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Millions saw the apple fall, but Newton asked why.

Bernard Baruch



SUMMARY

In modern society, the need has emerged to guarantee the efficient operation of large in-
terconnected systems, such as communication networks, peer-to-peer energy markets,
smart cities, social networks. Despite the diverse application domains, a recurring fea-
ture is the presence of multiple components, managed by autonomous agents (artificial
devices or humans), with shared resources and local, partial knowledge about the whole
system. Ensuring a desired emerging behavior requires achieving effective coordination
among the agents. This is an arduous task, especially when the agents have diverging in-
terests and objectives, in applications like charging scheduling of electric vehicles, traffic
control, bandwidth sharing among self-interested internet users. Mathematically, these
competitive settings are modeled by games, where the complex interaction among the
agents is represented via coupled cost functions and constraints. Often the goal of the
agents is to reach an efficient decision, within the operational limits of the system, from
which no agent has an incentive to deviate, i.e., a generalized Nash equilibrium (GNE).

The main topic of this dissertation is the distributed computation of GNEs in multi-
agent games with network structure. In particular, we design and analyze algorithms
in the partial-decision information scenario (also named fully-distributed algorithms),
where each agent can only rely on the information received by some neighbors over a
communication graph, although its cost function depends on the actions of possibly all
the competitors. This setup is motivated by engineering applications with no central
system coordinator, for instance multi-agent autonomous driving or coverage control.
While the agents can estimate the unknown variables via local data exchange and con-
sensus protocols, the estimation error introduces critical challenges in the development
of algorithms. In fact, the existing schemes for GNE seeking under partial-decision in-
formation suffer important limitations, as to performance and conditions to guarantee
convergence.

Driven by the need for fast solution methods, in the first part of the thesis we design
fully-distributed GNE seeking algorithms based on proximal best-response dynamics –
as opposed to known gradient-type iterations. Our convergence analysis is based on
an operator-theoretic reformulation and on the choice of a convenient preconditioning;
this derivation also facilitates the development of acceleration and inexact schemes, and
the customization to the prominent class of aggregative games. Our algorithms outper-
form the known pseudo-gradient methods, in terms of both communication and (more
surprisingly) computation burden. We also study the convergence of our proximal algo-
rithms under a mild assumption, that requires neither Lipschitz continuity nor strong
monotonicity of the game mapping.

In control problems arising, e.g., in robotic networks and power systems, the actions
of the agents are represented by the outputs of some dynamical systems, to be regulated
to an (a priori unknown) GNE. This optimal steady-state problem is addressed in the sec-
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viii SUMMARY

ond part of the dissertation. Motivated by mobile sensors applications, we focus on net-
works of multi-integrator agents; yet, our results can be applied to a wide range of linear
or nonlinear systems, via feedback linearization. Specifically, we design fully-distributed
continuous-time dynamic feedback controllers that guarantee asymptotic stability of a
GNE. The convergence analysis combines stability theory for (projected) dynamical sys-
tems, monotonicity properties, and a LaSalle argument to prove convergence of the dual
variables. Thanks to the use of adaptive weights in the consensus dynamics, our schemes
also allow for totally decentralized tuning.

Finally, in the third part of this thesis, we study complex network structures in the
partial-decision information scenario. First, we consider games without coupling con-
straints, where the agents can only communicate over a time-varying or directed (row
stochastic) graph. By leveraging contractivity properties, we develop linearly conver-
gent and fast pseudo-gradient algorithms. Second, we propose a framework to improve
efficiency and scalability of fully-distributed GNE seeking algorithms. Such methods
generally require each agent to keep (and exchange) an estimate of the actions of all
other agents. We propose a graph-theoretic notation that, while introducing virtually
no complication in the convergence analysis, allows for more efficient estimate allo-
cations when the coupling among the agents exhibits some sparsity. We demonstrate
our framework on generalized games, by designing methods where each agent only es-
timates some components of the primal/dual variable (or of an aggregation function).
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1
OVERVIEW

The first chapter sells the book; the last chapter sells the next book.

Mickey Spillane

Abandon all hope, ye who enter here

Dante Alighieri (J. Ciardi, Trans.)

The aim of this dissertation is to develop distributed solution methods for multi-agent
(generalized) Nash equilibrium problems. In this introductory chapter, we provide the
background and motivation of this research. First, we present current challenges in en-
gineering applications (related to communication, traffic and power networks), and we
discuss the relevance of game-theoretic models for their undertaking. In particular, we
introduce the partial-decision information scenario, which is the focus of this thesis,
highlighting some open problems of the field. Then, we formalize our research objec-
tives. Finally, we outline the organization of the remaining chapters.
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1.1. MULTI-AGENT NETWORKS

P OWER grid management, energy market regulation, communication systems, cyber-
security: many contemporary technological applications involve large networks,1

composed of physical infrastructures and of multiple agents, namely entities (process-
ing units or human users) with decision-making capabilities. While these agents are
autonomous, their decision processes are strictly interdependent and ultimately deter-
mine the functioning of the complex system. Ensuring a desired emerging behavior re-
quires control actions and effective multi-agent coordination mechanisms, able to cap-
ture the increasing complexity of engineering, social and economics systems.

For instance, in traffic networks, reducing congestion and air pollutant emissions en-
tails dealing with the large number of vehicles that share the road space-time. The tra-
ditional approach consists of tolling policies, implemented by a road authority to incen-
tivize the independent drivers to choose system-optimal routes [97], [134]. Meanwhile,
novel opportunities for sustainable mobility are offered by the proliferation of advanced
technologies [39], [142]. Above all, autonomous cars and intelligent transportation sys-
tems (where vehicles can exchange information with close-by vehicles or with roadside
modules) hold the promise to greatly reduce congestion and energy consumptions –
subject to the deployment of adequate coordination strategies – for example by avoiding
accidents and phantom traffic jams.

Multi-agent applications also arise in cognitive radio systems [1], [141], which are
designed to fully exploit the available spectrum in wireless communication networks –
a precious resource, in the “internet of things” era. In essence, the users (transceivers)
must adaptively select their operating parameters by interacting with other users and
with the environment, e.g., picking vacant channels to avoid interference. Design of
robust spectrum sharing protocols is an arduous task, due to unreliability of wireless
communication, users’ mobility and time-varying service requests. In fact, conjugating
responsiveness and spectral efficiency remains an open issue.

A third prominent coordination problem stems from the power system realm. Ow-
ing to the desire for cheap, reliable and green energy, national grids are progressively
incorporating more microgrids – local power networks with storage and generation fa-
cilities, operated autonomously to efficiently provide electricity to the local users, often
relying on renewable resources (solar panels, wind turbines). The resulting smart grid is
foreseen as a complex cyber-physical system, where the microgrids communicate, trade
energy and interact between them and with the main grid [129], [139].

The examples above highlight some crucial features of emerging network architec-
tures. These applications involve a sizeable number of agents (e.g., drivers, transceivers,
microgrid managers), each having only access to limited, local knowledge about the
overall system. Promptly gathering global information might be prohibitive, because
of bandwidth constraints and communication costs, or because the agents are reluctant
to share private data. Besides, real-time centralized processing of large amounts of data
is impractical, especially in dynamic, heterogeneous environments (like cognitive radio
networks). Altogether, achieving scalable, robust, privacy-preserving decision-making
demands the design of distributed methods – where each agent’s decision is based only

1A network is a a group or system of interconnected people or things [131].
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on the incomplete knowledge available locally (e.g., received by some other neighboring
agent), and the computational burden is partitioned among the agents.

Another fundamental trait of complex network systems is the presence of self-
interested agents, that pursue their own individual objectives (e.g., minimizing the travel
time, maximizing the quality of service, minimizing the electricity bill), disregarding the
intents of the other decision makers or the social welfare. While an agent has only au-
thority over its own choices (e.g., route, channel, amount of energy traded with a grid),
its objective often depends on the actions of the other agents – for instance due to shared
resources (e.g., road, spectrum, power grid) or market dynamics. Accordingly, the agents
may still coordinate or compromise, to advance their own goals and avoid detrimental
outcomes (e.g., traffic jams) – although their distinct, possibly conflicting, interests pre-
vent a fully cooperative behavior.

1.2. GAME THEORY FOR COORDINATION

N ETWORKS of rational, self-interested entities, as those previously introduced, can
be mathematically described by generalized games. A game is a collection of inter-

dependent optimization problems, one for each agent (decision maker/player) in a sys-
tem. Each agent has a set of available decisions (actions/strategies),2 and an individual
cost function depending both on its own decision and on the decisions of (some of) the
other players. A game is called generalized if the agents’ actions are further coupled via
shared constraints (e.g., the total quantity of a resource used by all the agents is bounded
by the resource availability).

Game theory was conceived in the field of mathematical economics [42], [100], as
a modeling paradigm for markets of competitive, noncooperative firms (without exter-
nal enforcement or coordination). Over the years, it was also recognized across diverse
research fields and areas of engineering, as a crucial framework to control the interac-
tion between self-interested agents. Indeed, game theory provides the tools not only to
modulate the emerging behavior of a network via intervention strategies (as in incentive
mechanism design [61], [132]), but also to shape the actual decision-making process of
the agents, to guarantee the attainment of a desirable decision. The theme of this dis-
sertation is the latter task. Specifically, the challenge is to design the local interactions
between the agents to ensure the achievement of a stable, safe and efficient operating
point, most often identified with a generalized Nash equilibrium (GNE) [55]. The dy-
namic, iterative processes employed by the agents to reach a GNE are named GNE seek-
ing algorithms.

GNE seeking has been employed in a variety of topical application domains, includ-
ing competition in markets [88], power systems [119], wireless communication [72],
wired communication [110], multi-agent machine learning [45], blockchain [80]. Nat-
urally, the networked structure of these problems calls for distributed solutions.
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Complex network systems

Distributed
decision making

Generalized
games

Full-decision
information

Payoff-basedmethods

Partial-decision
information

self-interested agents

local decision authority
informational constraints

dynamic environment
large scale

Figure 1.1: GNE seeking under partial-decision information conciliates distributed operation with GNE com-
putation. In this setting, an agent cannot access all the actions that affect its objective (differently from the
canonical full-decision information scenario [55]), nor measure its own cost function (in contrast to what as-
sumed for zeroth-order learning, e.g., extremum seeking [84], [130]).

1.3. GNE SEEKING UNDER PARTIAL-DECISION INFORMATION

D ISTRIBUTED solution of GNE problems (GNEPs) is a thriving research topic; count-
less algorithms have been studied, that rest on different informational constraints

(i.e., assumptions on the knowledge that players can access). The emphasis of this the-
sis is on network applications where there is no coordinator that gathers and broadcasts
data over the system, and where the agents can only rely on fragmentary peer-to-peer
interaction: cognitive radio [141], OSNR optimization in optical networks [122], demand
response in the smart grid [147], formation control [93], to mention a few. Such center-
free systems are especially empowered by the current deregulation and authority decen-
tralization trends in markets, telecommunications and transportation industries.

Specifically, we focus on the partial-decision information model, where (i) an agent
can only obtain new data by communicating with some neighboring agents; (ii) each
agent holds an analytical expression of a private cost function, which possibly depends
on the (unknown) actions of non-neighboring agents. To compensate for the lack of
global knowledge, the agents keep an estimate of the unknown quantities, and engage in
information sharing with their neighbors, combining the local decision processes with
consensus dynamics. This setting has only been introduced very recently, in the semi-
nal work [83]; yet, it has attracted since then considerable scientific interest [108], [109],
[136], [146], due to its prospect engineering applications as well as fresh theoretical chal-
lenges. To be precise, the major technical difficulty is that the operator-theoretic proper-
ties of the game mapping (a crucial operator, characterizing the game) are not preserved,

2In this thesis, we consider continuous-action games, where the decision set of each agent is uncountably
infinite (e.g., a convex set); we do not consider finite-action games, where the decision set is finite.
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when moving from the decision space to the lifted space of the estimates.
In fact, in spite of the many proposals, the current state-of-the-art GNE seeking al-

gorithms in the partial-decision information scenario suffer severe drawbacks (in terms
of communication cost, computation burden and conditions required to ensure conver-
gence), which significantly hinder their applicability. In particular, we individuate some
key pitfalls of the existing methods as follows:

1. Convergence rate: a large number of iterations/communications is required for
convergence (resulting in time/energy inefficiency).

2. Scalability: each agent is required to keep and exchange with neighbors an esti-
mate of the actions of all other players (except for the class of aggregative games),
which might be impractical if the agent population size is large; furthermore, the
convergence rate deteriorates rapidly when the number of agents grows.

3. Monotonicity: converge is guaranteed only under quite restrictive monotonicity
assumptions on the game mapping.

4. Smoothness: converge is typically proven only if the game mapping is Lipschitz
continuous.

5. Communication topology: the communication network is required to be undi-
rected and connected (except for gossip algorithms), while there is no method to
address complex topologies (time-varying, directed, lossy or delayed networks).

6. Dynamical agents: known algorithms to address games with coupling constraints
assume that the agents can freely switch among their strategies, which is limit-
ing for many control problems, where the agents’ actions are represented by the
outputs of some dynamical systems.

Towards safe and efficient decision-making in center-free networks of self-interest
agents, in this thesis, we intend to probe the above issues, as summarized in the next
section.

1.4. RESEARCH GOALS

T HE aim of this PhD dissertation is to develop a mathematical theory and computa-
tional algorithms to efficiently solve GNE problems in the partial-decision informa-

tion scenario, in the presence of complex network interaction and dynamic coupling.
We approach this objective by investigating the following questions:

Q1. How to achieve fast, scalable, communication-efficient, fully-distributed GNE
seeking?

Q2. What methods can be employed to relax monotonicity and smoothness require-
ments in GNE seeking under partial-decision information?

Q3. How to design distributed controllers to solve GNE problems in the presence of
dynamical agents?
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Q4. How to analyze convergence to an equilibrium in games played over directed,
time-varying communication networks?

We assess in the concluding Chapter 8 to what extent the results in this thesis con-
tribute to answer each of the questions above.

1.5. THESIS ORGANIZATION

F IGURE 1.2 presents the outline of the thesis and the connections of the chapters. The
contents of each chapter are summarized next.
The basic notation used throughout the thesis is introduced in Appendix A. We re-

view definitions and results from graph theory in Appendix B, and we present some
background material on operator theory and fixed-point iterations in Appendix C: these
are the chief mathematical tools employed in the dissertation, which we integrate in the
design of GNE seeking algorithms.

The rest of the thesis is composed of four parts.

PART I: FULLY-DISTRIBUTED PROXIMAL-POINT ALGORITHMS

Driven by the need for faster solution methods, in this part of the thesis, we develop
GNE seeking algorithms based on proximal best-response dynamics. We compare these
methods with state-of-the-art gradient-type iterations, in terms of speed and communi-
cation efficiency (Chapter 2) and of monotonicity and smoothness conditions required
to ensure convergence (Chapter 3).

• Chapter 2 (addressing Q1)
In this chapter, we derive a fully-distributed3 primal-dual proximal algorithm, to
solve games with coupling constraints, by leveraging an operator-theoretic ap-
proach and devising a suitable preconditioning. We illustrate how, by allowing
for larger step sizes, our scheme outperforms existing gradient-type methods. Ad-
ditionally, we tailor the developed algorithm for the important class of aggrega-
tive games, and we analyze three accelerations strategies, that can further improve
convergence speed.

This chapter is partially based on the following publication:

[22] M. Bianchi, G. Belgioioso, and S. Grammatico, “Fast generalized Nash equi-
librium seeking under partial-decision information,” Automatica, vol. 136,
p. 110 080, 2022. DOI: 10.1016/j.automatica.2021.110080.

• Chapter 3 (addressing Q2)
We relate several monotonicity and smoothness assumptions, used in literature
for the partial-decision information scenario. Then, we prove convergence of the
proximal algorithm developed in Chapter 2 but under a weaker condition, namely
a restricted monotonicity property that does not require the game mapping to be
strongly monotone nor (Lipschitz) continuous.

3Namely, not requiring the presence of a central node; not to be confused with distributed algorithms devised
for games in full-decision information, where the computation is partitioned among the agents, but generally
requiring a coordinator to broadcast the actions of the agents over the network. In this thesis, with fully-
distributed algorithms, we refer to algorithms for the partial-decision information scenario.

https://doi.org/10.1016/j.automatica.2021.110080
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Part I
Proximal-point algorithms

Part II
Dynamical agents and

feedback equilibrium seeking

Part III
Graphical structures

Chapter 1
Overview

Appendices A, B, C
Mathematical background

Chapter 2
Fast proximal-

point algorithms

Chapter 3
Monotonicity

and smoothness

Chapter 4
Adaptive GNE seeking for

multi-integrator agents

Chapter 5
NE seeking over

time-varying net-
works with linear rate

Chapter 6
NE seeking over
directed graphs

Chapter 7
The END: a framework
for efficient distributed

equilibrium seeking

Chapter 8
Concluding remarks

Figure 1.2: Structure of the thesis. Arrows indicate read-before relations.
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8 1. OVERVIEW

This chapter is partially based on the following paper:

[26] M. Bianchi and S. Grammatico, “Nash equilibrium seeking under partial
decision information: Monotonicity, smoothness and proximal-point algo-
rithms,” in 2022 61st IEEE Conference on Decision and Control (CDC), 2022,
pp. 5080–5085. DOI: 10.1109/CDC51059.2022.9993145.

PART II: FEEDBACK EQUILIBRIUM SEEKING FOR DYNAMICAL AGENTS

This part of the thesis is devoted to the design of continuous-time distributed controllers
to drive the outputs of some dynamical systems, associated with the agents in a game,
to an (a priori unknown) GNE.

• Chapter 4 (addressing Q3, Q2)
Motivated by robotic applications and by feedback linearization of nonlinear sys-
tems, in this chapter we focus on generalized games played by multi-integrator
agents. We propose a fully-distributed controller that guarantees asymptotic sta-
bility of a GNE, by resorting to a LaSalle argument and to the monotonicity proper-
ties of the game. Furthermore, we design uncoordinated adaptive weights for the
consensus of the estimates, which allow for a totally decentralized tuning.

This chapter is partially based on the following publication:

[24] M. Bianchi and S. Grammatico, “Continuous-time fully distributed gener-
alized Nash equilibrium seeking for multi-integrator agents,” Automatica,
vol. 129, p. 109 660, 2021. DOI: 10.1016/j.automatica.2021.109660.

PART III: GRAPHICAL STRUCTURES IN GAMES UNDER PARTIAL-DECISION INFORMATION

In this part of the thesis, we study games in the partial-decision information scenario un-
der the lens of graph theory. Specifically, we exploit graph theoretic properties to develop
fully-distributed Nash equilibrium (NE) seeking algorithms (for games without coupling
constraints) supported by directed and time-varying graphs (Chapters 5 to 7) and to im-
prove efficiency of GNE seeking methods, by leveraging the inherent partial coupling of
the problem at hand (Chapter 7).

• Chapter 5 (addressing Q1, Q4)
We study a simple algorithm to seek a NE over time-varying doubly stochastic
graphs. Linear convergence is proven by integrating contractivity and mono-
tonicity properties over two complementary subspaces. Compared to existing ap-
proaches, this procedure ensures bounds on the step sizes that do not diminish
when the network size grows, hence superior scalability. Moreover, we analyze a
different algorithm, guaranteed to converge on time-varying balanced digraphs.

This chapter is partially based on the following publication:

[25] M. Bianchi and S. Grammatico, “Fully distributed Nash equilibrium seeking
over time-varying communication networks with linear convergence rate,”
IEEE Control Systems Letters, vol. 5, pp. 499–504, 2021. DOI: 10 . 1109 /
LCSYS.2020.3002734.

https://doi.org/10.1109/CDC51059.2022.9993145
https://doi.org/10.1016/j.automatica.2021.109660
https://doi.org/10.1109/LCSYS.2020.3002734
https://doi.org/10.1109/LCSYS.2020.3002734
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• Chapter 6 (addressing Q4)
In this chapter, we solve for the first time NE problems over a directed row stochas-
tic communication graph, by employing either a small-enough step or by means
of vanishing step sizes. The algorithm we design requires the knowledge of the
Perron-Frobenius eigenvector of the network, but we show that the procedure can
be adapted to compute this eigenvector online.

This chapter is partially based on the following publication:

[27] M. Bianchi and S. Grammatico, “Nash equilibrium seeking under partial-
decision information over directed communication networks,” in 2020 59th
IEEE Conference on Decision and Control (CDC), 2020, pp. 3555–3560. DOI:
10.1109/CDC42340.2020.9304267.

• Chapter 7 (addressing Q1, Q4)
Solving multi-agent decision problems via fully-distributed algorithms requires
each agent to store a copy of some variables (e.g., decision or dual variable, ag-
gregation value), often leading to poor scalability and communication overhead.
In this chapter, we develop a graph-theoretic design language that enables exploit-
ing the inherent sparsity of a problem to improve efficiency. We demonstrate the
framework on generalized games in partial-decision information, by developing
methods where each agent only has to estimate some components of primal/dual
variables (or of an aggregation function). We also propose applications in the re-
lated field of consensus optimization.

This chapter is partially based on the following paper:

[28] M. Bianchi and S. Grammatico, “The END: Estimation Network Design for
efficient distributed equilibrium seeking,” IEEE Transactions on Automatic
Control, under review. [Online]. Available: https : / / arxiv . org / abs /
2208.11377.

PART IV: CONCLUSION

Finally, Chapter 8 draws some concluding remarks regarding the main contributions of
the thesis and highlights directions for future research.

A complete list of articles published by the author during his doctoral studies, in-
cluding those not featured in this dissertation, is provided at the end of the thesis.

https://doi.org/10.1109/CDC42340.2020.9304267
https://arxiv.org/abs/2208.11377
https://arxiv.org/abs/2208.11377
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2
FAST PROXIMAL-POINT

ALGORITHMS

If I have seen further, it is by standing on the shoulders of giants.

Isaac Newton

In mathematics, you don’t understand things. You just get used to them.

Jhon von Neuman

The few existing methods for GNE seeking under partial-decision information build on
projected pseudo-gradient dynamics, and require either double-layer iterations or con-
servative conditions on the step sizes. To overcome both these flaws and improve ef-
ficiency, we design the first fully-distributed single-layer algorithms based on proximal
best-response. Our schemes are fixed-step and allow for inexact updates, which is cru-
cial for reducing the computational complexity. Under standard assumptions on the
game primitives, we establish convergence to a variational equilibrium (with linear rate
for games without coupling constraints) by recasting our algorithms as proximal-point
methods, opportunely preconditioned to distribute the computation among the agents.
Since our analysis hinges on a restricted monotonicity property, we also provide new
general results that significantly extend the domain of applicability of proximal-point
methods. Besides, our operator-theoretic approach favors the implementation of prov-
ably correct acceleration schemes that can further improve the convergence speed. Fi-
nally, the potential of our algorithms is demonstrated numerically, revealing much faster
convergence with respect to projected pseudo-gradient methods and validating our the-
oretical findings.

Parts of this chapter have been published in [22].
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2.1. INTRODUCTION

G ENERALIZED games model the interaction between self-interested decision makers,
or agents, that aim at optimizing their individual, yet inter-dependent, objective

functions, subject to shared constraints. This competitive scenario has received increas-
ing attention with the spreading of networked systems, due to the numerous engineer-
ing applications, including demand-side management in the smart grid [119], charg-
ing/discharging of electric vehicles [71], demand response in competitive markets [88],
and radio communication [57]. From a game-theoretic perspective, the challenge is to
assign the agents behavioral rules that eventually ensure the attainment of a satisfactory
equilibrium.

A recent part of the literature focuses in fact on designing distributed algorithms to
seek a GNE, a decision set from which no agent has interest to unilaterally deviate [13],
[38], [55], [149], [151]. In these works, the computational effort is partitioned among the
agents, but assuming that each of them has access to the decision of all the competi-
tors (or to an aggregation value, in the case of aggregative games). Such an hypothesis,
referred to as full-decision information, generally requires the presence of a central coor-
dinator that communicates with all the agents, which is impractical in some cases [133],
[60]. One example is the Nash–Cournot competition model described in [82], where the
profit of each of a group of firms depends not only on its own production, but also on the
total supply, a quantity not directly accessible by any of the firms. Instead, here we con-
sider the so-called partial-decision information scenario, where each agent estimates the
actions of all the competitors by relying only on the information exchanged with some
neighbors over a communication network. Thus, the goal is to design fully-distributed
(namely, center-free) algorithms, based exclusively on peer-to-peer communication.

The partial-decision information setup has only been introduced very recently. Most
results consider non-generalized games (i.e., games without shared constraints) [82],
[122], [136], [120]. Even fewer algorithms can cope with the presence of coupling con-
straints [109], [10], [64], despite this extension arises naturally in most resource alloca-
tion problems [55, §2], e.g., due to shared capacity limitations. All the cited formulations
resort to (projected) gradient and consensus-type dynamics, and are single-layer (i.e.,
they require a fixed finite number of communications per iteration). The main draw-
back is that, due to the partial-decision information assumption, theoretical guarantees
are obtained only for small (or vanishing) step sizes, which significantly affect the speed
of convergence. The only alternative available in literature consists of double-layer al-
gorithms, [86], [108], where the agents must communicate multiple (virtually infinite)
times to reach consensus, before each update. An extensive communication require-
ment is however a performance bottleneck, as the communication time can overwhelm
the time spent on local useful processing – in fact, this is a common problem in parallel
computing [78]. Let alone the time lost in the transmission, sending large volumes of
data on wireless networks results in a dramatically increased energetic cost.

Contributions: To improve speed and efficiency, we design the first fully-distributed
single-layer GNE seeking algorithms based on proximal best-response. For the sake of
generality and mathematical elegance, we take here an operator-theoretic approach [9],
[149], and reformulate the GNE problem as that of finding a zero of a monotone oper-
ator. The advantage is that several fixed-point iterations are known to solve monotone
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inclusions [8, §26], thus providing a unifying framework to design algorithms and study
their convergence. For instance, the methods in [109], [10], [64], were developed based
on the (preconditioned) forward-backward (FB) splitting [8, §26.5]. To enhance the con-
vergence speed, we instead employ a proximal-point algorithm (PPA) [8, Th. 28.1], which
typically can tolerate much larger step sizes. Nonetheless, the design of distributed GNE
seeking PPAs was elusive until now, because a direct implementation results in double-
layer algorithms [124], [148]. The novelties of this chapter are summarized as follows:

• We propose the first PPA to compute a zero of a restricted monotone operator,
which significantly generalizes classical results for maximally monotone opera-
tors. Differently from other recent extensions [52], [99], we also allow for set-
valued resolvents and inexact updates, and we do not assume pseudomonotonic-
ity or hypomonotonicity. This is a fundamental result of independent interest,
which we exploit to prove convergence of our algorithms (2.4.2);

• We introduce a novel primal-dual proximal best-response GNE seeking algorithm,
which is the first non-gradient-based scheme for the partial-decision information
setup. We derive our method as a PPA, where we design a novel precondition-
ing matrix to distribute the computation and obtain a single-layer iteration. Un-
der strong monotonicity and Lipschitz continuity of the game mapping, we prove
global convergence with fixed step sizes, by exploiting restricted monotonicity
properties. Convergence is retained even if the proximal best-response is com-
puted inexactly (with summable errors), which is crucial for practical implemen-
tation. Differently from [109, Alg. 1], the step sizes can be chosen independently
of a certain restricted strong monotonicity constant. In turn, not only we allow for
much larger steps, but parametric dependence is also improved: for instance, the
bounds do not vanish when the number of agents grows, and the resulting conver-
gence rate for non-generalized games is superior. Moreover our scheme requires
only one communication per iteration, instead of two (§2.4.3, §2.5.1);

• We apply some acceleration schemes [77] to our preconditioned PPA (PPPA) and
provide new theoretical convergence guarantees. We observe numerically that the
iterations needed to converge can be halved (§2.5);

• We tailor our method to efficiently solve aggregative games, by letting each agent
keep and exchange an estimate of the aggregative value only, instead of an esti-
mate of all the other agents’ actions (§2.6);

• Via numerical simulations, we show that our PPPAs significantly outperform the
pseudo-gradient methods in [64], [109] (the only other known fully-distributed,
single-layer, fixed-step GNE seeking schemes), not only in terms of number of it-
erations needed to converge (hence with a considerable reduction of the commu-
nication burden), but also in terms of total computational cost (despite each agent
must locally solve a strongly convex optimization problem, rather than a projec-
tion, at each step) (§2.7).

