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Abstract

As organizations start to adopt machine learning in critical business scenarios,
the development processes change and the reliability of the applications becomes
more important. To investigate these changes and improve the reliability of those
applications, we conducted two studies in this thesis. The first study aims to un-
derstand the evolution of the processes by which machine learning applications
are developed and how state-of-the-art lifecycle models fit the current needs of
the fintech industry. Therefore, we conducted a case study with seventeen ma-
chine learning practitioners at the fintech company ING. The results indicate that
the existing lifecycle models CRISP-DM and TDSP largely reflect the current
development processes of machine learning applications, but there are crucial
steps missing, including a feasibility study, documentation, model evaluation,
and model monitoring. Our second study aims to reduce bugs and improve the
code quality of machine learning applications. We developed a static code analy-
sis tool consisting of six checkers to find probable bugs and enforcing best prac-
tices, specifically in Python code used for processing large amounts of data and
modeling in the machine learning lifecycle. The evaluation of the tool using
1000 collected notebooks from Kaggle shows that static code analysis can detect
and thus help prevent probable bugs in data science code. Our work shows that
the real challenges of applying machine learning go much beyond sophisticated
learning algorithms – more focus is needed on the entire lifecycle.
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Chapter 1

Introduction

Machine learning has generated huge societal impact as it has great practical value
in a variety of application domains, such as bioinformatics, computer vision, natural
language processing, and robotics. The access to increasing computing systems’ ana-
lytical power and to massive amounts of data has also resulted in more organizations
using machine learning for supporting customer value creation, productivity improve-
ment, and insight discovery [7, 53]. Easy access to machine learning techniques with
libraries such as PyTorch1 and scikit-learn2 ease the adoption of machine learning
even more. Cloud platforms, such as Google Cloud3 and Amazon Web Services4, even
facilitate running machine learning techniques on a large scale without the necessity
for the sophisticated hardware.

The machine learning lifecycle is the process of developing, training, and serving
machine learning applications. As organizations start to adopt machine learning in
critical business scenarios, the development processes change and the reliability of the
applications becomes more important. To investigate these changes and improve the
reliability of those applications, we conducted two studies in this thesis.

1.1 Objectives and Research Questions

This section briefly states the objectives and research questions of both studies per-
formed in this thesis project. The motivation for them will be elaborated in more detail
in the introductions of the corresponding chapters.

Studying the Machine Learning Lifecycle The objective of the first study (Chap-
ter 2) is to understand the evolution of machine learning development and how state-
of-the-art lifecycle models fit the current needs of the (fintech) industry. We defined
the following research questions for our study:

1. How do existing machine learning lifecycle models fit the fintech domain?

1https://pytorch.org
2https://scikit-learn.org
3https://cloud.google.com
4https://aws.amazon.com
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1. INTRODUCTION

2. What are the specific challenges of developing machine learning applications in
fintech organizations?

Improving Code Quality of Machine Learning Applications The objective of the
second study (Chapter 3) is to reduce bugs and improve the code quality of machine
learning applications. To work towards this objective, we defined the following re-
search questions:

1. What bugs and best practices typical to machine learning can be detected using
static code analysis?

2. To what extent are these bugs present and best practices not followed in existing
open source scripts and programs?

1.2 Approach

This section briefly explains the industry partner and approaches of both studies.

Industry Partner The research in this thesis is conducted at ING, a global bank
with a strong European base. ING offers retail and wholesale banking services to 38
million customers in over 40 countries, with over 53,000 employees [18]. ING is an
interesting organization for this thesis, as it is currently leveraging a major shift in the
organization to adopt AI to improve its services and increase business value.

Studying the Machine Learning Lifecycle We conducted an exploratory case study
at ING aimed at understanding how the fintech industry is currently dealing with the
challenges of developing machine learning applications at scale. We interviewed 17
people with different roles and from different departments. We report our findings
organized among eight core machine learning lifecycle stages and three overarching
categories. We thereafter refine the existing lifecycle models based on our observations
at ING.

Improving Code Quality of Machine Learning Applications With the goal of re-
ducing bugs and improving the code quality of machine learning applications, we de-
veloped a static code analysis tool consisting of six checkers to find probable bugs and
enforcing best practices, specifically in Python code used for processing large amounts
of data and modeling in the machine learning lifecycle. The tool is thereafter evalu-
ated by running it on 1000 collected scripts from Kaggle, an online platform for data
scientists and machine learning practitioners.

1.3 Contributions

The main contributions of this thesis are as follows:

1. A (replicable) case study is designed and performed which gives insight into
how the industry is adopting machine learning.

2
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2. A research paper is submitted to the IEEE International Conference on Software
Maintenance and Evolution (ICSME) 2020, to share the case study with the
research community.

3. Six probable bugs and best practices in data science code are identified, of which
practitioners should be aware.

4. The six probable bugs and best practices are integrated as checkers into a static
code analysis tool, dslinter, which is available on GitHub5 so that practition-
ers can run the checkers on their code.

1.4 Report Organization

The remaining of this thesis report consists of three chapters: one for each study and
a final conclusions chapter. Chapter 2 contains the case study on the lifecycle of ma-
chine learning applications, Chapter 3 contains the study on using static code analysis
for data science. Both chapters stand on their own, as both contain sections for the
introduction, related work, core sections, discussion, and conclusions specific for the
study in that chapter. Chapter 4 concludes the entire thesis. In Appendix A a glossary
can be found with frequently used terms.

5https://github.com/MarkHaakman/dslinter
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Chapter 2

Exploratory Case Study on the
Lifecycle of Machine Learning

Applications

The case study described in this chapter resulted in a paper submission to the re-
search track of the IEEE International Conference on Software Maintenance and Evo-
lution (ICSME) 2020. The preprint can be found online1.

2.1 Introduction

Artificial Intelligence (AI) has become increasingly important for organizations to
support customer value creation, productivity improvement, and insight discovery.
Pioneers in the AI industry are asking how to better develop and maintain AI soft-
ware [31]. In this study we focus on machine learning, the branch of AI that deals with
the automatic generation of knowledge models based on sample data.

Although most of the AI techniques are not so recent (e.g., neural networks were
already being applied in the 1980s [30]), the recent access to large amounts of data
and more computing power has exploded the number of scenarios where AI can be
applied [53, 7]. In fact, AI is now being used to add value in critical business scenarios.
Consequently, a number of new challenges are emerging in the lifecycle of AI systems,
comprising all the stages from their conception to their retirement and disposal. Like
normal software applications, these projects need to be planned, tested, debugged,
deployed, maintained, and integrated into complex systems.

Companies leading the advent of AI are reinventing their development processes
and coming up with new solutions. Thus, there are many lessons to be learned to help
other organizations and guide research in a direction that is meaningful to the industry.
This is particularly relevant for highly-regulated industries such as fintech, as new
processes need to be designed to make sure AI systems meet all required standards.

Recent research has addressed how developing AI systems is different from de-
veloping regular Software Engineering systems. A case study at Microsoft identified
the following differences [3]: 1) data discovery, management, and versioning are more
complex; 2) practitioners ought to have a broader set of skills; and 3) modular design

1https://doi.org/10.5281/zenodo.3941475
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is not trivial since AI components can be entangled in complex ways. Unfortunately,
existing research offers little insight into the challenges of transforming an existing IT
organization into an AI-intensive one.

Examples of existing models describing the machine learning lifecycle are the
Cross-Industry Standard Process for Data Mining (CRISP-DM) [44] and the Team
Data Science Process (TDSP) [32]. However, machine learning is being used for dif-
ferent problems across many different domains. Given the fast pace of change in AI
and recent advancements in Software Engineering, we suspect that there are deficien-
cies in these lifecycle models when applied to a fintech context.

To remedy this, we set out this exploratory case study aimed at understanding
and improving how the fintech industry is currently dealing with the challenges of
developing machine learning applications at scale. ING is a relevant case to study,
since it has a strong focus on financial technology and Software Engineering and it is
undergoing a bold digital transformation to embrace AI as an important competitive
factor. By studying ING, we provide a snapshot of the rapid evolution of the approach
to machine learning development.

We define the following research questions for our study:
RQ1: How do existing machine learning lifecycle models fit the fintech domain?
RQ2: What are the specific challenges of developing machine learning applica-

tions in fintech organizations?
We interviewed 17 people at ING with different roles and from different depart-

ments. Thereafter, we triangulated the resulting data with other resources available
inside the organization. Furthermore, we refine the existing lifecycle models CRISP-
DM and TDSP based on our observations at ING.

Our results unveil important challenges that ought to be addressed when imple-
menting machine learning at scale. Feasibility assessments, documentation, model
risk assessment, and model monitoring are stages that have been overlooked by exist-
ing lifecycle models. There is a lack of standards and there is a need for automation in
the documentation and governance of machine learning models. Finally, we pave the
way for shaping the education of AI to address the current needs of the industry.

The remainder of this chapter is structured as follows. In Section 2.2 we introduce
existing lifecycle models and describe related work. In Section 2.3, we outline the
study design. We report the data collected in Section 2.4 and we answer the research
questions in Section 2.5. We discuss our findings and threats to validity in Section 2.6.
Finally, in section 2.7, we pinpoint conclusions and outline future work.

2.2 Background and Related Work

In this section, we present the lifecycle models considered in this study and examine
existing literature outlining the differences with our study.

2.2.1 Existing Lifecycle Models

In this study, we consider two reference models for the lifecycle of machine learn-
ing applications: Cross-Industry Standard Process for Data Mining (CRISP-DM) [44]
and Team Data Science Process (TDSP) [32]. We chose CRISP-DM, as although it is
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twenty years old, it is still the de facto standard for developing data mining and knowl-
edge discovery projects [28]. We selected TDSP as a modern industry methodology,
which has at a high level much in common with CRISP-DM. There are other method-
ologies, but most are similar to CRISP-DM and TDSP. Findings in our study can be
extrapolated to those other methodologies.

CRISP-DM aims to provide anyone with “a complete blueprint for conducting a
data mining project” [44]. Although data mining is not the common term used nowa-
days, it is valid for any project applying scientific methods to extracting value from
data, including machine learning [28]. CRISP-DM breaks down a project into six
phases, as presented in Figure 2.1. It typically starts with Business Understanding
to determine business objectives, going back and forward with Data Understanding.
It is followed by Data Preparation to make data ready for Modeling. The produced
model goes through an Evaluation in which it is decided whether the model can go for
Deployment or it needs another round of improvement. The arrows between stages
indicate the most relevant and recurrent dependencies, while the arrows in the outer
circle indicate the evolution of machine learning systems after being deployed and
their iterative nature.

Based on CRISP-DM, a number of lifecycle models have been proposed [28, 26]
to address varying objectives. Derived models extend CRISP-DM for projects with
geographically dispersed teams [34], with large amounts of data and more focus on
automation [54, 40], or targeting the model reuse across different contexts [27].

TDSP is “an agile, iterative data science methodology” by Microsoft, to deliver
machine learning solutions efficiently [32]. The original methodology includes four
major stages, as can be seen in Figure 2.2: Business Understanding, Data Acqui-
sition, Modeling and Deployment. As depicted by the arrows in the figure, TDSP
proposes stronger dependencies but does not enforce a particular order between stages,

Business
Understanding

Data
Understanding

Data
Preparation

Modeling

Evaluation

Deployment Data

Figure 2.1: Cross-Industry Standard Process for Data Mining (CRISP-DM).
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Business
Understanding

Modeling
Data

Acquisition &
Understanding

Deployment

Scoring, 
Performance 

monitoring, etc.

Data Source

Wrangling, 
Exploration & 

Cleaning
End

Start

Feature
Engineering

Model 
Evaluation

Model
Store

Web
Services

Intelligent 
Applications

Customer
Acceptance

Pipeline

Environment

Model 
Training

Figure 2.2: Team Data Science Process (TDSP).

emphasizing that different stages can be iteratively repeated at almost any time in the
project.

