
D
el
ft
U
ni
ve

rs
ity

of
Te

ch
no

lo
gy

Pacing regulation for runners
Master Thesis

Juan Esteban Molano Valencia

Pacing regulation for
runners

by

Juan Esteban Molano Valencia

to obtain the degree of Master of Science

at the Delft University of Technology,

to be defended publicly on Wednesday August 17, 2022 at 12:00.

Student number: 5239540

Project duration: December 15, 2021 - July, 2022

Thesis committee: Prof. dr. ir. F. A. Oliehoek, TU Delft, supervisor

Prof. dr. ir. M. T. J. Spaan, TU Delft

Dr. ir. S. Feld, TU Delft

Ir. R. A. N. Starre, TU Delft

Ir. A. Nijs, VU Amsterdam

Cover: Amsterdam Marathon 2021

Style: TU Delft Report Style

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract

By increasing the step frequency of the runners, it is possible to reduce the risk of injuries due to over-

load. Techniques like auditory pacing help the athletes to have better control over their step frequency.

Nevertheless, synchronizing to a continuous external rhythm costs energy [1]. For this reason, the use

of intermittent pacing may be more energy-efficient and more user-friendly for the athlete. We propose

using experimental data from previous studies [2] [3], that analyzed the response of runners to inter-

mittent pacing, to find the most efficient approach for providing the pacing. For this purpose we use

reinforcement learning techniques to learn and train our target behavior. This behavior is represented

as the target policy and the experimental data is assumed to be sampled using a stochastic sampling

policy. However, using only a single batch of initial training data presents a problem due to the con-

tinuously increasing difference between the initial sampling policy and the target policy being learned.

The use of a batch off-policy algorithm with a standard deviation correction (OPPOSD) presented in [4]

is then proposed. This algorithm benefits from the advantages of the sampling efficiency characteris-

tic of the off-policy approaches and also introduces a fixing term to tackle the mismatch between the

policies. To train and evaluate the learned policies based on the algorithm, a pace behavior simulator

was developed from the data of the experiments. A Markov Decision Problem (MDP) was defined on

top of the simulator that determines the rules of the pacing environment that the algorithm is set to

learn. After translating the experimental data into MDP-like transitions, the OPPOSD algorithm is able

to learn a relatively good target policy for the pacing problem. For a future application, the resulting

trained model could be deployed for real runners while still having a continuous improvement of the

policy in an on-policy or off-policy approach.

i

Contents

Abstract i

1 Introduction 1

1.1 Research questions . 3

2 Background 4

2.1 Pacing regulators . 4

2.2 Reinforcement learning . 5

2.2.1 Markov decision process (MDP) . 5

2.2.2 Policy values . 7

2.2.3 Function approximation . 8

2.2.4 On- and Off-policy approaches . 9

2.2.5 Exploration and exploitation trade-off . 9

2.2.6 Q-Learning approximations . 10

2.2.7 Policy gradient methods . 10

2.2.8 Off-policy gradient methods . 12

2.2.9 Batch Off-policy approach . 14

3 Methods 16

3.1 Provided data . 17

3.2 Simulator . 18

3.2.1 Analysis of the provided data . 18

3.2.2 General trends of the data . 20

3.2.3 Modeling the trends . 20

3.2.4 Adding randomness to the models . 21

3.2.5 Transition between models . 22

3.2.6 Simulator results . 23

3.3 Pacing environment . 26

ii

Contents iii

3.3.1 MDP definition . 26

3.3.2 Heuristic algorithm . 28

3.3.3 Environment reference values . 28

4 Experiments 30

4.1 Learning algorithms . 30

4.1.1 Online learners . 31

4.1.2 Batch Off-policy learners . 34

4.2 Available data impact in the learning . 36

4.3 Behavior Policies . 38

4.3.1 Experiments training batch . 38

4.4 Batches from experimental data as initial batch . 39

4.5 General comparison . 40

5 Discussion 43

5.1 General comments . 43

5.2 Answer to research questions . 44

5.3 Limitations . 46

6 Conclusion 47

References 49

A Synchronous software architecture 54

List of Figures

2.1 Agent-environment interaction in a MDP . 6

2.2 Neural Network architecture . 8

2.3 Proximal Policy Optimization clipping . 14

3.1 Planned activities flowchart . 17

3.2 Runner’s pace visualization . 19

3.3 Average pacing behaviors . 21

3.4 Modeled average behaviors . 22

3.5 Modeled random behaviors . 23

3.6 Model transition example . 24

3.7 Simulation examples . 24

3.8 Compared simulations vs real data . 25

3.9 Example of an episode . 27

3.10 Example of the heuristic performance . 29

4.1 Online flowchart . 32

4.2 RL algorithms in cart-pole environment . 33

4.3 RL algorithms in pacing environment . 34

4.4 Batch off-policy flowchart . 34

4.5 Batch off-policy algorithms on cart-pole environment . 36

4.6 Batch off-policy algorithms on pacing environment . 37

4.7 Batch size vs return for Batch Off-PAC in the pacing environment 38

4.8 Batch size vs return for Batch OPPOSD in the pacing environment 39

4.9 Experiments into MDP transitions . 40

4.10 Batch size vs return for Batch Off-PAC in the pacing environment 41

4.11 Batch size vs return for Batch OPPOSD in the pacing environment 41

4.12 Off-policy algorithms in the pacing environment . 42

A.1 Synchronous software architecture. 54

iv

1
Introduction

Injuries due to overload are common to find among runners of all kinds of levels. The main cause

for these traumas is the inability of the lower extremity joints to effectively control the loads applied

to them while training [5]. Different strategies, like the use of minimalistic footwear or changes to the

footstrike patterns, have been proposed to reduce these loads [6]. A usual side outcome of applying

these strategies is a beneficial increase in the athlete’s step frequency. By increasing it up to 10%,

the loading energy to the hip and knee joints during running can be substantially decreased [5]. Ad-

ditionally, other studies show that beginner and intermediate runners tend to select step frequencies

that are approximately 9% lower than their suggested optimal, defined as the step frequency at which

runners consume the lowest possible amount of oxygen [7]. To achieve their optimal step frequency

and also to help athletes to have better control over their cadence, techniques like auditory pacing are

commonly used [8]. Runners that use this rhythmic auditory stimulation can synchronize their footfalls

with a specific tempo. Nevertheless, synchronizing to a continuous external rhythm costs energy [1].

Thus the use of intermittent pacing may be more energy-efficient and more user-friendly for the athlete.

To achieve the most efficient approach for providing auditory pacing it is proposed to apply machine

learning techniques.

By using techniques like reinforcement learning it can be possible to train a model that is able to

adapt to the athlete’s preferences and increase or maintain step frequency in a user-friendly manner.

However, learning techniques usually require great amounts of data for training; in this environment, the

1

2

available data is also limited. The proposed solution should be able to learn using data gathered from

experiments performed with runners. Due to this limited data and the necessity of a sample efficient

algorithm, a deep learning approach is considered to be the most adequate. Nevertheless, learning

algorithms that use a restricted amount of data can lead to a training instability [9]. To overcome these

difficulties, the most feasible approaches are the off-policy learning methods. These algorithms take

into account the difference between the policy used to generate a behavior, called the behavior pol-

icy, and the policy that is being evaluated and improved, called the target policy [10] [11] [12]. This

difference between policies can keep growing indefinitely and sometimes diverge when the off-policy

algorithms keep using the same batch of data as input. To avoid this unbounded growing of the poli-

cies miss-match we can use a variant of the off-policy algorithms called batch off-policy algorithms [4].

These batch off-policy algorithms may be capable of learning a good policy using only real data from

experiments with runners.

For reinforcement learningmethods to learn, themodel of the problem’s environment must follow the

Markov decision problem (MDP) or Partially Observable Markov decision problem (POMDP) principles

[13][14]. For this reason, it is needed to define the pacing problem as a model with a set of states,

actions, and a reward function for the agent to interact with it [13]. This model of actions and rewards

will provide the algorithm with the necessary information to determine when it is necessary to activate

the auditory pacing and also not to keep it on for too long.

Despite not being able to deploy and train the algorithm directly with real runners, it is still possible

to estimate the performance of the resulting policy. For this reason, a simulator that emulates the

runner’s behavior was developed. Furthermore, this simulator allows us to create additional dummy

data with similar characteristics as the data obtained from the experiments with runners. Additionally,

the simulator will provide a way to evaluate and adjust our MDP model and our agents so they learn

towards the most efficient approach. The resulting model should also be lightweight in terms of energy

consumption and processing power to be deployed outside with real runners.

In chapter 2 the document provides a description of related work, like pacing tools previously de-

veloped, and an insight into the reinforcement learning approaches. Afterward, chapter 3 presents a

description of the methods followed for building the necessary tools for the experiments. The methods

section is followed by a description of the experiments performed and their results in chapter 4. Later,

chapter 5 discusses the obtained results, and in chapter 6 the conclusion for the work is provided.

1.1. Research questions 3

1.1. Research questions
In brief, the main objective of the project is to implement a Deep Reinforcement Learning algorithm

solution able to learn a pacing decision policy with a relatively good performance for future use from a

batch of experimental data from real runners.

Research questions 1.1.1 Further questions that we want to answer with this project are:

(I) Can a trained Deep Reinforcement Learning algorithm learn a policy to provide auditory pacing

efficiently?

(II) What is the least amount of training data necessary for the implemented Deep Reinforcement

Learning algorithms to learn a relatively good pacing policy?

(III) Is it possible to use experimental data from real runners as training data for the implemented

algorithms to learn a relatively good pacing policy?

(IV) How could the reached solution be deployed for real runners?

2
Background

In this chapter all the related background information is presented. The section 2.1 explains what has

been done with the purpose of regulating the step frequency for runners. The following section 2.2

gives an insight of the reinforcement learning family of algorithms and all the necessary background

used for the development of algorithms in this project.

2.1. Pacing regulators
Sustaining a regular step frequency for runners is a problem that has been addressed by previous

research as a way to improve the running style of athletes [15][16]. Solutions that implement mobile

applications are common for regulating the pace. Applications like PaceGuard work as amobile training

assistant that relies on the device’s sensors for calculating the current runner’s step frequency and

using acoustic feedback to regulate it [17]. The results obtained showed that the provided auditory

pacing might help to regulate the step frequency specially to the runners with a better sense of rhythm.

However, this approach was only a pilot and does not take into account any kind of energy saving since

the feedback is constant during the whole run.

Another common approach for auditory pacing is by shifting the beat of the music, that the runner

might be listening to, or selecting playlists with songs that match with the target tempo [8][18][19]. It

was found that by using music the pacing regulation is more enjoyable for the runners, but it is not

as effective when the goal is to change the cadence [8]. Furthermore, despite showing consistent

4

2.2. Reinforcement learning 5

results towards increasing the cadence these approaches do not provide any measurements about the

estimated energy consumption [1][20].

A proposal that implements intermittent pacing regulation provides the auditory pacing as an un-

intrusive regulator for the runners [21]. This application uses the device’s sensors to calculate the

current pace and makes use of a heuristic approach, it determines when to activate the guidance in

case the runner is having difficulties for keeping the pace. This approach relies in a set of parameters

(e.g. step sampling interval, pace delta tolerance, feedback message duration) that can be tuned for

making the tool more effective for each runner. However, as it is remarked in the publishing, the large

majority of users are not willing to configure these parameters. As a conclusion, the research finds

that using a beats based auditory pacing is more effective and precise than using natural language

messages. This approach can be used as a baseline that we will try to improve by the use of machine

learning techniques. These techniques can help us to be more effective with the use of the pacing beats

and also to avoid tuning parameters as the pace delta tolerance or the feedback message duration.

2.2. Reinforcement learning
In this section we give a summary of the most relevant concepts for reinforcement learning. Additionally,

some specific relevant models are also presented.

Reinforcement learning is a part of the concept of machine learning that aims to maximize the future

rewards obtained while interacting with an environment [22]. The learner retrieves information from a

cause-effect principle and learns from it through a trial-and-error approach. The learning model is able

to detect changes in the environment that are caused by its actions. These changes may as well be

reflected as changes to the environmental states in which the agent is. In this regard, the model learns

how its chosen actions affect the agent’s current state and its possible future decisions.

2.2.1. Markov decision process (MDP)
For reinforcement learningmodels to learn, it is generally needed tomodel the environment as aMarkov

Decision Process (MDP) [13]. These kind of models are used to represent decision making problems

and are usually composed of the following elements:

• Environment: Is an object that inherits one or multiple physical processes. The current state

of the process is usually obtained by measuring the physical outcomes of the environment or by

evaluating through a computerized model of the same environment.