To improve readability, some of the proofs are in the chapter appendix. We refer to
Appendices A, B, C for the basic notation and mathematical background.
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2.2. MATHEMATICAL SETUP

W E consider a set of agents, I := {1, . . . , N }, where each agent i ∈ I shall choose its
decision variable (i.e., strategy) xi from its local decision set Ωi ⊆ Rni . Let x :=

col((xi )i∈I ) ∈Ω denote the stacked vector of all the agents’ decisions,Ω :=Ω1×·· ·×ΩN ⊆
Rn the overall action space and n :=∑N

i=1 ni . The goal of each agent i ∈ I is to minimize
its objective function Ji (xi , x−i ), which depends on both the local variable xi and on
the decision variables of the other agents x−i := col((x j ) j∈I\{i }). Furthermore, the feasi-
ble decisions of each agent depends on the action of the other agents via coupling con-
straints, which we assume affine: most of the literature focuses on this case [108], [10],
which in fact accounts for the vast majority of practical applications [55, §3.2]. Specif-
ically, the overall feasible set is X := Ω∩ {

x ∈Rn | Ax ≤ b
}
, where A := [A1, . . . , AN ] and

b := ∑N
i=1 bi , Ai ∈ Rm×ni and bi ∈ Rm being local data. The game is then represented by

the inter-dependent optimization problems:

∀i ∈ I : min
yi∈Rni

Ji (yi , x−i ) s.t. (yi , x−i ) ∈X . (2.1)

The technical problem we consider here is the computation of a GNE, namely a set of
decisions that simultaneously solve all the optimization problems in (2.1).

Definition 2.1. A collective strategy x∗ = col
(
(x∗

i

)
i∈I ) is a generalized Nash equilibrium

if, for all i ∈ I , Ji
(
x∗

i , x∗
−i

)≤ inf{Ji
(
yi , x∗

−i

) | (yi , x∗
−i ) ∈X }. □

Next, we postulate some common regularity and convexity assumptions for the con-
straint sets and cost functions, as in, e.g., [82, Asm. 1], [109, Asm. 1].

Standing Assumption 2.1. For each i ∈ I , the set Ωi is closed and convex; X is non-
empty and satisfies Slater’s constraint qualification1; Ji is continuous and Ji (·, x−i ) is
convex and continuously differentiable for every x−i . □

As per standard practice [108], [149], among all the possible GNEs, we focus on the
subclass of variational GNEs (v-GNEs) [55, Def. 3.11], which are more economically jus-
tifiable, as well as computationally tractable [85]. The v-GNEs are so called because they
coincide with the solutions to the variational inequality VI(F,X ), where F is the pseudo-
gradient mapping of the game:

F (x) := col
(
(∇xi Ji (xi , x−i ))i∈I

)
. (2.2)

Under Standing Assumption 2.1, x∗ is a v-GNE of the game in (2.1) if and only if there
exists a dual variable λ∗ ∈ Rm such that the following Karush–Kuhn–Tucker (KKT) con-
ditions are satisfied [55, Th. 4.8]:

0n∈ F
(
x∗)+ A⊤λ∗+NΩ

(
x∗)

0m ∈−(
Ax∗−b

)+NRm
≥0

(
λ∗)

.
(2.3)

1Namely, there exists a point x̄ ∈X in the relative interior of Ω, and such that all the non-affine coupling con-
straints are strictly satisfied at x̄ (in this chapter, we only consider affine coupling constraints). This condition
ensures that strong duality holds for the optimization problems in (2.1).
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Standing Assumption 2.2. The pseudo-gradient mapping F in (2.2) is µ-strongly mono-
tone and θ0-Lipschitz continuous, for some µ, θ0 > 0. □

The strong monotonicity of F is sufficient to ensure existence and uniqueness of a
v-GNE [56, Th. 2.3.3]; it was always assumed for GNE seeking under partial-decision
information with fixed step sizes [136, Asm. 2], [109, Asm. 3] (while it is sometimes re-
placed by strict monotonicity or cocoercivity, under vanishing steps and compactness of
X [82, Asm. 2], [106, Asm. 3] [10, Asm. 5]).

2.3. FULLY-DISTRIBUTED EQUILIBRIUM SEEKING

I N this section, we present our baseline algorithm to seek a v-GNE of the game in (2.1)
in a fully-distributed way. Specifically, each agent i only knows its own cost function Ji

and feasible setΩi , and the portion of the coupling constraints (Ai ,bi ). Moreover, agent
i does not have full knowledge of x−i , and only relies on the information exchanged
locally with some neighbors over an undirected communication network G(I ,E). The
pairs (i , j ), ( j , i ) belong to the set of edges E if and only if agent i and j can mutually
exchange information. We denote: W = [wi , j ]i , j∈I ∈RN×N the symmetric weight matrix
of G, with wi , j > 0 if (i , j ) ∈ E , wi , j = 0 otherwise, and the convention wi i = 0 for all
i ∈ I ; L := D −W the Laplacian matrix of G, with degree matrix D := diag((di )i∈I ), and
di := deg(i ) = ∑N

j=1 wi , j for all i ∈ I ; Ni = { j | (i , j ) ∈ E} the set of neighbors of agent i .

Moreover, let V ∈ RE×N the weighted incidence matrix of G, where 2E is the cardinality
of E (see Appendix B). It holds that L = V ⊤V ; moreover, null(V ) = null(L) = {κ1N ,κ ∈ R}
under the following connectedness assumption [70, Ch. 8].

Standing Assumption 2.3. The communication graph G(I ,E) is undirected and con-
nected. The weight matrix W is symmetric. □

In the partial-decision information, to cope with the lack of knowledge, each agent
keeps an estimate of all other agents’ actions [146], [136], [109]. We denote x i :=
col((x i , j ) j∈I ) ∈ Rn , where x i ,i := xi and x i , j is agent i ’s estimate of agent j ’s action, for
all j ̸= i ; let also x j ,−i := col((x j ,ℓ)ℓ∈I\{i }). Moreover, we let each agent keep an estimate
λi ∈Rm

≥0 of the dual variable, and an auxiliary variable zi ∈Rm .
Our proposed dynamics are summarized in Algorithm 2.1, where the global param-

eter α > 0 and the positive step sizes τi , δi , ν(i , j ) = ν( j ,i ), for all i ∈ I and (i , j ) ∈ E , have
to be chosen appropriately (see §2.4). Each agent i updates its action xi similarly to a
proximal best-response, but with two extra terms that are meant to penalize and cor-
rect the disagreement among the estimates and the coupling constraints violation. Most
importantly, the agents evaluate their cost functions in their local estimates, not on the
actual collective strategy. In steady state, the agents should agree on their estimates, i.e.,
x i = x j , λi = λ j , for all i , j ∈ I . This motivates the presence of consensus terms for both
primal and dual variables. From a control-theoretic perspective, the updates of each zi

can be seen as integrator dynamics driven by the disagreement of the variablesλ j ’s. This
integral action is meant to permit the distributed asymptotic satisfaction of the coupling
constraints, despite the computation of each λi only involves the local block (Ai ,bi ) –
differently from typical centralized dual ascent iterations. We postpone a formal deriva-
tion of Algorithm 2.1 to §2.4.
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Algorithm 2.1. Fully-distributed v-GNE seeking via PPPA

Initialization

• For all i ∈ I , set x0
i ∈Ωi , x0

i ,−i ∈Rn−ni , z0
i = 0m , λ0

i ∈Rm
≥0.

For all k ∈N:

• Communication: The agents exchange the variables {xk
i , xk

i ,−i ,λk
i } with their

neighbors.

• Local variables update: each agent i ∈ I computes

xk+1
i ,−i = 1

1+τi di
(xk

i ,−i +τi
∑

j∈Ni
wi , j xk

j ,−i )

xk+1
i = argmin

y∈Ωi

(
Ji (y, xk+1

i ,−i )+ 1
2ατi

∥∥y −xk
i

∥∥2 + di
2α

∥∥y − 1
di

∑
j∈Ni

wi , j xk
j ,i

∥∥2 + 1
α (A⊤

i λ
k
i )⊤y

)
zi

k+1 = zk
i +∑

j∈Ni
ν(i , j )wi , j (λk

i −λk
j )

λk+1
i = projRm

≥0

(
λk

i +δi
(

Ai (2xk+1
i −xk

i )−bi − (2zk+1
i − zk

i )
))

.

Remark 2.1. The functions Ji (·, x i ,−i ) are strongly convex, for all x i ,−i , i ∈ I , as a con-
sequence of Standing Assumption 2.2. Hence, the argmin operator in Algorithm 2.1 is
single-valued, and the algorithm is well defined. □

Remark 2.2. In Algorithm 2.1, each agent has to locally solve an optimization problem,
at every iteration. Not only these subproblems are fully-decentralized (i.e., they do not
require extra communication), but they are also of low dimension (ni ). This is a major
departure from the procedure proposed in the PPAs [124, Alg. 2], [148, Alg. 2], where the
agents have to collaboratively solve a subgame (of dimension n) before each update. □

2.4. CONVERGENCE ANALYSIS

2.4.1. DEFINITIONS AND PRELIMINARY RESULTS

We denote x := col((x i )i∈I ) ∈ RN n . Besides, let us define, as in [109, Eq. 13, 14], for all
i ∈ I ,

Ri :=[
0ni×n<i Ini 0ni×n>i

] ∈Rni×n , (2.4a)

Si :=
[

In<i 0n<i×ni 0n<i×n>i

0n>i×n<i 0n>i×ni In>i

]
∈Rn−i×n (2.4b)

where n<i :=∑
j<i , j∈I n j , n>i :=∑

j>i , j∈I n j and n−i := n−ni . In simple terms, Ri selects
the i -th ni -dimensional component from an n-dimensional vector, while Si removes it.
Thus, Ri x i = x i ,i = xi and Si x i = x i ,−i . Let R := diag

(
(Ri )i∈I

)
, S := diag

(
(Si )i∈I

)
. It

follows that x =Rx and col((x i ,−i )i∈I ) = Sx ∈ R(N−1)n . Moreover, x =R⊤x +S⊤Sx . We
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define the extended pseudo-gradient mapping F :RN n →Rn as

F (x) := col
(
(∇xi Ji (xi , x i ,−i ))i∈I

)
, (2.5)

and the operators

Fa(x) :=αR⊤F (x)+ (Dn −Wn)x , (2.6)

A(ω) :=
Fa(x)

0Em

b

+
 R⊤A⊤λ

−Vmλ

V ⊤
m v − ARx


︸ ︷︷ ︸

:=A1(ω)

+

 NΩ(x)
0Em

NRN m
≥0

(λ)

 (2.7)

where α > 0 is a design constant, ω := col(x , v ,λ), v := col((vℓ)ℓ∈{1,...,E }) ∈ REm , λ :=
col((λi )i∈I ) ∈ RN m , A := diag((Ai )i∈I ), Wn := W ⊗ In , Dn := D ⊗ In , Vm := V ⊗ Im , and
Ω := {x ∈RnN |Rx ∈Ω}.

The following lemma relates the unique v-GNE of the game in (2.1) to the zeros of the
operator A. The proof is analogous to [109, Th. 1] or Lemma 2.10 in Section 2.9.2, and
hence it is omitted.

Lemma 2.1. Let A be as in (2.7). It holds that zer(A) ̸=∅. Moreover, let x∗ ∈ RN n , λ∗ ∈
RN m ; then, the following statements are equivalent:

(i) There exists v∗ such that col(x∗, v∗,λ∗) ∈ zer(A).

(ii) x∗ = 1N ⊗x∗ andλ∗ = 1N ⊗λ∗, where the pair (x∗,λ∗) satisfies the KKT conditions
in (2.3), hence x∗ is the v-GNE of the game in (2.1). □

Effectively, Lemma 2.1 provides an extension of the KKT conditions in (2.3) and al-
lows us to recast the GNE problem as that of computing a zero of the operator A, for
which a number of iterative algorithms are available [8, §26-28]. In fact, in §2.4.3, we
show that Algorithm 2.1 can be recast as a PPA [8, Th. 23.41].

Nonetheless, technical difficulties arise in the analysis because of the partial-
decision information setup. Specifically, in (2.5), each partial gradient ∇xi Ji

(
xi , x i ,−i

)
is evaluated on the local estimate x i ,−i , and not on the actual value x−i . Only when the
estimates x are at consensus, i.e., x = 1N ⊗ x (namely, the estimate of each agents co-
incide with the actual value of x), we have that F (x) = F (x). As a result, the operator
R⊤F (and consequently the operator A) is not monotone in general2, not even under
the strong monotonicity of the game mapping F in Standing Assumption 2.2. Instead,
analogously to the approaches in [120], [109], [63], our analysis is based on a restricted
monotonicity property.

Definition 2.2. An operator F : Rq â Rq is restricted (µ-strongly) monotone in HP if
zer(F ) ̸=∅ and 〈ω−ω∗ | u〉P ≥ 0 (≥ µ∥ω−ω∗∥2

P ) for all (ω,u) ∈ gra(F ), ω∗ ∈ zer(F ) (we
omit the characterization “in HP ” whenever P = I ). □
2In Chapter 3, we show that R⊤F is monotone only if the mappings ∇xi Ji (x)’s do not depend on x−i (in which

case, there is no need for a partial-decision information assumption).
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Definition 2.2 differs from that in [109, Lem. 3], as we only consider properties with
respect to the zero set and we need to include set-valued operators. The definition com-
prises the nonemptiness of the zero set and it does not exclude an operator that is multi-
valued on its zeros. The next lemmas show that restricted monotonicity of A can be
guaranteed for any game satisfying Standing Assumptions 2.1–2.3, without additional
hypotheses.

Lemma 2.2 ([23, Lemma 3]). The mapping F in (2.5) is θ-Lipschitz continuous, for some
θ ∈ [µ,θ0]. □

Lemma 2.3. Let αmax := 4µλ2(L)
(θ0+θ)2+4µθ

,

M :=α
[ µ

N − θ0+θ
2
p

N

− θ0+θ
2
p

N
λ2(L)
α −θ

]
, µFa := λmin(M). (2.8)

If α ∈ (0,αmax] , then µFa ≥ 0 and A in (2.7) is restricted monotone. □

Proof. The operator A in (2.7) is the sum of three operators. The third is monotone
by properties of normal cones [8, Th. 20.25]; the second is a linear skew-symmetric oper-
ator, hence monotone [8, Ex. 20.35]. Let ω∗ = col(x∗, v∗,λ∗) ∈ zer(A), where zer(A) ̸=∅
by Lemma 2.1. By Lemma 2.1, x∗ = 1N⊗x∗, with x∗ the v-GNE of the game in (2.1); hence
by [109, Lemma 3], for any α ∈ (0,αmax], it holds that M ≽ 0 and that, for all x ∈RN n

〈x −x∗ | Fa(x)−Fa(x∗)〉 ≥µFa∥x −x∗∥2. (2.9)

Hence, for all (ω,u) ∈ gra(A), withω= col(x , v ,λ), 〈ω−ω∗ | u −0〉 ≥µFa∥x −x∗∥2 ≥ 0. ■

2.4.2. PPA FOR RESTRICTED MONOTONE OPERATORS
In the remainder of this section, we show that Algorithm 2.1 is an instance of the PPA,
applied to seek a zero of the (suitably preconditioned) operator A in (2.7). Then, we
show its convergence based on the restricted monotonicity result in Lemma 2.3.

Informally speaking, in proximal-point methods, a problem is decomposed into a
sequence of regularized subproblems, which are possibly better conditioned and easier
to solve. Let B : Rq â Rq be maximally monotone [8, Def. 20.20] in a space HP , and
JB = (Id+B)−1 its resolvent. Then, dom(JB) = Rq and JB is single-valued; moreover, if
zer(B) ̸=∅, then the sequence (ωk )k∈N generated by the PPA,

(∀k ∈N) ωk+1 = JB(ωk ), ω0 ∈Rq , (2.10)

converges to a point in zer(B) = fix(JB) [8, Th. 23.41]. Note that performing the update in
(2.10) is equivalent to solving for ωk+1 the (regularized) inclusion

0 ∈B(ωk+1)+ωk+1 −ωk . (2.11)

Unfortunately, many operator-theoretic properties are not guaranteed if B is only re-
stricted monotone. In fact, JB might not be defined everywhere or single-valued.
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Example 2.1. Let B : R→ R, with B(ω) = 9−2ω if ω ∈ [3,4), B(ω) = ω otherwise. Then,
zer(B) = {0} andB is restricted strongly monotone. However, JB(ω) = {ω2 ,9−ω} ifω ∈ [5,6)
and JB(ω) =∅ if ω ∈ (6,8). □

Nonetheless, some important properties carry on to the restricted monotone case,
as we prove next.

Lemma 2.4. Let B :Rq âRq be restricted monotone in HP . Then, JB is firmly quasinon-
expansive in HP : for any (ω,u) ∈ gra(JB), ω∗ ∈ zer(B) = fix(JB), it holds that

〈ω−u |ω−ω∗〉P −∥u −ω∥2
P = 〈ω−u | u −ω∗〉P ≥ 0. (2.12)

Moreover, JB(ω∗) = {ω∗}. □
Proof. By definition of resolvent, ω∗ ∈ JB(ω∗) ⇔ ω∗+Bω∗ ∋ ω∗ ⇔ 0 ∈ B(ω∗); also,

for any (ω,u) ∈ gra(JB), ω−u ∈ B(u). Hence, the inequality in (2.12) is the restricted
monotonicity of B; the elementary equality follows by expanding the terms. Finally, by
taking ω=ω∗ in (2.12), we infer that JB is single-valued on fix(JB). ■

Next, by leveraging Lemma 2.4, we extend classical results for the PPA [41, Th. 5.6] to
the case of a restricted monotone operator (possibly with multi-valued resolvent).

Theorem 2.1. Let B : Rq â Rq be restricted monotone in HP , and C := zer(B) ̸=∅. Let
(γk )k∈N be a sequence in [0,2], and (ek )k∈N a sequence in Rq such that (γk∥ek∥P )k∈N ∈ ℓ1

(where ℓ1 is the set of absolutely summable sequences). Let ω0 ∈ Rq and let (ωk )k∈N be
any sequence such that:

(∀k ∈N) ωk+1 =ωk +γk (uk −ωk +ek ),uk ∈ JB(ωk ). (2.13)

Then, the following statements hold:

(i) (∀ω∗ ∈C )(∀k ∈N) ∥ωk+1 −ω∗∥P ≤ ∥ωk −ω∗∥P +γk∥ek∥P .

(ii)
(
γk (2−γk )∥uk −ωk∥2

P

)
k∈N ∈ ℓ1.

(iii) Assume that every cluster point of (ωk )k∈N belongs to C . Then, (ωk )k∈N converges
to a point in C .

(iv) Assume that B is µB-strongly restricted monotone in HP . Then, C = {ω∗} and, for

all k ∈N, ∥ωk+1−ω∗∥P ≤ ρk∥ωk−ω∗∥P +γk∥ek∥P , where ρk = max(1− γkµB
1+µB ,γk−1).

□
Proof. See Section 2.9.1. ■

Remark 2.3. The condition dom(JB) = Rq is sufficient (but not necessary) for the ex-
istence of a sequence (ωk )k∈N that satisfies (2.13), which can be constructed choosing
arbitrarily uk ∈ JB(ωk ), for all k ∈N. □
Example 2.2. Consider the VI(Ψ,S) (see Appendix C), where S ⊂Rq is compact and con-
vex, and Ψ : Rq → Rq is continuous and pseudomonotone in the sense of Karamardian
(i.e., for all ω,ω′ ∈ Rq , the implication 〈Ψ(ω),ω′−ω〉 ≥ 0 ⇒ 〈Ψ(ω′),ω′−ω〉 ≥ 0 holds). It
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holds that SOL(Ψ,S) = zer(B) ̸=∅, where B =Ψ+NS [56, Prop. 2.2.3] (where SOL(Ψ,S)
denotes the solution set of VI(Ψ,S)). Moreover B is restricted monotone. To show this,
consider any ω∗ ∈ zer(B) and (ω,u) ∈ gra(B), so u = Ψ(ω)+u′, for some u′ such that
(ω,u′) ∈ gra(NS ). Then, 〈u | ω−ω∗〉 = 〈Ψ(ω) | ω−ω∗〉+ 〈u′ −0 | ω−ω∗〉 ≥ 0, where we
used that 〈Ψ(ω) |ω−ω∗〉 ≥ 0, by pseudomonotonicity and because 〈Ψ(ω∗) |ω−ω∗〉 ≥ 0
by definition of VI, and 〈u′−0 | ω−ω∗〉 ≥ 0 because (ω∗,0) ∈ gra(NS ) and monotonicity
of the normal cone.
We note that dom(JB) = Rq by [56, Prop. 2.2.3]. Let us consider any sequence (ωk )k∈N
such that, for all k ∈N, ωk+1 = uk ,uk ∈ JB(ωk ), (or equivalently (2.11) or ωk+1 ∈ SOL(Ψ+
Id−ωk ,S)). By Theorem 2.1 (with γk = 1,ek = 0), (ωk )k∈N is bounded, hence it admits at
least one cluster point, say ω̄; by Theorem 2.1(ii) ∥uk−ωk∥→ 0. However, by definition of
VI, for anyω ∈ S, 〈Ψ(uk )+uk−ωk |ω−uk〉 ≥ 0. By passing to the limit (on a subsequence)
and by continuity, we obtain 〈Ψ(ω̄) |ω− ω̄〉 ≥ 0, which shows that ω̄ ∈ SOL(Ψ,S). There-
fore (ωk )k∈N converges to a solution to VI(Ψ,S) by Theorem 2.1(iii). This extends the re-
sults in [52, §4.2], where hypomonotonicity of Ψ is assumed and where a small-enough
step size is chosen to ensure that JB is single-valued (besides, pseudomonotonicity of
Ψ is sufficient, but not necessary, for the restricted monotonicity of B, and Theorem 2.1
would also allow to take into account iterations with errors, cf. [52, §4.2]). □

2.4.3. DERIVATION AND CONVERGENCE
Next, we show how that Algorithm 2.1 is obtained by applying the iteration in (2.13) to
the operatorΦ−1A, where

Φ :=
τ̄−1 +Wn 0 −R⊤A⊤

0 ν̄−1 Vm

−AR V ⊤
m δ̄−1

 (2.14)

is called preconditioning matrix. The step sizes τ̄ := diag((τi In)i∈I ), ν̄ :=
diag((ν(i , j )Im)(i , j )∈E ), δ̄ := diag((δi Im)i∈I ), have to be chosen such that Φ ≻ 0. In this
case, it also holds that zer(Φ−1A) = zer(A). Sufficient conditions that ensure Φ ≻ 0 are
given in the next lemma, which follows by the Gershgorin’s circle theorem.

Lemma 2.5. The matrixΦ in (2.14) is positive definite if ν(i , j )
−1 > 2

√
(wi , j ) for all (i , j ) ∈

E and τ−1
i > di +∥A⊤

i ∥∞, δ−1
i > ∥Ai∥∞+∑N

j=1

√
(wi , j ) for all i ∈ I . □

In the following, we always assume that the step sizes in Algorithm 2.1 are chosen
such thatΦ≻ 0. Then, we are able to formulate the following result.

Lemma 2.6. Algorithm 2.1 is equivalent to the iteration

(∀k ∈N) ωk+1 ∈ JΦ−1A(ωk ), (2.15)

with A as in (2.7), Φ as in (2.14): for any initial condition ω0 = col(x0, v 0 = 0Em ,λ0),
the sequence (xk ,V ⊤

m v k ,λk )k∈N generated by (2.15) coincides with the sequence
(xk , zk ,λk )k∈N generated by Algorithm 2.1 with initial conditions (x0, z0 = 0N m ,λ0). □

Proof. By definition of inverse operator, we have that

ωk+1 ∈ (Id+Φ−1A)−1(ωk )
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⇔ 0 ∈Φ−1A(ωk+1)−ωk +ωk+1

⇔ 0 ∈Φ(ωk+1 −ωk )+A(ωk+1) (2.16)

⇔



0 ∈ τ̄−1(xk+1 −xk )+����Wn xk+1 −Wn xk +Dn xk+1

−(((((R⊤A⊤λk+1 +R⊤A⊤λk +αR⊤F (xk+1)

−����Wn xk+1 +(((((R⊤A⊤λk+1 +NΩ(xk+1)

0 ∈ ν̄−1(v k+1 −v k )+����Vmλ
k+1 −Vmλ

k −����Vmλ
k+1

0 ∈ δ̄−1(λk+1 −λk )+NRmN
≥0

(λk+1)+b

− AR(2xk+1 −xk )+V ⊤
m (2v k+1 −v k )

(2.17)

In turn, the first inclusion in (2.17) can be split in two by left-multiplying both sides with
R and S . By SNΩ = 0(N−1)n , RR⊤ = In and SR⊤ = 0(N−1)n×n , we get

0 ∈S((I + τ̄Dn)xk+1 −xk − τ̄Wn xk )

0 ∈R((I + τ̄Dn)xk+1 −xk − τ̄Wn xk )

+NΩ(xk+1)+ατ̄F ((xk+1,Sxk+1))+ τ̄A⊤λk

⇔
∀i∈I



xk+1
i ,−i = 1

1+τi di
(xk

i ,−i +τi
∑N

j=1 wi , j xk
j ,−i )

0ni ∈ ∂xk+1
i

(
Ji (xk+1

i , xk+1
i ,−i )+ 1

2ατi

∥∥xk+1
i −xk

i

∥∥2

+ 1
2αdi

∥∥di xk+1
i −∑N

j=1 wi , j xk
j ,i

∥∥2

+ιΩi (xk+1
i )+ 1

α (A⊤
i λ

k
i )

⊤
xk+1

i

)
.

Therefore, since the zeros of the subdifferential of a (strongly) convex function coincide
with the minima (unique minimum) [8, Th. 16.3], (2.17) can be rewritten as

∀i ∈ I :


xk+1

i ,−i = 1
1+τi di

(xk
i ,−i +τi

∑N
j=1 wi , j xk

j ,−i )

xk+1
i = argmin

y∈Ωi

(
Ji (y, xk+1

i ,−i )+ 1
2ατi

∥∥y −xk
i

∥∥2 + 1
2αdi

∥∥di y −∑N
j=1 wi , j xk

j ,i

∥∥2

+ 1
α (A⊤

i λ
k
i )

⊤
y
)

v k+1 = v k + ν̄Vmλ
k

λk+1 = projRmN
≥0

(
λk + δ̄(

AR(2xk+1 −xk )−b −V ⊤
m (2v k+1 −v k )

))
.

