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Abstract

Range verification based on prompt gamma detection is an important step to improve dose control for proton
therapy. To deduce the proton range from the detected prompt gamma emission, a prediction of the mea-
sured profile is required. This study introduces the Boltzmann solver as a faster alternative to the Monte Carlo
simulations to produce dose distributions and prompt gamma source terms from proton therapy treatment
plans.

The Boltzmann solver traces mono-energetic pencil beams of finite width through the CT volume. The
code only simulates scatterless propagation. The pencil beams are divided into mathematical pencil beams
that are individually forward traced using numerical integration to keep track of the fluence and proton en-
ergy. The code employs cross section libraries to evaluate stopping power and prompt gamma emission and
has an option to include absorption interactions.

To verify the Boltzmann solver, the simulated distributions in simple geometries were compared to data pro-
duced by Topas MC. The calculation time of the Boltzmann solver was in the order of seconds, while the
simulations in Topas MC took >4 h. It was found that the solver calculated shorter proton ranges than the
Monte Carlo code. This is caused by the difference of cross sections between Topas MC and the library em-
ployed by the Boltzmann solver. Furthermore, the prompt gamma yield of the Boltzmann solver was found
to be significantly higher than that of Topas MC.

Furthermore, the dose deposition of a full treatment plan was compared to the planned dose included
in the plan. The simulation time of a full treatment plan was 0.43 h. A γ-index analysis showed that severe
deviations occur in high-dose areas, especially when few pencil beams of high intensity deposit the dose.

The Boltzmann solver is mathematically reliable. Additional research must be done to provide it with
accurate cross sections. Furthermore, the balance between calculation time and accuracy is to be determined
based on the range verification system the code serves. Ultimately, an extensive validation study must be
performed.
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1
Introduction

1.1. Radiotherapy
1.1.1. Introduction to radiotherapy
Radiotherapy is one of the three main methods to treat cancer, along with chemotherapy and surgery. The
aim of this type of treatment is to kill tumor cells with ionizing radiation.

The energy administered during radiation therapy is low: a treatment plan typically prescribes a homoge-
neous dose of 60-90Gy to a tumor volume, which corresponds to the amount of heat to raise its temperature
by 0.02°C. The effectiveness of radiation dose lies in the ionizing interactions with DNA, which can cause
single and double strand breaks and eventually cell death.

Healthy cells are able to repair DNA damage to some extent. However, tumor cell functions are disrupted,
causing them to be less successful at self-repair. This difference is exploited by administering the dose in
multiple fractions of a few Grays. In between the fractions healthy tissues have the opportunity to recover.
This way tumor cells are killed while surrounding tissues are spared.

While healthy cells are moderately spared by the fractionation of the treatment plan, the overall dose to
healthy tissues, so-called organs at risk (OAR), is minimized. Some OAR are particularly sensitive to radiation,
cause discomfort to the patient or cannot regenerate. A maximum dose constraint may be applied for these
tissues. Treatment plans carefully balance dose prescriptions to the target volume and OAR while minimizing
integral dose. Deviations from the plan may cause sparing of tumor cells or unnecessary healthy cell death.

Correct dose delivery is complicated because of a variety of uncertainties, including deviations in patient
alignment, organ motion and anatomical changes of the patient. This is accounted for by application of a
safety margin around the clinical target volume (CTV), thereby creating the planning target volume (PTV).
This margin ensures that the prescribed dose is delivered to the CTV under these circumstances, but intro-
duces a high dose to tumor-adjacent tissues.

The aim of radiotherapy development is to kill all tumor cells while the dose to healthy tissues is as low
as possible. The characteristics of particle therapy allow for significant improvement relative to conventional
photon treatment. However, the particle modality is specifically sensitive for uncertainty in dose delivery.
Therefore, to fully exploit the advantages of particle therapy, the development of dose control is essential.

1.1.2. Proton therapy
Over the past years, proton irradiation has gained ground in the field of radiation oncology. The main benefit
of proton therapy relative to conventional treatment is the concentrated dose delivery at the distal end of the
particle range, which allows for more efficient targeting of the tumor volume. The difference between the
depth-dependent dose delivery photon and proton treatment is illustrated in figure 1.1.

The dose from photon beams is characterized by a skin sparing effect in the first ~1.5 cm, during which the
dose rises to its maximum. After the peak both the photon fluence and radiation dose decrease exponentially.
Due to this behaviour high dose is delivered to healthy tissues located before the tumor volume.

In contrast to the photon dose, the dose delivered by proton beams is characterized by a low entrance
plateau. The rate of energy-transferring interactions is inversely correlated with the incident proton energy,
except for proton energies below 0.1 MeV. Therefore, the dose eventually rises steeply into the so-called Bragg
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2 1. Introduction

Figure 1.1: Integrated depth dose in a homogeneous medium. The goal is to administer a 100% dose to a tumor volume highlighted in
grey. The dose distribution delivered by a photon beam is indicated in red; by a proton beam in blue. A pristine Bragg peak is displayed
in dashed blue, the SOBP in solid blue. Image from Efstathiou et al., 2013 [1].

Figure 1.2: Left image: Dose in Gray as calculated by a treatment planning system for a brain tumor, using an intensity modulated
radiotherapy (IMRT) planning system. The PTV is the delineated volume to the left. The OAR are the brain stem, optic nerve and chiasm
which represented by the central delineation. Right image: Dose calculated by an intensity modulated proton therapy (IMPT) planning
system for the same patient. The arrows indicate the directions of the proton beams. Images from Wedenberg et al., 2014 [2].

peak. Behind the Bragg peak protons have lost all momentum and undergo no more interactions, so the dose
quickly falls to zero.

The proton range is defined as the depth at which the dose is at 80% of the maximum in the fall-off region.
The range depends on the initial proton energy and the material characteristics of the target. To cover a tumor
volume with a homogeneous dose, a set of pristine Bragg peaks is accumulated to create a plateau of constant
dose, the so-called spread-out Bragg peak (SOBP).

The benefits of the depth dose curve of the SOBP relative to that of a photon beam is thus threefold. Firstly,
the dose proximal to the Bragg peak is relatively low. Furthermore, the compounded Bragg peaks allow for
homogeneous dose coverage and finally, the tissue distal to the Bragg peak is spared because of the finite
range of protons. Consequently, lower integral dose to the patient can be achieved with proton therapy than
when using photon therapy (figure 1.2).

On the other hand, the dose delivery profile of proton beams entails the risk of range uncertainty. The proton
interaction rates depend linearly on the mass density of the material they interact with. Therefore density de-
viations between the map used in the treatment plan and the body during irradiation may lead to beam over-
or undershoot, causing high dose delivery to healthy tissues and underdosage of the target volume. Sources
of uncertainty include errors in CT conversion into mass density, deviations of daily setup and anatomical
changes. The latter are illustrated in figure 1.3.

Because of the risk of range uncertainty, proton treatment requires different PTV margins than photon
therapy. Multiple margin recipes circulate [3–5], prescribing generous margins (e.g. 6.5mm for 150 MeV
proton beams [3]). To reduce these margins and thereby the integral dose, on-line range verification systems
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(a) (b) (c) (d)

Figure 1.3: Effects due to anatomical changes. Simplified representation of dose deposited by a set of proton pencil beams. a. Treatment
plan; b. Proton overshoot into an organ at risk (OAR) due to a gas bubble in the bowel; c. Proton overshoot into OAR due to tumor
shrinkage, leaving a volume with lower density than the tumor tissue (e.g. a dense tumor in the lungs).

Figure 1.4: Underlying interactions of stopping power of protons in water. Nuclear interactions account for little stopping power relative
to electrical interactions. Image from Kraan et al., 2015 [6], based on data from National Institute of Standards and Technology (NIST).

are currently being developed. Using these instruments, deviations in the proton range can be identified
early during administering a treatment fraction instead of accounted for using large margins.

1.2. Proton interactions with matter
Proton range verification systems are based upon the physical properties of interactions between the incident
particles and matter. Proton interactions can be divided into electrical and nuclear interactions. As figure 1.4
shows, the electrical interactions are the main source of energy loss for the protons.

1.2.1. Electronic interactions
Firstly, protons interact inelastically with atomic electrons. They either excite the electron or ionize the atom.

Because mp >> m3, the deflection of the proton due to these interactions is negligible. The mass differ-
ence also causes the maximum energy transfer per interaction to be low. However, these interactions occur
at high rates: for a 100 MeV proton in water, the mean free path before an inelastic electronic interaction is
0.5 nm [7]. Therefore, the accumulated energy transfer is significant and the inelastic proton-electron inter-
actions are the main source of energy transfer to the medium.

Because the interactions occur very frequently, the statistical mean energy loss per unit path length is
commonly employed to describe proton energy loss. This concept is called the continuous slowing down
(CSD) approximation. It describes the stopping power (S) that depends on the proton energy (E) and the
atomic number of the particle it interacts with (Z ):

S(E , Z ) =−dE

d x
(1.1)

The rate at which energy loss occurs is described by the Bethe-Bloch equation. From this equation follows
that the relation between energy loss dE/d x and the proton velocity v is

dE

d x
∝ 1

v2 . (1.2)
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Figure 1.5: Integral depth profiles for dose, PG and PET following from patient irradiation with a pencil beam. The data are simulated
using Geant4. Left image: Head and neck patient. Right image: Abdominal patient. Image from Moteabbed et al., 2011 [12].

The fact that energy loss increases as the proton loses velocity, explains the shape of the Bragg peak.

Secondly, protons interact elastically with atomic nuclei. During these reactions energy transfer is negligible,
but the deflection of the proton can be significant. As these interactions occur frequently, multiple Coulomb
scattering occurs. This process causes the fluence of an initially uni-directional beam spread laterally into a
near-Gaussian spatial distribution.

1.2.2. Nuclear interactions
Thirdly, protons undergo inelastic interactions with atomic nuclei. These reactions cause generation of sec-
ondary particles, including secondary protons, neutrons, and gamma rays, either instantaneously or with a
delay. Secondaries of special interest are positrons and prompt gammas (PG), as those provide the possibility
to determine the proton range external of the patient.

Nuclear interaction rates are expressed by cross sections: the probability that an interaction occurs per
unit distance propagated. The cross section depends on the type of incident particle, its energy, the target
particle and the type of interaction itself.

1.2.3. Widening of the Bragg peak
Proton interactions are a stochastic process. Therefore the path length of individual protons can deviate from
the calculated range. This so-called range straggling causes the Bragg peak to have a finite width.

The peak is further widened by energy straggling. The latter occurs because clinical proton beams are
never strictly mono-energetic upon production, so incoming protons already have a finite energy range.

1.3. Proton range verification
Proton range verification is a method to confirm if the dose delivered to a patient corresponds to the treat-
ment plan. If a range verification system detects an over- or undershoot, the irradiation can be stopped before
dose is faultily administrated. Based on the circumstances the patient may be moved, the fractionation can
be postponed or a new treatment plan must be designed.

Proton range can be determined based on direct or indirect measurement of dose. Direct in-vivo mea-
surement of dose using implanted dosimeters was investigated [8, 9]. Though the results are promising, this
method is invasive and has a problematic trade-off between the amount of units implanted and resolution.

Therefore proton range is deemed to be monitored externally, based on indirect measurements. The sec-
ondary particles produced by nuclear reactions provide an opportunity to do so. Prompt gamma imaging
and positron emission tomography (PET) systems are being developed. Both methods are based on the fact
that the photon profiles are (indirectly) proportional to the dose distribution (Figure 1.5). Encouraging results
have been shown for both methods [10, 11].

Though the main focus of range verification research lay with PET over the past years, it has serious down-
sides. First of all, PET scans require acquisition times in the order of 20 minutes, making on-line PET scanning
inconvenient. Both low positron emitter-related cross sections and low decay rates lead to long measurement
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times; Parodi et al. report tissue-effective half-lives of positron emitters in the order of 1000s while describing
PET acquisition times of 30 minutes [13].

A second downside of PET scans is the low image resolution. The positron path length in tissue is inherent
to PET and causes a blur in the order of 3mm FWHM [14]. Additionally, the long acquisition times cause
further decrease in image resolution through patient motion (up to 3cm) and biological washout (4mm),
though these features are can at least be partially overcome [15]. However, the development of PET detectors
is further developed than PG detectors.

On the other hand, prompt gamma emission occurs instantaneously and is consequently more appro-
priate for on-line range verification. Furthermore, interactions yielding prompt gammas have higher cross
sections than PET-related reactions, which creates higher count rates. Moteabbed et al. report a PG/positron
emission ratio of 60 to 70 when including time delay and wash-out in the latter case [12]. However, it must be
taken into account that this comparison was based on Monte Carlo simulations which may have depended
on cross sections with significant uncertainty for nuclear reactions.

As shown in figure 1.5, PG emission is not directly proportional to delivered dose. Therefore, a range verifica-
tion system relies on a PG profile prediction. Numerical methods to simulate PG source terms already exist.
However, the long computation time and lack of optimal settings make clinical application of full-numerical
methods unlikely.

1.4. Objective
The aim of this study is to develop an alternative to full numerical methods for PG profile calculation. The
current state of prompt PG simulation tools is reviewed in a literature study, which is included in this report
as chapter 2.

In this study a Fortran90 code was designed to simulate PG emission of a treatment plan with good relia-
bility, but with shorter computation times than existing methods. This code employs the Boltzmann Trans-
port Equation to trace pencil beams individually through a target volume. The code is therefore named the
Boltzmann solver (BS). The mathematical foundation of the BS is explained in chapter 3. Next the features of
the Boltzmann solver code are described in chapter 4.

