finite automaton that recognizes even strings

(Figure 2.1b). Using its transition table (Table 2.2b), it can be formally defined by Equation 2.3.

𝑀𝑒𝑣𝑒𝑛_𝑠𝑡𝑟𝑖𝑛𝑔 = {{𝑞0 , 𝑞1}, 𝛿𝑡𝑎𝑏𝑙𝑒2.2𝑏 , {0, 1}, 𝑞0 , {𝑞0}} (2.3)

0 1

𝑞0 𝑞1 𝑞2

𝑞1 𝑞1 𝑞2

𝑞2 𝑞2 𝑞1

(a) The transitions for the finite automaton defined in

Figure 2.1a.

0 1

𝑞0 𝑞1 𝑞1

𝑞1 𝑞0 𝑞0

(b) The transitions for the finite automaton defined in

Figure 2.1b.

Table 2.2: The transition function expressed as a transition table for each of the finite automata defined in Figure 2.1.

𝑞0start 𝑞1 𝑞2

0

1

1

0

1

0

(a) A visual representation of a finite automaton that only accepts binary

strings containing an odd number of 1s.

𝑞0start 𝑞1

0,1

0,1

(b) A visual representation of a finite automaton that only accepts binary

strings of even length.

Figure 2.1: Two visual examples of finite automata recognizing a pattern.

The automata given in the examples are known as deterministic finite automata (DFAs). They are finite

because they have a finite set of states. Furthermore, they are deterministic because each transition

uniquely maps two states given an input symbol. Alternatively, a non-deterministic finite automaton

(NFA) exists that has a set of finite states but non-deterministic transitions. An NFA has the unique

property of allowing transitions, or edges, between states that do not consume an input symbol. These

are known as epsilon transitions. The result of this property is that when an NFA is evaluated, an epsilon

edge will introduce multiple possible states at the same time. This is what its non-determinism refers to.

Because an NFA can contain epsilon edges, its 5-tuple remains the same except for the definition of its

transition function. Its transition function becomes 𝛿 : 𝑄 × Σ → 𝒫(𝑄) where 𝒫(𝑄) is the power set of

the possible states. This power set models the fact that with epsilon transitions, all the combination of

states could be reached rather than a single state.

NFAs and DFAs can recognize the same languages, however one might be preferable over the other

in different applications. For example, an NFA is easier to construct than a DFA, as it can reduce the

number of states and transitions. Alternatively, a DFA can be useful for hardware implementations,

as its transitions can easily be encoded as a table. An NFA can be converted to a DFA by using the

powerset construction.

Parsing CSV
A CSV parser that makes use of a finite automaton is the rust-csv [8] crate. The general idea of this

CSV parser is to construct and use a DFA that recognizes the CSV format. In his work, Gallant [8] notes

1
Note that 𝛿𝑡𝑎𝑏𝑙𝑒 can be found in Table 2.2a.
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that an NFA is easier to construct. For this reason, the CSV parser is first constructed as an NFA after

which it is transformed into a DFA. This transformation is possible because an NFA is equivalent to a

DFA [33]. I.e. they recognize the same language. As this transformation is a trivial process, only the

DFA will be discussed. The DFA constructed by this library can be described using the formal definition

of a finite automaton (see Equation 2.1), where the possible states (|𝑄| = 10) are defined as follows.

1. Start of a record

2. Start of a field

3. In a field

4. In a quoted field

5. In an escaped quote

6. In a double escaped quote

7. In a comment

8. End of a field

9. End of a record

10. End of a line

The transition function of the DFA is implemented by a transition table. This allows parsing to be simple,

since each state transition becomes a look up. Each transition is the combination of the states and the

alphabet of the DFA. A naive approach would be to consider the alphabet of this parser as the range

of a byte (i.e. values from 0 to 255 or formally Σ𝑏𝑦𝑡𝑒 = {0, 1, . . . , 255} where |Σ𝑏𝑦𝑡𝑒 | = 256). However,

Gallant [8] notes the combination of this alphabet and the states would lead to a large transition table.

Specifically, it would lead to |𝑄 × Σ𝑏𝑦𝑡𝑒 | = 2560 transitions, translating to a lookup table of 2560 bytes in

size. Fitting this in cache for modern CPUs might not be a problem. However, for older or embedded

CPUs this number can still be relatively large. Consequently, Gallant [8] decided to map the byte values

to classes in order to reduce the number of transitions.

In CSV grammar, not all bytes share the same meaning. For instance, there is no distinction between

numeric characters such as 0 to 9, they are just values. However, there is a distinction between a comma

and a numeric character. More specifically, the first indicates the start or end of a field. For this reason,

characters can be divided into classes to indicate their meaning. This means that some characters can

share a class and are equivalent in their meaning. This classification is nothing more than a mapping

between the alphabet Σ𝑏𝑦𝑡𝑒 and a new alphabet of classes Σ𝑐𝑙𝑎𝑠𝑠 . The mapping can be described by a

transition function 𝛿0 : Σ𝑏𝑦𝑡𝑒 → Σ𝑐𝑙𝑎𝑠𝑠 where |Σ𝑐𝑙𝑎𝑠𝑠 | = 7 and the classes are defined as follows.

1. The field delimiter

2. The first record terminator

3. The second record terminator (if the record terminator is CRLF, then CR and LF are distinct

equivalence classes)

4. The quote byte

5. The escape byte

6. The comment byte

7. Everything else

The result of this extra transition is an extra lookup into a 256 byte transition table and a lookup into a

|𝑄 ×Σ1| = 70 byte transition table. Additionally, a third table of 70 bytes is needed to determine whether

an input byte is to be stored or not. All of these mechanisms are constructed at run-time when this

parser is called.

Since this research focuses on developing a parser generator, it is worth noting that rust-csv can be

considered as one. More specifically, the DFA that it uses to parse CSV is constructed every time a user

uses this parser. It is constructed at run-time, based on configurations passed to the parser. An example

of such a configuration is the delimiters used for fields or records. This allows the parser to generate

a different class and transition table. Nevertheless, for this research it does not qualify as a complete
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parser generator. First, it only parses the CSV values to a native Rust representation and not to the

Arrow format. Second, it is only able to parse CSV to string records, where all values are strings (i.e.

this DFA is only able to parse the syntax of CSV and not its field types).

2.1.2. SIMD
Langdale and Lemire [18] showed that it is possible to parse a format such as JSON efficiently using

SIMD. One of the challenges they solve in parsing textual formats such as JSON is parsing delimiters.

More specifically, the challenge discussed in Section 1.2.3 allows for escaped values that are delimited by

double quotes. These values may contain special characters such as delimiters, and thus double quotes.

For this reason, division of data into chunks and parsing them individually could lead to errors. For

instance, when the parsing of a chunk starts in the middle of an escaped value, an escaped delimiter

might be interpreted as non-escaped leading to incorrect parsing.

Langdale and Lemire [18] solve this problem for JSON by using SIMD to generate bitmaps that indicate

when a character is escaped or not. A character is escaped if it is delimited by a preceding and a

following double quote. Between each delimiter and character can be many characters, as well as

escaped characters such as the double quote. In JSON, a double quote is escaped by using the backslash

delimiter. They classify the problem of determining escaped characters by means of propagation.

Assume a sequence of arbitrary characters. The first double quote character that is encountered will

make all succeeding characters be escaped until a second double quote is encountered. That is, a second

double quote that is not escaped by an escape character. Thus, the first double quote character starts a

propagation and every character propagates the escape except for a second unescaped double quote

character.

For JSON, a double quote needs to be escaped by a back slash, which adds complexity to propagation.

However, for CSV the escape delimiter for a double quote is defined to be a double quote. This makes

escape propagation easier, as having an escaped double quote in an escaped value means that the first

double quote ends propagation and the second double quote starts propagation [19]. The final result is

that all characters that are not double quotes can still be detected as escaped using propagation. To

illustrate this propagation for CSV, consider the examples in Figure 2.2. Before propagation, a bitmap of

the double quotes is needed. Then a running xor needs to be performed on this bitmap, for this example

the input bit is considered zero (i.e. on every bit an xor operation is performed with the result of the

previous bit). The result of the running xor is a bitmap with escaped characters. As seen in Figure 2.2b

this also works for an escaped value containing an escaped double quote.

12,"Joe Doe",56 CHARACTERS
___1________1___ BITMAP
___111111111____ RUNNING XOR

(a) Finding the bitmap for escaped characters using a quote bitmap and

XOR propagation.

12,"Joe""Doe",56 CHARACTERS
___1___11___1___ BITMAP
___1111_1111____ RUNNING XOR

(b) Finding the bitmap for escaped characters using a quote bitmap and

XOR propagation where an escaped double quote is present.

Figure 2.2: Two examples for finding the bitmap for escaped characters using a quote bitmap and XOR propagation.

Langdale and Lemire [18] discovered that this binary propagation by means of a running xor could be

performed using a special AVX instruction. This instruction is the clmul, or carry-less multiplication,

instruction. Using this instruction with the text characters as first argument and supplying a bit mask

with all bits set to one as the second argument, it performs a running xor. A system running on a

modern architecture with support for AVX512 could compute four 128-bit bitmaps at the time using

the _mm512_clmulepi64_epi128 instruction [14]. This allows computing bitmaps for 512 characters per

operation. However, an escape might be propagated on the edge of a bitmap, which needs to be taken as

input by the next bitmap. Consequently, a bit has to be propagated to subsequent bitmaps. Fortunately,

this is a simple operation as either a 0 or a 1 might be propagated. A 0 will not change the result and a 1

will simply negate the whole bitmap. For this reason, it is a case of negating a bitmap based on whether

the last bit of the previous bitmap is 1. Figure 2.3 shows the two possibilities of propagation between

bitmaps. Figure 2.3a shows a case where, without propagation, invalid escape bitmaps are generated.

Although the algorithm to detect escaped characters in CSV might not parse every aspect of CSV, it does

provide useful context. Using the bitmaps of the escaped characters, it is easy to navigate through the



2.2. Parser generator frameworks 11

aaa,"bbb bbb",aaa CHARACTERS
____1___ ___1____ BITMAP
____1111 ___11111 RUNNING XOR
____1111 111_____ BIT PROPAGATION

(a) Propagation of one from the last bit in the first 8-bit bitmap to the

second 8-bit bitmap.

aaa,"bb" ,aaaaaaa CHARACTERS
____1__1 ________ BITMAP
____111_ ________ RUNNING XOR
____111_ ________ BIT PROPAGATION

(b) Propagation of zero from the last bit in the first 8-bit bitmap to the

second 8-bit bitmap.

Figure 2.3: Two examples for finding two 8-bit bitmaps for escaped characters using propagation. After each computed 8-bit

bitmap, the last bit of the first bitmap is propagated to the second bitmap.

CSV text and detect the positions of records and fields. Consequently, it can be used to speed up and

parallelize CSV parsing.

2.2. Parser generator frameworks
A parser generator framework provides abstractions for creating a parser. Common parser generators

allow users to call functions, sometimes macros, that perform certain parsing steps. For instance, a user

might call a function that parses a delimiter and throws an error if the input does not match. Even

though these frameworks significantly reduce the boilerplate code needed when writing a parser, they

still require significant effort from a developer.

A popular parser generator framework in C++ is the Boost Spirit X3 library. Boost spirit X3 [10] is a

recursive-descent parser constructed by defining a grammar in C++. It is one of the frameworks used by

Peltenburg et al. [24] to compare parse performance with. Boost spirit allows a user to define a grammar

at compile-time by using inline grammar specifications. From this grammar, a parser is made available

that allows for parsing the grammar. Moreover, a hierarchical data structure for the parsed data can be

constructed and managed.

An alternative framework for generating parsers in Rust is the Nom crate. Nom [21] is a parser

combinator framework used to construct recursive descent parsers. A parser combinator framework is a

framework for constructing a parser by providing and combining a set of parsing functions. This allows

for modular construction of a parser where individual functions can be tested and repeated.

Both frameworks operate with the concept of compile-time available context. That is, a user can define

their parser with some sort of macro or inlined functions. Using this approach, a compiler has access

to the code that will run at run-time. Other parsing frameworks only decide their parsing functions

at run-time usually based on run-time schema inference. Consequently, parser generator frameworks

can optimize more parser code ahead-of-time. Nevertheless, both frameworks still require a user to

manually specify their parse instructions. Consequently, when a grammar has changed, their parser has

to be manually updated.

2.3. Popular data analytics frameworks
Data analytics frameworks allow users to ingest and process data efficiently. To perform efficient

operations, these frameworks often rely on the Apache Arrow format or some derivative of their concept.

In addition, they often provide support for many different data sources such as CSV. Consequently,

most data analytics frameworks have CSV to Arrow conversion built in. For this reason, they can be

used to compare with a parser generator. Additionally, their implementation details might provide

ideas for improving or solving challenges in converting CSV to Arrow.