(2.18)

The conclusion follows by defining zk := V ⊤
m v k , where zk = col((zi )i∈I ) ∈ RN m and zk

i ∈
Rm are local variables kept by each agent, provided that z0 =V ⊤

m v 0. The latter is ensured
by z0 = 0N m , as in Algorithm 2.1. ■
Remark 2.4. The preconditioning matrix Φ is designed to make the system in (2.17)
block triangular, i.e., to remove the term Wn xk+1 andR⊤A⊤λk+1 from the first inclusion,
and the terms Vmλ

k+1 from the second one: in this way, xk+1
i and zk+1 do not depend

on xk+1
j , for i ̸= j , or λk+1. This ensures that the resulting iteration can be computed by
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the agents in a fully-distributed fashion (differently from the non-preconditioned resol-
vent JA). Furthermore, the change of variable z = V ⊤

m v reduces the number of auxiliary
variables and decouples the dual update in (2.18) from the graph structure. □

Remark 2.5. By Lemma 2.6, Remark 2.1 and by JΦ−1A in (2.18), we conclude that
dom(JΦ−1A) =RN n+Em+N m and that JΦ−1A is single-valued. □

In order to apply Theorem 2.1 to the iteration in (2.15), we still need the following
lemma.

Lemma 2.7. Let α ∈ (0,αmax], αmax as in Lemma 2.3. ThenΦ−1A is restricted monotone
in HΦ. □.

Proof. Let (ω,u) ∈ gra(Φ−1A), ω∗ ∈ zer(Φ−1A). Then, (ω,Φu) ∈ gra(A) and ω∗ ∈
zer(A). By Lemma 2.3 we conclude that 〈u |ω−ω∗〉Φ = 〈Φu |ω−ω∗〉 ≥ 0. ■

Theorem 2.2. Let α ∈ (0,αmax], with αmax as in Lemma 2.3, and let the step sizes τ̄, ν̄, δ̄
be as in Lemma 2.5. Then, the sequence (xk , zk ,λk )k∈N generated by Algorithm 2.1 con-
verges to some equilibrium (x∗, z∗,λ∗), where x∗ = 1N ⊗ x∗ and x∗ is the v-GNE of the
game in (2.1). □

Proof. By Lemma 2.6, we can equivalently study the convergence of the iteration in
(2.15). In turn, (2.15) can be rewritten as (2.13) with γk = 1, ek = 0, for all k ∈N. For later
reference, let us define uk = JΦ−1A(ωk ) (here uk =ωk+1). Φ−1A is restricted monotone in
HΦ by Lemma 2.7. By Theorem 2.1(i), the sequence (ωk )k∈N is bounded, hence it admits
at least one cluster point, say ω̄. By (2.16) and (2.7), it holds, for anyω ∈Ω×REm ×RN m

≥0 ,

that 〈A1(uk )+Φ(uk −ωk ) |ω−uk〉 ≥ 0, with A1 as in (2.7). By Theorem 2.1(ii), uk −ωk →
0. Therefore, by continuity of A1, taking the limit on a diverging subsequence (lk )k∈N
such that (ωlk )k∈N → ω̄, we have that for all ω ∈Ω×REm ×RN m

≥0 ), 〈A1(ω̄) | ω− ω̄〉 ≥ 0,

which shows that ω̄ ∈ zer(A) = fix(JΦ−1A). Hence (ωk )k∈N converges to an equilibrium of
(2.15) by Theorem 2.1(iii). The conclusion follows by Lemma 2.1. ■

Remark 2.6. While the choice of step sizes in Lemma 2.5 is decentralized, computing
the bound αmax for the common parameter α in Algorithm 2.1 requires some global in-
formation on the graphG (i.e., the algebraic connectivity) and on the game mapping (the
strong monotonicity and Lipschitz constants). □

Remark 2.7. If x0 ∈ ΩN , then xk ∈ ΩN for all k ∈N (by convexity and the updates in
Algorithm 2.1), and Assumption 2.2 can be relaxed to hold only onΩ. □

Remark 2.8 (Inexact updates). The local optimization problems in Algorithm 2.1 are
strongly convex, hence they can be efficiently solved by several iterative algorithms (with
linear rate). While computing the exact solutions x̄k

i would require an infinite number
of iterations, the convergence in Theorem 2.2 still holds if xi is updated with an ap-
proximation x̂k

i of x̄k
i , provided that the errors ek

i := x̄k
i − x̂k

i are norm summable, i.e.,

(∥ek
i ∥)k∈N ∈ ℓ1, for all i ∈ I (the same proof applies, since the condition on ek in The-

orem 2.1 would be satisfied, by equivalence of norms). For example, assume that x̂k
i is
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computed via a finite number j k
i ≥ 1 of steps of the projected gradient method, warm-

started at xk
i , with (small enough) fixed step. Then, each agent can independently ensure

that ∥ek
i ∥ ≤ εk

i , for some (εk
i )k∈N ∈ ℓ1, by simply choosing

j k
i ≥ log

(
εk

i (1−ρi )/∥xk
i − x̂k,1

i ∥
)

/log(ρi ), (2.19)

where x̂k,1
i is the approximation obtained after one gradient step and ρi ∈ (0,1) is

the contractivity parameter of the gradient descent3. We finally remark that x̄k
i must

be estimated with increasing accuracy. In practice, however, when xk
i is converging,

∥xk+1
i − xk

i ∥ → 0. Hence xk
i is a good initial guess for x̄k

i , and the computation of xk+1
i

often requires few gradient steps, see also §2.7. □

2.5. ACCELERATIONS

L EMMA 2.6 shows that Algorithm 2.1 can be recast (modulo the change of variables
z =V ⊤

m v ) as
ωk+1 = T (ωk ), (2.20)

where T := JΦ−1A. This compact operator representation allows for some modifications
of Algorithm 2.1, that can increase its convergence speed. In particular, we consider
three popular accelerations schemes [77], which have been extensively studied for the
case of firmly nonexpansive operators [8, Def. 4.1], and also found application in games
under full-decision information [14], [124]. Here we provide convergence guarantees for
the partial-decision information setup, where T is only firmly quasinonexpansive. Our
fully-distributed accelerated algorithms are illustrated in Algorithm 2.2. In the following,
we assume that α ∈ (0,αmax], αmax as in Lemma 2.3, and that the step sizes τ̄, ν̄, δ̄ are
chosen as in Lemma 2.5.

Proposition 2.1 (Overrelaxation). Let γ ∈ [1,2). Then, for any ω0, the sequence (ωk )k∈N
generated by

(∀k ∈N), ωk+1 =ωk +γ(T (ωk )−ωk ), (2.21)

converges to an equilibrium (x∗, v∗,λ∗) ∈ zer(A), where x∗ = 1N ⊗ x∗ and x∗ is the v-
GNE of the game in (2.1). □

Proof. The iteration in (2.21) is in the form (2.13), with γk = γ, ek = 0, for all k ∈N.
Then, the conclusion follows analogously to Theorem 2.2. ■
Proposition 2.2 (Inertia). Let ζ ∈ [0, 1

3 ). Then, for any ω−1 :=ω0, the sequence (ωk )k∈N
generated by

(∀k ∈N), ωk+1 = T (ωk +ζ(ωk −ωk−1)), (2.22)

converges to an equilibrium (x∗, v∗,λ∗) ∈ zer(A), where x∗ = 1N ⊗ x∗ and x∗ is the v-
GNE of the game in (2.1). □
3ρi can be taken independent of k: since ∇Ji (·, x i ,−i ) is µi strongly monotone and θi Lipschitz, for

some µi ≥ µ, θi ≤ θ and for all x i ,−i , the factor ρi = θi −µi
θi +µi +1/(ατi )+di /α is ensured by the step

2/(θi +µi +1/(ατi )+di /α).
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Algorithm 2.2. Fully-distributed v-GNE seeking via accelerated PPPA

Initialization:

• Choose acceleration:
Overrelaxation: set γ> 0, ζ= 0, η= 0;
Inertia: set γ= 0, ζ> 0, η= 0;
Alternated inertia: set γ= 0, ζ= 0, η> 0;

• For all i ∈ I , set x−1
i = x0

i ∈Ωi , x−1
i ,−i = x0

i ,−i ∈Rn−ni , z−1
i = z0

i = 0m , λ−1
i =λ0

i ∈Rm
≥0.

For all k > 0:

• (Alternated) inertial step: set η̃k = 0 if k is even, η̃k = η otherwise; each agent i ∈ I
computes

x̃k
i ,−i = xk

i ,−i + (ζ+ η̃k )(xk
i ,−i −xk−1

i ,−i )

x̃k
i = xk

i + (ζ+ η̃k )(xk
i −xk−1

i )

z̃k
i = zk

i + (ζ+ η̃k )(zk
i − zk−1

i )

λ̃k
i =λk

i + (ζ+ η̃k )(λk
i −λk−1

i )

• Communication: The agents exchange {x̃k
i , x̃k

i ,−i , λ̃k
i } with their neighbors.

• Resolvent computation: each agent i ∈ I computes

x̆k+1
i ,−i = 1

1+τi di
(x̃k

i ,−i +τi
∑N

j=1 wi , j x̃k
j ,−i )

x̆k+1
i = argmin

y∈Ωi

(
Ji (y, x̆k+1

i ,−i )+ 1
2ατi

∥∥y − x̃k
i

∥∥2 + 1
2αdi

∥∥di y −∑N
j=1 wi , j x̃k

j ,i

∥∥2 + 1
α (A⊤

i λ̃
k
i )⊤y

)
z̆i

k+1 = z̃k
i +∑N

j=1ν(i , j )wi , j (λ̃k
i − λ̃k

j )

λ̆k+1
i = projRm

≥0

(
λ̃k

i +δi
(

Ai (2x̆k+1
i − x̃k

i )−bi − (2z̆k+1
i − z̃k

i )
))

.

• Relaxation step: each agent i ∈ I computes

xk+1
i ,−i = γx̆k+1

i ,−i + (1−γ)xk
i ,−i

xk+1
i = γx̆k+1

i + (1−γ)xk
i

zi
k+1 = γz̆k+1

i + (1−γ)zk
i

λk+1
i = γλ̆k+1

i + (1−γ)λk
i
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Proof (sketch). By following all the steps in the proof of [32, Th. 5] (which can be
done by recalling that an operator T is firmly (quasi)nonexpansive if and only if the op-
erator 2T −Id is (quasi)nonexpansive [8, Prop. 4.2, 4.4]), it can be shown that, if ζ ∈ [0, 1

3 ),

then (ωk )k∈N is bounded and ωk+1 −ωk → 0. Then, the proof follows analogously to
Theorem 2.2. ■
Proposition 2.3 (Alternated inertia). Let η ∈ [0,1]. Then, for any ω0, the sequence
(ωk )k∈N generated by{

ωk+1 = T (ωk ) if k is even,

ωk+1 = T (ωk +η(ωk −ωk−1)) if k is odd,
(2.23)

converges to an equilibrium (x∗, v∗,λ∗) ∈ zer(A), where x∗ = 1N ⊗ x∗ and x∗ is the v-
GNE of the game in (2.1). □

Proof. For all k ∈N, ω2k+2 = T (T (ω2k )+η(T (ω2k )−ω2k )), which is the same two-
steps update obtained in (2.13) with γ2k = 1+η, γ2k+1 = 1 (andB :=Φ−1A, ek = 0). There-
fore the convergence of the sequence (ω2k )k∈N to an equilibrium (x∗, v∗,λ∗) ∈ zer(A)
follows analogously to Theorem 2.2 (with a minor modification for the case η = 1). The
convergence of the sequence (ω2k+1)k∈N then follows by Theorem 2.1(i). ■

We note that, by Theorem 2.1, the convergence results in Propositions 2.1 and 2.3
hold also in the case of summable errors on the updates, as in Remark 2.8. Analogously
to our analysis, provably convergent acceleration schemes could also be obtained for the
FB algorithm in [109]: however, an advantage of our PPA is that the bounds on the iner-
tial/relaxation parameters are fixed and independent on (unknown) problem parame-
ters.

2.5.1. ON THE CONVERGENCE RATE
We conclude this section with a discussion on the convergence rate of Algorithms 2.1
and 2.2. First, even under Standing Assumption 2.2, the KKT operator on the right-hand
side of (2.3) is generally not strongly monotone. Similarly, the operator A in (2.7) is not
strongly monotone and Algorithm 2.1 can have multiple fixed points. Therefore, one
should not expect linear convergence. By Lemma 2.6 and the proof of Theorem 2.1, we
can derive the following ergodic rate for the fixed-point residual in Algorithm 2.1:

1
k

∑k
i=0 ∥ωk+1 −ωk∥2 =O(1/k)

This rate also holds for the iterations in (2.21), (2.22), (2.23); for the case of general opera-
tor splittings (and differently from optimization algorithms), tighter rates for accelerated
schemes are only known for particular cases, and most works focus on mere convergence
[77], [32]. Yet, the practice shows that relaxation and inertia often result in improved
speed, see [14] or §2.7.

The same residual rate O(1/k) can also be shown for the pseudo-gradient method
in [109, Alg. 1]. However, a major difference from Lemma 2.5 is that the upper bounds
for the step sizes in [109, Th. 2] are proportional to the constant µFa in (2.8), which is
typically very small (up to scaling of the whole operator Fa), [25] (see also §2.7.1), and,
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Algorithm 2.3. Fully-distributed NE seeking via PPPA

x̆k+1
i ,−i = 1

1+τi di
(xk

i ,−i +τi
∑N

j=1 wi , j xk
j ,−i )

x̆k+1
i = argmin

y∈Ωi

(
Ji (y, x̆k+1

i ,−i )+ 1
2ατi

∥∥y −xk
i

∥∥2 + 1
2αdi

∥∥di y −∑N
j=1 wi , j xk

j ,i

∥∥2)
xk+1

i = xk
i +γ(x̆k+1

i −xk
i )

FB [109, Alg. 1] PPPA

step sizes O
(

µFa

θFa
2+µFa

)
O(1)

linear rate ρ (no
coupling constraints) (1−κFa

2)
1
2 1−κFa

Table 2.1: Comparison between our PPPA and projected pseudo-gradient methods.

most importantly, it vanishes as the number of agents increases (fixed the other param-
eters). In contrast, our algorithms allows for much larger steps, which can be chosen
independently of the number of agents. This is a structural advantage of the PPA, whose
convergence does not depend on the cocoercivity constant of the operators involved.
Indeed, step sizes must be taken into account if convergence is evaluated in terms of
residuals.

We finally note that linear convergence can be achieved via PPPA for games without
coupling constraints. For instance, Algorithm 2.3 corresponds to the overrelaxed method
in Algorithm 2.2, and can be derived, as in Lemma 2.6, by takingB =Φ−1

NEANE(x) in (2.13),
where ANE(x) := Fa(x)+NΩ(x) and ΦNE := τ̄−1 +Wn are obtained by removing the dual
variables from A, Φ. By (2.9), as in Lemma 2.7, it can be shown that ANE is restricted
µFa

∥ΦNE∥ -strongly monotone in HΦNE . Thus, recursively applying Theorem 2.1(iv), we can
infer the following result, which appeared in [21] only limited to γ= 1.

Theorem 2.3. Let τ−1
i > di for all i ∈ I , let γ ∈ (0,2), and let α ∈ (0,αmax], with αmax

as in Lemma 2.3. Then, the sequence (xk )k∈N generated by Algorithm 2.3 converges to
x∗ = 1N ⊗ x∗, where x∗ is the unique Nash equilibrium of the game in (2.1), with linear
rate:

(∀k ∈N) ∥xk −x∗∥ΦNE ≤ (ργ)k∥x0 −x∗∥ΦNE ,

where ργ := max(1− γµFa
∥ΦNE∥+µFa

,γ−1), µFa as in (2.8). □

The best theoretical rate ργ̄ = 1 − 2µFa /(∥ΦNE∥+2µFa ) is obtained for γ̄ = 1 +
∥ΦNE∥/(∥ΦNE∥+2µFa ). We observed in [21], also for numerical results. For instance,
in the absence of coupling constraints, the FB algorithm in [109, Alg. 1] reduces to [136,

Alg. 1], whose optimal linear rate O((1−κFa
2)

k
2 ) depends quadratically on the quantity

κFa :=µFa /θFa < 1 [136, Th. 7], where θFa := 2max((di )i∈I )+αθ. Instead, ργ̄ ≤ 1−κFa , for
large enough τi ’s (since ∥ΦNE∥+2µFa ≤ max((di +τ−1

i )i∈I )+2αθ), as shown in Table 2.1.
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2.6. AGGREGATIVE GAMES

Algorithm 2.4. Fully-distributed v-GNE seeking in aggregative games via PPPA

Initialization:

• For all i ∈ I , set x0
i ∈Ωi , s0

i = 0n̄ , z0
i = 0m , λ0

i ∈Rm
≥0.

For all k > 0:

• Communication: The agents exchange the variables {σk
i = xk

i + sk
i ,λk

i } with their
neighbors.

• Local variables update: each agent i ∈ I computes

sk+1
i = sk

i −β∑N
j=1 wi , j (σk

i −σk
j )

xk+1
i ← y s.t. 0n̄ ∈αF̃i (y, y + sk+1

i )+ 1
τi

(y −xk
i )+ A⊤

i λ
k
i +

∑N
j=1 wi , j (σk

i −σk
j )+NΩi (y)

(2.24)

zi
k+1 = zk

i +∑N
j=1ν(i , j )wi , j (λk

i −λk
j )

λk+1
i = projRm

≥0

(
λk

i +δi
(

Ai (2xk+1
i −xk

i )−bi − (2zk+1
i − zk

i )
))

.

I N this section we focus on the particularly relevant class of (average) aggregative
games, which arises in a variety of engineering applications, e.g., network congestion

control and demand-side management [71]. In aggregative games, ni = n̄ > 0 for all i ∈ I
(hence n = N n̄) and the cost function of each agent depends only on its local decision
and on the value of the average strategy avg(x) := 1

N

∑
i∈Ixi . Therefore, for each i ∈ I ,

there is a function fi : Rn̄ ×Rn̄ → R such that the original cost function Ji in (2.1) can be
written as

Ji (xi , x−i ) =: fi (xi ,avg(x)). (2.25)

Since an aggregative game is only a particular instance of the game in (2.1), all the con-
siderations on the existence and uniqueness of a v-GNE and the equivalence with the
KKT conditions in (2.3) are still valid.

Moreover, Algorithms 2.1 could still be used to compute a v-GNE. This would require
each agent to keep (and exchange) an estimate of all other agents’ action, i.e., a vector of
(N−1)n̄ components. In practice, however, the cost of each agent is only a function of the
aggregative value avg(x), whose dimension n̄ is independent of the number N of agents.
To reduce communication and computation burden, in this section we introduce a PPPA
specifically tailored to seek a v-GNE in aggregative games, that is scalable with the num-
ber of agents. The proposed iteration is shown in Algorithm 2.4, where the parameters
α, β, and τi , δi for all i ∈ I , v(i , j ) for all (i , j ) ∈ E have to be chosen appropriately, and we
denote

F̃i (xi ,ξi ) :=∇xi fi (xi ,ξi )+ 1
N ∇ξi fi (xi ,ξi ). (2.26)
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We note that F̃i (xi ,avg(x)) =∇xi Ji (xi , x−i ) =∇xi fi (xi ,avg(x)).
Because of the partial-decision information assumption, no agent has access to the

actual value of the average strategy. Instead, we equip each agent with an auxiliary er-
ror variable si ∈ Rn̄ , which is an estimate of the quantity avg(x)− xi . Each agent aims
at reconstructing the true aggregate value, based on the information received from its
neighbors. In particular, it should hold that sk → 1N ⊗avg(xk )−xk asymptotically, where
s := col((si )i∈I ). For brevity of notation, we also denote

σi := xi + si , σ := col((σi )i∈I ). (2.27)

Remark 2.9. By the updates in Algorithm 2.4, we can infer an important invariance
property, namely that avg(sk ) = 0n̄ , or equivalently avg(xk ) = avg(σk ), for any k ∈ N,
provided that the algorithm is initialized appropriately, i.e., s0

i = 0n̄ , for all i ∈ I . In fact,
the update of σ, as it follows from Algorithm 2.4, is

σk+1 =σk −βLn̄σ
k + (xk+1 −xk ), (2.28)

where Ln̄ := L ⊗ In̄ . This update is a dynamic tracking for the time-varying quantity
avg(x), similar to those considered for aggregative games in [82], [10], [64]. Differently
from [64], here we introduce the error variables si , which allow us to directly recast the
iteration in (2.28) in an operator-theoretic framework. □

Similarly to §2.4, we study the convergence of Algorithm 2.4 by relating it to the iter-
ation in (2.13). First, let us define the extended pseudo-gradient mapping

F̃ (x,ξ) := col((F̃i (xi ,ξi ))i∈I ), (2.29)

with ξ := col((ξi )i∈I ) ∈Rn , and the operators F̃a(x, s) := col(αF̃ (x,σ)+Ln̄σ,Ln̄σ),

Ã(ω):=


αF̃ (x,σ)+Ln̄σ

Ln̄σ

0Em

b

+


A⊤λ
0n

−Vmλ

V ⊤
m v − Ax

+


NΩ(x)
0n

0Em

NRN m
≥0

(λ)

, (2.30)

where ω := col(x, s, v ,λ) ∈ R2n+Em+N m , and we recall that σ = x + s is just a shorthand
notation.

Lemma 2.8. The mapping F̃ in (2.29) is θ̃-Lipschitz continuous, for some θ̃ > 0. □
Proof. It follows from Lemma 2.2, by noticing that F̃ (x,ξ) = F ((x, (IN ⊗ 1N−1 ⊗

In̄)( N
N−1ξ− 1

N−1 x))). ■
Finally, we will assume that the step sizes τ̄ := diag((τi In̄)i∈I ), β̄ := βIN n , ν̄ :=

diag((ν(i , j ))(i , j )∈E ), δ̄ := diag((δi Im)i∈I ) are chosen such that Φ̃≻ 0, where

Φ̃ :=


τ̄−1 −Ln̄ −Ln̄ 0 −A⊤

−Ln̄ β̄−1 −Ln̄ 0 0
0 0 ν̄−1 Vm

−A 0 V ⊤
m δ̄−1

 . (2.31)
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Lemma 2.9. The matrix Φ̃ in (2.31) is positive definite if β−1 > 4max((di )i∈I ), ν(i , j )
−1 >

2
√

(wi , j ) for all (i , j ) ∈ E , and τ−1
i > 4di +∥A⊤

i ∥∞, δ−1
i > ∥Ai∥∞+∑N

j=1
p

wi , j for all i ∈ I .
□

Theorem 2.4. Let dmin := min((di )i∈I ) and

α̃max := min
(

4µλ2(L)
θ̃2 , 2

p
2(dmin)
θ̃

)
. (2.32)

Letα ∈ (0, α̃max] and let the step sizes τ̄, β̄, ν̄, δ̄ be as in Lemma 2.9. Then, for all k ∈N, the
inclusion in (2.24) has a unique solution. Moreover, the sequence (xk , sk , zk ,λk )k∈N gen-
erated by Algorithm 2.4 converges to an equilibrium (x∗,1⊗avg(x∗)− x∗, z∗,λ∗), where
x∗ is the v-GNE of the game in (2.1). □

Proof. Similarly to Lemma 2.6, we first show that Algorithm 2.4 can be recast as a
PPPA, applied to find a zero of the operator Φ̃−1Ã. Then, we restrict our analysis to the
invariant subspace

Σ := {(x, s, v ,λ) ∈R2n+Em+N m | avg(s) = 0n̄}. (2.33)

A detailed proof is in Section 2.9.2. ■
Remark 2.10. The update in (2.24) is implicitly defined by a strongly monotone inclu-
sion, or, equivalently, variational inequality (see Section 2.9.2). We emphasize that there
are several iterative methods to find the unique solution (with linear rate) [8, §26] and
that, as in Remark 2.8, convergence is guaranteed even if the solution is approximated at
each step (with summable errors). □
Remark 2.11. If, for some i ∈ I , there exists a function ϕi such that ∇yϕi (y, sk+1

i ) =
F̃i (y, y + sk+1

i ), then the update of xk
i in Algorithm 2.4 can be simplified as

xk+1
i = argmin

y∈Ωi

(
ϕi (y, sk+1

i )+ 1
2ατi

∥∥y −xk
i

∥∥2 + 1
α (A⊤

i λ
k
i )⊤y + 1

α

(∑N
j=1 wi j (σk

i −σk
j )

)⊤y
)
,

as in Lemma 2.6. For scalar games (i.e., n̄ = 1) this condition holds for all i ∈ I . Another
noteworthy example is that of a cost fi (xi ,avg(x)) = f̄i (xi ) + (Qi avg(x))⊤xi , for some
function f̄i and symmetric matrix Qi , which models applications as the Nash–Cournot
game described in [82] and the resource allocation problem considered in [9]. In this
case, ϕi (xi , si ) = f̄i (xi )+ (Qi (si +xi ))⊤xi − N−1

2N x⊤
i Qi xi . □

Remark 2.12. Inertial/relaxed versions of Algorithm 2.4 can be studied as in §2.5; fur-
ther, linear convergence can be established for aggregative games without coupling con-
straints, based on the restricted strong monotonicity of F̃a (see the proof of Lemma 2.11
in Section 2.9.2), as in Theorem 2.3. □

2.7. NUMERICAL SIMULATIONS

2.7.1. NASH–COURNOT GAME
We consider a Nash–Cournot game [109, §6], where N firms produce a commodity that
is sold to m markets. Each firm i ∈ I = {1, . . . , N } participates in ni ≤ m of the markets,
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Figure 2.1: Distance from the v-GNE, for our PPPA (Algorithm 2.1) and the FB algorithm in [109, Alg. 1] for
different parameters (the solid line for the theoretical step sizes).

and decides on the quantities xi ∈Rni of commodity to be delivered to these ni markets.
The quantity of product that each firm can deliver is bounded by the local constraints
0ni ≤ xi ≤ Xi . Moreover, each market k = 1, . . . ,m has a maximal capacity rk . This results
in the shared affine constraint Ax ≤ r , with r = col((rk )k=1,...,m) and A = [A1 . . . AN ], where
Ai ∈Rm×ni is the matrix that expresses which markets firm i participates in. Specifically,
[Ai ]k, j = 1 if [xi ] j is the amount of product sent to the k-th market by agent i , [Ai ]k, j = 0
otherwise, for all j = 1, . . . ,ni , k = 1, . . . ,m. Hence, Ax = ∑N

i=1 Ai xi ∈ Rm is the vector of
the quantities of total product delivered to the markets. Each firm i aims at maximiz-
ing its profit, i.e., minimizing the cost function Ji (xi , x−i ) = 10−3 ∗ (ci (xi )−p(Ax)⊤Ai xi ).
Here, ci (xi ) = x⊤

i Qi xi +q⊤
i xi is firm i ’s production cost, with Qi ∈Rni×ni , Qi ≻ 0, qi ∈Rni .

Instead, p : Rm → Rm associate to each market a price that depends on the amount of
product delivered to that market. Specifically, the price for the market k, for k = 1, . . . ,m,
is [p(x)]k = P̄k -χk [Ax]k , where P̄k , χk > 0.