To validate the performance of the BS it is compared to simulations by Topas MC and the planned dose
from a treatment plan, produced by the iCycle treatment planning system. The set-ups are described in
chapter 5 and the results are shown in chapter 6. Lastly, the current state of the BS is discussed in chapter 7

The scope of this research includes the unscattered part of the fluence only. The BS extracts cross sections
from cross section libraries. It currently employs cross sections for stopping power and PG emission; selection
of libraries for absorption was considered out of scope. Therefore the validation of the BS in chapter 6 is based
on dose profiles and a PG source term.





2
Methods to simulate prompt gamma
profiles for proton therapy: a review

Abstract
In order to improve dose control for proton therapy, range verification systems based on prompt gamma ac-
tivity are under development. These systems depend on a predicted profile of prompt gamma emission. Sim-
ulation thereof is difficult due to the lack of an integral theory to describe nuclear proton interactions. Prompt
gamma profiles from the literature, produced by Monte Carlo-based simulation toolboxes like Geant4, MCNP
and FLUKA, are compared and found to depend heavily on the selected physics lists and cross section li-
braries. Furthermore, these simulations require long computation times that make them clinically inviable.
To comply with the time constraint, the calculation algorithms should include analytical solutions instead of
the full numerical approach.

2.1. Introduction
Over the past years hadron therapy, especially proton therapy, has gained ground in the field of radiation on-
cology. The main benefits of particle irradiation as compared to photons lie in the characteristics of the dose
deposition curve: the Bragg peak and finite range allow for relatively low integral dose to the patient. How-
ever, the concentrated dose deposition of the Bragg peak requires more accurate targeting of the clinical target
volume (CTV). Deviations in treatment circumstances such as anatomical changes and setup variations may
cause beam overshoot or undershoot, leaving parts of the CTV undertreated while adjacent healthy tissues
suffer from a radiation dose that was not assigned.

To secure the prescribed radiation dose to the CTV, a safety margin is applied around it to which the same
dose is assigned, thus creating the planning target volume (PTV). Depending on the applied proton range and
the treatment site, this margin can be several millimeters up to over a centimeter [5]. Large margins introduce
high dose to adjacent healthy tissues and may interfere with maximal dose constraints of sensitive organs at
risk (OAR). Therefore, to make full clinical use of particle treatment, the margin and thus range uncertainty
should be minimized.

A range verification system traces deviations from the planned dose. It would preferably be executed
early in the irradiation procedure. Early detection of deviations from the treatment plan allows for alteration
or termination of the current fraction, before the entire dose is administered.

Multiple approaches of range verification are investigated. Lu et al. focus on a method to determine
dose directly from dosimeters implanted in the patient [8, 9]. The direct measurement is a distinct advantage
of this method, but its invasive character and the limitation of resolution due to the finite amount of point
measurements are serious drawbacks of this method. Range monitoring based on external measurement
of secondary radiation, including positron emission tomography (PET) imaging and prompt gamma (PG)
imaging, are therefore more suitable.

A Monte Carlo-based comparison between PET and PG imaging for proton range verification shows that
PG can overcome fundamental resolution limitations of PET imaging and is especially preferable in cases of
small treatment volumes and heterogeneous anatomies [12]. Furthermore, PG imaging can be performed on-

7



8 2. Methods to simulate prompt gamma profiles for proton therapy: a review

line, while PET has a time delay due to the half-life of β+-emitting nuclei, which requires long measurement
times.

PG emission is not directly proportional to delivered dose. Therefore, to determine if the measured PG
profile corresponds to the planned dose, the range verification system requires a prediction of the PG profile
as produced by the treatment plan. The reliability of the range verification is closely related to the accuracy
of the calculated profile.

To date, no default method to predict PG emission has been found to meet the requirements of a clinically
feasible range verification system. The modelling of the nuclear interactions that produce PG can currently
not be described in one integral theory.

This literature study aims to provide an overview of the available approaches to estimate PG profiles from
treatment plans. Section 2.2 discusses the requirements of a PG profile calculation code, and sections 2.3-2.4
and 2.5 describe validation studies of numerical approaches and convolution-based methods, respectively.

2.2. Range verification system requirements
The range verification system is comprised of (1) a detector to measure the PG profile, (2) a code that predicts
the PG profile based on the treatment plan and (3) a code that compares the measured and predicted profiles
and states if deviations of the treatment plan occur. To be clinically viable, the range verification system
should meet certain requirements as described in the following sections.

Resolution
In order to detect small deviations of the planned range, the proton beam integral verification system, includ-
ing both software and hardware, should be accurate on the single or sub-millimeter scale. Current detector
designs are estimated to have resolution down to 1 mm [16]. The simulation tool should therefore predict
the PG profile with an accuracy up to 1mm: lower accuracy compromises the performance of the verification
system, while the gain of higher accuracy is nullified by the detector resolution.

PG emission
PG imaging systems currently designed rely on energy-integrated profiles [16–18]. However, to assess existing
PG simulation codes, a limited collection of energy lines are analyzed. The elements C-12, N-14, O-16 and,
depending on the region of interest, Ca-40 are the most prominent PG producing elements in the body [12,
19]. The 6.13MeV gamma line produced by O-16 is of special interest as it holds the potential to be a measure
of the oxygen concentration in tissues [20].

As described in section 2.3, the accuracy of the computational models may be high for certain energy
ranges. Depending on the availability of detectors that have sufficient spatial and energy resolution, range
verification systems that use a limited energy range may be viable. In that case, calculation methods that
are accurate only in certain energy ranges would suffice, which relieves the process of validating simulation
codes.

Detector response
The aim of this study is to review the reliability of PG emission of various simulation codes. However, to
relate simulated PG yields and measured gamma profiles, the former must be converted into a simulated
detector response. To model the detector response, other secondary particle emissions must be included, as
do interactions of all secondary particles with the body, collimator and detector.

Time frame
Lastly, for the PG-based range verification to be clinically relevant, the calculation time is limited. Each treat-
ment plan requires a tailored PG profile prediction, meaning that one or, in case of re-evaluation of the treat-
ment plan, multiple runs must be executed per patient. Therefore, the computation time should be in the
order of seconds or minutes.

2.3. Monte Carlo method
Interactions of protons in matter can be divided into electrical and nuclear interactions. Electrical interac-
tions are well-understood and can be easily modelled using the Bethe-Bloch equation, whereas the physics
of nuclear interactions has not been captured in one complete computational model to date. The challenge
of creating a PG profile prediction code therefore is to model nuclear interactions well.
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Because of its versatility, the Monte Carlo (MC) method holds the potential to produce reliable profiles
for secondary particles produced by proton beams. MC toolboxes are comprised of various modules that
each model certain particle interaction types in distinct proton energy ranges. This structure is suitable for
the simulation of the interaction of proton beams in an inhomogeneous volume. MC is however a time-
consuming method, especially when a large amount of beams are simulated. A trade-off must always be
made between minimizing calculation time and count statistics, as the latter is related to accuracy.

Various MC packages have been employed to model patient irradiation. While MC codes are already
applied for testing and optimizing medical device designs, the reliability of the emission yields is still the
subject of research. Because there is no validated optimal set of modules to produce PG profiles, the range of
possible combinations makes MC toolbox verification a cumbersome process.

Though various sets of modules are used, the general backbone of nuclear interaction handling is consis-
tent. The probability of a nuclear reaction occurring is handled first. The probability of processes is deter-
mined either looking-up, based on tabulated cross sections that can be parametrized to account for varying
characteristics of the interaction, or on-the-fly, i.e. based on physical models [6]. The modelling of the inter-
action itself can again be based on tabulated lists or physical modelling.

Cross section libraries
A range of cross section libraries which are in MC code-compatible format is available. The libraries vary
not only in terms of interactions or elements included and energy ranges covered, but the values of the cross
sections themselves may differ from library to library.

The general purpose library ENDF is the default alternative to physics models for toolboxes, like MCNP.
While ENDF is of American origin, other countries and international collaborations have published alterna-
tive general purpose libraries.

As the tables included in these libraries are thoroughly tested, the libraries should provide reliable data.
However, inter- or extrapolation may be required to find cross sections at certain energies, and because the
PG yields behave volatilely over the energy spectrum, this may lead to unreliable cross sections. Therefore not
only the choice of library, but also the interplay between application of physical models and interpolation of
cross sections from libraries affect the outcome of a numerical simulation toolkit.

Physical models
When a MC toolbox is used, the applied modules compose the physics list. Standard ’reference’ physics lists
are available, but alternative lists can be built from the available modules. This yields various methods to
model nuclear interactions, but the general modelling of interactions is based on three consecutive mecha-
nisms [6]:

• Intra-nuclear cascade The intra-nuclear cascade (INC) is associated with high-energy incoming parti-
cles, down to a few tens of MeV. In this model the medium is modelled as quasi-free nucleons, which
interact with the incoming particles via a series of two-body interactions. [6]. The secondary particles
produced by these interactions are traced until they reach a lower energy limit.

• Pre-equilibrium The second mechanism takes over calculations from the INC model after the parti-
cles reach the lower energy limit, or handles incident particles with energies below the lower limit of
the INC model. For the equilibration process interactions are commonly represented based on the ex-
citon model, which describes the formation of nucleon-hole pairs. Through emission of nucleons the
nucleus ultimately reaches equilibrium, but it remains in excited state [21].

• De-excitation In this stage the nuclei lose their remaining energy surplus via gamma emission, Fermi
break-up or, for heavier nuclei, nuclear evaporation.

Multiple MC packages are used to simulate PG profiles for proton therapy. In the following sections 2.3.1-
2.3.3 the performance of Geant4, MCNP and FLUKA will be discussed.

2.3.1. Geant4
The Geant4 package was developed by CERN and its original purpose was the simulation of high-energy
physics. However, its general approach of particle interaction evaluation makes it an interesting program for
proton therapy calculations. Geant4 can be applied directly, but Geant4 overlays dedicated to medical radia-
tion purposes are also available, like GATE [22] and TOPAS [23].
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(a) (b)

Figure 2.1: a. Proton yield produced by various hadronic inelastic models in Geant4 version 10.01.p02, for 160MeV proton beams with
angular acceptance 1.5°. The line ’BIC scaled’ is the normal BIC dataset scaled by an empirically found factor relating the cross sections
from the BIC model and experimental data. Abbreviations: BIC: binary cascade, BERT: Bertini cascade, PRECO: pre-compound, INCL:
Liège intranuclear cascade and QMD: quantum molecular dynamics. b. Changes of settings in the QMD and PRECO models cause better
agreement between simulated and measured data. Both images from Pinto et al., 2016 [27].

The dose profile calculation performance of Geant4 and related programs has been thoroughly tested and
validated [24, 25]. Meanwhile, the wide range of modules associated with nuclear reactions and settings con-
found the evaluation of PG production reliability.

Early PG verification research concluded that Geant4 severely overestimated PG yields [26]. Le Foulher et
al. found an overestimation by a factor of 12 using Geant4 v9.1. More recent versions of the Geant4 toolkit
include improved models, but the simulation reliability still relies heavily on the chosen parameters. This was
illustrated by Pinto et al., who simulated the PG yield in a homogeneous PMMA phantom using five different
proton inelastic models, using the default settings of each module (figure 2.1a) [27]. The PG yields vary in
magnitude, but they all overestimate the reference data. However, each model produced the same range of
PG emission. Therefore, whether the produced profiles are useful for range verification depends on which
characteristic is used to compare the predicted and measured PG profiles: in terms of absolute emission
rates, the models do not suffice, but the range or shape of the profile are well-predicted.

To improve the absolute emission rates, the settings of two modules were changed (figure 2.1b). These
yields resembled the reference data better, showing that both choice of model and subsequent settings de-
termine the simulation reliability.

In some cases the complexity and multitude of available settings inspire to vary variables at random until
a simulation’s outcome agrees with reference data. Lestand et al. demonstrated this when selecting a toler-
ance value [28]. The tolerance value applies on looking-up calculations: only when the difference between
excitation energy and an energy level from a nuclear database is below the tolerance value, a radiative transi-
tion can take place. Because there was no physical foundation for this variable, a range of values was tested
to investigate the impact of the tolerance value. PG depth profiles produced by carbon beams were simulated
and compared to a measured profile. At 100keV the emission yields matched best, so this value was adopted
in further simulations to investigate the feasibility of imaging methods.

Both Pinto et al. and Lestand et al. published energy-integrated PG yields, without reporting on energy
dependence of their results. The fact that the reliability of PG profile simulation may vary over photon ener-
gies is shown by Schumann et al. [29]. They performed an energy spectrum analysis using simulated (Geant4
v10.00.p01, using a binary cascade (BIC) based set-up) and experimental data of a PMMA phantom with a
germanium detector (Figure 2.2). Most major peaks in the experimental cross sections were reproduced in
the simulations. However, in terms of absolute PG yields, the simulation overestimated the PG production by
37%. The majority of the overestimation originated from PG with energies below 4.5MeV. For higher energies,
the cross sections matched experimental data better.

The homogeneous PMMA phantom is a recurrent target for validation runs [27, 28]. Schumann et al.
provided some variation by analyzing the performance of Geant4 on polyethylene, graphite and a cortical
bone equivalent material, SB3, benchmarking the MC code against experimental data [29]. The simulations
showed overestimations of 38%, 48% and 38%, respectively, for the gamma yield for 3MeV≤ E ≤7MeV.

