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ABSTRACT: The evaluation of soil parameters for design is best undertaken through comprehensive 
laboratory test programmes. However, due to sampling difficulty, time and cost constraints correlations 
between in-situ tests and physical-mechanical properties of soils are routinely applied in practice. This 
paper presents data collected from five sites in Northern Croatia at which Cone Penetration Tests (CPT) 
and comprehensive laboratory test data was available. One of the advantages of using CPT data in prefer-
ence to other types of in-situ tests for establishing correlations, is the large volume of high-quality data 
available at each probe location allows for the application of advanced statistical approaches. In this paper, 
the use of neural networks in developing such correlations is demonstrated. Using a database of 216 data 
pairs, obtained from the five sites, a correlation between CPT qc and soil unit weight is established. A 
validation exercise was performed in which the correlation was tested against data from the recent Veliki 
vrh landslide that occurred in the same geographical region as the database sites. In addition, by using the 
soil behaviour type index, Ic, normalised cone tip resistance, Qtn, and normalised sleeve friction, Fr, the 
results can be compared to correlations developed for soils from geotechnical diverse regions to check for 
consistency in the derived correlations.

oped over recent years indirectly relating CPTs 
to various geotechnical parameters. Additionally, 
CPTs generate large volumes of near continuous 
data during testing which means that the sample 
size of CPT based correlations is much higher 
than that of laboratory tests, thus greatly reducing 
the influence of erroneous tests. CPT based cor-
relations greatly streamline the construction proc-
ess allowing for savings in both time and money. 
They are typically developed using either statistical 
approaches or curve fitting or both. However, it 
is important to note that while these correlations 
typically perform well, they are not exact solutions 
and consequently are not infallible and need to be 
applied with caution by experienced geotechnical 
engineers.

This paper investigates the use of both statistical 
regression and a machine learning technique, arti-
ficial neural networks (ANN), for developing CPT 
based correlation between cone tip resistance, qc, 
depth, z, sleeve friction, fs, and soil unit weight, γt. 
These correlation are developed using a database 
of 216 pairs of corresponding CPT and laboratory 

1 INTRODUCTION

Evaluating design values for soil parameters in a 
laboratory environment is a time consuming, chal-
lenging task, which involves painstaking attention 
to detail and numerous retests to validate results 
and ensure representation of reality. As with any 
methodology, there are advantages and disadvan-
tages to such an approach. Some of the advan-
tages of laboratory testing include repeatability, 
high accuracy and precision, and importantly the 
explicit measurement of the parameter in question. 
While the disadvantages include significant cost, 
substantial processing time, sampling difficulty, 
and the perennial problem of determining whether 
the laboratory investigation adequately represents 
site conditions.

In-situ CPTs can easily overcome these disad-
vantages, while still providing high accuracy and 
repeatability and although they may not provide 
explicit measurements of critical geotechnical 
parameters many correlations (Librić et al., 2017; 
Mayne, 2014; Robertson, 2009) have been devel-
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results, obtained from five sites across Northern 
Croatia. The resultant correlations are verified 
using results from a separate test site in the same 
geographical region, Veliki vrh, a site which was 
not used in the initial development of the models.

2 SELECT EXISTING CORRELATIONS

CPT based soil correlations and classification 
charts are typically expressed in terms of normal-
ised piezocone parameters, to evaluate normalised 
piezocone parameters it is first necessary to evalu-
ate the total and effective overburden pressure, 
both of which first require an estimate of the soil 
unit weight. Naturally, the precise measurement of 
soil unit weight involves a laboratory test, however, 
in an attempt to expedite the process and save both 
time and money, many authors have developed 
CPT correlations to describe soil unit weight.

Mayne (2007) described a relationship between 
sleeve friction and total unit weight by linking 
the relationships between shear wave velocity and 
sleeve friction and shear wave velocity and total 
unit weight. The database used contained a wide 
variety of soil types ranging from soft clays to 
gravel. The relationship can be seen in Equation 1.