Despite the number of advancements proposed in previous work, they do not tackle
AI systems that target challenges faced by the fintech industry. Our work pinpoints
the changes that needed to be accommodated for AI systems operating under heavy-
regulated scenarios and bringing value over pre-existing non-data-driven approaches.

2.2.2 Related Work

The machine learning development lifecycle has been studied in practice in previous
research. Amershi et al. [3] have conducted a case study at Microsoft to study the
differences between Software Engineering and machine learning. The most impor-
tant challenges found are model scaling, evolution, evaluation, deployment, and data
management. We complement this study by comparing our observations with existing
machine learning lifecycle models.

Another case study from industry has been performed at Booking.com by Bernardi
et al. [7]. In contrast with academic research in which machine learning models are
validated by means of an error measurement, models at Booking.com are validated
through business metrics such as conversion or cancellations. The paper describes
process stages such as model designing, deployment, monitoring, and evaluation, but
no formal lifecycle model is defined.

Hill et al. [16] studied how people develop intelligent systems in practice. The
study leverages a high-level model of the process and identifies the main challenges.
Results show that developers struggle with establishing repeatable processes and that
there is a basic mismatch between the tools available versus the practical needs. In this
study, we extend the work by Hill et al. by looking more closely at what happens after
the machine learning model has been evaluated, for example regarding its deployment
and monitoring.

8



2.3. Research Design

The paper by Lin and Ryaboy [24] describes the big data mining cycle at Twitter,
based on the experience of the two authors. The main points made are that for data-
driven projects, most time goes to preparatory work before, and engineering work after
the actual model training and that a significant amount of tooling and infrastructure is
required. In our study, we validate the recommendations of these two experts with a
case study with seventeen participants.

Concrete challenges data scientists face are elaborated upon in the study by Kim et
al. [22]. They have surveyed 793 professional data scientists at Microsoft. An example
of a challenge found is that the proliferation of data science tools makes it harder to
reuse work across teams. This challenge is also reinforced in the study by Ahmed et
al. [2]. As models are mostly implemented without standard API, input format, or hy-
perparameter notation, data scientists spend considerable effort on implementing glue
code and wrappers around different algorithms and data formats to employ them in
their pipelines. Ahmed et al. [2] show evidence that most models need to be rewritten
by a different engineering team for deployment. The root of this challenge lies on run-
time constraints, such as a different hardware or software platform, and constraints on
the pipeline size or prediction latency.

More studies looked at machine learning from a Software Engineering viewpoint.
Sculley et al. [43] identified a number of machine learning-specific factors that increase
technical debt, such as boundary erosion and hidden feedback loops. Breck. et al [8]
have proposed 28 specific tests for assessing production readiness for machine learn-
ing applications. These tests include tests for features and data, model development,
infrastructure, and monitoring. Arpteg et al. [4] have identified Software Engineering
challenges of building intelligent systems with deep learning components based on
seven projects from companies of different types and sizes. These challenges include
development, production, and organizational challenges, such as experiment manage-
ment, dependency management, and effort estimation. In this current study, we will
extend this line of research and identify where Software Engineering can help mitigate
inefficiencies in the development and evolution of machine learning systems.

2.3 Research Design

To identify the gaps in the existing machine learning lifecycle models and explore key
challenges in the field, we perform a single-case exploratory case study. This is a
recurrent methodology to define new research by looking at concrete situations and to
shed empirical light on existing concepts and principles [55]. We follow the guidelines
proposed by Brereton et al. [9] and Yin’s [55] case study methodology.

It is not our objective to build an entirely new theory from the ground up. For
that reason, we do not adopt a Grounded Theory (GT) approach, although we do use a
number of techniques based on GT [45]: e.g., theoretical sampling, memoing, memo
sorting, and saturation.

The design of the study is further described in this section.

2.3.1 The Case

The case under study is ING, a global bank with a strong European base. ING offers
retail and wholesale banking services to 38 million customers in over 40 countries,
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with over 53,000 employees [18]. ING has a strong focus on fintech, the digital trans-
formation of the financial sector, and the professionalization of AI development.

A bank of this size has many use cases where machine learning can help. Examples
include traditional banking activities such as assessing credit risk, the execution of
customer due diligence and transaction monitoring requirements related to fighting
financial economic crime. Other examples of use cases are improving customer service
and IT infrastructure monitoring.

Development teams at ING follow an agile way of working and the organization
is structured similarly to the Spotify organization model [23] with tribes, squads, and
chapters. The basic unit is a squad, a self-organizing team similar to a Scrum team.
A collection of squads working in related areas form a tribe. A chapter brings people
with the same expertise together across squads and tribes.

ING is currently leveraging a major shift in the organization to adopt AI to improve
its services and increase business value. The challenges that ING is facing at the
moment make it an interesting case for our study and allow us to identify gaps between
current challenges by the industry and academia.

2.3.2 Research Methodology

Semi-structured interviews are the main source of data in this case study. The data is
later triangulated with other resources available inside the organization. Documenta-
tion in the intranet of ING is used to gain a deeper understanding of the platforms and
processes mentioned in the interviews.

The approach used to collect information from interviews and report data is based
on the guidelines proposed by Halcomb et al. [15]. It is a reflexive, iterative process:

1. Audio taping of the interview and concurrent note-taking.

2. Reflective journaling immediately post-interview.

3. Listening to the audiotape and revising memos.

4. Data analysis.

Participants

We selected interviewees based on their role and their involvement in the process of
developing machine learning applications. We strove to include people of many dif-
ferent roles and from many different departments. The starting position for finding
interviewees was the lead of a Software Analytics research team within ING. More
interviewees were found by the recommendations of other interviewees. The inter-
viewees were also able to suggest other sources of evidence that might be relevant.
We increased the number of participants until we reached a level of saturation in the
remarks mentioned by interviewees for each stage of the lifecycle.

An overview of the selected participants, with their role and department, can be
seen in Table 2.1. In total, we interviewed seventeen participants. The sixth interview
involved two participants. Therefore, they are labeled as P06a and P06b.

10
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Table 2.1: Overview of Interviewees

ID Role Department
P01 IT Engineer Application Platforms
P02 IT Engineer IT Infrastructure Monitoring
P03 Productmanager Financial Crime
P04 IT Architect Enterprise Architects
P05 IT Engineer IT4IT
P06a* Advice Professional Model Risk Management
P06b* Advice Professional Model Risk Management
P07 Manager IT Global Engineering Platform
P08 Feature Engineer Data & Analytics
P09 Data Scientist Wholesale Banking Analytics
P10 Data Scientist Chapter Data Scientists
P11 IT Engineer Application Platform
P12 Data Scientist AIOps
P13 Data Scientist Wholesale Banking Analytics
P14 Data Scientist Financial Crime
P15 Data Scientist Analytics
P16 Data Scientist Chapter Data Scientists

*The sixth interview involved two participants, labeled P06a and P06b.

Interview Design

The interviews are conducted together with Luı́s Cruz and took approximately one
hour. We took notes during the interviews and we recorded the interviews with the
permission of the participants. This section outlines the main steps of our interview
design. The full details can be found in our corresponding case study protocol [14].

As interviewers, we started by introducing ourselves and provided a brief descrip-
tion of the purpose of the interview and how it relates to the research being undertaken.
We asked the interviewees to introduce themselves and describe their main role within
the organization. After the introductions, we asked the interviewee to think about a
specific machine learning project he or she was working on recently. Based on that
project, we asked the interviewee to describe all the different stages of the project. In
particular, we asked questions to understand the main challenges they faced and the
solutions they had to design.

Post-interview Strategy

Right after each interview, the two interviewers got together for a collaborative memo-
ing process (also called reflective journaling [15]). Memoing is the review and formal-
ization of field-notes and the expansion of initial impressions of the interaction with
more considered comments and perceptions. Memoing is chosen over creating verba-
tim transcriptions, because the costs associated with interview transcription, in terms
of time, physical, and human resources, are significant. Also, the process of memoing
assisted the researchers to capture their thoughts and interpretations of the interview

11
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data [52]. The audio recordings could still be used to facilitate a review of the inter-
viewers’ performance, and assist interviewers to fill in blank spaces in their field notes
and check the relationship between the notes and the actual responses [11].

The interviewers took between 30–45 minutes to refine their notes. In this process,
the notes are assigned under different lifecycle stages. We used the nomenclature from
existing frameworks (e.g. CRISP-DM and TDSP) as a rule of thumb, or we defined
new stages in case it helps understand a particular part of the process.

After some time, the interviewers amended the memos by reviewing the audio-
tapes. The purpose of this stage was to ensure that the memos provided an accurate
reflection of the interviews [15]. Once the researchers were confident that their memos
accurately represented each interview, the process of content analysis is used to elicit
common themes [15].

Each interview resulted in three artifacts: the recording of the interview, the field
notes taken during the interview, and the memos as a result of the above mentioned
memoing.

2.4 Data Analysis

The input of the interviewees does not answer the research questions directly. There-
fore, we report the resulting data of the interviews in this section and we use this data
to answer the research questions later in Section 2.5.

We organize the data among eight core machine learning lifecycle stages: problem
design, requirements, data engineering, modeling, documentation, model evaluation,
model deployment, and model monitoring. Overarching data that does not fit these
stages is categorized under testing, iterative development, and education. These stages
and categories are based on stages defined by CRISP-DM and TDSP (cf. Section 2.2.2)
or mentioned by practitioners themselves.

For all the remarks, we identify the practitioner who mentioned them by referenc-
ing the corresponding ID from Table 2.1. Given that this is a qualitative analysis, the
number of individuals supporting a particular result has no quantitative meaning on its
relevance.

2.4.1 Problem Design

Machine learning projects at ING start with the definition of the problem that needs to
be solved. Two main approaches are observed in this study:

1. Innovation push: a stakeholder comes up with a question or problem that needs
to be solved. A team is set up to design a solution using a suitable machine
learning technique.

2. Technology push: a team identifies new data or a set of machine learning tech-
niques that may add business value and are potentially useful or solving prob-
lems within the organization. This approach aims to optimize processes, reduce
manual work, increase model performance, and create new business opportuni-
ties.

12
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The problem is defined together with stakeholders and it is assessed whether using
machine learning is appropriate to solve the problem (P01, P14, P15). In the teams
of P15 and P14, this is done by collaboratively filling in a project document with the
stakeholders which contains information like the problem statement, goals, and the
corresponding business case. Also, domain experts outside the teams are part of this.

2.4.2 Requirements

Besides project-specific requirements, many of the requirements come from the or-
ganization and are applicable to every machine learning application (P15). These
requirements include traceability, interpretability, and explainability (P01, P04, P07,
P15). Together with all other regulatory requirements, they pose a big challenge while
developing machine learning applications (P04). A natural consequence of regulatory
requirements is that black-box AI models cannot be used in most situations (P01, P04,
P14). For risk management safeness, only interpretable/explainable AI models are
accepted.

Project-specific requirements are often defined by the product owner together with
the stakeholders (P10). Data requirements are said to become more clear while work-
ing with the model (P04). As the users of the system are often no machine learning
experts, defining the model performance requirements is sometimes a challenge (P09,
P13).

2.4.3 Data Engineering

Interviewees describe that data engineering requires the major part of the lifetime of a
machine learning project (P03, P10, P15) and is also the most important for the success
of the project (P10).

Data Collection

Data collection is considered a very challenging and time-consuming task (P03, P04,
P12, P14). Typical use cases require access to sensitive data, which needs to be for-
mally requested. ING has an extensive data governance framework that, among others,
assigns data management roles (e.g. data owner) and rules for obtaining, sharing, and
using data. Each dataset is assigned a criticality rating, to define the degree of data
governance and control required.

There might be people with different access privileges to data in the same project.
This means that, in the exploratory stages of some projects using critical data, only
a restricted number of team members (e.g., data scientists) are able to perform an
exploratory analysis of data. The remaining practitioners will only have access to the
model specification (P04).