The wide range of modules and subsequent setting possibilities establish the versatility that is the strength
of Geant4, but it confounds the design of a reliable medical planning tool. By adjusting the settings until sim-
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Figure 2.2: Comparison of PG spectra from simulated and measured data; 160MeV beam in PMMA. The yields for γ energies over 4.5MeV
correspond better than lower energies. Image from Schumann et al., 2015 [29].

ulations match experimental data, quasi-reliability may be established [27, 28]. Therefore, attempts have
been made to produce toolkits of which the defaults produce reliable outcomes for medical irradiation cal-
culations. These have resulted in GATE and TOPAS.

GATE is a community-driven toolkit developed specifically for medical imaging and radiation. Like the un-
derlying Geant4 code, the dose and range accuracy were already found to be simulated accurately based on
depth-dose analysis. However, lateral spreading was found to be underestimated [30].

GATE was originally designed to model PET and SPECT [22]. Hence, few reports of applications on PG
imaging exist. However, Gueth et al. performed a series of GATE simulations to identify valuable classifiers
for a machine-learning approach to range verification [17]. The simulated data were not evaluated using any
benchmark so this publication did not contribute to the validation of PG emission by GATE.

The publication of Gueth et al. is unique in the sense that the computation time was reported: a single
spot consisting of 50·106 protons took 5.2h [17]. Given the time constraint from section 2.2, this simulation is
no viable component for a range verification system. However, Huisman et al. found significant time reduc-
tion can be achieved [31]. They used GATE to produce a spatial and spectral distribution of PG yields based
on the low-statistical simulation of a proton beam. The emission profile is normalized for a single incident
proton can be scaled up to the desired beam intensity, thus producing a full-intensity emission profile at low
computational cost. The propagation of the produced PG is handled in a separated step.

The creators of TOPAS aimed to produce a user-friendly tool with a default physics list that is tailored to
simulate proton therapy. Like GATE, TOPAS is built as an overlay of Geant4. Upon presentation, TOPAS was
validated for dose deposition only [23].

Testa et al. performed a validation study of PG energy profiles in a series of set-ups that contained dif-
ferent collimator configurations [32]. They used the default TOPAS physics list based on Geant4 v9.6.p02
to simulate a 160MeV pencil beam in a PMMA phantom. The PG profile was scored using simulated NaI
detectors. The simulated PG spectra were benchmarked against experimental data. The simulation underes-
timated the PG emission in a geometry without collimator by 10%, while addition of collimators increased
the underestimation up to 50%. Testa et al. state that the underestimation is partly due to to lack of objects
in the simulation, while in experimental measurements background radiation and scatter from surrounding
objects was scored as well. However, when related to results produced by the underlying Geant4 code as
produced by e.g. Schumann et al., a 10% deviation from measured data is a significant improvement. [29].

2.3.2. MCNP/MCNPX
The MCNP code is a general purpose MC code. It is specifically designed for neutron, photon and electron
transport. MCNPX, in which the "X" stands for "eXtended", was created by adding the cross sections other
particle interactions, and on-the-fly calculations were included to be applied when no cross section libraries
are available [33].
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Figure 2.3: Lateral profile of yields forγ emission with angular acceptance 90°±3°(blue) and neutrons (black), as produced from a 200MeV
proton beam in a homogeneous PMMA phantom. Data were obtained from Geant4 (line) and MCNPX (scatter). The integral depth dose
is added in purple. Image from Biegun et al., 2012 [34].

The first validation for a MCNPX code in the field of medical PG emission was performed by Smeets et
al. [16]. During their research on optimal slit camera characteristics, MCNPX version 2.5.0 was used to pro-
duce PG profiles from a 160MeV proton beam in a PMMA phantom. The simulations employed a looking-up
structure using the la150n and la150h cross section libraries for proton and neutron transport at energies
below 150MeV, and the BIC model otherwise. The PG were scored on a perfect, cylindrical scintillator. The
simulated counts were compared to measured data from a similar geometry.

It was found that in an open environment without collimator, the MCNPX toolbox underestimated the
PG emission by 19.3% and 26.9% for distances of 50cm and 100cm between the beam axis and scintillator,
respectively. The largest count differences were measured in the energy range of 0-3MeV. When including
only PG in the energy range of 3-6MeV, the underestimation was reduced to 8.9% and 16.5%, respectively.

Performance of both Geant4 and MCNPX were analyzed by Biegun et al. [34]. In their paper on the appli-
cation of time-of-flight restriction, PG depth profiles simulated by MCNPX 2.7.D and Geant4 v9.2.p02 were
compared [34]. The setup contained a PMMA phantom, which was irradiated with 100MeV and 200MeV
protons. The MCNPX code employed cross section libraries for proton and neutron energies below 150MeV
(la150), and physics models for other particle types and energy ranges. The Geant4 code was tested with two
physics lists which were found to yield equal results. Despite the effort to select a reliable set of modules, the
PG yields found by the Geant4 simulation were a factor 2 to 5 higher than those simulated by MCNPX (Figure
2.3). No experimental data were included in this research, so the simulations were only compared among
themselves.

2.3.3. FLUKA
Like MCNP, FLUKA is a particle tracking toolkit for general purpose. Evaluation of dose delivery simulations
were performed [35], but validation of the quality of PG profiles is ongoing.

Battistoni et al. tested FLUKA’s performance for PG emission using multiple light ions and PMMA targets,
using measured data as benchmark [36]. Simulations and measurements were done with an open geometry,
with a collimator and with a wall, i.e. a closed collimator, between the target and detector. PG data for 160MeV
proton beams were reported as "opening difference" and "wall difference" energy spectra only, representing
the difference in measured PG between the collimator and the wall, and the open geometry and the wall,
respectively. For both cases the lower energies showed the largest discrepancies. However, when only PG
with E>2MeV are involved, the simulated yields lie within 10% of the experimental data, which Battistoni et
al. were content with. The simulated spectral distributions are shown in figure 2.4. A systematic energy shift
of the yields is visible in the figure, but remains undiscussed by Battistoni et al.

Robert et al. performed a series of comparisons between FLUKA and GATE for proton and carbon irradi-
ation of a PMMA target without experimental benchmark [37]. For a 134MeV proton beam the yield of γ with
E>1MeV produced by GATE was higher than FLUKA by a factor 1.92. A following analysis of the energy spec-
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(a) (b)

Figure 2.4: Background-subtracted photon energy spectra, produced by 160MeV protons in PMMA, simluated by FLUKA. Experimental
data in black, simulated data in red (with intrinsic detector resolution) and green (without intrinsic detector resolution). a. Opening
difference and b. wall difference. Image from Battistoni et al., 2016 [36].

trum shows that GATE systematically estimates higher yields, though the gamma lines near 4.44MeV (C-12),
5.21 (O-15) and 6.13MeV (O-16) show smaller deviations.

2.4. Dedicated nuclear interaction codes
An alternative for MC codes are dedicated nuclear interaction codes. These codes calculate cross sections
over wide energy regions, based on both physics models and data from cross section libraries. They however
do not contain the spatial tracing algorithm of MC codes. In this section the dedicated nuclear reaction codes
TALYS and EMPIRE are discussed.

TALYS aims to provide reliable simulations of nuclear reactions for incident particles in the 1keV-200MeV
region, for target nuclei with atomic mass number 12 and up [38]. The incident energy matches that of proton
therapy, and the limitation of atomic numbers allows for the most prominent PG lines, so TALYS may be a
good fit to simulate proton therapy.

EMPIRE has, like TALYS, a wide incident particle energy range that reaches from 1keV to hundreds of
MeV [39]. Because no lower limit of the atomic mass numbers for target nuclei is reported, EMPIRE may be
advantageous relative to TALYS.

The fact that the cross sections measured from experiments, tabulated in cross section libraries and sim-
ulated by MC codes and dedicated nuclear reaction codes vary significantly is demonstrated by the work of
Verburg et al. [19]. The cross sections for eight gamma lines from C-12, N-14 and O-16 as produced by Geant4
v9.5, MCNP6 beta2, TALYS 1.4 and EMPIRE 3.1 were compared to experimentally determined cross sections
reported in the literature and the ENDF/B-VII cross section library. Figure 2.5 shows the comparison of all
cross sections for two gamma lines, illustrating how each method yields different results.

2.5. Convolution-based methods
As the aforementioned simulation methods require long calculation times, the time-related prerequisite men-
tioned in Section 2.2 is not met. Alternatively, quicker methods based on convolution have been applied for
dose deposition calculations and PET modelling.

For example, Parodi et al. relied on pre-calculated dose profiles [40]. They developed a kernel function
based on a Gaussian distribution and a power function, which was convolved with a dose profile in order to
generate a PG profile. The method was benchmarked with both FLUKA simulations (for an inhomogeneous
target) and measured data (for a homogeneous target). The convolution method was able to identify the distal
positron emission fall-off location with sub-millimetre precision based on emission from C-11. However, the
total positron intensity had a 10% deviation from the measured intensity.

The performance of the method developed by Parodi et al. depends on the quality of the dose profile.
Miyatake et al. proposed an alternative by developing a kernel that expressed the yields of the most promi-
nent positron emitters in the body, C, O and Ca, for a proton pencil beam [41]. The kernels were based on
measured activity from various homogeneous phantoms and three different proton energies. The following
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(a) (b)

Figure 2.5: PG cross sections for two gamma lines, from dedicated nuclear codes, MC codes, the ENDF/B-VII cross section library and
experimental data from literature. a. Cross sections for 4.44MeV PG production from C-12 b. Cross sections for 6.13MeV PG production
from O-16. Images from Verburg et al., 2012 [19].

convolution method would be very similar to dose calculations performed by treatment planning systems,
and requires roughly equal calculation time, i.e. in the order of minutes. The aim of the study was the mere
development of kernels, so no comparison with experimental profiles was made.

Applications of similar convolution methods for PG imaging have not been reported on. However, given
the results of PET simulations, convolution methods are a promising approach.

2.6. Conclusion
Proton range verification systems rely on a tool which predicts PG emission accurately with computation
time in the order of minutes. Due to the lack of an integral theory, nuclear interactions require a patchwork
of models.

MC-based simulation codes are versatile because of the availability of various toolboxes, modules, cross
section libraries and settings. They therefore hold the potential to produce reliable PG profiles.

However, a thorough validation study of MC toolboxes has not been performed to date. The literature
contains many studies in which the results from a certain physics list are benchmarked against experimen-
tal data, but these comparisons are usually limited to one proton beam energy and a homogeneous target.
Therefore, no reliable default combination of settings for PG production has been determined.

A second problem lies with the calculation time, which is usually not reported on. A full treatment plan
consists of roughly 1012 protons, which requires calculation time in the order of days. For PG imaging to be
clinically feasible, a method to drastically reduce the amount of traced particles must be applied. Methods
to reduce calculation time could entail reducing the amount of pencil beams used for range verification or
replacing part of the simulation with analytical solutions.

An alternative to the full numerical approach is the convolution-based method. The development of
convolution kernels has already been applied for dose and PET simulations, but no evidence of application
for PG imaging has been reported to date.



3
Derivation of the proton transport

equation

The Boltzmann equation originally described dynamics of particles in a gas. However, it can be applied to
calculate the statistical distribution of a type of particle in a fluid in general. The equation describes the rate
of change in the number of particles in a volume.

The linear Boltzmann equation (LBE) is derived for general particles in section 3.1. The adjustments
necessary to apply the LBE to proton therapy are discussed in section 3.2. Next, the equation that describes
the unscattered flux is isolated in section 3.3. Lastly, the partial differential equation derived in the previous
sections is converted into a set of ordinary differential equations in section 3.4. These equations can be
evaluated by the Boltzmann solver code.

3.1. Linear Boltzmann equation
The LBE describes the behaviour of n(r,E ,Ω̂, t )dV dE dΩ̂. This is the amount particles in the infinitesimal
volume dV , with energy dE about E and direction dΩ̂ about Ω̂, at time t . Energy levels that do not lie within
dE about E are indicated with E ′ and directions not in dΩ̂ about Ω̂ are indicated with Ω̂

′
.

The value of n varies over time due to particle production, streaming into and out of the volume and
interactions that change E and Ω̂. The LBE was derived from these processes by Duderstadt and Hamilton
[42]. The derivation below follows their method.

The gain and loss of n in an arbitrary, finite volume V , which is enclosed by surface S, is described using
five mechanisms. The mathematical description of these mechanisms form the foundation of the LBE.

∂

∂t

∫
V

n(r,E ,Ω̂, t )dV dE dΩ̂= a +b + c −d −e; (3.1)

• Gain
a Amount of particles produced by sources within V .
b Amount of particles streaming through S into V .
c Amount of particles in V with E ′ and Ω̂

′
, undergoing an interaction so the new energy level lies

within dE about E and dΩ̂ about Ω̂
′
. This process is described as E ′ → E ; Ω̂

′ → Ω̂.
• Loss

d Amount of particles streaming through S out of V .
e Amount of particles in V with E , Ω̂ undergoing a collision, so E → E ′; Ω̂→ Ω̂′

.