• State (S): The state st ∈ S defines the state of the environment in the time step t. It changes

over the time according to the environment’s transition function.

2.2. Reinforcement learning 6

• Action (A): An action at ∈ A is the way of interacting with the environment. Depending on the

environment an action can be e.g. to turn the pacing on or off for the pace regulator problem.

• Reward (R): The reward rt ∈ R is a scalar value that is generated by the environment. It is

dependent on the transition between states st and st+1 that was caused by an action at. this

dependency can also be represented as the result of a reward function r(s, a).

Mathematically, we consider a finite horizon MDPM = 〈S,A, P,R, γ〉 with a continuous state space

S and a discrete action space A. P is the transition probability distribution P : S × A × S 7→ [0, 1].

R : S ×A 7→ [0, 1] is defined as the expected reward functions and γ ∈ (0, 1] is the discount rate.

Additionally the interaction with the environment is done with an agent that follows a specific policy:

• Agent The agent is an object that interacts with the environment through actions at, observes

the possible transition st → st+1 and receives the reward rt.

• Policy A policy π(st, at) is the probability distribution over the set of possible actions at given the

state st at a time step t. An agent is defined by its policy as each action taken is sampled using

that policy.

An agent observes from the environment tuples of state, action, reward and next state: (st, at, rt, s′).

In this definition, the observed s′ is the resulting next state st+1. The interaction between an agent and

the environment is depicted in the figure 2.1. In here, the actor and decision maker is called the Agent,

who interacts with the environment through actions at and receives from it rewards rt+1 and information

about the new state st+1.

Figure 2.1: The agent-environment interaction in a MDP [22]

For the model to satisfy the Markov Property, the next state s′ and the reward r must depend on the

current state-action tuple (s, a). This relationship is represented by the probability function in equation

2.1.

p(s′, r|s, a) = Pr{rt+1 = r, st+1 = s′|st = s, at = a} (2.1)

2.2. Reinforcement learning 7

Furthermore, if the action a is sampled from the policy π(st, at), then the Markov Property induces

a conditional independence of (st−1, rt−1) and (st+1, rt+1) given st.

The agent’s task is to learn a policy π that maximizes the expected future rewards. This objective

is represented by the equation 2.2. This is the also known as an undiscounted finite horizon problem.

argmax
π

E
π

[
T∑

t=0

rt|s0

]
(2.2)

In order to bound the future reward, a discounted reward is presented in equation 2.3. Where γ

is a parameter , 0 ≤ γ ≤ 1, called the discount rate. This factor determines how future rewards are

weighted in the value function from the current state. In this way, rewards that are closer to t get a

higher weight than those that are occurring later.

argmax
π

E
π

[
T∑

t=0

γtrt|s0

]
(2.3)

T represents the time limit of the process (T <∞) and pπ are the environment dynamics probabili-

ties after following a set of actions sampled using the policy π.

2.2.2. Policy values
The main objective of reinforcement learning algorithms is to estimate the policy π that maximizes the

value stated in the equation 2.3. This policy can be approximated by estimating the so called value

functions. These value functions are the state value function Vπ(s) in equation 2.5 and the state-action

value function Qπ(s, a) in equation 2.6. Both of these equations use a discounted future reward Rt

defined in equation 2.4.

Rt =

T−t∑
k=0

γkrt+k (2.4)

Vπ(s) = E
π
[Rt|st = s] , (2.5)

Qπ(s, a) = E
π
[Rt|st = s, at = a] (2.6)

In general the value function can also be expressed as a function of the Q value, as shown in

equation 2.7.

Vπ(s) = E
a∼π

[Qπ(s, a)] . (2.7)

2.2. Reinforcement learning 8

2.2.3. Function approximation
Usually the objective is to maximize either one, or more approximated value functions. As the ex-

pressions for maxπ Vπ(s) and maxπ Qπ(s, a) satisfy Bellman’s principle of optimality [13], they could

be solved exactly using Dynamic Programming. However, for most problems this is not feasible when

there are many state variables, due to the curse of dimensionality. Additionally, in reinforcement learn-

ing another issue is that usually we do not know the transition and reward functions. For instance, the

value functions are usually approximated by neural networks.

Artificial Neural Networks

Neural networks are models designed for solving problems in fields as pattern recognition or data

analysis [23]. The most important feature of these models is their ability to approximate the solution of

a problem by using a set of training samples. They are commonly arranged in a multilayer architecture,

as in figure 2.2, and each of the nodes, or processing units, usually performs a linear approximation

of the input followed by a non-linear activation function (e.g tanh or max(x, 0)). Neural networks take

an input and by a feedforward process generates an output which is used to calculate a loss (How far

is from the expected value). Then by a backpropagation process (chain rule derivative) all the values

within the network are updated accordingly. Another feature from these models is their capability to

generalize, which allows the Neural Network to make accurate predictions on new inputs.

Figure 2.2: Example of the architecture of a neural network
Source: http://alexlenail.me/NN-SVG

A Neural Network usually receives as input am×nmatrix, wherem is the input size (e.g. amount of

samples) and n is the dimension of the input (e.g each of the measured variables of an input state). The

http://alexlenail.me/NN-SVG

2.2. Reinforcement learning 9

input then passes through each of the connections of a layer which are represented by many weight

vectors wi. The weight vectors have a size of n× h where n is the input dimension and h is the size of

the output of the inner layer. The wi vectors are also known as the parameters θ of a neural network.

These parameters are constantly adjusted while the model learns during the training stage. The tuning

of these parameters is usually done with optimization algorithms called optimizers. These optimizers

(Stochastic gradient descent, Adam [24], etc.) try to find the parametric values that minimize the error

when mapping inputs to outputs.

2.2.4. On- and Off-policy approaches
In general we have a target policy π(s, a), which is the policy that an agent is trying to learn (can be

the value function for this policy). And we will have the behavior policy b(s, a) which is the policy that

is being used by an agent for selecting an action and interacting with the environment [22].

As in reinforcement learning we do not get a training and test set to train our algorithms, all data

should be sampled directly from the environment. In order to get this data and learn from it we can

use the on-policy or the off-policy sampling. In the on-policy approach the behavior policy b, used for

sampling, is the same target policy π which the algorithm is evaluating. This approach is relatively

stable but must re-sample once the policy changes [22]. On the other side, the off-policy approach

receives as input data sampled with any behavior policy b (also called sampling policy) different than

the target policy π being evaluated. This allows us also to learn from older or other’s experiences.

2.2.5. Exploration and exploitation trade-off
For an agent to learn a new policy, it is necessary to explore, and one way to it is by adding an extra

stochastic probability µ = 1
number of actions to the current policy π [22]. The trade-off between the stochastic

actions and the current known policy is known as an ϵ-greedy approach and can be seen in the equation

2.8.

P (s, a) = ϵµ+ (1− ϵ)π(s, a) (2.8)

This ϵ initially is set to be 1 but it should decrease with time inversely proportional to the amount

of exploration done (decisions is the total amount of actions taken by the agent). The hyperparameter

τ is the anneal time and changes the ϵ between its maximum and minimum value, ϵmax and ϵmin

respectively, as depicted in equation 2.9.

ϵ = max
(
1− decisions

τ − 1
, 0

)
∗ (ϵmax − ϵmin) + ϵmin (2.9)

2.2. Reinforcement learning 10

2.2.6. Q-Learning approximations
Q-learning is a method that aims to estimate the policy that maximizes the state-action value [25].

This algorithm is considered a model-free reinforcement learning and tries to approximate the optimal

Q∗(s, a) as the addition of the current obtained reward and the future reward obtained, assuming to

follow Q∗(s, a) in equation 2.10.

Q∗(s, a) =

T∑
s′

p(s′, r|s, a)
[
r(s, a) + γmax

a′
Q∗(s′, a′)

]
(2.10)

By interacting with the environment the algorithm gets an estimate Q̂∗ of the current Q value (from

equation 2.6) and we try to minimize the squared loss L between the experiences [10]. The minimizing

temporal difference equation is depicted in 2.11 [22].

L[Q] := E
π

[
1

2

(
Q̂∗(s, a)−Q(s, a)

)2
]

(2.11)

With Q-learning a Q online estimate from any Markov chain can be estimated iteratively using the

temporal difference learning update with step size α in equation 2.12.

Q(s,a) ← Q(s,a) − α (∇L[Q]) (2.12)

This kind of approximation is usually referred to as one step temporal difference method (TD). This

solution takes time but converges to an optimal policy and it has been demonstrated in [26]. In general,

the q-learning methods collect the loss over a whole episode before estimating the current Q value.

One episode is defined by the history of temporal differences between the starting state t = 0 and an

end state t = T .

However, in the q-learning algorithm the target policy depends on Q which is not trustworthy in the

early training iterations as this is the approximating function. To have more control over the sampling of

actions, also known as exploration, a sampling policy µ(a|s) is used during training. As this sampling

policy µ(a|s) is different than the target policy π, the algorithm is considered an off-policy approach.

2.2.7. Policy gradient methods
Policy gradient methods aim to optimize the parameters θ of a policy πθ(s, a) represented by a Neural

Network.

The stationary distribution of states dπ(s) ≥ 0,
∑

s dπ(s) = 1 represents a measure of how often is

a state s visited [22].

Now, with the equation 2.6 as the value of the state-action pair formulation, the agent’s objective

2.2. Reinforcement learning 11

ρ(π) is defined in equation 2.13. This objective can be interpreted as the long-term expected reward

for the agent following the policy π from state s0.

ρ(π) =
∑
s

dπ(s)
∑
a

π(s, a)Qπ(s, a) (2.13)

Additionally, we define the performance measure ρ as the resulting value V (s) from the start state

of the episode s0. Then the policy parameters are updated proportional to the gradient of ρ:

∇θ ≈ α
∂ρ

∂θ
(2.14)

,

where α is a positive-definite step size.

Then,

∂ρ

∂θ
= Lπ[θ] =

∑
s

dπ(s)
∑
a

∂π(s, a)

∂θ
Qπ(s, a) (2.15)

is the policy gradient on which gradient ascent on the policy can be performed in order to maximize

ρ.

A proof and a thorough discussion of this derivation can be found in [27].

Now, by using 1
π(s,a)

∂π(s,a)
∂θ = ∂ lnπ(s,a)

∂θ , assuming Qπ(s, a) ≈
∑

γtRt and with the definition of the

expected value of a function Ex∼p(x)[f(x)] =
∑

x p(x)f(x), the equation 2.15 yields to equation 2.16.

Which gives an approximate function for the loss Lπ.

Lπ[θ] := − E
πθ

[
T∑

t=0

γtRt∇ lnπθ(at|st)

]
(2.16)

In order to find a function approximation using policy iteration, we adjust the value of the parameters

θ with the formula

θk+1 = θk + αkLπ[θ] (2.17)

where α is the learning step. This is the policy gradient algorithm and we will refer to it as the basic

reinforce learning algorithm (RL) [22].

Reinforcement with baseline algorithm

As the policy parameters θ are updated using random samples, it can result in a high variability of the

cumulative reward values Rt =
∑n−1

t=0 γirt+i. This happens because each of the sampled trajectories

can deviate indefinitely from each other [22].

2.2. Reinforcement learning 12

One way to reduce this variance is to subtract the cumulative reward Rt with a baseline which is

usually the approximated value Vπθ
(st). This is considered to be a bias free estimate that does not

induce a change in the gradient [22].

Additionally, in practice the state and action spaces are large, thus the expectations with respect to

s and a are approximated using Ex∼p(x)[f(x)] =
1
n

∑
n f(x), n→∞, x ∼ p(x). These expectations are

sample based and rely on using enough samples of s and a in order to obtain a reasonable approxi-

mation. For instance, using these approximations and subtracting the V πθ (st) term to equation 2.16, it

yields

Lπ[θ] = −
1

N

N−1∑
t=0

γt lnπθ(at|st)(Rt − Vπθ
(st)) (2.18)

Here N is the number of samples drawn which is in practice usually N = 1 for online updates.

This new loss Lπ[θ], defined in equation 2.18, can be replaced in the equation 2.17 to update the

reinforcement algorithm.

Actor-critic algorithms

The Actor Critic methods are a group of RL algorithms where there are two functions (actor and critic)

that are updated in a turn based fashion [22]. Intuitively the critic evaluates the action taken by the

actor that uses this evaluation to scale its gradient update.

