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Dynamic Spatial-Temporal Graph Convolutional
Neural Networks Approach for Active Mode
Traffic Prediction

Xiamei Wen™, Panchamy Krishnakumari~, and Serge Hoogendoorn

Abstract— Accurate short-term predictions of active mode
traffic are crucial for effective urban traffic control and man-
agement, helping to reduce delays, stops, and improve travel
time reliability, and optimize travel route choice. While most
methods focus on motorized traffic, active modes like walking
and cycling have been overlooked due to their complex dynamics
and sensitivity to external factors like weather and individual
choices, making them inherently less predictable. To address this,
we propose a Dynamic Attention-based Spatial-Temporal Graph
Convolutional Network (DyASTGCN) model that incorporates
the impact of weather on graph spatial correlations within the
active mode traffic network. Additionally, we introduce a fusion
approach to integrate various heterogeneous spatial correlations,
aiming to represent the optimal spatial correlations within the
active mode network. Experimental results demonstrate that
weather changes have a lagging effect on traffic network spatial
correlations. Specifically, active mode traffic demonstrates signif-
icant sensitivity to precipitation, with notable changes in spatial
correlations occurring within 5 minutes. Conversely, it takes
approximately 20 minutes for spatial correlations to respond
to wind speed influences. By incorporating both precipitation
and wind speed with a 20-minute lag, our model outperforms
those using only one feature, achieving the best traffic prediction
performance. Given the uncertain traffic state and highly sparse
nature of active mode data, our fusion approach adeptly captures
the essential spatial correlations required for accurate traffic flow
prediction. This allows our model to better understand complex
graph correlations and traffic patterns, improving prediction
accuracy and offering valuable insights into active mode network
dynamics.

Index Terms— Active mode, dynamic graph spatial correla-
tions, traffic prediction, weather impacts.

I. INTRODUCTION

ECENTLY, low-carbon transportation has gained pop-

ularity as people become more aware of the negative
impacts of motorized traffic modes on the environment [1].
Active mode transportation such as walking and cycling as a
sustainable, low-carbon and healthy alternative to driving is
promoted in more countries [2]. However, the growing incli-
nation towards active mode traffic introduces familiar traffic
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issues, such as the travel time delay, increased number of stops
at (controlled) intersections, increased travel time unreliaiblity,
along with new challenges, such as insufficient and narrow
bike lanes and sidewalks, increasing number of accidents, etc.
These factors can make users of active mode feel unsafe and
encounter difficulties while cycling or walking. Furthermore,
cycling or walking in bad or even extreme weather, such
as high winds and thunderstorms, could increase the risk of
accidents [3]. To alleviate the delays and risks faced by active
mode travelers, several measures can be implemented. These
include adopting traffic control and management strategies
that prioritize active modes during adverse weather conditions,
utilizing advanced traffic monitoring systems to optimize
flow and enhance safety, and developing mobile applications
that provide real-time traffic information and personalized
recommendations for those using active modes. By imple-
menting these measures, cities can create a more responsive
and safer environment for pedestrians and cyclists. In this
context, accurate prediction of active mode traffic is gaining
significant attention from researchers owing to its crucial role
in optimizing travel routes and facilitating informed decisions
for transportation planning and infrastructure investment.
However, predicting active mode traffic presents unique
challenges owing to its inherent uncertainty, sparse data avail-
ability, and significant noise in the datasets. Unlike traditional
traffic predictions, which primarily involve motorized vehi-
cles, prediction for active modes like walking or cycling is
influenced by a multitude of factors that shape travel patterns.
These factors include individual preferences dictating route
choices, fluctuations in travel speeds influenced by physi-
cal conditions, and sensitivity to external elements such as
weather variations, infrastructure quality, and prevailing traffic
conditions. These complexities render active mode traffic
more variable and less predictable compared to motorized
traffic [4]. Therefore, achieving accurate predictions for active
mode traffic requires a comprehensive understanding of both
the temporal relationship and the uncertain spatial relation-
ship. Existing research on active mode traffic prediction has
mainly focused on predicting bike sharing usage [5]. In bike-
sharing prediction, two main approaches have been utilized:
traditional statistical models like regression analysis [6], and
machine learning models such as neural networks [7]. These
studies focus mainly on determining routes and estimating
rental demand for docking stations or parking areas [8], [9],
[10]. Bike-sharing systems are usually meticulously organized,
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featuring predetermined stations and docking systems. The
supply and arrangement of bikes are centrally controlled,
providing a high degree of system control and predictability.
In contrast, private bike owners enjoy the flexibility to use
their bikes according to personal schedules, destinations, and
travel habits. This variability poses a challenge in collecting
traffic data for private bikes and predicting bicycle traffic
flow, resulting in increased uncertainty compared to the more
structured and predictable nature of bike-sharing systems.

Although active mode traffic prediction might be more
complex than motorized traffic, the methods developed for
motorized traffic modes could still prove useful for active
mode traffic prediction. In recent years, with the availability
of large amounts of traffic data and the help of advanced
machine learning algorithms, traffic prediction for motorized
traffic modes has seen great success [11], [12], [13], [14]. Most
studies focus on developing spatial-temporal traffic prediction
methods to capture the change in traffic patterns over time
and across different locations. For example, Yao et al. [15]
proposed a Spatial-Temporal Dynamic Network (STDN) for
traffic prediction, which captures the spatial and temporal
information using local Convolutional Neural Network (CNN)
and Long Short-term Memory (LSTM), respectively. The
evaluation of the taxi data of New York City (NYC), bike
sharing data from NYC, and Jinan Road camera data proved
the model’s effectiveness. To capture the spatial, short-term
and long-term periodical dependencies of traffic patterns, Shi
et al. [16] developed an Attention-based Periodic-Temporal
Neural Network (APTN) model. Its prediction results out-
perform state-of-the-art methods. However, these methods
were predominantly crafted and validated based on the traffic
characteristics of motorized traffic. As a consequence, the
distinctive attributes of active modes, such as sensitivity to
weather conditions and the uncertainty in route selection,
which can significantly influence the spatial dynamics of
active modes, are not adequately captured in existing traffic
models. For example, conventional graph neural networks
frequently depend on fixed or adaptive adjacency matrices to
extract spatial information [17]. The fixed adjacency matrix
is typically constructed based on physical connections and
distances between nodes, providing a static representation
of network relationships. In contrast, adaptive and dynamic
adjacency matrices are generated using trainable parameters,
allowing them to evolve based on data-driven insights and
changing conditions. However, these matrices may not fully
capture the intricate details of active modes, which are highly
responsive to external features and exhibit dynamic behav-
iors. Furthermore, the diverse types of adjacency matrices
symbolize distinct spatial relationships among traffic modes.
Employing a weighted averaging method [18] or a concate-
nation approach [17] might not be adequate to seamlessly
merge this varied information into a unified adjacency matrix
that captures the relationships within the graph structure.
Consequently, a fused approach is necessary to integrate these
heterogeneous spatial relationships effectively.