To express mechanism a, the source density s is introduced. The quantity s is defined as the production
rate of particles with applicable E , Ω̂ from a source that lies within volume dV . The gain of n in V is then

a =
[∫

V
s(r,E ,Ω̂, t )dV

]
dE dΩ̂. (3.2)

Secondly, the mechanisms that describe streaming into and out of V are considered. The inflow of mech-
anism b and outflow of d are collected into one net outflow term: d −b. To describe streaming, the scalar

15
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Figure 3.1: An arbitrary volume V with surface area S. A differential element is indicated with its unit normal vector dS and a net outflow
direction Ω̂. Image by Duderstadt and Hamilton, 1976 [42].

angular particle flux φ is introduced:
φ(r,E ,Ω̂, t ) ≡ vn(r,E ,Ω̂, t ), (3.3)

where v is the particle speed. When flowing into or out of V , surface S is passed. In this derivation, the
convention is that dS is the unit vector normal to the surface (figure 3.1). The total streaming term is the
angular particle flux φ with direction Ω̂ passing through surface S:

d −b =
[∫

S
dS · Ω̂φ(r,E ,Ω̂, t )

]
dE dΩ̂.

The surface integral is rewritten into a volume integral using Gauss theorem, which states that
∫

S FdS ≡∫
V (∇F)dV . The net outflow term now becomes

d −b =
[∫

V
dV ∇· Ω̂φ(r,E ,Ω̂, t )

]
dE dΩ̂. (3.4)

The third gain mechanism c describes the amount of particles undergoing scatter interactions that cause
both E ′ → E and Ω̂

′ → Ω̂. The probability of such interactions per unit length is given by the differential cross
section Σs , and the interaction rate is ΣsφdE dΩ̂. This term includes particles with any energy E ′ and angle
Ω̂

′
. Therefore Σs is integrated over both E ′ and Ω̂

′
:

c =
[∫

V
dV

∫
4π

dΩ̂
′
∫ ∞

0
dE ′Σs (E ′ → E ,Ω̂

′ → Ω̂)φ(r,E ′,Ω̂′
, t )

]
dE dΩ̂. (3.5)

For the final loss term, e, the amount of particles that undergo interactions that cause E → E ′ and Ω̂→ Ω̂′

are determined. The collision rate is described using the cross section for collision, Σt :

e =
[∫

V
Σt (r,E)φ(r,E ,Ω̂, t )

]
. (3.6)

Putting the mathematical descriptions of mechanisms a −e together, the equation reads

∫
V

∂n(r,E ,Ω̂, t )

∂t
dV dE dΩ̂=

∫
V

dV

[{
s(r,E ,Ω̂, t )

}
−

{
∇· Ω̂φ(r,E ,Ω̂, t )

}
+{∫

4π
dΩ̂

′
∫ ∞

0
dE ′Σs (E ′ → E ,Ω̂

′ → Ω̂)φ(r,E ,Ω̂, t )
}
−{

Σt (r,E)φ(r,E ,Ω̂, t )
}]

dE dΩ̂,

and rearranging all terms to the left hand of the equation gives∫
V

dV

[
∂n(r,E ,Ω̂, t )

∂t
−

{
s(r,E ,Ω̂, t )

}
+

{
∇· Ω̂φ(r,E ,Ω̂, t )

}
−{∫

4π
dΩ̂

′
∫ ∞

0
dE ′Σs (E ′ → E ,Ω̂

′ → Ω̂)φ(r,E ′,Ω̂′
, t )

}
+

{
Σt (r,E)φ(r,E ,Ω̂, t )

}]
dE dΩ̂= 0.
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As V was arbitrarily chosen and the equation must hold for any volume, the integrand over V must be 0.
By rearranging the integrand and applying equation 3.3 on the first term, the LBE appears:

1

v

∂φ(r,E ,Ω̂, t )

∂t
+

{
∇· Ω̂φ(r,E ,Ω̂, t )

}
+

{
Σt (r,E)φ(r,E ,Ω̂, t )

}
={

s(r,E ,Ω̂, t )
}
+

{∫
4π

dΩ̂
′
∫ ∞

0
dE ′Σs (E ′ → E ,Ω̂

′ → Ω̂φ(r,E ′,Ω̂′
, t )

}
. (3.7)

3.2. Application to proton therapy
The general LBE can be applied to evaluate proton transport for proton therapy after minor adjustments.
Firstly, no proton sources exist in the target volume, so term a can be eliminated. Secondly, as the proton
flux reaches steady state almost instantaneously during irradiation, dn/d t can be considered to be 0 and all
terms become time-independent. Lastly, the energy-changing interactions in term c will only reduce energy,
so E ′ > E . Therefore the integral over dE ′ is performed on the interval [E ,∞]. The remaining equation reads

{
∇ · Ω̂φ(r,E ,Ω̂)

}
+

{
Σt (r,E)φ(r,E ,Ω̂)

}
=

∫
4π

dΩ̂
′
∫ ∞

E
dE ′Σs (E ′ → E ,Ω̂

′ → Ω̂)φ(r,E ′,Ω̂′
). (3.8)

The next step is to separate the cross sections of equation 3.8 into three components each. The first com-
ponent Σi n , accounts for inelastic scatter, which causes slowing down of protons. Secondly, elastic scatter,
which causes angular deflection, is described by Σel . The last term, Σnu , accounts for nuclear interactions,
which cause both energy reduction and angular deflection. This split yields the following:

∇· Ω̂φ(r,E ,Ω̂) =
∫ ∞

E
dE ′Σs,i n(E ′ → E ,Ω̂)φ(r,E ′,Ω̂)−Σt ,i nφ(r,E ,Ω̂)+∫

4π
dΩ̂

′
Σs,el (E ,Ω̂

′ → Ω̂)φ(r,E ,Ω̂
′
)−Σt ,elφ(r,E ,Ω̂)+∫

4π
dΩ̂

′
∫ ∞

E
dE ′Σs,nu(E ′ → E ,Ω̂

′ → Ω̂)φ(r,E ′,Ω̂′
)−Σt ,nuφ(r,E ,Ω̂).

(3.9)

3.3. Fokker-Planck approximation
Solving equation 3.9 is complicated because of the behaviour of the cross sections for elastic and inelastic
interactions. The former has a high maximum as ∆Ω → 0 (figure 3.2), while the latter peaks as ∆E → 0.
To avoid the complexity of describing these cross sections, the Fokker-Planck approximation is applied. The
approximation addresses the terms describing small energy transfers (Σi n) and small angular deflections (Σel )
by two operators.

The two terms involving inelastic scatter are simplified using the fact that the differential cross section for
energy transfer increases as the incident proton energy decreases. Therefore the energy dependence can be
estimated by a Taylor expansion around E = 0:

∫ ∞

E
dE ′Σs,i n(r,E ′ → E)φ(r,E ′,Ω̂)−Σt ,i nφ(r,E ,Ω̂) ≈ ∂S(r,E)φ(r,E ,Ω̂)

∂E
+ 1

2

∂2T (r,E)φ(r,E ,Ω̂)

∂E 2 . (3.10)

Here the first term of the right hand side represents the slowing down of incident protons, using the stop-
ping power S(r,E). The second term can be interpreted physically as energy straggling, with T (r,E) a diffusion
coefficient that represents the measure of straggling.

Secondly, the terms involving elastic scatter are approximated by the continuous scatter operator. For the
full derivation hereof the reader is referred to the work of Leakeas and Larson [44]. In this equation Σtr is the
momentum transfer cross section and ∇2

Ω represents the angular part of the Laplace operator.∫
4π

dΩ̂
′
Σs,el (E ,Ω̂

′ → Ω̂)φ(r,E ,Ω̂
′
)−Σt ,elφ(r,E ,Ω̂) ≈ 1

2
Σtr (r,E)∇2

Ωφ(r,E ,Ω̂). (3.11)

When put together, the PTE for proton therapy reads
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Figure 3.2: Angular dependence of the cross section for elastic electrical interactions of protons in water. The cross section is nearly
singular for cosΘ, i.e. ∆Ω. Image by Uilkema, 2012 [43].

∇· Ω̂φ(r,E ,Ω̂) ≈∂S(r,E)φ(r,E ,Ω̂)

∂E
+ 1

2

∂2T (r,E)φ(r,E ,Ω̂)

∂E 2 +
1

2
Σtr (r,E)∇2

Ωφ(r,E ,Ω̂)+∫
4π

dΩ̂
′
∫ ∞

E
dE ′Σs,nu(E ′ → E ,Ω̂

′ → Ω̂)φ(r,E ′,Ω̂′
)−Σt ,nuφ(r,E ,Ω̂).

(3.12)

To solve φ, equation 3.12 is split into an unscattered and a scattered part. The unscattered flux φu can be
solved using Σt and Σs :

∇· Ω̂φu(r,E ,Ω̂)+Σtφu(r,E ,Ω̂) = ∂S(r,E)φu(r,E)

∂E
. (3.13)

Then, using φu , φs can be solved. The total flux is φtot al =φu +φs .

3.4. Method of characteristics
In this section the method of characteristics is applied to equation 3.13 to create a set of ordinary differential
equations (ODE) that can be solved by the Boltzmann solver. To simplify this process, the equation for un-
scattered flux is reduced to one spatial dimension. This is possible because the Boltzmann solver only uses
uni-directional pencil beams. In 1D equation 3.13 becomes

∂φu(x,E)

∂x
+Σtφu(x,E) = ∂S(x,E)φu(x,E)

∂E
. (3.14)

The solutions to the partial differential equation (PDE) that is equation 3.14 lie on a surface graph φ(x,E).
The method of characteristics presents a curve, called the characteristic, on which the PDE becomes an ODE.
This curve develops along the characteristic variable q , so that x(q) and E(q).

To evaluate equation 3.14 over the characteristic, it is first expanded using the chain rule:

∂φu(x,E)

∂x
− ∂φu(x,E)

∂E
S(x,E) =

(
∂S(x,E)

∂E
−Σt

)
φu(x,E). (3.15)

Then, using equation 3.15 and
dφu

d q
= dφu

d x

d x

d q
+ dφu

dE

dE

d q
,

the Lagrange-Charpit equations emerge:
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d x

d q
= 1 (3.16)

dE

d q
=−S(x,E) (3.17)

dφu

d q
=

(
∂S(x,E)

∂E
−Σt

)
φu(x,E) (3.18)

The last equation, 3.18, seems counter-intuitive, because it states that the number of particles decreases
due to interactions that only underlie slowing down. However, the mono-energeticity of the pencil beams of-
fers a solution. The energy dependence of φu is a single delta peak at energy level E .

∫
φudE is thus constant,

and stopping power only causes a shift of the delta peak over E . Therefore, equation 3.18 can be re-written as

φu(x)

d q
=−Σtφu(x) (3.19)





4
Boltzmann solver code

This chapter describes the components of the BS code. The BS commences with the set-up of tracing volume
and beams, which is described in section 4.1. Then the beams are traced through the volume. Over the
tracing, the flux is evaluated using the ODEs as derived in section 3.4. The implementation of these ODEs into
the BS is described in section 4.2. Next, two possible integration methods are discussed in section 4.3. Section
4.4 describes two options for tracing algorithms, from which 3D distributions for dose and PG emission can
be calculated. Lastly, methods to reduce calculation time are elaborated on in section 4.5.

4.1. Initialization
The BS initiates a simulation by the interpretation of its input data. The input consists of the planning CT and
a list of proton beam characteristics. The conversion of the planning CT into the simulation grid is described
in section 4.1.1. The handling of the beams is elaborated on in section 4.1.2.

4.1.1. Tracing volume
The BS traces proton beams through a 3D grid, which is based on the planning CT scan. The code translates
the Hounsfield Units (HU) into two tissue characteristics that dictate interaction features: mass density ρ and
a component vector f. f is an array of elemental weight fractions ( fi ) for the elements that are abundant in
human tissues .

In the BS the stoichiometric calibration as proposed by Schneider et al. is applied [45]. They describe
the handling of HU in the interval [-1000,1600]. If the CT scan contains values outside this region they are
overwritten by -1000 and 1600 for lower and higher HU, respectively. Furthermore, this method creates f of
12 elements: H, C, N, O, Na, Mg, P, S, Cl, Ar, K, Ca. Argon is not present in human tissues, but it is a component
of air.

When protons travel through the volume, the stopping power, absorption and PG emission depend on the
proton energy E , ρ and f. These processes are handled by a set of cross section libraries. The current version
of the BS includes cross sections for stopping power and PG yields.

Because the stopping power differs for each element, the BS employs stopping power lists for a range of
energies for each of the 12 elements described in f. The Bragg-Kleeman rule states that the stopping power of
compounds in a mixture is additive [46], so

1

M

(
dE

d x

)
=

n∑
i=1

fi

Mi

(
dE

d x

)
i

, (4.1)

where M is the molar mass of the mixture and Mi the molar mass of the element corresponding with mass
weight fraction fi . Note that ( fi M)/Mi is the mole fraction of element i in the mixture.

The proton stopping power libraries from the National Institute Standards Technology (NIST) PSTAR [47]
and Stopping and Range of Ions in Matter (SRIM) 2013 [48] were considered for implementation. The SRIM
database was used because NIST does not cover all 12 of the elements included by Schneider et al. The cross
sections are shown in figure 4.1a.