We set N = 20, m = 7. The market structure (i.e., which firms are allowed to partici-
pate in which of the m markets) is defined as in [109, Fig. 1]; thus x = col((xi ))i∈I ) ∈ Rn

and n = 32. The firms cannot access the production of all the competitors, but they
are allowed to communicate with their neighbors on a randomly generated connected
graph. We select randomly with uniform distribution rk in [1,2], Qi diagonal with di-
agonal elements in [1,8], qi in [1,2], P̄k in [10,20], χk in [1,3], Xi in [5,10], for all i ∈ I ,
k = 1, . . . ,m.

The resulting setup satisfies all our theoretical assumptions [109, §VI]. We set α =
αmax ≈ 0.7 as in Lemma 2.3 and we choose the step sizes as in Lemma 2.5 to satisfy all
the conditions of Theorem 2.2.

We compare the performance of Algorithm 2.1 versus that of the pseudo-gradient
method in [109, Alg. 1], which is to the best of our knowledge the only other available
single-layer fixed-step scheme to solve GNE problems under partial-decision informa-
tion. In [109, Alg. 1], we choose the parameter c that maximize the step sizes τ, ν, σ,
provided that the conditions in [109, Th. 2] are satisfied. This results in very small step
sizes, e.g., τ∗ ≈ 10−5.

The results are illustrated in Figure 2.1, where the two Algorithms are initialized with
the same random initial conditions. [109, Alg. 1] is extremely slow, due to the small step
sizes; and our PPPA method shows a much faster convergence. According to our numer-



2.7. NUMERICAL SIMULATIONS

2

33

5 10 20 40
10

0

10
1

10
2

10
3

Figure 2.2: Variation of the number of iterations #N needed to reach a precision of ∥xk−x∗∥ ≤ 10−2 for different
values of the number of agents N (in logarithmic scale): our PPPA (Algorithm 2.1) versus the FB algorithm in
[109, Alg. 1]
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Figure 2.3: Number of iterations needed to reach a precision of ∥xk − x∗∥ ≤ 10−2, with different acceleration
schemes and parameters.

ical experience, the bounds on the parameters are conservative, and in effect we observe
faster convergence for larger step sizes. For [109, Alg. 1], the fastest convergence is at-
tained by setting the step sizes 104 times bigger than the theoretical bounds; for larger
steps, convergence is lost.

We repeat the simulation for different numbers of agents (and random market struc-
tures). Differently from Algorithm 1, the upper bounds for the step sizes in [109, Alg. 1]
decrease when N grows (see §2.5.1), resulting in a greater performance degradation, as
shown in Figure 2.2 (with theoretical parameters for our PPPA, and steps 103 times larger
than their upper bounds for [109, Alg. 1]).

Finally, we apply the acceleration schemes discussed in Section 2.5 to Algorithm 2.1,
with parameters that theoretically ensure convergence. The impact is remarkable, up to
halving the number of iterations needed for convergence, as shown in Figure 2.3.

2.7.2. CHARGING OF PLUG-IN ELECTRIC VEHICLES
We consider the charging scheduling problem for a group of plug-in electric vehicles,
modeled by an aggregative game [71]. Each user i ∈ I = {1, . . . , N } plans the charging of
its vehicle for an horizon of 24 hours, discretized into n̄ intervals; the goal is to choose
the energy injections xi ∈ Rn̄ of each time interval to minimize its cost Ji (xi ,avg(x)) =
gi (xi )+p(avg(x))⊤xi , where gi (xi ) = x⊤

i Qi xi + c⊤i xi is the battery degradation cost, and
p(ξ) = a(ξ+d)+b1n̄ is the cost of energy, with b a baseline price, a the inverse of the price
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Figure 2.4: Distance of the primal variable from the v-GNE. Our PPPA (Algorithm 2.4) outperforms the FB
algorithm in [64, Alg. 1], in terms of both communication rounds and performed projected gradient steps.
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Figure 2.5: Maximum (blue) and average (light blue) number of projected gradient steps performed by the
agents at each iteration in Algorithm 2.4, with guaranteed accuracy of εk = 1/k2.

elasticity and d ∈ Rn̄ the inelastic demand (not related to vehicle charging) along the
horizon. We assume a maximum injection per interval and a desired final charge level
for each user, resulting in the local constraints Ωi = {y ∈ [0n̄ , x̄i ] | 1⊤

n̄ y = γi }. Moreover,
we consider the transmission line constraints 0n̄ ≤∑

i∈I xi ≤ c̄N .
We set N = 1000, n̄ = 12. For all i ∈ I , we select with uniform distribution ci in

[0.55,0.95], Qi ≻ 0 with diagonal and off-diagonal elements in [0.2,0.8] and [0,0.05], re-
spectively, γi in [0.6,1]; [x̄i ] j = 0.25 with probability 20%, [x̄i ] j = 0 otherwise. We set
[c̄] j as 0.04 if j ∈ {1,2,3,11,12}, as 0.01 otherwise (corresponding to more restrictive lim-
itations in the daytime); a = 0.38, b = 0.6 and d as in [71]. We check numerically that
Standing Assumptions 2.1, 2.2 hold, and let the agents communicate over a randomly
generated connected graph. We implement Algorithm 2.4, by performing only a finite
number of gradient steps per iteration; each agent uses the stopping criterion in (2.19) to
ensure an accuracy of εk = 1/k2. Figure 2.4 compares the performance of Algorithm 2.4
and [64, Alg. 1] (which requires two rounds of communication per iteration), with step
sizes set to their theoretical upper bounds. Notably, our PPPA significantly outperforms
[64, Alg. 1], even in terms of total projected gradient steps required (for Algorithm 2.4, we
consider the maximum per iteration). Interestingly, Figure 2.5 shows that the maximum
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Figure 2.6: Number of iterations to reach a precision of ∥x − x∗∥ ≤ 10−2 for different values of the algebraic
connectivity, where λ2(L) = 1 indicates a complete graph (all the graphs are doubly stochastic): our PPPA
(Algorithm 2.4) versus the FB in [64, Alg. 1].

number of performed gradient steps at each iteration is 3 and decreases as the iteration
converges, despite the increasing accuracy required in the local optimizations (see also
Remark 2.8).

Differently from our PPPA, the upper bounds for the step sizes in [64] are propor-
tional to the quantity µÃ in [64, Lem. 4], hence they depend on λ2(L), θ0, µ, θ (but not
on N , cf. § 2.7.1, 2.5.1); in turn, we expect these parameters to affect to a larger extent
the convergence speed for the FB method. In Figure 2.6 we compare the two algorithms,
with N = 10, for different values of the communication graph connectivity: in the con-
sidered range, the number of iterations to converge varies by a factor 2 for Algorithm 2.4,
by a factor 103 for [64, Alg. 1].

2.8. CONCLUSION

I NEXACT preconditioned proximal-point methods are extremely efficient to design
fully-distributed single-layer generalized Nash equilibrium seeking algorithms. The

advantage is that convergence can be guaranteed for much larger step sizes compared
to pseudo-gradient-based algorithms. In fact, in our numerical experience, our algo-
rithms proved much faster than the existing methods, resulting in a considerable reduc-
tion of communication and computation requirements. Besides, our operator-theoretic
approach facilitates the design of acceleration schemes, also in the partial-decision in-
formation setup. As future work, it would be highly valuable to relax our monotonicity
and connectivity assumptions, namely to allow for merely monotone game mappings
and jointly connected networks, and to address the case of nonlinear coupling con-
straints.
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2.9. APPENDIX

2.9.1. PROOF OF THEOREM 2.1
For all k ∈N, let zk := ωk +γk (uk −ωk ), so that ωk+1 = zk +γk ek . Consider any ω∗ ∈ C .
We have, for all k ∈N,

∥zk −ω∗∥2
P

= ∥ωk −ω∗∥2
P −2γk〈ωk −uk |ωk −ω∗〉P + (γk )2∥uk −ωk∥2

P

≤ ∥ωk −ω∗∥2
P −γk (2−γk )∥uk −ωk∥2

P , (2.34)

where the inequality follows by Lemma 2.4.
(i) By (2.34), ∥zk −ω∗∥P ≤ ∥ωk −ω∗∥P , and the conclusion follows by the Cauchy–
Schwartz inequality.
(ii) By (γk∥ek∥P )k∈N ∈ ℓ1 and point (i), (ωk )k∈N is bounded. Let c := supk∈N ∥ωk −ω∗∥P <
∞ and ϵk := 2c(γk∥ek∥P )+ (γk∥ek∥P )2, for all k ∈N. Clearly, (ϵk )k∈N ∈ ℓ1. Moreover, for
all k ∈Nwe have

∥wk+1 −w∗∥2
P

≤ (∥zk −w∗∥P +γk∥ek∥P )2

≤ ∥wk −w∗∥2
P −γk (2−γk )∥uk −wk∥2

P +ϵk , (2.35)

and the thesis follows by recursion.
(iii) By (2.35), [41, Prop. 3.2(i)] and [41, Th. 3.8].
(iv) By definition of resolvent, ωk −uk ∈B(uk ); hence

〈uk −ω∗ |ωk −uk〉P ≥µB∥uk −ω∗∥2
P . (2.36)

By the Cauchy–Schwartz inequality, ∥ωk −uk∥P ≥µB∥uk −ω∗∥P . Thus, (2.36) yields

∥ωk −ω∗∥2
P

= ∥uk −ω∗∥2
P +2〈uk −ω∗ |ωk −uk〉P +∥ωk −uk∥2

P

≥ (1+µB)2∥uk −ω∗∥2
P . (2.37)

If γk ≤ 1, by the Cauchy–Schwartz inequality and (2.37), we have ∥zk −ω∗∥P ≤ (1 −
γk )∥ωk −ω∗∥P +γk∥uk −ω∗∥P ≤ (1− γkµB

1+µB )∥ωk −ω∗∥P . For γk > 1, we can write

∥zk −ω∗∥2
P

= (1−γk )2∥ωk −ω∗∥2
P +γk (2−γk )∥uk −ω∗∥2

P

+2γk (1−γk )〈uk −ω∗ |ωk −uk〉P

≤ (1−γk )2∥ωk −ω∗∥2
P

+γk (2(1+µB)−γk (1+2µB))∥uk −ω∗∥2
P (2.38)

≤ (max(1− γkµB
1+µB ,γk −1))2∥ωk −ω∗∥2

P , (2.39)
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where the first equality follows by rearranging the terms in (2.34); in the first inequality
we used (2.36); the last inequality follows by taking into account that the second term
in (2.38) is nonpositive if γk ∈ (1,1+ 1

1+2µB
] and can be upper bounded via (2.37) if γk ∈

[1+ 1
1+2µB

,2). Finally, assume that ωk ∈ C , and choose uk = ωk . Then (2.39) implies

ωk =ω∗, hence C must be a singleton. ■

2.9.2. PROOF OF THEOREM 2.4
Analogously to Lemma 2.6, it can be shown that Algorithm 2.4 is equivalent to the itera-
tion

ωk+1 ∈ JΦ̃−1Ã(ωk ), ω0 = ω̄0, (2.40)

where ω̄0 = (x0,0n ,0Em ,λ0), for some x0 ∈ Ω, λ0 ∈ RN m
≥0 , modulo the transformation

z k =V ⊤
m v k .

First, we show that the iteration in (2.40) is uniquely defined. For all i ∈ I , let
Fi (y,ϑk ) :=αF̃i (y, y+sk+1

i )+ 1
τi

(y−xk
i )+A⊤

i λ
k
i +

∑N
j=1 wi , j (σk

i −σk
j )+NΩi (y), where ϑk =

(xk , sk+1, sk ,λk ). We note that F̃i is θ̃-Lipschitz, because F̃ is θ̃-Lipschitz by Lemma 2.8.
Then, by monotonicity of the normal cone, we have 〈y − y ′ | Fi (y,ϑk ) −Fi (y ′,ϑk )〉 ≥
(τ−1

i −αp2θ̃)∥y−y ′∥2, for any y, y ′ ∈Rn , for anyϑk . By the assumption onα,Fi is strongly

monotone in y for any ϑk , hence the inclusion in (2.24) has a unique solution, for any ϑk

[8, Cor. 23.37]. Therefore, it also holds that dom(JΦ̃−1Ã) = R2n+Em+N n and that JΦ̃−1Ã is
single-valued.

We turn our attention to the setΣ in (2.33). As in Remark 2.9, for any ς ∈Σ, JΦ̃−1Ã(ς) ∈
Σ; hence Σ is invariant for (2.40). Moreover, ω0 ∈ Σ. Hence, in (2.40), it is enough to
consider the operator JΦ̃−1Ã |Σ: Σ→ Σ, where B|Σ is the restriction of the operator B to
Σ, i.e., B|Σ(ω) = B(ω) if ω ∈ Σ, B|Σ(ω) = ∅ otherwise. By invariance and (2.16), it also
follows that JΦ̃−1Ã |Σ= JΦ̃−1Ã|Σ |Σ. Thus, the iteration in (2.40) is rewritten as

ωk+1 = JΦ̃−1Ã|Σ (ωk ), ω0 = ω̄0. (2.41)

We show the convergence of (2.41) by studying the properties of Ã |Σ. We start by char-
acterizing the zero set.

Lemma 2.10. The following statements holds:

(i) If col(x∗, s∗, v∗,λ∗) ∈ zer(Ã |Σ), then s∗ = 1N ⊗avg(x∗)− x∗ and x∗ is the v-GNE of
the game in (2.1).

(ii) zer(Ã|Σ) ̸=∅. □

Proof. Let Vq := V ⊗ Iq , Lq := L ⊗ Iq = V ⊤
q Vq , for any q > 0; hence, under Standing

Assumption 2.3, we have

null
(
Lq

)= null
(
Vq

) = range(1N ⊗ Iq ) (2.42)

range(V ⊤
q ) ⊇ range

(
Lq

)= null(1⊤
N ⊗ Iq ). (2.43)
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(i) Let us consider any ω∗ = col(x∗, s∗, v∗,λ∗) ∈ zer(Ã|Σ), and let σ∗ = x∗+ s∗; then we
have

0n̄ ∈αF̃ (x∗,σ∗)+Ln̄σ
∗+NΩ(x∗)+ A⊤λ∗ (2.44a)

0n̄ = Ln̄σ
∗ (2.44b)

0Em =−Vmλ
∗ (2.44c)

0N m ∈ b +NRN m
≥0

(λ∗)−Ax∗+V ⊤
m v∗ (2.44d)

By (2.44c) and by (2.42), we have λ∗ = 1N ⊗ λ∗, for some λ∗ ∈ Rm ; by (2.44b) and
since ω∗ ∈ Σ, it must hold σ∗ = x∗ + s∗ = 1N ⊗ avg(x∗). It is then enough to prove
that the pair (x∗,λ∗) satisfies the KKT conditions in (2.3). By (2.44a), by recalling that
A⊤(1N ⊗λ∗) = A⊤λ∗ and F̃ (x∗,1N ⊗ x∗) = F (x∗), we retrieve the first KKT condition
in (2.3). We obtain the second KKT condition by left-multiplying both sides of (2.44d)
with (1⊤

N ⊗ Im) and using that (1⊤
N ⊗ Im)b = b, (1⊤

N ⊗ Im)Lm = 0 by (2.42) and symme-
try of L, (1⊤

N ⊗ Im)A = A and (1⊤
N ⊗ Im)NRN m

≥0
(1N ⊗λ∗) = N NRm

≥0
(λ∗) = NRm

≥0
(λ∗). (ii) Let

us consider any pair (x∗,λ∗) satisfying the KKT conditions in (2.3) (one such pair ex-
ists by Assumption 2.2). We next show that there exists v∗ ∈ REm such that ω∗ =
col(x∗,1N ⊗ avg(x∗)− x∗, z∗,1N ⊗λ∗) ∈ zer(Ã|Σ). Clearly, ω∗ ∈ Σ. Besides, ω∗ satisfies
the conditions (2.44a)-(2.44c), as in point (i). By (2.3), there exists u∗ ∈ NRm

≥0
(λ∗) such

that Ax∗ − b −u∗ = 0n . Also, NRN m
≥0

(1N ⊗λ∗) = ∏
i∈I NRm

≥0
(λ∗), and it follows by prop-

erties of cones that col
(
u∗

1 , . . . ,u∗
N

) ∈ NRN m
≥0

(1N ⊗λ∗), with u∗
1 = ·· · = u∗

N = 1
N u∗. Hence

(1⊤
N⊗Im)

(−Ax∗+b +col
(
u∗

1 , . . . ,u∗
N

))= b−Ax∗+u∗ = 0m , or−Ax∗+b+col
(
u∗

1 , . . . ,u∗
N

) ∈
null(1⊤

N ⊗ Im) ⊆ range(V ⊤
m ), by (2.43). Therefore there exists v∗ such that also the condi-

tion (2.44d) is satisfied, for whichω∗ ∈ zer(Ã). ■
Next, similar to Lemma 2.3, we show restricted monotonicity of the operator Ã|Σ.

Lemma 2.11. Let α ∈ (0, α̃max], with α̃max as in (2.32). Then Ã|Σ is restricted monotone.

Proof. The operator Ã |Σ is the sum of three components, as in (2.30). The third
is monotone by properties of the normal cones [8, Th. 20.25], the second because it is
a linear skew-symmetric operator [8, Ex. 20.35] (and restriction does not cause loss of
monotonicity, by definition). For the first term, let (ω,u) ∈ gra(Ã |Σ), ω := col(x, s, v ,λ),
ω∗ = col(x∗, s∗, v∗,λ∗) ∈ zer(Ã |Σ), σ = x + s, σ∗ = s∗ + x∗. By Lemma 2.10, s∗ = 1N ⊗
avg(x∗) − x∗. Then, by [64, Lemma 4], there is a µ̃ > 0 such that 〈col(x − x∗, s − s∗) |
F̃a(x, s)− F̃a(x∗, s∗)〉 = 〈x − x∗ |αF̃ (x,σ)−αF̃ (x∗,σ∗)〉+〈σ−σ∗ | Ln̄(σ−σ∗)〉 ≥ µ̃∥col(x −
x∗,σ−σ∗)∥2 ≥ µF̃a

∥col(x − x∗, s − s∗)∥2, where µF̃a
:= (3−p

5)µ̃/2 and the last inequality
follows by definition of σ and bounds on quadratic forms. ■

Finally, the preconditioning matrix Φ̃ is positive definite by Lemma 2.9. As in
Lemma 2.7, by Lemma 2.11, it holds that Φ̃−1Ã |Σ is restricted monotone in HΦ̃. In view
of (2.41), the conclusion follows analogously to Theorem 2.2. ■
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PROXIMAL-POINT ALGORITHMS:

MONOTONICITY AND SMOOTHNESS

I have had my results for a long time: but I do not yet know how I am to arrive at them.

Carl Friedrich Gauss

I used to attack because it was the only thing I knew. Now I attack because I know it
works.

Garry Kasparov

We consider Nash equilibrium problems (NEPs) in the partial-decision information sce-
nario, where each agent can only exchange information with some neighbors, while its
cost function possibly depends on the strategies of all agents. We characterize the rela-
tion between several monotonicity and smoothness assumptions postulated in the lit-
erature. Furthermore, we prove convergence of a preconditioned proximal-point algo-
rithm, under a restricted monotonicity property that allows for a non-Lipschitz, non-
continuous game mapping.

Parts of this chapter have been published in [26]

39



3

40 3. PROXIMAL-POINT ALGORITHMS: MONOTONICITY AND SMOOTHNESS

3.1. INTRODUCTION

N ASH equilibrium seeking under partial-decision information has recently attracted
considerable research interest, due to its prospect engineering applications as well

as theoretical challenges. This scenario arises when, in the absence of a central coor-
dinator, the agents in a network can only rely on the information received from some
neighbors, for instance in ad-hoc-networks and sensor positioning problems [10], [51].
The technical goal is the distributed computation of an NE; the main complication is
that the cost function of each agent may depend on the decision variables of other non-
neighboring agents. To cope with the lack of knowledge, each agent estimates and tries
to reconstruct the strategies of all the competitors [63], [136] (or an aggregation value
[64], [82]) via peer-to-peer communication.

In fact, most existing methods resort to pseudogradient and consensus-type dynam-
ics [47], [146]. Some works studied linearly convergent algorithms for games without
coupling constraints [25], [136]. Other authors focused on generalized games, for exam-
ple resorting to an operator-theoretic approach and forward-backward dual methods
[64], [109]. All these schemes mainly suffer the following three drawbacks.

The first is that gradient-based methods typically require restrictive monotonicity as-
sumptions for convergence. For instance, all the cited works postulate strong mono-
tonicity of the game mapping. Weaker conditions are sometimes sufficient if allowing
for vanishing stepsizes: strict monotonicity in the work [82], cocoercivity for general-
ized games in [10]. Remarkably, mere monotonicity was recently assumed in [87], via an
additional diminishing Tikhonov regularization. Nonetheless, vanishing stepsizes are
undesirable as they negatively affect the convergence speed. Most recently, the authors
of [66] proposed a continuos-time gradient-based method for (hypo)-monotone games
under a novel inverse Lipschitz assumption. The second drawback is that the agents’
cost functions must be differentiable with Lipschitz gradient [109], [146]; in turn this
ensures that the pseudogradient mapping of the game is Lipschitz. As the game map-
ping is a global operator, implementing, in a distributed setup, the common alternatives
employed in nonsmooth optimization (linesearch or adaptive steps) seems far from triv-
ial. The third drawback is that, due to partial-decision information, the stepsizes must
be chosen very small, in turn increasing the number of iterations for convergence. Im-
portantly, this also translates in prohibitive communication cost, as the agents need to
exchange data at each step.

A possible solution to remedy all three limitations is the proximal-point method [8,
Th. 23.41]. Although a direct implementation in games results in double layer schemes
(where the agents have to communicate virtually infinite time between iterations [124],
[148]), in our recent work [21], [22] we have shown that an efficient method can be ob-
tained via preconditioning – for the case of games with strongly monotone and Lipschitz
mapping. The result is that, at the price of some additional local complexity, the number
of iterations and communications for convergence to a NE can be substantially reduced.

In this chapter we further leverage the properties of PPAs to deal with the other two
issues: monotonicity and smoothness. Our contributions are summarized as follows:

• We compare a significant group of monotonicity and smoothness assumptions
employed in the partial-decision information literature; we characterize the re-
lations between the conditions, and exemplify their restrictiveness (§3.3);
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• We prove convergence of our fully-distributed NE seeking PPP algorithm, under
the restricted monotonicity of an augmented operator. Our condition is remark-
ably weaker than that recently proposed in [75, Th. 2] (for a Douglas–Rachford al-
gorithm). In particular, we do not assume strong monotonicity, nor continuity of
the game mapping –which requires a different limiting argument compared to [22,
Th. 2]. Interestingly, nonsmoothness only affects the local optimization problems
of the agents (§3.4).

To improve readability, the proofs are in the chapter appendix. We refer to Appen-
dices A, B, C for the basic notation and mathematical background.

3.1.1. PRELIMINARIES: RESTRICTED MONOTONICITY
Definition 3.1 (Restricted monotonicity). An operator F : Rq â Rq is restricted (strictly,
µ-strongly) monotone in HP with respect to a set Σ ̸= ∅ if 〈x − x⋆,u −u⋆〉P ≥ 0 (> 0,
≥ µ∥x − x⋆∥2

P ) for all (x,u) ∈ gra(F ), (x⋆,u⋆) ∈ gra(F ) with x⋆ ∈ Σ. We omit the charac-
terization “in HP ” whenever P = I . □

This definition slightly generalizes that in [22, Def. 1], which only considers the zero
set; note that F is allowed to be set-valued on x⋆ ∈Σ.

3.2. MATHEMATICAL SETUP

3.2.1. THE GAME
Let I := {1, . . . , N } be a set of agents, where each agent i ∈ I chooses its strategy (i.e., de-
cision variable) xi from its local decision setΩi ⊆Rni . We denote by x := col((xi )i∈I ) ∈Ω
the stacked vector of all the agents’ strategies, with Ω := Ω1 × ·· · ×Ω ⊆ Rn the overall
decision space and n := ∑

i∈I ni . Agent i ∈ I aims to minimize an objective function
Ji (xi , x−i ), depending both on the local variable xi and on the strategies of the other
agents x−i := col((x j ) j∈I\{i }). The game consists of N inter-dependent optimization
problems

∀i ∈ I : argmin
yi∈Ωi

Ji (yi , x−i ). (3.1)

The mathematical problem we consider is the distributed computation of a NE, a set of
strategies simultaneously solving all the problems in (3.1).

Definition 3.2. A Nash equilibrium is a set of strategies x⋆ = col
(
(x⋆i

)
i∈I ) such that, for

all i ∈ I , x⋆i ∈ argminyi∈Ωi
fi (yi , x⋆−i ). □

We restrict our attention to convex games. The following are standard regularity con-
ditions [82, Asm. 1], [109, Asm. 1].

Assumption 3.1 (Convexity). For each i ∈ I , the set Ωi is nonempty, closed and convex;
the fuction Ji is continuous and the function Ji (·, x−i ) is convex for any x−i . □

Furthermore, we assume existence of a solution.

Assumption 3.2 (Existence). The game in (3.1) admits at least one Nash equilibrium. □
Sufficient conditions for existence of a NE (e.g., compactness of Ω) can be found for

instance in [57].
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3.2.2. THE COMMUNICATION NETWORK
The agents can exchange information with some neighbors over an undirected commu-
nication network G(I ,E). The pairs (i , j ), ( j , i ) belong to the set of edges E if and only if
agent i and j can mutually exchange information. We denote: W ∈RN×N the weight ma-
trix ofG, with wi , j := [W ]i , j and wi , j > 0 if (i , j ) ∈ E , wi , j = 0 otherwise; Ni = { j | (i , j ) ∈ E}
the set of neighbors of agent i .

Assumption 3.3 (Connectivity). The communication graph G(I ,E) is undirected and
connected. The weight matrix W satisfies the following conditions:

(i) Symmetry: W =W ⊤;

(ii) Self loops: wi ,i > 0 for all i ∈ I ;

(iii) Double stochasticity: W 1N = 1N ,1⊤W = 1⊤. □

The requirements (ii)-(iii) in Assumption 3.3 are intended to ease the notation; for
instance, they can be satisfied by assigning Metropolis weights [25, §2].

3.2.3. THE PARTIAL-DECISION INFORMATION SCENARIO
We consider the so-called partial-decision information model, where agent i ∈ I can
only access its own feasible set Ωi and an analytic expression of its private cost Ji , but
cannot access the strategies of all the competitors x−i . Therefore, each agent i is unable
to evaluate the actual value of Ji (xi , x−i ). Instead, each agent keeps an estimate of all
other agents’ actions [63], [82], [47], and aims at reconstructing the actual values, only
based information exchanged locally with neighbors over the communication graph G.
We denote x i = col((x i , j ) j∈I ) ∈Rn , where x i ,i := xi and x i , j is agent i ’s estimate of agent

j ’s strategy, for all j ̸= i ; x j ,−i = col((x j ,l )l∈I\{i }); x = col((x i )i∈I ) ∈ RN n the overall esti-
mate vector; x−i = col((x j ) j∈I\{i }). Let

Ri :=[
0ni×n<i Ini 0ni×n>i

]
, (3.2)

where n<i := ∑
j<i , j∈I n j , n>i := ∑

j>i , j∈I n j . In simple terms, Ri selects the i -th ni -
dimensional component from an n-dimensional vector, i.e., Ri x i = x i ,i = xi . Let also
R := diag

(
(Ri )i∈I

)
, so that x =Rx .

