
A comparative analysis of coding approaches in machine learning among
computer science students and non-computer science students

Grgur Dujmovic1

Supervisor(s): Gosia Migut

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
January 28, 2024

Name of the student: Grgur Dujmovic
Final project course: CSE3000 Research Project
Thesis committee: Gosia Migut, Myrthe Tielman

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
The increasing presence of Machine Learning in all
fields of study requires an improvement in how it
is taught. Previous research on this topic exam-
ined how to teach ML concepts and highlighted
the importance of using technology and leverag-
ing relevant pedagogical content knowledge. It did
not compare the impact of previous programming
knowledge on the students’ approach to solving
ML problems. This paper explores the differences
in implementation of 60 Machine Learning coding
assignments using metrics that were determined by
previous research to be a good indicator of code
quality and computational thinking. By analysing
the code submissions with these metrics, the re-
sults show several interesting insights about the stu-
dents’ use of functions, variables and the explana-
tions of their thought process. However, results of
the metrics are mostly inconclusive. The results
from this study highlight the need for additional re-
search on this topic to ensure that people with lim-
ited Computer Science knowledge are able to learn
about it and implement it in their disciplines.

1 Introduction
The field of Machine Learning is relatively new and is rapidly
expanding. It is becoming everpresent in our daily lives and
as such it creates a need for more people who are familiar
with its concepts. Because it is inherently a Computer Sci-
ence concept, students that study Computer Science become
acquainted with it quite well. However, an issue arises when
there is a need to teach it to students that do not study Com-
puter Science. Machine Learning is being implemented in
many disciplines to improve the processes currently in place.
Physics, medicine, sports, art, architecture and marketing are
just a couple of examples of areas where Machine Learn-
ing is being implemented. With the increasing demand for
people that are familiar with it, more and more curriculums
are starting to add courses that introduce Machine Learning
to non-Computer Science students and students with varying
degrees of knowledge when it comes to programming. This
creates an issue when it comes to teaching these students Ma-
chine Learning concepts. How to approach teaching them
these topics? Is it different than teaching Computer Science
students the same topics?
This paper will compare the code of Computer Science stu-
dents and students that are taking a Machine Learning course
while not studying Computer Science in an attempt to ex-
plore differences and similarities between their approaches to
solving the same set of assignments. The Computer Science
students are taking a Machine Learning course as a manda-
tory part of their bachelor degree, while the non-Computer
Science students are taking it as part of their minor.

1.1 Previous research
Previous research primarily focused teaching on students
with no previous knowledge of these ML concepts. A

comprehensive ten-year systematic literature review (Martins
Gresse Von Wangenheim, 2022) reviewed techniques that are
currently used to teach Machine Learning in high school.
Through an extensive review of the current methods of teach-
ing Machine Learning they concluded that high school stu-
dents showed a gain in knowledge of basic Machine Learn-
ing concepts and algorithms but it was more difficult to teach
them the underlying statistical concepts and certain AI tech-
niques. The paper also explains the importance of introduc-
ing appropriate technologies for teaching Machine Learning,
such as python, for implementing classical Machine Learning
algorithms. This is a way for students to gain knowledge by
implementing these algorithms themselves. They state that
there needs to be more guidance on adjusting the content and
technologies to effectively teach Machine Learning in a high
school setting. This paper does not go over the difference that
previous knowledge has on the performance of students, but
it does show that teaching Machine Learning through tech-
nology is the way to go.
Machine Learning instructors were interviewed as a part of a
study in an effort to gain more insight into the variables that
affect teaching Machine Learning to students that don’t study
Computer Science. The first paper of the study (Sulmont et
al., 2019a), explores the pedagogical content knowledge re-
quired to teach Machine Learning to non-Computer Science
students. It discovers and reasons about preconceptions held
by non-Computer Science students. By identifying multiple
preconceptions and barriers to learning, it suggests that ML
instructors need to teach ML while being aware of these pre-
conceptions and barriers to increase the effectiveness of their
teaching. The paper also suggests further research on devel-
oping more pedagogical content knowledge for teaching ML.
The second paper of the study (Sulmont et al., 2019b), aims to
identify difficulties that students have when learning Machine
Learning concepts. They concluded that it is more difficult
to teach Machine Learning to students that are not majoring
in Computer Science, but not because of the algorithms, but
rather the high-level design decisions and comparing mod-
els. Additionally, they concluded that misconceptions and
preconceptions were common and presented difficulties for
these students. The paper suggests that these challenges can
be solved by changing the lecturing methods and develop-
ing targeted instruction materials. This paper implies that
there are differences and unique difficulties in teaching Ma-
chine Learning to non-Computer Science students, but does
not compare the two.
A study examining teaching methods used to teach Machine
Learning in pre-university education (Temitayo Sanusi, 2021)
identifies pedagogical approaches used in teaching Machine
Learning. Through this, the paper aims to determine the im-
pact and design of these approaches on teaching Machine
Learning. It identifies suitable pedagogical frameworks suit-
able for teaching Machine Learning. The author emphasizes
the need for future research on this topic for a comprehensive
conclusion on the topic and to determine the best approach
for teaching Machine Learning.
These articles examine current approaches and propose alter-
natives, but they do not compare the performance of students
with and without prior programming experience. To bridge