A challenge of data collection is making sure that the (training and test) data col-
lected is representative of the problem (P13). As an example, if a machine learning
model is trained on systems logs, it should be made sure that logs of all systems are
available. Another challenge is merging data from multiple sources (P10, P12). Going
back to the logging example, different systems may have different logging formats,
but the configurations of these formats can not be altered by the developers creating
the model.
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Data Understanding

In the data understanding stage, an assessment is done on the quality of available
data and how much processing will be required to use that data. It comprises ex-
ploratory data analysis, often including graphical visualizations and summarization of
data. According to P09, the temptation of applying groundbreaking machine learning
techniques tends to overlook the importance of understanding the data.

Data understanding is also an important step to assess the feasibility of the project.
Thus, it entails not only performing an exploratory analysis, but also a considerable
effort in communicating the main findings to all the different stakeholders.

Data Preparation

After the data is collected and it is assessed that the data is representative of the prob-
lem being solved, the data is prepared to be used for modeling.

A challenge regarding data preparation is that the same pre-processing has to be en-
sured in the development environment and in the production environment (P08, P09).
Data streams in production are different than in the development environment and it is
easier to clean training and testing data than production data (P09).

2.4.4 Modeling

Model training is mostly done in on-premises environments such as Hadoop2 and
Spark3 clusters (P09) or in generic systems using, for example, the scikit-learn4 li-
brary (P01). These private platforms are connected with the data lakes where data is
stored, so training can be done on (a copy of) real production data (P01, P03). The on-
premises environment has no outgoing connection to the internet, so a connection to
other cloud services such as Microsoft Azure5 or Google Cloud6 is not possible (P08).
This means that data scientists are limited to the tools and platforms available within
the organization when dealing with sensitive data. Also, all project dependencies need
to be previously approved, after which they are made available in a private package
repository (P12), which contains whitelisted packages that have been internally au-
dited. Fewer restrictions are in place if machine learning is applied to public data, for
example on stock prices. In that case, external cloud services and packages may be
used (P09).

Model training is an iterative process. Usually, multiple models are created for the
same problem. First, a simple model is created (e.g., a linear regression model) to set
as a baseline (P09). In the following iterations, more advanced models are compared
to this baseline model. If an approach other than machine learning already exists (e.g.,
rule-based software), the models are also compared with this.

To keep track of different versions of models, different teams use different strate-
gies. For example, the team of P08 keeps track of an experiment log using a spread-

2Hadoop enables distributed processing of large data sets across clusters of computers. https:
//hadoop.apache.org

3Spark is a unified analytics engine for large-scale data processing. https://spark.apache.org
4Scikit-learn is a machine learning library for Python. https://scikit-learn.org
5Microsoft Azure is a cloud computing service. https://azure.microsoft.com/en-us
6Google Cloud is a cloud computing service. https://cloud.google.com

14

https://hadoop.apache.org
https://hadoop.apache.org
https://spark.apache.org
https://scikit-learn.org
https://azure.microsoft.com/en-us
https://cloud.google.com


2.4. Data Analysis

sheet, in which the training set, validation set, model, and pre-processing steps are
specified for each version. This approach for versioning is preferred over solutions
like MLFlow7 for the sake of simplicity (P08, P15).

Model Scoring

An implicit sub stage of modeling is assessing model performance to measure how
well the predictions of the model represent ground truth data.

We define Model Scoring as assessing the performance of the model based on
scoring metrics (e.g., f1-score for supervised learning). It is also known as Validation
by the machine learning community, which should not be confused with the definition
by the Software Engineering community8 [41, 1].

The main remarks for this stage are related to defining the right set of metrics (P03,
P06, P12, P14, P15, P16). The problem is two-fold: 1) identify the right metrics and 2)
communicate why the selected metrics are right. Practitioners report that this is very
problem-specific. Thus, it requires a good understanding of the business, data, and
learning algorithms being used. From an organization’s point of view, these different
perspectives are a big barrier to defining validation standards.

2.4.5 Documentation

Each model has to be documented (P02). This serves multiple goals. It makes as-
sessing the model from a regulatory perspective possible (P09, P13), it enables repro-
ducibility, and also can make the model better because it is looked at from a broad
perspective – i.e., a “helicopter view” (P09). It also provides an audit trail of actions,
decisions, versions, etc. that supports evidencing. Documentation also supports the
transfer of knowledge, for example, new team members or the end-users which are
mostly not machine learning experts (P12). Just like code, documentation is also peer-
reviewed (P13).

The content of the documentation differs slightly per department, but all docu-
mentation should at least follow the minimum standards defined by the model risk
management framework (P06). Some teams extend on this by creating templates for
documentation themselves (P13). In general, the following is documented when de-
veloping a machine learning application: the purpose, methodology, assumptions, lim-
itations, and the use of the model. More concretely, a Technical Model Document is
created which includes the model methodology, input, output, performance metrics
and measurements, and testing strategy (P14). It furthermore states all faced difficul-
ties and their solutions, plus the main (technical) decisions (P09). It has to explain why
a certain model is chosen and what its inner workings are, to be able to demonstrate
the application does what the creators claim it is doing.

2.4.6 Model Evaluation

An essential step in the evaluation of the model is communicating how well the model
performs according to the defined metrics. It is about demonstrating that the model

7MLFlow is a platform to manage the machine learning lifecycle. https://mlflow.org
8Validation in Software Engineering “is the set of activities ensuring and gaining confidence that a

system is able to accomplish its intended use, goals and objectives” [1].
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meets business and regulatory needs and assessing the design of the model. One key
difference between the metrics used in this step and the metrics used for Model Scoring
is that these metrics are communicated to different stakeholders that do not necessarily
have a machine learning or data science background. Thus, the set of metrics needs to
be extended to a general audience. One complementary strategy used by practitioners
is having live demos of the model with business stakeholders (P03, P15, P16). These
demos allow stakeholders to try out different inputs and try corner cases.

Model Risk Assessment

An important aspect of evaluating a model at ING is making sure it complies with reg-
ulations, ethics, and organizational values (P15, P06). This is a common task for any
type of model built within the organization – i.e., not only machine learning models
but also economic models, statistical forecasting models, and so on. In the interviews,
Model Risk Assessment was mentioned as mandatory within the model governance
strategy, undertaken in collaboration with an independent specialized team (P06, P14).
Depending on the criticality level of the model, the intensity of the review may vary.
Each model owner is responsible for the risk management of their model, but col-
leagues from the risk department help and challenge the model owner in this process.

During the periodic risk assessment process, assessors inspect the documentation
provided by the machine learning team to assess whether all regulations and minimum
standards are followed. Although the process is still under development within ING,
the following key points are being covered: 1) model identification (identify if the can-
didate is a model which needs risk management), 2) model boundaries (define which
components are part of the model), 3) model categorization (categorize the model into
the group of models with a comparable nature, e.g. anti-money-laundering), 4) model
classification (classify the model into in the class of models which require a compara-
ble level of model risk management), and 5) assess the model by a number of sources
of risk.

2.4.7 Model Deployment

We observed three deployment patterns at ING:

1. A specialized team creates a prototype with a validated methodology, and an
engineering team takes care of reimplementing it in a scalable, ready-to-deploy
fashion. In some cases, this is a necessity due to the technical requirements of
the model, e.g., when models are developed in Python, but should be deployed
in Java (P08, P09, P13).

2. A specialized team creates a model and exports its configuration (e.g., a pickle9

and required dependencies) to a system that will semi-automatically bundle it
and deploy it without changing the model (P01, P09).

3. The same team takes care of creating the model and taking it into production.
This mostly means that software engineers are part of the team and a structured
and strict software architecture is ensured.

9A pickle is a serialized Python object. https://docs.python.org/3/library/pickle.html
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Similar to the training environments, machine learning systems are deployed to on-
premises environments. A reported challenge regarding the deployment environment
is that different hardware and platform parameters (e.g., Spark parameters) can result
in different model behavior or errors (P16). For example, the deployment environment
may have less memory than the training environment. Furthermore, the resources for
a machine learning system are dynamically allocated whenever needed. However, it
is not trivial understanding when a system is no longer needed and should be scaled
down to zero (P01).

2.4.8 Model Monitoring

After having a model in production, it is necessary to keep track of its behavior to make
sure it operates as expected. It implies testing the model while the model is deployed
online. The main advantage is that it uses real data. Previous work refers to this stage
as online testing [57].

The inputs and outputs of the model are monitored while it is executing. Each
model requires a different approach and different metrics, as standards are not yet
defined. In this stage, practitioners also look into whether the statistical properties
of the target variable do not change in unforeseen ways (P11). The model behavior
is mostly monitored by data science teams and is still lacking automation (P03, P05,
P06, P14). Also the impact on user experience is monitored when the model has a
direct impact on users. This is mostly done using A/B testing techniques and can have
business stakeholders directly involved (P03, P10).

Teams resort to self-developed or highly-customized dashboard platforms to moni-
tor the models (P15, P16). Within the organization, different teams may have different
platforms. While standardization is in development, for now, we have not observed
solutions that are used across the organization. A big challenge in making these plat-
forms available is the fact that each problem has different monitoring requirements and
considerable engineering efforts need to be undertaken to effectively monitor a given
model and implement access privileges (P15).

2.4.9 Testing

Testing is a task that is transversal to the whole development process. It is done at the
model level and at the software level.

Testing at the model level addresses requirements such as correctness, security,
fairness, and interpretability. With the exception of correctness, we have not observed
automated approaches to verify these requirements. A challenge for the correctness
tests is defining the number of errors that are acceptable – i.e., the right threshold (P14).

For testing at the software level, unit and integration testing is the general ap-
proach. It scopes any software used in the lifecycle of the model (P07). It enables the
verification of whether the techniques adopted in the design of the machine learning
system are working as expected. However, although unit and integration testing is part
of the checklist used for Model Evaluation, a number of projects are yet not doing it
systematically (P12, P15). As reported by P14, tests are not always part of the skill set
of a data scientist. Nevertheless, there is a generalized interest in learning code testing
best practices (P12).
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2.4.10 Iterative Development

At ING, teams adopt agile methodologies. Three practitioners (P03, P09, P14) men-
tioned that using agile methodologies is not straightforward in the early phases of
machine learning projects. They argued that performing a feasibility study does not
fit in small iterations. The first sprint requires spending a considerable amount of
time understanding and preparing data before being able to deliver any model. On the
other hand, interviewees acknowledge the benefits of using agile (P03, P14). It helps
keep the team focused on practical achievements and goals. Another advantage is that
stakeholders are kept in the loop (P14).

Typically 2–3 data scientists are working together on the same model. For this
reason, issues with having many developers working on the same model and merging
different versions of a model have not been disruptive yet.

Feasibility Study

The end of the first iteration is also a decisive step in the project. Based on the out-
come of this iteration there is a go/no-go assessment with all the stakeholders, in which
the project is evaluated in terms of viability (i.e., does it solve a business issue), de-
sirability (i.e., is it complying with ethics or governance rules), and feasibility (i.e.,
cost-effectiveness) (P04, P09, P15, P16). This process is well-defined within the orga-
nization for all innovation projects. According to P04 and P09, feasibility assessments
are essential at any point of the project – it is important to adopt a fail-fast approach.

2.4.11 Education

Interviewees indicated multiple ways in which education can be improved to make
graduates better machine learning practitioners in the industry. Firstly, data scientists
should have more knowledge of Software Engineering and vice-versa (P01, P11, P14,
P16). P11 indicates that data scientists with little software engineering knowledge
will produce code that is harder to maintain and likely increases technical debt. On
the other hand, a software engineer without data science expertise may write clean
code, which nevertheless may not add much business value, because of ineffective
data exploration strategies (P09).