γ t sγ sf Gs s= fs −2 26 5l6 .  (1)

where Gs is the specific gravity of the soil solids in 
question. Mayne et al. (2010) expanded this rela-
tionship using data from 44  sites to incorporate 
depth, z, and cone resistance corrected for pore 
pressure, qt, see Equation 2 and 3. An R2 value of 
0.72 was obtained using the relationship.

γ t sγ tfs q= +11 46 0 33 0f +f 7+ 0 l z .ss 0ss +sfs log  (2)

qt = qc + u2(1 − a) (3)

where u2 is the pore pressure measured behind the 
cone and a is the cone area. Robertson & Cabal 
(2010) proposed a similar relationship which uti-
lises the friction ratio (Rf = R f qf sR ff t( )/fsff )100  
instead of directly using the sleeve friction, their 
relationship presented in Equation 4, was trialled 
using published data from around the world and 
generally reported a good fit.
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where Pa is atmospheric pressure and γw is the unit 
weight of water. Mayne & Peuchen (2012) pro-
posed a regression method that takes account of 
unit weight variations with depth. They accom-
plished this using a parameter mq which is the 

change in normalised cone resistance with depth 
),∆/ z/ ∆/t  see Equation 5.
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Ghanekar (2014) noted that these relationships 
work much better in uniform soil deposits and 
typically break down when used in layered soil 
profiles.

3 NEURAL NETWORKS

Artificial neural networks are an advanced machine 
learning technique developed by computational sci-
entists (Basheer and Hajmeer, 2000; Rojas, 2013; 
Rosenblatt, 1958) based on how we perceive the 
human brain and nervous system to interpret infor-
mation and perform calculations. Mimicking real life 
brain neurons, interconnected artificial neural ele-
ments work together, passing information to and fro 
so as to establish the relationship between different 
parameters within a system, in order to learn or emu-
late how it functions. The major advantage of neu-
ral networks lies in their ability to adapt and update 
hypotheses when supplied with new data. Neural 
networks can be used to perform regression analy-
sis, classification analysis and predict future system 
response. Every connection between a neuron and 
another neuron receives a weighting. These weight-
ings determine how the neural network responds 
and adapts by assigning more or less importance to 
relationships of note. These systems of weightings 
are trained by mapping inputs onto some output or 
outputs, and optimising the weightings until the neu-
ral network reacts as the system does.

Neural networks are typically arranged into 
an input layer; a hidden layer or layers, and an 
output layer (see Figure 1). The number of input 
and output nodes required is typically dictated by 
the underlying engineering problem. While the 
number of hidden neurons needed is a lot more 
subjective and requires investigation on a prob-
lem by problem basis. Too many hidden neurons 
and the neural network will be slow to converge 
while also at the same time being at an increased 
risk of over-training. Too few, and the neural net-
work will be too general and will be inconsistent 
with unseen data. A multi-layer feed forward neu-
ral network with a sigmoid activation function for 
hidden neurons and a linear activation function for 
output neurons was used in this example. In a feed-
forward neural network, information only moves 
in one direction from the input nodes through the 
hidden nodes to the output nodes, i.e. there is no 
recursive programming involved.
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During training, both the inputs and outputs 
of the specified problem are given. The weightings 
are then developed automatically without human 
intervention in the hidden layer by the ANN. This 
process is shown in Equation 6, where j represents 
an individual neuron, wij represents the individual 
weighting between input neuron i and hidden neu-
ron j i.e. the factor by which every value passing 
from node i to node j is multiplied. These weight-
ings are then summed at each node and a bias 
term w0j is added, See Equation 6. An activation 
function needs to then be applied to this term (Sj) 
to generate the individual neuron’s output, see 
Figure 2. Any function can be used for this pur-
pose, but if  backpropagation is used to train the 
model then the function needs to be continuously 

differentiable. The sigmoid function is the activa-
tion function most commonly used in feedforward 
neural networks and is shown in Equation 7. The 
two layer feed forward neural network used in this 
study was trained using the Bayesian Regularisa-
tion backpropagation algorithm.
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This training phase continues until the ANN 
can adequately model the system response or until 
all available training data has been exhausted. The 
ANN should then be validated using a new set of 
input data, which had not previously been used 
during model training. If  the ANN can determine 
the outputs of this dataset, then it can be said to 
model the system accurately. Provided enough 
input and output data has been provided during 
training, an ANN model should be able to deter-
mine the significance each individual parameter 
has on the outcome.