this knowledge gap, this paper will provide a comprehensive
comparison between the code solutions of two groups. This
comparison may be used to tailor educational strategies so
students with no prior Computer Science experience can get
a better understanding of ML coding practices they are miss-
ing.

1.2 Research questions
How do coding approaches for solving Machine Learning
problems of computer science students differ compared to
students without a computer science background? Sub-
questions:

• Is there a statistically significant difference in code met-
rics in the solutions of computer science students versus
students with no computer science background?

• Can the coding practices of computer science students
in machine learning be reliably distinguished by using
coding metrics?

• Are there observable differences in comments and read-
ability, between the machine learning code produced by
computer science students and those without a computer
science background?

2 Methodology
To answer the research question and the sub questions, a pro-
gram will be developed. This program will go through code
examples and provide statistics for the relevant metrics. After
the metrics are gathered, an analysis and interpretation will be
performed, which will look for any correlation in the data that
supports a conclusion.

2.1 Code analysis
The code examples that will be used are provided and
anonymized by TU Delft. These code examples come from
two groups of students. The first group are Computer Science
students from TU Delft. They are considered to have prior
programming experience and will serve as the first group for
the analysis. The code is gathered from bonus assignments
they have completed during their Machine Learning course.
The second group are students that participated in a minor
course Machine Learning and Introduction to AI. Since stu-
dents that study Computer Science cannot take this minor,
they are considered to have no prior programming experience.
The assignments they have completed are nearly identical to
the previous group.
The gathered code examples will be collected and compiled
into numbered files into separate directories for group and
edition of the course. There will be 60 samples, 30 for each
group, 10 for each edition. After the code examples are or-
ganized, a program will be developed to go through each file
and record relevant statistics. All of these files are Jupyter
notebooks, hence there will need to be a way to extract infor-
mation only from code blocks. The nbformat python library
will be used for these purposes.

2.1.1 Metrics
Most of the previous research for code analysis metrics is
concerned with large codebases and system optimization.

This will not be applicable here as we are dealing with rel-
atively small projects. Previous studies offer insight for de-
ciding which what metrics are most appropriate to use for
evaluation. The most common metrics used in the software
measurement process were compiled from a total of 226 stud-
ies and determined to be “lines of code, McCabe’s cyclomatic
complexity and number of methods and attributes” (Nuñez-
Varela et al., 2017) (In this case attribute refers to a function
attribute or a variable in the code). Furthermore, metrics of
“non-comment source lines and the number of function dec-
larations were strongly correlated with certain measures of
quality”. The measures of quality were “number of known er-
rors encountered and number of modification requests made
during development.. . . , time taken to attend to these and a
subjective assessment of program complexity” (Harrison et
al., 1996). Additionally, to evaluate computational think-
ing of the students, six metrics will be added with the ”...
aim to quantify CT skills such as problem breakdown, pat-
tern recognition, and communication” (Kong et al., 2018).
There were many more other metrics from this paper but they
were not applicable to these notebooks. Knowing this, we can
conclude that these metrics will be relevant for this research
project. In conclusion, the metrics that will be used are:

1. Common methods

1.1 Lines of code
1.2 Number of functions
1.3 Number of attributes

2. Measures of quality

2.1 Cyclomatic complexity
2.2 Comment percentage

3. Computational thinking

3.1 Number of code cells
3.2 Number of markdown cells
3.3 Mean lines per code cell
3.4 Mean words per markdown cell
3.5 Number of markdown words
3.6 Number of function calls

These metrics will be collected by functions that go
through the code blocks of the Jupyter notebooks.