Many data analytics frameworks exist, for which some of the most popular, state-of-the-art and

open-source frameworks are Polars [25] and DuckDB [5]. Additionally, Apache Arrow [40] supports

performing data analysis through their libraries. For this research, their underlying implementations

for CSV parsing is particularly interesting.

2.3.1. Apache Arrow
In addition to its format, the Apache Arrow [42] framework provides libraries to interact with its format.

Most notably, it provides functionality for reading different data sources into the Apache Arrow format.
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Because these libraries also define the format and how it is stored, Apache Arrow has the advantage of

having access to the internal implementation. For instance, its implementation has more direct access

to buffers for storing data such as strings. For this reason, reading CSV to Arrow should achieve the

highest performance using this framework. Consequently, it will serve as the baseline for performance

in this project.

To convert a CSV data source into Arrow record batches, the Rust Arrow CSV reader performs several

steps. First, the underlying rust-csv [8] parser (see Section 2.1.1) is used to produce string records.

The string fields of these records are stored in dedicated buffers for each field. Second, when the target

number of records for a record batch is reached, all the string fields are parsed to their respective data

types. Finally, a record batch is produced from the field buffers.

When converting from string records to records with types, Arrow makes use of several different type

parsers. Knowing the parser implementations allows for setting a fair comparison between a parser

generator and Apache Arrow. Using the same parsers in the parser generator allows the CSV parsing

performance difference to be measured more accurately. Table 2.3 shows the parsers for some of the

most used types. Since Arrow parses CSV directly to string records, no additional parsing is needed for

strings. For integers it makes use of the atoi [16] crate, which provides safe parsing functions to protect

from cases such as numbers that do not fit in the number type. For floating-point numbers it makes use

of the lexical core [22] crate, similar to atoi it provides safe parsing functions.

Category Type Variants Implementation

Number

Unsigned integer 8-, 16-, 32-, 64-bit atoi [16]

Signed integer 8-, 16-, 32-, 64-bit atoi [16]

Floating-point 32-, 64-bit lexical core [22]

String escaped, unescaped N.A.

Table 2.3: The parsers used by Arrow for some of the most common data types.

As described in Section 1.2.3, parallelizing CSV parsing can be difficult due to its characteristics. At the

time of writing, the Rust Apache Arrow implementation does not provide a multi-threaded solution.

2.3.2. Polars
Polars [25] is a state-of-the-art data analytics framework written in Rust, designed for fast data processing

on a single machine. It allows many different data sources to be ingested and stored as a dataframe

including CSV. A dataframe is similar to an Apache Arrow record batch as it makes use of the Apache

Arrow format for storage. Consequently, it can be converted to Apache Arrow data structures with little

to no overhead. Furthermore, Polars achieves high performance because of its query engine. Its query

engine optimizes query plans for more efficient computations.

To convert CSV to dataframes, Polars uses a different approach to Apache Arrow. Polars defines a

multi-threaded CSV parsing model in their polars-io crate for which it requires different steps than

Apache Arrow. First, the data is split into chunks. For chunks they try to minimize the size of a chunk

to 16 MB to still fit in L3 cache. However, when a file contains many columns the number of chunks

is adjusted such that the data is split in less chunks. This is to reduce the buffer allocation overhead

per chunk. The data is split into chunks by parsing the CSV line delimiters to have an exact number of

records per chunk. Second, a thread is spawned from a thread pool for each chunk. For each chunk,

each line is split into fields by parsing column delimiters. Each field value is then parsed to the type of a

field and stored in its respective buffer. Finally, the buffers can be used to construct dataframes.

Polars makes use of different type parsers, for which the parsers for the most common types can be

found in Table 2.4 When converting from string records to records with types, Arrow makes use of

several different type parsers. For integers it makes use of the atoi-simd [31] crate, which is similar to

atoi, but provides SIMD support if the target machine supports it. For floating-point numbers it makes

use of the fast_float2 [11] crate, which is a port of a state-of-the-art C++ number parser developed by

Lemire [20]. Furthermore, for strings, possibly escaped characters are removed using a built-in string

parser.
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Category Type Variants Implementation

Number

Unsigned integer 8-, 16-, 32-, 64-bit atoi-simd [31]

Signed integer 8-, 16-, 32-, 64-bit atoi-simd [31]

Floating-point 32-, 64-bit fast_float2 [11]

String escaped, unescaped built-in

Table 2.4: The parsers used by Polars for some of the most common data types.

2.3.3. DuckDB
DuckDB [5] is a state-of-the-art database management system (DMBS) that supports SQL. DuckDB tries

to achieve higher performance by providing a columnar-vectorized query execution engine. Compared

to traditional database systems such as MySQL, processing occurs on vectors of column values rather

than processing row by row. As such, it uses a similar model to Apache Arrow.

Whilst DuckDB is able to convert CSV to Apache Arrow record batches, its open-source code is extensive

and abstract due to its query engine. Consequently, it is hard to pin point the model of CSV to Arrow

conversion and the parsers used for the types. Nevertheless, DuckDB can still act as a good comparison

in performance benchmarks.



3
Alternative solutions

The implementation for CSV to Arrow conversion can be split in two distinct problems. The first

problem is the generation of parser code. Second, is the problem of parsing CSV, which translates to

the implementation details of the generated parser. For both problems, different solutions or design

choices exist that need to be considered. The following sections will explain and compare the alternative

solutions for these problems.

3.1. Programming language
Both the generator and the resulting parser are programs that are defined using a programming

language. In general, a programming language provides abstractions to interact with the hardware

of a machine. Languages are often categorized for this property in terms of a level. Higher-level

programming languages introduce more abstractions as opposed to lower-level languages. An example

of one of the lowest level language is assembly. A programmer has to write a significant amount of boiler

plate code to achieve certain operations. For instance, printing in assembly requires several assembly

instructions, but in a higher level language such as Java only a single print statement is required. Whilst

this makes a higher-level language seem more useful as it reduces complexity, there are benefits to lower

level languages. For example, a lower level language allows for fine grain control over hardware. Micro

optimizations can be applied by the developer rather than relying on a compiler. An optimization could

be to use a specialized instruction but also using a different algorithm. In higher level languages, the

implementation details are often defined by the programming language or compiler rather than the

user.

The most popular low-level programming languages used for performance applications are C and C++.

They provide low-level control with little overhead introduced by abstractions. C++ is an extension to C,

where additional features were added . Moreover, it is used as the language for the default Apache

Arrow implementation. In more recent years Rust has been added to the popular high performance

languages. Just like C++ it offers high performance with features such as generics, iterators and lambda

expressions. They both offer these abstractions with the zero-cost principle, these features will only cost

what is used. For instance, if an iterator over a list first limits the list to half the size and then performs a

map operation, only half of the items are mapped.

Additionally, Rust adds the promise of additional memory safety. Both C and C++ are known to be

vulnerable to memory bugs introduced by programmers. For example, having a dangling-pointer,

a buffer overflow or a use-after-free. Although C++ supports smart pointers that can automatically

manage pointers, it is up to individual developers to enforce. Alternatively, Rust tries to reduce memory

bugs by enforcing a set of rules at compile-time. These rules limit the use of a value, such that the

problems previously mentioned cannot occur. If one of the rules is violated, a Rust program will not

compile and will not introduce a memory bug. Alternatively, C and C++ would compile and possibly

introduce undefined run-time behavior.

To be able to use Apache Arrow, it provides a C data interface which allows any language to use its

14
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format over a foreign function interface (FFI) [43]. However, this requires a program in a non-C language

to adjust their code so that their data adheres to the C FFI convention. More specifically, any data going

in, or out, over this FFI has to be transformed from, or to, a C data representation. In turn, this introduces

conversion overhead and adds complexity when using the Apache Arrow format. Fortunately, Apache

Arrow also provides an interface in the form of a library for several popular programming languages

[41]. This allows for an easy Apache Arrow integration for C, C++, and Rust.

3.1.1. Generator
The target programming language of a generator is important as it defines its usability and complexity.

Usability is important for any users or developers that would use a parser and the complexity needs to

be considered for the maintenance of the parser generator.

First, integrating a parser generator into a project should not be hard. Integration can happen in different

ways, depending on the language. The most common way of integrating code is by defining and using

a library. At compile time the library is compiled and linked to the program of a user. Another option is

to generate code using macros. C++ and Rust allow the use of macros and thus code generation directly

in the user program. An advantage of using macros is that the generated parser is available in the user

program. This can allow for better optimizations when compiling or doing link-time optimizations.

These optimizations include inlining.

Second, the implementation of a parser generator should not be difficult to maintain or debug. This

means that code generation should not be too hard nor very complex. The macro ecosystem in Rust

contains several libraries that allow for easy code manipulation. Additionally, procedural macros are

implemented as crates, allowing the code to be checked by the Rust compiler. This supplies useful

warnings and errors during the development of a parser generator. C++ or C on the other hand, do not

provide much information when compiling other than syntactic errors.

Rust fits well as the target language of the generated parser on both criteria. It provides a compiler with

useful messages and a well supported ecosystem for defining macros. Additionally, its macros allow for

easy integration in a user program. Consequently, Rust is the choice of target language for the parser

generated.

3.1.2. Parser
The target programming language of a parser is important for several reasons. First, it needs to perform

well once compiled, since the goal of the parser is to parse CSV as fast as possible to Arrow. Second, it

needs to be usable, so that it should be easy to integrate into another program. Finally, it should be safe

to generate, allowing bugs in code generation to be detected.

Generating code is an automated process that might reduce bugs because it removes the need for a

human to (re)write a parser. However, it can also introduce systematic bugs that a user might not

catch, since the user does not have fine-level control or understanding of the code. This risk could be

reduced by extensive testing and even software verification but it would be desirable to have a target

language that could provide additional safety out-of-the-box. For instance, a lower-level language such

as C or C++ could be considered unsafe because it does not provide a safety mechanism in the case of

out-of-bound errors. The responsibility lies with the developer, or code generator, to ensure such a bug

is not introduced. Failing to do so can lead to undefined behavior and possibly malicious exploitation.

Alternatively, a language such as Rust can provide memory safety, as it may warn a user with a compiler

error in the case of such memory bugs. Consequently, when Rust code is generated, it might not compile

if some illegal memory behavior is produced by the generator.

Another important criterion is the performance of the generated parser. Different metrics can be used to

define the performance of a program. For example, the throughput it can achieve with regard to its

input. Alternatively, the memory characteristics of the program throughout execution. In general, lower

level programming languages perform best for both these metrics. They allow for more fine-grained

optimizations, such as using low-level instructions that better fit a problem. In addition, they are

compiled ahead-of-time, allowing for little runtime overhead. The most popular low-level languages,

C and C++, are therefore often considered for high performance applications. In more recent years,

Rust is also considered, as it has matured as a low-level language with higher-level functionality. Other
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language alternatives are interpreted or just-in-time (JIT) compiled languages. Sometimes the two are

even combined, allowing for source code to be compiled to byte code and the interpreted into machine

code at run time.

Another important criterion is the usability for parsing and integration with Apache Arrow. Apache

Arrow provides a C data interface which allows any language to use its format over a foreign function

interface (FFI) [43]. However, this requires a program in a non-C language to adjust their code so that

their data adheres to the C FFI convention. More specifically, any data going in, or out, over this FFI has

to be transformed from, or to, a C data representation. In turn, this introduces conversion overhead and

adds complexity when using the Apache Arrow format. Fortunately, Apache Arrow also provides an

interface in the form of a library for several popular programming languages [41]. This allows for an

easy Apache Arrow integration for languages such as Rust, Java, Python and others.

Combining the criteria, Rust fits well as the target language of the generated parser. It can provide the

performance of a low-level language, whilst safeguarding users for possibly generated memory bugs.

Additionally, it is well supported by Apache Arrow for integration and use of its format. Consequently,

Rust is the choice of target language for the generated parser.

3.2. Parser generation
Whilst a parser will execute at run-time, its generation could be either at run- or compile-time. Both

provide advantages and disadvantages in terms of performance, complexity, flexibility and usability of

the parser generator.

3.2.1. Ahead-of-time
Ahead-of-time, or static, parser generation refers to generating a parser at compile-time. It allows

a parser to be compiled and statically linked to a program. A parser is constructed by generating

the code for a program that takes CSV as input and generates Arrow record batches as output. The

advantage of constructing it at compile time is two-fold. First, the program can be compiled, which can

optimize choices made by the parser constructor. Additionally, compiler flags can be added to tweak

the performance of the program even more. For instance, the compiler could parallelize certain code

into SIMD instructions if the target computer architecture supports it. Second, the user, or programmer,

utilizing the parser generator can supply context to the generator. For instance, the user supplies it with

the schema of the CSV records. Consequently, the parser generator is tailored to only accept a grammar

instance of CSV, rather than the complete CSV grammar. This allows for replacing generic parsing

of CSV to specific parsing a set of types. I.e. every field in a CSV record is not parsed the same, but

rather parsed depending on the type. However, this makes the generated parser inflexible at run-time,

allowing for only the specified schema to be parsed
1
. Nevertheless, for a data pipeline, flexibility is

often not needed since the files are often repetitions of a schema.