To address the challenges outlined above, this study pro-
poses an approach called the DyASTGCN for accurate active
mode traffic prediction. Furthermore, this method enhances
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prediction accuracy by integrating the impact of weather
conditions on active mode dynamic attention data-based graph
spatial correlations and effectively fusing heterogeneous spa-
tial correlations within the active mode network.

« We investigate the impact of weather conditions on
dynamic attention data-based graph spatial correlations
within active mode traffic by analyzing the prediction
accuracy of the proposed DyASTGCN traffic predic-
tion model. Specifically, we examine three scenarios
with different combinations of traffic flow and weather
factors to derive dynamic attention data-based graph
spatial correlations for active mode traffic, each sce-
nario incorporating various lag sizes between traffic flow
and weather conditions. Experimental results reveal that
weather significantly impacts active mode traffic, with
weather effects exhibiting a lagged influence on changes
in spatial correlations.

o To capture the optimal representation of graph spa-
tial correlations in active mode traffic, we proposed a
heterogeneous spatial correlation fusion approach. This
method aggregates multiple heterogeneous spatial graph
correlations including predefined distance-based graph
correlations, parameter-based adaptive graph correlations,
and dynamic attention data-based graph correlations
within the active mode network to enhance traffic predic-
tion accuracy. Experimental results reveal that the fused
graph spatial correlations provide the best representation
of the spatial dynamics of active mode traffic, when
compared to other individual graph correlations. Conse-
quently, the prediction results of the DyASTGCN model,
which utilizes the fused graph spatial correlations, out-
perform those based on other individual graph correlation
methods.

o Given the temporal and spatial characteristics of active
mode traffic, we introduce the DyASTGCN model to
predict traffic flow accurately. This model leverages
multi-head self-attention to capture intricate temporal
relationships and utilizes Graph Convolution Networks
(GCN) to incorporate spatial information, including
weather influences and heterogeneous spatial correlations
within the active mode network. Our prediction results
demonstrate that DyASTGCN outperforms baseline mod-
els in forecasting active mode traffic.

The rest of this paper is structured as follows. Section II
provides an overview of related work in the field of active
mode prediction. Section III details the methodology of our
proposed model. Section IV covers our data, including data
collection and filling approaches, the dataset used for assess-
ment, experimental configurations, as well as the findings
and analysis from our experiments. Section V discusses the
implications and contributions of our work.

II. RELATED WORK

In this section, we first review the existing traffic prediction
studies. We then explore research on traffic prediction using
graph neural networks, particularly focusing on how these
studies capture the spatial correlations of the graph network
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for prediction. Finally, we review studies that address hetero-
geneity in traffic networks.

A. Traffic Prediction

Predicting traffic is a vital element of the intelligent trans-
portation system [19], [20], [21] and plays a key role in
contemporary traffic control and management. With the grow-
ing volume and variety of available traffic data, data-driven
methods, including statistical methods, traditional machine
learning methods, and deep learning methods, have gained
significant attention in traffic prediction research [22]. Espe-
cially deep learning methods that can be highly effective for
predicting traffic patterns in real time and can adapt to changes
in traffic flow patterns over time [23], [24], [25]. Duan et al.
[26] proposed a deep hybrid neural network by integrating a
Convolutional Neural Network (CNN) and Long Short-term
Memory (LSTM) to predict urban traffic flow using real GPS
taxi trajectory data from Xi’an city. A greedy policy is used
in training to reduce computation time; experimental results
show that the proposed method outperforms existing methods.
Similarly, Wu et al. [27] integrated deep Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs)
as a novel traffic flow prediction method that can capture
the spatial and temporal features to predict traffic flow; the
experimental results show that the proposed method can learn
specific knowledge from large traffic flow data. However,
these traffic prediction methods are developed primarily for
motorized traffic modes.

For active mode traffic prediction, because of its complexity,
lack of data and sensitivity to external factors (e.g., weather),
it is more difficult to capture traffic patterns accurately on the
road network. Existing studies on active mode mainly focus on
bike-sharing systems [28], [29], [30]. For example, to predict
the number of bicycles rented and returned to each parking
station, Li et al. [31] developed a hierarchical prediction model
and evaluated its performance in two bike-sharing systems
in New York City and Washington, DC, respectively, which
shows the advantage of the model. However, these studies
primarily focus on predicting demand at fixed stations for
bikes, thereby ignoring the traffic state of shared bikes on
the road network. Additionally, predicting traffic patterns for
active modes such as private or shared bicycles on road
network, which lack fixed stations or parking zones, remains
more unpredictable due to the uncertainty surrounding trip
origins and destinations.

B. Graph Neural Networks on Traffic Prediction

The advent of Graph Neural Networks (GNNs) has signifi-
cantly enhanced the capacity to investigate spatial relationships
in traffic prediction. GNNs are specifically engineered to
capture non-Euclidean spatial structural data, which aligns
more closely with the intricacies of the structure of the traffic
network [32]. In this context, capturing the complexity and
nonlinear traffic patterns seems possible when combining
GNNs with existing temporal dependencies learning mod-
els [33]. For example, Zhao et al. [34] proposed a novel
network-based Temporal Graph Convolutional Network model

(T-GCN), which could simultaneously capture spatial and
temporal dependences to predict road traffic based on the
SZ-taxi dataset and the Los-loop dataset. To achieve an
accurate prediction of traffic flow, Li et al. [35] explored the
spatial-temporal features in traffic flow using a Graph and
Attention-based Long Short-Term Memory Network (GLA);
The results show that this method performs better than most
previous methods based on PeMS dataset. However, these
studies mainly predefined the graph structure relationship
based on the Euclidean distance or learned the graph structure
relationship according to some attributes of the road network,
such as POI distribution and regional function, which is
insufficient to contain all the valuable information for the
complicated active mode traffic prediction scenario.