3 Experiment setup
To measure the metrics a new python project will be created.
There will be three main parts to the processing of the data.
The first part of processing the data is organizing the data in a
way that it is anonymized and processed. The second part is
systematically going through the data with custom functions
to measure each metric and save the results. The third and
final part is visualizing the data and performing a statistical
analysis.

3.1 Organizing the data
We will be working with already anonymized data, courtesy
of TU Delft. This data will be organized in two groups, com-
puter science students and non-computer science students.



This separation is because the data of these two groups will be
compared. Within each group there is a further separation in
3 years, for each year that the submissions are from. Per year,
there are 10 unique student submissions. Each student sub-
mission contains 1-2 Jupyter notebooks. When parsing the
data, there will be one measure that takes the average value
of a metric for a whole year, and another measure that takes
each individual measure for the whole year, for the purposes
of statistical computations.

3.2 Parsing the data
There will be a function to measure each individual metric.
These functions will take in the Jupyter notebook and return
the value of the metric for the notebook. There are a total of
11 metrics, but 11 custom functions are not needed.

3.2.1 Collecting metrics
There need to be functions for specifically extracting code
and markdown cells from the Jupyter notebooks for comput-
ing other metrics. Furthermore, for computing mean lines of
code and mean markdown words, we can simply divide the
total number of lines/words in the file with the number of the
appropriate cell type. To measure complexity, number of at-
tributes and function number and function calls, the python
ast module will be used. This module is used to help process
python syntax trees.
Cyclomatic complexity is defined as the number of paths
through a program. (McCabe, 1976). It is a way to estimate
how complex a program is. In a regular setting, it is mea-
sured by counting the number of decision points or branches
within the code. For the purposes of this paper, the defini-
tion will be expanded to include loops in the program. The
reason for this is that the assignments that are provided in-
herently do not require branching, but including loops in the
solution is an indication of a better algorithmic understand-
ing. Hence, to collect the complexity metrics, the program
looks for instances of loop declarations and boolean opera-
tions by checking python’s abstract syntax tree. Similarly, to
collect function metrics, the program checks for instances of
function declarations and function calls.

3.2.2 Aggregating metrics
The metrics are collected in two ways. The first way is used
to create a graph for a visual overview of the results. This
consists of student results per group per year being summed
up and averaged. This gives an average value of a metric for
a student group in a year and allows for simple visualization.
However, doing this means that all statistical values are lost.
That is why the data is simultaneously being added to an array
that contains all data points. These data points are similarly
separated into group and year, but we can perform statisti-
cal analysis on them, which will be required to determine the
significance of results.

3.3 Statistical analysis
After gathering the results there needs to be a way to deter-
mine whether these results are significant, i.e. do they have
any correlation or relevance to the research topic. For this
purpose we will compute confidence intervals, t-tests and Co-
hen’s d.

Confidence intervals are calculated with a 95% confidence
level. They will provide an estimated range for a value with a
95% confidence that the true value is within that interval. To
assess the reliability of differences between groups, we will
say that an overlapping confidence interval is not significant.
The t-tests will provide insight into the statistical significance
of the difference between two groups. If the p-value of the
t-test is < 0.05, it will be considered significant. Cohen’s d
measures the magnitude of the difference between groups. It
is used to support other statistical calculations.

4 Results
Measuring all of the code metrics from the Jupyter notebooks
yielded the results as seen in fig 1. The results span across
three years, three iterations of the courses. The assignments
that each group had to do were identical, with the only dif-
ferences being in how the assignments were submitted. With
an initial look at all of the plots and their confidence intervals
we can notice that most of the differences are not significant.
A closer look at each metric is required to get an overall un-
derstanding.

Figure 1: This figure show bar plots of all the computed metrics.
The black lines are 95% confidence intervals.

4.1 Trends and confidence intervals
1. Comment percentage: The group of non-Computer Sci-
entists consistently have a higher comment percentage. How-
ever, the confidence intervals are always overlapping, show-
ing that the difference is not significant.