The ANN developed in this study used qt, depth, 
and fs as inputs, to predict the soil unit weight γt as 
an output. Three hidden layers were utilised in this 
application.

4 TEST SITES

Five test sites from Northern Croatia were used 
to train, validate, and test the developed neural 
network model, while a sixth site Veliki vrh was 
used as an external unseen verification measure. 
Four of the 6  sites consisted of highly over con-
solidated soil, while the remaining two Biđ-Bosut 
and Ilok port were found to be slightly over 
consolidated (Reale et al., 2018). The initial data-
set used to train, develop, and test the model con-
sisted of 216 pairs of CPT/ Laboratory results. A 
short overview of each test site and the geotechni-
cal testing carried out at each site is given below. 
All laboratory unit weight tests were carried out 
in accordance with the European Standard (HRS 
CEN ISO/TS 17892–2:2004) for the determination 
of density of fine grained soil (Tehni and Speci-
fikacija, 2013).

4.1 Biđ-Bosut Irrigation canal

A 14  km long irrigation canal was constructed 
as of the multi-purpose Danube-Sava canal. The 
canal geometry consists of two stepped slopes the 
upper slope has a 1:2 gradient while the lower slope 
is at 1:3. The total excavation is approximately 7 m 
deep and a relatively wide step exists between the 

Figure 1. General schematic of a feed-forward artificial 
neural network.

Figure 2. Close up of an individual neuron and how it 
interacts with the neurons around it.
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two slopes. The geotechnical site investigation at 
the site consisted of 12 m deep boreholes at 300 m 
centres with core classification and extraction of 
representative soil samples for lab tests (consist-
ency levels, particle size distributions, and direct 
shear tests). At 150 m intervals, 4 to 5 m deep trial 
pits were excavated along the canal route. Repre-
sentative samples were extracted from each pit and 
tested in the laboratory. Cone Penetration Tests 
and standard penetration tests (SPT) were carried 
out at each borehole together with two hold tests 
to measure pore pressure dissipation on the CPT 
cone. 15 piezometers were installed to a depth of 
8 m, to monitor trial pumping conducted in explo-
ration wells. In total 75 pairs of laboratory tests 
and CPT, results were obtained at the site.

4.2 Ilok port

Ilok port which is currently under construction 
will be located on the right bank of the Danube 
1296.5 to 1297.0 km, downstream from the Ilok-
Bačka Palanka Bridge, in the Danube inundation 
area. The geotechnical investigation carried out at 
the site consisted of a total of 9 exploration wells 
with continuous coring to a maximum depth of 
30 m. Dynamic (SPT) and static (CPTU) testing, 
geophysical testing using seismic refraction, multi-
channel analysis of surface waves (MASW), seis-
mic static cone penetration test (SCPT), together 
with laboratory tests. The site yielded 36 pairs of 
laboratory testing and CPT results.

4.3 Krsišće landslide

The Krsišće landslide occurred on the south-
ern slopes of the Medvednica Mountain, in the 
Markuševec area, at an altitude of approximately 
300  meters. On Kršišće street, an unstable slope 
was detected, adjacent to house no. 43. Soil move-
ment at the site occurs periodically along the inter-
face between the Clay and Marl materials, where 
excess pore pressures develop during wet periods. 
Investigation work included 5 boreholes, with 
continuous coring to a maximum depth of 8  m, 
dynamic (SPT) and static (CPTU) testing, together 
with laboratory tests. 20 pairs of laboratory and 
CPT results were obtained at the site.