Some graph-based traffic prediction approaches aim to learn
the underlying dependencies of graph relationships adaptively.
Wu et al. [36] proposed Graph WaveNet for spatial-temporal
graph modeling, which retains the dependency matrix by cap-
turing hidden spatial dependencies in the data in an adaptive
way. Zhang et al. [18] designed four different types of relation-
ships between nodes—origin-destination (OD) relationship,
transfer relationship, distance relationship, and correlation
coefficient relationship to help adaptively exploit hidden cor-
relations between nodes. These studies could capture the
underlying spatial relationships between nodes adaptively to
some extent. However, the spatial relationships might vary
over time depending on traffic conditions and the traffic
network environment. To address the dynamic nature of spatial
relationships, Hu et al. [37] designed a graph learning module
to learn spatial dependencies in the traffic network based on
input data, complemented by a dilated causal convolution net-
work with a gating mechanism to capture long-term temporal
correlations in the traffic data. Additionally, Ta et al. [17]
developed an Adaptive Spatial-Temporal Graph Neural Net-
work (ASTGNN) for multi-step traffic condition forecasting,
which captured the optimal graph structure considering node
attributes and complex spatial-temporal correlations using
a spatial-temporal convolution architecture. However, active
modes traffic are influenced by weather conditions and the
physical well-being of travelers, introducing a higher level of
complexity in their spatial relationships compared to tradi-
tional traffic modes. Given this context, there is an increasing
demand for novel traffic prediction methods capable of cap-
turing these uncertain spatial relationships inherent in active
modes.

C. Heterogeneous Spatial Correlations Handling in Traffic
Networks

Existing graph architectures are often developed for homo-
geneous graphs with identical types of nodes and edges. For
example, some researchers have focused on graph embedding
for undirected and unweighted homogeneous graphs, con-
sidering only the structural information of the graph [38].
To extract more information from the graph, weighted graphs
with identical types of nodes and edges have also been
explored [39]. Some studies have considered directed graphs,
which can provide a more precise graph representation [40].
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However, these approaches are not well-suited for graphs that
contain different types of nodes and edges, as they cannot
properly capture the intricate representation and interaction of
diverse types of nodes and edges within a graph. To address
this limitation, researchers have developed methods for het-
erogeneous networks. For example, Chang et al. [41] designed
a deep embedding algorithm to capture correlations between
heterogeneous data in a network, demonstrating the effective-
ness and scalability of their approach. In traffic systems, the
represented graphs of traffic networks also contain various
types of nodes and edges, including weighted edges based
on distance, similarity functions, and traffic patterns, as well
as nodes from different traffic modes. Several studies have
explored traffic patterns and characteristics in heterogeneous
traffic networks. For instance, Liang et al. [42] proposed
a Multi-Relational Spatial-Temporal Graph Neural Network
(ST-MRGNN) for multimodal demand prediction, accounting
for diverse spatial units and heterogeneous spatial-temporal
correlations across subway and ride-hailing modes. This model
outperforms existing methods. Similarly, Guo et al. [43]
developed an Attention-based Spatial-Temporal Graph Neural
Network (ASTGNN) for highway traffic prediction by consid-
ering periodicity and spatial heterogeneity through embedding
modules, surpassing state-of-the-art baselines. Given this con-
text, exploring heterogeneous dynamic graph relationships in
active mode is crucial for accurately capturing and understand-
ing traffic patterns.

III. PROPOSED METHODOLOGY FOR ACTIVE MODE
TRAFFIC PREDICTION

In this section, we begin with a brief overview of the
definition and problem statement of this study. We then
delve into the methodology employed to capture the various
spatial correlations within the active mode network traffic
and the approach used to fuse these spatial correlations to
achieve optimal spatial correlations for active mode traffic.
Finally, we systematically present the structure of the proposed
DyASTGCN model for active mode traffic prediction.

A. Definition and Problem Statement

Definition (Graph traffic network): To streamline compu-
tations while effectively capturing significant traffic patterns,
we define the traffic network as an undirected graph
G=(G1,G,...,G), where G; = (V, E,A;) denotes the
active mode graph at time #, V is the set of nodes representing
sensors that record the traffic flow of active modes on the road
network; E is a set of edges; and A; € RN*N is the adjacency
matrix of G, with N nodes at time ¢ recorded as a weighted
adjacency matrix.

Problem (Multi-step active mode traffic prediction):
The historical active mode traffic data for each input
includes data from the past hour, represented as: X =
Xiir1, Xi—kg2, - .., X;) € RV*EFxTk wwhere Ty are the time
steps of each input, X; = (X;1,X.2,...,X.N) € RNXF
indicates the vector of characteristics of each node v at time
t, F is the dimension of the characteristic of each node. Our
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goal is to find a function f to predict the following 7 time
steps data X = (X, 41, K42, ..., Xep7) € RV¥FXT that is:

(?A(t+1, §t+2, B §t+T) = fe((Xt—k-H’ BRI Xt), At) (1)

here, 6 represents the learnable parameters of the function.
Considering the sensitivity of active mode traffic to external
factors, our approach utilizes the most recent hour of historical
data as input to predict the traffic for the subsequent hour.

B. Graph Spatial Dependencies Learning

Active mode traffic graph spatial correlations encompass
various types of relationships. Within a traffic network, the
flow at a road section is influenced by its connections,
suggesting that distance-based predefined graph correlations
can reflect the geographic network correlations for active
modes. Additionally, different road structures and facilities can
impact these correlations, which could be explored through
a parameter-based adaptive graph [36]. Furthermore, sur-
rounding traffic patterns and weather conditions contribute to
changing spatial correlations over time in the active mode
network. To capture these dynamics, we introduce a dynamic
attention data-based graph correlation matrix to model active
mode spatial correlations.

However, these individual spatial correlations only capture
partial aspects of the spatial relationships in active mode traf-
fic. To comprehensively capture the overall graph correlations
in active mode, we introduce a fusion approach. This method
integrates these heterogeneous graph correlations to derive
optimal spatial relationships for the analysis of active mode
traffic.