A compile-time parser generator can work much like a library, in that it provides a parser implementation

to the user. More specifically, a parser can be generated as if generated by the user. In Rust, a method for

generating code is using macros. The Rust ecosystem has three types of procedural macros that allow

for manipulation of Rust code at compile-time. For instance, the procedural derive macro allows for

automatically deriving a trait implementation (i.e. code is generated in the form of an implementation

for a trait). A common use is automatic derivation of the Debug trait, which allows a data type such as a

struct to be formatted for debug printing. In addition, a derive macro provides the ability of supplying

helper attributes or arguments. In general this is useful when a user of a macro library would like to

customize an implementation. This means that a derive macro has the potential for customizations of

the parser generated by a parser generator derive macro.

In Rust, for a procedural derive macro to generate a parser it needs a structure for which it can implement

such a parser. Several structures or data types are allowed to be derived, namely structs, enums or unions

[27]. A struct is a type that can accurately represent tabular data, making it suitable for representing

the schema of a CSV record. For instance, the columns for each row in a CSV file can be represented

by a struct as shown in Listing 3.1. Each field defines the name and the type of a column. Using an

unnamed struct definition, field names are omitted which indicates the absence of a header in a CSV

1
If input data does not match the schema, the parser will simply throw an error.
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file. Defining a struct means defining a schema for CSV, but also defining concrete types for the string

values. Consequently, it also provides a good representation, or schema, for an Apache Arrow record.

id,name,birth_year
0,Bob,1992
1,Alice,1974
2,John,2001
3,Jane,1953

(a) A CSV file

struct Named {
id: u64,
name: String,
birth_year: u16

}

(b) A struct with named fields

struct Unnamed (
u64,
String,
u16

);

(c) A struct with unnamed fields

Figure 3.1: Two different Rust struct representations for the record schema of a CSV file. The struct fields represent the columns

of a CSV file, one struct represents a single row in a CSV file.

The type of field can be any Rust type, allowing for extensive type support with custom struct types

and enums. However, field naming is more limited since structs cannot contain both unnamed and

named fields
2
. It is possible to exclusively use unnamed fields as seen in Figure 3.1c. Furthermore, both

CSV and Apache Arrow formats, allow types to be null (i.e. the value can be undefined). Describing

a nullable type is different in Rust compared to other languages such as C, since Rust uses a type

abstraction. Any generic type T that is nullable is described by an enum Option<T> , where None
represents a null value and Some(T) represents a value. Consequently, it provides a descriptive and

intuitive definition for nullable fields in schemas for CSV.

3.2.2. Just-in-time
Just-in-time (JIT), or dynamic, parser generation refers to generating a parser on demand at run-time.

This approach is also called just-in-time (JIT) compilation. Two solutions exist for generating a parser at

run-time. Either a parser is provided to a user by code generation or by run-time interpretation.

First, parser code can be generated in the form of a Rust program and loaded in at run-time. In Rust, a

program can be compiled with the --crate-type=dylib argument to generate a dynamic library as

output [26]. The result is a shared object (.so) file that can be dynamically linked to a program. Dynamic

linking allows a program or library to be linked at run-time rather than compile-time. This allows a

library to be shared by multiple programs, saving space and making updates more easy. Alternatively,

it can be used to introduce new logic into a running program. For instance, the libloading [15] crate in

Rust allows dynamic libraries to be loaded in at run-time. The functions in this library can then be

invoked. Consequently, this would allow for a dynamic parser library to be generated and compiled at

run-time. This could then be loaded in using the libloading crate and invoked by the user.

A second solution to run-time parser generation is in-memory parser construction using a data structure.

The data structure can hold the information required to parse and store fields of a record. For instance,

by defining a struct data type containing a buffer, or builder, for each supported type. Furthermore, a

parser trait can be defined with a function that takes bytes as input and returns the remaining bytes

after parsing whilst storing new values in the buffer. For each data type struct, this trait can then

be implemented and optimized per type. Next, instances of the data type structs should be stored

when the parser generator is invoked for a schema. When different types are present, Rust does not

allow these different structs to be stored together in a vector or array because they have different sizes.

Consequently, to store them together, the structs need to be transformed to dynamic trait objects (e.g.

&dyn Trait) [29, 28]. This transformation results in trait objects that have the same memory layout

and size, allowing them to be stored together in a vector. The difference in memory layout between

a struct and its resulting dynamic trait object can be seen in Figure 3.2. Converting to a trait object

adds extra indirection and requires the struct data to be moved to the heap. Additionally, trait method

implementations need to be looked up by using dynamic dispatch. Dynamic dispatch allows a program

to determine the implementation at run-time by using a virtual table (vtable). A vtable holds pointers to

the method implementations for a type and a vtable is constructed for each type that implements a trait.

2
It is possible to add field names using macro attributes, allowing for a mix of named and unnamed fields. However, this

implementation is left open, as it is only a quality of life feature.
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Stack

struct

data

func()

(a) The memory layout for the struct.

Stack Heap

struct

data

func

vtable

. . .

func()

(b) The memory layout for the struct stored as a dynamic trait object.

Figure 3.2: Two examples of the memory representation of a struct, which implements a trait, when stored normally (a) and as a

dynamic trait object (b). The dynamic trait object representation adds extra indirection by adding data to the heap and requires

resolving method implementations at run-time rather than compile-time.

3.2.3. Ahead-of-time vs. just-in-time
In terms of performance, compile-time code generation allows for applying compiler optimizations to

the code and its integration into a user program. Modern compilers are good at optimizing programs

and could, for instance, vectorize parts of code. These optimizations become easier to be applied when

code is more simple. That is, in the case of tailoring parsers to a schema, this less generic code can

be easier to optimize. Additionally, compile-time schema knowledge can be used to apply parsing

strategies. Both compile- and run-time code generation solutions could benefit from this. However,

optimizations come at the cost of an increased compile time, which for run-time means an increased

run-time cost. For run-time code generation code needs to be generated, compiled, and linked at

run-time, introducing a significant overhead. It is possible to mitigate some of this cost by caching the

shared object files when a parser is requested multiple times for the same schema. However, this will

add complexity to the parser generation. Alternatively, generating a parser at run-time in memory

using dynamic dispatch could provide less overhead as no storage, compilation and linking happens.

The complexity of a solution is important for maintaining and debugging the parser generator. A more

complex parser generator becomes harder to debug and might be more difficult to ensure properties

such as safety or functionality. For the compile-time solution, constructing and maintaining a Rust

macro crate is easy. The macro ecosystem is well documented and multiple crates exist that allow for

easy manipulation or generation of Rust code. Moreover, a macro is executed at compile-time, allowing

to display errors or info messages for debugging. Alternatively, a run-time solution code generation

solution requires code generation without the help of the macro ecosystem. This makes it more difficult

to generate correct code and requires more manual labor. Finally, a run-time in-memory solution would

provide the least complex solution as it involves only writing a library.

The flexibility of a parser generator defines how it can be easily used to generate different parsers. For

instance, the ahead-of-time parser generator does not allow parsing a different schema during run-time

(i.e. only parsers generated at compile-time are available for use). Defining multiple schemas and

thus generating multiple parsers is possible however. Alternatively, the just-in-time parser generator

solutions do allow for generating and using a parser at run-time. Nevertheless, as mentioned in 1.1, in

practice a schema is often fixed at run-time. For instance, in a system that processes logs, which can

contain different values but it schema does not change. Consequently, ahead-of-time parser generation

might not have to be flexible.

A parser generator has to be used by a developer, as such some solutions might be easier to use.

Ahead-of-time parser generation by providing a macro crate is easy to use, as it uses a common approach

for deriving functionality. Derive macros are often used by Rust developers to derive functionality

automatically. For this reason, most users are acquainted with them. Alternatively the just-in-time

parser generator solutions can be implemented as a crate which provides a reading function much like

Arrow.

Ultimately, the performance of a parser generator is expected to be best with static generation and

dynamic in-memory generation. Dynamic code generation can be complex, as it involves extra steps
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that need to occur at run-time. With the overhead that compilation and linking provides, it should not

be able to achieve higher performance than static code generation. It only provides the advantage of

having a more flexible parser generator, as it can generate parsers at run-time. However, this can also

be achieved by the just-in-time in-memory parser or might not be needed for some applications. The

remaining solutions both provide a relatively easy usability and implementation complexity. For this

reason, both approaches are explored.

3.3. Generated parser
In addition to the process of parser generation, different solutions exist for the parser itself. The most

significant difference in solution for the parser is its strategy in reading the data source (i.e. whether to

buffer the input data or not).

Buffered vs unbuffered
A parser, or reader, parses bytes from an input source. Such sources include bytes, files and streams. In

some cases, it might be desirable to read a data source in increments. For instance, when reading a

stream, bytes might arrive at different times. Consequently, bytes can be buffered to accumulate and

process once the buffer is full. Moreover, when reading a file, the file may be sufficiently large that

reading it completely into memory is inefficient. For this reason, the file might be better suited to be

read in smaller chunks. For example, by repeatedly storing a chunk in a buffer and reading it.

A buffered reading approach can provide better performance in terms of memory for larger data sizes.

Additionally, it is required for some data sources to be read correctly. Nevertheless, it adds some

complexity to reading or parsing. Since bytes are read in increments, parsing might have to be stalled

because some bytes are not available yet. Consequently, state has to be managed with buffered parsing.

Alternatively, unbuffered parsing assumes that the complete data source is available. Therefore, it

cannot be stalled and does not have to maintain state.

Unbuffered reading allows for a significantly less complex parser implementation, since no state has to

be managed and no edge cases need to be handled. However, some data sources simply need buffered

reading, as their data is not always immediately available. The Apache Arrow CSV reader seems to

support both types, however, the underlying implementation of the unbuffered reader uses the buffered

reader. Therefore, it only makes use of a buffered reader. For this reason, the main solution for a CSV

reader will be a buffered implementation, so that it can be compared correctly against the Apache

Arrow implementation in terms of performance. Nevertheless, since unbuffered reading introduces

control overhead, it can provide a good upper bound to what the performance can be. Consequently,

unbuffered reading is also implemented and compared.
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Implementation

4.1. Ahead-of-time parser generation
The solution for ahead-of-time parser generation is to create a procedural derive macro that generates

a parser. As described in Section 3.2.1, a procedural derive macro is often used to generate code that

implements some functionality. There are two requirements to being able to generate code using a

procedural derive macro. First, a data structure is needed for which the procedural macro can be

invoked. Second, a trait for which to derive is required.

Before defining a trait for which a procedural macro can derive, it is important to outline the setup

required. A procedural derive macro is a type of library that can only export its derive implementation

by default. Consequently, to also provide a trait for which it can be invoked, an additional library

should be defined. Hence, the ahead-of-time parser generator consists of two modules, namely the

arrow_csv_reader [34] and arrow_csv_reader_derive [36] modules. The first contains traits and

implementations needed for deriving a CSV to Arrow reader. The second module is the procedural

derive macro that generates the parsing code.

4.1.1. Parser derivation
To generate a parser, a derive macro needs a trait to implement and a data structure to implement

the trait for. As described in Section 3.2.1, a struct can act as a schema for a CSV row and an Apache

Arrow record. To generate the code for a parser using a derive macro, the ArrowCsvRecord trait is

defined in the arrow_csv_reader crate as seen in Figure 4.1a. Deriving the ArrowCsvRecord trait for a

struct means that this struct will be interpreted as the Arrow and CSV schema/record to generate code.

The functionality of the initial trait is limited. It provides users with a static definition of the Arrow

schema and is used to implement other traits that define the actual CSV to Arrow reader functionality.

The derive macro can then be invoked using the #[derive(ArrowCsvRecord)] attribute as seen in

Figure 4.1b.

// arrow_csv_reader/lib.rs
use arrow::datatypes::Schema;

pub trait ArrowCsvRecord {
fn schema() -> Arc<Schema>;

}

(a) The initial trait used to derive a CSV parser.

use arrow_csv_reader::ArrowCsvRecord;
use arrow_csv_reader_derive::ArrowCsvRecord;

#[derive(ArrowCsvRecord)]
struct Example(u8, i16, String);

(b) An example of deriving the ArrowCsvRecord trait on an arbitrary struct that acts as

a schema. The struct will have access to the schema function at compile-time.

Figure 4.1: The initial trait (a) for which the parser implementation should be derived (b).