2. Mean lines in code cells: Both groups seem to consis-
tently have the same mean lines per code cell. While there is
no difference, this correlation might be interesting.
3. Number of markdown cells: The number of markdown
cells varies significantly for both groups across the years, this
might be because of different ways of teaching per genera-
tion.
4. Number of attributes: Computer Science students con-
sistently have a higher number of attributes in their code. The
large confidence interval for 2023-2024 may be because of
notebook processing errors which will be discussed in sec-
tion 5.
5. Number of words in markdown cells: The number of
words in markdown cells has a significant difference in 2022-
2023, which could point to non-Computer Science students
being prone to explaining their process in detail.
6. Number of lines of code: There is a trend of the num-
ber of lines increasing for both groups, and it seems that it is
increasing faster for non-Computer Science students, which
could point to them coding in a more verbose manner.
7. Number of code cells: Similarly to lines of code, there
is an increasing trend, with non-Computer Science students
increasing faster. There appears to be a significant difference
for the 2023-2024 values.
8. Cyclomatic complexity: The confidence intervals are con-
sistently overlapping. Even though there seems to be an in-
creasing difference trend, no significant conclusions can be
made.
9. Mean words in markdown cells: There seems to be some
irregularity in the data, as the 2022-2023 is substantially big-
ger than the rest. If we consider that an outlier the metric
seems to be equal for both groups.
10. Number of function calls: Non-Computer Science stu-
dents have a significantly higher number of function calls
than Computer Science students. This may be because of the
content of previous classes. This will be mentioned in section
5.
11. Number of functions: Almost counter-intuitively, Com-
puter Science students have a higher number of functions.
The values are low for both groups, indicating that this may
not be relevant.

4.2 P-values and Cohen’s d
The p-values and values of Cohen’s d can be found in fig
2. Since only p-values < 0.05 are considered significant we
will be analyzing those. There are 12 instances of p being
less than 0.05 and there is no instance of one metric having
a significant p value across all 3 years. Plotted alongside the
p-values is the respective Cohen’s d value. The higher this
value is, the more significant the effect size is.

We will consider a result relevant if there is a significant
p-value for at least two years. There are a couple of re-
sults of note. Firstly, the number of functions and number
of attributes both have significant p-values for two years in a
row. This could indicate a difference in algorithmic thinking,
where students decided to create a function or save a value in
an attribute to reuse. Cohen’s d for the number of attributes
is higher than for function number, implying a higher signifi-
cance for the difference. Secondly, the number of markdown

Figure 2: This plot shows the p-values alongside values for Cohen’s
d for code metrics. Only metrics that have a p-value < 0.05 are
shown.

cells shows significant p-values. This might be because stu-
dents were inclined to explain their process to demonstrate
their way of thinking. Finally, the number of function calls
has a significant p-value, signifying that one group calls func-
tions more consistently. Since neither group defines many
functions, these are likely library functions.

5 Discussion
This section goes over the results in more detail, providing
insight into the significance of them and possible factors that
affected them.

5.1 Significant differences
The results generally do not have a consistently significant
difference. The most significant results are how the student
groups use functions and markdown cells. The differences
in number of attributes are noteworthy. It depicts that CS
students think in a more modular sense, assigning values to
variables for potential reuse. This could also be connected
to CS students having a deeper understanding of program-
ming concepts as a whole. Keeping this in mind, the number
of function calls is greater for non-CS students than it is for
CS students. Function calls represent calls even from library
functions. Because the number of defined functions is so low
for both groups, this means that non-CS students utilize more
library functions. These assignments were written in python,
and since non-CS students had a python course as part of their
minor, while CS students had no python course, they were



more proficient with the language and knew which methods
to invoke. However, even without the python course, CS
students were capable of using programming concepts they
learnt about with different languages.
Another observed difference was the use of comments and
markdown cells between the groups. Even though the differ-
ences are mostly not significant, we can observe a trend of
the comment percentage lowering at a similar rate for both
groups. This may be accompanied by the fact that the num-
ber of markdown cells is trending upwards. For some reason,
both groups are starting to comment their code less and ex-
plain their code and thinking in the markdown cells of the
Jupyter notebooks. The most likely reason for this is the way
the assignment is given. Instead of explaining the code in
comments, students are required to explain their code and
thought process in the given markdown cells. This limits the
effectiveness of these metrics, because it is not a conscious
choice made by the students, but rather a condition of the as-
signment.

5.2 Insignificant differences
The rest of the metrics show similar values or insignificant
differences for both groups. The reason behind this is likely
the way the assignments were given. The assignments do not
give room for different approaches and are quite linear when
it comes to solving. They are limited to exploring the data
and implementing well documented algorithms. While this is
a good way to introduce students to Machine Learning con-
cepts, it does not help in improving or evaluating their com-
putational thinking. Both groups have a similar number of
lines of code, showing that, on average, both groups solved
the assignments in a straightforward manner.