1) Distance-Based Predefined Graph Spatial Correlations
Learning: Spatial proximity between sensors often implies
similarity in the traffic patterns they detect. Therefore,
we model the sensors as nodes in a graph, where the con-
nectivity between two nodes is determined by the shortest
path obtained using Dijkstra’s algorithm [44] based on the
active mode road network. To capture the spatial dependency,
we define the edge weights based on the distance of the short-
est path between two nodes, employing a threshold Gaussian
kernel weighting function [45] as follows,

|dist(i, /)12

202
0 else

aid = | e ) if dist(i, j) < K @

where A);’ denotes the distance weight of the graph, with
|dist(i, j)| representing the shortest path distance between
node i and node j. Here, 6 signifies the standard deviation
of distances, and K serves as the threshold.

2) Parameter-Based Adaptive Graph Spatial Correlations
Learning: Active mode traffic flow is highly dynamic, influ-
enced by various factors such as events, accidents, traffic
lights, road connectivity, and surrounding environmental con-
ditions. These factors introduce complexities in capturing
active mode spatial correlations. Parameter-based adaptive
methods offer flexibility in adjusting the correlations between
nodes. Therefore, a parameter-based adaptive graph structure
learning method [36] is utilized to capture the hidden spatial

Authorized licensed use limited to: TU Delft Library. Downloaded on June 30,2025 at 11:35:49 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WEN et al.: DYNAMIC SPATIAL-TEMPORAL GRAPH CONVOLUTIONAL NEURAL NETWORKS APPROACH 5

Distance-based spatial correlations
Parameter-based spatial correlation

Data-based spatial correlation (Sunny)
Data-based spatial correlation (Rain)
Data-based spatial correlation (Rain and Wind)

Fig. 1. Framework of the overall model.

dependencies within the active mode graph. This method
utilizes two embedding dictionaries with learnable parameters
to derive the spatial dependency weight among nodes E{,E, €
RNXP, as follows,

A, = SoftMax(ReLU (E,E}) 3)

where P is the hidden dimensions of each node. E; is the
source node embedding dictionary, E, is the target node
embedding dictionary. ReLU is an activation function used
to introduce nonlinearity into the matrix and ensure the values
in matrix A, are non-negative. The SoftMax function is then
applied to normalize the matrix, converting it into a probability
distribution where the sum of the values is equal to 1.

3) Dynamic Attention Data-Based Graph Spatial Cor-
relations Learning: Geographical proximity alone may
not adequately capture spatial correlations between nodes,
as unconnected nodes can exhibit stronger correlations than
those in close physical proximity. For instance, nodes with
similar functions or roads at the same hierarchy level may
demonstrate similar traffic patterns, even if they are geograph-
ically distant. Therefore, capturing spatial correlations based
on traffic flow feature involves exploring pattern similarities
that do not rely on geographical closeness. Moreover, active
mode traffic is notably susceptible to various external factors,
particularly bad weather conditions. These factors can signifi-
cantly impact cyclists’ route choices or prompt shifts to other
traffic modes, thereby increasing the uncertainty, complexity,
and difficulty of capturing the spatial correlations within the
active mode traffic network based on traffic flow feature.
Weather changes do not immediately impact traffic spatial
correlations; their effects manifest gradually. For example,
consider a sudden onset of rain during peak commuting hours.
Initially, there might be a minor reduction in the number of
cyclists on the roads, as some individuals might continue their

|

/

O/

VAR —

o

/o
\

commute despite the rain. However, as the rain persists and
intensifies, more cyclists may opt to seek shelter or switch
to public transportation. This gradual shift in behavior alters
the spatial correlations within the traffic network over time,
as illustrated in Fig. 1. This lag in the manifestation of weather
effects highlights the importance of capturing dynamic, evolv-
ing spatial correlations for accurate traffic predictions.

To investigate the spatial correlations of active mode traffic
based on traffic flow features and how variations in weather
information alter these correlations, we first propose employ-
ing an attention mechanism, as shown in Equation 4, to capture
the dependencies of traffic flow features and weather informa-
tion for each sensor.

My, = attention(Mygq i, My i, Myy i) €]

where M;; is the traffic flow input sequence and the cor-
responding weather data for prediction at time ¢, M;; is
projected onto separate learned linear subspaces to obtain the
queries, keys, and values My, ;, My ;, and My, ; of attention
mechanism, respectively. M, ; represents information depen-
dencies of the traffic flow feature and weather information that
are most relevant for capturing spatial correlations. In this
paper, attention(-) function is a Scaled Dot-Product Atten-
tion [46] as follow,

T

Ve

where Q, K and V are the query, key and value, respectively;
d,, is the scaling factor, which is used to balance the com-
plexity and capacity of the model.

After obtaining the dependency representations of each
sensor, we derive the spatial pattern similarity between the
sensors by calculating the dot product [17] of the dependency

attention(Q, K, V) = softmax( \4 (®))]
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Fig. 2. Active mode traffic prediction module.

representations between sensors, as follows:

Asanri = ReLU (Mg ML) (6)

where M,; is the matrix of the representations of all sensors
with utmost pertinent details of traffic data for the spatial
correlations extraction at time ¢; Mg, is the transpose of M;;
A¢ aniri 1s the dynamic attention data-based adjacency matrix
at time ¢.

4) Heterogeneous Graph Spatial Correlations Fusion
Approach: The representation of spatial correlations in a
graph can be complex and multifaceted. Not only does a
physical relationship, such as a distance-based predefined
graph, play a role in describing the graph, but also a semantic
or contextual relationship, such as a self-adaptive graph or
a dynamic attention data-based graph, is essential in captur-
ing the graph’s relationships between nodes. These diverse
types of graph representations can provide complementary
information to the relationships between nodes. However,
balancing the utilization of these graphs with different types
of edge directly in a graph architecture can be challenging.
To address this challenge, we have designed a fusion approach
to derive an optimal graph for active mode spatial correlations
representations.

Specifically, we first concatenate all matrices along the

feature dimension as shown in equation 7.
Aran = concat(Ag, Ag, A arri) (7

To get a fully represented graph structure based on the
heterogeneous graph spatial relationship, we apply two-layer

Add & Norm -
1
Multi-Head Self-Attention

I
I
I
I
|
|
I
I
I
|
|
| Capturing Module
| e
I
I
|
|
I
I
|
I
I

Temporal Position Encoding

Output Embedding

1D convolutions to capture optimal graph correlations of active
mode.