The estimated Vπθ
(st) in equation 2.18 sets a baseline for the final return, nevertheless this is

independent from the transition’s action and for this reason cannot be used to evaluate that action. In

the actor–critic methods, on the other hand, the state-value function is applied also to the second state

of the transition Vπθ
(st+1) [22].

This technique, commonly known as bootstrapping, replaces the return Rt+1 with the approximated

future value Vπθ
(st+1) = Eπ[Rt+1|st+1]. The approximation Aπθ

(st, at) = rt + γVπθ
(st+1) − Vπθ

(st) is

known as the advantage [28].

With the advantage Aπθ
as critic and the policy πθ as actor, the equation 2.19 represents the loss

Lπ[θ] used for most of the actor-critic algorithms.

Lπ[θ] = −
1

n

n−1∑
t=0

γt lnπθ(at|st)Aπθ (st, at) (2.19)

2.2.8. Off-policy gradient methods
Off-policy methods encounter the issue of the distributional mismatch between the target policy π and

the behavior policy b described in 2.2.4 [22]. Additionally, after t steps with the policy π we encounter

2.2. Reinforcement learning 13

a new state distribution dπ(s). In order to adjust the distributional mismatch, the importance sampling

(IS) term dπ(st)
db(st)

is added. For instance, using again Ex∼p(x)[f(x)] =
1
n

∑
n f(x), n → ∞, x ∼ p(x) and

the IS, the gradient equation 2.15 for off-policy updates should be rewritten as

∇θLπ[θ] = −∇π E
b

[
n−1∑
t=0

dπ(st)

db(st)
γtQπ(st, at)

πθ(at|st)
b(at|st)

]
(2.20)

The off-policy gradients requires the Q-value function Qπ (or value Vπ) of πθ. In some implementa-

tions the IS term is ignored. There are many solutions to overcome this distributional mismatch, some

use importance sampling approximation or other use variance reduction techniques [29] [30].

Off-policy Actor-critic

One popular implementation for off-policy gradient algorithms is the off-policy actor critic (Off-PAC) [11].

This method takes advantage of the temporal-difference technique enabling a target policy π to be

learned while following and obtaining data from another policy b. The Off-PAC is intended to learn in an

online and incremental form. This means, that the behavior policy b is continuously interacting with the

environment and is also constantly being updated with the most recent target policy π after a certain

amount of off-policy iterations C. The off-PAC approximation of equation 2.20 using the advantage

term Aπθ (st, at) is depicted in the equation 2.21.

∇θLπ[θ] ≈ −∇π E
b

[
n−1∑
t=0

γtAπθ (st, at)
πθ(at|st)
b(at|st)

]
(2.21)

However, this kind of algorithm due to the dismissal of the IS term tends to be slightly unstable [31].

Proximal Policy Optimization

A way to diminish the instability of the Off-PAC is proposed in [32]. This approach, called proximal

policy optimization (PPO), keeps the learning policy πθ in a trust region around the old policy b = π′
θ.

This region approximation is implemented by clipping the policy ratio outside 1 ± ϵ which means that

only updates the policy for values where the loss improves and for the rest updates using the clipped

value. In the figure 2.3 are shown the clipping boundaries for the policy update.

In equation 2.22 is defined the trust region for the policies, where DKL is the Kullback Leibler

Divergence. TheDKL is a measure of how much a probability distribution b(·|st) differs from a second

probability distribution πθ(·|st) [33].

min
θ
Lb[θ] s.t. E

b

[
n−1∑
t=0

DKL[b(·|st) ‖ πθ(·|st)]

]
(2.22)

Nevertheless, The PPO method heavily relies on the proximity between the target and the behavior

2.2. Reinforcement learning 14

Figure 2.3: Plots showing one term (i.e., a single timestep) of the surrogate function LCLIP as a function of the probability
ratio r = π/b, for positive advantages (left) and negative advantages (right). The red circle on each plot shows the starting

point for the optimization, i.e., r = 1. Image from [32]

policies to work. For instance, the use of this approach, even though it leads to faster convergence,

needs to iteratively update both policies in an online fashion.

2.2.9. Batch Off-policy approach
For some problems, it is assumed that a batch of data has been previously collected using a known

behavior policy b. If a RL algorithmwere to be trained using only this batch, we called it a batch off-policy

approach. For these kind of problems the mismatch between the behavior and the target policies may

grow indefinitely, and even become unbounded given its long-horizon nature. In these kind of situations,

IS estimators suffer from an excessively high variance [29]. For instance, the algorithmOff-PAC in 2.2.8,

that ignores the IS, may have a good performance but could not adapt correctly when the distributions

mismatch becomes uncertain [4].

Off-policy Policy Gradient with State Distribution Correction (OPPOSD)

In order to avoid the exploding variance faced by existing methods, in [4] is proposed an off-policy

estimator that applies IS directly on the stationary state distribution dπ(s). The main difference is the

state distribution IS dπ(s)
db(s)

, which is estimated using samples collected from b.

Using ρπ(s, a) =
π(s,a)
b(s,a) , the equation 2.23 is defined.

∆(wθw ; s, a, s
′) := wθw(s)ρπ(s, a)− wθw(s

′). (2.23)

In equation (2.23), the term wθw is a neural network parameterized by θw and represents the IS

function approximation.

This function wθw(s) is then plugged into 2.20 and we get the equation

2.2. Reinforcement learning 15

∇Lπ[θ] = −∇π E
b

[
n−1∑
t=0

wθw(s)γ
tQπ(st, at)ρ(s, a)

]
(2.24)

.

This loss function ∇Lπ[θ] is used to update the target policy π in an off-policy way. This means that

the target policy π learns using only a given initial buffer of transitions sampled from b. Additionally, as

this method theoretically corrects the distributional mismatch, it is no longer necessary to perform the

online policy updates b← π.

This method provides the desired behavior we want to implement for this pacing regulation project,

being the experimental data the initial buffer of transitions sampled from b.

3
Methods

In order to answer the questions in 1.1, a set of activities for the project is defined.

• Develop a pace simulator

• Implement RL algorithms

• Integrate agents and simulator

• Perform experiments

A flowchart with the main tasks for each of the activities is shown in the figure 3.1. Blue represents

the activities related with the deep learning algorithms. These are the tasks of creating the proper

framework defined in appendix A and adding to it all relevant algorithms for the project. Purple repre-

sents the tasks related to the runner’s pace simulator. Here a statistic analysis of the provided data is

performed in order to develop a proper mathematical model. Afterwards, green represents the tasks

related to the MDP pacing environment that should be created using the values from the simulator for

it to later be used with the agents. Light orange represent the tasks related to the integration between

the RL agents and the defined MDP. In here the reward model is adjusted as well as the agent for them

to be able to work together. Also, the definition of the behavior policies and the samples from which

the off-policy agents are expected to learn. Finally, dark orange represents the experiments performed

using the integration between the agents and the simulator. In here we will test if the agents are able

to learn using limited data and their performance in the simulator will be tested as well.

16

3.1. Provided data 17

Start

Build RL agents

Q-Learning
agent A2C TD agent Off-pac agent OPPOSD

Build agents

Baseline
agent RL Actor-critic OFF-PAC

Add the MDP on top
of the simulator

Test agents in
environment

yes

No

Learnable
MDP

Adjust agents and
MDP

Generate training
batches from

simulator

Analyze available
pacing data

Create simulation
model Define MDP

Train agents

Evaluate agents
performance Endyes

No

Are results
enough?

Adjust agents or MDP

Generate training
batches from
experiments

Learning Algorithms

Simulator

RL + Simulator integration

Experiments

Pacing environment

Figure 3.1: Planned activities flowchart

3.1. Provided data
A subset of data gathered in previous research [2] [3] was used. The experiments were conducted on

an instrumented treadmill. After some time running, when the athlete confirms to feel comfortable with

the current speed and pace, these are recorded as their preferred speed and pace. Afterwards, taking

into account the preferred speed the subsequent experiments were performed. These datasets were

modified specifically for this project and consist of 8 types of trials.

1. First trial of participants (16) running without pacing, for the purpose of calculating their preferred

pace.

2. A second trial of participants (16) running without pacing (similar to the first one).

3. Trial in which the participants (16) ran with pacing at a frequency 10% faster than their preferred

step frequency, followed by a period without pacing.

4. Trial in which the participants (16) ran with pacing at a frequency equal to their preferred step

frequency, followed by a period without pacing.

5. Trial in which the participants (9) ran with continuous pacing (CP) at a frequency 10% faster than

their preferred step frequency.

3.2. Simulator 18

6. Trial in which the participants (9) ran with intermittent pacing (IP) at a frequency 10% faster than

their preferred step frequency.

The raw data came from the treadmill, which was instrumented with kistler force plates. This pro-

vided data consisted of:

• The mediolateral, anteroposterior and vertical forces (N).

• The centers of pressure in x and y directions (m).

• Indicator value to measure the footstrike moment (1 or 0).

• Indicator for showing the moment of the auditory pacing activation (1 or 0).

From this dualbelt raw data the calculated variables for the pacing analysis are the following:

• Footstrikes interval (s)

• Beeps interval (s)

• Step frequency (steps/min)

• Pacing frequency (beeps/min)

3.2. Simulator
As our model will not be able to learn and adapt directly from a real environment, it is required to develop

a way to test our resulting policies. For this reason a simulator that can emulate the response of the

pace from runners to an external auditory pacing was developed. In order to simulate the runners

response to the auditory pacing, it was necessary first to analyze the available data. From the results

of the analysis of the available data, a mathematical model can be derived in order to get the desired

behavior that we want to replicate.

3.2.1. Analysis of the provided data
To begin analyzing the provided data the first step was to visualize it. This way we can begin to identify

general trends in the behavior of the runners while being paced and when not. Additionally, in order

to be able to compare different runners with different characteristics, the pacing values are normalized.

This normalization is done using the pacing frequency (beeps frequency which is the target and does

not change) as reference. Then the observed values are stepfrequency
pacingfrequency . In the figure 3.2 examples of

the pacing trend for some runners are shown.

In figure 3.2 we can observe with blue crosses (x) the paced steps of the runner and with orange

crosses the non-paced steps. The time steps are the actual steps of the runner and are relative to the

3.2. Simulator 19

Figure 3.2: Visualized normalized pace of runners 3, 6 and 13 from the trials 1 and 2.

current cadence. So if the measured step frequency of a runner for a given time step is of 180steps/min

then the depicted time step will be equivalent to 60s∗1step
180steps/min ≈ 0.33s. The objective for the runner is to

try to keep a pace as close as possible to the target pace marked by the black dashed line. To have a

better idea of where the real pace of the runner is, an exponential weighted moving average (EWMA) is

represented as the black solid line. Finally, the trends for the paced and non-paced steps are depicted

by the blue and red lines respectively.

3.2. Simulator 20

3.2.2. General trends of the data
These graphs helped to identify 4 different pacing situations among the runners:

1. Activate auditory pacing at their preferred pace. This was done to help the runners to synchronize

and help them to stick to the pace for some time before turning the pacing off.

2. Activate auditory pacing at a higher pace than the preferred one.

3. When stopping the auditory pacing at the preferred pace to test the runners ability to keep their

pacing.

4. When stopping the auditory pacing after pacing at a higher pace than the preferred one.

For each of these cases separated we calculated the pacing moving average and these values were

averaged for all the runners in the provided data from the trials 1, 2, 3, 4, 6 and 8. The resulting general

average behavior per time step with its standard error in light blue can be observed in the figure 3.3.

Here it can be seen that, for the pacing behaviors 1 and 2, there is a clear trend towards the target

pace (1). This behavior indicates that in general the runners are able to synchronize their cadence

using auditory pacing. These general behaviors could be modeled by a logarithmic function. On the

other side, for the behavior 3 and 4 the trend downwards is clear. This suggests that runners after

being paced at higher cadences tend to decrease their step frequency once they do not receive the

auditory pacing anymore.