4.4 Mirogoj landslide

The Mirogoj landslide is located on the southern 
slope of the Medvednica Mountain. Adjacent to 
the Mirogoj cemetery is a slope that drops uni-
formly towards the north-east. The slope inclina-
tion in the area affected by the landslide is between 
20° and 25°. A total of 5 borings were made, with 
continuous coring to a depth of 8  m, dynamic 
(SPT) and static (CPTU) testing was carried out 

in conjunction with laboratory testing. 25 pairs of 
laboratory tests and CPTs were gathered from the 
site.

4.5 Krematorij landslide

The Krematorij landslide is located east of Kamen-
iti stol street, in the Gornji grad—Medveščak 
area, on the southern, more cavernous slopes of 
the Medvednica mountain. The unstable area is 
located between 250 and 225  m above sea level. 
The geotechnical investigation carried out at the 
site comprised of 5 exploration wells with continu-
ous coring to a maximum depth of 12 m, dynamic 
(SPT) and static (CPTU) testing, together with 
laboratory tests. 60 pairs of laboratory testing and 
CPT results were obtained from the site.

4.6 Verification site: Veliki vrh landslide

The site located on the southern slopes of Medved-
nica Mountain, at an altitude between 205 and 
225 metres, is a shallow translational landslide. The 
landslide was the result of pore pressure build up 
along the contact zone between Clay and Marl lay-
ers after heavy rainfall. The site investigation con-
sisted of 4 boreholes with continuous coring to a 
depth of 12 m, dynamic (SPT), and static (CPTU) 
testing in conjunction with laboratory tests. In 
total 19 pairs of laboratory tests and CPT, results 
were gathered at the site. Table 1 shows the results 
of the CPT and laboratory tests for the site.

5 NEW CORRELATION

Using the data obtained from the five test sites, 
this paper proposes another log regression model 
similar in formulation to the model proposed by 
Mayne et al. (2010), but with a higher initial inter-
cept value and lower constants for z, fs, and qt 
respectively. Initially, it was proposed to develop 
the model using just qt and fs, as it was postulated 
that the depth trend would already be accounted 
for within the CPT results. While this approach 
yielded similar accuracy and regression values, 
it was significantly less precise than a regres-
sion model containing z. The best fit relationship 
found in this study is shown in Equation 8. Both 
Mayne et al.’s relationship and the proposed have 
very similar regression values when applied to the 
dataset, however, as can be seen from Figure 3: The 
statistical correlation developed in this study, with 
Mayne et al. (2010) for comparison et al’s equation 
significantly overpredicts unit weight magnitude 
but captures the relative increase reasonably well. 
The relationship from this paper effectively reduces 
the magnitude of Mayne et  al’s relationship to 
more closely approximate reality.
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γ t sγ tfs q= + +f11 849 0 109 0 561.+ 0 log z .ss +sfs 0 log

 (8)

6 ANN RESULTS AND DISCUSSION

The model development dataset which comprised 
of sleeve friction, depth, and corrected tip resist-
ance as inputs and soil unit weight as an output 
was split randomly into the following proportions 
80% for training, 10% for testing, and 10% for vali-
dation. For training, the ANN had access to both 
inputs and outputs allowing it to learn the sensitiv-
ity of each variable and understand each param-
eters effect on the system response. The next 10% 
was used as a test set, during the testing process 
only the inputs were supplied to the model. At the 
end of the testing phase, the neural network per-
formed a system recalibration on itself so that sys-
tem inputs could be more accurately mapped onto 
system outputs based on the test results. Following 
completion of the testing phase the final 10%, or 
the validation set, was sent to the neural network. 
Only inputs are sent in the validation phase, thus 
allowing the direct comparison of outputs from the 
validation set to actual measured values. Provided 
a good correlation has been achieved the neural 
weightings are saved and the entire data set is sub-
sequently inputted blind. The resultant outputs are 
compared to actual outputs, see Figure 4. A regres-
sion coefficient of 0.8853 was achieved for the 
entire dataset, with a correlation coefficient of 0.94. 
As can be seen from Figure  3, there is very little 
data scatter, and importantly no extreme outliers. 
Therefore while a misclassification could occur, 
an extreme difference between predicted soil unit 
weight and measured soil unit weight is unlikely.