C. Short-Term Active Mode Traffic Prediction

Active mode traffic is flexible and subject to change based
on personal choices, motives and trip purposes, and prefer-
ences. To make an accurate traffic prediction for active mode,
we develop a spatial-temporal traffic prediction module based
on the Transformer encoder-decoder structure as shown in
Fig. 2, which allows for the capture of complex relationships
of spatial and temporal characteristics, enabling the model to
effectively learn and predict dynamic changes in active mode
traffic. Specifically, we adopt a “sandwich structure” [47] in
both the encoder and decoder. This structure comprises two
multi-head self-attention layers to capture temporal informa-
tion of the traffic flow, with a spatial information capturing
module in between to capture spatial information. To facilitate
deep training, we integrate residual connections and layer
normalization between each layer. The comprehensive design
incorporates one encoder layers and one decoder layers, pro-
viding the model with the capability to proficiently acquire
and anticipate spatial-temporal traffic patterns.

1) Temporal Dependency Learning: Given the unpre-
dictable nature of traffic patterns in active modes, extracting
crucial dependencies from historical traffic flow data becomes
essential to improve prediction accuracy. However, handling
long sequences of data can potentially lead to the loss of
vital information during the learning process. To address this
challenge, we propose integrating the multi-head self-attention
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module into our model. This module, derived from the Trans-
former architecture [46], allows the model to selectively focus
on different segments of the input sequence. This capability
ensures that temporal dependencies are effectively captured,
enabling the model to retain and utilize significant information
for more accurate traffic predictions.

The multi-head self-attention module, while highly effective
in capturing global dependencies between input elements,
is not explicitly designed to model the order of the input
sequence in the same way as recurrent or convolutional neural
networks. In applications such as active mode traffic predic-
tion, the temporal order of the input sequence plays a critical
role in capturing important information for accurate prediction.
For instance, weather and traffic conditions at a particular time
are likely to be more similar to those at subsequent time steps.
To account for this, it is necessary to place more weight on
information that is closer to the prediction time, especially
when dealing with active mode traffic with uncertain patterns.
By emphasizing the importance of recent data, models can
more effectively capture the temporal dependencies between
input elements and improve their predictive performance.
Therefore, we combine the fixed positional encodings [46]
with the input embeddings so that multi-head self-attention
module could still make use of temporal order information of
traffic data. The equations are shown below,

Ppe 2dimy = sin(pt /10000%1m/dm) (8)
Pyt 2dim+1) = cos(pt /10000%47m/dmy 9)

where pt is the position index of the traffic flow input
sequence; dim is dim-th dimension of the positional encoding
vector; d,, is the dimension of the positional encoding, which
is the same as the dimension of input embeddings, so that they
could be added element-wise.

2) Spatial Dependency Learning: To explore the geo-
graphic and hidden spatial correlations of the active mode
graph network, the spatial Graph Convolutional Network
(GCN) [48] can be used. The spatial-based GCN is a type
of neural network that can operate on non-Euclidean graph-
structured data, allowing it to learn feature representations by
aggregating the features of a node’s neighbors and incorporat-
ing both local and global information in the graph.

In the context of active mode traffic flow prediction, the
graph represents the spatial correlations between different
sensors, and each node represents a specific sensor. The
spatial-based GCN operates by conducting successive graph
convolutions on the input traffic flow features using a dynamic
adjacency matrix A, r. This matrix updates the feature rep-
resentations of each node by incorporating the traffic flow
features of its neighbors. In our model, the input adjacency
matrix comprises the output of a heterogeneous graph spatial
correlations fusion approach. This approach considers the
spatial correlations influenced by weather and integrates het-
erogeneous features from various types of spatial correlations.
The output of the Spatial-based GCN is a set of new traffic
flow feature representations for each node. Specifically, this
spatial-based GCN is able to handle large graphs by expanding
the adjacency matrix to incorporate additional connections,

without fundamentally changing the architecture.

GCN(X,) = ReLUMD 'A,X,W) (10)

where At =A 5 ﬁii = Zj A,-j, W is the trainable weight
matrix. ReLU (-) is an activation function.

3) Residual Connection and Feedforward Networks: To
mitigate the vanishing gradient problem and enhance model
performance, we incorporate residual connections between
each layer, as shown in the equation 11. Additionally, a fully
connected feedforward network [46] is introduced to each
encoder and decoder layer, enabling the model to learn com-
plex input-output relationships and introducing nonlinearity as
depicted in the equation 12.

XH = layerX!) + X!
Feed Forward(X) = ReLU(XWq + bg)W| + by

(1)
(12)

where layer (X!) is the output of layer [, X/ is the input of layer
1, X't is the output after residual connection. layer(-) is the
temporal or spatial information capturing operation function.

4) Multi-Step Traffic Prediction: In the reference section
of this model, we will employ an autoregressive inference to
forecast traffic conditions over multiple future time steps. This
involves using the previously generated prediction result as the
input to predict the next time step. This approach provides a
more comprehensive and extensive view of anticipated traffic
conditions, offering valuable insights for various applications
in transportation planning, management, and decision making.

IV. EXPERIMENTAL RESULTS AND BENCHMARKING

In this section, we present the result of applying the pro-
posed approach. Before presenting the results, we will first
provide an overview of the experimental set-up, including
a description of the data, the metrics used for performance
assessment, and the baseline models used in this paper.

A. Dataset Description

To evaluate the effectiveness of our proposed model,
we conducted experiments using real-world bicycle traffic
flow data from the National Road Traffic Data Portal of
the Netherlands. This dataset, collected by loop detector sen-
sors in Rotterdam, spans from January 1, 2022, to December
31, 2022, and includes data from 21 sensors. As shown in
Fig. 3, the sensors are sparsely distributed. Missing data were
imputed using the average data from the corresponding time
spots over the previous two days. The dataset was aggregated
into S5-minute intervals, resulting in 12 data points per hour.
Standard normalization was applied to the input dataset to
enhance model convergence and stability during training.
Our objective was to perform multi-step active mode traffic
predictions, using one-hour historical data (12 data points) to
predict traffic for the next 60, 45, and 15 minutes. To maintain
evaluation integrity, the dataset was divided chronologically
into training, validation, and test sets with a split ratio of 6:2:2.