This definition assumes that a schema is known ahead-of-time. However, sometimes the schema, or

data types of values, of a CSV file might not be known by a user. For this reason, popular frameworks

20
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allow for inferring a schema by scanning part of a CSV file before parsing it. This inference occurs at

run-time, inducing an extra overhead. Since in this section the parser generation occurs ahead-of-time,

the only way for inference to work is by providing an example file at compile-time. Whilst this would be

possible, it would have no difference from providing the schema using the discussed struct definition.

Therefore, schema inference is left open, as it would only be a quality of life improvement. Nevertheless,

for a fair comparison in results, every framework is provided with a schema at compile-time. For the

discussed frameworks, these schema can be passed to the parser.

Simplifying schema field definitions
In theory, there is no limit to the number of columns that a CSV file can have. Fortunately, this is also

true for the number of fields a struct can have in Rust. For real-world datasets it is not unusual to have a

large number of fields. For instance, the ’web sales’ dataset from the TPC-H [46] benchmark contains 34

fields. Defining the schema for such datasets using a struct can introduce many lines of code. To aid in

reducing code complexity, a feature for repeating fields through a helper attribute was implemented.

Using the repeat helper attribute as seen in Figure 4.2 a field is repeated multiple times, reducing the

size of a schema definition. This attribute can only be applied to unnamed structs, because repeating a

named field would create multiple fields with the same identifier or name.

#[derive(ArrowCsvRecord)]
struct Example (

String,
String,
String,
String

);

(a) Traditional field repetition

#[derive(ArrowCsvRecord)]
struct Example (

#[repeat(4)]
String

);

(b) Field repetition using the helper attribute.

Figure 4.2: The default method for repeating fields (a) and using the repeat helper method (b).

4.1.2. Generating a reader
The derivation of the ArrowCsvRecord trait allows the derive macro to modify the target struct or

generate additional code. Any procedural macro starts with a token stream as input, for which it can

add, remove or change tokens to manipulate Rust code. A token stream is a sequence of token trees that

represents the Rust syntax. Using a library such as syn [44], a token stream can be transformed to a Rust

code syntax tree. This allows the input token stream to be inspected and manipulated with Rust data

structures. In the case of a struct, the fields can be inspected to retrieve and store their name and type.

This information provides the basis for generating a CSV to Arrow reader.

The ArrowCsvRecord trait contains a static method for constructing an Apache Arrow schema. This

method is implemented by the derive macro after inspecting the type and name of each field. An

Apache Arrow schema consists of a vector of fields with each field requiring three properties. First, the

name of a field that can be directly taken from the struct field identifier. Alternatively, in the case of

a tuple struct without field identifiers, a name can be generated from the index of the field. Second,

the type of the field, which has to be mapped from a Rust type to an Apache Arrow type. Fortunately,

both Rust and Apache Arrow support similar types, allowing for simple mapping. The final property

is the nullability of a field, which can also be extracted from the type of a field. More specifically, the

composite Option<T> type in Rust indicates that a type can be null. Using these properties, the code for

constructing an Arrow schema can be inlined and implemented for the static schema method.

Struct generation
After the initial ArrowCsvRecord trait is derived, a reader struct must be generated. This is because a

trait can only be implemented for a data type. Additionally, state needs to be managed whilst parsing.

For example, parsed values need to be stored in a buffer and the input data should be managed so

that the input data can be traversed incrementally. Therefore, when the ArrowCsvRecord trait is

derived, a new struct definition is generated using its schema. The new reader struct consists of two

key components. First, a field is defined to manage the input data. This field stores the slice, which
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is a reference to bytes. Second, for each field in the schema, a field is added to the reader that holds

an Arrow array builder. This builder is provided by Apache Arrow and provides an abstraction for

storing values in a contiguous buffer. Two examples of how a reader struct can be generated from an

input schema struct are found in Figure 4.3. The figures show how each schema field is mapped to a

builder field in the reader struct. In the case of a tuple struct that has no field names, the field names are

generated according to their field index.

Schema

struct Example {
id: u8,
points: i16,
name: String

}

Generated reader

struct ExampleReader<'a> {
id: UInt8Builder,
points: Int16Builder
name: StringBuilder,
buffer: &'a [u8]

}

(a) Example of generating a reader struct from a struct with named fields.

Schema

struct Example (
u8,
i16,
String

);

Generated reader

struct ExampleReader<'a> {
f0: UInt8Builder,
f1: Int16Builder
f2: StringBuilder,
buffer: &'a [u8]

}

(b) Example of generating a reader struct from a tuple struct by generating field names.

Figure 4.3: Two examples of generating the code of a reader struct from an input schema struct. Each type is mapped to a specific

Arrow builder. In the case of a tuple struct (b), the field names are automatically generated by using the field index.

Reader functionality
With a reader struct present, the derive macro can add reader functionality by implementing two

additional traits. First, the CsvReader trait is defined as seen in Figure 4.4a, which provides a

method to build a CSV to Arrow reader from bytes. This reader is required to have implemented the

ArrowCsvReader trait, which is the second defined trait. As seen in Figure 4.4b, this trait has no methods

but enforces that the From and Iterator trait are implemented for types that implement the trait.

Consequently, a reader constructed by the CsvReader trait will always have the From and Iterator
trait implemented. These traits provide the construction and reading functionality required for parsing

CSV to Arrow. Furthermore, the Iterator trait will be used to read record batches, exactly like the

Apache Arrow implementation. An overview of the functionality and use of traits for ahead-of-time

parser generation can be found in Table 4.1.

pub trait CsvReader: ArrowCsvRecord {
fn reader<'a>(bytes: &'a [u8]) -> impl ArrowCsvReader<'a>;

}

(a) The trait for constructing an instance of an unbuffered reader from input bytes. This trait is implemented on an ArrowCsvRecord
implementation. I.e. it is implemented for the schema struct.

pub trait ArrowCsvReader<'a>:
Iterator<Item = Result<RecordBatch, ArrowError>> + From<&'a [u8]>

{
}

(b) The trait that defines the functionality of an unbuffered reader. That is, it must implement a record batch iterator and be able to be constructed

from bytes.

Figure 4.4: The traits used to define the functionality of an unbuffered CSV reader.
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Trait Functionality Description
ArrowCsvRecord A type can be used as an Arrow

schema.

The initial trait for which the derive macro

needs to be invoked.

CsvReader A type can construct a CSV to

Arrow reader.

The trait defining the construction of a CSV

to Arrow reader.

ArrowCsvReader A type can be used as a CSV to

Arrow reader.

The trait defining the traits required to be

implemented for parsing CSV to Arrow.

From<T> A type can be converted from a

generic type T.

Trait required for constructing a reader.

Iterator<T> A type can be iterated over whilst

producing a generic type T.

Trait required for progressing a reader. I.e.

parse the CSV to Arrow.

Table 4.1: The traits used to implement a CSV to Arrow parser using a derive macro.

The From<&'a [u8]> trait defines that a reader can be statically constructed from a byte slice. The byte

slice should be a reference to the bytes of a CSV file that needs to be read
1
. The implementation for this

trait is generated like the struct definition. For each field, the field name and the Arrow builder are used

to initialize the respective fields. Additionally, bytes are taken from the input argument of the function

and stored in the buffer field. Figure 4.5 shows an example of generating the implementation for the

From trait. Using this implementation, the CsvReader trait can be implemented for the schema struct.

This implementation can now simply call the static from method from the generated reader struct.

Schema

struct Example (
u8,
i16,
String

);

Generated implementation

impl<'a> From<&'a [u8]> for ExampleReader<'a> {
fn from(value: &[u8]) {
Self {
f0: UInt8Builder::default(),
f1: Int16Builder::default(),
f2: StringBuilder::default(),
buffer: value

}
}

}

Figure 4.5: An example of generating the code for the From trait implementation from a tuple struct. This implementation

follows the same mapping technique as the struct generation from Figure 4.3.

The Iterator trait allows a reader to be used as an iterator with an Apache Arrow record batch as the

result item. That is, for each iteration, the reader could produce a record batch. The Apache Arrow

implementation for parsing CSV implements the same type of iterator. Consequently, a generated reader

will have a similar user interface as the Apache Arrow reader. The implementation of an iterator consists

of one method called next , which optionally yields an item. When no item is returned, the iterator is

exhausted. The generated implementation for the Iterator trait can be divided into several steps.

1. Yield nothing if input is empty.

2. Parse records whilst input is not empty, or the maximum number of records per record batch is

not yet reached.

3. Convert field buffers to arrays.

4. Construct a record batch from schema and field arrays.

Following the steps, the first step is a simple size check on the input buffer. The second step is the parse

step. It consists of a loop that checks if the input bytes are non-empty and the number of records parsed

1
Since the byte slice is a reference, it is accompanied by a lifetime. Lifetimes in Rust are used to check if references are valid

and if a reference does not outlive the data it points to. As such, the lifetime 'awill be passed from the byte slice to the reader

since it will store the reference. Consequently, the reader must have a lifetime that does not outlive 'a.
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is not exceeding the maximum record batch size. By default, the maximum number of records per

record batch is set to 1024 records, just like the Apache Arrow default. Each successful loop iteration

corresponds to one record parsed. Since the schema of the record is known, the parsing code for each

type can be inlined. The idea is that by doing this, the compiler has access to all parsing instructions.

This allows the compiler to optimize every part of the complete record parsing step. This is different

compared to the approach such as that of Arrow, where the actual parsing from text to type is known

only at run-time. The parsing segment of each field either stores a value to the buffer and advances

the input buffer, or halts the reader by returning an error. The third step builds arrays from the field

builders, which are needed to construct a record batch. In this step, the calls to the finish method of the

builders are inlined into a vector. Finally, a record batch is attempted to be constructed using the static

schema definition from the ArrowCsvRecord trait and the vector of field value arrays. The control flow

diagram for this process can be found in Figure 4.6.
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Figure 4.6: The control flow diagram of the next method implementation for an unbuffered CSV to Arrow reader. The

highlighted area shows the record parsing loop where the type parsers for each field are inlined after each other (see Figure 4.8.

4.1.3. Parsing types
Knowing the type of a field by the schema struct definition, the generated parser requires a parser for

this type. A simple solution to this is to use the same parsers as Arrow (see Section 2.2). For integer

types, Arrow uses the atoi crate to safely parse a number from bytes. Equivalently, for floating-point

numbers the lexical core crate is used. The parsers used can be found in Table 4.2.

Category Type Variants Implementation

Number

Unsigned integer 8-, 16-, 32-, 64-bit atoi [16]

Signed integer 8-, 16-, 32-, 64-bit atoi [16]

Floating-point 32-, 64-bit lexical core [22]

String escaped, unescaped custom (rust-csv [8] based)

Table 4.2: The parser for each type used in generating unbuffered parsers.

Since some of the parsers are implemented by different libraries, their input and output can be different.

When trying to use these parsers it can be inconvenient to have to deal with different results when

generating the complete CSV to Arrow reader. For this reason, the Parser trait is introduced as seen

in Figure 4.7. Any type that implements this trait can be parsed from bytes, returning a tuple of two

elements as a result. The resulting tuple consists of a possible value and the number of bytes that were

consumed when parsing. For the types in Table 4.2 with parsers from external libraries, the trait can

be implemented by calling the parser and mapping their result. Additionally, the trait can be directly

implemented for custom parsers. For example, it is implemented for the string type using a custom

version of the rust-csv [8] approach discussed in Section 2.1.1. Its implementation can be found in the

arrow_csv_reader library.

Using the Parser trait, inlining the parsing code of each field into the record parsing loop becomes

easy. For each field the parse method is first inserted, after which control logic needs to be added
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pub trait Parser: Sized {
fn parse(bytes: &[u8]) -> (Option<Self>, usize);

}

Figure 4.7: The parser trait used to let all type parsers have the same input and output.

to handle the result. Depending on whether a field allows for null values, different control logic is

generated. For non-null fields the control logic is simple as seen in Figure 4.8a. If a value is returned by

the parse method, store the value and check if the next character is a valid delimiter. When this is the

case, the input data can be advanced by the number of bytes that were consumed. In any other case, an

error is thrown, stopping the CSV reader. Alternatively, a field can be null for which an extra check

needs to be added to the control logic as seen in Figure 4.8b. The extra check is to identify if a parser

could not parse any bytes. In this case, the value should be null.
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(a) The control flow diagram for parsing a non-null field using the Parser trait.
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(b) The control flow diagram for parsing a possibly null field using the Parser trait.

Figure 4.8: Two control flow diagrams for parsing a non-null or possibly null field respectively.

4.1.4. Generating a buffered reader
The generation of a buffered reader follows similar steps to an unbuffered reader, however, several

changes have to be made. First, the struct definition of a buffered reader has to be updated in order to

support interrupting and resuming parsing when input bytes are temporarily depleted. Second, traits

similar to the CsvReader trait and ArrowCsvReader trait, the CsvBufReader and ArrowCsvBufReader
traits respectively, are added for buffered reading as seen in Figure 4.9 and Table 4.3.