5.3 Outside factors
There are some factors that have affected the collected data.
Firstly, 2021-2022 values were from the COVID era, when
there were no/very limited in person classes and everything
was being handled online. This is probably why most of the
metrics from that period do not fit with the trend from the
other two years. Secondly, many submissions had syntax er-
rors in them that created issues when trying to parse them to
gather metrics. This is particularly interesting because if they
have undiscovered syntax errors, that implies they were never
ran. Some of these errors were minor and would not alter the
metrics, but a few could not be fixed because the values of the
metrics would change. The data for this study contained a to-
tal of 60 assignments, 10 per student group per year. If there
were more submissions per student group, the confidence in-
tervals might have been smaller, resulting in more opportuni-
ties of significant differences, and if there were submissions
from a longer time frame, there would have been a possibility
to analyze trends and evaluate how different instances of the
courses affected the metrics.

6 Responsible Research
This section presents steps taken to maintain the integrity of
the research. It covers the process of data collection and how
the research could be repeated/reproduced.

6.1 Data collection
The data for this study was collected by TU Delft. It is
from assignments students have submitted for their Machine
Learning course. For the group of Computer Science stu-
dents, it was part of an optional bonus assignment, while for
the non-Computer Science students it was a mandatory as-
signment. To use this data for the purposes of the project,
I filled out a data management plan and a research ethics
checklist, and wrote an informed consent form and an ethics
committee proposal, as required by TU Delft. In these docu-
ments I described which precautions I will be taking to keep
the data safe. The data was kept on TU Delft servers to avoid
privacy concerns. Furthermore, I explained what I would be
doing with the data and why it is required for my research.
I sent a proposal to the TU Delft ethics committee detailing
steps that I would take to anonymize the data so the students
assignments cannot be traced back to them. The research I
am performing does not make use of any personal data. Fi-
nally, I created an informed consent form to allow students to
withdraw their data from the research. All of these steps were
done to ensure there was no breach of ethics and data privacy,
nor violation of student rights.
In the end, I was not personally responsible for anonymizing
the submissions, although the process for it was ready. This
resulted in even better data privacy, as only employees of TU
Delft had access to the original data.

6.2 Reproducibility
The study in and of itself is not difficult to repeat. The code
for analysing the Jupyter notebooks is available on GitHub.
The only required part for repeating the study is the student
data. This might not be easy to come by due to privacy con-
cerns. If the data is acquired, it has to be organized in a
specific folder hierarchy for the program to process it. The
program is created to be modular, so it is trivial to add new
metrics, or to compare different groups of students.
Reproducing the results of the study might prove difficult,
even at TU Delft. The groups of students may greatly differ in
their programming ability per generation, the lecturers might
be different. Different university may have completely differ-
ent assignments and ways of teaching. The variability of the
results is the reason why there are three different statistical
methods being used. Making sure that any conclusions made
from the data have a very low probability of being flukes is
pivotal to the legitimacy of the study.

7 Conclusion and Future Work
In conclusion, this paper provides an insight into coding ap-
proaches of Computer Science and non-Computer Science
students by exploring the differences in coding practises. We
analyzed 60 assignments by considering different code met-
rics from previous research, and by conducting a statistical
analysis we can answer the stated research questions. The
primary research questions of this paper is ”How do coding
approaches for solving Machine Learning problems of com-
puter science students differ compared to students without a
computer science background?”. The results showed us that
Computer Science students tend to think more modularly, by



creating more variables for cleaner and reusable code. Fur-
thermore, the results show that there are not any other signifi-
cant differences between the coding approaches. For the first
and second sub-questions, ”Is there a statistically significant
difference in code metrics in the solutions of computer sci-
ence students versus students with no computer science back-
ground?” and ”Can the coding practices of computer science
students in machine learning be reliably distinguished by us-
ing coding metrics?”, the results show that there are rarely
any statistical differences in the metrics, meaning that one
could not reliably distinguish the previous knowledge of a
student based on their assignment. Finally, the answer to the
last sub-question, ”Are there observable differences in com-
ments and readability, between the machine learning code
produced by computer science students and those without a
computer science background?”, is no, because the comments
and markdown cells for both groups, in which they explain
and reason about the task, do not have a significant statistical
difference.