3.2.4. GAME MAPPING, EXTENDED MAPPING, AUGMENTED OPERATORS
Under Assumption 3.1, a strategy x⋆ is a NE of the game in (3.1) if and only if

0n ∈ F
(
x⋆

)+NΩ

(
x⋆

)
, (3.3)

where F :Rn âRn is the game mapping

F (x) := col
(
(∂xi Ji (xi , x−i ))i∈I

)
, (3.4)

(in fact, (3.3) are the first order optimality conditions of each convex problems in (3.1)).
Typically, distributed NE seeking methods require some monotonicity assumption on F .
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Since we deal with the partial-decision information scenario, it is also useful to introduce
the extended game mapping

F (x) := col
(
(∂xi Ji (xi , x i ,−i ))i∈I

)
(3.5)

where the subdifferentials are computed on the estimates, and the augmented operators

Fα(x) :=αR⊤F (x)+ (IN n −W )x (3.6)

Aα(x) :=Fα(x)+NΩ(x), (3.7)

where α > 0 is a design parameter, W := W ⊗ In , Ω := {x ∈ RN n |Rx ∈Ω}. The following
well-known result (e.g., [136, Prop. 1]) provides an extension of the inclusion (3.3) to the
estimate space.

Lemma 3.1. The following statements are equivalent:

i) x⋆ = 1N ⊗x⋆, with x⋆ ∈Ω a NE of the game (3.1);

ii) 0N n ∈Aα(x⋆). □
In particular, note that Assumption 3.2 implies that zer(Aα) ̸=∅.

3.3. TOWARDS A TAXONOMY OF ASSUMPTIONS

I N recent years, distributed NE seeking under partial-decision information has been
studied under a variety of conditions on the operators F,R⊤F ,Fα,Aα. Some of the

assumptions postulated have not been exemplified, nor it is evident how restrictive they
are –in theory and in practice. Towards a solution of this issue, we start by considering
the following, representative, conditions.

C1. The operator R⊤F is maximally monotone.

C2. The operator R⊤F is restricted monotone with respect to zer(Aα).

C3. There exists α> 0 such that the operator Fα is maximally monotone.

C4. There exists α> 0 such that the operator Fα is restricted monotone with respect to
zer(Aα).

C5. The operator F is µ-restricted strongly monotone with respect to the set of NEs and
θ-Lipschitz, for some µ> 0, θ > 0.

C6. The operator F is µ-strongly monotone and θ-Lipschitz, for some µ> 0, θ > 0.

C7. The operator F is ν-hypomonotone, θ-Lipschitz, and R-inverse Lipschitz, for some
ν≥ 0, θ > 0, R > 0, Rν< 1.

C8. The operator F is strictly monotone and θ-Lipschitz, for some θ > 0.

C9. The operator F is 1
θ cocoercive for some θ > 0.

C10. The operator F is monotone and θ-Lipschitz, for some θ > 0.
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ref. extra asm. step sizes

C1 [63], [66] Continuous time
C3 [74], [75] Fixed
C5 [136] Fixed
C6 [22], [47], [109] Fixed
C7 [66] Ω=Rn Continuous time
C8 [82] Ω compact Vanishing
C9 [10] Ω compact Vanishing

C10 [87] Ω compact Vanishing

Table 3.1: Technical assumptions in the literature.

C1 C6

C2 C3 C5 C8 C9

C4 C7 C10

Figure 3.1: Relations between technical assumptions in monotone games under partial-decision information.

Although C6 is the most common technical assumption, all these conditions have
been formulated in the literature (see Table 3.1), except for C2 (which is a natural re-
laxations of C1) and C4 (which we will use to show convergence of our algorithm). The
following result characterizes the relation between them.

Proposition 3.1. The implications in Figure 3.1 hold true. □

It can be also shown by counter examples that no other implication exists between
the conditions in C1-C10.

3.3.1. CONDITIONS ON THE EXTENDED PSEUDOGRADIENT
We next prove, under the commonly used assumption that F is single valued, that C1 is
very restrictive.

Proposition 3.2 (C1 is trivial). Assume that F is single valued and continuous. Then,
condition C1 holds if and only if ∇ Ji (·, x−i ) is independent of x−i , for all i ∈ I . □

As the actions x−i are not affecting the optimization problem of agent i (beside pos-
sibly for a separable component), there appears to be no reason for agent i to keep esti-
mates (hence, for a partial-decision information setup).
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Example 3.1. The game defined by N = 2, n = 2,Ω=Rn , J1(x) = (x1−1)2(x2
2+1), J2(x) =

x2
2(x1

2 +1) has a unique NE in [1 0]⊤ and satisfies C2, but not C1. □
Although ∇xi Ji depends on x−i in Example 3.1, the next lemma shows that C2 is also

not of particular interest.

Proposition 3.3 (C2 is trivial). Assume that F is single valued and continuous. Then,
condition C2 holds if and only if ∇xi Ji (x⋆i , x−i ) is independent of x−i , for all i ∈ I , for any
x⋆ = (x⋆i , x⋆−i ) NE of the game (3.1). □

In particular, Proposition 3.3 implies that 0 ≤ ∇xi Ji (x⋆i , x⋆−i ), xi − x⋆i 〉 =
〈∇xi Ji (x⋆i , x−i ), xi − x⋆i 〉 where the inequality is the first order optimality condition
(as x⋆i solves (3.1)). This means that x⋆i is optimal for agent i regardless of x−i ; in
other terms, C2 implies that the Nash equilibria are uniquely composed by dominant
strategies (as in Example 3.1). This is also a trivial case, as the agents do not need to
communicate to compute a NE. Although the condition in Proposition 3.3 might be
violated if F is not continuous, this can only happen at discontinuity points, which is
quite a pathological case.

3.3.2. CONDITIONS ON THE GAME PRIMITIVES
Conditions C5 to C10 are directly postulated on the game mapping F and are the most
well-investigated (e.g., they are easy to check if F is a linear operator [8], [56], [66]).
Conditions C5 to C8 imply uniqueness of the equilibrium; methods with linear con-
vergence were proposed under C5, C6 [25], [136], but not C7, C8. Although C5 is
weaker than C6 in theory, it is difficult to check without knowledge of the solutions;
we have included it because it causes very limited complications in the convergence
analysis with respect to C6. C6 actually implies that there is α > 0 such that Fα is Lip-
schitz and restricted strongly-monotone with respect to the whole consensus subspace
E := {y ∈ RN n | y = 1N ⊗ y, y ∈ Rn} ⊇ zer(Aα) [109, Lem. 3], a much more restrictive con-
dition that C4. C10 and C9 allow for multiple NEs; yet – as for C8 – the related methods
require not only compact feasible sets (possibly reasonable in practice) but also vanish-
ing steps, which affect the convergence speed.

3.3.3. CONDITIONS ON THE AUGMENTED OPERATOR
C3 and C4 are more abstract and often replaced by more easily checked sufficient con-
ditions. For example, restricted monotonicity of Fα with respect to the consensus space
E can be always checked without knowledge of the solutions, and implies C4.

Despite this complication, C3 and C4 are of great interest, especially for nonsmooth
games, as exemplified next. The following examples also show that C3 is significantly
more restrictive than C4.

Example 3.2. Consider the game defined by N = 2, n = 2, Ω = Rn , F (x) = F̄ (x)+ F̂ (x),
with F̄ (x) = col(x1

3,0) and F̂ (x) = [
2 1
1 2

]
x+[

5
4

]
. As F̄ is monotone and F̂ is strongly mono-

tone, the game admits a unique NE. Conditions C5–C10 are violated, as they require
Lipschitz continuity of F ; C2 also fails (as the best response of agent 2 is −0.5x1 −2 and
by Proposition 3.3). However, C4 holds: to show this, consider the components of the
extended game mapping F̄ and F̂ corresponding to F̄ and F̂ ; R⊤F̄ is monotone, while
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Algorithm 3.1. Fully-distributed PPP algorithm

x̃k
i = 1

2 (xk
i +

∑N
j=1 wi , j xk

j )

xk+1
i ,−i = x̃k

i ,−i

xk+1
i = argmin

y∈Ωi

(
Ji (y, x̃k

i ,−i )+ 1
α∥y − x̃k

i ,i∥2
)

αR⊤F̂ + (I −W ) can be made restricted monotone with respect to the whole consensus
subspace by choosing α> 0 small enough [109, Lem. 3]. We can check numerically that
C3 also holds for some W (in particular, becauseαR⊤F̂+(I−W ) can be made monotone,
although there is no analytical result available to check this a priori). □

Example 3.3 (Non-monotone game). Consider Example 3.2 but with F̄ (x) = col(x1
3(x2

4+
1),0) and F̂ (x) = [

2 1
1 2

]
x. The game admits a NE x⋆ = 0. As F is restricted strongly mono-

tone with respect to x⋆, the equilibrium must be unique. As for Example 3.2, it is easy to
prove that C4 holds, because R⊤F̄ is restricted monotone with respect to 0 (by Proposi-
tion 3.3). Yet, F is not monotone: therefore C3 cannot hold (nor can C1, C2, C5-C10).

□

Example 3.4 (Set-valued pseudo-gradient). Consider the game defined by N = 2, n = 2,
Ω=Rn , J1(x) = x1

2+|x1||x2|, J2(x) = x2
2+x2x1, where | · | is the absolute value. The game

admits a unique NE in 0; moreover, F is set valued, as f1 is not differentiable in the local
variable. It can be checked that C4 holds. Yet, F is not monotone, thus C3 fails. □

3.4. THE PPP ALGORITHM

I N this section we consider the fully-distributed proximal-point NE seeking method
shown in Algorithm 3.1. The iteration coincides with that studied in [21], although

the terms have been rearranged. The algorithm includes a consensus phase, where the
agents exchange and mix their variable vectors. The local actions are then updated ac-
cording to a proximal-best response with stepsize α> 0 – importantly, the cost function
of each agent i evaluated in the estimates x i ,−i , and not on the real competitor’s actions
x−i . Note that the algorithm is always well (uniquely) defined, as the update of xi is the
argmin of a strongly convex function (by convexity of Ji (·, x−i ) in Assumption 3.1).

Algorithm 3.1 can be formulated as a proximal-point method applied to the operator
Aα. However, the computation of (Id+Aα)−1 cannot be performed in a distributed way
(more precisely, it would require the collaborative solution of a regularized game at each
iteration, resulting in a scheme with nested layers of communication, see [124]). We have
shown in [21], [22] that this complication can be tackled by preconditioning the operator
Aα with a positive definite matrix

Φ := IN n +W . (3.8)



3.5. CONCLUSION AND OUTLOOK

3

47

Lemma 3.2 ([21, Lem. 2]). Algorithm 3.1 can be written as

xk+1 = (Id+Φ−1Aα)−1(xk ). (3.9)

□

This operator-theoretic interpretation is very powerful, as it seamlessly allows to
study convergence of analogous proximal-best response schemes even in the presence
of inexact updates (i.e., the argmin is only approximated at each iteration), coupling con-
straint, acceleration terms [22]. It also immediately shows that the fixed points of Algo-
rithm 3.1 coincide with zer(Aα) = zer(Φ−1Aα) (i.e., they are estimates at consensus at a
Nash equilibrium).

The following theorem is the main result of this chapter. It extends the convergence
results in [22, Th. 3], formulated under C6, to the case of restricted monotone – possibly
nonsmoooth – games (i.e., C4).

Theorem 3.1. Let Assumption 3.1–3.3 hold, and assume that C4 holds for some α > 0.
Then, the sequence (xk ) generated by Algorithm 3.1 converges to a point x⋆ = 1N ⊗ x⋆,
where x⋆ is a Nash equilibrium of the game in (3.1). □
Remark 3.1. In [21] we have proven (linear) convergence of Algorithm 3.1 assuming C6.
Under the weaker C4, Theorem 3.1 leverages the general results for the proximal-point
algorithm of restricted (merely) monotone games [22]. With respect to [22] and to the
Douglas-Rachford algorithm in [75], we use a different limiting argument in our proof,
which does not require F to be Lipschitz continuous (or even continuous). The core idea
is to show that the operator JΦ−1Aα

is continuous, even if Aα might not (nor is maximally
monotone). For instance, Theorem 3.1 can be applied to the games in Examples 3.2
to 3.4, while [22, Th. 2], [66, Th. 2] cannot. Examples 3.3 and 3.4 also show a significant
gap between C4 and the stronger condition C3, employed in [75, Th. 3]. □

We conclude this section by sketching some technical extensions of our results. To
start, our arguments in Theorem 3.1 can be readily adapted to the algorithms – for gen-
eralized games – studied in [22], to show convergence under C4. Moreover, our conver-
gence result would hold assuming the definition of restricted monotonicity proposed in
[22, Def. 1], slightly less restrictive than our Definition 3.1. We also note that we assumed
monotonicity properties of F (and similarly for the other game operators) to hold over
all Rn ; however, the conditions can be relaxed to hold only over the feasible set, if the es-
timates x ’s are initialized inΩN (since the update in Algorithm 3.1 guarantees invariance
for this set). The costs in (3.1) can be modified to include a more general (discontinu-
ous) proper, convex, closed function gi (xi ) (besides the indicator function ιΩi ), without
technical complications. Much more intriguing is the case of discontinuity in the part
of the cost coupled with the other agents (i.e., violating Assumption 3.1): although our
convergence arguments do not hold in this case, it would be interesting to verify whether
C3 could be satisfied to apply standard PPA results.

3.5. CONCLUSION AND OUTLOOK

B ESIDES their efficiency, proximal-point algorithms have the advantage of only requir-
ing mild monotonicity and smoothness conditions. We have compared and ana-
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lyzed several assumptions in NE seeking under partial-decision information, and proved
the convergence of a fully-distributed PPP method under one of the weakest.

Future work should investigate linear rates in absence of (restricted) strong mono-
tonicity. One promising option is to leverage inverse Lipschitz properties, which can
ensure contractivity of certain resolvents. Proving convergence in merely monotone
regime, under fixed step sizes, is also a challenging open problem.

3.6. APPENDIX

3.6.1. PROOF OF PROPOSITION 3.1
C 1 ⇒C 2, C 3 ⇒C 4, C 6 ⇒C 5, C 6 ⇒C 8, C 8 ⇒C 10: By definition.
C 1 ⇒ C 3: As (I −W ) is a positive semidefinite matrix, the operator I −W is maximally
monotone. Hence, for any α ≥ 0, Fα = αR⊤F + (I −W ) is the sum of two maximally
monotone operators; moreover, dom(I −W ) =RN n , so the conclusion follows by [8, Cor.
25.5].
C 2 ⇒ C 4: Fα is the sum of a restricted monotone operator and a monotone operator,
hence restricted monotone.
C 5 ⇒C 6: See, for instance, [22, Lem. 3].
C 6 ⇒C 7: It follows by definition and [66, Prop. 3].
C 6 ⇒C 9: See, e.g., [66, Prop. 5].
C 9 ⇒C 10: It follows by definition of cocoercivity and the Cauchy–Schwartz inequality.

■

3.6.2. PROOF OF PROPOSITION 3.2
“⇐”: For the sake of contradiction, assume that, for some i ∈ I , there exist l ∈
{1,2, . . . ,ni }, xi ∈ Rni and a pair of vectors x−i and x ′

−i such that [∇xi Ji (xi , x−i )]l <
[∇xi Ji (xi , x ′

−i )]l . By continuity, there exists ϵ > 0 such that [∇xi Ji (xi + ϵel , x−i )]l <
[∇xi Ji (xi , x ′

−i )]l , where el ∈ Rn
i is the l -th vector of the canonical basis. The mono-

tonicity in C1, applied to a pair of estimate vectors (x i , x−i ), (x ′
i , x−i ), for any x−i and

x i = (xi +ϵel , x−i ), x ′
i = (xi , x ′

−i ), gives

0 ≤ 〈∇xi Ji (xi +ϵel , x−i )−∇xi Ji (xi , x ′
−i ),ϵel 〉

= ϵ[∇xi Ji (xi +ϵel , x−i )−∇xi Ji (xi , x ′
−i )]l < 0

which is a contradiction. Because x−i , x ′
−i are arbitrary, we conclude that, for all i ∈ I ,

for all xi , and for all x−i , x ′
−i , ∇xi Ji (xi , x−i ) =∇xi Ji (xi , x ′

−i ).
“⇒”: By assumption, for any i ∈ I , xi , x ′

i , x−i , x ′
−i ,

〈∇xi Ji (xi , x−i )−∇xi Ji (x ′
i , x ′

−i ), xi −x ′
i 〉

= 〈∇xi Ji (xi , x ′
−i )−∇xi Ji (x ′

i , x ′
−i ), xi −xi 〉 ≥ 0,

where the inequality is convexity of Ji in the first argument (Assumption 3.1). Stacking
the inequalities for i ∈ I retrieves the monotonicity of R⊤F .

■
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3.6.3. PROOF OF PROPOSITION 3.3
“⇐”: For contradiction, assume that there exist i ∈ I , l ∈ {1,2, . . . ,ni }, an NE x⋆ and x−i

such that [∇xi Ji (x⋆i , x−i )]l < [∇xi Ji (x⋆i , x⋆−i )]l . By continuity, there exists ϵ > 0 such that
[∇xi Ji (x⋆i +ϵel , x−i )]l < [∇xi Ji (x⋆i , x⋆−i )]l . Restricted monotonicity in C2, applied to a pair
of estimate vectors (x i , x−i ), (x⋆, x−i ), for any x−i and x i = (x⋆i +ϵel , x−i ), gives

0 ≤ 〈∇xi Ji (x⋆i +ϵel , x−i )−∇xi Ji (x⋆i , x⋆−i ),ϵel 〉
= ϵ[∇xi Ji (x⋆i +ϵel , x−i )−∇xi Ji (x⋆i , x⋆−i )]l < 0

which is a contradiction. Analogously it can be shown that [∇xi Ji (x⋆i , x−i )]l >
[∇xi Ji (x⋆i , x⋆−i )]l leads to a contradiction. Hence ∇xi Ji (x⋆i , x−i ) =∇xi Ji (x⋆i , x⋆−i ).

“⇒”: For any i ∈ I , xi , x−i , NE x⋆, by assumption and convexity, 〈Ji (xi , x−i ) −
∇xi Ji (x⋆i , x⋆−i ), xi −x⋆i 〉 = 〈∇xi Ji (xi , x−i )−∇xi Ji (x⋆i , x−i ), xi −x⋆i ≥ 0. ■

3.6.4. PROOF OF THEOREM 3.1
We start by an auxiliary result.

Lemma 3.3. Let f :Rn ×Rm →R : (x, y) 7→ f (x, y) be a continuous function, and assume
that f (·, y) is µ-strongly convex for any y ∈ Rm , µ> 0. Let X ⊆ Rn be a convex closed set.
Then the (single valued, full domain) mapping y 7→ g (y) = argminx∈X f (x, y) is continu-
ous. □

Proof. We show that, for any given sequence (yk )k∈N with yk → y⋆ (converging,
hence bounded), xk := g (yk ) → g (y⋆) =: x⋆, which is the definition of continuity.

First, we show that (xk )k∈N is bounded. Let Y be a compact set containing (yk )k∈N.
Let x0 ∈ X and

l0 := max
y∈Y

f (x0, y), l1 := min
x∈∂B(x0,1),y∈Y

f (x, y)

where ∂B(x0,1) = {x ∈Rn | ∥x−x0∥ = 1} is the boundary of the unit ball centered at x0; the
min and max are achieved because the domains are compact. Let d ∈Rn be any unitary
vector, i.e., ∥d∥ = 1; x1 := x0 +d ∈ ∂B(x0,1); x2 = x0 +Md , for some scalar such that

M > 1, M > 2 l0−l1
µ +1. (3.10)

Then, x1 = M−1
M x0 + 1

M x2. By definition of strong convexity, we have, for all y ∈ Y

l1 ≤ f (x1, y)

≤ M−1
M f (x0, y)+ 1

M f (x2, y)− 1
2µ

M−1
M

1
M ∥x0 −x2∥2

= M−1
M f (x0, y)+ 1

M f (x2, y)− 1
2µ(M −1).

Assume for contradiction that there exists y ∈ Y such that f (x2, y) ≤ f (x0, y). Then,
since f (x0, y) ≤ l0, the previous inequality implies l1−l0 ≤− 1

2µ(M−1), which contradicts
(3.10). Since d is arbitrary, we conclude that, for any y ∈ Y , for all x such that ∥x0 − x∥ >
M , f (x0, y) < f (x, y). In turn, for all y ∈ Y , ∥g (y)∥ < ∥x0∥+M , i.e., g is uniformly bounded
over Y ; thus (xk )k∈N is bounded.
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Hence (xk )k∈N admits an accumulation point, say x ′. Let K̄ = (k̄1, k̄2, . . . ) ⊆ N be a

diverging subsequence such that x k̄n → x ′. Since f (x k̄n , y k̄n ) ≤ f (x, y k̄n ) for all x ∈ X ,
by continuity of f , we have f (x ′, y⋆) ≤ f (x, y⋆) for all x ∈ X . Since the minimizer must
be unique by strong convexity, we have x ′ = x⋆. In particular, this shows that x⋆ is the
unique accumulation point of xk : therefore, xk → x⋆. ■

The proof of Theorem 3.1 is based on the following result.

Lemma 3.4. The operator JΦ−1Aα
is continuous. □

Proof. For each i ∈ I , the mapping x̃ i 7→ argminy∈Ωi
(Ji (y, x̃ i ,−i )+ 1

α∥y− x̃ i ,i∥2) is con-
tinuous by Lemma 3.3. The result follows by Lemma 3.2 and the explicit form of JΦ−1Aα

in Algorithm 3.1. ■
We are now in a position to apply the results on proximal-point algorithm for re-

stricted monotone operators in [22]. First, note that the operator Aα is restricted mono-
tone with respect to zer(Aα) (because Fα is so by assumption, and by monotonicity of
the normal cone [8, Th. 20.25]), i.e., for all (x ,u), (x⋆,u⋆) ∈ gra(Aα), with x⋆ ∈ zer(Aα)

0 ≤ 〈u −u⋆, x −x⋆〉 = 〈Φ−1u −Φ−1u⋆, x −x⋆〉Φ,

which shows that Φ−1Aα is restricted monotone with respect to zer(Aα) in HΦ. There-
fore, by Lemma 3.2 and by applying [22, Th. 1(i)], we infer that the sequence (xk ) is
bounded, hence it admits at least one cluster point, say x̄ . By [22, Th. 1(ii)], JΦ−1Aα

(xk )−
xk → 0; therefore, by continuity in Lemma 3.4, it must be x̄ ∈ fix(JΦ−1Aα

) = zer(Aα). The
conclusion follows by [22, Th. 1(iii)]. ■
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4
ADAPTIVE GNE SEEKING FOR

MULTI-INTEGRATOR AGENTS

Feedback linearizes!
[answering the question “If you had to summarize the essence of feedback in one claim,

what would it be?”]

Stephen Boyd

When a measure becomes a target, it ceases to be a good measure.

Goodhart’s law

We consider strongly monotone games with convex separable coupling constraints,
played by dynamical agents, in a partial-decision information scenario. We start by de-
signing continuous-time fully-distributed feedback controllers, based on consensus and
primal-dual gradient dynamics, to seek a generalized Nash equilibrium in networks of
single-integrator agents. Our first solution adopts a fixed gain, whose choice requires
the knowledge of some global parameters of the game. To relax this requirement, we
conceive a controller that can be tuned in a completely decentralized fashion, thanks
to the use of uncoordinated integral adaptive weights. We further introduce algorithms
specifically devised for generalized aggregative games. Finally, we adapt all our control
schemes to deal with heterogeneous multi-integrator agents and, in turn, with nonlinear
feedback-linearizable dynamical systems. For all the proposed dynamics, we show con-
vergence to a variational equilibrium, by leveraging monotonicity properties and stabil-
ity theory for projected dynamical systems.

Parts of this chapter have been published in [24].
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4.1. INTRODUCTION

G ENERALIZED games arise in several engineering applications, including demand-
side management in the smart grid [119], charging scheduling of electric vehicles

[71] and communication networks [57]. These scenarios involve multiple autonomous
decision makers, or agents; each agent aims at minimizing its individual cost function
– which depends on its own action as well as on the actions of other agents – subject to
shared constraints. Specifically, in many distributed control problems, the action of an
agent consists of the output of a dynamical system. For instance, in coverage maximiza-
tion [51] and connectivity problems [130], the agents are vehicles with some inherent
dynamics, designed to optimize inter-dependent objectives related to their positions; in
electricity markets, the actions are represented by the power produced by some gener-
ators [48]; in optical networks, the costs are a function of the output powers of some
dynamical channels [116].

In this context, the goal is to drive the physical processes to a desirable steady state,
usually identified with a GNE, using only the local information available to each agent.
One possibility is to exploit time-scale separation between the computation of a GNE
and setpoint tracking; yet, this solution is typically economically inefficient and not ro-
bust [153]. Alternatively, part of the recent literature focuses on the design of distributed
feedback controllers, to automatically steer a dynamical network to some (not known a
priori) convenient operating point, while also ensuring closed-loop stability [43], [48].
This chapter fits in the latter framework.

In particular, we investigate GNE seeking for multi-integrator agents, motivated by
robotics and mobile sensors applications [60], [130], where multi-integrator dynamics
are commonly used to model elementary vehicles. The study of this class of systems
allows us to address GNE problems for a variety of dynamical agents, linear or nonlinear,
via feedback linearization (e.g., Euler–Lagrangian systems as in [49]).

Literature review: A variety of algorithms has been proposed to seek a GNE in a dis-
tributed way [31], [149], [151] with a focus on aggregative games [9], [46], [105]. These
works refer to (aggregative) games played in a full-decision information setting, where
each agent can access the action of all the competitors (aggregate value), for example in
presence of a central coordinator that broadcasts the data to the network. Nevertheless,
this is impractical in many applications, where the agents only rely on local information.

Instead, in this thesis we consider the so-called partial-decision information sce-
nario, where each agent holds an analytic expression for its cost but is unable to evaluate
the actual value, since it cannot access the strategies of all the competitors. To remedy
the lack of knowledge, the agents agree on sharing some information with some trusted
neighbors over a communication graph. Based on the data exchanged, each agent can
estimate and asymptotically reconstruct the actions of all the other agents. This setup
has been investigated for games without coupling constraints, resorting to gradient and
consensus dynamics, both in discrete-time [82], [137], and continuous-time [63], [146].
Fewer works deal with generalized games [50], [108], [109]. Moreover, all the results
mentioned above consider static or single-integrator agents only. Distributively driv-
ing a network of more complex physical systems to a NE is still a relatively unexplored
problem. With regard to aggregative games, a proportional integral feedback algorithm
was developed in [48] to seek a NE in networks of passive second-order systems; in [49]
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and [154], continuous-time gradient-based controllers were introduced for some classes
of nonlinear dynamic. [130] addressed generally coupled cost games played by linear
agents, via an extremum seeking approach; NE problems in systems of multi-integrator
agents were studied by [116]. Yet, none of these works considers generalized games. De-
spite the scarcity of results, the presence of shared constraints is a significant extension,
which arises naturally when the agents compete for common resources [55, §2]. How-
ever, dealing with coupling constraints in a distributed fashion is extremely challenging.
All the results available resort to primal-dual reformulations [50], [109], where the main
technical complications are the loss of monotonicity properties of the original problem
and the non-uniqueness of dual solutions.