To ensure the model was working correctly 
input data from an additional site within the same 
geographic region, Veliki vrh was supplied to the 
model. This data which can be seen in Table  1, 
consisted of 19 pairs of CPT and laboratory unit 
weight results.

An extremely good R2 of 0.8495 was obtained 
for this external verification with a correlation 
coefficient of 0.92. The predicted unit weight ver-
sus measured unit weights is shown in Figure  5. 

Figure  3. The statistical correlation developed in this 
study, with Mayne et al. (2010) for comparison.

Figure 4. ANN predicted unit weight for five test sites 
used in model development.

Table 1. Unit weight and CPT results from Veliki vrh.

GB/CPTU
Sample 
no

z 
[m]

qt 
[MPa]

fs 
[kPa]

γt 
[kN/m3]

B 1/CPTU 1  1 2.20 1.63 116.00 19.05

   2 2.80 0.74  62.00 18.20

   3 3.30 0.60  38.00 17.61

   4 5.00 3.38 172.00 19.72

B 2/CPTU 2  5 2.10 1.55  93.00 18.84

   6 2.80 0.79  72.00 18.72

   7 3.60 0.62  55.00 18.52

   8 4.40 1.29  69.00 18.76

   9 5.60 1.12  90.00 18.73

  10 6.60 1.51 101.00 18.90

  11 7.20 1.58  96.00 18.90

B 3/CPTU 3 12 1.60 0.81  54.00 17.43

  13 2.20 0.62  26.00 17.18

  14 3.80 4.69 188.00 20.46

  15 5.80 2.24 104.00 18.62

B 4/CPTU 4 16 1.80 2.04 122.00 19.11

  17 2.20 1.99  84.00 18.79

  18 3.10 4.99 193.00 19.27

  19 3.70 6.59 203.00 19.99
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The statistical approach proposed earlier in Equa-
tion 8 performed equally well on the unseen data-
set, Veliki vrh, achieving an R2 of 0.8466. Both are 
shown in Figure 5, giving virtually identical results.

7 CONCLUSION

This paper presents two approaches, regression 
and neural network, for automatically calculat-
ing soil unit weight using CPT measurements as 
inputs. Both approaches could easily be performed 
automatically onsite as the CPT is ongoing, thus 
allowing for an extremely fast interpretation of soil 
unit weight. This would reduce the quantity of lab-
oratory tests needed per site thus saving time and 
money. An additional benefit of such an approach 
is that any laboratory tests that are carried out can 
then combined with their respective CPT sound-
ings become additional data entries for both the 
regression and ANN models, thus improving their 
future accuracy. In this way, the models can con-
tinue to evolve over time, gradually increasing in 
both accuracy and precision.

The approaches were developed using 216 pairs 
of CPT/laboratory unit weight tests from five 
different locations across Northern Croatia. An 
entirely separate sixth site Veliki vri was used as an 
external verification measure for the saved neural 
networks. The models performed extremely well on 
both the initial dataset and the subsequent verifi-
cation dataset.

Unfortunately, ANN-based models have some 
drawbacks, of particular concern is the black box 
nature of the results, which makes proof of con-
cept hard to verify, while also making their stan-
dalone implementation a risky process for the 
engineer involved. The authors think that much of 
this can be mitigated by testing a small number of 

samples from every site in the laboratory for local 
verification. Thus, allowing the training database 
to continue to grow in size over time making incor-
rect classifications less likely to occur. Over time 
reducing the cost, time, and labour involved.

This study confirms the functional link between 
CPT results, and soil unit weight..The developed 
neural network and regression models performed 
admirably for a wide range of soil types closely pre-
dicting soil unit weights between 16 and 21 kN/m3. 
The close prediction between the neural networks 
and the regression model is a testament to the accu-
racy of log regression models for predicting soil 
unit weights and further validates their use in eve-
ryday design situations, given their simplicity and 
transparency. One caveat which needs mentioning 
is all soils tested were either heavily or slightly over 
consolidated and the correlations may not perform 
as well in normally consolidated deposits.
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