The weather feature data from the Royal Netherlands Mete-
orological Institute (KNMI) at the Rotterdam Station was
utilized. This dataset includes hourly observations of precipita-
tion amounts and mean wind speeds. Precipitation data reflects
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Fig. 4. Overview of weather in Rotterdam (2022). (a) Precipitation. (b) Mean wind speed.

the millimeters of rain recorded during the preceding hour.
The mean wind speed (in 0.1 m/s) is recorded for the hour
preceding the observation timestamp. Since the weather data
is provided at hourly intervals, each data point was divided
into 12 intervals. Specifically, the mean wind speed data was
duplicated for each interval, while the precipitation data was
evenly distributed across the intervals to represent the average
millimeters of rain over 5 minutes. The timestamps of these
weather data intervals were then aligned with or lagged by
5 to 30 minutes from the traffic flow data timestamps to be
incorporated into the model.

B. Evaluation Metrics

In this paper, the prediction results of active mode traffic
flow are evaluated by Mean Absolute Error (MAE), Root Mean
Squared Error (RMSE) and Weighted Absolute Percentage
Error (WAPE). The formulations to calculate these metrics
are shown below.

.
MAE =~ ; 1% = yil (13)

RMSE = (14)

[N

- Z(Yi —yi)?
i=1

i 1Y = il
Z?:] [yil

where y; and y; represent the predicted value and ground truth

data of the value i. n is the number of sample values.

WAPE = (15)

C. Baseline Models

To evaluate the performance of our proposed DyASTGCN
model, we compare it with several traditional traffic prediction
models and state-of-the-art spatial-temporal traffic prediction
models. The baseline models used for comparison are as
follows.

o HA: The Historical Average (HA) model predicts traffic

flow by taking the average value of historical data.

o SVR: Support Vector Regression (SVR) [49] is a regres-

sion algorithm that aims to minimize the discrepancy
between the predicted value and a predefined margin,
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which is an extension of Support Vector Machines (SVM)
for regression tasks.

e LSTM: Long Short-Term Memory (LSTM) [50] is a
specialized variant of Recurrent Neural Networks (RNNs)
specifically designed to effectively capture and model
long-term dependencies in sequential data.

o STGCN: Spatio-Temporal Graph Convolutional Network
(STGCN) [47] is proposed to tackle the time series traffic
prediction problem by harnessing comprehensive spatial-
temporal correlations.

« ASTGCN: Attention-based Spatial-Temporal Graph Con-
volutional Networks(ASTGCN) [43] is designed for high
nonlinearity and complex traffic flow prediction by inte-
grating the spatial-temporal attention mechanism with
spatial-temporal convolution.

o Ada-STNet: Adaptive Spatio-Temporal Graph Neural
Network(Ada-STNet) [17] developed a graph structure
learning component and a dedicated spatial-temporal con-
volution architecture to capture spatial relationships and
temporal dependencies of traffic data.

o« STMFGNN: Spatial-Temporal Multifactor Fusion Graph
Neural Network (STMFGNN) [51] leverages dynamic
similarity and static adjacency graphs for parallel graph
convolution, integrating global hidden and local prior
knowledge. A gated fusion module adaptively learns
dynamic influence weights to capture multiscale spatial
dependencies. The model employs gated tanh unit con-
volution, multireceptive fields, and gated recurrent units
for temporal feature extraction, enabling comprehensive
traffic flow prediction by considering multiscale factors.

D. Experimental Settings

The experiments are conducted using Google Colab,
a cloud-based Python environment. The computing environ-
ment included a Tesla L4 GPU with a CUDA version of 12.0.
The CPU used was an Intel(R) Core(TM) i9-9900KS clocked
at 4 GHz. We implemented all the deep learning models using
the PyTorch framework in Python. The models were optimized
using the Adam optimizer, with nn.L1Loss() employed as
the loss function in PyTorch. This loss function calculates
the Mean Absolute Error (MAE) by measuring the average
absolute difference between the predicted and actual target
values. The hyperparameters for all deep learning models were
carefully tuned through a validation set. Specifically, for the
DyASTGCN model, we set the model dimension d,p4e; to 64,
the number of attention heads 4 to 8, the convolution kernel
size to 3, the learning rate is gradually decreased from 0.001 to
0.00001, and batch size is 64.

E. Experimental Results and Discussion

1) Active Mode Spatial Correlations With Weather Influ-
ence: Weather conditions, such as precipitation and wind
speed, significantly impact cyclists’ route choices, leading
to changes in traffic patterns and altering the spatial flow
dynamics within the network. During extreme weather con-
ditions, cyclists may avoid certain paths in favor of routes
that offer more shelter or better drainage. Others might opt

for alternative modes of transportation, resulting in notable
changes in traffic flow compared to the same time periods
under normal weather conditions.

As illustrated in Fig. 4, there was heavy precipitation from
16:00 to 17:00 on August 15, 2022, and strong wind from
11:00 to 23:00 on February 18, 2022. The traffic flow patterns
during these periods, shown in Fig. 5 (a) and (c) respectively,
demonstrate significant differences when compared to traffic
flow patterns during the same time periods on similar week-
days without extreme weather, as depicted in Fig. 5 (b) and (d).
The comparison clearly indicates a decrease in traffic flow
during extreme weather conditions.

With the change in traffic flow influenced by weather, the
spatial correlations within the traffic network might also shift.
However, cyclists’ responses to weather changes might not be
instantaneous. For instance, if it starts raining, cyclists already
on the road might continue their journey until they find suitable
shelter, while others might switch to alternative modes of
transportation in extreme weather. This lag in response causes
temporal shifts in traffic flow, thereby affecting the spatial
correlations within the network.

To investigate how weather influences spatial correlations in
traffic flow data, we introduce various lags in the weather data
to capture the dynamic data-based graph spatial relationships.
This approach aligns earlier weather conditions with later
traffic flow observations, allowing us to assess if this improves
the accuracy of the proposed DyASTGCN model. We conduct
three types of experiments to illustrate the lagged effect of
different weather factors:

« Precipitation data only: This experiment includes only
precipitation data along with traffic flow data to capture
dynamic data-based graph spatial correlations for traffic
prediction.

o Wind speed data only: This experiment includes only
wind speed data along with traffic flow data to capture
dynamic data-based graph spatial correlations for traffic
prediction.

« Combined precipitation and wind speed data: This exper-
iment includes both precipitation and wind speed data
along with traffic flow data to capture dynamic data-based
graph spatial correlations for traffic prediction.

As illustrated in Fig. 6, our study demonstrates that the
DyASTGCN model achieves optimal performance with dis-
tinct lag times for precipitation and wind speed data relative to
the active mode traffic flow data. Specifically, the model shows
the highest accuracy with a 5-minute lag for precipitation data,
a 20-minute lag for wind speed data, and a 20-minute lag for
the combined precipitation and wind speed data. In particular,
the 20-minute lag for the combined precipitation and wind
speed data perform the best in all the scenarios.