3.2.3. Modeling the trends
From the 4 different general behaviors found in 3.2.2 a regression could tell us a mathematical model to

represent these trends. For behaviors 1 and 2 a logarithmic regression was done and the equations 3.1

and 3.2 model these situations. For the behavior 3 and 4 a linear regression presented in the equations

3.3 and 3.4. In these presented equations the x is the step, and y is the normalized spm.

y = −8.9× 10−3 logx+ 1.0396 (3.1)

y = 2.614× 10−3 logx+ 0.9863 (3.2)

y = −3.1926× 10−6x+ 1.0123 (3.3)

y = −3.1703× 10−5x+ 0.986 (3.4)

3.2. Simulator 21

Figure 3.3: Average pacing behaviors for the 4 identified cases in 3.2.2

The closeness of these equations can be better appreciated in the figure 3.4. Given that in the

experimental data the time that the auditory pacing was activated was generally shorter than the time

when it was off, the x-axis is shorter for the behaviors 1 and 2 compared to the behaviors 3 and 4 in

the figure 3.4.

3.2.4. Adding randomness to the models
However, if we want to emulate different runner’s behaviors an additional random component should

be added to the formulas without changing the general trend. With this component we can guarantee

that not all the simulated behaviors are going to be the same but they still follow the desired trend.

y = −8.9× 10−3 log ϵx+ 1.0396 ϵ ∈ [0.2, 1.5] (3.5)

y = 2.614× 10−3 log ϵx+ 0.9863 ϵ ∈ [0.2, 1.5] (3.6)

y = (−3.1926× 10−6 + 1× 10−3ϵ)x+ 1.0123 ϵ ∈ [−3, 3] (3.7)

3.2. Simulator 22

Figure 3.4: Modeled average behaviors from the experimental data

y = (−3.1703× 10−5 + 1× 10−3ϵ)x+ 0.986 ϵ ∈ [−3, 3] (3.8)

Equations 3.5, 3.6, 3.7 and 3.8 represent the models for the behaviors 1, 2, 3 and 4 respectively.

In these a random value ϵ is added to induce the desired differences. The intervals for these values

were chosen by hand searching for numbers that do not end up diverging outside of the error area from

the average behavior in the figure 3.3. In figure 3.5 are shown the general behaviors and 3 different

generated functions for each of them.

3.2.5. Transition between models
The next task for the simulator is to make the transition between behaviors smooth. This means that

when the pacing is activated and we are following one model, as soon as we stop pacing and another

model is running, we will not have big gaps between the transitioning pacing values. For this purpose,

it is needed to keep track of the time step value and the last value obtained from the model.

For the logarithmic model the inverse function is then calculated using the equation x = e
y−z0
z1 ϵ−1.

In this equation z0 and z1 are the respective coefficients in the models from 3.5 and 3.6 when having

the form y = z0 logx+ z1. This function takes the last value of normalized steps per minute calculated

3.2. Simulator 23

Figure 3.5: Modeled random behaviors

(y) and returns the initial x (time step) from which we need to count the time when transitioning to a

logarithmic function.

For the linear functions we just adjust the intercept b in the function y = mx + b. Where y is the

model output in normalized spm, x is the current time step, m is the slope and b is the intercept with

the y axis.

When transitioning between models we expect a behavior similar to the example shown in figure

3.6. In here we start with a linear model (behavior 4) for 100 steps. Afterwards we transition to a

logarithmic model (behavior 2) for other 100 steps and this one approaches us to the target pace 1. A

final transition to a second linear model (behavior 4) is then performed for another 100 steps.

Each time that we make a transition all the random components are recalculated again. This way

we can be certain that each simulated scenario is different.

3.2.6. Simulator results
After having the average pace behavior that we want to simulate, it is now necessary to make it look

similar to the original data. For this purpose two different noises are added to the models. One

noise, nsim ∈
[
0, 5× 10−3

]
, is added directly to the simulated output y. The other noise, npace ∈

3.2. Simulator 24

Figure 3.6: Model transition example

[pacetarget − 4, pacetarget + 3], is added in order to denormalize the output and convert it into spm. The

denormalization is done in order to get an output from the simulator which resembles the experimental

data in behavior and magnitude. The added values for the noise were chosen by hand in order to

approximate the real data standard deviation from the experiments. The final pace simulated value is

calculated in the equation 3.9. The pacetarget is a value set by the runner and y is the output of the

corresponding model.

pacesim = (y + nsim) ∗ npace (3.9)

To begin with the simulation the program selects a random initial pace (paceinit ∈ [0.9, 1.08]). From

this value onwards depending on the input, if pacing is activated or not, a new value is calculated. The

simulator has a state-full behavior, given that it keeps an internal track of the current model being used

and the time step.

Figure 3.7: Two different simulated scenarios using the same target pace (181).

3.2. Simulator 25

In figure 3.7, two different simulated scenarios, using the same target pace for the model, can be

seen. Both of them had 250 time steps of not pacing followed by 400 paced steps and then turning off

the pacing again for 150 steps.

In figure 3.8 the similitude between the provided data and the simulated one can be appreciated.

On the left side images are three different behaviors from three different runners. On the right side are

simulated behaviors starting on a similar pace, then activating the pacing for a similar amount of time

and then stopping it. The target pace is the same for both sides.

Figure 3.8: Comparison between provided data and simulated results

3.3. Pacing environment 26

3.3. Pacing environment
In order to use the simulator in a way in which reinforcement learning algorithms could interact with it is

necessary to define an MDP on top of it. The MDP can help us to tell the simulator for how long to pace

or not to pace. After, the environment will return to us the new state in which we are, the respective

reward for our action and whether the environment is done or not.

3.3.1. MDP definition
First of all, the set of states was defined as the normalized average pace at a specific timestep∆pacet =∣∣pace−pacetarget

pacetarget

∣∣, where pacetarget is the target pace and pace is the Exponentially Weighted Moving

Average (EWMA). The EWMA is calculated using the formula pacet = αpacesim+(1−α)pacet−1 where

pacesim is the measured pace in the time step t and α is a weight value chosen to be by default as 0.95.

St : {∆pacet}

In here, we define blocks of steps per action. This is done given that in real life it does not make

sense to pace for less than 10 seconds, otherwise the runner would not have enough time to synchro-

nize with the auditory pacing. For this reason, the minimum block is defined to be 20 timesteps, which

is more or less equal to the defined 10 seconds. This is the least amount of time that the agent can, or

cannot, pace the runner.

At : {0, 20, 25, 30, 40}

In the set At the values for 25, 30 and 40means respectively the amount of timesteps that the agent

can select to pace the runner. These values were arbitrarily chosen to have a set of values relatively

distributed between the 10 and 20 seconds of keeping the auditory pacing activated.

For the rewards Rt, we need to provide rules for the agent to learn how to balance the amount of

pacing provided. The rules for the rewards are the following

Rt

st > 1.5% -1

If At == 0

st < 0.2% +1

else, 0

If At > 0

|st+1 − st| < 0.2% -1

else, +2

3.3. Pacing environment 27

When the new difference with respect to the target pace (st ∈ St) is higher than a 1.5% means that,

no matter the action taken, the runner is too far from the target and thus the reward is a -1. When the

agent decides not to pace (At == 0), if the st is less than a 0.2% from P means that the runner closely

sticking to the target pace and thus a reward of +1 is given. If the runner is between 1.5% and 0.2% of

P , means that the runner is still close to the target pace without diverging too much and thus the reward

is 0. On the contrary, we have other rewards when the agent decides to pace (At > 0). If the pace is

activated and after the pacing block the different between the new state st+1 and the previous state st

is less than 0.2% means that the pacing did not work or was not necessary and thus a reward of -1 is

given. Otherwise, means that the pacing is affecting the behavior of the runner and thus a reward of

+2 is given.

The default learning episode is set to consist of 16 action blocks (roughly over 400 timesteps) which

are is the average amount of action blocks that we can obtain from the experimental data. The first

action is set to be 0 in order to get a proper estimation of the initial average pacing and no reward is

given. From this point onwards the states, actions and rewards work as described.

Figure 3.9: Example of an episode with a final reward of -1

In figure 3.9 an example of an episode generated using the defined environment can be observed.

The green vertical dotted lines represent the end of an action block, after each of these action blocks

the reward rt is shown at the bottom. The orange ×’s represent the not paced timesteps (At == 0)

3.3. Pacing environment 28

while the blue ones are the ones in which the pacing is active (At > 0). The dashed horizontal line

represents the target pace P and the solid red line is the state st. The final accumulated reward for this

episode
∑

rt is -1.

The defined MDP and its respective reward function were chosen after a number of iterations along-

side with an implementation of a RL algorithm. Each time a new definition was done, it was tested trying

to make the RL model to learn from it. As the goal is to minimize the amount of times that the auditory

pacing is activated, it is important to adjust the balance between the positive and negative rewards. If

this is not done, it could result in the agents learning a high probability of how not to pace (e.g. 95% of

the time auditory pacing and 5% of the time on no matter the current state).

3.3.2. Heuristic algorithm
This is a simplistic solution for the pacing problem in which we are only taking into account themeasured

step frequency. Nevertheless, in the future, the same pacing model can include in the state different

inputs that can be measured from the runner as the heart rate, temperature or oxygen intake. This

presented pacing model can find a good solution by using a heuristic approach in which are defined

some boundaries for the pace and when trespassing these, the auditory pacing is activated. The

algorithm 1 depicts this described logic.

Algorithm 1: Heuristic algorithm
Input :st
Output :At

1 if st > 2.7% then
2 At = 40
3 else if st > 2.2% then
4 At = 35
5 else if st > 1.5% then
6 At = 30
7 else if st > 1.1% then
8 At = 20
9 else
10 At = 0
11 end if
12 return At

In figure 3.10 can be seen an example of the heuristic algorithm interacting with the environment.

3.3.3. Environment reference values
The average total reward and standard error for 500 episodes using the heuristic approach resulted

to be 3.63± 3.66. This value is used as reference for the following learning algorithms to consider the

environment as solved.

3.3. Pacing environment 29

Figure 3.10: Example of an episode using the heuristic algorithm having a final reward of +4

As additional reference values for the environment, we have the random behavior with actions At

chosen from an uniform distribution with an average reward of −5.704 ± 3.66. Then we have the non-

pacing policy that is when the agent lets the runner to run without activating the auditory pacing (At = 0)

with an average reward of −12.184 ± 6.125. And the always-pacing policy where the agent keeps the

auditory pacing on (At > 0) for the whole episode with an average reward of −8.376± 3.25.

4
Experiments

Having in mind the research questions in chapter 1.1 and using the tools described in 3, a set of

experiments were designed and are described in this chapter.

Initially, to answer the research question 1.1.1(I), some of the algorithms described in chapter 2 were

implemented. These were tested initially in a default environment, the cart-pole [34], before being used

in the pacing environment, described in the section 3.3. In order to verify if the pacing is efficient or not,

the results are compared with the heuristic algorithm described in 3.3.2.

Afterwards, to answer the research question 1.1.1(II), an experiment using different batch sizes with

randomly sampled data (sampling policy) generated with the simulator was run.

Thereafter, it is explained how from the provided experimental data we create MDP transitions to

be used as initial batch for the training of the RL algorithms. Then, to answer the research question

1.1.1(III), another experiment was run using as input sampling policy these generated transitions from

the experimental data.

Finally an experiment to compare the results from the Off-PAC and OPPOSD algorithms using both

data from the simulator and from the experiments as input batch was run.

4.1. Learning algorithms
The definition of the pacing environment in 3.3 depended on its ”learnability”. For this reason, alongside

with the definition of the MDP it was necessary to keep testing it. For this purpose, implementations

30

4.1. Learning algorithms 31

of the learning algorithms RL [27] and Actor-Critic [28] defined in the section 2.2.7 and the algorithms

Off-PAC [11] and PPO [32] described in section 2.2.8 were implemented.

These algorithms were implemented in an incremental way towards the goal of implementing of the

OPPOSD algorithm [4]. As most of the implementations are designed to work in an online approach,

their preliminary performances and behaviors are compared using online updates. All of the algorithms

are tried both in the cart-pole environment [34] and the pacing environment.

Afterwards, an adjustment to the policy updates is done to evaluate the performance of the batch

off-policy approach for the Off-PAC and the implemented OPPOSD algorithms.

4.1.1. Online learners
The framework defined in Appendix A was implemented, in order to have a better control over specific

parts of the learning process, like the definition of the experiments or the learners, without having to

change anything else from the code.

The way in which the algorithms interact with the environment in an online way is depicted in the

figure 4.1. In the diagram the flowchart of the actions taken can be seen. In the first step a set of F

transitions are gotten by directly interacting with the environment using the policy π0. These actions

are then stored in a replay buffer. Unless the algorithm being used follows an off-policy approach,

then these F steps are used to directly update the policy π0 with a policy gradient update. In case the

algorithm being used follows an off-policy approach (i.e. The Off-PAC or the PPO) then, after filling

the replay buffer a set of minibatches are sampled from it. These minibatches are later used to keep

updating the initial policy π0 with off-policy gradient updates, and thus result in a new policy π for each

step. While using off-policy algorithms in an online approach, we are trying to have a better sampling

efficiency and thus learning the most possible from the available data.