Contributions: Motivated by the above, we develop fully-distributed continuous-
time controllers to seek a GNE in networks of multi-integrator agents. We focus on
games with separable coupling constraints, played under partial-decision information.
Our novel contributions are summarized as follows:

• Nonlinear coupling constraints: We introduce primal-dual projected-gradient
controllers to drive single-integrator agents to a GNE, with convergence guaran-
tees under strong monotonicity and Lipschitz continuity of the game mapping. In
contrast with the existing fully-distributed methods, we allow for arbitrary convex
separable (not necessarily affine) coupling constraints. Besides, our schemes are
the only continuous-time fully-distributed algorithms for generalized games (ex-
cept for that in [50], for aggregative games and specific equality constraints only)
(§4.3-4.4);

• Adaptive GNE seeking: We conceive the first GNE seeking algorithm that can be
tuned in a fully decentralized way and without requiring any global information.
Specifically, we extend the result in [47] to generalized games and prove that con-
vergence to an equilibrium can be ensured by adopting integral weights in place
of a fixed, global, high-enough gain, whose choice would require the knowledge of
the algebraic connectivity of the communication graph and of the Lipschitz and
strong monotonicity constants of the game mapping (§4.3-4.4);

• Generalized aggregative games: We propose controllers for aggregative games with
affine aggregation function, where the agents keep and exchange an estimate of
the aggregation value only, thus reducing communication and computation cost.
Differently from the existing results, e.g., [50], we can handle generic coupling con-
straints, thanks to a new variant of continuous-time dynamic tracking. Further-
more, we develop an adaptive algorithm that requires no a priori information and
virtually no tuning (§4.5);

• Heterogeneous multi-integrator agents: We show how all our controllers can be
adapted to solve GNE problems where each agent is described by mixed-order in-
tegrator dynamics, a class never considered before. Importantly, this allows us to
address games played by arbitrary nonlinear agents with maximal relative degree,
via feedback linearization. To the best of our knowledge, we are the first to study
generalized games with higher-order dynamical agents (§4.6).
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To improve readability, the proofs are in the chapter appendix. We refer to Appendices
A, B, C for the basic notation and mathematical background.

4.1.1. PRELIMINARIES: PROJECTED DYNAMICAL SYSTEMS

Given a closed convex set S ⊆ Rn , TS : S â Rn : x 7→ cl(
⋃
δ>0

1
δ (S −x)) is the tangent cone

operator of S, where cl(·) denotes the set closure. The projection on the tangent cone

of S at x is ΠS (x, v) := projTS (x)(v) = limδ→0+
projS (x+δv)−x

δ . By Moreau’s Decomposition

Theorem [8, Th. 6.30], v = projTS (x)(v)+projNS (x)(v) and projTS (x)(v)⊤projNS (x)(v) = 0, for
any v ∈Rn .

The following is from [40]. Given an operator F : Rn → Rn and a closed convex set
S ⊆Rn , we consider the projected dynamical system

ẋ =ΠS (x,F (x)), x(0) = x0 ∈ S. (4.1)

In (4.1), the projection operator is possibly discontinuous on the boundary of S. If F
is Lipschitz on S, the system (4.1) admits a unique global Carathéodory solution, i.e.,
there exists a unique absolutely continuous function x : R≥0 → Rn such that x(0) = x0,
ẋ(t ) =ΠS (x, g (x)) for almost all t . Moreover, x(t ) ∈ S for all t ≥ 0, as on the boundary of S
the projection operator restricts the flow of F such that the solution of (4.1) remains in
S (whileΠS (x,F (x)) =F (x) if x ∈ int(S)).

Lemma 4.1. Let S ⊆Rq be a nonempty closed convex set. For any y, y ′ ∈ S and any ξ ∈Rq ,
it holds that (y−y ′)⊤ΠS

(
y,ξ

)≤ (y−y ′)⊤ξ. In particular, if ΠS (y,ξ) = 0, then (y−y ′)⊤ξ≥ 0
(i.e., ξ ∈ NS (y)). □

Proof. By Moreau’s theorem,
(
ξ−ΠS (y,ξ)

) ∈ NS (y); thus ∀y, y ′ ∈ S, (y ′ − y)⊤(ξ−
ΠS (y,ξ)) ≤ 0. ■

4.2. MATHEMATICAL SETUP

W E consider a group of agents I := {1, . . . , N }, where each agent i ∈ I shall choose
its decision variable (i.e., strategy) xi from its local decision set Ωi ⊆ Rni . Let x :=

col((xi )i∈I ) ∈Ω denote the stacked vector of all the agents’ decisions, Ω :=×i∈IΩi ⊆ Rn

the overall action space and n := ∑N
i=1 ni . The goal of each agent i ∈ I is to minimize

its objective function Ji (xi , x−i ), which depends both on the local strategy xi and on the
decision variables of the other agents x−i := col((x j ) j∈I\{i }). Furthermore, we address
generalized games, where the coupling among the agents arises also via their feasible
decision sets. In particular, we consider separable coupling constraints, so that the over-
all feasible set is X := Ω∩ {

x ∈Rn | g (x) ≤ 0m
}

, where g : Rn → Rm , g (x) := ∑
i∈I gi (xi ),

and gi : Rni → Rm is a private function of agent i . The game is then represented by N
inter-dependent optimization problems:

∀i ∈ I : argmin
yi∈Rni

Ji (yi , x−i ) s.t. (yi , x−i ) ∈X . (4.2)

The technical problem we consider here is the computation of a GNE, a joint action from
which no agent has interest to unilaterally deviate.
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Definition 4.1. A collective strategy x∗ = col((x∗
i )i∈I ) is a generalized Nash equilibrium

if, for all i ∈ I ,

x∗
i ∈ argmin

yi

Ji
(
yi , x∗

−i

)
s.t. (yi , x∗

−i ) ∈X . □

Next, we formulate standard convexity and regularity assumptions for the con-
straints and cost functions ([85, Asm. 1]; [109, Asm. 1]).

Assumption 4.1. For each i ∈ I , the set Ωi is closed and convex; gi is componentwise
convex and twice continuously differentiable; X satisfies Slater’s constraint qualifica-
tion; Ji is continuously differentiable and the function Ji (·, x−i ) is convex for every x−i .

□

Under Assumption 4.1, x∗ is a GNE of the game in (4.2) if and only if there exist dual
variables λ∗

i ∈ Rm such that the following KKT conditions are satisfied, for all i ∈ I [55,
Th. 4.6]:

0ni ∈∇xi Ji (x∗
i , x∗

−i )+ ∂
∂xi

gi (x∗
i )⊤λ∗

i +NΩi

(
x∗

i

)
0m ∈−g (x∗)+Nm

R≥0

(
λ∗

i

)
.

(4.3)

Specifically, we focus on the subclass of v-GNEs [55, Def. 3.11], namely GNEs with equal
dual variables, i.e. λ∗

i =λ∗ ∈Rm for all i ∈ I , for which the KKT conditions read as

0n ∈ F
(
x∗)+ ∂

∂x g (x∗)⊤λ∗+NΩ(x∗) (4.4a)

0m ∈−g (x∗)+Nm
R≥0

(
λ∗)

. (4.4b)

where F is the pseudo-gradient mapping of the game:

F (x) := col
(
(∇xi Ji (xi , x−i )

)
i∈I ). (4.5)

Variational equilibria enjoys important structural properties, such as economic fairness
[55]. For example, in electricity markets, the dual variables correspond to unitary prices
charged for the use of the infrastructure by an administrator that aim at maximizing
its revenue while ensuring certain operating conditions, and it is reasonable to assume
that the administrator cannot charge discriminatory prices to different energy producers
[85]. A sufficient condition for the existence and uniqueness of a v-GNE is the strong
monotonicity of the pseudo-gradient [149, Th. 1, Rem. 1], which was always postulated
in continuous-time NE seeking under partial-decision information ([63, Asm. 2]; [50,
Asm. 3]). It implies strong convexity of the functions Ji (·, x−i ) for any x−i [137, Rem. 1],
but not necessarily convexity of Ji in the full argument.

Assumption 4.2. The game mapping F in (4.5) is:

(i) µ-strongly monotone, for some µ> 0;

(ii) θ0-Lipschitz continuous, for some θ0 > 0. □
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Algorithm 4.1. Constant gain

Initialization: set c > c := (θ0+θ)2+4µθ
4µλ2(L) ; ∀i ∈ I , set x i ,−i (0) ∈Rn−ni , zi (0) = 0m , λi (0) ∈Rm

≥0;

Dynamics: ∀i ∈ I ,

ẋi = ui =ΠΩi

(
xi ,−∇xi Ji (xi , x i ,−i )− ∂

∂xi
gi (xi )⊤λi − c

∑
j∈Ni

(xi −x j ,i )
)

ẋ i ,−i =−c
∑

j∈Ni
(x i ,−i −x j ,−i )

żi =∑
j∈Ni

(λi −λ j )

λ̇i =ΠRm
≥0

(
λi , gi (xi )− zi −∑

j∈Ni
(λi −λ j )

)

4.3. FULLY-DISTRIBUTED EQUILIBRIUM SEEKING

I N this section, we consider the game in (4.2), where each agent is associated with the
following dynamical system:

∀i ∈ I : ẋi = ui , xi (0) ∈Ωi . (4.6)

Our aim is to design the inputs ui ∈Rni to seek a v-GNE in a fully-distributed way. Specif-
ically, each agent i ∈ I only knows its own feasible set Ωi , the portion gi of the coupling
constraints, and its own cost function Ji . Moreover, the agents cannot access the strate-
gies of all the competitors x−i . Instead, each agent only relies on the information ex-
changed locally with some neighbors over a communication network G(I ,E). The pairs
(i , j ), ( j , i ) belong to the set of edges E if and only if agent i and j can exchange infor-
mation. We denote by W ∈ RN×N the symmetric weight matrix of G, with [W ]i , j > 0 if
(i , j ) ∈ E , [W ]i , j = 0 otherwise; L the symmetric Laplacian matrix of G; Ni := { j | (i , j ) ∈ E}
the set of neighbors of agent i . For ease of notation, we assume that the graph is un-
weighted, i.e., [W ]i , j = 1 if (i , j ) ∈ E , but our results still hold for the weighted case.

Assumption 4.3. The communication graphG(I ,E) is undirected, unweighted and con-
nected. □

Our first algorithm is inspired by the discrete-time primal-dual gradient iteration in
[109, Alg. 1]. To cope with the lack of knowledge, the general assumption for the partial-
decision information scenario is that each agent keeps an estimate of all other agents’
actions [109], [137]. Let x i := col((x i , j ) j∈I ) ∈ Rn , where x i ,i := xi and x i , j is agent i ’s
estimate of agent j ’s action, for all j ̸= i ; x j ,−i := col((x j ,ℓ)ℓ∈I\{i }). Each agent also keeps
an estimate λi ∈ Rm

≥0 of the dual variable and an auxiliary variable zi ∈ Rm to allow for
distributed consensus of the dual estimates. Our proposed dynamics are summarized
in Algorithm 4.1, where c > 0 is a global fixed parameter (and θ is a constant defined in
Lemma 4.3).

We note that the agents exchange {x i ,λi } with their neighbors only, therefore the
controller can be implemented distributedly. Importantly, each agent i evaluates the
partial gradient of its cost ∇xi Ji on its local estimate x i , not on the actual joint strategy
x. In steady state, the agents should agree on their estimates, i.e., x i = x j , λi =λ j , for all
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Algorithm 4.2. Adaptive gains

Initialization: ∀i ∈ I , set γi > 0, x i ,−i (0) ∈Rn−ni , ki (0) ∈R, zi (0) = 0m , λi (0) ∈Rm ;

Dynamics: ∀i ∈ I ,

ẋi = ui =ΠΩi (xi ,−∇xi Ji (xi , x i ,−i )− ∂
∂xi

gi (xi )⊤λi −∑
j∈Ni

(kiρi ,i −k jρ j ,i ))

ẋ i ,−i =−∑
j∈Ni

(kiρi ,−i −k jρ j ,−i )

k̇i = γi∥ρi∥2, ρi =∑
j∈Ni

(x i −x j )

żi =∑
j∈Ni

(
λi −λ j

)
λ̇i =ΠRm

≥0
(λi , gi (xi )− zi −∑

j∈Ni
(λi −λ j ))

i , j ∈ I . This motivates the presence of consensual terms for both primal and dual vari-
ables. For any integer q , we denote E q := {y ∈RN q : y = 1N⊗y, y ∈Rq } the consensus sub-
space of dimension q , and E⊥

q := {y ∈RN q :
(
1⊤

N ⊗ Iq
)

y = 0q } its orthogonal complement;
Specifically, E n and E m are the action and multiplier consensus subspaces, respectively.
Moreover, Pq := 1

N 1N 1⊤
N ⊗ Iq is the projection matrix onto E q , i.e., Pq y = projE q

(y), and

P⊥
q := IN q −Pq the projection matrix onto the disagreement subspace E⊥

q .
While Algorithm 4.1 is fully-distributed, choosing the gain c requires global knowl-

edge about the graph G, i.e., the algebraic connectivity, and about the game mapping,
i.e., the strong monotonicity and Lipschitz constants. These parameters are unlikely to
be available locally in a network system. To overcome this limitation and enhance scala-
bility, [47] proposed a controller where the communication gains are tuned online, thus
relaxing the need for global information, for games without coupling constraints. Here
we extend their solution to the GNE problem.

Our proposed controller is given in Algorithm 4.2. For all i ∈ I , ki is the adaptive gain
of agent i , γi > 0 is an arbitrary local constant and ρi := col((ρi , j ) j∈I ). We emphasize
that Algorithm 4.2 allows for a fully uncoupled tuning: each agent chooses locally the
initial conditions and the parameter γi , independently of the other agents and without
need for coordination or global knowledge.

Remark 4.1. Algorithm 4.2 uses second order information, as each agent sends the
quantity ρi , which depends on the estimates of its neighbors. In case of delayed com-
munication, this means dealing with twice the transmission latency with respect to a
controller that exploits first order information only, e.g., Algorithm 4.1. In a discrete-
time setting, a sampled version of Algorithm 4.2 can be implemented by allowing the
agents to communicate twice per iteration, a common assumption for GNE seeking on
networks [64], [109]. □

To rewrite the closed-loop dynamics in Algorithms 4.1, 4.2 in compact form, let us
define x := col((x i )i∈I ) and, as in [63, Eq. 11], for all i ∈ I ,

Ri : = [ 0ni×n<i Ini 0ni×n>i ], (4.7)

where n<i := ∑
j<i , j∈I n j , n>i := ∑

j>i , j∈I n j ; let also R := diag
(
(Ri )i∈I

)
. In simple

terms, Ri selects the i -th ni dimensional component from an n-dimensional vector,
i.e., Ri x i = x i ,i = xi and x =Rx .
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Let λ := col((λi )i∈I ), z := col((zi )i∈I ), Ω := {x ∈ RnN | Rx ∈ Ω}, g (x) :=
col((gi (xi )i∈I )), G(x) := ∂

∂x g (x) = diag(( ∂
∂xi

gi (xi ))i∈I ), k := col((ki )i∈I ), ρ := col((ρi )i∈I ),
K := diag((ki In)i∈I ), D(ρ) := diag((ρi )i∈I ), Γ := diag((γi )i∈I ), and, for any integer q > 0,
Lq := L⊗ Iq . Furthermore, we define the extended pseudo-gradient mapping F as:

F (x) := col((∇xi Ji (xi , x i ,−i ))i∈I ). (4.8)

Therefore, Algorithm 4.1, in compact form, reads as

ẋ =ΠΩ
(
x ,−R⊤(F (x)+G(Rx)⊤λ)− cLn x

)
(4.9a)

ż = Lmλ (4.9b)

λ̇=ΠRN m
≥0

(λ, g (Rx)− z −Lmλ), (4.9c)

and Algorithm 4.2 as

ẋ =ΠΩ(x ,−R⊤(F (x)+G(Rx)⊤λ)−LnKρ) (4.10a)

k̇ = D
(
ρ

)⊤
(Γ⊗ In)ρ, ρ = Ln x (4.10b)

ż = Lmλ (4.10c)

λ̇=ΠRN m
≥0

(λ, g (Rx)− z −Lmλ). (4.10d)

4.4. CONVERGENCE ANALYSIS

I N this section, we show the convergence of our dynamics to a v-GNE. We focus on the
analysis of Algorithm 4.2, which presents more technical difficulties; the convergence

of Algorithm 4.1 can be shown analogously.
We start by noting an invariance property of our controllers, namely that if z(0) ∈ E⊥

m
(for instance, z(0) = 0m), then z ∈ E⊥

m along any solution of (4.10), by (4.10c). The next
lemma relates a class of equilibria of the system in (4.10) to the v-GNE of the game in
(4.2).

Lemma 4.2. Under Assumptions 4.1, 4.2, 4.3, the following statements hold:

i) Any equilibrium point col
(
x̄ , k̄ , z̄ ,λ̄

)
of (4.10) with z̄ ∈ E⊥

m is such that x̄ = 1N ⊗ x∗,
λ̄= 1N ⊗λ∗, where the pair (x∗,λ∗) satisfies the KKT conditions in (4.4), hence x∗ is
the v-GNE of the game in (4.2).

ii) The system (4.10) admits at least one equilibrium col
(
x̄ , k̄ , z̄ ,λ̄

)
with z̄ ∈ E⊥

m . □
We remark that in Algorithm 4.2 (or 4.1) each agent i evaluates the quantity ∇xi Ji

in its local estimate x i , not on x. As a consequence, the operator R⊤F is very rarely
monotone, even under strong monotonicity of the game mapping F . The loss of mono-
tonicity is indeed the main technical difficulty arising in the partial-decision information
scenario. Following [109], [47], we deal with this issue by leveraging a restricted mono-
tonicity property, which can be guaranteed for any game satisfying Assumptions 4.1-4.3,
without additional hypotheses, as shown in the next lemmas. The proof relies on the
decomposition of x along the consensus space E n , where F is strongly monotone, and
the disagreement space E⊥

n , where Ln is strongly monotone.
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Lemma 4.3 ([23, Lem. 3]). Let Assumption 4.2 hold. Then, the mapping F in (4.8) is
θ-Lipschitz continuous, for some θ ∈ [µ,θ0]. □
Lemma 4.4. Let Assumptions 4.2, 4.3 hold, and let

M1 :=
[ µ

N − θ0+θ
2
p

N

− θ0+θ
2
p

N
k∗
λ2(L)2 −θ

]
, k := (θ0+θ)2+4µθ

4µλ2(L)2 . (4.11)

For any k∗ > k and K ∗ = IN nk∗, for any x ∈ RN n and any y ∈ E n , it holds that M2 ≻ 0 and
also that (

x − y
)⊤ (R⊤ (

F (x)−F
(

y
))+LnK ∗Ln

(
x − y

)
) ≥ λmin(M1)

∥∥x − y
∥∥2 . □

We can now present the main result of this section.

Theorem 4.1 (Convergence of Algorithm 4.2). Let Assumptions 4.1, 4.2, 4.3 hold. For
any initial condition in S = Ω× RN × E⊥

m × RmN
≥0 , the system in (4.10) has a unique

Carathéodory solution, which belongs to S for all t ≥ 0. The solution converges to an
equilibrium col

(
x̄ , k̄ , z̄ ,λ̄

)
, with x̄ = 1N ⊗ x∗, λ̄ = 1N ⊗λ∗, and (x∗,λ∗) satisfies the KKT

conditions in (4.4), hence x∗ is the v-GNE of the game in (4.2). □
A similar result holds also for the the dynamics in (4.9).

Theorem 4.2 (Convergence of Algorithm 4.1). Let Assumptions 4.1, 4.2, 4.3 hold. Let
c > c, with c as in Algorithm 4.1. For any initial condition in S = Ω× E⊥

m ×RmN
≥0 the

system in (4.9) has a unique Carathéodory solution, which belongs to S for all t ≥ 0. The
solution converges to an equilibrium col

(
x̄ , z̄ ,λ̄

)
, with x̄ = 1N ⊗ x∗, λ̄ = 1N ⊗λ∗, and

(x∗,λ∗) satisfies the KKT conditions in (4.4), hence x∗ is the v-GNE of the game in (4.2).
□

Remark 4.2. As for Euclidean projections, evaluating ΠΩi (x, v) can be computationally
expensive. If, for some i ∈ I and some twice continuously differentiable mapping g loc

i ,

Ωi = {xi ∈Rni | g loc
i (xi ) ≤ 0p }, then the following alternative updates can be used in Algo-

rithm 4.1 (and similarly in Algorithm 4.2):

ẋi =−∇xi Ji (xi , x i ,−i )− ∂
∂xi

gi (xi )⊤λi − ∂
∂xi

g loc
i (xi )⊤λloc

i − c
∑

j∈Ni
(xi −x j ,i )

λ̇loc
i =ΠRp

≥0
(λi , g loc

i (xi )).

In simple terms, the local constraints are dualized like the coupling constraints; but the
corresponding dual variables are managed locally. The drawback of this primal-dual ap-
proach is that the satisfaction of the local constraints can only be ensured asymptotically.

□

4.5. GENERALIZED AGGREGATIVE GAMES

I N this section, we study aggregative games, where the cost function of each agent de-
pends only on the local action and on an aggregation value ψ(x) := 1

N

∑
i∈Iψi (xi ),
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Algorithm 4.3. Constant gain (aggregative games)

Initialization: set c > c := (θ̃σ)2

4µλ2(L) ; ∀i ∈ I , set ςi = 0n̄ , zi (0) = 0m , λi (0) ∈Rm
≥0;

Dynamics: ∀i ∈ I ,

ẋi = ui =ΠΩi (xi ,−∇xi fi (xi ,σi )− ∂
∂xi

gi (xi )⊤λi − cB⊤
i

∑
j∈Ni

(σi −σ j ))

ς̇i =−c
∑

j∈Ni
(σi −σ j ), σi =ψi (xi )+ςi

żi =∑
j∈Ni

(λi −λ j )

λ̇i =ΠRm
≥0

(λi , gi (xi )− zi −∑
j∈Ni

(λi −λ j ))

Algorithm 4.4. Adaptive gains (aggregative games)

Initialization: ∀i ∈ I , set γi > 0, ςi = 0n̄ , ki (0) ∈R, zi (0) = 0m , λi (0) ∈Rm
≥0;

Dynamics: ∀i ∈ I ,

ẋi = ui =ΠΩi (xi ,−∇xi fi (xi ,σi )− ∂
∂xi

gi (xi )⊤λi−B⊤
i

∑
j∈Ni

(kiρi −k jρ j ))

ς̇i =−∑
j∈Ni

(kiρi −k jρ j ) σi =ψi (xi )+ςi

k̇i = γi∥ρi∥2 ρi =∑
j∈Ni

(
σi −σ j

)
żi =∑

j∈Ni
(λi −λ j )

λ̇i =ΠRm
≥0

(λi , gi (xi )− zi −∑
j∈Ni

(λi −λ j ))

where ψi : Rni → Rn̄ , for all i ∈ I . It follows that, for each i ∈ I , there is a function
fi :Rni ×Rn̄ →R such that the original cost function Ji in (4.2) can be written as

Ji (xi , x−i ) = fi (xi ,ψ(x)). (4.12)

In particular, we focus on games with affine aggregation functions, where, for all i ∈ I ,
ψi (xi ) = Bi xi +di , for some Bi ∈ Rn̄×ni , di ∈ Rn̄ . As a special case, this class includes the
common (weighted) average aggregative games.

Since an aggregative game is only a particular instance of the game in (4.2), Algo-
rithms 4.1-4.2 could still be used to drive the system (4.6) to the v-GNE. This would re-
quire each agent i to keep (and exchange) an estimate of all other agents’ actions, i.e.,
a vector of n −ni components; however, the cost of each agent is only a function of the
aggregation value ψ(x), whose dimension n̄ is independent of the number of agents. To
reduce the communication and computation burden, we introduce two distributed con-
trollers that are scalable with the number of agents, specifically designed to seek a v-GNE
in aggregative games. Our proposed dynamics are shown in Algorithms 4.3 and 4.4.

Since the agents rely on local information only, they do not have access to the actual
value of the aggregation ψ(x). Hence, we embed each agent with an auxiliary error vari-
able ςi ∈ Rn̄ , which is an estimate of ψ(x)−ψi (xi ). Each agent aims at asymptotically
reconstructing the true aggregation value, based on the information received from its
neighbors. We use the notation

∇xi fi (xi ,σi ) :=∇y fi (y,σi )|y=xi + 1
N B⊤

i ∇y fi (xi , y)|y=σi .
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We note that, in Algorithms 4.3 and 4.4, the agents exchange the quantities σi ∈ Rn̄ , in-
stead of the variables x i ,ρi ∈Rn , like in Algorithms 4.1 and 4.2. Let σ := col((σi )i∈I ). We
define the extended pseudo-gradient mapping F̃ as

F̃ (x,σ) := col
((∇xi fi (xi ,σi )

)
i∈I

)
. (4.13)

Assumption 4.4. The mapping F̃ in (4.13) is θ̃-Lipschitz continuous, for some θ̃ > 0.
Hence, F̃ (x, ·) is θ̃σ-Lipschitz continuous, for some θ̃σ ∈ (0, θ̃], ∀x ∈Rn . □

Assumption 4.4 is standard ([64, Asm. 4]; [82, Asm. 3]) and can be shown to hold un-
der Assumption 4.2 if the matrix [B1 . . . BN ] is full row rank, e.g., for average aggregative
games.

By defining ς := col((ςi )i∈I ), K := diag((ki In̄)i∈I ), ψ(x) := col((ψi (xi ))i∈I ), B :=
diag((Bi )i∈I ), the dynamics in Algorithms 4.3 and 4.4 read, in compact form, as

ẋ =ΠΩ(x,−F̃ (x,σ)−G(x)⊤λ− cB⊤Ln̄σ) (4.14a)

ς̇=−cLn̄σ, σ=ψ(x)+ς (4.14b)

ż = Lmλ (4.14c)

λ̇=ΠRN m
≥0

(
λ, g (x)− z −Lmλ

)
, (4.14d)

and

ẋ =ΠΩ(x,−F̃ (x,σ)−G(x)⊤λ−B⊤Ln̄Kρ) (4.15a)

ς̇=−Ln̄Kρ, σ=ψ(x)+ς (4.15b)

k̇ = D
(
ρ

)⊤
(Γ⊗ In̄)ρ, ρ = Ln̄σ (4.15c)

ż = Lmλ (4.15d)

λ̇=ΠRN m
≥0

(
λ, g (x)− z −Lmλ

)
, (4.15e)

respectively. We note that only if the estimates of all the agents coincide with the actual
value, i.e., σ= 1N ⊗ψ(x), we can conclude that F̃ (x,σ) = F (x), F as in (4.5).

Remark 4.3. From the updates in (4.14b) (or (4.15b)), we can infer an invariance prop-
erty of the closed-loop system (4.14) (or (4.15)), namely that, at any time, 1

N

∑
i∈I ςi = 0n̄ ,

and thus 1
N

∑
i∈I σi =ψ(x) (or equivalently, Pn̄σ= 1N ⊗ψ(x)), provided that ς(0) = 0N n̄ .