7.1 Improvements
To enhance the robustness of this study, there are multiple
things that should be considered to improve it if it were to
be repeated. Firstly, a more diverse dataset that includes sub-
missions from different institutions and time frames would
result in a more comprehensive analysis. When collecting
this dataset we should keep in mind that the assignments the
students have completed should be identical to not affect the
integrity of the findings. An analysis of this dataset would
provide a broader perspective on how students with different
backgrounds approach solving ML assignments. When the
data comes from multiple institutions and from students of
different backgrounds, it is even possible to evaluate the stu-
dents’ approaches in more detail, allowing a different teach-
ing approach depending on the students background. Sec-
ondly, a form of qualitative analysis could be introduced, by
not only analysing the code but also interviewing students,
resulting in a deeper insight behind their approach and rea-
soning while writing code. Expanding on this, a third im-
provement could be controlled experiments, where the stu-
dents solve the problems under observation while explain-
ing their thought process. This would provide an even more
detailed look into how students of different backgrounds ap-
proach problems.

7.2 Future work
Building upon the results of this study, there are several op-
portunities for further research. Firstly, there could be an ex-
ploration of ML coding assignment structures. A comparative
analysis of guided assignments, such as the ones in this pa-
per, versus open-ended projects, which could highlight and
improve the students computational thinking. Perhaps stu-
dents would learn more if they were left to their own de-
vices and given freedom to approach a given problem how
they see fit. Secondly, an examination of prerequisite courses
would provide insight into how these courses affect the stu-
dents ability to solve ML problems. This would allow instruc-
tors to determine which knowledge from the courses applies
to ML, and could be used to help tailor teaching methods and

course content for students with different backgrounds. Fi-
nally, an exploration of collaborative learning for ML could
examine the effect of students of various backgrounds work-
ing on assignments together. It would investigate whether
students with varying academic backgrounds could mutually
positively affect their understanding of ML concepts and cod-
ing practices.

8 References
Harrison, R., Samaraweera, L. G., Dobie, M. R., & Lewis, P.
H. (1996). An evaluation of code metrics for object-oriented
programs. Information and Software Technology, 38(7),
443–450. https://doi.org/10.1016/0950-5849(95)01081-5

Martins, R. M., & Gresse Von Wangenheim, C. (2022).
Findings on teaching machine learning in high school: A
ten - year Systematic Literature Review. Informatics in
Education. https://doi.org/10.15388/infedu.2023.18

Nuñez-Varela, A. S., Pérez-Gonzalez, H. G., Martı́nez-
Perez, F. E., & Soubervielle-Montalvo, C. (2017).
Source code metrics: A systematic mapping study.
Journal of Systems and Software, 128, 164–197.
https://doi.org/10.1016/j.jss.2017.03.044

Sulmont, E., Patitsas, E., & Cooperstock, J. R. (2019a).
Can you teach me to machine learn? Proceedings of the
50th ACM Technical Symposium on Computer Science
Education. https://doi.org/10.1145/3287324.3287392

Sulmont, E., Patitsas, E., & Cooperstock, J. R. (2019b).
What is hard about teaching machine learning to non-
majors? insights from classifying instructors’ learning goals.
ACM Transactions on Computing Education, 19(4), 1–16.
https://doi.org/10.1145/3336124

Temitayo Sanusi, I. (2021). Teaching machine learning
in K-12 Education. Proceedings of the 17th ACM Con-
ference on International Computing Education Research.
https://doi.org/10.1145/3446871.3469769

Kong, S.C., Andone, D., Biswas, G., Crick, T., Hoppe,
H.U., Hsu, T.C., Huang, R.H., Li, K.Y., Looi, C.K., Milrad,
M., Sheldon, J., Shih, J.L., Sin, K.F., Tissenbaum, M., &
Vahrenhold, J. (Eds.). (2018). Proceedings of the Interna-
tional Conference on Computational Thinking Education
2018. Hong Kong: The Education University of Hong Kong.

McCabe, T. J. (1976). A complexity measure. IEEE
Transactions on Software Engineering, SE-2(4), 308–320.
https://doi.org/10.1109/tse.1976.233837


	Introduction
	Previous research
	Research questions

	Methodology
	Code analysis
	Metrics


	Experiment setup
	Organizing the data
	Parsing the data
	Collecting metrics
	Aggregating metrics

	Statistical analysis

	Results
	Trends and confidence intervals
	P-values and Cohen's d

	Discussion
	Significant differences
	Insignificant differences
	Outside factors

	Responsible Research
	Data collection
	Reproducibility

	Conclusion and Future Work
	Improvements
	Future work

	References