The implemented algorithms for testing were the initial reinforce, the actor-critic, the Off-PAC and the

PPO. These were tested using the cart-pole environment [34]. In this environment the agents need to

balance a mass attached to a pole in an upright position, by applying one of two sideways movements

to a cart on a frictionless track. The horizon has a maximum of 200 timesteps and the rewards are

defined as +1 for each timestep that the pole is standing.

In figure 4.2 the averaged results for 5 runs from the implemented algorithms in the cart-pole envi-

ronment can be seen. The raw results are also averaged in windows of 10 timesteps with the purpose

of smoothing the graph. Additionally, for each line the standard error can be seen, and this can be

considered as a measurement of the stability. The interactions with the environment were limited to

1000, each one of them consisting of a sample of 1000 environmental transitions (F = 1000). All of

these algorithms were implemented with a model of a neural network with two 128-unit hidden layers

4.1. Learning algorithms 32

Figure 4.1: Flowchart of the way the RL algorithms interact with the environment in an online approach

each followed by a ReLU layers. The Adam optimizer with a learning rate of 5e− 4 was also used. The

neural networks for the actor-critic, Off-PAC and PPO implementations have an additional output value

to be used as the critic output (instead of using an independent Neural Network for the critic). Both the

Off-PAC and the PPO had additional 128 off-policy iterations (C = 128). The PPO clipping threshold

value was set to 0.2. The exploration ϵ started in 1 and ended in 0.1 with an anneal time of 2. In the

figure 4.2 can be seen that the off-policy approaches are the ones that require the least amount of data

in order to learn a policy that performs better that the random policy. The base reinforce algorithm

presents a good performance but can become unstable with time. The actor-critic takes longer to learn

but its output results tend to be more stable. The Off-PAC learns fast, but is the algorithm that presents

the most instability. This instability can be caused by the disregard of the IS term in the equation 2.20

[29]. And finally, the PPO appears to be the fastest and most stable learner in this environment.

After having these algorithms implemented and working in the cart-pole environment, they were put

in the pacing environment in order to test its ”learnability”. In figure 4.3 can be seen the performances

of the algorithms in the pacing environment. The hyper-parameters are the same as before except

the anneal time that now is 5e3 in order to promote the exploration. The pacing environment is more

sensitive to exploration than the cart-pole given the distribution of the states and rewards. In this

environment, for a batch of 1e5 transitions sampled with a random policy, the probability of getting a

4.1. Learning algorithms 33

200 400 600 800 1000
Environment interaction

25

50

75

100

125

150

175

Ep
iso

de
 re

tu
rn

cart-pole environment

RL
AC
OFFPAC
PPO
Random behavior

Figure 4.2: Behavior of base reinforce, actor-critic, Off-PAC and PPO algorithms in the cart-pole environment

positive reward (rt > 0) is of 17.24%. Of this 17.24% a 42.28% of the positive rewards correspond to

the action of not pacing (At = 0) while the remaining 57.72% are pacing actions (At > 0). Additionally

the 72.09% of the transitions in the batch are negative rewards of whom only the 2% correspond to the

action At = 0. the remaining 10.74% of the batch transitions have a rt = 0 which is only possible to

get with the action At = 0. For these reasons, if the exploration is not done properly (anneal time too

small), the algorithm could end up generalizing and converging to the non-pacing policy.

The table 4.1 shows a summary of the hyper-parameters used for both environments. These values

were selected to resemble the most possible to the hyper-parameters

It can be seen in figure 4.3 that the algorithms are able to solve the environment within the 1000

interactions with the environment (In total 1e6 transitions). The Off-PAC and the PPO, being the only

two off-policy approaches, show a better sampling efficiency than the other two, in particular the PPO.

Hyper-parameters Cart-pole Pacing
NN layers 2× 128 2× 128
Learning rate (actor-critic) 5e− 4 5e− 4
Batch size (F) 1000 1000
Off-policy iterations (C) 64 64
ϵmax 1 1
ϵmin 0.1 0.1
Anneal time 2 5e3

Table 4.1: Online hyper-parameters used for the cart-pole and Pacing environments

4.1. Learning algorithms 34

200 400 600 800 1000
Environment interaction

6

4

2

0

2

4

6

Ep
iso

de
 re

tu
rn

Pacing environment

RL
AC
OFFPAC
PPO
Heuristic algorithm policy
Random policy

Figure 4.3: Behavior of base reinforce, actor-critic, Off-PAC and PPO algorithms in the pacing environment

4.1.2. Batch Off-policy learners
The idea now is to limit just to one the sampling from the environment in figure 4.1. Now the flowchart

will look like the one in the figure 4.4. In here we sample an initial group of transitions with an initial

sampling policy µ. This initial group of transitions is going to be then the transition batch from which

we are going to sample mini-batches to train the algorithms in an off-policy way.

Figure 4.4: Flowchart of the way the RL algorithms interact with the environment in an batch off-policy approach

As suggested in [4] the sampling policy used to gather the data is assumed to be stochastic, because

4.1. Learning algorithms 35

if it is deterministic, the algorithm will not be able to estimate the performance of any other policy. When

taking the batch off-policy approach, the IS term, which plays an important role in the PPO algorithm,

tends to be constantly clipped due to the constantly growing ratio between the sampling policy µ and the

target policy being learned π. For this reason, the only algorithms taken into account for this approach

were the Off-PAC and the OPPOSD. The implementation of these algorithms was done by trying to

resemble best as possible the described in [29] and [4]. For this reason three different learning models

were used, one for the actor, one for the critic, and a final one for the estimation of the w(s) function

that tries to approximate the IS value. All of them consisted of neural networks with two 128-unit

hidden layers each followed by a ReLU layers except for the w(s) which had the last activation function

log(1 + exp(x)) to guarantee that w(s) > 0 for any input. To estimate the performance of the policy π

at a given timestep t, this was evaluated in the simulator for 10 episodes after each 10 policy gradient

steps. This way the average return per episode is estimated.

As in [4] a batch of approximately 1e5 transitions was sampled from the cart-pole environment using

a random sampling policy µ with an average reward of 22. These transitions were stored in a transition

batch from which mini-batches of 5e3 were sampled for each of the off-policy gradient steps. The critic

model was updated 10 times for both Off-PAC and OPPOSD before each actor policy’s update. For the

OPPOSD algorithm, the w(s) function was updated 50 times before each actor policy’s update. The

Adam optimizer with a learning rate of 1e−3, as suggested in [4]. As this is a batch off-policy approach,

there is no need of adding any additional exploration probabilities to the output of the model. The table

4.2 presents summary of the hyper-parameters used for the batch off-policy scenario.

Hyper-parameters cart-pole
Batch size (F) 1e5
Minibatch size 5e3
NN layers 2× 128
Learning rate (actor-critic) 5e− 4
Learning rate (w) 1e−3

Critic iterations per policy update 10
w iterations per policy update 50

Table 4.2: Batch off-policy hyper-parameters used for the cart-pole environment

In the figure 4.5 can be seen the average behavior for 5 runs for 5e3 policy gradient steps for the

Off-PAC and the OPPOSD algorithms. It can be seen here that both of the implementations are able

to learn from the randomly sampled batch and get results averaging the 200 after approximately 2500

gradient steps.

Batch off-policy algorithms in the pacing environment

In order to test the behavior of the Off-PAC and the OPPOSD algorithms, we tried them on the pacing

environment having again a batch of approximately 1e5 transitions sampled from the environment using

4.2. Available data impact in the learning 36

0 1000 2000 3000 4000 5000
Policy gradient step

25

50

75

100

125

150

175

200

Ep
iso

de
 re

tu
rn

cart-pole environment
OFFPAC
OPPOSD
Random behavior

Figure 4.5: Behavior of the batch off-policy algorithms in the cart-pole environment

a random sampling policy µ. And again, from these transitions mini-batches of 5e3 were sampled

for each of the off-policy gradient steps. All the other hyper-parameters of the algorithm remained

unchanged as in table 4.2.

In figure 4.6 can be seen the average behavior for 5 runs for 5e3 policy gradient steps for the Off-

PAC and the OPPOSD algorithms with their respective error. For both the OPPOS and the Off-PAC

were used the same 5 randomly generated datasets. It can be seen in the figure 4.6 that OPPOSD

seems to be slightly more stable (less variance) in improving the target policy compared to the Off-PAC.

4.2. Available data impact in the learning
In order to determine the amount of data necessary for the batch off-policy algorithms to learn it was

decided to test the Off-PAC and theOPPOSD using different batch sizes. The experiment was run using

three different learning models, one for the actor, one for the critic and a final one for the estimation

of the w(s) function as described in the section 4.1.2. Additionally, the size of the mini-batches was

1e3, except when the batch size was of 2e3, then the mini-batch size was changed to 500. The list of

hyper-parameters used is shown in the table 4.3.

In order to estimate the performance of the target policy π, it was tested in the simulator for 10

episodes after each 10 policy gradient steps. This way the average return per episode is estimated. All

the experiments were run in the HPC cluster from the TU Delft university.

4.2. Available data impact in the learning 37

1000 2000 3000 4000 5000
Policy gradient step

10

5

0

5

10

Ep
iso

de
 re

tu
rn

Pacing environment
OFFPAC
OPPOSD
Heuristic algorithm policy
Non-pacing policy
Always-pacing policy

Figure 4.6: Behavior of the batch off-policy algorithms in the pacing environment

Hyper-parameters Pacing
Minibatch size (F > 2e3) 1e3
Minibatch size (F = 2e3) 500
NN layers 2× 128
Learning rate (actor-critic) 5e− 4
Learning rate (w) 1e− 3
Critic iterations per policy update 10
w iterations per policy update 50

Table 4.3: Batch off-policy hyper-parameters used for the pacing environment experiment varying the batch size F

The figure 4.7 shows the average result of 5 runs using the Off-PAC implementation with 4 differ-

ent batches of sizes 2e3, 5e3, 6e3 and 24e3 (intermediate values had similar behaviors). All of these

batches were generated using a random sampling policy µ in the simulator and for each single run

was generated a new batch was generated. In general can be seen that for the Off-PAC algorithm the

results have a high variance. This supposes that the initial batch used has impact in how the algorithm

performs. Furthermore, the batch size appears to have a slight influence in the mean but not in the

variance. There are some specific randomly generated batches that can lead the algorithm to find a

relatively good solution while some others make the algorithm to converge to the always-pacing or

non-pacing policies.

The figure 4.8 shows the average result of 5 runs using the OPPOSD implementation with 5 different

batches of the same sizes as before: 2e3, 5e3, 6e3 and 24e3 (intermediate values had similar behaviors).

All of the batches (20 in total) were re-utilized from the Off-PAC experiment. Even though for the

4.3. Behavior Policies 38

1000 2000 3000 4000 5000
Policy gradient step

20

15

10

5

0

5

Ep
iso

de
 re

tu
rn

Pacing environment - OFFPAC
2000
3000
6000
24000
Heuristic algorithm policy
Non-pacing policy
Always-pacing policy

Figure 4.7: Impact of the initial batch size on the batch Off-PAC in the pacing environment using a stochastic policy with the
simulator

experiments with 3e3 and 24e3 the OPPOSD algorithm appears to have similar results to the Off-PAC,

for the batches of 2e3 and 6e3 seems to have better results. It can also be noticed that for some of the

batches of 2e3 and 6e3 the OPPOSD can score even higher than the best Off-PAC score that learns

above the heuristic algorithm’s average reward.

4.3. Behavior Policies
The training batches used for the batch off-policy approaches could be generated with different known

sampling policies π0. Nevertheless, as suggested in [4] these sampling policies are assumed to be

stochastic, otherwise, the algorithm will not be able to estimate the performance of any other policy. A

preliminary experiment showed that using a trained policy as the sampling policy caused the learning

algorithms to converge to the non-pacing policy. For this reason the two sampling policies that were

to be tried are the random transitions generated from the simulator and the transitions generated from

the provided experimental data described in the section 3.1.

4.3.1. Experiments training batch
In order to use the data from the experiments described in section 3.1 as a batch of transitions, it is

necessary to translate them into MDP-like transitions. For this purpose, the input files are divided into

action blocks according to the MDP of the pacing environment.