21
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(a)

(b)

Figure 4.1: a. The cross sections for stopping power from the SRIM database for the 12 components required by the stoichiometric
conversion as proposed by Schneider et al. [45, 48]. b. Comparison between the stopping powers of H, N and O between SRIM (non-
gaseous state of matter) and NIST (gaseous state) [47, 48].
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Another advantage of the SRIM database is that it distinguishes compounds in gaseous and non-gaseous
state. The stopping power [MeV cm2/g] of an element in a gas differs significantly from other states of mat-
ter, as shown in figure 4.1b. The NIST PSTAR database includes stopping power for hydrogen, nitrogen and
oxygen in gaseous state only. However, these elements occur mostly in non-gaseous state in the body. There-
fore, the stopping power tables for the non-gaseous state were included in the BS solver. This means that the
stopping power in the air surrounding the body is mishandled. Still, because of the low density of air, the
deviations the dose distributions are insignificant.

The stopping power lists are implemented with an energy range of [0.999 keV, 250 MeV]. Energy intervals
are proportional to the energy level: from small steps in between low energies (∆E ≤ 1 keV for energies below
18 keV) and larger for high energies (25 MeV steps beyond 200 MeV). Lastly, SRIM provides stopping powers
in [MeV/(mg/cm2)]. To apply them in the BS, they are converted into [MeV/cm] by multiplication by the mass
density ρ.

Furthemore, the BS contains microscopic cross sections for PG production. The PG library developed by
Tolboom was used [49]. These cross sections are based on simulations in Topas MC.

4.1.2. Pencil beams
The pencil beams in the BS are mono-energetic, uni-directional beams of finite width, with a lateral intensity
profile described by a 2D Gaussian distribution. Because the Gaussian distribution is non-zero over the entire
real domain, a cut-off radius is defined, beyond which the intensity is deemed 0. The consideration of this
radius is described in section 4.5.2. The treatment plan characterizes each pencil beam using five features:

• Initial energy E0

• Initial intensity I0, which represents the number of protons in the beam
• Beam width σ, which is the standard deviation of the lateral intensity profile
• Origin r0, which is the gantry location
• Direction Ω̂.

4.2. Interpretation of ODEs
As described in section 3.4, the method of characteristics yields three ODEs that are used to evaluate φu(r,E)
for each pencil beam over its path through the tracing volume. Integrating the first equation, d x/d q = 1,
yields x(q) = q + x0. This means that the solutions for φu(r,E) lie on the uni-directional path of the beam,
which is a straightforward conclusion. The beams in the BS beams are forward traced in steps of step size h,
so rn+1 = rn +hΩ̂

For the second ODE, dE/d q =−S(x,E), the equation for stopping power emerges as equation 4.2. To find
E , the equation is numerically integrated along the beam path, so En+1 = f (En).

dE

d q
= dE

d x

d x

d q
= dE

d x
=−S(x,E) (4.2)

Lastly, the third ODE describes absorption of protons. Like the second ODE, it can be re-written: dφu/d x =
−Σt (x,E)φu(x). To find φu , the equation will be numerically integrated: φu,n+1 = f (φu,n). The numerical in-
tegration methods used to evaluate E and φu are described in section 4.3.

4.3. Numerical integration methods
4.3.1. Euler excplicit method
The Euler explicit method is a first-order routine to numerically approximate ODEs. To estimate an equation
given by

y ′(t ) = f
(
t , y (t )

)
; y (t0) = y0 (4.3)

the Euler method prescribes, in steps of size h,

yn+1 = yn +h f
(
tn , yn

)
. (4.4)

When the Euler method is applied to integrate the proton beam energy, it translates into

En+1 = En −hS (En) (4.5)
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Figure 4.2: Relation between E and the maximum step size hmax for the Euler explicit integration method in water.

In order to be numerically stable, the solution should be exponentially decaying, and therefore obey∣∣∣∣En −hS (En)

En

∣∣∣∣≤ 1. (4.6)

This yields a condition for h : 0 ≤ hS(En)/En ≤ 2. Figure 4.2 shows the relation between E and the max-
imum value of h for water. If h is to be constant over a whole simulation in BS, it should be in the order of
10−5 cm. This requires long calculation times.

However, the BS can still produce accurate outcomes if the Euler method is not stable over the whole
energy range. If instability occurs only when E is so low that the beam will finish in the current voxel, all
remaining energy will be deposited in that voxel and the instability will have no effect on the outcome.

The effect of various h on the integration accuracy was further illustrated by a set of simulations in the
BS, summarized in figure 4.3. Here a 100 MeV proton beam was traced through a volume of muscular tissue.
The voxels were 0.05 cm in each dimension. The voxels were crossed in one step (’Euler 1’; h = 0.05 cm), 10
steps (’Euler 10’; h = 5 ·10−3 cm), and so on. To provide a reference data set, the more accurate Heun method,
described in section 4.3.2, was run with h = 5 ·10−4 cm.

Figure 4.3a shows that for low E the Euler method is accurate, but significant deviations from the reference
data occur near the Bragg peak, where E is low. For Euler 1 and Euler 10, the range of the protons increased
due to inaccurate integration. For smaller steps, the Euler method calculates the right range, but the height
of the Bragg peak still shows deviations: even for h = 5 ·10−4 mm, the Euler method shows a 1% deviation.

The deviations from the reference data set are shown in figure 4.3b. This figure too shows that the devia-
tions are largest for high h and low E .

Varying h on the course of the beam, for example based on E upon entering each voxel, could improve
the trade-off between computation time and accuracy. However, this method would still require very small h
near the range. Therefore, the Heun integration method was applied.

4.3.2. Heun’s method
The Heun method is an extension of the Euler explicit method. Being a second order integration procedure,
the Heun method has a smaller error. It consists of two steps: first, an estimate ỹn+1, based on the slope at
point yn , is calculated, as done in equation 4.4. Therefore, the slope at point ỹn+1 is determined: f (tn , ỹn+1).
This second slope is then used to correct the first slope. The solution, as dictated by Heun’s method, is then

yn+1 = yn + h

2

(
f
(
tn , yn

)+ f
(
tn , ỹn+1

))
(4.7)

where
ỹn+1 = yn +h f

(
tn , yn

)
.

This, in terms of E and S, is

En+1 = En + h

2

(
S (En)+S

(
Ẽn+1

))
. (4.8)

Heun’s method converges faster than Euler’s method. Figure 4.4 shows that the energy distribution pro-
duced with Euler’s method and h = 5 · 10−4 cm still changes, while the results from Heun’s method hardly
change when h is varied from 0.05 cm to 5 ·10−4 cm. Heun’s method can therefore be applied with relatively
large step sizes.
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(a)

(b)

Figure 4.3: a. Integrated depth dose for a 100 MeV proton in a homogeneous muscle tissue target, simulated with BS in a grid of voxels
of 0.05 cm in each dimension. The lines represent different integration methods. ’Name X ’ in the legend means the integration method
of Name was used, with step size h = 0.05/X cm. b. Deviations in the integrated depth dose from figure a. The ’Euler 100’ data set was
used as the reference data set.
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Figure 4.4: Integrated depth dose for a 100 MeV proton in a homogeneous muscle tissue target, simulated with BS in a grid of voxels of
0.05 cm in each dimension. The lines represent different integration methods. ’Name X ’ in the legend means the integration method of
Name was used, with step size h = 0.05/X cm. The ’Heun 100’ line is not visible because it is overlapped by ’Heun 10’.

4.4. Tracing algorithms
The Boltzmann solver produces 3D distributions for dose deposition and PG emission. Its general procedure
is to trace individual mono-energetic pencil beams of finite width through the treatment volume, evaluating
the fluence and beam energy at each step of the way. The tracing continues either until the beam energy
reaches below the cut-off energy of 1 keV or until it exits the volume, depending on which event occurs first.

The BS was initially built using a Gaussian quadrature method and determine dose deposition or PG
emission. This method is described in section 4.4.1. However, long calculation time and a lack of energy
conservation impaired this approach. Therefore, an alternative method based on mathematical sub-beams
was implemented, which is elaborated on in section 4.4.2.

In these sections, the tracing methods to calculate dose distributions D(r) are described. The same meth-
ods can be employed for PG activity distribution (PGi for individual gamma lines i ) or any other cross section.
Lastly, because the cross sections for absorption are currently excluded, φu remains constant over the path
until E reaches a lower limit; then φu = 0.

4.4.1. Gaussian quadrature
The original tracing method is is referred to as the (Gaussian) quadrature method because the BS scores dose
only on a set of points that are described by the Gaussian quadrature rules. Using these points, the dose
distribution can be determined for the whole volume.

Following the discontinuous Galerkin method, the BS determines a polynomial that describes the dose
distribution D(r) within an integration domain [50]. In the BS these integration domains are voxels on the
same grid as the planning CT. It was assumed that the behaviour of the dose distribution is approximately
linear on voxel-scale, so a 1st order polynomial was implemented:

D(r) =
N∑

i=1
Di hi (r) (4.9)

where Di are unknown coefficients for the basis functions hi . For a 1st order polynomial, N = 4 and hi =
[1; x; y ; z].

To solve Di , the value of D(r) at a set of P specifically located integration points in each integration do-
main, must be known. The Gaussian quadrature rules dictate the locations of a set of quadrature points (QP),
which lie at optimal positions to approximate definite integrals (figure 4.5). To evaluate a polynomial of order
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Figure 4.5: Proton beam (in blue) on a 2D grid. To determine a 1s t order polynomial for D(r) in the upper right pixel, the dose in the four
QP is scored. The upper two QP lie beyond cut-off radius rc , so the dose is considered 0. The lower two are traced towards over the paths
indicated.

1, 2 points in each dimension are necessary, thus requiring P = 23 points per voxel. The BS calculates the dose
at these (QP) by tracing towards each point individually. Hereto the following procedure is used:

1. Using a pencil beam’s origin r0 and direction Ω, the distance r between the beam axis and each QP,
measured perpendicularly to the axis, is determined. The algorithm assumes an infinite range of the
beam, because the range is unknown at this point. A cut-off radius rc is used, after which the dose
intensity is considered 0. Only nodes with r ≤ rc are included in step 2.

2. The selected QP are traced towards individually. Each QP is weighted according to the 2D normal dis-
tribution which defines the lateral beam intensity profile:

WQP = 1

2πσ2 exp− r 2

2σ2 . (4.10)

3. The location at which the path from the source towards the QP enters the planning CT is determined.
The voxel adjacent to the entry point, is the first voxel that will be traced through.

(a) The path through the voxel is determined. For most voxels, the path reaches from the entry point
of the current voxel to the exit point. However, if the voxel contains the QP that is traced towards,
the path goes from the entry point to the QP. The path length is l .

(b) The path is divided into m intervals, with step size h = l /m.

(c) For each interval, S(r,E) is determined based on E , the voxel’s ρ and f, and the cross section library
for stopping power, using equation 4.1.

(d) The beam propagates hΩ̂. E is re-evaluated using S(r,E), based on an integration method from
section 4.3. When absorption cross sections are included, φu is updated too.

(e) Steps c-d are repeated until the path is crossed, or until E < 1 keV, in which case the tracing for
this QP terminates.

(f) When a QP is reached, the dose is scored:

DQP =WQP

(
φu(rQP −hΩ̂)E(rQP −hΩ̂)−φu(rQP )E(rQP )

)
h

(4.11)

4. Steps 1-3 are repeated for each pencil beam. The D are accumulated per voxel.

5. Using the discontinuous Galerkin method, the dose to each voxel is calculated.

To solve the coefficients Di from DQP , the discontinuous Galerkin method is employed. Hereto both sides
of equation 4.9 are multiplied by a set of indices, h j , and then integrated over the voxel volume Ve :∫

Ve

D(r)h j (r)dr =
N∑

i=1
Di

∫
Ve

hi (r)h j (r)dr. (4.12)
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The left-hand side of equation 4.12 is approximated by the QP:∫
Ve

D(r)h j (r)dr ≈ ∑
QP

DQP h j (rQP )wQP |J |), (4.13)

where wQP is the quadrature weight, prescribed by the quadrature rules, and |J | is the quadrature determi-
nant. On the right-hand side,

∫
Ve

hi (r)h j (r)dr is the so-called mass matrix Mi , j . This yields a linear system:

Mi , j Di = LHS, (4.14)

where LHS represents the approximation for the left-hand side from equation 4.13.

This tracing method entails limitations. First of all, for the dose deposition, the dose gradients of the Bragg
peak are so steep that severe discontinuities and negative values are likely to occur in the final voxel. To handle
this, a gradient limiter is applied. This procedure overwrites the coefficients for basis functions h2−h4 with 0
when D(r) < 0 in any vertex, thus yielding D(r) = D1h1.

Another method to handle non-linear behaviour and steep gradients would be to use more nodes per
voxel, so more complex spatial dependencies can be described within the voxels. Increasing the number of
nodes from 2 to 3 per dimension would however increase the computation time by a factor (33/23). Using
the described algorithm with 8 nodes and 20 intervals per voxel required multiple hours of computation per
pencil beam. Such calculation times do not produce a clinically viable tool, so increasing it further by adding
nodes is not an option. It must be noted here that at that time, the code had other sub-optimal features at
that further slowed it down. However, section 4.4.3 points out that the quadrature algorithm is slow relative
to its alternative described in section 4.4.2.

The steep gradients introduced a second problem: energy conservation. The 8 quadrature points did not
capture the behaviour of energy deposition within the used voxel sizes, as it is not nearly linear. Laterally,
the energy deposition can be described as a Gaussian distribution, for which a linear approximation causes
relatively minor deviations in the integral dose. However, distally, the energy deposition near the Bragg peak
evolves in an extreme manner, causing D(r) to become very sensitive to the location of the QP relative to the
maximum of the Bragg peak. This is illustrated in figure 4.6.