Struct generation
A buffered reader struct is generated similar to the unbuffered reader struct but with different fields

and identifier. An example of a buffered reader struct generated from a schema is found in Figure 4.10.

To allow sources to be read in increments, the input source type is changed to a type that implements

the Read trait. This trait defines the functionality for bytes to be retrieved incrementally from a source.

As seen in Figure 4.10, this type is stored wrapped in a BufReader which provides helpful methods to
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Trait Functionality Description
CsvBufReader A type can construct a buffered

CSV to Arrow reader.

The trait defining the construction of a

buffered CSV to Arrow reader.

ArrowCsvBufReader A type can be used as a buffered

CSV to Arrow reader.

The trait defining the traits required to

be implemented for buffered CSV to

Arrow parsing.

BufferedTypeBuilder A type can be used to parse and

store values to construct Apache

Arrow arrays.

The trait defining the buffered parsing

functionality on type-level.

Table 4.3: Three extra traits that are used in addition to the traits from Table 4.1 to implement a buffered CSV to Arrow parser

using a derive macro.

pub trait CsvBufReader: ArrowCsvRecord {
fn buffered_reader<R: Read>(reader: R) -> impl ArrowCsvBufReader<R>;

}

(a) The trait for constructing an instance of a buffered reader from a reader. This trait is implemented on an ArrowCsvRecord implementation.

pub enum BufferedParserState {
Delayed, // Parsing is delayed, more bytes are needed and are possibly coming.
Result, // Parsing is finished, bytes are left for other field parsers.
Finished, // Parsing is completely finished, no more bytes are left.

}

(b) An enum that defines the three possible states after parsing a value.

pub trait ArrowCsvBufReader<R: Read>:
Iterator<Item = Result<RecordBatch, ArrowError>> + From<R>

{
fn parse_record(&mut self) -> Result<BufferedParserState, ArrowError>;

fn finish(&mut self) -> Result<RecordBatch, ArrowError>;

fn read(&mut self) -> Result<Option<RecordBatch>, ArrowError>;
}

(c) The trait that defines the functionality of a buffered reader. That is, it must implement a record batch iterator and be able to be constructed from

bytes. Additionally, it defines methods for progressing the reader incrementally whilst maintaining state. The state is defined by the enum in b.

Figure 4.9: The traits used for defining the functionality buffered CSV reader.

perform buffered reading.

For a buffered reader, the field builders have to be stored in an array as opposed to dedicated struct

fields. The reason for this is that unlike unbuffered reading, the reader is allowed to stall parsing in the

middle of a record if no bytes are left. More bytes might arrive at a later time which resumes parsing.

Consequently, it would be hard to resume record parsing at any arbitrary field if the field parsers are

inlined like the unbuffered reader. Hence, all builders are stored in an array and by maintaining the

index of the last field that is parsed, parsing can be resumed with a simple array lookup.

Buffered builders
Since each builder could have a different type, the builders are stored as dynamic trait objects.

Consequently, they are stored according to Figure 3.2, i.e. the builder structs should be stored on the

heap by boxing them. Each builder implements the BufferedTypeBuilder trait, a custom trait used

to combine an Apache Arrow array builder with a custom type parser implementation. As seen in

Figure 4.11, it defines four methods to parse types and construct an Apache Arrow array. The parse
method is defined to parse a value from input bytes where parsing could be delayed. It can produce

either a result containing the state of parsing and the number of bytes consumed, or an error indicating

that a value is invalid to parse. The parse state is defined by the BufferedParserState enum in

Figure 4.9b, it defines three types of state representing the following situations.
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Schema

struct Example (
u8,
i16,
String

);

Generated reader

struct ExampleBufReader<R>
where R: std::io::Read {
builders: [Box<dyn BufferedTypeBuilder>; 3],
reader: std::io::BufReader<R>,
column: usize

}

Figure 4.10: An example of generating the code of a buffered reader struct from an input schema struct. All types are stored as

dynamic trait objects.

1. Parsing can be delayed if more bytes are needed or possibly coming.

2. Parsing can yield a result, and bytes are left for other field parsers.

3. Parsing can be finished if there are no more bytes left.

When the state indicates that either a result was yielded or parsing has finished, a value is stored to the

underlying buffer. In the case of parsing being delayed but no more bytes are available, the builder

might still hold data that can be evaluated to a result value. For example, in the case of integers, if a

parser is delayed when it has already parsed the digits 1 and 0, it can store the digits. When no more

bytes are available, the state could be evaluated to the number 10. The flush method is used to try

and evaluate the state to a value and store it. It is only used in the case all bytes are exhausted, hence it

returns either nothing or an error. To check that a parser did not start parsing yet, the empty_state
method is provided. Finally, the finishmethod is defined to construct an Apache Arrow array from

the underlying value buffer which can be used to construct a record batch.

pub trait BufferedTypeBuilder {
fn parse(&mut self, input: &[u8]) ->

Result<(BufferedParserState,usize),ArrowError>;↩→

fn flush(&mut self) -> Result<(), ArrowError>;

fn empty_state(&self) -> bool;

fn finish(&mut self) -> ArrayRef;
}

Figure 4.11: The trait that defines the functionality for parsing and storing a type where parsing can be delayed by managing a

state.

To simplify selecting a buffered builder for a type, a generic struct definition can be used for which

the BufferedTypeBuilder trait can be implemented. For this reason, the BufferedBuilder struct

is defined with with a builder and a state field that are both defined by a generic type as seen in

Figure 4.12. Using generic types, multiple implementations can be provided for the struct. The generic

builder type is bound so that it implements the Apache Arrow ArrayBuilder trait that Apache

Arrow uses to implement their type builders. The generic state type is only bound to being able

to construct a default value. A generic boolean argument is provided so that a buffered builder

with the same builder and state can be defined with different implementations for nullable and non-

nullable types. Using these generic arguments, a buffered builder for the u8 type can be defined as

BufferedBuilder<UInt8Builder, Option<u8>, false> for which the BufferedTypeBuilder trait

can then be implemented. By specifying different arguments to the struct, different implementations

can be selected in the code generation process.
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pub struct BufferedBuilder<B, S, const NULLABLE: bool>
where B: ArrayBuilder + Default, S: Sized + Default,
{

builder: B,
state: S,

}

Figure 4.12: The BufferedBuilder struct definition used for implementing the BufferedTypeBuilder trait for different types.

Buffered reading functionality
Second, two traits are used to define the functionality for buffered reading. The traits for buffered

reading are defined as seen in Figure 4.9. Furthermore, an overview of the traits used to implement the

buffered reader can be found in Table 4.3.

The two traits, CsvBufReader and ArrowCsvBufReader , are similar to the unbuffered reading traits, but

have two main differences. First, the CsvBufReader trait defines the construction of a buffered reader

by providing an input source that implements the Rust Read trait. Second, the ArrowCsvBufReader
trait defines additional functionality compared to the ArrowCsvReader trait. Figure 4.9c shows that the

ArrowCsvBufReader trait defines methods that return a state. These methods are used to manage state

and resume parsing when it could not be completed. For example, when not all bytes of a record are yet

present in the input data. The state that parsing a record can return is the same BufferedParserState
enum (see Figure 4.9b) as the state used by the BufferedTypeBuilder trait.

The From<R: Read> trait defines that a reader can be statically constructed from any type that

implements the Read trait. The implementation for this trait is generated differently compared to the

unbuffered implementation for two reasons. First, the field builders are stored in an array as opposed to

dedicated fields. Second, they need to be boxed so that they can be stored as dynamic trait objects. As

such, each builder is initialized, boxed and stored in an array. The builders are custom builders that

implement the BufferedTypeBuilder . Additionally, a reader source is taken from the input argument

of the function and stored in the buffer field by initializing a BufReader . Figure 4.13 shows an example

of generating the implementation for the From trait. Using this implementation, the CsvBufReader
trait can be implemented for the schema struct. This implementation can now simply call the static

from method from the generated reader struct.

Schema

struct Example (
u8,
i16,
String

);

Generated implementation

impl<R> From<R> for ExampleBufReader<R>
where R: std::io::Read {
fn from(value: R) {
Self {
builders: [
Box::new(BufferedUInt8Builder::default()),
Box::new(BufferedInt16Builder::default()),
Box::new(BufferedStringBuilder::default()),

],
reader: value,
column: 0

}
}

}

Figure 4.13: An example of generating the code for the From trait implementation from a tuple struct. The builders are custom

builders that each implement the BufferedTypeBuilder trait allowing them to be stored together as dynamic trait objects.
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The Iterator trait for the buffered reader is implemented by delegating reading to the readmethod.

By default this method is implemented as seen in the control flow diagram in Figure 4.14. Records are

parsed using the parse_recordmethod which returns one of the three enum states (see Figure 4.9b).

In case of the the delayed state, it will do nothing and try parse the record again. For the result state

the reader will move to the next record. Alternatively, the finished state will halt record parsing after

which the finish method will be called to construct a record batch. The finish method is similar to that

of the unbuffered reader, since it will first convert the buffers from the field builders to arrays and then

construct a record batch.
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Figure 4.14: The control flow diagram of the read method implementation for a buffered CSV to Arrow reader. See figure 4.15

for more details on the parse record process.

The parse_recordmethod parses a record by parsing fields in sequence using the parse implementation

of their builders. It starts by filling the input buffer after which it will parse the fields in sequence using

a loop. Each field can delay parsing when more bytes are needed, for which the buffer will be filled and

parsing is attempted again. When all fields are parsed, the result state will be yielded, or a finished state

in case no more bytes are left. A control flow diagram for the parse_recordmethod can be found in

Figure 4.15.

4.1.5. Buffered type parsing
For buffered reading, parsing becomes more difficult as not all the data might be available at any time.

For example, a reader might end up in a situation where only half of the bytes of a record are available

for parsing. These type of situations require that parsing can be delayed and resume when more bytes

are available. As such, additional control logic is needed for maintaining the state whilst parsing.

The control logic needed for buffered parsing can be defined by the BufferedTypeParser trait as seen

in Figure 4.16. It needs to be implemented for any type that needs to be parsed from bytes. It defines a

parse and a flush method that handle parsing using a state, allowing a type to be parsed incrementally.

Whilst the BufferedTypeParser trait needs to be implemented for a concrete type, it also defines a

generic value type. This type is defined so that the trait can also be implemented for option types and

still have access to the concrete inner type of the option. For example, the trait can be implemented

for a type such as Option<u8>whilst setting the Value type to u8. Additionally, a generic state type is

defined which is used when delaying parsing in the parse method.

The parse method takes bytes and a state as input and produces either a TypeParserState result or an

error. The TypeParserState is an enum that indicates the state of parsing with two options. First, parsing

can be delayed, returning only the state needed for future continuation. This state is represented by the

TypeParserState::Delayed(S) variant, where S is the generic state type. Second, parsing can yield a

result, returning only the parsed value. This state is represented by the TypeParserState::Finished(V)
variant, where V is the generic value type. Using the TypeParserState, the parsing state can be fed to

the parse method when bytes are available and parsing was not finished. Otherwise, when it yielded a
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Figure 4.15: The control flow diagram of the parse_record method implementation for a buffered CSV to Arrow reader.

value, parsing is finished. The flush method is provided for when parsing is delayed but all bytes are

exhausted. It has the same functionality and purpose of the flush method in the BufferedTypeBuilder
trait. A control flow diagram of how these methods are used to achieve buffered parsing for a type can

be found in Figure 4.17.

The BufferedTypeParser trait is implemented for the types in Table 4.4 to allow for buffered type

parsing. Since the type implementations in Table 4.2 do not support managing state by default, custom

implementations for the unsigned and signed integer types and the string type are provided. Unsigned

integer parsing is carried out by first checking characters to be digits and trying to add these digits

with the correct significance
2
. The parser will throw an error when an overflow would occur and when

parsing is delayed, either no value or intermediate value is returned. Signed integer parsing uses a

similar approach except that it has to keep track of a sign. Consequently, the state returned is either

no value or an enum that tracks the sign. The state holds either a negative value, which is possibly

null if only the sign has been parsed, or a positive value. The string parser is implemented using the

same approach as the unbuffered parser, thus it uses a custom boiled down version of the rust-csv [8]

library. When delayed, it will return a number that indicates the state used in the DFA. For the floating

point number, the lexical core [22] library is used since creating a custom floating-point parser is

complex. For this reason, the parser is implemented by first finding the end of the field and then calling

the lexical core parser. In order to do so, a state is defined to hold tuple of a 64 byte buffer and an

offset that are used to store bytes of previous parsing attempts. No state is returned when the parser is

delayed without having processed byte and the tuple is returned otherwise. The implementations for

these types can be found in the arrow-csv-reader [37] module.