4.4. Batches from experimental data as initial batch 39

1000 2000 3000 4000 5000
Policy gradient step

15

10

5

0

5

10

Ep
iso

de
 re

tu
rn

Pacing environment - OPPOSD
2000
3000
6000
24000
Heuristic algorithm policy
Non-pacing policy
Always-pacing policy

Figure 4.8: Impact of the initial batch size on the batch OPPOSD in the pacing environment using a stochastic policy with the
simulator

In figure 4.9 some examples of the translation process can be seen. If the action block starts with

the pacing activated (blue ×’s) then the transition is going to have an At randomly chosen among the

At > 0 actions and the block will last accordingly with the time of the action. Otherwise, if the pace

is not active (orange ×’s) then At = 0 and the action block will last an amount of 20 timesteps. The

rewards obtained are calculated following the Rt logic described in 3.3.1. This calculation is performed

taking into account the initial pace at the beginning of the action block and the final pace at the end of

the same action block.

After translating the 66 available experiments, we get approximately the amount of 1012 transitions

to be tested in the environment. We can regenerate the translation of the experiments in order to get

more transition for the training process.

4.4. Batches from experimental data as initial batch
In order to now test the impact of replacing the data from the simulator with a different policy, the

experimental data was translated as described in 4.3. From the experimental data we get approximately

1e3 transitions per conversion, as explained in the section 4.3.1. These conversions had some random

components regarding the pacing actions taken (20, 25, 30 or 40). This small randomness can generate

slightly different transitions per run. For this reason, the impact of re-generating new transitions out of

the same set of experiments was also part of this test. In this case, 2e3 is the approximate size for the

4.5. General comparison 40

Figure 4.9: Example of experiments from runners translated into MDP transitions

transitions generated from the experimental data twice and in a similar way for the values 3e3, 6e3 and

24e3.

Figures 4.10 and 4.11 show the result of the experiments for the algorithms Off-PAC and OPPOSD

respectively. For the Off-PAC experiment seems that none of the used batches have a big impact in

the result. The Off-PAC could be considered to not be able to improve the target policy. On the other

hand, the OPPOSD algorithm shows a better use of the experimental data. Here again none of the

batch sizes seem to have a big influence in the general behavior and even for the batch size of 2e3

seems that the target policy improves.

4.5. General comparison
Given the previous results a new test using the least possible amount of data from the experiments

(Batches of approximately 2e3 transitions) and from the simulator was done. For the experimental

transitions the initial batch was generated similarly to the previous test. For the simulated data the

randomly generated dataset that worked best for the OPPOSD algorithm, in the experiment shown in

figure 4.8, was used to achieve the best possible performance. For each combination (OPPOSD, Off-

PAC and experimental, simulated data) the test was run 5 times. The results are shown in the figure

4.5. General comparison 41

1000 2000 3000 4000 5000
Policy gradient step

12.5

10.0

7.5

5.0

2.5

0.0

2.5

Ep
iso

de
 re

tu
rn

Pacing environment - OFFPAC
2000
3000
6000
24000
Heuristic algorithm policy
Non-pacing policy
Always-pacing policy

Figure 4.10: Impact of the initial batch size on the batch Off-PAC in the pacing environment using the experimental data
converted into transitions

1000 2000 3000 4000 5000
Policy gradient step

12.5

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

Ep
iso

de
 re

tu
rn

Pacing environment - OPPOSD
2000
3000
6000
24000
Heuristic algorithm policy
Non-pacing policy
Always-pacing policy

Figure 4.11: Impact of the initial batch size on the batch OPPOSD in the pacing environment using the experimental data
converted into transitions

4.12 and are run up to 1e4 policy gradient steps.

In the figure 4.12 can be appreciated with red tones the experiments done with theOff-PAC algorithm

and with blue tones the experiments done with the OPPOSD. In red is the Off-PAC using the batch

4.5. General comparison 42

2000 4000 6000 8000 10000
Policy gradient step

10

5

0

5

10

Ep
iso

de
 re

tu
rn

Pacing environment

OFFPAC - simulator
OFFPAC - experiment
OPPOSD - simulator
OPPOSD - experiment
Heuristic algorithm policy
Non-pacing policy
Always-pacing policy

Figure 4.12: Compared behavior of the off-policy algorithms (Off-PAC and OPPOSD) using as input data a randomly
generated batch from the simulator and the translated experimental data. Both batches had a size of 2e3 transitions

generated with the simulator. The Off-PAC seems in general to improve the target pacing policy but

it has a lot of instability. In dark blue is the OPPOSD using also the batch from the simulator. This

approach seems to be the best overall to find a relatively good pacing policy. Then, in light blue is the

OPPOSD algorithm using the batch generated from the experimental data. This one also improves the

target policy even though does not match the final scores form the OPPOSD using the simulated data.

Finally, the red coral line represents the Off-PAC using the experimental data as input batch. This one

specifically seems to be the one that performs the poorest of them all.

5
Discussion

5.1. General comments
As seen in the experiments from chapter 4 both the Off-PAC and OPPOSD have a similar behaviors

when using as initial batch a set of transitions generated directly from the simulator using a stochastic

sampling policy µ. This behavior can be observed as for the cart-pole environment (figure 4.5) as

for the pacing environment (figure 4.6). Despite the OPPOSD algorithm showing generally results

with slightly less variance than the Off-PAC, these were not the expected differences as seen in [4],

specially for the cart-pole environment. On the other side, when the probabilities of the sampling policy

are not completely clear, as the ones obtained from the experimental data, we can observe that the

additional IS term estimator of the OPPOSD algorithm has a more noticeable impact. This can be

noticed comparing the behaviors from the figure 4.10 and the figure 4.11. For the OPPOSD figure, it is

clear the upwards trend of the learned target policies, while for the Off-PAC that is not clear.

For the OPPOSD (figure 4.8), the upwards trend of the learned target policies is clear, while this is

not the case for the Off-PAC (figure 4.7).

In the figures 4.7 and 4.8 it can also be noticed how the performance of the algorithms seems to be

affected by the input batch. The high variance tell us that for some generated batches the algorithm

finds a pacing policy as good or better than the heuristic algorithm but for some others the algorithm

converged to the non-pacing or the always pacing policies.

43

5.2. Answer to research questions 44

In general, can be said that the size of the input batch does not have a big impact in the resulting

policy but what matters is the distribution of this data and the way in which the algorithms samples

from it. While it is not possible to change the way in which the algorithm samples the data (due to

the mathematical suppositions described in in [4]) a further statistical analysis could be made to verify

which are the specific characteristics of a dataset for the OPPOSD algorithm to learn a good pacing

policy.

5.2. Answer to research questions
In chapter 4 we designed the experiments to answer the research questions presented in chapter 1.

Based on the results obtained we provide the following possible answers:

1.1.1(I) Can a trained Deep Reinforcement Learning algorithm learn a policy to provide auditory

pacing efficiently?

The pacing environment was designed to quantify the performance of certain policies in the pacing

regulation problem. Besides, the heuristic algorithm was chosen as a good alternative to provide an

efficient pacing strategy. We consider that if the final policy reached by a reinforcement algorithm

trained in the pacing environment outperforms the heuristic algorithm, then we could say that the policy

provides a relatively efficient auditory pacing. Most of the online-learning algorithms implemented (RL,

AC, Off-PAC and PPO) were able to find a relatively efficient pacing policy, as seen in the figure 4.3.

However, For the batch off-policy algorithms (Off-PAC and OPPOSD) presented in figure 4.6 it was

in general harder to find an efficient pacing policy. Using these batch off-policy algorithms we get

higher standard errors, so some of the experiments improved the target policy while others did not.

This results made us realize that the success of these learning algorithms was closely related to the

initial sampled batch. Furthermore, from the figure 4.11 we can see that using experimental data the

OPPOSD algorithm is steadily improving the pacing policy towards a relatively efficient pacing policy.

In the end, in figure 4.12 it was shown that when the correct input batch is used, it is possible to find

relatively efficient pacing policies using the proposed batch off-policy algorithms.

1.1.1(II) What is the least amount of training data necessary for the implemented Deep Reinforce-

ment Learning algorithms to learn a relatively good pacing policy?

To answer this question, we tested the algorithms with different batch sizes (section 4.2 and 4.4).

In section 4.2 random data from the simulator was used to generate many initial batches of different

sizes. It can be seen in figure 4.7 that for the Off-PAC algorithm the error is very high and that the

batch size does not really have a big impact in the performance. Even with an initial batch size of 2e3

for the Off-PAC algorithm there were batches that leaded the algorithm into a relatively efficient pacing

5.2. Answer to research questions 45

policy. For the OPPOSD algorithm, in figure 4.8, we see a similar behavior as for the Off-PAC, the

main difference is that the average score for the resulting policies is a bit higher. This behavior might

suppose that the OPPOSD algorithm could lead in general to better pacing policies especially for the

2e3 batch size. In the section 4.4 the initial batches were generated from the data of the experiments

with real runners. From this data we could generate around a 1e3 transitions adding a small random

component that let us re-generate the transitions having slightly different values. This way we created

again batches sets with sizes of 2e3, 3e3, 6e3 and 24e3. With these initial batches we tried the Off-PAC

algorithm but the results, seen in figure 4.10, showed that the policies in general converged around the

always-pacing policy no matter the batch size. On the other side, the OPPOSD algorithm showed a

better performance using the experimental data. In figure 4.11 we see that no matter the batch size,

the OPPOSD algorithm keeps constantly improving towards a relatively efficient policy.

From these experiments the minimum amount of data from which we were able to lead the RL algo-

rithms into a relatively efficient policy turned out to be initial batches of approximately 2e3 transitions. In

figure 4.12 all experiments are done using initial batches of 2e3 and it can be noticed that the OPPOSD

algorithm is able to find relatively efficient policies for each of the batch types. The batch size of 2e3

transitions could be equivalent to 15.556 hours of experimental data with real runners assuming that

the average transition time is 28s.

1.1.1(III) Is it possible to use experimental data from real runners as training data for the imple-

mented algorithms to learn a relatively good pacing policy?

Experiments from section 4.4 and 4.5 helped us also to answer this question. In figure 4.11 we

see that the OPPOSD algorithm using experimental data is able to improve the target policy in terms

of efficiency. Additionally, in figure 4.12 we can see that the OPPOSD algorithm with an initial batch

of 2e3 transitions from the experimental data is able to improve the pacing target policy until matching

on average the heuristic algorithm performance after 1e4 policy gradient steps. These results are

promising and tell us that using the OPPOSD algorithm is possible to find a policy that is relatively

good in terms of efficiency when comparing with the heuristic algorithm’s performance.

1.1.1(IV) How could the reached solution be deployed for real runners?

The resulting actor model is a trained neural network that has as input space the current state and

as output the probabilities of taking an action. For the performed experiments the used model had 2

fully connected layers of 128 units. This model could be deployed as part of an integrated application

(mobile phone or embedded in the headphones) that measures the current running pace of the user

(using accelerometer sensors) and based on the model’s output, the auditory pacing could be activated

or not. Through the deployment of this application the real efficiency of the resulting policy could be

tested with real runners.

5.3. Limitations 46

Additionally, a more interesting implementation would be to deploy the actor model alongside with

any of the online learning algorithms (RL, AC, Off-PAC, PPO, etc.). This way the algorithm could keep

learning using the data gathered from each run with the real runners. This online reinforcement learning

implementation could eventually find target policies that are personalized for every runner.

5.3. Limitations
One of the limitations we had in the current work could be the length of the experimental data. The

average experiment with the real runners lasted approximately 2.5 minutes, which limited the size of

the translated episodes to only 16 transitions on average. Longer experiments could have also given

us a better understanding of the response behavior for some runners to the auditory pacing. Another

incertitude that we had along the project was the minimum required amount of time required for the

runner to synchronize with the auditory pacing and it was assumed to be around 10 second. Perhaps a

new set of experiments with real runners could help us to have a better idea about these constrains (i.e.

time required to synchronize, response to intermittent pacing, maximum amount of time that a runner

can keep the target pace, etc.).

Additionally, experiments measuring more variables (i.e. heart rate, amount of oxygen intake, tem-

perature, etc.) could help us to extend our model to be more precise. However, this could also imply a

much more complicated simulator.