Another remark by practitioners is that education should put more focus on the
process instead of techniques (P08). While graduates are appreciated for their broad
sense of the state-of-the-art, they must learn how to tackle machine learning issues in
large organizations (P08, P10). Academia knows well how to work with new projects,
but in reality, the history of the company affects how to perform machine learning
– e.g., integration with legacy systems (P08). Graduates seem to underestimate the
efforts needed for data engineering, especially data collection (P03, P09, P12). Also,
too much attention lies solely on the performance of models. In reality, over-complex
models cannot be applied in organizations, because they tend to be too slow or too
hard to explain (P16). These models – squeezing every bit of performance – are great
for data science competitions as facilitated on Kaggle, but not for the industry, where
more efficient solutions are necessary (P09, P16).
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2.5 Data Synthesis

In this section, we answer each research question.

2.5.1 RQ1: How do existing machine learning lifecycle models fit the
fintech domain?

To answer this research question, we analyze lifecycle models existing in the litera-
ture and adapt them according to the findings observed in our study. We select two
reference models, as described in Section 2.2.1: CRISP-DM [44] and TDSP [32]. The
changes we propose can be constrained to this specific case of ING, the fintech do-
main, or be extendable to general machine learning projects. We justify and define
these constrains for each change.

Most stages we observed at ING naturally fit CRISP-DM and TDSP. Similarities
between CRISP-DM and the lifecycle of machine learning models at ING are Busi-
ness Understanding, Data Understanding, Data Preparation, Modeling, Evaluation,
Deployment. Similarities between TDSP and the lifecycle at ING are Business Un-
derstanding, Data Acquisition & Understanding, Modeling, and Deployment. Never-
theless, based on the observations collected in our study, changes to these models are
called for.

We propose the changes of CRISP-DM in Figure 2.3. We add three new essential
stages: Data Collection (as part of Data Engineering), Documentation, and Model
Monitoring. Furthermore, we emphasize the feasibility assessment with the “Go/No-
go” checkpoint and a sub-stage Model Risk Assessment, part of Evaluation.

As depicted in Figure 2.4, we adapt the TDSP model to include Documentation,
Model Evaluation, and Model Monitoring as major stages. We also emphasize Model
Risk Assessment (as part of Evaluation) and a Feasibility Study.
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Deployment Data

Model
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Evaluation
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Figure 2.3: Refined CRISP-DM model. Additions in red, with bold text.
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The adaptations of the models will be further elaborated upon in the following
paragraphs.

Data Collection Although CRISP-DM encompasses Data Collection within Data
Understanding and Data Preparation, our observations reveal important tasks and
challenges that need to be highlighted. As reported in Section 2.4.3, Data Collection
requires getting privileges to access data with different criticality-levels and making
sure the data is representative of the problem being tackled. Our proposition is that the
characteristics observed at ING regarding this phase generalize to any large organiza-
tion dealing with sensitive data.

Go/No-go or Feasibility Study The aforementioned Feasibility study (cf. Section
2.4.10) is an essential part of a machine learning project to ensure projects have every-
thing in place to deliver the long-term expectations. It was a recurrent step observed
in our study, which is aligned with the agile approach, Fail Fast, promoted at ING
and many organizations alike. It may generalize to other cases, depending on the agile
culture of the organization.

Documentation In our case, documentation revealed to be a quintessential artifact
for a machine learning project. Documentation is the key source of knowledge on how
the model is designed, evaluated, tested, deployed, and so on. The documentation is
used to evaluate, maintain, debug, and keep track of any other decision regarding the
model. It is hard to replace documentation with other strategies because stakeholders
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Figure 2.4: Refined TDSP model. Additions in red, with bold text.
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with a non-technical background also need to understand the model and have confi-
dence in how the machine learning model is designed. Although documentation is also
important in traditional Software Engineering applications, the codebase is usually the
main target of analysis from audits. In machine learning, documentation contains im-
portant problem-specific decisions that cannot be understood in the code itself. We
have no evidence on how this stage generalizes to other organizations, but believe this
to be crucial in any highly regulated environment.

Model Evaluation Although the original version of TDSP also included Model Eval-
uation, it was proposed as an activity under the Modeling stage. We observed that,
when we refer to assessing the performance of a model (i.e., Model Scoring), it is
indeed part of the Modeling activities. However, there is an important part of the eval-
uation that requires more stable versions of the models. Moreover, it is undertaken
with stakeholders that are not part of the Modeling loop – e.g., live demos with busi-
ness managers (cf. Section 2.4.6). Thus, we highlight this part of the evaluation as its
own stage. This is also relevant for projects in different domains.

Model Risk Assessment Model Risk Assessment is crucial to any banking or fi-
nance organization. Although these companies already have a big history of tradi-
tional risk management, it does not cover machine learning models. At ING, this is
mandatory for any model.

Model Monitoring Most machine learning models operate continuously and pro-
duce outputs online. Our study shows that the natural step after deployment is Moni-
toring – for example, using dashboards – to ensure the model is behaving as expected.
Model Monitoring is not explicit in neither CRISP-DM nor TDSP, but it is relevant to
any domain.

Finally, although not depicted in the proposed lifecycles, Education is a stage im-
plicit throughout the whole lifecycle. We observe that universities and courses on
machine learning need to provide a more holistic approach to focus on all the different
stages of the lifecycle of a machine learning system.

A lifecycle stage that we did not yet observe is the end of life of a machine learning
system – i.e., the Disposal stage. We presume that a disposal stage is not relevant yet
due to the recency of machine learning in fintech.

2.5.2 RQ2: What are the specific challenges of developing machine
learning applications in fintech organizations?

We highlighted many challenges of developing machine learning applications in Sec-
tion 2.4. Most challenges fit in the CRISP-DM and TDSP models. However, two chal-
lenges specifically related to fintech and to our extensions of CRISP-DM and TDSP
stand out: 1) Model Governance and 2) Technology Access.

Model Governance is on top of the agenda of the case in this study. A well-defined
process is in place to validate regulations, ethics, and social responsibility in every
machine learning model. The relevance of this problem to fintech organizations goes
beyond machine learning applications: math-based financial models have long been
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deployed under well-defined risk management processes. Nevertheless, AI brings the
need to revise and recreate model governance that suits the particularities of models
that are now automatically trained. Model risk experts are now required to have a
strong background in two disjoint fields: 1) Governance, Risk Management, and Com-
pliance and 2) AI.

Technology Access is the second big challenge in developing AI in fintech organi-
zations. All AI technologies, tools, and libraries need to be audited to make sure they
are safe to be used in fintech applications. However, the field of AI is changing very
fast with new tools. Industries that want to shift towards AI-based systems need to be
able to quickly, yet safely, adopt new technologies.

2.6 Discussion

In this section we discuss the implications of our results and the threats and limitations
of the study design.

2.6.1 Implications

We divide the implications of our results under implications for machine learning prac-
titioners, process architects, researchers, and educators.

Implications for Machine Learning Practitioners

Machine learning practitioners have to be aware of extra steps and challenges in their
process of developing machine learning applications. Although not mentioned in ex-
isting lifecycle models, the undertaking of feasibility assessments, documentation, and
model monitoring, are crucial while developing machine learning applications.

Implications for Process Architects

Existing lifecycle models provide a canonical overview of the multiple stages in the
lifecycle of a machine learning application. However, when being applied to a partic-
ular context, such as fintech, these models need to be adapted. From our findings, we
suspect that this is also the case for other fields where AI is getting increasing impor-
tance. Process architects for intelligent systems for healthcare, autonomous driving,
among many others, need to look at their lifecycle models from a critical perspective
and update the models accordingly.

Implications for Researchers

Researchers could focus on solving the reported challenges in the machine learning
lifecycle with additional tool support and reveal challenges of the ML lifecycle in
other domains by extending the case study to more organizations and different types
of industries.

More automation is required for exploratory data analysis and data integration
techniques. Automation tools are also needed to help trace documentation back to
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the codebase and vice versa. Tools that assist model governance will reduce bottle-
necks in the development process and will help to ensure machine learning models
comply with regulations.

Furthermore, solutions to challenges in the ML lifecycle should be researched.
Software testing needs to be extended and adapted for machine learning software to
help effectively test the machine learning pipeline at software-, data-, and model-level.
It is also necessary to create holistic monitoring solutions that can scale to different
models in an organization. There is a need for strategies to help practitioners select the
right set of model scoring metrics. Agile development practices need to be adjusted
for AI projects. Tools featuring experiment logs (e.g., MLFlow) ought to propose
a holistic solution for version control to keep track of changes in data, changes in
scoring metrics, and executions of different experiments.

Implications for Educators

Education of machine learning should focus on the whole lifecycle of machine learning
development, including exploratory analysis with a focus on statistics, data analysis,
and data visualization. Moreover, practitioners with background on both data science
and software engineering are a valuable resource for organizations. This emphasizes
the importance of a transdisciplinary approach to AI education [51, 37] and it is con-
gruent with previous work that reports that a Software Engineering mindset brings
more awareness on the maintainability and stability of an AI project [4].

2.6.2 Threats to Validity

This subsection describes the threats and limitations of the study design and how these
are mitigated. These limitations are categorized into researcher bias, respondent bias,
interpretive validity, and generalizability, as reported by Maxwell [29] and Lincoln et
al. [25].

Researcher Bias

Researcher bias is the threat that the results of the study are influenced by the knowl-
edge and assumptions of the researchers, including the influence of the assumptions of
the design, analysis, and sampling strategy.

A threat is introduced by the fact that participants are self-selected. This means
that there might be employees in the company which should be included in the study
but are not selected. During the planning phase, participants are selected with different
roles and from different departments to have an as diverse starting point as possible.
Thereafter, more participants are found by the recommendation of other interviewees
and employees until we reach saturation on the information we get from the interviews,
i.e. until no new information or viewpoint is gained from new subjects [46].

Respondent Bias

Respondent bias refers to the situation where respondents do not provide honest re-
sponses.
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The results of the interviews rely on self-reported data. All people tend to judge
the past disproportionately positive. This psychological phenomenon is known as rosy
retrospection [33]. Furthermore, interviewees who know golden standards from for
example literature may tell how things are supposed to be, in contrast with how they
are in reality. These biases are mitigated by reassuring interviewees their answers will
not be evaluated or judged and by asking them to think about a particular project they
have been working on.

Another threat of self-reported data is that interviewees might forget to mention
aspects that could have impacted the results. Using a mindmap with relevant topics for
the interview, interviewers ask questions to cover all aspects of the machine learning
development process to minimize the impact of this threat.

A methodological choice which can form a threat to validity is the fact that in-
terviews are recorded. While the participants themselves permit the recording, they
might be extra careful in giving risky statements on the record and therefore introduce
bias in their answers. This threat is minimized by assuring the recordings themselves
will not be published and all results which will be published are first approved by the
corporate communication department.

Interpretive Validity

Interpretive validity concerns errors caused by wrongly interpreting participants’ state-
ments.

The interviews are processed by field-note taking and memoing. The primary
threat to valid interpretation is imposing one’s own meaning, instead of understand-
ing the viewpoint of the participants and the meanings they attach to their words. To
avoid these interpretation errors, the interviewers used open-ended follow-up questions
which allowed the participant to elaborate on answers. Not everything the participants
said could (and should have been) noted. Yet, important remarks could not have been
noted in both field-notes and the memos. Our methodology of listening to the interview
recordings and amending the memos should remedy this.

Generalizability

Generalizability refers to the extent to which one can extend the results to other settings
than those directly studied.

This research is conducted in a large financial institution. Results may not seem
generalizable to companies of much smaller size or different nature. A bank may be
prone to more regulations than most companies and is dealing with more sensitive data.
Still, every company has to comply with privacy regulations like the European GDPR.
This suggests that results influenced by more strict regulations and compliance are just
as relatable to other industries. Multiple case studies at organizations of different scale
and nature are required for establishing more general results.

2.7 Conclusions

The goal of this study is to understand the evolution of machine learning development
and how state-of-the-art lifecycle models fit the current needs of the fintech industry.
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To that end, we conducted a case study with seventeen machine learning practition-
ers at the fintech company ING. Our key findings are: 1) CRISP-DM and TDSP are
largely accurate; but 2) there are crucial steps missing from the fintech perspective,
including feasibility study, documentation, model evaluation, and model monitoring;
in particular, 3) the key challenges comprise model governance and technology access.