Due to the high dose gradients, these final voxels often are subject to the gradient limiter, meaning that
the whole voxel is assigned with a constant value of the high dose measured in the Bragg peak (figure 4.6c).
This severely overestimates the dose to the voxel, and consequently a significant difference between the total
energy of the beams and the integrated dose deposition was observed.

4.4.2. Needle beam method
The procedure that was implemented secondly, divides each pencil beam into mathematical pencil beams:
needle beams. Each needle beam is assigned the weight of part of the lateral beam intensity distribution:

Wnb =
∫ θ+∆θ

θ

∫ r+∆r

r

1

2πσ2 exp− y2 + z2

2σ2 (4.15)

for a pencil beam in the x-direction.

The values ∆r and ∆θ are determined based on the requirement that each voxel crossed by the pencil beam
should be crossed by at least 10 needle beams, except for the voxels on the edges of the pencil beam. This
condition is satisfied when 10∆r∆θ ≤ Av , where Av is the area of the face of the voxel crossed by the beam.
The number of needle beams is a trade-off between calculation time and lateral deviations, which are shown
in figure 4.7.

The needle beam method consists of the following steps:

1. A pencil beam is divided into needle beams.

2. Using the pencil beam direction’s and the needle beam’s translation relative to the pencil beam axis, the
entry point of the needle beam in the planning CT is determined. The voxel adjacent to the entry point
is the first-evaluated voxel.

(a) The path through the voxel is determined. The path reaches from the entry point of the current
voxel, ri n to the exit point rout . The path length is l .
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(a) (b)

(c) (d)

Figure 4.6: The calculated dose distribution is sensitive for the location of the QP relative to the Bragg peak: an 1D representation. In
blue the traced dose distributions; in red the borders of the final integration domain, with in thick red the locations of the QP. The black
dots represent the dose scored at the QP, and the black line the dose distribution produced by the Gaussian quadrature method. a. and
b. yield acceptable, but very different D(r). In c. must be used because D(r) < 0 in the distal edge. In d. the quadrature method yields
D(r) = 0, while energy was deposited in the domain.
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Figure 4.7: 2D representation of needle beams crossing voxels, perpendicular to the beam direction. The intensity of the color markings
represents the number of beams per voxel, not taking the needle beam weight into account. a. ~1 needle beam per voxel yields severe
deviations in the lateral dose distribution. b. ~9 needle beams per voxel yield a more homogeneous lateral distribution of dose.

(b) The path is divided into m intervals, with step size h = l /m.

(c) For each interval, S(r,E) is determined based on E , the voxel’s ρ and f, and the cross section library
for stopping power, using equation 4.1.

(d) The beam propagates hΩ̂. E is re-evaluated using S(r,E), based on an integration method from
section 4.3. When absorption cross sections are included, φu is updated too.

(e) Steps c-d are repeated until the path is crossed, or until E < 1 keV, in which case the remaining
energy is immediately added to the current voxel.

(f) The dose D is scored in the voxel:

D =Wnb
(
φu(ri n)E(ri n)−φu(rout )E(rout )

)
(4.16)

(g) Steps a-f are repeated for each needle beam in the pencil beam. The energy depositions are accu-
mulated.

3. Steps 1-3 are repeated for each pencil beam. The energy depositions are accumulated.

4.4.3. Comparison between quadrature and needle beam methods
The advantage of the needle beam method as opposed by the Gaussian quadrature method, is that the needle
beams are traced in a forward manner. The quadrature method on the other hand, requires each node to be
traced to from the beam entry, even though the same path is crossed multiple times.

To illustrate the effect on calculation time, the number of voxels crossed for both methods are determined
for one pencil beam in a test grid. The grid has voxel size 0.1×0.1×0.3 cm3, where the 0.1× 0.3 cm2 face is
oriented perpendicularly to the beam direction. The pencil beam has a width of σ = 0.5 cm, and the cut-off
radius is rc = 3.8 σ. This means that the beam area perpendicular to the beam direction covers 3.8·102 voxels.
Lastly, a proton range of 20 cm, or 200 voxels, is assumed.

Needle beam method: For 10 needle beams per perpendicular voxel area, the needle beam method re-
quires 3.8·103 beams to describe this pencil beam. For the proton range of 20 cm, this requires tracing through
7.6·105 voxels.

Gaussian quadrature method: The beam covers 3.8·102 · 200 = 7.6 · 104 voxels. At 8 QP per voxel, this
means that 6.0 · 105 QP must be traced towards. The QP most proximal to the beam source only require a
single voxel crossing, but the most distal QP require 200 crossings. The average QP requires 100.5 voxels
traced through before it is evaluated. Therefore, this method requires 6.1·107 voxels crossed. For this test
case, this method is over 80 times more expensive than the needle beam method.

4.5. Reduction of computation time
The computation time of the BS is an important factor for its clinical viability. Therefore three methods to
further reduce the number of computational steps are discussed.
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4.5.1. Euler versus Heun
As the tracing algorithm is the most frequently called subroutine in the code, it is the most dominant factor in
computation time. Because the Heun integration method is a two-step procedure, an iteration takes roughly
twice the calculation time of an Euler iteration. Therefore it might be feasible to apply the Euler explicit
integration method with one interval per crossed voxel for high beam energies. The beam is then traced until
it reaches a certain lower energy limit, after which the Euler method starts showing significant deviations and
the slower Heun method, also with one interval per voxel, will be applied instead.

The value of the lower energy limit depends on the deviation in dE/d x allowed. The ’Euler 1’ data of
figure 4.3b show a 0.15% deviation at E = 100 MeV. Because this might yield significant deviations already, the
idea of using the single Euler method was abandoned.

4.5.2. Cut-off radius
Another way to reduce calculation time is to reduce the number of voxels handled. As the lateral beam profile
in the BS is a 2D Gaussian distribution, the code includes a cut-off distance rc perpendicularly from the beam
axis. In polar coordinates, when σx =σy =σ and µx =µy = 0, the beam intensity is at distance r is described
as

1

2πσ2 e
−

r 2

2σ2 (4.17)

and the fraction covered in case of cut-off radius rc

∫ rc

0

∫ 2π

0

1

2πσ2 e
−

r 2

2σ2 r dθdr =

−e
−

r 2

2σ2


rc

0

= 1−e
−

r 2
c

2σ2 . (4.18)

To cover 99.9% of the beam’s effect, a cut-off distance of rc = 3.8 σ suffices. For energy conservation purposes
the last 0.1% is included through a normalization factor is applied to the whole beam.

The distance rc = 3.8 σ is somewhat arbitrarily chosen. As long as the beam intensity is normalized,
smaller rc may be used, e.g. 3.2 σ, which covers 99.4% of the beam intensity, or 2.6 σ, which covers 96.6%. In
these case, the calculation time would be reduced because fewer needle are used. For rc = 3.2 σ the compu-
tation time would be reduced by a factor (3.22/3.82) = 0.7 and for rc = 2.6 σ, by a factor 0.47.

For single pencil beams, the dose distribution produced with rc = 2.6 σ may differ significantly from the
case with rc = 3.8 σ. However, when many pencil beams are packed close together, as occurs during proton
therapy, the penumbra of the beams overlap, so the effect of lower rc becomes insignificant.

4.5.3. Binary search
Lastly, the looking-up of cross sections requires a significant number of computation time. Because the beam
energy is continuous, the cross sections are linearly interpolated between the predecessor (next smallest) and
successor (next highest) energy levels. A top-down row search algorithm identifies the corresponding row
numbers.

The tabulated cross sections are sorted from low to high energy. The stopping power tables are comprised
of 157 energy levels each, of which the 100 MeV level is the 130th. As an alternative to the time-intensive top-
down search method, a binary search algorithm was implemented. For n rows, this method requires O(log(n))
steps, which is significantly faster than the top-down approach, which requires O(n) steps.

The algorithm uses support variables L, H and M to represent the lower, higher and middle row numbers
of a table with n rows. To find the predecessor, the algorithm is described by the following pseudocode:

L = 0;
H = n;
while L < H do

M = floor((L+H)/2);
if EM < E then

L = M +1
else

H = M
end

end
return L





5
Simulation set-up

To test the reliability of the output of the Boltzmann solver, its dose distributions were compared to the sim-
ulations produced by other toolboxes. The results of three set-ups were analyzed: (1) a single pencil beam in
a homogeneous muscle tissue phantom, (2) a single pencil beam in a muscle tissue phantom with an insert
of bone and (3) a full treatment plan in a volume based on the planning CT. The former two were compared
to simulations produced by Topas MC [23] and the latter to the planned dose, calculated by the treatment
planning system.

5.1. Single beam on homogeneous phantom
The homogeneous target was a 6×6×10 cm3 volume comprised of 120×120×200 voxels of 0.5 mm in all di-
mensions. The characteristics of the the tissue were based on the Material Composition Data from NIST
PSTAR [47]. A mono-energetic, uni-directional pencil beam with initial energy E0 = 100 MeV, intensity I0 =
107 protons, width σ= 0.3 cm and cut-off radius rc = 3.8 σ was traced through the volume.

For the simulation in the Bolzmann solver a ’CT scan’ with 120×120×200 voxels, each assigned with a mock
CT value of 0, was constructed. By default, the BS converts HU into tissue characteristics using Schneider’s
stoichiometric calibraion [45]. However, to properly compare the BS and Topas MC, the BS code was manip-
ulated so ρ and f for CT value 0 were overwritten with the material characteristics for skeletal muscle tissue
from NIST, with ρ = 1.05 g/cm3 and the weight vector as described in table 5.1.

The pencil beam was divided into needle beams with a resolution of 8 per dimension, yielding ~64 needle
beams per voxel and 1.0·105 needle beams in total.

G4_MUSCLE_SKELETAL_ICRP G4_BONE_COMPACT_ICRU
[%mass ] [%mass ]

fH 10.2 6.4
fC 14.3 27.8
fN 3.4 2.7
fO 71.0 41
fN a 0.1 -
fM g - 0.2
fP 0.2 7.0
fS 0.3 0.2
fC l 0.1 -
fK 0.4 -
fC a - 14.7

Table 5.1: Mass fractions of the components of skeletal muscle and compact bone from NIST PSTAR [47]. These values are used to
overwrite the algorithm by Schneider et al. for sections 5.1 and 5.2.
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34 5. Simulation set-up

Figure 5.1: The design of the muscle tissue phantom with bone insert.

Topas MC version 3.1.p2 was applied with default settings. The target was a 6×6×10 cm3 box volume. Topas
employs the Geant4 Material Database, which includes NIST compounds, so the proper material charac-
teristics were called by assigning G4_MUSCLE_SKELETAL_ICRP to the volume. The dose was scored on a
120×120×200 grid, which exactly overlapped the phantom.

The initial proton energy was set to 100 MeV, with an energy spread of 0.0 MeV. The beam BeamPosi-
tionDistribution was set "Gaussian", with a 0.3 cm standard deviation. The BeamPositionCutoffShape was
an "Ellipse", with cut-off radius 3.8 σ= 1.14 cm.

Unlike the BS, Topas MC does not allow strictly uni-directional beams. Therefore, to approach the singular
beam direction of the Boltzmann solver, the BeamAngularSpread was set at 1° ·10−14, with a BeamAngular-
Cutoff of 1° ·10−4. The simulation consisted of 107 protons.

5.2. Single beam on inhomogeneous phantom

The second geometry is included to illustrate the Boltzmann solver’s handling of inhomogeneities. The phan-
tom was comprised of G4_MUSCLE_SKELETAL_ICRP with an insert made of compact bone (G4_BONE_
COMPACT_ICRU) with ρ = 1.85 g/cm3. The bone slab had a volume of 3×6×1 cm3 and was located in the
phantom as shown in figure 5.1.

In the ’CT’ for the BS, the insert was given another mock CT value. The code was further manipulated to
assign compact bone material features, according to the NIST database, to voxels with this CT value. Further-
more, the beam set-up was exactly the same as in the homogeneous run.

In Topas MC a box of the G4_BONE_COMPACT_ICRU was placed in the muscle tissue volume. Apart from
that, the set-up was equal to the previous simulation in Topas MC.

5.3. Full treatment plan on a planning CT

To analyze the performance of the BS in a more realistic set-up, the planning CT of a prostate cancer patient
was used as a target. The used CT consists of 108 slices of 0.3 cm thickness, covering 40.95×26.25 cm2 in
468×323 voxels of 0.875×0.875 mm2 each.

The CT was placed in a carthesian coordinate system so that the volume had 108 voxels in the x-direction,
323 in the y-direction and 468 in the z-direction. Furthermore, the plan defines an isocenter of the CT at the
center of mass of the prostate, which was a few cm from the geometric CT center. The origin of the coordinate
system was placed at the isocenter.

The corresponding treatment plan consists of 1521 pencil beams distributed over two lateral source (or
gantry) locations. The gantry locations both lie on the z-axis. The source-to-axis distance (SAD) of the gantry
was set at 195 cm.
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(a)

(b)

Figure 5.2: a. In the treatment plan, the beam direction is defined using an x- and y-coordinate, here illustrated in 2D with y-coordinate
∆y only. The beam (in blue) reaches∆y at a certain depth z. However, the interpretation of z from the treatment plan is unclear. b. In the
Boltzmann solver ∆y is projected on the iso-center instead of depth z. Because SAD>> ∆y, this results in a very small deviation in the
beam angle relative to image a.