In the Netherlands, particularly in cities like Rotterdam,
cycling is a popular mode of transportation, which is sensible
to the weather change. Rain prompts immediate adjustments in
cycling routes and behaviors. This rapid response is reflected
in the model’s optimal performance with a short 5-minute
lag for precipitation data. Cyclists often alter their routes or
temporarily wait for rain to subside, leading to an immediate
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but brief impact on traffic flow patterns. In contrast, wind
speed feature has a more gradual impact on cycling behav-
ior. Cyclists may take longer to adjust to windy conditions,
resulting in slower speeds or route changes that develop over
time. The model’s optimal performance with a 20-minute
lag for wind speed data reflects this extended adjustment
period. Wind affects the ease and safety of cycling, causing
sustained changes in cycling behavior, which are captured by
the longer lag period. When combining precipitation and wind
speed data, the model shows the best performance with a
20-minute lag. This finding indicates that while rain causes
immediate changes, the dominant and prolonged impact of
wind requires a longer lag period to accurately capture its
effect on traffic flow. The interaction between rain and wind
creates complex conditions for cyclists, who might wait until
conditions improve or adjust more slowly to persistent windy
conditions. The 20-minute lag effectively captures the overall
impact, particularly the dominant influence of wind, on traffic
patterns.

2) Overall Active Mode Traffic Prediction Comparison:
Table I displays the performance of baseline methods and
proposed model, presenting the overall average errors of
15 minutes, 30 minutes, and 60 minutes prediction horizons.
Our DyASTGCN model demonstrates superior performance
compared to all baseline methods on the dataset of active mode
in terms of MAE, RMSE and WAPE, respectively.

Specifically, among traditional statistical methods in the
context of time series forecasting, The Historical Average
(HA) exhibits the poorest performance when compared to
alternative baseline methods. This can be attributed to its
reliance only on past data. SVR and LSTM possess the
capability to encompass both linear and nonlinear patterns,
making them more adept at capturing intricate details within
active mode data. However, only considering temporal features
of active mode data results in their performance deteriora-
tion compared to methods based on graph neural networks.
To gain a deeper understanding of traffic patterns, STGCN
and ASTGCN leverage graph convolution neural networks to
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TABLE I
PERFORMANCE COMPARISON OF MULTI-STEP TRAFFIC PREDICTION

Baselines 60 min 30 min 15 min
MAE RMSE WAPE MAE RMSE WAPE MAE RMSE WAPE
HA 84.80 14351 71.02% 84.80 14351 71.02% 84.80 143.50 71.02%
SVR 40.23 8236 38.03% 3147 66.82 29.75% 26.62 5832 25.16%
LSTM 29.08 6581 2749% 2291 5372  21.65% 19.34 45.07 18.29%
STGCN 24.82 52.63 2347% 22.12 46.83 2091% 19.99 4224 18.90%
ASTGCN 25.03 53.44 23.67% 21.38 4746 20.21% 18.79 46.02 17.78%
Ada-STNet 20.12 4057 19.02% 17.64 3774 16.68% 1635 37.05 15.45%
STMFGNN 20.97  38.31 19.83% 19.04 34.82 18.00% 17.96 3296 16.97%
DyASTGCN 19.67 3937 18.59% 16.82 3501 1590% 1542 3275 14.58%
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Fig. 7. Bicycle traffic flow distribution.

consider spatial interconnections between traffic components,
thus amplifying the precision of predictions. In particular,
ASTGCN introduces an attention mechanism into the STGCN
model, fostering the capture of dynamic spatial and tempo-
ral patterns through an encoder and decoder structure. This
augmentation yields superior outcomes on the 60 minutes pre-
diction horizon of active mode traffic prediction. Ada-STNet
not only considers temporal dependencies but also incorporates
the spatial characteristics of road networks through graph
convolution and causal convolution. Additionally, Ada-STNet
takes node attributes into account to create dynamic and
self-adaptive graph structures, STMFGNN parallelly utilizes
dynamic similarity graphs and static adjacency graphs to
capture the multiscale spatial dependencies between nodes,
surpassing the performance of ASTGCN.

Ada-STNet extracts the node attributes based on a con-
volution operation, which is well suited to capture relevant
features of traffic data. However, in the context of active
mode traffic prediction, active mode data might exhibit varying
patterns over an hour due to factors such as rush hours, events,
or weather changes. Attention mechanism is more adaptable
to capturing the attributes of the active mode data and chang-
ing relationships between nodes. Therefore, we utilize the
attention mechanism to capture the data attribute for graph
structure generation over time and capturing temporal and
spatial dependencies with graph convolutional neural networks

and multi-head self-attention. Furthermore, Ada-STNet fused
graph structure with different spatial relationships by summing
up all the adjacency matrices, which did not consider the
heterogeneity of different adjacency matrices. By contrast,
we design a fusion approach to aggregate the matrices properly
for active mode traffic prediction. The performance of the
prediction model DyASTGCN surpasses Ada-STNet. This
outcome highlights the capability of DyASTGCN to effec-
tively capture the variations by considering the influence of
weather factors on graph spatial correlations and produce an
appropriate adjacency matrix that accurately represents the
intricate relationships within the active mode network.

3) The Influence of Spatial Correlations: Bicycle traffic
flow often exhibit greater fluctuations compared to car traffic
flows due to bicycles being highly sensitive to immediate envi-
ronmental and situational changes. For instance, cyclists are
more affected by weather conditions such as strong winds or
rain, which can drastically alter their riding behavior and route
choices. Local events or community activities often attract
large numbers of cyclists, creating sudden spikes in traffic
flow that are less predictable than the more stable patterns
observed in car traffic. Furthermore, cyclists frequently make
spontaneous decisions to deviate from their routes, such as
stopping at local shops or changing paths to avoid congested
areas, contributing to the irregular and fluctuating nature of
bicycle traffic. As shown in Fig. 7, the traffic flow at sensor
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Fig. 9. Graph spatial correlation ablation study. (a) MAE. (b) RMSE. (c) WAPE.