2
Numbers in CSV use decimal digits and therefore require multiplying by 10 when moving to the next digit.
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pub enum TypeParserState<S: Sized, V: Sized> {
Delayed(S), // indicates parsing was delayed and maintained state `S`
Finished(V), // indicates parsing was completed and yielded a value `V`

}

pub trait BufferedTypeParser: Sized {
/// The state that is maintained during several parse iterations.
type State: Default;
/// The type of a value that is to be constructed.
type Value;

fn parse(input: &[u8], state: Self::State,) ->
Result<(TypeParserState<Self::State, Option<Self>>, usize), ArrowError>;↩→

fn flush(_state: Self::State) -> Result<Option<Self::Value>, ArrowError>;
}

Figure 4.16: The BufferedTypeParser trait that defines the functionality for parsing a type where parsing can be delayed using

state results.
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Figure 4.17: The control flow diagram of buffered parsing for a type using the BufferedTypeParser trait methods.

4.1.6. Optimize using size-bounds
Knowing the maximum byte representation of a schema in CSV allows for reducing bounds checking on

the input bytes during parsing. This can be particularly useful for buffered reading, as buffered reading

introduces more bound checks. A reason for this is that in buffered reading, the input source has to be

managed by checking if it is empty and then filling it with bytes. Reducing these checks could help

lower the overhead and perform much like the unbuffered reader that does not have to manage a buffer.

In order to lower the number of input checks, several parameters need to be defined. First, define the

worst case byte representation of a schema for a CSV record to be 𝑆max. 𝑆max is the case where all fields

have their maximum textual representation including delimiters. Then define the number of available

bytes from the input source to be 𝑁 . The minimum number of records 𝑅min that are present in 𝑁 input

bytes will be ⌊𝑁/𝑆max⌋. Consequently, if 𝑁 input bytes are available, 𝑅min records can be parsed without

checking if enough bytes are available. This allows for skipping many compare instructions, which

reduces the number of branches encountered.

Nevertheless, this technique only works when several criteria are met. First, 𝑆max needs to be known,

requiring every field to have a known size. Second, the input data should respect these maximum sizes.

For instance, a textual representation of a number in CSV should not have a value that is larger than this

number can physically represent. Any illegal value could lead to undefined behavior. In general, CSV

data is generated by systems using native types, so for types such as numbers this should not happen.

However, for dynamic types such as strings, the safety of this technique relies on the user providing the
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Category Type Variants Implementation

Number

Unsigned integer 8-, 16-, 32-, 64-bit custom

Signed integer 8-, 16-, 32-, 64-bit custom

Floating-point 32-, 64-bit lexical core [22]

String escaped, unescaped custom (rust-csv [8] based)

Table 4.4: The parser for each type used in generating buffered parsers.

right size bounds. For this reason, optimizations using size bounds is turned off by default. It can be

turned on by using the size_inference helper attribute on a schema, as seen in the following sections.

Bounds of fixed sized types
Some primitive types in Rust are bound by a physical size and thus have a fixed range of possible values.

For instance, the u8 type has a physical representation of 1 byte and a value range from 0 to 255. Since

the data in CSV are textual representations of values, these value ranges can be used to infer the physical

textual representation of such a type. For u8 , the smallest textual representation are the numbers 0 to 9,

i.e. only 1 byte. The largest textual representation are the numbers 100 to 255, i.e. 3 bytes. An overview

of the bounds of all integer primitives can be found in Table 4.5.

Value range Text / digit range
Type Min Max Min Max
u8 0 255 1 3

u16 0 65,535 1 5

u32 0 4,294,967,295 1 10

u64 0 18,446,744,073,709,551,615 1 20

i8 -128 127 1 4

i16 -32,768 32,767 1 6

i32 -2,147,483,648 2,147,483,647 1 11

i64 -9,223,372,036,854,775,808 9,223,372,036,854,775,807 1 20

Table 4.5: The value and text / digit bounds for integer primitives.

When a schema is provided with only size-bounded types, a size bound can be inferred and put on

that schema. For example, in Figure 4.18 two structs are bounded in size by their fields, allowing for a

maximum byte (or textual) representation of these records.

// Max byte representation = 3 + 5 + 10 + 20 = 38 bytes
#[derive(ArrowCsvRecord)]
#[infer_size]
struct BoundedInt (u8, u16, u32, u64);

// Max byte representation = 4 + 6 + 11 + 20 = 41 bytes
#[derive(ArrowCsvRecord)]
#[infer_size]
struct BoundedUInt (i8, i16, i32, i64);

Figure 4.18: Two size bounded structs with their respective maximum byte (or textual) representation.

Bounds of dynamic sized types
Bounding types is simple for primitive types such as integers and even floating point numbers. However,

for dynamic sized types such as byte vectors or strings it is not possible to infer the bounds. Nevertheless,

in practical applications strings are often limited in size. For instance, names, flags or comments are

often limited to a maximum. GUIDs or timestamps can even be fixed size. Consequently, this parser

generator allows for annotating size hints for types. Figure 4.19 shows that annotating a String field to

have a maximum size, can complete the maximum bounds of the whole record.
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// Max byte representation = 20 + 5 + 32 = 57 bytes
#[derive(ArrowCsvRecord)]
#[infer_size]
struct Example {

id: u64,
birth_year: u16,
#[size_hint(max=32)]
name: String

}

Figure 4.19: A struct that is completely size bounded by annotating the dynamic String to have a maximum number of characters.

As mentioned earlier, a size hint should be provided with care. Providing a size that is not actually the

maximum size could lead to undefined behavior because bounds can be violated. It is especially safer

to use for values such as a GUID that has fixed length strings.

Applying size bounds
To apply the knowledge of the maximum byte representation and reduce checks, the implementation of

the reader needs to be adjusted. The first change is to add an extra trait that represents the relaxation of

bounds for types. As such, the BufferedTypeParserBounded trait is defined as seen in Figure 4.20.

This trait introduces an unsafe method called parse_unchecked which adds an extra argument and

has different result type compared to the BufferedTypeParser trait. The method is marked as unsafe

since an implementation can call unsafe functions such as the get_unchecked 3
method for byte slices.

Furthermore, it has an extra argument called upper_bound . This upper bound is the maximum number

of bytes by which the type is represented in CSV. Moreover, the result type is different since no state

should have to be managed given that this method is only called when the upper bound number of

bytes is present in the input. By default, the parse_unchecked method calls the safe parse method

from the BufferedTypeParser that is required to be implemented. The BufferedTypeParserBounded
implementations for the types found in Table 4.4 are implemented in the arrow-csv-reader [37]

module.

pub trait BufferedTypeParserBounded: BufferedTypeParser {
unsafe fn parse_unchecked(input: &[u8], upper_bound: usize) ->

Result<(Option<Self>, usize), ArrowError> {↩→

let (result, n) = Self::parse(input, Default::default())?;
match result {

TypeParserState::Finished(value) => Ok((value, n)),
TypeParserState::Delayed(_) => unreachable!("Knowing the bounds, this

method is only called when enough bytes are available to parse a
value."),

↩→

↩→

}
}

}

Figure 4.20: The BufferedTypeParserBounded trait that adds an extra method to use when the maximum byte representation of

a schema is known.

Additionally, the ArrowCsvBufReader trait has to be updated to contain a new method for parsing a

record. For this reason, the parse_record_unchecked method is added, with exactly the same signature

as the parse_record method. By default it is implemented by inlining the parse_record method.

Furthermore, the BufferedTypeBuilderUnchecked trait is added to extend the functionality of the

BufferedTypeBuilder trait as seen in Figure 4.21. This trait simply adds an unchecked parse method

for types that requires no state management and returns only the number of bytes consumed. Moreover,

the BufferedBoundedBuilder struct is defined as a wrapper for the BufferedBuilder struct. It adds

3
This get_unchecked method is the same as retrieving a value from an array by index, however it does not perform bounds

checking. Hence, performing less instructions.
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an extra generic argument called UPPER_BOUND that provides the maximum byte representation upper

bound, which can be used in code generation. As seen in Figure 4.22, it currently only support non null

types.

pub trait BufferedTypeBuilderUnchecked: BufferedTypeBuilder {
unsafe fn parse_unchecked(&mut self, input: &[u8]) -> Result<usize, ArrowError>;

}

Figure 4.21: A trait that extends the BufferedTypeBuilder trait with an unchecked parse method.

#[derive(Default)]
pub struct BufferedBoundedBuilder<B, S, const UPPER_BOUND: usize>(

BufferedBuilder<B, S, false>
) where B: ArrayBuilder + Default, S: Sized + Default;

Figure 4.22: A struct that acts as a wrapper for the BufferedBuilder struct to supply the maximum byte representation upper

bound as an extra generic argument. Only types that can not be null are supported.

Using the new methods, the implementation for the read method for the ArrowCsvBufReader trait

can be generated to incorporate reduced bounds checking. When the size bounds are known, the

following control logic is added. Instead of repeatedly trying to parse a record, the minimum number of

records is calculated using the maximum size of a record every time the input buffer is filled. Then for

this number of records, the parse_record_unchecked method is called instead of the parse_record
method. Hence, these records are parsed with less overhead. When these are parsed, the buffer is filled

again and the process is repeated until either enough records are parsed or the input buffer is exhausted.

If the minimum number of records in the input buffer is zero, the parse_record method is called to

parse the remaining records.

4.2. Just-in-time parser generation
The solution for just-in-time parser generation is to create a library that can construct a parser in memory.

Since the focus of this work is on ahead-of-time parser generation, just-in-time parser generation is

briefly explored for performance comparison (see Section 5.2). More specifically, only an unbuffered

reader is implemented and compared. The implementation for the just-in-time parser generator can be

found in the arrow-csv-reader-jit [38] module.

4.2.1. Generating a reader
The generation process of a just-in-time parser is similar to that of the ahead-of-time buffered parser

but executed at run-time. The library defines an ArrowCsvParser struct, as seen in Figure 4.24, that

can be constructed by providing it an Apache Arrow schema and an input data byte slice. The struct

holds an array of dynamic trait objects for the fields, the schema, a reference to the input bytes and the

maximum number of records to parse. In order to construct it, each field in the schema instantiates

a dynamic CsvColumnParser trait object for its type implementation. This trait also requires the

ArrowTypeBuilder trait to be implemented, allowing it to construct an Apache Arrow array. Figure 4.23

shows the definition of both traits. Similar the ahead-of-time buffered reader, these objects can be

accessed by using dynamic dispatch to call their methods.

The reader is executed by using it as an iterator like the ahead-of-time implementations. Each call to

the next method will try to read enough records to construct an Apache Arrow record batch. Each

record is parsed by calling the parse method of the dynamic CsvColumnParser objects in the order of

fields. When no more records can be parsed, the build_array method is called on the fields and used

to construct record batch.

4.2.2. Parsing types
For the limited exploration of the just-in-time solution, only signed and unsigned integer types are

supported. For both, the atoi [16] library is used to parse the values, which the unbuffered ahead-of-time

reader does as well.
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pub trait ArrowTypeBuilder {
fn build_array(&mut self) -> ArrayRef;

}

pub trait CsvColumnParser: ArrowTypeBuilder {
fn parse<'a>(&mut self, bytes: &'a [u8]) -> Option<&'a [u8]>;

}

Figure 4.23: The two traits used to define the builder and parser of a field. The CsvColumnParser trait is used as the dynamic

trait object type to store the builders.

pub struct ArrowCsvParser<'a> {
schema: Arc<Schema>,
parsers: Vec<Box<dyn CsvColumnParser>>,
bytes: &'a [u8],
max_batch_size: usize,

}

Figure 4.24: The struct that acts as the reader for parsing CSV to Arrow.

4.3. Multi-threaded parsing
As explained in Section 1.2.3, parsing CSV in parallel is challenging. CSV is difficult to parse since

splitting it in chunks requires knowing the starting context of each chunk. I.e. whether the first character

is escaped or not. Solving this challenge means that the throughput of CSV parsing could be scaled by

the number of threads.

To identify the potential of multi-threaded CSV parsing and its limitations, a custom multi-threaded

reader is implemented that works as follows. The reader consists of a single scanner thread and multiple

worker threads. The scanner identifies where CSV records start and will provision worker threads

with chunks of data which they can safely process. Each worker thread will act as a CSV to Arrow

reader, and when the works have gathered enough records the scanner thread will construct a record

batch. By benchmarking this reader for a different number of threads, and datasets of increasing size,

its bottleneck and characteristics are identified. Section 5.3 reveals that the scanner bottlenecks the other

threads by not supplying their contexts fast enough. Consequently, scanning should be fast to allow

complete utilization of each thread.