Our research helps practitioners fine-tune their approach to machine learning de-
velopment to fit fintech use cases. Additionally, it guides educators in defining learning
objectives that meet the current needs in the industry. Finally, it paves the way for next
research steps in reducing bottlenecks in the machine learning lifecycle, in particu-
lar study tool support for exploratory data analysis and data integration techniques,
documentation, model governance, monitoring, and version control.
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Chapter 3

dslinter: Static Code Analysis for
Data Science

3.1 Introduction

As seen in the case study of Chapter 2, machine learning is shifting from experimen-
tal use cases to crucial business processes in the industry. Therefore, the reliability
of software applications that rely on machine-trained models has become even more
important and failures in these systems are more critical. Faults in the software reduce
this reliability and increase failures. Detecting these faults will enable data scientists
to address them and improve the quality of their software.

While many automated approaches exist to detect bugs, such as automated test
case generation [12], this research focusses on using static code analysis to find prob-
able bugs and enforcing best practices, specifically in code used for processing large
amounts of data and modeling in the machine learning lifecycle. The static code anal-
ysis will be done on the Python programming language, which is widely used for
machine learning [19].

Locating bugs in machine learning code is especially hard due to the nondeter-
ministic nature of machine learning and the entanglement of machine learning sys-
tems [43]. When a problem occurs, it is for example not clear if it originated in the
data, in code processing the data, in code modeling from the data, or even in the in-
frastructure on which the machine learning pipeline is running. Static code analysis
identifies potential issues or inefficiencies, codifies best practices, and educates users
about these practices through tool use [17], all while the data scientist is still engaged
with the code and thus enabling them to solve the problems directly.

A call for better code quality in machine learning code has already been made by
Wang et al. [50] and Nerush [36]. Wang et al. [50] argue that there is a strong need to
programmatically analyze Jupyter notebooks1, calling on our community to pay more
attention to the quality and reliability of notebooks.

The use of automated static analysis has been a software engineering best practice
for many years [6]. Therefore, it is no surprise that there are existing static code

1Jupyter notebooks consist of a sequence of cells that contain code, visualizations, or text to perform
data analysis and machine learning.
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analysis tools for the Python language, such as Pylint2 and Flake83. Yet, none of
these focusses on errors and best practices adherent to processing large amounts of
data and creating machine learning models from this data.

The objective of the research in this chapter is to reduce bugs and improve the code
quality of machine learning applications. To work towards this objective, we define the
following research questions:

1. What bugs and best practices typical to machine learning can be detected using
static code analysis?

2. To what extent are these bugs present and best practices not followed in existing
open source scripts and programs?

The remainder of this chapter is structured as follows. In Section 3.2 we give
an overview of related work with respect to reducing bugs, risk, and technical debt
in machine learning systems. In Section 3.3 we give a little background of linting.
In Section 3.4 we describe the developed static code analysis tool and the reasoning,
implementation details, and limitations of the designed and implemented checkers.
Then, in Section 3.5 we evaluate the implemented linter on a large number of open
source scripts. We discuss our findings in Section 3.6. Finally, in section 3.7, we
conclude this study.

3.2 Related Work

This section gives an overview of related work with respect to reducing bugs, risk, and
technical debt in machine learning applications and using static code analysis for these
goals.

3.2.1 Improving Quality of Machine Learning Systems

A study with the goal of improving the quality of machine learning systems is not new.
Several machine learning-specific risk factors are identified by Scully et al. [43].

These risk factors include boundary erosion, entanglement, hidden feedback loops,
undeclared consumers, data dependencies, configuration issues, changes in the exter-
nal world, and a variety of system-level anti-patterns such as glue code and pipeline
jungles. The difference with these identified risk factors and our study is that these
risk factors are quite abstract, mostly at the system level, and should therefore be ac-
counted for in the system design of the machine learning application. In contrast, our
static code analysis tool operates at the source code level and therefore is used while
developing the machine learning application. Both should be used together to improve
the maintainability and quality of machine learning systems.

To assess the production readiness of machine learning systems, Breck et al. [8]
have introduced the ML test score: a rubric for machine learning systems with 28
specific tests, including tests for features and data, model development, infrastructure,
and monitoring needs. Besides identifying the tests, the authors also give actionable

2https://pylint.org
3https://flake8.pycqa.org
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steps and advice to pass each test. These tests are also concerning system-level best
practices and can be complemented with the static code analysis tool of our study.

The literature survey of Zhang et al. [57] gives a good overview of the current state
of testing machine learning systems. The focus of the research community mostly lies
in testing supervised machine learning systems and most studies center around the cor-
rectness and robustness of those systems. A proper testing strategy with both offline
testing (before model deployment) and online testing (after model deployment) com-
bined with static code analysis ensures the best possible quality of machine learning
systems.

3.2.2 Static Code Analysis

Beller et al. [6] evaluated the use of static code analysis in open source projects using
the programming languages Java, JavaScript, Ruby, and Python. They found that its
use is widespread, but not ubiquitous. Zampetti et al. [56] extended on that study by
investigating how static code analysis tools are used within a continuous integration
pipeline. In their sample of 20 Java projects, 6% of the builds break due to issues
found by the used static code analysis tools. Those issues are mostly related to adher-
ence to coding standards. Build failures related to tools identifying potential bugs or
vulnerabilities occur less frequently, as those issues are mostly set up to result in build
warnings, possibly because of the high number of false positives. This strengthens
the goal of keeping false positives as low as possible in the tool of this research, as
developers will otherwise give warnings less priority. As continuous integration for
machine learning is not yet very mature, we do not focus on that in this research.

Tómasdóttir et al. [47] studied developers‘ perceptions on JavaScript linters. The
authors found that developers use linters for maintaining code consistency, preventing
errors, saving discussion time about which style to use, avoiding complex code, and
for automating code reviews. This current research does not focus on code consis-
tency, but preventing errors is one of the main goals. The authors also found that the
linter configuration strategy of the majority of the developers is using existing presets,
followed by fitting the current project and using the default linter configuration. These
findings together with the finding that creating and maintaining configurations is a
real challenge for developers, indicates that we should carefully consider the default
configuration of the linter in this current research.

There also has been specific research in using static code analysis for the discov-
ery of security vulnerabilities. Goseva et al. [13] found that, despite recent advances
in methods for static code analysis, the state-of-the-art tools are not very effective in
detecting security vulnerabilities. Baca et al. [5] showed that developers, given the
warnings given by the tools, are not great at detecting false positives and security vul-
nerabilities among those warnings. A combination of security experience and experi-
ence with the tool improved the detection of real security vulnerabilities. This shows
that simply enabling a static code analysis tool may not be enough to improve the soft-
ware the tool scans. Therefore, although we do not focus on security vulnerabilities
in machine learning, extensive reasoning for each of our checkers will be described in
this research.
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3.2.3 Static Analysis for Machine Learning

There has only been a limited amount of studies utilizing static analysis for machine
learning.

Hynes et al. [17] have created the data linter, a tool that automatically inspects
machine learning data sets to identify potential issues in the data and suggest poten-
tially useful feature transforms, for a given model type. The authors introduce types
of data lint among three categories: miscoding of data (such as a number encoded as
a string), outliers (such as an unnormalized feature), and packaging errors (such as
duplicate rows of data). End-user evaluation with eight software engineers showed
that the tool can be useful to identify ways to improve model quality through specific
feature transforms and to help focus the developer’s effort and attention. The static
code analysis tool of this current research, dslinter, aims at the same goals, but by
identifying potential issues in the source code instead of the data.

A call for better code quality in machine learning code has already been made by
Wang et al. [50] and Nerush [36]. Wang et al. [50] have collected almost 2000 Python-
based Jupyter notebooks from Kaggle.com and checked the code against some of the
conventions of the PEP8 guidelines with use of the PEP8 checker tool. This means
that Wang et al. focus on general coding standards using an already existing tool, while
we focus on machine learning specific probable bugs and best practices and develop
a new tool for that. The general conventions tool found almost 75,000 violations in
the collected notebooks. While most of those issues are related to stylistic coding
standards, such as the use of whitespaces and blank lines, it is still an indication that
Python code in Jupyter notebooks is not well aligned with the recommended coding
practices. While checking machine learning code with a general Python static code
analysis tool and fixing the issues found can improve the code quality, those tools
lack the detection of specific machine learning best practices and probable bugs. To
improve the quality of machine learning code more, we extend such a general tool
with specific checks focused on errors and best practices adhering to processing large
amounts of data and creating machine learning models.

3.3 Background

A static code analysis tool that is used to flag issues in software is called a linter. A
linter usually works by traversing the abstract syntax tree (AST) of the source code. An
AST is a tree that represents the syntactic structure of source code, in which each node
represents a construct of the programming language of the source code. Examples of
nodes in the AST of a Python program are FunctionDef, If, and Return. An example of
code and its (slightly simplified) AST containing these nodes can be seen in Listing 1.
While traversing AST nodes, a linter checks for violations of predefined rules. An
example of such a rule could be that each function can not have more than 5 arguments,
which will be checked when the linter processes a FunctionDef node.

There exist two main types of lint: logical lint and stylistic lint. Logical lint is
a piece of source code that is faulty, leads to potentially unintended results, or does
not follow best practices. Stylistic lint is code not conforming to defined stylistic
conventions. Although code with a lot of stylistic lint may result in bugs because the
code is not well readable, this research will focus on logical lint.
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Listing 1 Example code chunk (left) and its abstract syntax tree (right).
def abs(x):
if x >= 0:
return x

else:
return -x

Module(
body=[FunctionDef(

name='abs',
args=Arguments(

args=[AssignName(name='x')]),
body=[If(

test=Compare(
left=Name(name='x'),
ops=[['>=', Const(value=0)]]),

body=[Return(value=Name(name='x'))],
orelse=[Return(value=UnaryOp(

op='-',
operand=Name(name='x')))])])])

3.4 Design and Implementation

The static code analysis tool described in this section is available on GitHub4 under
the GNU General Public License and is uploaded to PyPI5.

To answer the research questions, we identified rules of checkers to flag probable bugs
and check the adherence to best practices in data science and machine learning code.
We also implemented these into a static code analysis tool. In this section, we will
explain these checkers and the developed tool called dslinter.

As briefly mentioned in the introduction of this chapter, the linter created for this
research is for the Python programming language. It is the default programming lan-
guage for data science and machine learning projects within ING, as well as for most
other data scientists around the world [19]. The focus of the linter will be on the
Python frameworks pandas6 and scikit-learn7, which are the most popular frame-
works for data scientists [19]. As Spark8 shares some communalities with pandas
regarding DataFrames, the pyspark9 library will also be supported slightly.

Creating a Python linter from scratch would be reinventing the wheel, as there exist
already multiple Python linters: Pylint10, PyFlakes11, Bandit12, pycodestyle13,
pydocstyle14, and Flake815. From these linters, only Pylint and Flake8 are general-
purpose linters which allow extensibility by means of plugins. For this research, a
plugin is created for Pylint, because it has better documentation and more develop-
ment activity compared with Flake8. Furthermore, Pylint is a linter itself, while

4https://github.com/MarkHaakman/dslinter
5https://pypi.org/project/dslinter
6https://pandas.pydata.org
7https://scikit-learn.org
8https://spark.apache.org
9https://spark.apache.org/docs/latest/api/python

10https://pylint.org
11https://github.com/PyCQA/pyflakes
12https://github.com/PyCQA/bandit
13https://github.com/PyCQA/pycodestyle
14https://github.com/PyCQA/pydocstyle
15https://flake8.pycqa.org
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Reportdata scientist

    pylint + dslinter

build AST run checkers

Figure 3.1: Usage and working of dslinter.