A treatment plan assigns each beam with an initial energy, direction, intensity and width. The energy and
width can be applied directly in the BS. However, the direction and beam intensity required conversion before
application.

In the treatment plan, the beam direction is described by x- and y-coordinates, which the beam reaches
after it has crossed its water-equivalent path length (WEPL) in the CT volume (figure 5.2). Due to limited
communication with the party that provided the treatment plan, some uncertainty about the exact interpre-
tation of these directions exists. However, because the SAD>> ∆x,∆y, the deviations due to this uncertainty
are very small. Therefore the x- and y-coordinates were projected on the isocenter of the CT.

The treatment plan describes the intensity in monitor units (MU). The number of protons per MU is
energy dependent. A separate table of proton energies and the corresponding number is employed for con-
version of MU to number of protons per beam. Linear interpolation was used for energy levels in between
tabulated values.

The Boltzmann solver was assigned a needle beam resolution of 2, which yields (0.0875 ·0.3)/(0.0875/2)2 ≈ 14
beams per perpendicular voxel area. In order to study the effect of the cut-off radius rc , three runs with
rc = 3.8 σ;3.2 σ;2.6 σ were simulated, yielding 6.9 ·106, 4.9 ·106 and 3.3 ·106 needle beams respectively.

The simulation of the Boltzmann solver was compared to the planned dose which is enclosed in the treat-
ment plan. The treatment plan was designed by the Erasmus-iCycle treatment planning system [51].





6
Results

6.1. Single beam on homogeneous phantom
The set-up described in section 5.1 in the BS is was run in 16.0 s. The total energy deposited was exactly
109 MeV, which corresponds to 107 protons of 100 MeV. This proves that the BS is a conservative tool. Figure
6.1a depicts the dose distribution of the central slice of the volume.

The simulation in Topas MC following section 5.1 took 4.43 h to run, using 4 threads. The total energy
deposited was 9.78·108 MeV, which indicates that secondary particles have exited the scoring volume. The
dose distribution in the central slice is shown in figure 6.1b.

From the figures it stands out that the Bragg peak in the MC simulation is distally more spread out than
the result from the BS: in the BS the energy is largely delivered in the final voxels. In the BS each needle
beam has the exact same path length, and because the beams are uni-directional, they all reach the same
depth. In Topas MC range straggling is included: each proton is individually traced and undergoes different
interactions, causing the path lengths of protons to differ. Furthermore, because lateral scatter is allowed,
the path length and depth of the proton differ. This phenomenon increases to the broadening of the Bragg
peak. The difference in Bragg peak handling was expected, because the BS uses the continuous slowing down
approximation and excludes scatter interaction.

The absolute difference between the central slices is depicted in figure 6.1c. This image shows that the
Bragg peak from the BS has a steeper rise than the MC, and shows a very abrupt transition between overesti-
mation and underestimation when the fluence in the BS stops. Furthermore, the BS is expected to underesti-
mate lateral dose because of the lack of scatter in the model. However, the lateral deviations are small relative
to the distal deviations. In figure 6.2 the underestimation relative to the maximum value of the MC code is
indicated, on logarithmic scale. Here the lateral deviations that are of the order 0.01-0.1%, become visible.

Figure 6.3 shows the integral depth dose (IDD) in [J] for Topas MC and the BS. The IDD from the BS shows a
higher Bragg peak and a steeper rise and fall-off, which are all results from the lack of scatter interactions.

The range simulated by the BS is 7.3 cm, which is shorter than the range from Topas MC: 7.5 cm. This
seems counter-intuitive, because protons in the BS do not deviate from their initial direction and they are thus
expected to travel deeper than protons simulated in MC at the same path length. The phenomenon of range
decrease due to lateral scatter is described by the detour factor F . If the range including angular deviations,
is Ri and the range excluding scatter Re , F = Ri /Re < 1. NIST PSTAR states F = 0.9987 for a 100MeV proton
beam in skeletal muscle, indicating that the range from the BS is expected to be larger than that of Topas MC
[47].

The underlying factor of range underestimation is the overestimation of stopping power. This can have
multiple reasons in the BS. First of all, the linear interpolation to determine S(E) based on tabulated cross sec-
tion overestimates S(E), because the (E ,S(E)) graph is largely concave (figure 6.4). The magnitude of this error
was estimated by comparison with 3rd order polynomial interpolation. For energy levels halfway in-between
tabulated values, the S(E) determined by linear interpolation was ~0.2% higher than the data interpolated
with the polynomial method. The effect hereof is little: upon re-running the simulation with the polynomial
interpolation, the protons reached the exact same depth.

Secondly, the energy integration method used to re-evaluate E on each tracing step may cause deviations.
However, the integration methods have been thoroughly reviewed in section 4.3.2. The range calculated with

37



38 6. Results

(a)

(b)

(c)

Figure 6.1: Dose [Gy] deposited in the central slice of the muscle phantom. A 100 MeV pencil beam of 107 protons, σ= 0.3 cm was traced
through the volume. a. Simulated by the Boltzmann solver (BS). The energy deposited in this slice is 7.11·107 MeV. b. Simulated by Topas
MC. The energy deposited in this slice is 5.94·107 MeV. c. Deviation [Gy] of the BS simulation relative to the Topas MC simulation (a-b).
The red indicates that the BS overestimated the dose relative to Topas MC; blue indicates underestimation.
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Figure 6.2: The underestimation of dose in figure 6.1a as a percentage of the maximum dose from figure 6.1b. Overestimations are not
included in this figure.

Figure 6.3: Integrated depth dose [J] of a 100MeV pencil beam in a homogeneous skeletal muscle phantom, simulated by Topas MC and
the Boltzmann solver.

Figure 6.4: Relation between E and S(E) for skeletal muscle [47]. Using linear interpolation between Elow and Ehi g h to find the stopping
power for the E in blue causes an overestimation in S(E).
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Figure 6.5: The energy spectrum of photons scored by Topas MC. A 100 MeV proton beam was traced through a homogeneous muscle
tissue phantom.

single-interval Heun method did not show significant deviation simulations with smaller intervals.

Lastly, the range difference between Topas MC and the BS can be caused by different cross sections. Figure
4.1b shows that stopping power tables from various sources can differ significantly. The physical models
employed by Topas MC may therefore produce stopping powers that substantially deviate from the SRIM
tables included in the BS.

6.1.1. Prompt gamma emission
Apart from the dose distribution, the prompt gamma emission of the 6.13 MeV gamma line, produced by
O-16, was simulated. In the BS this data set was computed simultaneously with the dose distribution.

A separate Topas MC simulation was run to produce reference data, because higher statistics were re-
quired than for the dose deposition. 2·108 protons were simulated and scored on spherical surface that lied
around the dose scoring volume. The scored data included the origin of the PG, from which a PG source
distribution was produced. The computation time was 13.0 h. The energy spectrum of the scored photons is
shown in figure 6.5. All photons with 6.1 < E < 6.2 MeV were considered PG.

The PG productions in the central slice for the BS and Topas MC are shown in figure 6.6 and the integral
depth production in figure 6.7. Apart from the deviations caused by the lack of scatter in the BS, these images
show that there is a factor ~2 in the emission yields. This is an unexpected result, because the cross sections
in the BS are based on simulations in Topas MC.

The difference can be explained by the criteria based on which photons are counted as PG. Tolboom
does not elaborate on the method to select PG from the photon energy spectrum. Therefore, further work is
necessary to determine whether the BS contains an error in the PG cross section handling, or if the methods
of categorization of photons differ.

6.2. Single beam on inhomogeneous phantom
The set-up for the single pencil beam in the inhomogeneous phantom, described in section 5.2, took 15.6 s
to run in the BS. The difference in the calculation time relative to the homogeneous phantom is a random
deviation in computation time.

In Topas MC the computation time was 4.53 h. The 0.10 h additional run time relative to the homoge-
neous slab can be due to statistical deviations in computation speed, but can also be caused by the different
interactions because of the different f in the bone slab. The energy scored was 9.88 ·108 MeV. This indicates
that less secondary particles exited the scoring volume than in the case of the homogeneous phantom. This
is expected, because the total mass of the inhomogeneous phantom is higher than that of the muscle tissue
phantom.

Figures 6.1a, 6.8b and 6.8c show the dose profile in the central slice for the BS, Topas MC and the differ-
ence, respectively. In figure 6.1a the dose becomes a step function after the the beam has entered the bone
slab. Because there are no lateral scatter effects, the insert only causes a shorter range for the portion of the
beam that crosses it.

Furthermore, the results largely indicate the same phenomena as figure 6.1. The BS again shows sharper
peaks due to the lack of scatter, no range straggling occurs and the range us underestimated, as shown in
figure 6.9.
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(a)

(b)

Figure 6.6: The prompt gamma activity of the 6.13 MeV gamma line. A beam of 2·108 100 MeV protons was traced through a homoge-
neous muscle tissue phantom. a. Simulation by the Boltzmann solver. b. Simulation by Topas MC.

Figure 6.7: Integrated depth activity from the simulation of 100 MeV protons in a homogeneous muscle tissue phantom.
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(a)

(b)

(c)

Figure 6.8: Dose [Gy] deposited in the central slice of the muscle phantom from a 100 MeV pencil beam of 107 protons, σ= 0.3 cm. The
insert is indicated with an outline. a. Simulated by the BS. b. Simulated by Topas MC. c. Deviation [Gy] of the BS simulation relative to the
Topas MC simulation (a-b). The red indicates that the BS overestimated the dose relative to Topas MC; blue indicates underestimation.
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Figure 6.9: Integrated depth dose [J] of a 100MeV pencil beam in an inhomogeneous phantom comprised of skeletal muscle with a
compact bone insert, simulated by Topas MC and the Boltzmann solver.

6.3. Full treatment plan on a planning CT
A full treatment plan was run in the BS according to the set-up discussed in section 5.3. The computation
time was 0.43 h. The dose distribution is compared to the planned dose from the treatment plan. If the full
plan consisting of 3.4·1012 were run in Topas MC, at the same computation rate as the single pencil beam in
the homogeneous muscle tissue phantom, the calculation time would be 1.7·102 years.

This section discusses the dose deposition in two slices. Slice 46 contains the tumor volume for which a
dose of 71.8 Gy was planned. Slice 65 contains lymph nodes with a planned dose of 54.5 Gy.

First of all, the total energy deposited by the BS was 90.3 J, which equals the number of protons multiplied by
their energy. However, the energy in the planned dose was much larger: 197.4 J. This number was calculated
by converting the planned dose file, which was in [Gy], into [J/voxel] using a mass density map calculated
from the planning CT based on Schneider’s method and the voxel size. To properly compare the distributions
in this section, the dose calculated from BS was multiplied by a factor 197.4/90.3.

The dose to slice 46 as calculated by the BS is depicted in figure 6.10a and the equivalent from the treatment
plan in figure 6.10b. Figure 6.10c shows the absolute difference between these simulations. From these im-
ages it stands out that the dose calculated by the treatment plan was homogeneous in the PTV, while BS,
in that same area, produced a dose profile with very high dose peaks and underestimation of dose near the
edges of the PTV due to range underestimation.

The deviations between the simulations are further illustrated by the γ-indices. Figure 6.11 shows the γ
(3 Gy,3 mm), calculated using the code of Geurts [52]. The figure largely shows γ < 1. Two areas with high γ

stand out: the PTV and two lateral areas near z = 0 cm and z = 40 cm with γ≈ 2. The PTV has high γ because
the difference between the BS method and MC-based simulations is most severe near the end of range, as
shown in the previous sections. The lateral high-γ areas exist because the treatment planning system uses
a body contour around the body area in the CT scan, and all voxels outside the contour are excluded in the
dose calculation. Such an algorithm does not exist in the BS, so the dose in the air-area is non-zero.

The dose distribution in slice 65 is shown in figure 6.12. Based on the amount of Bragg peaks in the BS
distribution, it can be estimated that more beams have crossed this slice than slice 46. The dose is therefore
more uniformly distributed, and the deviations from the treatment plan are smaller. However, figure 6.12c
shows a significant underestimation of the proton range that was less visible in in slice 46.

The dose distribution in slice 46 appears more sensitive for the differences between Topas MC and the BS.
Therefore this slice is used to analyze smoothing and lateral beam cut-off in the following sections.

6.3.1. Gaussian blur
To mimic the effect of range straggling and get a more homogeneous covering of the target volume, the whole
dose profile was convolved with a 3D Gaussian kernel with σ= 0.3 cm. The resulting dose profile in slice 46
and the difference the planned dose is shown in figures 6.13a and 6.13b-c.

When blurred, the dose is more homogeneously spread over the target volume. However, the dose in the
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(a)

(b)

(c)

Figure 6.10: Dose deposited from a full treatment plan. a. Dose [Gy] deposited in CT slice 46, simulated by the BS, pasted over an image
of CT slice. b. Dose [Gy] deposited in CT slice 46 as calculated by the treatment planning system, pasted over an image of CT slice.
c. Deviation [Gy] of the BS simulation relative to the planned dose (a-b). Red indicates that the BS overestimated the dose relative the
planned dose; blue indicates underestimation.
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Figure 6.11: γ indices (3 Gy,3 mm) using slice 46 of the planned dose as reference data, and the dose in the same slice simulated by the
BS as target data.

center of the PTV is still overestimated. The blurring is thus not a reliable method to mimic scatter. Mean-
while, the dose on the edges is underestimated. This was to be expected because the blurring does not com-
promise the short range.