RDHO3_RMNI16 fluctuates dramatically, with the traffic flow
of the previous five minutes differing significantly from the
next five minutes. In this case, the local historical traffic
flow of this sensor might not be sufficient for accurately
predicting future traffic flow, as sudden changes in traffic
patterns can occur. However, we observe that at the same time
slot, some sensors exhibit similar pattern changes as point out
in Fig. 7, which could be explained by the interconnected
nature of the network where patterns among nodes influence
each other.

To explore and capture these spatial correlations for accurate
traffic prediction, we introduced various types of spatial cor-
relations: distance-based predefined graph spatial correlations,

parameter-based adaptive graph spatial correlations, dynamic
attention data-based graph spatial correlations considering
weather influences, and optimal fusion-based graph spatial
correlations that combine all the above using the proposed
fusion approach. The prediction results are shown in Fig. 8.
Fig. 8(a) presents the prediction results of the DyASTGCN
model with optimal fusion-based graph spatial correlations.
Although this model does not perfectly predict the ground-
truth values, it successfully captures spikes in traffic flow
to some extent. In comparison, the other models with
distance-based predefined graph spatial correlations shown in
Fig. 8 (b), parameter-based adaptive graph spatial correlations
shown in Fig. 8 (c), and dynamic attention data-based graph
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spatial correlations shown in Fig. 8 (d), demonstrate that the
DyASTGCN model with optimal fusion-based graph spatial
correlations is more sensitive to fluctuations in bicycle traffic
flow.

Distance-based predefined graph spatial correlations can
represent geographical spatial correlations based on the road
network; however, two sensors close to each other could
exhibit dramatically different traffic flows at the same time
slot due to differences in road levels or access destina-
tions. Parameter-based adaptive graph spatial correlations
capture some hidden spatial correlations among sensors, but
these are quite limited. While dynamic attention data-based
graph spatial correlations consider traffic flow and weather
conditions, they overlook the sensor connections in the
actual road network. Therefore, by considering all factors,
optimal fusion-based graph spatial correlations more compre-
hensively represent the spatial correlations among sensors,
enabling the capture of fluctuating traffic flow patterns of
bicycles.

F. Ablation Study

In order to gain deeper insights into the impact of var-
ious components in DyASTGCN, we performed ablation
experiments and analyzed the resulting outcomes using the
same active mode data as mentioned earlier.

1) Ablation Study of Proposed DyASTGCN: To evalu-
ate the impact of integrating weather data on capturing
dynamic attention-based graph spatial correlations in active
mode traffic, two experiments were conducted. Our approach

WAPE (60-min)

17.0 :
32 64 72 80

Model dimension

(b)

involved training a model both with and without the
incorporation of weather data while maintaining consis-
tent experimental settings. The primary objective was to
assess how effectively our model captured dynamic spatial
correlations enhanced by weather information. Fig. 9 demon-
strate that the model incorporating dynamic attention-based
graph spatial correlations with weather data outperforms
the model that does not consider weather factors. This
finding underscores the profound influence of weather con-
ditions on the complex dynamics of active mode traffic
networks.

Furthermore, we conducted experiments to evaluate the
performance of our proposed heterogeneous graph spatial cor-
relations fusion approach, aimed at combining various types
of graph spatial correlations to optimize predictions for active
mode traffic networks. As depicted in Fig. 10. we compared
our fusion approach against several scenarios:

« Distance-based: This model exclusively incorporates pre-
defined graph spatial correlations based on distances.

o Parameter-based: This model solely utilizes adaptive
graph spatial correlations derived from parameters.

« Data-based: This model relies solely on dynamic attention
data-based graph spatial correlations cooperate with 20-
minute lag weather information.

o All (Add up): This model integrates all three types of
graph spatial correlations by simply summing them.

o All (Fusion approach): Our proposed approach, where
the heterogeneous graph spatial correlations are fused to
derive optimal spatial correlations for active mode traffic.
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The ablation study revealed that the model employing
our heterogeneous graph spatial correlations fusion approach
consistently outperformed models that do not integrate various
spatial correlations or do not use a systematic approach to har-
ness the utility of diverse spatial correlations. This underscores
the critical importance of effectively integrating and leveraging
information embedded within diverse spatial correlations for
accurate predictions of active mode traffic flow.

2) Hyperparameter Analysis: Hyperparameter tuning is an
essential step in optimizing the performance of DyASTGCN.
As detailed in the Experimental Settings section, all hyperpa-
rameters for the deep learning models were carefully calibrated
using a validation set. While many hyperparameters influence
model performance, this section highlights batch size and
model dimension as illustrative examples. The impact of these
hyperparameters on the WAPE error of DyASTGCN is shown
in Fig. 11, demonstrating that the model achieves optimal
performance when the batch size and model dimension are
both set to 64.

V. CONCLUSION

In this study, given the sensitivity of active mode traffic
to weather conditions and the complexity of heterogeneous
spatial correlations within active mode graph networks,
we introduce a Dynamic Attention-based Spatial-Temporal
Graph Convolutional Network model (DyASTGCN) for pre-
dicting active mode traffic flow. Our model incorporates the
influence of weather on traffic graph spatial correlations and
proposes a fusion approach to derive optimal spatial correla-
tions that accurately represent active mode traffic dynamics.
Experimental results highlight a lag effect of weather on active
mode traffic spatial correlations. Specifically, precipitation
exhibits a 5-minute lag relative to active mode flow, while
mean wind speed shows a 20-minute lag. Including both pre-
cipitation and mean wind speed with a 20-minute lag relative
to active mode flow yields the best performance compared
to above individual scenarios. Our proposed heterogeneous
graph spatial correlations fusion approach demonstrates that
effectively integrating diverse spatial correlations leads to
optimal spatial representations for precise prediction of active
mode traffic. This approach ensures that the model captures
and utilizes the nuanced interactions between weather factors
and traffic dynamics, thereby enhancing prediction accuracy.

Overall, this research underscores the importance of consid-
ering weather impacts and leveraging heterogeneous spatial
correlations to advance the understanding and prediction of
active mode traffic behavior in urban environments. In future
research, our aim is to evaluate the model’s performance
across diverse datasets collected from expansive regions where
active mode transportation is prevalent, offering a thorough
evaluation of the robustness of the proposed DyASTGCN.
Additionally, we plan to explore the influence of various
external variables such as individual preferences, road con-
ditions, and other factors on the temporal dynamics of spatial
correlations within the active mode traffic. This investigation
will broaden our understanding of how these factors interact
with and influence the predictive capabilities of our models,
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thereby enhancing their applicability and robustness in real-
world scenarios.
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