Flake8 is actually a wrapper around PyFlakes, pycodestyle, and mccabe16. There-
fore, Pylint is the best linter to extend with a plugin for big data processing and
machine learning modeling.

Usage and working of dslinter The created linter in this research is called dslinter.
It extends Pylint with checkers for data science and machine learning. Each checker
is a class in the linter which traverses the AST of the source code looking for spe-
cific types of probable bugs, best practices, or conventions. The usage and working of
dslinter can be seen in Figure 3.1. First, the data scientist calls the linter on a set
of Python files. Then, Pylint and its dependencies take care of building the AST of
the source code. After that, Pylint and dslinter run their configured checkers on
the AST. Each violation a checker finds, for example a probable bug, is added to the
command line output or a report which is shown to the data scientist. Finally, the data
scientist takes the report and fixes all issues, after which the linter can be run again to
check whether the issues are resolved.

Identifying rules to check Different resources are used to find rules for the linter
which will flag probable bugs and check the adherence to best practices in data sci-
ence and machine learning code: 1) personal experience in developing data science
applications, 2) research papers, 3) grey literature and blog posts, 4) documentation of
libraries, 5) most popular questions on question and answer website Stack Overflow17

with tags pandas and scikit-learn, and 6) informal talks with ING employees.
A total of six checkers are designed and implemented, which are discussed in detail

in the remainder of this section. An overview of the six checkers and their essence can
be seen in Table 3.1.

Structure of section The remainder of this section will explain every designed and
implemented checker. For each checker, first its essence is given, then the reasoning
behind the checker (what problems it solves or prevents and how), then the implemen-
tation details are elaborated upon and finally its limitations. Also, for every checker a
source code snippet of an example violation and its fix is given.

16https://github.com/pycqa/mccabe
17https://stackoverflow.com
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Table 3.1: Overview of the six designed and implemented checkers.

Checker (Section) Essence

Unassigned DataFrame Checker (3.4.1) Operations on DataFrames return new DataFrames, which
should be assigned to a variable.

DataFrame Iteration Checker (3.4.2) Vectorized solutions are preferred over iterators for
DataFrames.

NaN Equality Checker (3.4.3) Values cannot be compared with np.nan, as np.nan !=
np.nan.

Hyperparameter Checker (3.4.4) For learning algorithms, hyperparameters should be set.
Import Checker (3.4.5) Check whether data science modules are imported using

the correct naming conventions.
Data Leakage Checker (3.4.6) All scikit-learn estimators should be used inside

pipelines, to prevent data leakage between training and test
data.

3.4.1 Unassigned DataFrame Checker

Essence of the checker: Operations on DataFrames return new DataFrames. These
DataFrames should be assigned to a variable.

Reasoning

Most functions that can be called on a DataFrame object (which is a two-dimensional
data structure) from the pandas or pyspark library perform some kind of transforma-
tion or filtering on the DataFrame. The DataFrame the operation is called on is not
changed, but a new DataFrame with the performed operation is returned instead. This
means that the result of the operation should be assigned to a variable, or is lost other-
wise. An example of this can be seen in Listing 2. The abs() call on the DataFrame
returns a new DataFrame with absolute values all elements in the DataFrame, but is
not assigned to a variable. Therefore, in code following this chunk, the values of this
DataFrame can still be negative.

An exception to this functionality of pandas DataFrames is when the inplace pa-
rameter of the operation is set to True. In that case, the DataFrame resulting from the
operation is automatically assigned to the variable of the original DataFrame. It is a
misconception that in-place operations will save memory, because a copy of the data is
still created. While contributors to the pandas library agree the possibility of in-place
operations should be removed since 201718, it is still supported for the time being.

Listing 2 Example violation (left) and fix (right) of the Unassigned DataFrame Checker.
import pandas as pd

df = pd.DataFrame([-1])
df.abs()

import pandas as pd

df = pd.DataFrame([-1])
df_abs = df.abs()

18https://github.com/pandas-dev/pandas/issues/16529
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Implementation

This checker raises an issue message when a method is called on a pandas or pyspark
DataFrame object, without assigning the result to a variable.

As Python is not a typed language, it is not trivial to statically determine the type of
object a method is called on. Therefore, a dedicated TypeInference module is created.
This TypeInference module makes use of the mypy19 package to statically infer the type
of objects in Python source code. mypy uses a combination of type annotations, local
type inference, and library stubs to statically infer object types. Luckily, the Python
package data-science-types20 contains type information for a lot of modules from
matplotlib, numpy, and pandas. This means that mypy can infer the type of most
objects interacting with these packages.

To reveal the type of an object inferred by mypy, source code has to be injected with
reveal_type() statements and has to be passed to the mypy API. Thereafter, the result
of mypy has to be parsed. Other packages that can be used for static type inference,
such as pytype21 and Pyre22, are more sophisticated and allow easier querying of
inferred types. Sadly, these tools do not support the Windows operating system yet
and would, therefore, limit the linter too much.

When a Module node is visited in the AST by the checker, the TypeInference
module is used to infer the types of all objects a function is called on. Then, all calls
which are not of the form a.f() are filtered out. These calls would result in too many
false positives or a too complex implementation if all possibilities a call can be made
should be accounted for. Then, if the call is made on a DataFrame, it is evaluated
whether the result is assigned to a variable. If this is not the case, the linter will add an
‘unassigned-dataframe‘ message to the source line of the call.

Limitations

While experimenting with the data in Jupyter notebooks, functions like head() are
often called to see what the data looks like. The resulting DataFrame is then often
intentionally not assigned, as the notebook prints the result beneath the code. This
problem is partly mitigated by whitelisting certain functions often used this way in
notebooks, such as head() and describe(), but this adds some possible false nega-
tives to the checker. These whitelisted functions are added as a configurable option to
the checker, so users can change the list as they see fit.

3.4.2 DataFrame Iteration Checker

Essence of checker: Vectorized solutions are preferred over iterators for DataFrames.

19http://mypy-lang.org
20https://pypi.org/project/data-science-types
21https://google.github.io/pytype/
22https://pyre-check.org/
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Reasoning

As a DataFrame in the pandas or pyspark library can become very large, iterating
through it should be avoided. As stated in the pandas documentation23: ”Iterating
through pandas objects is generally slow. In many cases, iterating manually over the
rows is not needed and can be avoided [...]”. Instead, built-in methods should be used
that are vectorized. These built-in methods include most arithmetic, reshaping, join,
groupby, comparison, and reduction operations. Besides speed, another advantage of
using the built-in methods is that code complexity is reduced, and therefore the code
will be less prone to bugs. An example of a violation of this checker and its fix, by
using a built-in method, can be seen in Listing 3. The impact of the fix on the runtime
can be seen in Figure 3.2, which is created with the perfplot24 package running the
code from Listing 3. While the runtime of the code using an iterator grows rapidly
when the size of the DataFrame increases, the runtime of the code using a vectorized
solution increases barely. Vectorized solutions are so fast because multiple operations
can be run from a single instruction.

When a built-in method does not exist for a required operation and the user is deal-
ing with large DataFrames, a custom Cython25 extension could be created to preserve
speed. When the effort of creating such an extension does not outweigh the gained
speed, a list comprehension can best be created: [f(x) for x in df['col']].
When a DataFrame iteration is inevitable, a special comment can be added to the code
block to ignore this violation:## Pylint: disable=dataframe-iteration.

Listing 3 Example violation (left) and fix (right) of the DataFrame Iteration Checker.
import pandas as pd
df = pd.DataFrame([1, 2, 3])

result = []
for index, row in df.iterrows():
result.append(row[0] + 1)

result = pd.DataFrame(result)

import pandas as pd
df = pd.DataFrame([1, 2, 3])

result = df.add(1)

Implementation

With the TypeInterference module already created for the Unassigned DataFrame
Checker described in Section 3.4.1, the implementation of this checker is quite ba-
sic. If the parent of a Call node in the AST is a For node, but the Call node does not
occur in the body of the For node, it must be the object iterated over. So, if this Call
node is called on a DataFrame, it means there is iterated through a DataFrame and
therefore a message is raised.

As a ‘bonus‘, another checker is implemented which checks whether a DataFrame
is modified while it is iterated over. This extra checker works by first retrieving all
targets (for target1, target2 in x: ...) from a For node, then retrieving all

23https://pandas.pydata.org/pandas-docs/stable/getting_started/basics.html#ite
ration

24https://github.com/nschloe/perfplot
25https://cython.org
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Figure 3.2: Impact on runtime with different techniques from Listing 3.

variables which are assigned to in the body of the For node, and finally checks if a
variable name exists in both lists.

3.4.3 NaN Equality Checker

Essence of checker: Values cannot be compared with np.nan, as np.nan != np.nan.

Reasoning

While None == None evaluates to True, numpy.nan == numpy.nan evaluates to
False. As pandas treats None like numpy.nan for simplicity and performance
reasons [10], a comparison of DataFrame elements with numpy.nan always returns
False. When a comparison against None or NaN is needed, the functions isna() or
notna() should be used instead.

An example of this can be seen in Listing 4. In the code containing a violation, all
values of df_is_nan will be False and therefore may lead to unintentional behavior
later in the code.

Listing 4 Example violation (left) and fix (right) of the NaN Equality Checker.
import pandas as pd
import numpy as np

df = pd.DataFrame([1, None, 3])
df_is_nan = df == np.nan

import pandas as pd
import numpy as np

df = pd.DataFrame([1, None, 3])
df_is_nan = df.isna()
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Implementation

The implementation of this checker is very simple. When a conditional statement is
visited in the AST, it is checked whether one of the sides is the expression np.nan.

3.4.4 Hyperparameter Checker

Essence of the checker: For learning algorithms, hyperparameters should be set.

Reasoning

Hyperparameters are parameters of learning algorithms used to control the learning
process and are usually fixed before the actual process begins. The two main reasons
why hyperparameters should be set and tuned are that it improves prediction quality
and reproducibility. Tuning hyperparameters is part of the Machine Learning Test
Score from Breck et al. [8].

Tuning hyperparameters can result in higher prediction quality, because the default
parameters of the learning algorithm may be suboptimal for the given data or problem
and may result in a local optimum. These parameters directly control the behavior of
the training algorithm and therefore have a significant impact on the performance of
the model. Examples of such hyperparameters are the learning rate for neural networks
and the C and sigma for Support Vector Machines. Examples of hyperparameter opti-
mization techniques are Grid Search and Random Search, which are also both available
in the scikit-learn library. These algorithms can be used to optimize any parameter
value for an estimator.

The second reason for defining hyperparameters of learning algorithms is that it
improves reproducibility. Reproducibility is improved because of (at least) three as-
pects.

Firstly, while the default parameters of the machine learning library could be per-
fect for certain problems, these default parameters of the library can change in new
versions of the library. When the library is updated to a new version with such changes,
the behavior of the model also changes while there are no changes made in the code
implementing the model. This means that this can have an impact on the prediction
quality, without the maintainer of the model being aware of any changes. Also, when
a model is reproduced later on and the default parameters of the library have changed,
different results will be obtained. While one can trust in the maintainers of such li-
braries to not change default parameters too radically, it is better to explicitly set the
parameters of the model.

The second aspect involves one particular parameter of algorithms involving ran-
domness: the random seed. Random seeds should always be set to be able to reproduce
results and recreate bugs. Otherwise, the result could be different across different runs
of the model, even when running the same code and using the same data. It would also
be hard to tell if a change in performance is due to a model or data modification, or
due to a new random sample. Besides estimators, the random seed should be specified
for all steps in the pipeline, e.g., the random split used for cross-validation.

Finally, explicitly setting all hyperparameters allows replication of the model in a
different programming language. As seen in the case study in Chapter 2, it can happen
in large organizations that models are first created on one programming language, but
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for deployment have to be converted to another language. To reproduce the same
model in the other programming language, it is crucial to use the same parameters
of the learning algorithms. However, libraries from different programming languages
could have different default parameters for their algorithms. Therefore, it is better to
explicitly set the parameters of the model.