SIMD can be used to quickly scan delimiters using several steps. First, bytes need to be converted to

double quote bitmaps that indicate whether a value is a double quote or not. Second, the double quote

bitmaps can be used to calculate bitmaps for escaped characters as described in Section 2.1.2. These

bitmaps can be inverted to get bitmaps for unescaped characters. Finally, using a bitwise AND operation,

bitmaps created for record delimiters from the input bytes can be overlayed with the unescaped bitmaps

to produce bitmaps of unescaped record delimiters. Each step in this process can be executed by using

AVX or AVX2 instructions, except for bit propagation between the bitmaps of adjacent input data as

discussed in Section 2.2. Nevertheless, every other step can therefore be highly parallelized and the

result can be used to quickly scan the positions of records. The implementation and experiments for

this process can be found in the simd [39] module for experiments. Furthermore, the results can be

seen in Section 5.3.

Since multi-threading and SIMD add an extra layer of complexity to parser generation, these features

were not able to be incorporated due to the limited time of this research. Nevertheless, they could

provide work for the future as described in Section 6.2.2.
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Experimental results

5.1. Experimental setup
5.1.1. System specifications
The experimental results were obtained on a desktop PC. The specifications for the CPU and memory

can be found in Table 5.1. Every benchmark performed makes use of the criterion benchmark framework.

This framework performs repeated benchmark executions and performs a warm up for each benchmark.

In practice, the datasets used in the benchmarks got cached by the operating system during a warm up.

Consequently, the storage device used by this setup did not impact the performance and its details are

omitted. This was tested by performing a simple benchmark that only reads the bytes of an input file.

The result was a throughput that matched the memory read bandwidth found in Table 5.1b.

Name Clock Cores Threads Cache
Max. Boost Base L1 L2 L3

AMD Ryzen 9 7900 5.4 GHz 3.7 GHz 12 24 768 KB 12 MB 64 MB

(a) CPU
Name Type Size Configuration Speed CAS Latency Bandwidtha

Read Write
Corsair

Vengeance

DDR5 2x16GB Dual-channel 6000 MT/s 30 50 GB/s 27 GB/s

(b) Memory

a
The read and write bandwidth were measured using sysbench [17].

Table 5.1: The CPU and memory used in carrying out the experiments.

The operating system used for experiments is Ubuntu 24.04.3 LTS. Moreover, other versions for

frameworks and tools used during experiments can be found in Table 5.2.

Tool Version
Rust 1.89.0-nightly

Criterion 0.5.1

(a) The versions for tools and frameworks used for performing

benchmarks.

Framework Version
Apache Arrow 55.0.0

Polars 0.51.0

DuckDB 1.4.1

(b) The versions for data analytic frameworks/libraries to

benchmark.

Table 5.2: The versions of tools and frameworks used in the experiments.

5.1.2. Metrics
To analyze and compare the CSV to Arrow parsers, benchmarks are constructed to measure their

throughput over different datasets. These benchmarks vary in their size and type distribution. The

36
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throughput over different sizes can show whether a parser has a start-up overhead. Furthermore, it can

display memory hierarchy characteristics that it might depend on. I.e. for different sizes the CPU cache

might provide a benefit for some implementations. Alternatively, the type distribution of a dataset

can display the characteristics and performance of the different type parser implementations. For this

purpose, homogeneous typed synthetic datasets are used to analyze the performance per parser per

type. Moreover, real-world datasets are used to compare parsers in practical applications. Often these

datasets have more variety in types which displays the overall performance and characteristics of a

parser.

Using these input data metrics, the performance of parsers can be measured using benchmarks. In this

project, the performance of a parser is defined as the number of bytes a parser can process each second.

This throughput makes it easy to compare the performance between benchmarks of different size, type,

and parser.

5.1.3. Synthetic datasets
Performing benchmarks using synthetic datasets allows identifying the type-specific performance

characteristics of a parser. It is important to find such characteristics, as it exposes the performance of

parsing the string to a type in converting CSV to Arrow. All synthetic datasets used in benchmarks are

generated by a custom developed CSV generator [35].

Parameters
The CSV format has a limited number of parameters in which documents can vary. This work recognizes

the parameters found in Table 5.3. Together, they can be used to form different types of datasets.

However, the number of variations would be very high if no limits were put on parameters 1 or 2. For this

reason, the number of columns is fixed for synthetic datasets. This should not affect the characteristics

of the performance results, since both parameters linearly increase the size. However, the choice for

fixing the columns is more practical when representing the schema as a struct.

# Parameter Description
1 Number of columns Defines the number of fields in a record

2 Number of rows Defines the number of records

3 Data types Defines the values of the fields in a record

4 Escaped field Defines if a field may contain delimiters

Table 5.3: The four possible parameters in which a CSV document can vary. Parameter 1 & 2 define the dimensions of the dataset

where as paramter 3 & 4 define properties of the columns.

Generating values
The CSV generator supports random generation of several types, and variants, which are found in

Table 5.4. Remember that the CSV format allows any field to be escaped since they are treated as text.

This means that in theory, any type, such as a number, could have an escaped variant. However, for

simplicity such variants are ignored for types other than strings. The reason for this is that by the

textual definition of numbers [13, 12] , they will not contain delimiter characters such as double quote,

comma and newline characters. As mentioned in Section 1.1, this work only considers the RFC-4180 [32]

specification. Therefore no other delimiters are considered that could break this assumption.

Category Type Variants Parameters

Number

Unsigned integer 8-, 16-, 32-, 64-bit N.A.

Signed integer 8-, 16-, 32-, 64-bit N.A.

Floating-point 32-, 64-bit N.A.

String escaped, unescaped minimum and maximum size

Table 5.4: The types, with possible variants and parameters, available to be used in generating random CSV documents.

The values for the categories found in Table 5.4 are generated using the rand crate [30] and an rng

seed from the operating system. Since all experiments run on Linux, these values are generated using

random data sources from the host system [9]. The first category of types is the number type, which has
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Figure 5.1: The discrete distribution of the number of digits for the 8-, 16-, 32-, and 64-bit unsigned integer value range.

no parameters available to tweak the corresponding generated values. The number types have several

variants, that are distinguished by their physical representation. Consequently, due to the difference in

their physical representation, their value range, and thus their textual length, is also different. Figure 5.1

shows how the physical size of a number, or value range, impacts the probability of digits, which is

directly related to its textual representation.

The last category is strings, which is different from the other categories because of its variable length

and escaped variants. Since strings are variable in length, both a minimum and a maximum length

parameter can be provided. For each string value, the generator will uniformly pick a number between

the minimum and maximum length, determining the length of the value. It will then construct the

string value by repeating the character ’O’ to match the length. The result is a homogeneous string,

which in the context of the CSV format has the same characteristics as any other unescaped string. I.e. it

does not matter what character is present in the string as long as it is not an illegal character. A string of

a single repeated character should not have a different performance outcome when parsing than any

other arbitrary string of the same length. When a value is an escaped variant, a double quote prefix and

suffix is added resulting in two more characters. Additionally, when the length of the value is larger

than 1, an escaped double quote is added at a random position which is picked uniformly. Examples of

the generated unescaped and escaped strings can be found in Figure 5.2.

OOOOOOOOOOOOOOOO,OOOOOOOOOOO
OOOOOOOOO,OOOOOOOOOOOO
OOOOOOOOOOOOOOOO,OOOOOOOOOOO
OOOOOOOOOOOO,OOOOOOOO

(a) Example of generated unescaped strings.

"OOOOOOO""OOOO","OOOOOO""OOO"
"OOOOOOOOO""OO","OOOOOO""O"
"OOOOOOOOOOO""O","OOOO""OO"
"OOOO""OOO","OOOOOO""OOO"

(b) Example of generated escaped strings.

Figure 5.2: Two examples of generated unescaped and escaped generated strings.

Generating datasets
Each synthetic dataset consists of a homogeneous schema, i.e. all fields are the same type. Additionally,

their schema is set to have exactly 8 fields (or columns). The datasets used in the benchmarks are

generated by specifying a number of rows, starting with 1024. Each subsequent dataset has the number

of rows multiplied by 2. The synthetic data are generated by a custom CSV generator available in the

repository for all source code from this research [37].

5.1.4. TPC datasets
The TPC datasets represent real world datasets where the type and size of the fields is more variable.

These datasets are necessary to analyze the performance without the single type bias that is present in

the synthetic datasets. For this purpose the data from two of the TPC benchmarks are used to showcase

the performance of CSV to Arrow parsers on real-world data. The first benchmark is the TPC-H

benchmark [46] and the second is the TPC-DS benchmark [45]. The data from these benchmarks are not
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Figure 5.3: The distribution of types in bytes for different tables in the TPC-H benchmark represented in CSV.

immediately available in CSV format. Consequently, these data were generated using the DuckDB core

extensions [7] for TPC-H and TPC-DS. The data were generated using the scale factor (sf) 10 and then

exported to CSV files.

To further analyze the results of running benchmarks on these TPC datasets, it is useful to know certain

dataset characteristics. As discussed in the previous section, several parameters exist in which a CSV

file can be different. One of these parameters is the types present in a file. Each CSV field has a type,

combining this a distribution of types can be estimated for a file. For instance, a CSV file containing 4

string fields and 4 integer fields could be defined as 50% of the file being each type. Nevertheless, in

practice data types can differ in size due to their values. Figure 5.1 shows how likely it is for unsigned

integers to have a certain textual representation length. As seen in the figure, the length is not fixed.

Moreover, for a string the value length can be even more unpredictable due to its dynamic sized nature.

For this reason, counting the characters, or bytes, that are used to represent the values in a CSV file

gives a more accurate distribution. Figure 5.3 and Figure 5.4 display the distribution of types in the

datasets by having their values counted by the number of bytes needed for each value. Having this

insight helps reason about the performance of certain parsers over other parsers.

5.1.5. Benchmarks
To measure the performance of parsing CSV to Arrow for different frameworks, it is important to define

benchmarks. Each framework is benchmarked using the Criterion benchmark library in Rust, which

allows accurate statistics to be computed. For synthetic datasets, each framework is benchmarked per

type with datasets of increasing size. For real world datasets, each framework is benchmarked per

TPC benchmark with the respective datasets as input. The benchmarks measure performance in terms

of throughput in megabytes per second. Each benchmark starts with setting up the reader for the

respective framework. This includes providing a schema and starting the build process. This ensures

that frameworks, such as DuckDB, have as little setup overhead measured as possible. Additionally, the

frameworks are limited to single-threaded parsing. This is needed to ensure that Criterion can run many

samples without saturating the CPU. Moreover, Apache Arrow has no support for multi-threading,

which would make comparison with multi-threaded frameworks unfair. The benchmarks can be found

in a dedicated module named benchmarks [37]. To run the benchmarks, the respective datasets have to

be generated and stored.
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Figure 5.4: The distribution of types in bytes for different tables in the TPC-DS benchmark represented in CSV.
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5.2. Just-in-time vs. ahead-of-time performance
Figure 5.2 shows the result of parsing CSV to Arrow for 64-bit unsigned integer datasets using Apache

Arrow, the just-in-time parser generator and the ahead-of-time parser generator. The figure shows

that the performance of both parser generators are similar, however the compile-time generated parser

always outperforms the run-time generator. This is most likely due to the run-time generated parser

having to construct the parser dynamically without any optimizations.
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(b) 16-bit
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(c) 32-bit
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Figure 5.5: The throughput of Apache Arrow, the just-in-time parser generator and the ahead-of-time for parsing variable sized

CSV files, containing only unsigned integers.

5.3. Multi-threading performance
In section 4.3, a custom multi-threaded CSV to Arrow parser is defined. It parses CSV to Arrow using

one scanner thread and one or more worker threads. To identify the throughput characteristics of

this multi-threaded parser, four benchmarks with a different number of worker threads are defined.

Theoretically, if the number of threads is doubled, the throughput is expected to also be doubled since

double the data can be parsed in parallel. However, in practice this should be lower due to the overhead

of thread synchronization, scheduling and other real-world factors. Figure 5.6 shows the throughput of

parsing CSV to Arrow with the multi-threaded parser for different size datasets containing only 64-bit

unsigned integers. The throughput is measured for four different number of worker threads, 1, 2, 4

and 8 respectively. Furthermore, it shows the throughput measured for its scanner and workers when

operating independently. The results show the following characteristics. First, when a single worker

thread is used, the throughput of the parser is bottlenecked by the worker thread. Second, when two

worker threads are used, they achieve a higher performance than the scanner, and the performance of

the parser levels with the scanner. Finally, for four and eight worker threads, they achieve a much higher

performance than the scanner, and the performance of the parser remains lower than that of the scanner.

The throughput characteristics indicate that increasing the number of worker threads beyond one,
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the scanner thread can not keep up with the throughput of the workers. Consequently, the scanner

bottlenecks the parser and the threads will idle. Nevertheless, the worker threads show that scaling

their number can increase the throughput if it is not bottlenecked by a scanner.
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(a) One scanner thread and one worker thread
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(b) One scanner thread and two worker threads
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(c) One scanner thread and four worker threads
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Figure 5.6: The throughput of parsing CSV to Arrow using a custom multi-threaded reader. A scanner thread is used to divide

and provision one or more worker threads with CSV data. The figure shows the throughput of the scanner, worker(s) and their

combination, ultimately showing that the scanner is the bottleneck when scaling the number of threads. The datasets used are

64-bit unsigned integer only datasets.