In fact, the dynamics of σi in Algorithm 4.3 can be regarded as a continuous-time dy-
namic tracking for the time-varying quantity ψ(x), i.e., σi (0) =ψi (xi (0)) and

σ̇i =−c
∑

j∈Ni
(σi −σ j )+ d

d t (ψi (xi )). (4.16)

We emphasize that in Algorithm 4.3 there is no agent that knows the quantity ψ(x). This
is the main difference with respect to Algorithm 4.1, where the consensus of the esti-
mates works instead as a leader-follower protocol. If the actions x are constant, the
dynamics in (4.16) reduce to a standard average consensus algorithm and ensure that
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σ→ 1N ⊗ψ(x) exponentially, under Assumption 4.3. Therefore, when the action dynam-
ics (4.14a) are input-to-state-stable (ISS) with respect to the estimation error, conver-
gence can be ensured via small-gain arguments (for c big enough) – a similar approach
was used in [50]. However, in the presence of generic coupling constraints (even affine),
this robustness cannot be guaranteed; to still ensure convergence, we design an extra
consensual term for the action updates, i.e., cB⊤Ln̄σ. Furthermore, via the error variable
ς, we avoid studying the discontinuous dynamics in (4.16). We finally note that we con-
sider games with affineψ (a broader class than [64]), but nonlinear aggregation functions
are also studied [49], [50], [154]. However, [49] and [154] postulate strong monotonicity
of an augmented operator, a condition much more restrictive than our Assumption 4.2(i)
[49, Rem. 2]; instead, the approach in [50] is not suitable to deal with generic coupling
constraints, as discussed above. □

By leveraging the invariance property in Remark 4.3, we can obtain a refinement of
Lemma 4.4.

Lemma 4.5. Let Assumptions 4.2(i), 4.3, 4.4 hold, and let

M2 =
[
µ − θ̃σ

2

− θ̃σ
2 k∗λ2(L)2

]
, k = θ̃2

σ

4µλ2(L)2 (4.17)

For any k∗ > k and K ∗ = IN n̄k∗, for any (x,σ) such that Pn̄σ = Pn̄ψ(x) and any (x ′,σ′)
such that σ′ = Pn̄ψ(x ′) = 1N ⊗ψ(x ′), it holds that M2 ≻ 0, and that

(x −x ′)⊤(F̃ (x,σ)− F̃ (x ′,σ′))+ (σ−σ′)⊤Ln̄K ∗Ln̄(σ−σ′)

≥ λmin(M2)
∥∥col

(
x −x ′,σ−1N ⊗ψ(x)

)∥∥2 . □
Next, we exploit Lemma 4.5 to prove the convergence of Algorithm 4.4. An analogous

result holds for Algorithm 4.3.

Theorem 4.3 (Convergence of Algorithm 4.4). Let Assumptions 4.1, 4.2(i), 4.3, 4.4 hold.
Then, for any initial condition in S =Ω×E⊥

n̄ ×RN ×E⊥
m ×RmN

≥0 the system in (4.15) has a
unique Carathéodory solution, which belongs to S for all t ≥ 0. The solution converges
to an equilibrium col

(
x̄, ς̄, k̄ , z̄ ,λ̄

)
, with ψ(x̄)+ ς̄ = 1N ⊗ψ(x̄), λ̄ = 1N ⊗λ∗, and (x̄,λ∗)

satisfies the KKT conditions in (4.4), hence x̄ is the v-GNE of the game in (4.2). □
Theorem 4.4 (Convergence of Algorithm 4.3). Let Assumptions 4.1, 4.2(i), 4.3, 4.4 hold,
and let c > c, with c > c as in Algorithm 4.3. Then, for any initial condition in S = Ω×
E⊥

n̄ ×E⊥
m ×RmN

≥0 the system in (4.14) has a unique Carathéodory solution, which belongs
to S for all t ≥ 0. The solution converges to an equilibrium col(x̄, ς̄, z̄ ,λ̄), withψ(x̄)+ ς̄=
1N ⊗ψ(x̄), λ̄ = 1N ⊗λ∗, and (x̄,λ∗) satisfies the KKT conditions in (4.4), hence x̄ is the
v-GNE of the game in (4.2). □

4.6. MULTI-INTEGRATOR AGENTS

I N this section, we consider the game in (4.2) under the following additional assump-
tion, which is standard for NE problems with higher-order dynamical agents ([116,

Asm. 1]; [49, Def. 1]).
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Assumption 4.5. Ω=Rn . □
Besides, we study problems where each agent is represented by a system of (mixed-

order) multi-integrators:

∀i ∈ I :
{

x
(ri ,k )
i ,k = ui ,k , k ∈ {1, . . . ,ni }, (4.18)

where ri ,k ≥ 1 (with the superscript “(ri ,k )” denoting the ri ,k -th time derivative), and
we denote by xi ,k := [xi ]k , ui ,k := [ui ]k the k-th scalar component of agent i strategy and
control input, respectively. Our aim is to drive the agents’ actions (i.e., the xi coordinates
of each agent state) to a v-GNE of the game in (4.2). We emphasize that the agents are
not able to directly control their strategy xi in (4.18).

Remark 4.4. We consider the general form in (4.18) – instead of homogeneous multi-
integrator systems x(ri )

i = ui as in [116] – because these dynamics often arise from feed-
back linearization of multi-input multi-output (nonlinear) systems. As an example, the
feedback linearized model of a quadrotor in [95, Eq. 18] is a combination of triple and
double integrators. In general, consider any input-affine system

∀i ∈ I : żi = fi (zi )+gi (zi )ūi , xi = hi (zi ), (4.19)

for smooth mappings fi : Rqi → Rqi , gi : Rqi → Rqi×ni , h : Rqi → Rni ; the objective is
to drive the controlled outputs xi to a v-GNE. Assume that the systems in (4.19) have,
for all zi ∈ Rqi , vector relative degree [76, §5.1] {ri ,1, . . . ,ri ,ni }, with ri ,1, . . . ,ri ,ni ≥ 1 and
r1 + ·· · + rni = qi . This class includes, e.g., the Euler–Lagrangian dynamics considered
in [49]. Then, for all i ∈ I , there is a change of coordinates ξi = Ti (zi ) and a state feed-
back ūi = α(ξi )+β(ξi )ui such that the closed-loop system, in the new coordinates and
with transformed input ui , is exactly (4.18) [76, §5.2]. In practice, the problem of driv-
ing the systems in (4.19) to a v-GNE can be recast, via a linearizing feedback, as that of
controlling the multi-integrator agents in (4.18) to a v-GNE. □

Let Ki := {1, . . . ,ni } and Mi := {k ∈ Ki | ri ,k > 1}, for all i ∈ I . We assume that each
agent is able to measure its full state. Similarly to [116], in (4.18), for each i ∈ I , we
consider the controllers

∀k ∈Ki : ui ,k = ũi ,k −
∑ri ,k−1

j=1 ci ,k, j−1x( j )
i ,k , (4.20)

where ũi ,k is a translated input to be chosen, and (ci ,k,0 := 1, . . . ,ci ,k,ri ,k−2,ci ,k,ri ,k−1) are
the ascending coefficients of any Hurwitz polynomial of order (ri ,k − 1), for all i ∈ Ki .
Moreover, for all i ∈ I , we define the coordinate transformation

col

((
col

(
(xi ,k , . . . , x

(ri ,k−1)
i ,k

))
k∈Ki

)
→ col(ζi , vi ), (4.21)

where vi := col((vi ,k )k∈Mi
) and ζi := col((ζi ,k )k∈Ki

), with vi ,k := col(x(1)
i ,k , . . . , x

(ri ,k−1)
i ,k ), and

ζi ,k :=
{

xi ,k +
∑ri ,k−1

j=1 ci ,k, j x( j )
i ,k if k ∈Mi

xi ,k if k ∉Mi .
(4.22)
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Algorithm 4.5. Multi-integrator agents (adaptive gains)

Initialization: ∀i ∈ I , set γi > 0, ζi ,−i (0) ∈Rn−ni , ki (0) ∈R, zi (0) = 0m , λi (0) ∈Rm ;

Dynamics: for all i ∈ I , for all k ∈Ki ,

x
(ri ,k )
i ,k = ui ,k = ũi ,k −

∑ri ,k−1
j=1 ci ,k, j−1x( j )

i ,k

ũi =−∇xi Ji (ζi ,i ,ζi ,−i )− ∂
∂xi

gi (ζi ,i )⊤λi −∑
j∈Ni

(kiρi ,i −k jρ j ,i )

ζ̇i ,−i =−∑
j∈Ni

(kiρi ,−i −k jρ j ,−i )

ζi ,i = ζi

k̇i = γi∥ρi∥2 ρi =∑
j∈Ni

(ζ j −ζi )

żi =∑
j∈Ni

(
λi −λ j

)
λ̇i =ΠRm

≥0
(λi , gi (ζi ,i )− zi −∑

j∈Ni
(λi −λ j ))

We note that, for the closed loop systems in the new coordinates, it holds, for all i ∈ i ∈ I ,

∀k ∈Mi :

{
ζ̇i ,k = ũi ,k

v̇i ,k = Ei ,k vi +Gi ,k ũi ,k ,

(4.23a)

(4.23b)

where

Ei ,k =
[

0ri−2 Iri−2

1 −c⊤i ,k

]
, Gi ,k =

[
0ri−2

1

]
,

and ci ,k := col(ci ,k,1, . . . ,ci ,k,ri ,k−2).
We conclude that the system in (4.18), with the control inputs (4.20), in the new co-

ordinates (4.21), reads as

∀i ∈ I :

{
ζ̇i = ũi

v̇i = Ei vi +Gi ũi ,

(4.24a)

(4.24b)

where ũi := col((ũi ,k )k∈Ki
), Ei := diag((Ei ,k )k∈Mi

), Gi := diag((Gi ,k )k∈Mi
), for all i ∈ I .

The dynamics of ζi in (4.24a) are identical to the single-integrator in (4.6), with trans-
lated input ũi . As such, we are in a position to design ũi according to Algorithm 4.2 (or
4.1, or 4.3 or 4.4 for aggregative games), to drive the variable ζ := col((ζi )i∈I ) to an equi-
librium ζ̄ = x∗, where x∗ is the v-GNE for the game in (4.2). In the following, we show
that this choice is sufficient to also control the original variables xi to the v-GNE.

The resulting dynamics are shown in Algorithm 4.5. Here, ζi := (col(ζi , j ) j∈I ), and
ζi , j represents agent i ’s estimation of the quantity ζ j , for j ̸= i , while ζi ,i := ζi , ζi ,−i :=
col((ζi , j ) j∈I\{i }). Let also ζ := col((ζi )i∈I ).

Theorem 4.5 (Convergence of Algorithm 4.5). Let Assumptions 4.1, 4.2, 4.3, 4.5 hold. For
any initial condition, the system in Algorithm 4.5 has a unique Carathéodory solution.
The solution converges to an equilibrium col(x̄, ζ̄, k̄ , z̄ ,λ̄), with x̄ = x∗, ζ̄ = 1N ⊗ x∗, λ̄ =
1N ⊗λ∗, and (x∗,λ∗) satisfies the KKT conditions in (4.4), hence x∗ is the v-GNE of the
game in (4.2). □
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Figure 4.1: Results of Algorithms 4.1-4.2 for velocity-actuated vehicles.

We emphasize that the proof of Theorem 4.5 is not based on the specific structure of
Algorithm 4.2; in fact, the result still holds if another secondary controller with analogous
convergence properties is employed to design ũi in (4.24). For instance, by choosing the
controller in [50, Eq. 11], we can address aggregative games played by multi-integrator
agents over balanced digraphs. [116] follow a similar approach (for homogeneous multi-
integrators and NE problems), and handle the presence of deterministic disturbances
by leveraging the ISS properties of their selected secondary controller [63, Eq. 47]. We
have not guaranteed this robustness for our dynamics. However, the algorithm in [116]
is designed for unconstrained games. On the contrary, Algorithm 4.5 drives the system
in (4.18) to the v-GNE of a generalized game, and ensures asymptotic satisfaction of the
coupling constraints. We finally remark that we assumed the absence of local constraints
(Assumption 4.5); nevertheless, if some are present, they can be dualized and satisfied
asymptotically, as in Remark 4.2.

4.7. ILLUSTRATIVE NUMERICAL EXAMPLES

4.7.1. OPTIMAL POSITIONING IN MOBILE SENSOR NETWORKS
We consider a connectivity problem formulated as a game, as in [130]. A group I =
{1, . . . , N = 5} of mobile sensor devices have to coordinate their actions via wireless com-
munication, to perform some task, e.g., exploration or surveillance. Mathematically,
each sensor i aims at autonomously finding the position xi = col(px

i , p y
i ) in a plane to

optimize some private primary objective ci (xi ), but not rolling away too much from the
other devices. This goal is represented by the following cost functions, for all i ∈ I :

Ji (xi , x−i ) := ci (xi )+∑
j∈I

∥∥xi −x j
∥∥2 .

Here, ci (xi ) := xT
i xi + d⊤

i xi + sin(px
i ), with di ∈ R2 randomly generated local parame-

ters, for each i ∈ I . The useful space is restricted by the local constraints 0.1 ≤ p y
i ≤ 0.5,

∀i ∈ I . The sensors communicate over a random undirected connected graph G(I ,E).
To preserve connectivity, the Chebyschev distance between any two neighboring agents
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Figure 4.2: Results of Algorithm 4.5 for Euler–Lagrangian vehicles linearized via feedback linearization.

has to be smaller than 1
5 , resulting in the coupling constraints max{|px

i −px
j |, |p

y
i −p y

j |} ≤
1
5 ,∀(i , j ) ∈ E . After the deployment, all the sensors start sending the data they collect to a
base station, located at x̄ = col(0,0.3), via wireless communication. To maintain accept-
able levels of transmission power consumption, the average steady state distance from
the base is limited as 1

N

∑
j∈Ni

(xi − x̄)⊤(xi − x̄) ≤ 1
2 . This setup satisfies Assumptions 4.1-

4.2. We set c = 30 to satisfy the condition in Theorem 4.2; γi = 1,∀i ∈ I ; initial conditions
are chosen randomly. We consider two different cases for the sensor physical dynamics.

Velocity-actuated vehicles: Each agent is a single-integrator as in (4.6). Figure 4.1
compares the results for Algorithms 4.1 and 4.2 (in logarithmic scale) and shows con-
vergence of both to the unique v-GNE and asymptotic satisfaction of the coupling con-
straints. In the first phase, the controllers are mostly driven by the consensual dynamics;
we remark that, when the agents agree on their estimates, the two algorithms coincide.

Euler–Lagrangian vehicles: Each mobile sensor i ∈ I is modeled as an Euler–
Lagrangian systems of the form Ii (xi )ẍi +Ci (xi , ẋi )+Ui (xi ) = ui , where Ui = col(0,−1),

Ii (xi ) =
[

2+0.6∗cos(p y
i ) 0.5+0.3cos(p y

i )
0.5+0.3cos(p y

i ) 0.5

]
,

Ci (xi , ẋi ) =
[−0.3sin(p y

i )ṗ y
i −0.3sin(p y

i )(ṗx
i + ṗ y

i )
0.3sin(p y

i )ṗx
i 0

]
.

The systems satisfy the conditions in Remark 4.4 with uniform vector relative degree
{2,2}. Therefore, we first apply a linearizing feedback; the problem then reduces to
the control of double-integrator agents, and we choose the transformed input (see Re-
mark 4.4) according to Algorithm 4.5 and the analogous algorithm with constant gain
(obtained by choosing ũi in (4.24a) according to Algorithm 4.1). The local constraints
are dualized as in Remark 4.2. The results are illustrated in Figure 4.2. Finally, in Fig-
ure 4.3, we compare the trajectories of the vehicles in the velocity-actuated and Euler–
Lagrangian cases. Importantly, the local constraints are satisfied along the whole trajec-
tory for single-integrator agents, only asymptotically for the higher-order agents.
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Figure 4.3: Cartesian trajectories of velocity-actuated and Euler–Lagrangian vehicles, with adaptive gains.

4.7.2. COMPETITION IN POWER MARKETS AS AGGREGATIVE GAME
We consider a Cournot competition model [73], [109]. A group I = {1, . . . , N } of firms
produces energy for a set of markets J = {1, . . . ,m}, each corresponding to a different
location. Each firm i ∈ I controls a production plant in ni ≤ m of the locations, and
decides on the power outputs xi ∈ Rni of its generators. Power is only dispatched in the
location of production. Each plant has a maximal capacity, described by the local con-
straints 0ni ≤ xi ≤ Xi . Moreover, an independent system operator (ISO) imposes an upper
bound on the market share of the producers, so that 1⊤

ni
xi ≤Ci . Market clearance is guar-

anteed by the ISO via external control mechanisms, but the overall power generation is
bounded by markets capacities r = col((r j ) j∈J ). Thus, the firms share the constraints
Ax ≤ r . Here, A = [A1 . . . AN ], and Ai ∈ Rm×ni with [Ai ] j ,k = 1 if [xi ]k is the power gen-
erated in location j ∈ J by agent i , [Ai ] j ,k = 0 otherwise, for all j ∈ J , k = 1, . . . ,ni . In
simple terms, Ax ∈ Rm is the vector of total power generations for each market. Each
firm i ∈ I aims at maximizing its profit, i.e., minimizing the cost

Ji (xi , x−i ) = ci (xi )−p(Ax)⊤Ai xi +w(1⊤
ni

xi ),

where ci (xi ) =∑ni
k=1 Qi ,k ([xi ]k )2 +qi ,k [xi ]k is the generation cost, p(Ax)⊤Ai xi is the rev-

enue, where p : Rm → Rm associates to each market a unitary price depending on the
offer and [p(Ax)] j = P j −χ j [Ax] j , w(y) = w2 y −w1 y2 is a price charged by the ISO for
the use of the infrastructure. We set N = 20, m = 7 and randomly select which firms
participate in each market. We choose with uniform distribution Xi in [0.3,1.3], Ci in
[1,2], r j in [1,2], Qi ,k in [8,16], qi in [1,2], P j in [10,20], χ j in [1,3], for all i ∈ I , j ∈ J ,
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Figure 4.4: Distance from the v-GNE, for the power production in the electricity market.

k = 1, . . . ,ni , w1 in [0.5,1], w2 in [0,0.1]. The firms cannot access the productions of all
the competitors, but can communicate with some neighbors on a connected graph. The
turbine of generator i is governed by the dynamics [49]

Ṗi ,k =−α1
i ,k Pi ,k +α2

i ,k Ri ,k

Ṙi ,k =−α3
i ,k Ri ,k +α4

i ,k ui ,k ,

with Pi ,k = [xi ]k ; Ri ,k and ui ,k are the steam valve opening and control input; the param-
eters α·

i ,k ’s are set as in [49]. Via feedback linearization, the problem for each generator
reduces to the control of a double-integrator. The competition among the firms is de-
scribed as an aggregative game with aggregation value ψ(x) = Ax (this is advantageous
with respect to the formulation in [109], as the firms only keep an estimate of the aggre-
gation and firm i does not need to know the quantities A j , j ̸= i ). We numerically check
that this setup satisfies Assumptions 4.2, 4.4. We simulate the equivalent of Algorithm 4.5
for aggregative games, obtained by choosing ũi in (4.24) according to Algorithms 4.3, 4.4;
we deal with the local constraints as in Remark 4.2. The results are shown in Figure 4.4
and indicate fast convergence of the firms’ production to the unique v-GNE.

4.8. CONCLUSION AND OUTLOOK

G ENERALIZED games played by nonlinear systems with maximal relative degree can
be solved via continuous-time fully-distributed primal-dual pseudogradient con-

trollers, provided that the game mapping is strongly monotone and Lipschitz continu-
ous. Convergence can be ensured even without a-priori knowledge on the game param-
eters, via integral consensus. Seeking an equilibrium when the agents are characterized
by constrained dynamics is currently an open problem. The extension of our results to
the case of direct communication, noise and parameter uncertainties is left as future
work.
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4.9.1. PROOF OF LEMMA 4.2
Under Assumption 4.3, we have, for any q > 0,

Range
(
Lq

)= Null
(
1⊤

N ⊗ Iq
) = E⊥

q , (4.25)

Null
(
Lq

)= Range
(
1N ⊗ Iq

)= E q . (4.26)

i) For any equilibrium col(x̄ , k̄ , z̄ ,λ̄) of (4.10), with z̄ ∈ E⊥
m , it holds that

0 ∈R⊤(F (x̄)+G(Rx̄)⊤λ̄+NΩ(Rx̄))+LnK̄ ρ̄ (4.27)

0 = D
(
ρ̄

)⊤
(Γ⊗ In) ρ̄, ρ̄ = Ln x̄ (4.28)

0 = Lmλ̄ (4.29)

0 ∈−g (Rx̄)+ z̄ +Lmλ̄+NRN m
≥0

(
λ̄

)
, (4.30)

where K̄ = diag((k̄i In)i∈I ). By (4.28) we have ρ̄ = 0N n , i.e., x̄ ∈ E n by (4.26), and by (4.29)
and (4.26), we have λ̄ ∈ E m . Hence, x̄ = 1N ⊗ x∗ and λ̄= 1N ⊗λ∗, for some x∗ ∈Rn , λ∗ ∈
Rm . By left multiplying both sides of (4.27) by (1⊤

N ⊗In), by (4.26) and since (1⊤
N ⊗In)R⊤ =

In , F (1N ⊗x∗) = F (x∗), Rx̄ = x∗, and G(Rx̄)⊤(1N ⊗λ∗) = ∂
∂x g (x∗)⊤λ∗, we retrieve the

first KKT condition in (4.4). We obtain the second condition in (4.4) by left multiplying
both sides of (4.30) by (1⊤

N ⊗Im) and by using that (1⊤
N ⊗Im)g (Rx̄) = g (x∗), (1⊤

N ⊗Im)z̄ = 0
and (1⊤

N ⊗ Im)NRN m
≥0

(1N ⊗λ∗) = N NRm
≥0

(λ∗) = NRm
≥0

(λ∗).

ii) Let (x∗,λ∗) be any pair that satisfies the KKT conditions in (4.4). By taking x̄ =
1N ⊗ x∗, λ̄ = 1N ⊗λ∗ and any k̄ , (4.27)-(4.29) are satisfied as above. It suffices to show
that there exists z̄ ∈ E⊥

m such that (4.30) holds, i.e., that (−g (Rx̄)+ v̄) ∈ E⊥
m , for some

v̄ ∈ NRN m
≥0

(λ̄). By (4.4), there exists v∗ ∈ NRm
≥0

(λ∗) such that g (x∗) = v∗. Since NRN m
≥0

(1N ⊗
λ∗) =×i∈INRm

≥0
(λ∗), it follows by properties of cones that col(v∗

1 , . . . , v∗
N ) ∈ NRN m

≥0
(λ̄) with

v∗
1 = ·· · = v∗

N = 1
N v∗. Therefore, (1⊤

N ⊗ Im)(−g (Rx̄)+ v̄) =−g (x∗)+v∗ = 0m , or (−g (Rx̄)+
v̄) ∈ E⊥

m . ■

4.9.2. PROOF OF LEMMA 4.4
Let y = 1n ⊗ y , for some y ∈Rn . We decompose x = x⊥+ x∥, where x∥ := Pn x , x⊥ := P⊥

n x .
Therefore, x∥ = 1N ⊗ x̂, for some x̂ ∈Rn . By [109, Eq. 50],

(x − y)⊤R⊤(F (x)−F (y))

≥−θ∥x̂ − y∥∥x⊥∥+µ∥x̂ − y∥2 −θ∥x⊥∥2 −θ0∥x⊥∥∥x̂ − y∥.

For any k∗ > k > 0, we have K ∗ ≻ 0 and, by (4.26), Null (LnK ∗Ln) = E n . Therefore it holds
that (x−y)⊤LnK ∗Ln(x−y) ≥ k∗λ2(L)2∥x⊥∥2. By

∥∥x̂ − y
∥∥= 1p

N

∥∥x∥− y
∥∥, we conclude that(

x − y
)⊤ (R⊤ (

F (x)−F
(

y
))+LnK ∗Ln

(
x − y

)
)

≥ col(∥x⊥∥,∥x∥− y∥)⊤M1col(∥x⊥∥,∥x∥− y∥),

with M1 as in (4.11) and, for k∗ > k, M1 ≻ 0 by Silvester’s criterion. The conclusion follows
since, by orthogonality, ∥x∥− y∥2 +∥x⊥∥2 = ∥x − y∥2. ■
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4.9.3. PROOF OF THEOREM 4.1
We first rewrite the dynamics in (4.10) as

ω̇=ΠΞ(ω,−A(ω)−B(ω)), (4.31)

whereω := col(x ,k , z ,λ), Ξ :=Ω×RN ×RN m ×RmN
≥0 ,

A(ω) :=


R⊤F (x)+LnK Ln x
−D(ρ)⊤ (Γ⊗ In)ρ

0N m

Lmλ

, B(ω) :=


R⊤G(Rx)⊤λ

0N

−Lmλ

−g (Rx)+ z

.

By Assumption 4.1 and Lemma 4.3,A andB are locally Lipschitz; therefore, for any initial
condition inΞ, the system (4.31) has a unique local Carathéodory solution, contained in
Ξ [40]. Moreover, we note that the set S = {w ∈ Ξ | z ∈ E⊥

m} is invariant for the system
(4.31), since for allω ∈Ξ, ∂

∂ω ((1N ⊗ Im)⊤z)ω̇= (1⊤
N ⊗ Im)Lmλ= 0m .

Let Φ := Pm + L+
m , where L+

m is the Moore-Penrose pseudo-inverse of Lm , and we
recall that Pm = 1

N 1N 1⊤
N ⊗ Im is the projection matrix on E m . By properties of the

pseudo-inverse and (4.26), L+
m = L+

m
⊤, L+

m ⪰ 0 and Null(L+
m) = E m . Since Null(P m) = E⊥

m
and Pm ⪰ 0, we have Φ ≻ 0. Also, L+

m Lm = IN m −Pm = P⊥
m is the projector matrix on

Range(Lm) = E⊥
m . We define the quadratic Lyapunov function

V = 1
2∥ω− ω̄∥2

Q := (ω− ω̄)⊤Q(ω− ω̄)

= 1
2 (∥x − x̄∥2 +∥k − k̄∥2

Γ−1 +∥z − z̄∥2
Φ+∥λ− λ̄∥2),

where Q =: diag(IN n ,Γ−1,Φ, IN m), and x̄ = 1N ⊗ x∗, λ̄ = 1N ⊗λ∗, where the pair (x∗,λ∗)
satisfies the KKT conditions in (4.4), k̄ such that k∗ := min(k̄) ≥ k, with k as in (4.11),
z̄ ∈ E⊥

m chosen such that ω̄ := col
(
x̄ , k̄ , z̄ ,λ̄

)
is an equilibrium for (4.10), and such a z̄

exists by the proof of Lemma 4.2. Therefore, for anyω ∈ S, we have

V̇ (ω) : =∇V (ω)ω̇= (ω− ω̄)⊤Qω̇=
= (ω− ω̄)⊤QΠΞ(ω,−A(ω)−B(ω))

≤ (ω− ω̄)⊤Q(−A(ω)−B(ω)), (4.32)

where the last inequality follows from Lemma 4.1 and by exploiting the structure of Q
and Ξ. By Lemma 4.1, it also holds that (ω− ω̄)⊤Q(−A(ω̄)−B(ω̄)) ≤ 0. By subtracting
this term from (4.32), we obtain

V̇ (ω) ≤−(ω− ω̄)⊤Q(A(ω)−A(ω̄)+B(ω)−B(ω̄)).