An example of a violation of this checker and its fix can be seen in Listing 5.

Listing 5 Example violation (left) and fix (right) of the Hyperparameter Checker.
from sklearn.cluster import KMeans

kmeans = KMeans()

from sklearn.cluster import KMeans

kmeans = KMeans(n_clusters=8,
random_state=0)↪→

# Or, ideally:
kmeans = KMeans(n_clusters=8,

init='k-means++', n_init=10,
max_iter=300, tol=0.0001,
precompute_distances='auto',
verbose=0, random_state=0,
copy_x=True, n_jobs=1,
algorithm='auto')

↪→
↪→
↪→
↪→
↪→
↪→

Implementation

The checker works by first retrieving all learning classes and their hyperparameters
from a pre-defined list, which is created by collecting the signatures of all learning
classes from scikit-learn. Then, when a function call in the AST is visited by
the checker, it evaluates whether the function name of the call belongs to a learning
class. If that is the case, then it is checked whether the function call contains the right
keywords or the right number of arguments. A message is raised if this is not the case.

The checker has two modes for checking whether hyperparameters are set. In the
strict mode, every argument of a call to a learning algorithm of the scikit-learn
library has to be set. In the non-strict mode, only the ‘main’ hyperparameters have to
be set. There exists no strict definition of a main hyperparameter in literature, but there
is done research on the importance of certain hyperparameters [39, 49]. The common
method used in these studies is given an algorithm and a large number of datasets,
determine the tuning of which hyperparameters affect the algorithm’s empirical per-
formance most. These studies only look at a limited amount of algorithms, but their
results show the following hyperparameters are most important:

AdaBoost: learning rate
GradientBoosting: learning rate
RandomForest: minimum samples per leaf and maximum features
ElasticNet: alpha and lambda
NearestNeighbors: number of neighbors
SVM: kernel, gamma, complexity
DecisionTree: complexity
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So in the non-strict mode, these parameters are set as the main hyperparameters. For
all algorithms not in this list, defining one parameter is enough to comply with this
checker.

Limitations

In workflows where hyperparameter optimization, or parameter search strategies, are
used such as Grid Search, learning classes are sometimes initiated without those pa-
rameters explicitly set. Instead, these parameters will be set later as a result of pa-
rameter optimization. As the checker evaluates whether the parameters are set when
constructing the learning class, false-positive violations will be given in this scenario.

3.4.5 Import Checker

Essence of the checker: Check whether data science modules are imported using the
correct naming conventions.

Reasoning

Following naming conventions when importing modules will allow all maintainers
of a project to quickly see what is exactly going on. For example, looking at the
code pd.read_csv(data.csv), it is immediately clear that a pandas DataFrame is
created from a CSV file if everyone imports the pandas library with the alias pd.
Another reason for implementing this checker is that the NaN Equality Checker (cf.
Section 3.4.3) and the Hyperparameter Checker (cf. Section 3.4.4) depend on imports
following the conventions due to technical limitations.

The official documentation of the libraries is used to decide what the actual con-
ventions are. An example of violations of this checker and their fixes can be seen in
Listing 6.

Listing 6 Example violations (left) and fixes (right) of the Import Checker.
import numpy
import pandas as pand
import matplotlib.pyplot as plot
from sklearn.cluster import KMeans

as km↪→

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans

Implementation

This checker is the first one implemented and offered a great opportunity to get familiar
with creating a Pylint plugin and using the Python AST. A Python import statement
is represented by an Import node in the AST. When such Import node is visited, the
checker evaluates whether either pandas, numpy, or matplotlib.pyplot is imported
and the alias is set respectively to pd, np, or plt. When an ImportFrom node is visited,
and something is imported from sklearn, it is checked whether no alias is set for the
import.
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3.4.6 Data Leakage Checker

Essence of the checker: All scikit-learn estimators should be used inside pipelines,
to prevent data leakage between training and test data.

Reasoning

Data leakage is a very important problem in machine learning. It results in overly
optimistic performance during testing and bad performance in real-world usage. There
are two main sources of data leakage: leaky predictors and a leaky validation strategy.
Leaky predictors include data that will not be available at the time the real-world model
will create predictions. In a leaky validation strategy information from training data is
getting mixed with validation data.

Leaky Predictors An example of a leaky predictor is the inclusion of an ExitReason
variable if the goal is to predict whether a customer is going to leave the company [38].
All customers who left will have values in this variable, and those who are still in the
company will not. Indications of leaky predictors are columns that have a high statisti-
cal correlation with the target, or models which have an unexpected high performance.

Leaky predictors can be detected by exploratory data analysis, comparison of mod-
eling results with results of earlier models, and early field-testing [21]. All these meth-
ods require some degree of domain knowledge. Therefore, it is not possible to include
a detection algorithm for leaky predictors in the static code analysis tool of this re-
search.

Leaky Validation Strategy An example of a leaky validation strategy can be seen in
Listing 7, which is an adaptation of the example by Müller et al [35]. In this example,
there is no relation between the data and the target, because they are both sampled
independently from a Gaussian distribution. Therefore, it should not be possible to
learn anything from the data. Regardless, the model results in an accuracy of 91%.
This happens because information leaked from the training data to the test data by
selecting the best features on the entire dataset, which had by chance a high correlation
with the target. This means that while cross-validation is used, information leaked
from the training folds to the test folds.

To prevent a leaky validation strategy, all data transformation must happen within
each cross-validation fold. This also holds for feature selection, outlier removal, en-
coding, scaling, and dimensionality reduction. To assure this, the scikit-learn li-
brary has introduced Pipelines.

Scikit-learn Pipelines Pipelines26 can be used to chain multiple estimators and data
transformers into one. Pipelines serve multiple purposes. The first is that the pipeline
executes a fixed sequence of steps in processing the data, with only one call to the
pipeline needed. The second is that pipelines can be used to search for optimal param-
eters of all estimators in the pipeline at once. Thirdly, pipelines help to avoid leaking
statistics from test data into the trained model in cross-validation, by ensuring that the
same data samples are used to train all transformers and predictors.

26https://scikit-learn.org/stable/modules/compose.html#pipeline
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The last of these purposes is the reason this Data Leakage Checker enforces the use
of Pipelines when estimators from the scikit-learn library are used. An example
of the fix for the violation in Listing 7, using a Pipeline, is given in Listing 8. The
accuracy of the model on the data is now -0.25%, which is expected.

Listing 7 Example violation of the Data Leakage Checker.

import numpy as np
from sklearn.feature_selection import SelectPercentile, f_regression
from sklearn.linear_model import Ridge
from sklearn.model_selection import cross_val_score

rnd = np.random.RandomState(seed=0)
X = rnd.normal(size=(100, 10000))
y = rnd.normal(size=(100,))

select = SelectPercentile(score_func=f_regression, percentile=5).fit(X, y)
X_selected = select.transform(X)
accuracy = np.mean(cross_val_score(Ridge(), X_selected, y, cv=5))

Listing 8 Example fix of the Data Leakage Checker for the violation in Listing 7.

import numpy as np
from sklearn.feature_selection import SelectPercentile, f_regression
from sklearn.linear_model import Ridge
from sklearn.model_selection import cross_val_score
from sklearn.pipeline import Pipeline

rnd = np.random.RandomState(seed=0)
X = rnd.normal(size=(100, 10000))
y = rnd.normal(size=(100,))

select = SelectPercentile(score_func=f_regression, percentile=5)
pipe = Pipeline([("select", select), ("ridge", Ridge())])
accuracy = np.mean(cross_val_score(pipe, X, y, cv=5))

Implementation

This checker raises an issue message when a learning function is called on an estima-
tor in the scikit-learn library. The learning functions are fit(), fit_predict(),
fit_transform(), predict(), score(), and transform(). The estimators from
scikit-learn are all learning classes used for the Hyperparameter Checker in Sub-
section 3.4.4 and the classes in the preprocessing package of scikit-learn. All
estimators extend the BaseEstimator class.

The difficult part of implementing this checker is that above-mentioned learn-
ing functions are often not called directly on a call instantiating the estimator
(e.g., KMeans().fit()), but on a variable pointing to an estimator instance (e.g.,
my_estimator.fit()). Also, as there is no type information in the scikit-learn
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library, mypy cannot be used to infer the types of those variables. Therefore, a dedi-
cated AssignUtil module is created. This utility module can be used to statically find
all expressions a variable gets assigned (e.g. 5 in the case of x = 5). When the vari-
able is a function argument (e.g. (a) in the case of f(a=1)), the utility module looks
for the expressions this argument gets assigned in calls to the function. If a variable is
assigned an estimator and a learning function is called on this variable, the rule of this
checker is violated and an issue message is raised.

Limitations

This checker has both methodological limitations and technical limitations.
The methodology of enforcing the use of Pipelines in the scikit-learn library

surely prevents a lot of data leakage due to a leaky validation strategy, but as discussed
above, data leakage can also be the result of leaky predictors. Pipelines do not pre-
vent leaky predictors in any way. Preventing data leakage is still an open problem in
research [48, 21], so it is expected this checker does not solve the entire problem at
once.

The implementation of the checker also has some limitations. As no type checking
can be used to determine whether a variable holds a scikit-learn estimator, eval-
uating this is limited by the implementation of the AssignUtil module. It checks for
direct assignments in parent nodes, but the assignment may also be done, for example,
in function definitions in other modules. These will not be found, so the checker will
not raise an issue message when the variable on which a learning function is called is
assigned to an estimator there.

3.5 Evaluation

This section describes the evaluation of the prevalence of violations of the imple-
mented linter and the precision of the checkers, for which we run dslinter on a
large number of open source scripts used for data processing and machine learning.

3.5.1 Evaluation Setup

To evaluate the linter, we collected the 1000 most popular notebooks from Kaggle27.
Kaggle is an online platform with a large community of data scientists and machine
learning practitioners, where they can build models in a web-based environment and
enter competitions to solve real-world data science challenges. Kaggle has currently
over 3 million registered users and 200,000 public notebooks28. This makes it an ideal
source for analyzing real-world source code from many different data scientists.

Dataset

The notebooks are retrieved from Kaggle sorted by ‘hotness’, which means that those
notebooks are ”scoring highly in things like upvotes and views, or are “all-time”

27https://kaggle.com
28Jupyter notebooks, usually called just ‘notebooks’, consist of a sequence of cells that contain code,

visualizations, or text to perform data analysis and machine learning.
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greats that have been consistently popular on the platform for a long time” [20]. We
have published the list of all collected notebooks online29, so that the evaluation could
be replicated in a future study.

The 1000 collected notebooks correspond to 226,129 lines of Python code, with a
median of 163 code lines per notebook. Of those 1000 notebooks, 656 have associated
tags with them. The five most popular tags are data visualization (230x), beginner
(203x), eda30 (193x), gpu (181x), and tutorial (152x). A total of 655 notebooks are
linked to a competition.

Evaluation Process

An overview of the process to collect and process notebooks is explained in this para-
graph and can be seen in Figure 3.3. To collect the notebooks, the Kaggle API31 is
used. First, the names of 1000 kernels, which are either a script or a notebook, are
retrieved sorted by ‘hotness’. Then, the kernels themselves are pulled from Kaggle.
Notebooks are converted to scripts with nbconvert32. Finally, Pylint is run on all
scripts with the default checkers disabled and the dslinter plugin and its checkers
enabled. The reporting functionality of Pylint is used to create an overview of the
aggregated results.

The report generated by Pylint shows the number of violations of each checker
in the collected notebooks. A maximum of 30 violations per checker is inspected
manually to determine the number of true positives of each checker.

nbconvert dslinter

Report

Figure 3.3: Evaluation process of collecting and processing notebooks.

3.5.2 Evaluation Results

Among the 1000 collected notebooks, the checkers from dslinter found 2,664 vio-
lations. An overview of the occurrences of all violations can be seen in Table 3.2.