Convolution with a Gaussian kernel does not accurately model the effect of scatter interactions. The
spread of the dose depends on the proton energy and tissue characteristics, which are not saved in the dose
distribution files produced by the BS.

6.3.2. Cut-off radius
The treatment plan was re-run using different cut-off distances, as suggested in section 5.3. The calculation
time reduced from 0.43 h for rc = 3.8 σ to 0.31 h for rc = 3.2 σ and to 0.21 h for rc = 2.6 σ.

An analysis using the γ-index (1Gy,3mm) is shown in figure 6.14. For the former case, only γ well below
1 are found, which indicates that this cut-off radius yields relatively small deviations. For rc = 2.6 σ, the
deviations become more profound. The γ values are mostly below 1, except for a few voxels in the PTV, that
have γ= 2. Based on these findings, a smaller cut-off radius of 3.2 σ is a good candidate to reduce calculation
time at low cost of outcome reliability.
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(a)

(b)

(c)

Figure 6.12: Dose deposited from a full treatment plan. a. Dose [Gy] deposited in CT slice 65, simulated by the BS, pasted over an image
of CT slice. b. Dose [Gy] deposited in CT slice 65 as calculated by the treatment planning system, pasted over an image of CT slice.
c. Deviation [Gy] of the BS simulation relative to the planned dose (a-b). Red indicates that the BS overestimated the dose relative the
planned dose; blue indicates underestimation.
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(a)

(b)

(c)

Figure 6.13: a. Dose [Gy] deposited in slice 46, simulated by the BS, pasted over and image of the CT slice. The dose was smoothed with
a 3D Gaussian kernel. b. Difference [Gy] between the dose in figure a relative to figure 6.10b. The red indicates that the BS overestimated
the dose relative to the planned dose; blue indicates underestimation. c. γ-index (3 Gy, 3 mm) of filtered dose deposition, using the
planned dose as reference data set.
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(a)

(b)

Figure 6.14: γ-indices (1Gy,3mm) to compare the dose deposited in slice 46 of the CT, simulated by the BS, with different cut-off radii. a.
rc = 3.2σ relative to rc = 3.8σ. b. rc = 2.8σ relative to rc = 3.8σ.
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Discussion

Accurate simulation of proton interactions is an important step towards dose control for proton therapy. The
MC-based simulation tools that are used frequently in the literature are not clinically applicable because of
the long computation time. This study aims to provide proton therapy simulations of high reliability at short
calculation times.

The Boltzmann solver simulates the dose profile for a set of proton pencil beams in a 3D grid of which
the characteristics are described by a CT image. The pencil beams are converted into mathematical, one-
dimensional beams that are forward-traced through the medium until they run out of energy. This study
involves the unscattered solutions only. A scattered fluence step may be added, which uses the unscattered
fluence as input.

The BS has a powerful mathematical foundation and can be applied to produce 3D distributions. The
original goal was to produce PG emission source terms. However, the code is more versatile. Because the
proton energy, proton fluence and local material characteristics are known for each location along the beam
path, the code can use other cross section libraries to produce emission profiles. It can therefore also be
applied to simulate positron emission or the production of other secondary particles.

The reliability of the outcomes of the BS depends fully on the quality of the cross section libraries pro-
vided. Cross sections are extremely difficult to measure and therefore no golden standard library exists. This
is a burden to the whole field of proton therapy simulation. Therefore the comparison with Topas MC and
the planned dose is not indisputable either: deviations between the results from the BS and Topas MC do not
necessarily indicate errors in the BS. The extensive validation of the BS code is a complex task and requires
further research.

When the BS is provided with a dependable cross section library, it can be applied in a range verification
system. These systems in general compare the measured PG profile to a simulated PG profile. Therefore an
additional code will be necessary to convert the source terms produces by the BS into a simulated detector
readout. However, apart from that, the multiple concepts of range verification methods are studied. This may
affect the prerequisites of the Boltzmann solver.

One clinical approach to improve dose control is to commence the administering of a treatment fraction
with a few high-intensity proton beams that are part of the treatment plan. The ranges of these beams are
verified, and when they are found satisfactory, the remaining portion of the dose is administered. When the
BS is to support this method, it only requires the calculation of the first few pencil beams. This means that
the calculation time can be relatively long, but the results must be very accurate.

The trade-off between computation time must be different for other applications of the BS. Another ap-
proach could be the building of a library of PG source terms for each treatment plan, including various cases
of anatomical changes of the patient and set-up errors. In this case the measured data from the full treatment
plan will be matched with a case in the library. Because many runs of the BS will be required to build the
library, the computation time must be drastically reduced.

Though the BS is a promising code, it requires work to develop it into a clinically applicable tool. The first
difficulty encountered with the BS is the interpretation of the treatment plan it simulates. Two aspects have
remained unclear over the course of this research: the interpretation of the x- and y-coordinate that define
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the beam direction, and the weighting of the beam. The former is expected to cause insignificant deviations
and can therefore be ignored. However, the error in the beam weight calculation yields an error in the order
of 50% of the planned energy deposition. The multiplication by a single upscaling factor is naive for two rea-
sons. Firstly, it cannot be expected that the dose scored in a MC-based dose distribution exactly equals the
energy that was put into the system, because secondary particles may have left the scoring volume. Secondly,
the assumption that the weighting method had a linear offset, has no foundation. Because of the severity of
the error, the interpretation of the treatment plan should be clarified.

The dose distributions simulated show that the BS underestimates the proton range relative to the calcula-
tions of Topas MC. The cross section library employed by the BS contains relatively high stopping powers.
Though the use of the SRIM database was carefully considered, it contains S(E) that are significantly larger
than e.g. the NIST PSTAR database. Therefore the stopping powers might have to be reconsidered.

Furthermore, the lack of scatter causes both lateral and distal deviations. Because no elastic electronic in-
teractions occur in the Boltzmann solver, all protons deposit their dose on their straight path only, causing
the simulation to underestimate laterally delivered dose. When many beams near each other are considered,
these lateral deviations become less significant because the penumbra overlap. Furthermore, the Bragg peaks
produced by the BS are higher than those simulated by MC-based codes, causing less homogeneous coverage
of dose in high-dose areas of the treatment plan. The results produced by the BS differ from reality but are no
source of error because the scattered part of the fluence is to be added to the BS in the future.

To mimic the effect of scatter, the dose distributions were smoothed with a 3D Gaussian kernel. This im-
proved the homogeneity of the high-dose region, but the used kernel did not include enough information
about scatter. Firstly, to mimic the distal aspect of range straggling, the kernel should operate in the beam
direction only. However, this is complex because the beams all have a slightly different direction.

Secondly, the behaviour of lateral scatter depends on local medium characteristics (mass and component
fractions) and the beam energy. Therefore, the shape of the convolution kernel should depend on those
characteristics. The development of an algorithm to design sophisticated convolution kernels is complex but
it might be rewarding: if these kernels produce good estimations, the addition of a scattered fluence step to
the BS may become obsolete.

Furthermore, the analysis of a single-gamma line PG source distribution shows that there is a significant
difference between the proton yields simulated by Topas MC and the BS. This is an unexpected result, because
the cross sections were produced with the same version of Topas MC. Whether this is due to an error in the
BS or a different method to identify PG from the scored photon energy spectrum, is to be studied.

The BS requires much lower computation times than MC-based codes. Whether or not the calculation time of
the BS suffices for clinical application, depends on the range verification tool it serves. It holds the potential
to become faster. The following methods may yield time reductions in the order of 101%. Firstly, the trade-off
between the cut-off radius of individual pencil beams and the output quality should be further researched.
Especially when the penumbra overlap this holds the potential to be a relatively cheap time reducer.

A second opportunity lies in the reduction of the number of needle beams. To ensure a homogeneous
covering over voxels for each individual pencil beam, the amount of needle beams per voxel area was set at
14, but when penumbra overlap, fewer beams may not compromise the outcome.

Furthermore, the looking-up of cross sections in tables can be further optimized. The current tables in-
clude low energy levels that are hardly used and reduce loop-up speed. Apart from that, for high proton ener-
gies looking up the stopping power for each tracing step might be unnecessary, as the energy levels remains
between the same energy levels from the stopping power table.

Lastly, the body contour used in the treatment plan can be applied in the BS to exclude CT voxels that
contain air from the tracing volume. Due to the low mass density, the energy loss in air is very low, but the BS
handles these voxels at the same computation speed as relevant voxels.
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In conclusion, this study added to the development of a simulation tool for proton therapy. The tracing
of mathematical pencil beams was found to be the most time-efficient method to model proton interaction
in an inhomogeneous medium. For numerical integration and interpolation methods a trade-off between
calculation time and reliability of the simulation was made. The code simulates full treatment plans in ~0.4 h,
and holds the potential to further reduce calculation time.

Though the developed tool is mathematically well-endorsed, it heavily depends on the reliability of its
cross section library, which has not been found satisfactory. Furthermore, significant time reduction can still
be achieved.
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[39] M. Herman, R. Capote, B. Carlson, P. Obložinskỳ, M. Sin, A. Trkov, H. Wienke, and V. Zerkin, “Empire:
nuclear reaction model code system for data evaluation,” Nuclear Data Sheets, vol. 108, no. 12, pp. 2655–
2715, 2007.

[40] K. Parodi and T. Bortfeld, “A filtering approach based on gaussian–powerlaw convolutions for local pet
verification of proton radiotherapy,” Physics in Medicine & Biology, vol. 51, no. 8, p. 1991, 2006.

[41] A. Miyatake, T. Nishio, and T. Ogino, “Development of activity pencil beam algorithm using measured
distribution data of positron emitter nuclei generated by proton irradiation of targets containing 12c,
16o, and 40ca nuclei in preparation of clinical application,” Medical physics, vol. 38, no. 10, pp. 5818–
5829, 2011.

[42] J. J. Duderstadt, L. J. Hamilton, et al., Nuclear reactor analysis, vol. 84. Wiley New York, 1976.

[43] S. B. Uilkema, “Proton therapy planning using the sn method with the fokker-planck approximation,”
Master’s thesis, TU Delft, 2012.

[44] C. L. Leakeas and E. W. Larsen, “Generalized fokker-planck approximations of particle transport with
highly forward-peaked scattering,” Nuclear science and engineering, vol. 137, no. 3, pp. 236–250, 2001.

[45] W. Schneider, T. Bortfeld, and W. Schlegel, “Correlation between ct numbers and tissue parameters
needed for monte carlo simulations of clinical dose distributions,” Physics in Medicine & Biology, vol. 45,
no. 2, p. 459, 2000.

[46] W. H. Bragg and R. Kleeman, “Xxxix. on the α particles of radium, and their loss of range in passing
through various atoms and molecules,” The London, Edinburgh, and Dublin Philosophical Magazine
and Journal of Science, vol. 10, no. 57, pp. 318–340, 1905.

[47] M. Berger, J. Coursey, M. Zucker, and J. Chang, “Stopping-power and range tables for electrons, protons,
and helium ions (2005),” Available on http://physics. nist. gov, 2015.

[48] J. Ziegler, J. Biersack, and M. Ziegler, “The stopping and range of ions in matter, srim, 2013,” Actual
website: http://www. srim. org, 2013.

[49] M. H. H. Tolboom, “Using cramér-rao theory to optimize the detection of prompt gamma profiles,” Mas-
ter’s thesis, TU Delft, 2017.

[50] J. Van Kan, A. Segal, and F. Vermolen, “Numerical methods in scientific computing, department of ap-
plied mathematics,” Delft University of Technology, 2008.



56 Bibliography

[51] S. van de Water, A. Kraan, S. Breedveld, W. Schillemans, D. Teguh, H. Kooy, T. Madden, B. Heijmen, and
M. Hoogeman, “Improved efficiency of multi-criteria impt treatment planning using iterative resam-
pling of randomly placed pencil beams,” Physics in Medicine & Biology, vol. 58, no. 19, p. 6969, 2013.

[52] M. Geurts, “Calcgamma,” Software, 2014.


	Introduction
	Radiotherapy
	Introduction to radiotherapy
	Proton therapy

	Proton interactions with matter
	Electronic interactions
	Nuclear interactions
	Widening of the Bragg peak

	Proton range verification
	Objective

	Methods to simulate prompt gamma profiles for proton therapy: a review
	Introduction
	Range verification system requirements
	Monte Carlo method
	Geant4
	MCNP/MCNPX
	FLUKA

	Dedicated nuclear interaction codes
	Convolution-based methods
	Conclusion

	Derivation of the proton transport equation
	Linear Boltzmann equation
	Application to proton therapy
	Fokker-Planck approximation
	Method of characteristics

	Boltzmann solver code
	Initialization
	Tracing volume
	Pencil beams

	Interpretation of ODEs
	Numerical integration methods
	Euler excplicit method
	Heun's method

	Tracing algorithms
	Gaussian quadrature
	Needle beam method
	Comparison between quadrature and needle beam methods

	Reduction of computation time
	Euler versus Heun
	Cut-off radius
	Binary search


	Simulation set-up
	Single beam on homogeneous phantom
	Single beam on inhomogeneous phantom
	Full treatment plan on a planning CT

	Results
	Single beam on homogeneous phantom
	Prompt gamma emission

	Single beam on inhomogeneous phantom
	Full treatment plan on a planning CT
	Gaussian blur
	Cut-off radius


	Discussion
	Bibliography