Both the Polars and DuckDB frameworks include support for reading CSV using multiple threads. As

such, their throughput can be measured against the number of threads to show how efficient they are.

Figure 5.7 shows how each of the frameworks performs in parsing CSV to Arrow for different size

64-bit unsigned integer datasets. It displays that DuckDB has a lower throughput than Polars overall.

Furthermore, Polars reaches it maximum throughput of 1750 MB/s using 8 threads and DuckDB reaches

its maximum throughput of 1250 MB/s using 16 threads. Comparing this to Figure 5.6, which parses

the same type of dataset, it is clear that both do not reach the maximum performance of the threads that

divide the parsing work. Consequently, if their scanner could be improved, there is more throughput to

be unlocked in parser threads.

SIMD could be used to improve the scanner of the multi-threaded implementation as described in

Section 4.3. Scanning consists of calculating the bitmaps for escaped characters, after which the bitmaps

for unescaped delimiters are computed to perform quick scans. The throughput for each of these SIMD

operations using AVX2 instructions can be found in Table 5.5. It shows that record delimiters can be

scanned at a speed of 2.8 GB/s, which is approximately 1 GB/s higher than the maximum throughput

in Figure 5.7. Consequently, these SIMD operations could improve multi-threaded parsing for both

DuckDB and Polars.
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Figure 5.7: The throughput of parsing CSV to Arrow using multi-threaded readers for Polars and DuckDB. Parsing is measured

for multiple number of threads to see the maximum throughput and how well threads scale. The datasets used are 64-bit

unsigned integer only datasets.

Operation Throughput
Computing bitmaps for escaped characters 6.5 GB/s

Scanning for record delimiters 2.8 GB/s

Table 5.5: The throughput for two of the SIMD operations needed to quickly scan CSV for record positions. Both operations make

use of AVX2 (i.e. operations with 512 bit SIMD registers).

5.4. Synthetic results
The following sections showcase the performance of the three state-of-the-art frameworks and three

parser generator implementations per type. The three parser generator implementations are ParGen,

ParGen
∗

and ParGen
∗
𝑖𝑛 𝑓

. ParGen is the first attempt at a parser generator. It expects the input data to be

completely in memory. The second and third parser generators are denoted by 𝑃∗
, which indicates that

the parser reads the input data using a buffer. Hence, consuming the bytes from the input in increments.

Additionally, ParGen
∗
𝑖𝑛 𝑓

performs size inference on the schema to possibly add additional optimizations.

5.4.1. Unsigned integers
The unsigned integer type has four variants, 8-bit, 16-bit, 32-bit, and 64-bit. Figure 5.8 shows the results

for parsing the respective homogeneous datasets as described in Section 5.1.3. The results show several

characteristics. First, the performance of each parser seems to scale with the size of the unsigned integer.

Increasing the size of an integer typically means that each integer has more digits or bytes that are

used to represent them in text. Consequently, the percentage of control characters, such as the field

delimiter, might become lower because the percentage of value characters increases. Second, the shape

of the performance curve for each parser seems to remain similar when the size of the unsigned integer

increases. This shows that the performance of the parsers depends on the input size of the CSV file.

Finally, it shows that a parser generated ahead-of-time performs better over the other frameworks.

The unbuffered reader performs better than the buffered reader for smaller input datasets but drops

to the same level at about 60 MB. This is more or less the size of the L3 cache, possibly indicating a

performance benefit due to cache for smaller datasets. Furthermore, the parser generator achieves even

more performance using reduced bounds checking, achieving more than 2 times the performance than

that of the Apache Arrow implementation.

5.4.2. Signed integers
The signed integer type has four variants, 8-bit, 16-bit, 32-bit, and 64-bit. Figure 5.9 shows the results for

parsing the respective homogeneous datasets as described in Section 5.1.3. The results show similar

characteristics as for the unsigned integer (i.e. the same performance characteristics over the size of

the dataset and the size of type). For signed integers, the parser generator also outperforms the other
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Figure 5.8: The throughput for parsing variable sized CSV files, containing only unsigned integers, using different frameworks.

frameworks. Nevertheless, reducing the size bounds did not achieve the same performance gain as

unsigned integers. The reason for this is that signed integers require more control logic due to dealing

with the sign. Additionally, the unbuffered reader shows the same characteristics as unsigned integers,

where performance drops at an input size of approximately 60 MB.

5.4.3. Floating point numbers
The floating point number type has two variants, 32-bit, and 64-bit. Figure 5.10 shows the results for

parsing the respective homogeneous datasets as described in Section 5.1.3. The results show similar

characteristics as for the signed integer. Furthermore, the generated buffered reader achieves twice

the throughput of the Apache Arrow reader, despite using the same lexical_core [22] parser for

floating-point numbers. Additionally, the unbuffered reader shows the same characteristics as both

integer types, where performance drops at an input size of approximately 60 MB.

5.4.4. Strings
The string type has four variants that can be split in two groups, one with a small string size and one

with a larger string size. Each group contains two variants, escaped or unescaped strings.

The performance results for the small unescaped and escaped strings can be found in Figure 5.11. It

shows that Apache Arrow achieves the highest throughput for both escaped and unescaped strings.

This is because the Apache Arrow implementation is specialized in parsing strings. As discussed in

Section 2.1.1, Apache Arrow parses CSV directly into string records. This means that when the type of a

field is a string, no further processing is needed. Consequently, only efficient rust-csv [8] parsing
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Figure 5.9: The throughput for parsing variable sized CSV files, containing only signed integers, using different frameworks

has to be performed. The generated buffered reader performs slightly worse than Apache Arrow. It

uses the same technique as rust-csv but might differ in small control logic details. Furthermore, the

generated unbuffered reader performs almost twice as slow as Apache Arrow.

The performance results for the large unescaped and escaped strings can be found in Figure 5.12.

It shows that the generated buffered reader achieves the highest throughput for both escaped and

unescaped strings. Apache Arrow performs slightly worse, which might be due to small differences in

the implementation of the control logic of the generated reader. Furthermore, the generated unbuffered

reader still performs almost twice as slow as Apache Arrow. However, for larger strings there seems to

be a higher throughput for datasets of approximately 60 MB.

Finally, it is worth noting that the results show that unescaped strings are easier to parse than escaped

strings. For both Apache Arrow and the generated parsers this difference is caused by using a shortcut.

In the case of an unescaped field, no escape characters have to be removed from the source string during

parsing. Consequently, the data from the source string can be copied in larger chunks, reducing the

number of memory stores.

5.5. TPC-H results
The results for parsing the TPC-H datasets in the CSV format can be found in Figure 5.13. It shows

that the generated buffered reader performs best in all cases, except the nations dataset. Given the byte

distributions for types in Figure 5.3, the generated buffered reader seems to perform slightly better for

datasets with a higher number presence. As seen in the synthetic data results, it performs the best
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Figure 5.10: The throughput for parsing variable sized CSV files, containing only floating-point numbers, using different

frameworks.

for the number types, which explains the slightly better results in this case. Nevertheless, most of the

data are strings hence the small differences in throughput with Apache Arrow. This is similar to the

synthetic data results for strings.

5.6. TPC-DS results
The results for parsing the TPC-DS datasets in the CSV format can be found in Figure 5.14. It shows that

the generated buffered reader performs best compared to external frameworks in every case. However,

the generated unbuffered reader performs better for files larger than a 100 MB. Similarly, Polars performs

better to Arrow for these datasets. Given the byte distributions of types in Figure 5.4, the generated

buffered reader seems to perform slightly better for datasets with a higher number presence. This is

similar to the TPC-H datasets.
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Figure 5.11: The throughput for parsing CSV files containing only small, escaped or unescaped, strings
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Figure 5.12: The throughput for parsing CSV files containing only large, escaped or unescaped, strings.
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Figure 5.13: The throughput for parsing different TPC-H datasets in the CSV format using different parsers.
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Figure 5.14: The throughput for parsing different TPC-DS datasets in the CSV format using different parsers.



6
Conclusion and future work

This research explored the use of parser generation to improve the throughput of parsing CSV to Arrow.

The code developed for this work is available on GitHub [37].

6.1. Conclusion
In order to answer the research questions, this work produced several products. First, an ahead-of-time

parser generator was implemented by creating a Rust procedural derive macro library. It supports both

unbuffered and buffered reading of CSV data sources. Moreover, a size bound feature was developed to

reduce control overhead in buffered reading by calculating the worst-case byte representation of a record

at compile-time. Second, a just-in-time parser generator was implemented by creating a library that

constructs a parser in-memory. However, when comparing it with the ahead-of-time parser generator, it

showed a slightly worse performance due to run-time overhead (see Section 5.2).

The ahead-of-time parser generator was compared to three open-source state-of-the-art frameworks

using different benchmarks. These frameworks are Apache Arrow [40], Polars [25] and DuckDB [5]. For

all frameworks and the parser generator, two types of benchmarks were run.

First, a synthetic benchmark where the throughput of parsing variable sized datasets with only the

integer, floating point or string type were measured. The ahead-of-time parser generator performed

significantly better for the numeric types compared to the other frameworks. For the signed and

unsigned integer types it achieved almost a 1.5x increased throughput compared to Apache Arrow.

Furthermore, using size bounds this increased to almost a 2x increase. For floating point numbers, a

generated buffered reader performed slightly better than Apache Arrow. Alternatively, a generated

unbuffered reader or a buffered reader using size bounds were each able to achieve a throughput

increase of approximately 2x compared to Apache Arrow. Finally, for both the escaped and unescaped

string types an ahead-of-time generated parser achieved the same performance as Apache Arrow. This

is because they share the same performant string parser implementation. Nevertheless, the generated

unbuffered reader did show a 1.5x increase in throughput for datasets smaller than the L3 cache size (60

MB).

Second, datasets from the TPC-H and TPC-DS benchmarks were used to measure the performance of

parsers for real-world datasets. For both TPC-H and TPC-DS, a generated buffered parser performed

better in almost every dataset compared to state-of-the-art frameworks. However, the unbuffered reader

performed better for TPC-DS datasets with a size larger than a 100 MB. For datasets having a higher

presence of integers in terms of bytes, the parser seemed to perform slightly better. Similar to the results

from the synthetic datasets. Nevertheless, most datasets contained a high presence of string types for

which the generated parser has a similar performance to that of Apache Arrow.

Additionally, several experiments were performed to identify enhancements for CSV parsing. Multi-

threading was analyzed using scanner and worker threads. Section 5.3 revealed that the scanning of

CSV limits the throughput of a worker thread. Furthermore, state-of-the-art frameworks such as Polars

49
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and DuckDB show similar throughput characteristics, with a maximum throughput that is not close to

the throughput that worker threads could reach. A solution to this is SIMD, for which a record scanner

could reach a throughput of up to 2.8 GB/s as opposed to the 1.25 GB/s maximum multi-threaded

throughput reached by Polars.

In conclusion, a parser generator is shown to perform better than state-of-the-art frameworks for both

synthetic and real-world datasets. Additionally, a parser generator is able to leverage compile-time

context, such as the schema, to reduce parsing overhead. In this work, this was done by calculating the

maximum byte representation of a schema and reducing bound checks on input data. Furthermore, by

implementing the parser generator using a derive macro it is easy to integrate and requires few changes

to update a schema.

6.2. Future work
In this work, the core principle of parser generation was explored, leaving some topics not integrated

or left open. These features could be explored to extend the functionality of a parser generator and

possibly improve its performance.

6.2.1. Extending size bounds
The results showed that analyzing size bounds can improve the performance of parsing CSV. This

analysis only considered the maximum size of a record to determine the lower bound number of records

present in CSV data. Nevertheless, it is also possible to infer a minimum record size as types often have

a lower bound. In future work, this minimum size could have several applications. First, it can be used

to upper bound the number of records in CSV data. Second, when the minimum and maximum size

of a datatype is known and they turn out to be the same, data could be handled more efficiently. For

instance, fixed sized GUID strings could be directly copied into a string buffer rather than determining

where the string ends. This results in efficient memory copies.

6.2.2. Applying SIMD and multi-threading
Whilst SIMD has been explored as a method to accelerate CSV parsing, it required a different approach

to generating the parser. SIMD could make multi-threaded CSV parsing faster as seen in Section 5.3. It

can lift the scanning bottleneck in CSV reading, to allow a higher throughput in parsing parallelization.

Furthermore, knowing the schema of a dataset ahead-of-time, SIMD might be able to be used for type

specific parsing (i.e. SIMD instructions are inlined for types that support SIMD in parsing).
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