6
Conclusion

In this document, we were able to implement the OPPOSD algorithm [4] and train it using batches of ex-

perimental data to find an efficient policy capable of providing intermittent pacing to runners. To learn a

relatively good target policy using Reinforcement Learning algorithms, a high sampling efficiency must

be guaranteed. The batch off-policy algorithms like Off-PAC [11] and PPO [32] try to provide a good

sampling efficiency. Nevertheless, the infinite horizon while learning presents a problem due to the

continuously increasing difference between the sampling policy and the target policy being learned.

Algorithms that tackle this infinite horizon problem for batch learning like the OPPOSD are the most

recommended in this regard. Also, for these algorithms to be trained and to perform, is necessary to

define a proper MDP that represents the targets of the environment e.g., efficient intermittent pacing.

The MDP together with a simulator are important tools for estimating the performance of the policies

being learned at any point in time. The results showed that for the algorithm to learn a relatively good

policy, it is needed at least an amount of approximately 2e3 transitions from the MDP. These transitions

are directly obtained and interpreted from experiments done with real runners on a treadmill. The ob-

tained results are compared against a heuristic algorithm that allows us to define an efficiency measure

for the provided pacing. In this example, rather simplistic, we only used one input (estimated steps per

minute) to calculate the current state of the environment, but in the future, the input state dimension

can be widened. Inputs like the runner’s heart rate, intake of oxygen, or stress level could be used as

inputs for the model. Nevertheless, the simulator should also take into account these new variables.

47

48

The resulting trained policies are neural networks that can be implemented as complex as needed. The

complexity may have an impact on the learning times but may perform better when learning in a more

elaborated pacing environment. Additionally, the resulting trained weights of these neural networks

could subsequently be deployed in real solutions like mobile applications or embedded in the headsets

to provide the auditory pacing.

References

[1] C. (Lieke) E. Peper, Jolanda K. Oorthuizen, and Melvyn Roerdink. “Attentional demands of cued

walking in healthy young and elderly adults”. en. In:Gait & Posture 36.3 (July 2012), pp. 378–382.

ISSN: 0966-6362. DOI: 10.1016/j.gaitpost.2012.03.032. URL: https://www.sciencedirec

t.com/science/article/pii/S0966636212001270 (visited on 05/06/2022).

[2] Anouk Nijs, Melvyn Roerdink, and Peter J. Beek. “Cadence Modulation in Walking and Running:

Pacing Steps or Strides?” en. In: Brain Sciences 10.5 (May 2020). Number: 5 Publisher: Multidis-

ciplinary Digital Publishing Institute, p. 273. ISSN: 2076-3425. DOI: 10.3390/brainsci10050273.

URL: https://www.mdpi.com/2076-3425/10/5/273 (visited on 04/22/2022).

[3] Anouk Nijs, Melvyn Roerdink, and Peter J. Beek. “Effects of acoustically paced cadence mod-

ulation on impact forces in running”. en. In: Gait & Posture 90 (Oct. 2021), pp. 234–238. ISSN:

0966-6362. DOI: 10.1016/j.gaitpost.2021.09.168. URL: https://www.sciencedirect.com/

science/article/pii/S0966636221004781 (visited on 04/21/2022).

[4] Yao Liu et al.Off-Policy Policy Gradient with State Distribution Correction. Tech. rep. arXiv:1904.08473.

arXiv:1904.08473 [cs, stat] type: article. arXiv, July 2019. URL: http://arxiv.org/abs/1904.

08473 (visited on 05/18/2022).

[5] Bryan C. Heiderscheit et al. “Effects of Step Rate Manipulation on Joint Mechanics during Run-

ning”. In: Medicine and science in sports and exercise 43.2 (Feb. 2011), pp. 296–302. ISSN:

0195-9131. DOI: 10.1249/MSS.0b013e3181ebedf4. URL: https://www.ncbi.nlm.nih.gov/

pmc/articles/PMC3022995/ (visited on 04/21/2022).

[6] George M Dallam et al. “Effect of a global alteration of running technique on kinematics and

economy”. In: Journal of Sports Sciences 23.7 (July 2005). Publisher: Routledge, pp. 757–764.

ISSN: 0264-0414. DOI: 10 . 1080 / 02640410400022003. URL: https : / / doi . org / 10 . 1080 /

02640410400022003 (visited on 05/07/2022).

[7] Timothy J. Quinn et al. “Step Frequency Training Improves Running Economy in Well-Trained

Female Runners”. en-US. In: The Journal of Strength & Conditioning Research 35.9 (Sept. 2021),

pp. 2511–2517. ISSN: 1064-8011. DOI: 10.1519/JSC.0000000000003206. URL: http://jour

nals.lww.com/nsca- jscr/Fulltext/2021/09000/Step_Frequency_Training_Improves_

49

https://doi.org/10.1016/j.gaitpost.2012.03.032
https://www.sciencedirect.com/science/article/pii/S0966636212001270
https://www.sciencedirect.com/science/article/pii/S0966636212001270
https://doi.org/10.3390/brainsci10050273
https://www.mdpi.com/2076-3425/10/5/273
https://doi.org/10.1016/j.gaitpost.2021.09.168
https://www.sciencedirect.com/science/article/pii/S0966636221004781
https://www.sciencedirect.com/science/article/pii/S0966636221004781
http://arxiv.org/abs/1904.08473
http://arxiv.org/abs/1904.08473
https://doi.org/10.1249/MSS.0b013e3181ebedf4
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3022995/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3022995/
https://doi.org/10.1080/02640410400022003
https://doi.org/10.1080/02640410400022003
https://doi.org/10.1080/02640410400022003
https://doi.org/10.1519/JSC.0000000000003206
http://journals.lww.com/nsca-jscr/Fulltext/2021/09000/Step_Frequency_Training_Improves_Running_Economy.23.aspx?context=LatestArticles&casa_token=hQbT0uPKRz8AAAAA:G-LLj5cyn8FvnlVYqcXj9xqWbq97tdGNriAty7a6J_RG47UJ-oWS8-OSvg8M5cOS41x51d84KB0MI_ElPcED_lXOoJw
http://journals.lww.com/nsca-jscr/Fulltext/2021/09000/Step_Frequency_Training_Improves_Running_Economy.23.aspx?context=LatestArticles&casa_token=hQbT0uPKRz8AAAAA:G-LLj5cyn8FvnlVYqcXj9xqWbq97tdGNriAty7a6J_RG47UJ-oWS8-OSvg8M5cOS41x51d84KB0MI_ElPcED_lXOoJw
http://journals.lww.com/nsca-jscr/Fulltext/2021/09000/Step_Frequency_Training_Improves_Running_Economy.23.aspx?context=LatestArticles&casa_token=hQbT0uPKRz8AAAAA:G-LLj5cyn8FvnlVYqcXj9xqWbq97tdGNriAty7a6J_RG47UJ-oWS8-OSvg8M5cOS41x51d84KB0MI_ElPcED_lXOoJw

References 50

Running_Economy.23.aspx?context=LatestArticles&casa_token=hQbT0uPKRz8AAAAA:G-

LLj5cyn8FvnlVYqcXj9xqWbq97tdGNriAty7a6J_RG47UJ-oWS8-OSvg8M5cOS41x51d84KB0MI_ElPc

ED_lXOoJw (visited on 05/06/2022).

[8] Jeska Buhmann et al. “Shifting the musical beat to influence running cadence”. eng. In: Expres-

sive interaction with music : ESCOM 2017 conference proceedings. 2017, pp. 27–31. URL: http:

//hdl.handle.net/1854/LU-8530848 (visited on 04/21/2022).

[9] Denis Yarats et al. “Improving Sample Efficiency in Model-Free Reinforcement Learning from

Images”. en. In: Proceedings of the AAAI Conference on Artificial Intelligence 35.12 (May 2021).

Number: 12, pp. 10674–10681. ISSN: 2374-3468. URL: https://ojs.aaai.org/index.php/

AAAI/article/view/17276 (visited on 07/26/2022).

[10] Hamid Reza Maei et al. “Toward Off-Policy Learning Control with Function Approximation”. en. In:

Jan. 2010, pp. 719–726. URL: https://icml.cc/Conferences/2010/papers/627.pdf (visited

on 05/06/2022).

[11] Thomas Degris, Martha White, and Richard S. Sutton. “Off-policy actor-critic”. In: Proceedings

of the 29th International Coference on International Conference on Machine Learning. ICML’12.

Madison,WI, USA:Omnipress, 2012, pp. 179–186. ISBN: 978-1-4503-1285-1. (Visited on 07/26/2022).

[12] Tuomas Haarnoja et al. “Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement

Learning with a Stochastic Actor”. en. In: Proceedings of the 35th International Conference on

Machine Learning. ISSN: 2640-3498. PMLR, July 2018, pp. 1861–1870. URL: https://procee

dings.mlr.press/v80/haarnoja18b.html (visited on 07/26/2022).

[13] RICHARD BELLMAN. “A Markovian Decision Process”. In: Journal of Mathematics and Mechan-

ics 6.5 (1957). Publisher: Indiana University Mathematics Department, pp. 679–684. ISSN: 0095-

9057. URL: http://www.jstor.org/stable/24900506 (visited on 05/09/2022).

[14] AlvinW. Drake. “Observation of a Markov process through a noisy channel”. eng. Accepted: 2005-

08-17T17:39:43Z. Thesis. Massachusetts Institute of Technology, 1962. URL: https://dspace.

mit.edu/handle/1721.1/11341 (visited on 06/10/2022).

[15] Martin Dobiasch, Savvas Stafylidis, and Arnold Baca. “Effects of different feedback variants on

pacing adherence in a field based running test”. en. In: International Journal of Performance

Analysis in Sport 21.6 (Nov. 2021), pp. 1015–1028. ISSN: 2474-8668, 1474-8185. DOI: 10.1080/

24748668.2021.1968662. URL: https://www.tandfonline.com/doi/full/10.1080/24748668.

2021.1968662 (visited on 05/10/2022).

http://journals.lww.com/nsca-jscr/Fulltext/2021/09000/Step_Frequency_Training_Improves_Running_Economy.23.aspx?context=LatestArticles&casa_token=hQbT0uPKRz8AAAAA:G-LLj5cyn8FvnlVYqcXj9xqWbq97tdGNriAty7a6J_RG47UJ-oWS8-OSvg8M5cOS41x51d84KB0MI_ElPcED_lXOoJw
http://journals.lww.com/nsca-jscr/Fulltext/2021/09000/Step_Frequency_Training_Improves_Running_Economy.23.aspx?context=LatestArticles&casa_token=hQbT0uPKRz8AAAAA:G-LLj5cyn8FvnlVYqcXj9xqWbq97tdGNriAty7a6J_RG47UJ-oWS8-OSvg8M5cOS41x51d84KB0MI_ElPcED_lXOoJw
http://journals.lww.com/nsca-jscr/Fulltext/2021/09000/Step_Frequency_Training_Improves_Running_Economy.23.aspx?context=LatestArticles&casa_token=hQbT0uPKRz8AAAAA:G-LLj5cyn8FvnlVYqcXj9xqWbq97tdGNriAty7a6J_RG47UJ-oWS8-OSvg8M5cOS41x51d84KB0MI_ElPcED_lXOoJw
http://journals.lww.com/nsca-jscr/Fulltext/2021/09000/Step_Frequency_Training_Improves_Running_Economy.23.aspx?context=LatestArticles&casa_token=hQbT0uPKRz8AAAAA:G-LLj5cyn8FvnlVYqcXj9xqWbq97tdGNriAty7a6J_RG47UJ-oWS8-OSvg8M5cOS41x51d84KB0MI_ElPcED_lXOoJw
http://hdl.handle.net/1854/LU-8530848
http://hdl.handle.net/1854/LU-8530848
https://ojs.aaai.org/index.php/AAAI/article/view/17276
https://ojs.aaai.org/index.php/AAAI/article/view/17276
https://icml.cc/Conferences/2010/papers/627.pdf
https://proceedings.mlr.press/v80/haarnoja18b.html
https://proceedings.mlr.press/v80/haarnoja18b.html
http://www.jstor.org/stable/24900506
https://dspace.mit.edu/handle/1721.1/11341
https://dspace.mit.edu/handle/1721.1/11341
https://doi.org/10.1080/24748668.2021.1968662
https://doi.org/10.1080/24748668.2021.1968662
https://www.tandfonline.com/doi/full/10.1080/24748668.2021.1968662
https://www.tandfonline.com/doi/full/10.1080/24748668.2021.1968662

References 51

[16] Chris R. Abbiss and Paul B. Laursen. “Describing and Understanding Pacing Strategies during

Athletic Competition”. en. In: Sports Medicine 38.3 (Mar. 2008), pp. 239–252. ISSN: 1179-2035.