The violations that occur most often (1876 times) in the collected notebooks are
from the Data Leakage Checker regarding not using scikit-learn estimators inside
pipelines, which can introduce data leakage between training and test data. Manual
inspection of 30 random lines containing violations shows support for the reasoning
behind the checker. There are some instances (4 in the sample of 30) where standard-
ization and normalization are done before splitting the data into train and test splits.
This introduces data leakage because scaling factors are calculated on the full distribu-
tion of data. The correct way to do this is to compute the scaling factors on the training
data, and perform these factors on both the training and test data. A scikit-learn

29https://doi.org/10.5281/zenodo.3909595
30eda stands for ‘exploratory data analysis’.
31https://github.com/Kaggle/kaggle-api
32https://github.com/jupyter/nbconvert
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Table 3.2: Violations found in collected notebooks.

Checker Occurrences True Positives
Data Leakage Checker 1876 250* **
Hyperparameter Checker 734 611*
Unassigned DataFrame Checker 25 6
Import Checker 14 14
DataFrame Iteration Checker 8 8
NaN Equality Checker 7 7

*Estimated based on 30 random violations.
**Note that the technical number of true positives is 1876,

as the checker checks whether a scikit-learn pipeline is used.

pipeline would have taken care of this. If we assume the same ratio (4/30) occurs in
all found violations, 250 of the 1876 violations contain true data leakage. In other
instances (3 in the sample of 30), violations of the checker are found where no actual
data leakage occurred, because the data scientist handled the correct separation of the
training and test set manually before standardization and normalization. However, the
code would have been much cleaner if a scikit-learn pipeline was used. The re-
maining manually inspected lines contained calls to estimators without any obvious
standardization or normalization of the data, although data leakage could still have
been introduced earlier in the script because no pipeline is used.

The second most occurring violation, with 734 occurrences of the Hyperparameter
Checker, is not defining the hyperparameters of learning algorithms. Manual inspec-
tion of 30 random violations shows that some are false positives (5 in the sample of 30),
where the learning function is indeed called without defining hyperparameters, but are
defined later using parameter search strategies. If we assume the same ratio (25/30) oc-
curs in all found violations, then in 611 of the 734 violations hyperparameters are truly
not defined for used learning algorithms. When the option strict-hyperparameters is
turned on, which means that all parameters of learning algorithms have to be set, 1287
violations are found. Inspection of the notebooks shows that only 17 calls to learning
algorithms defined all parameters. This means that most scripts could be improved for
better reproducibility.

The 25 violations of the Unassigned DataFrame Checker were few enough to man-
ually inspect them all. As Kaggle is also used to educate other people about data sci-
ence and machine learning, 17 violations are made purposely to show the result of an
operation, without the need of using the result for further calculations. Two violations
are thrown by calls to libraries imported earlier in the notebook. That means only six
violations are true positives and introduced a bug in the script.

There are in total 14 violations found related to import naming conventions by the
Import Checker. While these violations do not make the code less accurate, readability
could be improved if the community conventions are used. The low amount of vio-
lations of this category indicates that indeed most data scientists use the same import
naming.

Eight violations of the DataFrame Iteration Checker are found in the collected
notebooks. In most instances, the built-in functions of the pandas library could have

44



3.6. Discussion

been used instead. This results in huge runtime reductions on large datasets, as shown
in Subsection 3.4.2.

Finally, seven violations of the NaN Equality Checker are found. As comparing a
value to numpy.nan does always return False (as numpy.nan != numpy.nan), this
can result in serious bugs in those scripts.

3.6 Discussion

In this section the interpretation of the results, the implications and limitations of the
study, and recommendations for future research are discussed.

The results show that static code analysis can detect and thus prevent probable
bugs in data science code. All checkers of the implemented linter found violations in
the collected notebooks. Most notable is the large number of violations of the Data
Leakage Checker, which indicates there are many scripts with possible data leakage
and thus over-optimistic results.

It is important to note that the relevance of dslinter could be higher than the
numbers suggest. Even though the linter has not found certain violations in currently
available versions of source code, it does not mean it was never there and the data
scientists never struggled with it. A data scientist could have noticed a fault in the
program, but not be able to find the origin of the fault for a long time. The linter could
have saved the data scientist a lot of time by pointing to the source of the problem right
away.

3.6.1 Implications

Data scientists should be aware of the faults and best practices highlighted in this re-
search and should try to prevent these faults from occurring in their code. This will
result in more accurate scoring metrics during training, better optimization of hyper-
parameters, cleaner code, and for these reasons a better functioning program. Data
scientists could run linters on their code to be able to address possible faults quickly,
even if their projects are still in the experimental phase. When Python, pandas,
and scikit-learn are the language and libraries of choice, Pylint extended with
dslinter could be set up to automatically lint the code while developing data science
and machine learning projects.

The implication of this research for software engineers is the notion that general
programming language linters can successfully be extended for specific use cases. It
is not needed to develop a linter from scratch, as new plugins for existing linters can
be developed for the situation the software engineer is working in. The implemented
linter of this study can also be extended, as we made it publicly available on GitHub33

under the GNU General Public License.
The implications for the accountable person of a machine learning application

within an organization such as ING, for example the product owner, are that dslinter
offers first steps to automated validation. It could, for example, be used in the contin-
uous integration pipeline for machine learning applications to ensure and gain confi-
dence that the system is able to accomplish its intended goals.

33https://github.com/MarkHaakman/dslinter
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3.6.2 Limitations

There are some limitations with taking Kaggle as a source for the evaluation of the
implemented linter. Kaggle is a platform where individual users can upload their note-
books to share them publicly and enter competitions. This differs from the industry,
where code is often peer-reviewed. Furthermore, the skill of the users of Kaggle is
not known. Therefore, it is unclear how generalizable the evaluation results are to the
industry and larger data science projects with multiple data scientists.

Although the implemented linter has a statement test coverage of 89%, the linter
could contain faults itself. This means there could be fewer or more actual violations
to the checkers in the collected notebooks.

The checkers themselves can also contain methodological faults, which result in
false positives with respect to the faults we claim each checker prevents. Besides
the whitelisted functions of the Unassigned DataFrame Checker, there could be more
operations that do not lead to faults when the result is not assigned to a variable. Re-
garding the DataFrame Iteration Checker, iterating through a DataFrame is sometimes
unavoidable and not always wrong. Also, when the Data Leakage Checker reports a
violation as an estimator is not used in a pipeline, it does not mean there is guaranteed
data leakage.

The last limitation of the results is that linter only tells us about a selected number
of possible faults while using the pandas and scikit-learn libraries of the Python
programming language. There are probably many faults not covered within the use of
these libraries, but also in other libraries such as TensorFlow and Spark, and other
programming languages such as Java and R.

3.7 Conclusions

The goal of this study is to reduce bugs and improve the code quality of machine
learning applications. Therefore, we developed a static code analysis tool, dslinter,
consisting of six checkers that help prevent data leakage, not assigning the result
of a DataFrame operation, comparing objects with nan, unnecessary iterations over
DataFrames, and enforce import conventions and defining hyperparameters for learn-
ing algorithms. The evaluation of the linter on 1000 collected notebooks from Kaggle
shows that static code analysis can detect and thus prevent bugs in data science code.
All checkers of the implemented linter found violations, with most notable a large
amount of possible data leakage and calls to learning algorithms where hyperparame-
ters are not defined. Our research helps machine learning and data science practitioners
to be aware of some possible faults and best practices in their code and helps them by
providing the linter so static code analysis can be run automatically on their projects.
We show software engineers that linters can successfully be extended for specific use
cases and we encourage them to extend the linter developed in this research.
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Chapter 4

Conclusions and Future Work

This chapter gives an overview of the project’s conclusions and research directions for
future work.

4.1 Conclusions

In this thesis, we studied the machine learning lifecycle and used static code analysis
to improve the code quality of machine learning applications.

The goal of our first study, as described in Chapter 2, was to understand the evo-
lution of machine learning development and how state-of-the-art lifecycle models fit
the current needs of the fintech industry. To that end, we conducted a case study
with seventeen machine learning practitioners at the fintech company ING. Our key
findings are: 1) CRISP-DM and TDSP are largely accurate; but 2) there are crucial
steps missing from the fintech perspective, including feasibility study, documentation,
model evaluation, and model monitoring; in particular, 3) the key challenges comprise
model governance and technology access. This research helps practitioners fine-tune
their approach to machine learning development to fit fintech use cases. Additionally,
it guides educators in defining learning objectives that meet the current needs in the
industry.

As the importance of the reliability of machine learning applications became clear
in the case study, we performed a second study with the goal of reducing bugs and
improving the code quality of machine learning applications. This study is described
in Chapter 3. We developed a static code analysis tool, dslinter, consisting of six
checkers that help prevent data leakage, not assigning the result of a DataFrame opera-
tion, comparing objects with nan, unnecessary iterations over DataFrames, and enforce
import conventions and defining hyperparameters for learning algorithms. The eval-
uation of the linter on 1000 collected notebooks from Kaggle shows that static code
analysis can detect and thus prevent bugs in data science code. All checkers of the im-
plemented linter found violations, with most notable a large amount of possible data
leakage and calls to learning algorithms where hyperparameters are not defined. Our
research helps machine learning and data science practitioners to be aware of some
possible faults and best practices in their code and helps them by providing the linter
so static code analysis can be run automatically on their projects. We show software
engineers that linters can successfully be extended for specific use cases and we en-
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courage them to extend the linter developed in this research.

4.2 Future work

Both studies performed in this thesis call for future research directions.
The case study could be replicated at other organizations to validate the generaliz-

ability of the results. These other organizations could be of a different industry (e.g.,
health), different types (e.g., data-driven by nature), different sizes, or could be even
other banks or fintech companies.

Future work could also tackle the challenges found in the case study and thereby
reducing bottlenecks in the machine learning lifecycle. Automation support should be
developed for exploratory data analysis and tracing documentation back to the code-
base and vice versa. Software testing needs to be extended and adapted machine
learning software and holistic monitoring solutions should be created that can scale
to different models in organizations.

The created static code analysis tool could be extended to support more data sci-
ence and machine learning libraries. Extra checkers could also be added to support
detecting more probable bugs and adherence to more best practices. The inspiration
for these checkers could come from close collaboration with data science teams.

Lastly, user studies could be performed to evaluate the perceived usefulness of the
linter in the machine learning lifecycle. This can also reveal parts of the tool that should
be improved to detect probable bugs and adherence to best practices more effectively.
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Appendix A

Glossary

In this appendix an overview of frequently used terms in this thesis is given.

CRISP-DM (Cross-Industry Standard Process for Data Mining): de facto process
for developing data mining and knowledge discovery projects [44]. It breaks
down a project in six phases: business understanding, data understanding, data
preparation, modeling, evaluation, and deployment.

Checker (in the context of Chapter 3): a piece of software that traverses the abstract
syntax tree of some source code looking for specific, predefined types of proba-
ble bugs, best practices, or conventions.

DataFrame: a two-dimensional data structure used in the Python library pandas.

dslinter: a plugin for the Python static code analysis tool pylint, developed in the
study of Chapter 3 with the aim of finding probable bugs and enforcing best
practices in source code of machine learning applications.

Fintech: a financial industry that applies technology to improve financial activities [42].

Fix (in the context of Chapter 3): a change in source code which will resolve the
problem found by a checker of a static code analysis tool.

Linter: a static code analysis tool that is used to flag issues in software source code.
It shows the source code line an issue occurs in and the name of the issue.

Machine learning lifecycle: the process of developing, training, and serving machine
learning applications.

Static code analysis: analysis of the source code of software that is performed with-
out executing the program it analyzes.

TDSP (Team Data Science Process): a modern industry process for developing data
mining and knowledge discovery projects [32], which has at a high level much
in common with CRISP-DM. It includes four major stages for business under-
standing, data acquisition, modeling, and deployment.

Violation (in the context of Chapter 3): a piece of source code that contains a prob-
lem according to one of the checkers of a linter.
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