DOI: 10.2165/00007256- 200838030- 00004. URL: https://doi.org/10.2165/00007256-

200838030-00004 (visited on 05/10/2022).

[17] Jutta Fortmann et al. “PaceGuard: improving running cadence by real-time auditory feedback”.

In: Proceedings of the 14th international conference on Human-computer interaction with mobile

devices and services companion. MobileHCI ’12. New York, NY, USA: Association for Computing

Machinery, 2012, pp. 5–10. ISBN: 978-1-4503-1443-5. DOI: 10.1145/2371664.2371668. URL:

https://doi.org/10.1145/2371664.2371668 (visited on 04/21/2022).

[18] RockMyRun, Music that Moves You. en. URL: https : / / www . rockmyrun . com/ (visited on

05/10/2022).

[19] Mark te Brake et al. “Using beat frequency in music to adjust running cadence in recreational

runners: A randomized multiple baseline design”. In: European Journal of Sport Science 0.0 (Feb.

2022). Publisher: Routledge _eprint: https://doi.org/10.1080/17461391.2022.2042398, pp. 1–10.

ISSN: 1746-1391. DOI: 10.1080/17461391.2022.2042398. URL: https://doi.org/10.1080/

17461391.2022.2042398 (visited on 05/10/2022).

[20] D. Wezenberg et al. “Mind your step: Metabolic energy cost while walking an enforced gait pat-

tern”. en. In: Gait & Posture 33.4 (Apr. 2011), pp. 544–549. ISSN: 0966-6362. DOI: 10.1016/

j.gaitpost.2011.01.007. URL: https://www.sciencedirect.com/science/article/pii/

S096663621100021X (visited on 06/30/2022).

[21] Luca Balvis et al. “Keep the Beat: Audio Guidance for Runner Training”. en. In: Human-Centered

and Error-Resilient Systems Development. Ed. by Cristian Bogdan et al. Lecture Notes in Com-

puter Science. Cham: Springer International Publishing, 2016, pp. 246–257. ISBN: 978-3-319-

44902-9. DOI: 10.1007/978-3-319-44902-9_16.

[22] Richard S. Sutton and Andrew G. Barto. Reinforcement learning: an introduction. en. Second

edition. Adaptive computation and machine learning series. Cambridge, Massachusetts: The MIT

Press, 2018. ISBN: 978-0-262-03924-6.

[23] Chris M. Bishop. “Neural networks and their applications”. In: Review of Scientific Instruments

65.6 (June 1994). Publisher: American Institute of Physics, pp. 1803–1832. ISSN: 0034-6748.

DOI: 10.1063/1.1144830. URL: https://aip.scitation.org/doi/abs/10.1063/1.1144830

(visited on 05/11/2022).

[24] Adam: A Method for Stochastic Optimization. arXiv:1412.6980 [cs]. Jan. 2017. DOI: 10.48550/

arXiv.1412.6980. URL: http://arxiv.org/abs/1412.6980 (visited on 07/26/2022).

https://doi.org/10.2165/00007256-200838030-00004
https://doi.org/10.2165/00007256-200838030-00004
https://doi.org/10.2165/00007256-200838030-00004
https://doi.org/10.1145/2371664.2371668
https://doi.org/10.1145/2371664.2371668
https://www.rockmyrun.com/
https://doi.org/10.1080/17461391.2022.2042398
https://doi.org/10.1080/17461391.2022.2042398
https://doi.org/10.1080/17461391.2022.2042398
https://doi.org/10.1016/j.gaitpost.2011.01.007
https://doi.org/10.1016/j.gaitpost.2011.01.007
https://www.sciencedirect.com/science/article/pii/S096663621100021X
https://www.sciencedirect.com/science/article/pii/S096663621100021X
https://doi.org/10.1007/978-3-319-44902-9_16
https://doi.org/10.1063/1.1144830
https://aip.scitation.org/doi/abs/10.1063/1.1144830
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1412.6980
http://arxiv.org/abs/1412.6980

References 52

[25] Ronald J. Williams. “Simple statistical gradient-following algorithms for connectionist reinforce-

ment learning”. en. In: Machine Learning 8.3 (May 1992), pp. 229–256. ISSN: 1573-0565. DOI:

10.1007/BF00992696. URL: https://doi.org/10.1007/BF00992696 (visited on 05/11/2022).

[26] Herbert Robbins and Sutton Monro. “A Stochastic Approximation Method”. In: The Annals of

Mathematical Statistics 22.3 (Sept. 1951). Publisher: Institute of Mathematical Statistics, pp. 400–

407. ISSN: 0003-4851, 2168-8990. DOI: 10.1214/aoms/1177729586. URL: https://project

euclid . org / journals / annals - of - mathematical - statistics / volume - 22 / issue - 3 / A -

Stochastic-Approximation-Method/10.1214/aoms/1177729586.full (visited on 05/11/2022).

[27] Richard S Sutton et al. “Policy Gradient Methods for Reinforcement Learning with Function Ap-

proximation”. In: Advances in Neural Information Processing Systems. Vol. 12. MIT Press, 1999.

URL: https://papers.nips.cc/paper/1999/hash/464d828b85b0bed98e80ade0a5c43b0f-

Abstract.html (visited on 05/10/2022).

[28] Ivo Grondman et al. “A survey of actor-critic reinforcement learning: standard and natural policy

gradients”. In: IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and

Reviews 42.6 (2012). Publisher: Institute of Electrical and Electronics Engineers, pp. 1291–1307.

DOI: 10 . 1109 / TSMCC . 2012 . 2218595. URL: https : / / hal . archives - ouvertes . fr / hal -

00756747 (visited on 07/05/2022).

[29] Qiang Liu et al. “Breaking theCurse of Horizon: Infinite-HorizonOff-Policy Estimation”. In: arXiv:1810.12429

[cs, stat] (Oct. 2018). arXiv: 1810.12429. URL: http://arxiv.org/abs/1810.12429 (visited on

05/10/2022).

[30] Benjamin Eysenbach and Sergey Levine. “MaximumEntropy RL (Provably) Solves Some Robust

RL Problems”. In: arXiv:2103.06257 [cs] (May 2022). arXiv: 2103.06257. URL: http://arxiv.

org/abs/2103.06257 (visited on 05/06/2022).

[31] Shangtong Zhang, Wendelin Boehmer, and Shimon Whiteson. “Generalized Off-Policy Actor-

Critic”. In: Advances in Neural Information Processing Systems. Vol. 32. Curran Associates, Inc.,

2019. URL: https://proceedings.neurips.cc/paper/2019/hash/0e095e054ee94774d6a4960

99eb1cf6a-Abstract.html (visited on 06/11/2022).

[32] John Schulman et al. “Proximal Policy Optimization Algorithms”. In: arXiv:1707.06347 [cs] (Aug.

2017). arXiv: 1707.06347. URL: http://arxiv.org/abs/1707.06347 (visited on 05/11/2022).

[33] I. Csiszar. “I-Divergence Geometry of Probability Distributions and Minimization Problems”. In:

The Annals of Probability 3.1 (Feb. 1975). Publisher: Institute of Mathematical Statistics, pp. 146–

158. ISSN: 0091-1798, 2168-894X. DOI: 10.1214/aop/1176996454. URL: https://projecteu

clid.org/journals/annals-of-probability/volume-3/issue-1/I-Divergence-Geometry-

https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://doi.org/10.1214/aoms/1177729586
https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-22/issue-3/A-Stochastic-Approximation-Method/10.1214/aoms/1177729586.full
https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-22/issue-3/A-Stochastic-Approximation-Method/10.1214/aoms/1177729586.full
https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-22/issue-3/A-Stochastic-Approximation-Method/10.1214/aoms/1177729586.full
https://papers.nips.cc/paper/1999/hash/464d828b85b0bed98e80ade0a5c43b0f-Abstract.html
https://papers.nips.cc/paper/1999/hash/464d828b85b0bed98e80ade0a5c43b0f-Abstract.html
https://doi.org/10.1109/TSMCC.2012.2218595
https://hal.archives-ouvertes.fr/hal-00756747
https://hal.archives-ouvertes.fr/hal-00756747
http://arxiv.org/abs/1810.12429
http://arxiv.org/abs/2103.06257
http://arxiv.org/abs/2103.06257
https://proceedings.neurips.cc/paper/2019/hash/0e095e054ee94774d6a496099eb1cf6a-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/0e095e054ee94774d6a496099eb1cf6a-Abstract.html
http://arxiv.org/abs/1707.06347
https://doi.org/10.1214/aop/1176996454
https://projecteuclid.org/journals/annals-of-probability/volume-3/issue-1/I-Divergence-Geometry-of-Probability-Distributions-and-Minimization-Problems/10.1214/aop/1176996454.full
https://projecteuclid.org/journals/annals-of-probability/volume-3/issue-1/I-Divergence-Geometry-of-Probability-Distributions-and-Minimization-Problems/10.1214/aop/1176996454.full

References 53

of-Probability-Distributions-and-Minimization-Problems/10.1214/aop/1176996454.

full (visited on 07/05/2022).

[34] Damien Ernst, Pierre Geurts, and Louis Wehenkel. “Tree-Based Batch Mode Reinforcement

Learning”. en. In: Journal of Machine Learning Research 6.18 (2005), pp. 503–556. ISSN: 1533-

7928. URL: http://jmlr.org/papers/v6/ernst05a.html (visited on 06/12/2022).

[35] Brett Daley and Christopher Amato. “Human-Level Control without Server-Grade Hardware”. In:

arXiv:2111.01264 [cs] (Nov. 2021). arXiv: 2111.01264. URL: http://arxiv.org/abs/2111.

01264 (visited on 05/05/2022).

https://projecteuclid.org/journals/annals-of-probability/volume-3/issue-1/I-Divergence-Geometry-of-Probability-Distributions-and-Minimization-Problems/10.1214/aop/1176996454.full
https://projecteuclid.org/journals/annals-of-probability/volume-3/issue-1/I-Divergence-Geometry-of-Probability-Distributions-and-Minimization-Problems/10.1214/aop/1176996454.full
https://projecteuclid.org/journals/annals-of-probability/volume-3/issue-1/I-Divergence-Geometry-of-Probability-Distributions-and-Minimization-Problems/10.1214/aop/1176996454.full
http://jmlr.org/papers/v6/ernst05a.html
http://arxiv.org/abs/2111.01264
http://arxiv.org/abs/2111.01264

A
Synchronous software architecture

In order to implement different kinds of deep reinforcement learning algorithms, a general architecture

architecture is proposed in [35]. This implementation leverages a concurrent and synchronized execu-

tion framework designed for a better understanding of the code and a better use of the computational

resources. A model of the proposed architecture can be seen in figure A.1.

Figure A.1: Synchronous software architecture.

This architecture can be extensible for policy gradient algorithms and consist of the following ele-

ments:

54

55

• Model: Is usually implemented as a Neural Network. Return the probabilities distribution of the

actions. For more complex approaches, many more models can be added for the value function

and the IS estimator.

• Controller: Is the element that interprets the models outputs.

• Runner: Is the element that interacts with the environment, chooses its actions through the con-

troller and add its experiences in the Replay buffer.

• Learner: Is the element that dictates how the model is trained. In this class is where the RL

algorithms code are implemented.

• Replay Buffer: In this element we add all our experienced transitions and we sample from it.

• Experiment: Main class that allows to run the runner and sample batches of experiences for

training the learner.

	Abstract
	Introduction
	Research questions

	Background
	Pacing regulators
	Reinforcement learning
	Markov decision process (MDP)
	Policy values
	Function approximation
	On- and Off-policy approaches
	Exploration and exploitation trade-off
	Q-Learning approximations
	Policy gradient methods
	Off-policy gradient methods
	Batch Off-policy approach

	Methods
	Provided data
	Simulator
	Analysis of the provided data
	General trends of the data
	Modeling the trends
	Adding randomness to the models
	Transition between models
	Simulator results

	Pacing environment
	MDP definition
	Heuristic algorithm
	Environment reference values

	Experiments
	Learning algorithms
	Online learners
	Batch Off-policy learners

	Available data impact in the learning
	Behavior Policies
	Experiments training batch

	Batches from experimental data as initial batch
	General comparison

	Discussion
	General comments
	Answer to research questions
	Limitations

	Conclusion
	References
	Synchronous software architecture