Besides, for any z ∈ E⊥
m , by L+

m Lm = P⊥
m and (4.26), we have (z − z̄)⊤ΦLm(λ− λ̄) = (z −

z̄)⊤(λ− λ̄), and hence

(ω− ω̄)⊤Q(B(ω)−B(ω̄))

= (x − x̄)⊤R⊤(G(Rx)⊤λ−G(Rx̄)⊤λ̄)

+ (λ− λ̄)⊤(−g (Rx)+g (Rx̄))

= (x −x∗)⊤(∇y (g (y)⊤λ)|y=x −∇y (g (y)⊤λ̄)|y=x∗ )

− (λ− λ̄)⊤(∇y (g (x)⊤y)|y=λ−∇y (g (x∗)⊤y)|y=λ̄) ≥ 0
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and the last inequality holds, for any ω ∈ S, by applying [115, Th. 1] (since λ,λ̄ ∈ RN m
≥0

and by Assumption 4.1). Therefore, for anyω ∈ S, it holds that:

V̇ (ω) ≤−(ω− ω̄)⊤Q (A(ω)−A(ω̄))

=−(x − x̄)⊤R⊤ (F (x)−F (x̄))

− (x − x̄)⊤(LnK Ln(x − x̄))

+ (k − k̄)⊤Γ−1D(ρ)⊤ (Γ⊗ In)ρ

− (λ− λ̄)⊤Lm(λ− λ̄),

(4.33)

where we used that ρ̄ := Ln x̄ = 0. For the last addend in (4.33), we can write (λ−
λ̄)⊤Lm(λ− λ̄) = λ⊤Lmλ by (4.26) and, by [8, Th. 18.15], λ⊤Lmλ ≥ 1

2λmax(L)∥Lmλ∥2.

The third addend in (4.33) can be rewritten as (k − k̄)⊤Γ−1D(ρ)⊤ (Γ⊗ In)ρ =∑N
i=1

(
ki − k̄i

)
ρi⊤ρi = ρ⊤(K − K̄ )ρ = x⊤Ln(K − K̄ )Ln x = (x − x̄)⊤Ln(K − K̄ )Ln(x − x̄),

where K̄ := diag((k̄i In)i∈I ). Therefore, the sum of the second and third term in (4.33)
is −(x − x̄)⊤LnK̄ Ln(x − x̄) ≤−(x − x̄)⊤LnK ∗Ln(x − x̄), where K ∗ := k∗IN n . By Lemma 4.4,
we finally get

V̇ ≤−λmin(M1)∥x − x̄∥2 − 1
2λmax(L)∥Lmλ∥2, (4.34)

with M1 ≻ 0 as in Lemma 4.4.
Let P̄ be any compact sublevel set of V (notice that V is radially unbounded) con-

taining the initial condition ω(0) ∈ S. P̄ is invariant for the dynamics, since V̇ (ω) ≤ 0
by (4.34). The set P := P̄ ∩ S is compact, convex and invariant, therefore, by exploit-
ing Lemma 4.3 and the continuous differentiability in Assumption 4.1, we conclude that
A+B is Lipschitz continuous on P . Therefore, for any initial condition, there exists
a unique global Carathéodory solution to (4.10), that belongs to P (and therefore is
bounded) for every t [40, Prop. 2.2]. Moreover, by [47, Th. 2], the solution converges
to the largest invariant set O ⊆ {ω ∈Ps.t.V̇ (ω) = 0}.

We can already conclude that x converges to the point 1N ⊗ x∗, with x∗ the unique
v-GNE of the game in (4.2). We next show convergence of the other variables. Take any
point ω := col(x ,k , z ,λ) ∈ O. Since V̇ (ω) = 0, by (4.34) we have x = x̄ = 1N ⊗ x∗, and
λ ∈ E m , i.e. λ = 1N ⊗λ, for some λ ∈ Rm

≥0. Therefore, by expanding (4.32), by x = x̄ ,
ρ := Ln x = 0N n and (4.26), we have

0 = (λ− λ̄)⊤(g (R x̄)− z) = (λ−λ∗)⊤g (x∗)

=λ⊤g (x∗) =λ⊤(g (Rx̄)−z)), (4.35)

where in the second equality we have used that z ∈ E⊥
m and the third equality follows

from the KKT conditions in (4.4b). Then, letω(t ) = col(x(t ),k(t ), z(t ),λ(t )) be the trajec-
tory of (4.31) starting at ω. By invariance of O, x(t ) = x̄ and λ(t ) ∈ E m , for all t . There-
fore, by (4.10b)-(4.10c), it holds that k(t ) ≡ k , z(t ) ≡ z , for all t . Hence, the quantity
v := (g (Rx(t ))−Lmλ(t )− z(t )) is a constant along the trajectory ω(t ). Suppose by con-
tradiction that [v]k > 0, for some k = {1, . . . , N m}. Then, [λ̇(t )]k = [v]k for almost all t , by
(4.10d), and λ(t ) grows indefinitely. Since all the solutions of (4.10) are bounded, this is
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a contradiction. Therefore, v ≤ 0m , and λ⊤v = 0 by (4.35). Equivalently, v ∈ NRN m
≥0

(λ),

henceλ(t ) ≡λ, for all t . We conclude that the points in O are equilibria.

Moreover, the set Λ(ω0) of ω-limit points1of the solution to (4.10) starting at any
ω0 ∈ S is nonempty (by Bolzano-Weierstrass theorem, since all the trajectories of (4.10)
are bounded), and Λ(ω0) ⊆ O (see the proof of [47, Th.2]). Hence, all the ω-limit
points are equilibria. We next show that, for any for any ω0 ∈ S, Λ(ω0) is a single-
ton; as a consequence, the solution converges to that point [8, Lemma 1.14]. For the
sake of contradiction, assume that there are two ω-limit points ω1 = col(x̄ , k̂ , z1,λ1),
ω2 = col(x̄ , k̂ , z2,λ2) ∈Λ(ω0), withω1 ̸=ω2. We note thatω1 andω2 must have the same
vector of adaptive gains k̂ by definition ofω-limit point, since the ki ’s in Algorithm 4.2 are
nonincreasing. Letω3 = col(x̄ , k̂+1α, z1,λ1),α ∈R chosen such that min(k̂+1α) > k, k as
in (4.11). By (4.34), ∥ω(t )−ω3∥Q is nonincreasing along the trajectoryω(t ) of (4.31) start-
ing atω0. Thus, by definition of ω-limit point, it holds that ∥ω1 −ω3∥Q = ∥ω2 −ω3∥Q , or
∥col(0N n ,α1N ,0N m ,0N m)∥Q = ∥col(0N n ,α1N ,λ1 −λ2, z2 − z1)∥Q . Equivalently, ω1 =ω2,
that is a contradiction. ■

4.9.4. PROOF OF THEOREM 4.2

The proof follows as for Theorem 4.1, by definingω := col(x , z ,λ), Ξ :=Ω×RN m ×RmN
≥0 ,

A(ω) :=
R⊤F (x)+ cLn x

0N m

Lmλ

, B(ω) :=
R⊤G(Rx)⊤λ

−Lmλ

−g (Rx)+ z

,

with Lyapunov function V (ω) = 1
2 (∥x − x̄∥2 +∥z − z̄∥2

Φ+∥λ− λ̄∥2), and by exploiting, in
place of Lemma 4.4, Lemma 3 in [109]. ■

4.9.5. PROOF OF LEMMA 4.5

By Assumptions 4.2 and 4.4, we have

(x −x ′)⊤(F̃ (x,σ)− F̃ (x ′,σ′)

= (x −x ′)⊤(F̃ (x,σ)− F̃ (x,Pn̄ψ(x))+ F̃ (x,Pn̄ψ(x))− F̃ (x ′,Pn̄ψ(x ′)))

≥µ∥x −x ′∥2 − θ̃σ∥x −x ′∥∥σ−1N ⊗ψ(x)∥.

Moreover, we note that (σ−1N ⊗ψ(x)) ∈ E⊥
n̄ , since Pn̄σ= Pn̄ψ(x), andσ′ ∈ E n̄ . Hence, by

(4.26), we have (σ−σ′)⊤Ln̄K ∗Ln̄(σ−σ′) ≥ k∗
λ2(L)2∥σ−Pn̄ψ(x)∥2, and the conclusion

follows readily. ■

1z : [0,∞) → Rn has an ω-limit point at z̄ if there exists a nonnegative diverging sequence {tk }k∈N such that
z
(
tk

)→ z̄
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4.9.6. PROOF OF THEOREM 4.3
The dynamics (4.15) can be recast in the form (4.31), with ω = col(x,ς,k , z ,λ), Ξ =Ω×
RN n̄ ×RN ×RN m ×RN m

≥0 ,

A(ω) =


F̃ (x,σ)+B⊤Ln̄K Ln̄σ

Ln̄K Ln̄σ

−D(ρ)⊤ (Γ⊗ In̄)ρ
0N m

Lmλ

, B(ω) =


G(x)⊤λ

0N n̄

0N

−Lmλ

−g (x)+ z

.

By proceeding as in the proof of Theorem 4.1, we note that the set S is invariant for the
dynamics, since, for allω ∈ S, ∂

∂ω (Pn̄ς)ω̇= 0N n̄ , ∂
∂ω (Pm z)ω̇= 0N m .

Analogously to the proof of Lemma 4.2, it can be shown that any equilibrium
point ω̄ := col

(
x̄, ς̄, k̄ , z̄ ,λ̄

) ∈ S of (4.15) is such that λ̄ = 1N ⊗λ∗, the pair (x̄,λ∗) sat-
isfies the KKT conditions in (4.4), and σ̄ := ψ(x̄) + ς̄ = 1N ⊗ψ(x̄). Moreover, for any
pair (x∗,λ∗) satisfying the KKT conditions in (4.4), there exists z̄ ∈ RmN such that
col(x∗,1N ⊗ψ(x∗)−ψ(x∗),k , z̄ ,1N ⊗λ∗) ∈ S is an equilibrium for (4.15), for any k ∈ RN .
The proof is omitted.

Let ω̄ = col
(
x̄, ς̄, k̄ , z̄ ,λ̄

) ∈ S be an equilibrium of (4.15) such that k∗ = min(k̄) > k, k
as in (4.17), and consider the quadratic Lyapunov function V = 1

2∥ω− ω̄∥2
Q , where Q =

diag(In , IN n̄ ,Γ−1,Pm +L+
m , IN m). Analogously to the proof of Theorem 4.2, it holds that

(ω− ω̄)⊤Q(B(ω)−B(ω̄)) ≥ 0, and that V̇ (ω) ≤ −(ω− ω̄)⊤Q (A(ω)−A(ω̄)), for all ω ∈ S.
Also we note that

(x − x̄)⊤B⊤Ln̄K Ln̄(σ− σ̄)+ (ς− ς̄)⊤Ln̄K Ln̄(σ− σ̄)

= (ς+B x +d − (ς̄+B x̄ +d))⊤Ln̄K Ln̄(σ− σ̄)

= (σ− σ̄)⊤Ln̄K Ln̄(σ− σ̄),

where d := col((di )i∈I )), and that (k − k̄)⊤Γ−1D(ρ)⊤(Γ⊗ In)ρ = (σ−σ̄)⊤Ln(K − K̄ )Ln(σ−
σ̄) as in the proof of Theorem 4.2. Hence, by Lemma 4.5, we obtain, for allω ∈ S

V̇ (ω) ≤−λmin(M2)(∥x − x̄∥2 +∥σ−1N ⊗ψ(x)∥2)

− 1
2λmax(L)∥Lmλ∥2,

with M2 ≻ 0 as in (4.17). Then, existence of a unique global solution for the system in
(4.15) and convergence to an equilibrium point follows as for Theorem 4.1. ■

4.9.7. PROOF OF THEOREM 4.4
Analogously to Lemma 4.5, it can be shown that for any c > c, for any (x,σ)
such that Pn̄σ = Pn̄ψ(x) and any (x ′,σ′) such that σ′ = Pn̄ψ(x ′), it holds that
(x −x ′)⊤(F̃ (x,σ)− F̃ (x ′,σ′)) + c(σ−σ′)⊤Ln̄(σ−σ′) ≥ δ∥col(x − x ′,σ− 1N ⊗ψ(x))∥2, for
some δ> 0. Then, the proof follows analogously to Theorem 4.3. ■

4.9.8. PROOF OF THEOREM 4.5
Under the coordinate transformations in (4.21), the dynamics in Algorithm 4.5 read as
(4.24), where the input ũi in Algorithm 4.5 has been chosen by design according to Al-
gorithm 4.2, under Assumption 4.5. Therefore, existence of a unique bounded solution
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and convergence of ζi to x∗
i (and of the variables ζi ,ki , zi ,λi ), for all i ∈ I , follows from

Theorem 4.1. On the other hand, we note that, for all i ∈ I and all k ∈Mi , Ei ,k is Hurwitz,
because it is in canonical controllable form and the coefficients of the last row are by de-
sign the coefficients of an Hurwitz polynomial. Therefore, Ei is also Hurwitz, and hence
the dynamics in (4.24b) are ISS with respect to the input ũi [79, Lemma 4.6]. In turn,
the input ũi is bounded, by boundedness of trajectories in Theorem 4.1, Assumption 4.1
and Lemma 4.3; moreover, by the convergence in Theorem 4.1, the KKT conditions in
(4.4) and by continuity, we have that ũi → 0ni for t → ∞. Hence, for all i ∈ I , vi → 0
asymptotically (this follows by definition of ISS, see [79, Ex. 4.58]). By the definition of
ζi , we also have xi → x∗

i , for all i ∈ I . ■
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5
NE SEEKING OVER TIME-VARYING

NETWORKS WITH LINEAR RATE

Competition is the best form of motivation.

Cordae

There are many situations that could be modelled as games, but where it doesn’t make a
lot of sense to do so.

Conor Muldon

We design a distributed algorithm for learning Nash equilibria over time-varying com-
munication networks. Our algorithm is based on projected pseudo-gradient dynamics,
augmented with consensual terms. Under strong monotonicity and Lipschitz continu-
ity of the game mapping, we provide a simple proof of linear convergence, based on a
contractivity property of the iterates. Compared to similar solutions proposed in liter-
ature, we also allow for time-varying communication and derive tighter bounds on the
step sizes that ensure convergence. In fact, in our numerical simulations, our algorithm
outperforms the existing gradient-based methods, when the step sizes are set to their
theoretical upper bounds. Finally, to relax the assumptions on the network structure,
we propose a different pseudo-gradient algorithm, which is guaranteed to converge on
time-varying balanced directed graphs.

Parts of this chapter have been published in [25].

79



5

80 5. NE SEEKING OVER TIME-VARYING NETWORKS WITH LINEAR RATE

5.1. INTRODUCTION

N ASH equilibrium problems arise in several network systems, where multiple selfish
decision-makers, or agents, aim at optimizing their individual, yet inter-dependent,

objective functions. Engineering applications include communication networks [57],
demand-side management in the smart grid [119], charging of electric vehicles [71] and
demand response in competitive markets [88]. From a game-theoretic perspective, the
challenge is to assign the agents behavioral rules that eventually ensure the attainment
of a NE, a joint action from which no agent has an incentive to unilaterally deviate.

Literature review: Typically, NE seeking algorithms are designed under the assump-
tion that each agent can access the decisions of all the competitors [151], [13], [126].
This full-decision information hypothesis requires the presence of a coordinator, that
broadcast the data to the network, and it is impractical for some applications [68], [30].
One example is the Nash-Cournot competition model described in [82], where the profit
of each of a group of firms depends not only on its own production, but also on the
whole amount of sales, a quantity not directly accessible by any of the firms. Therefore,
in recent years, there has been an increased attention for fully-distributed algorithms
that allow to compute NEs relying on local information only. In this dissertation, we
consider the so-called partial-decision information scenario, where the agents engage
in nonstrategic information exchange with some neighbors on a network; based on the
data received, they can estimate and eventually reconstruct the actions of all the com-
petitors. This setup has only been introduced very recently. In particular, most of the
results available resort to (projected) gradient and consensus dynamics, both in contin-
uous time [146], [63], and discrete time. For the discrete time case, fixed-step algorithms
were proposed in [120], [136], [109] (the latter for generalized games), all exploiting a
certain restricted monotonicity property. Alternatively, the authors of [135] developed a
gradient-play scheme by leveraging contractivity properties of doubly stochastic matri-
ces. Nevertheless, in all these approaches theoretical guarantees are provided only for
step sizes that are typically very small, affecting the speed of convergence. Furthermore,
all the methods cited are designed for a time-invariant, undirected network. To the best
of our knowledge, switching communication topologies have only been addressed with
diminishing step sizes. For instance, the early work [82] considered aggregative games
over time-varying jointly connected undirected graphs. This result was extended by the
authors of [10] to games with coupling constraints. In [123], an asynchronous gossip al-
gorithm was presented to seek a NE over directed graphs. The drawback is that vanishing
steps typically result in slow convergence.

Contribution: Motivated by the above, in this chapter we present the first fixed-step
NE seeking algorithms for strongly monotone games over time-varying communication
networks. Our novel contributions are summarized as follows:

• We propose a fully-distributed projected gradient-play method, that is guaranteed
to converge with linear rate when the network weight matrix is doubly stochastic.
With respect to [135], we consider a time-varying communication network and we
allow for constrained action sets. Moreover, differently from the state of the art,
we provide an upper bound on the step size that does not vanish as the number of
agents increases (§5.3);
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• We show via numerical simulations that, even in the case of fixed networks, our
algorithm outperforms the existing pseudo-gradient based dynamics, when the
step sizes are set to their theoretical upper bounds (§5.5);

• We prove that linear convergence to a NE on time varying weight-balanced di-
rected graphs can be achieved via a forward-backward algorithm [56, §12.7.2],
which has been studied in [109], [136], but only for the special case of fixed undi-
rected networks (§5.4).

To improve readability, the proofs are in the chapter appendix. We refer to Appen-
dices A, B, C for the basic notation and mathematical background.

5.2. MATHEMATICAL SETUP

W E consider a set of agents I := {1, . . . , N }, where each agent i ∈ I shall choose its
action (i.e., decision variable) xi from its local decision set Ωi ⊆ Rni . Let x =

col((xi )i∈I ) ∈Ω denote the stacked vector of all the agents’ decisions,Ω=Ω1×·· ·×ΩN ⊆
Rn the overall action space and n :=∑N

i=1 ni . The goal of each agent i ∈ I is to minimize
its objective function Ji (xi , x−i ), which depends on both the local variable xi and the de-
cision variables of the other agents x−i = col((x j ) j∈I\{i }). The game is then represented
by the inter-dependent optimization problems:

∀i ∈ I : min
yi∈Ωi

Ji (yi , x−i ). (5.1)

The technical problem we consider here is the computation of a NE, as defined next.

Definition 5.1. A Nash equilibrium is a set of strategies x∗ = col
(
(x∗

i )i∈N
) ∈Ω such that,

for all i ∈ I :
Ji

(
x∗

i , x∗
−i

)≤ inf{Ji
(
yi , x∗

−i

) | yi ∈Ωi }. □
The following regularity assumptions are common for NE problems, see, e.g., [109,

Ass. 1], [136, Ass. 1].

Standing Assumption 5.1 (Regularity and convexity). For each i ∈ I , the set Ωi is non-
empty, closed and convex; Ji is continuous and the function Ji (·, x−i ) is convex and con-
tinuously differentiable for every x−i . □

Under Standing Assumption 5.1, a joint action x∗ is a NE of the game in (5.1) if and
only if it solves the variational inequality VI(F,Ω) [56, Prop. 1.4.2], or, equivalently, if and
only if, for any α> 0 [56, Prop. 1.5.8],

x∗ = projΩ(x∗−αF (x∗)), (5.2)

where F is the pseudo-gradient mapping of the game:

F (x) := col
(
(∇xi Ji (xi , x−i ))i∈I

)
. (5.3)

Next, we postulate a sufficient condition for the existence of a unique NE, namely the
strong monotonicity of the pseudo-gradient [56, Th. 2.3.3]. This assumption is always
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used for (G)NE seeking under partial-decision information with fixed step sizes, e.g., in
[136, Ass. 2], [109, Ass. 3]. It implies strong convexity of the functions Ji (·, x−i ) for every
x−i , but not necessarily (strong) convexity of Ji in the full argument.

Standing Assumption 5.2. The pseudo-gradient mapping in (5.3) is µ-strongly mono-
tone and θ0-Lipschitz continuous, for some µ, θ0 > 0. □

In our setup, each agent i can only access its own cost function Ji and feasible setΩi .
Moreover, agent i does not have full knowledge of x−i , and only relies on the information
exchanged locally with neighbors over a time-varying directed communication network
Gk (I ,Ek ), depending on the time-step k. The ordered pair (i , j ) belongs to the set of
edges Ek if and only if agent i can receive information from agent j at time k. Let Wk ∈
RN×N denote the weight matrix of Gk , and wk

i , j := [Wk ]i , j , with wk
i , j > 0 if (i , j ) ∈ Ek ,

wk
i , j = 0 otherwise; Dk = diag((d k

i )i∈I ) and Lk = Dk −Wk the in-degree and Laplacian

matrices of Gk , with d k
i :=∑N

j=1 wk
i , j ; N k

i = { j | (i , j ) ∈ Ek } the set of in-neighbors of agent

i at time k.

Standing Assumption 5.3. For each k ∈N, the graph Gk is strongly connected. □
Assumption 5.1. For all k ∈N, the following hold:

(i) Self-loops: wk
i ,i > 0 for all i ∈ I ;

(ii) Double stochasticity: Wk 1N = 1N , 1⊤
N Wk = 1⊤

N . □
Remark 5.1. Assumption 5.1(i) is intended just to ease the notation. Instead, Assump-
tion 5.1(ii) is stronger. It is typically used for networked problems on undirected sym-
metric graphs, e.g., in [82, Ass. 6], [10, Ass. 3], [135, Ass. 3], justified by the fact that it can
be satisfied by assigning the following Metropolis weights to the communication:

w̃k
i , j =


wk

i , j /(max{d k
i ,d k

j }+1) if j ∈N k
i \{i };

0 if j ∉N k
i ;

1−∑
j∈N k

i \{i } w̃k
i , j if i = j .

In practice, to satisfy Assumption 5.1(ii) in case of symmetric communication, even un-
der time-varying topology, it suffices for the agents to exchange their in-degree with their
neighbors at every time step. Therefore, Standing Assumption 5.3 and Assumption 5.1
are easily fulfilled for undirected graphs connected at each step. For directed graphs,
given any strongly connected topology, weights can be assigned such that the resulting
weight matrix (with self-loops) is doubly stochastic, via an iterative distributed process
[69]. However, this can be impractical if the network is time-varying. □

Under Assumption 5.1, it holds thatσN−1(Wk ) < 1, for all k, whereσN−1(Wk ) denotes
the second largest singular value of Wk . Moreover, for any y ∈RN ,

∥Wk (y −1N ȳ)∥ ≤σN−1(Wk )∥y −1N ȳ∥, (5.4)

where ȳ = 1
N 1⊤

N y is the average of y . We will further assume that σN−1(Wk ) is bounded
away from 1; this automatically holds if the networksGk are chosen among a finite family.

Assumption 5.2. There exists σ̄ ∈ (0,1) such that σN−1(Wk ) ≤ σ̄, for all k ∈N. □



5.3. DISTRIBUTED NASH EQUILIBRIUM SEEKING

5

83

Algorithm 5.1. Combine-then-adapt pseudo-gradient method

Initialization: for all i ∈ I , set x0
i ∈Ωi , x0

i ,−i ∈Rn−ni .

Iterate until convergence: for all i ∈ I ,

• Distributed averaging:

x̂k
i =∑N

j=1 wk
i , j xk

j

• Local variables update:

xk+1
i = projΩi

(x̂k
i ,i −α∇xi Ji (x̂k

i ))

xk+1
i ,−i = x̂k

i ,−i .

5.3. DISTRIBUTED NASH EQUILIBRIUM SEEKING

I N this section, we present a pseudo-gradient algorithm to seek a NE of the game (5.1)
in a fully-distributed way. To cope with partial-decision information, each agent keeps

an estimate of all other agents’ actions. Let x i = col((x i , j ) j∈I ) ∈RN n , where x i ,i := xi and
x i , j is agent i ’s estimate of agent j ’s action, for all j ̸= i ; also, x j ,−i = col((x j ,l )l∈I\{i }). The
agents aim at asymptotically reconstructing the true value of the opponents’ actions,
based on the data received by their neighbors. The procedure is summarized in Algo-
rithm 5.1. Each agent updates its estimates according to consensus dynamics, then its
action via a gradient step. We remark that each agent computes the partial gradient of
its cost in its local estimates x i , not on the actual joint action x.

To write the algorithm in compact form, let x = col((x i )i∈I ); as in [109, Eq. 13-14], let,
for all i ∈ I ,

Ri :=[
0ni×n<i Ini 0ni×n>i

] ∈Rni×n , (5.5)

where n<i := ∑i−1
j=1 n j , n>i := ∑

j>i , j∈I n j ; let also R := diag
(
(Ri )i∈I

) ∈ Rn×N n . In simple
terms, Ri selects the i -th ni dimensional component from an n-dimensional vector.
Thus, Ri x i = x i ,i = xi , and x =Rx . We define the extended pseudo-gradient mapping F
as

F (x) := col
(
(∇xi Ji

(
xi , x i ,−i

)
)i∈I

)
. (5.6)

Therefore, Algorithm 5.1 reads in compact form as:

xk+1 = projΩ(Wk xk −αR⊤F (Wk xk )), (5.7)

whereΩ := {x ∈RN n |Rx ∈Ω} and Wk :=Wk ⊗ In .

Lemma 5.1 ([23, Lemma 3]). The mapping F in (5.6) is θ-Lipschitz continuous, for some
µ≤ θ ≤ θ0. □
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Theorem 5.1. Let Assumptions 5.1-5.2 hold and let

Mα =
 1− 2αµ

N + α2θ2
0

N

(
α(θ+θ0)+α2θ0θp

N

)
σ̄(

α(θ+θ0)+α2θ0θp
N

)
σ̄

(
1+2αθ+α2θ2

)
σ̄2

 . (5.8)

If the step size α> 0 is chosen such that

ρα := λmax(Mα) = ∥Mα∥ < 1, (5.9)

then, for any initial condition, the sequence (xk )k∈N generated by Algorithm 5.1 con-
verges to x∗ = 1N ⊗ x∗, where x∗ is the NE of the game in (5.1), with linear rate: for all
k ∈N,

∥xk −x∗∥ ≤ (p
ρα

) k ∥x0 −x∗∥. □

Lemma 5.2. The condition in (5.9) holds if α> 0 and

α< σ̄
3θ0

, (5.10a)

α< 2µ
θ2

0
, (5.10b)

0 < 2µ(1− σ̄2)−α(σ̄2(2θ0θ+θ2 +4µθ+2θ2
0)−θ2

0)

−α2(θ0θ
2 +µθ2 +2θ2

0θ)2σ̄2 −α32θ2
0θ

2σ̄2. (5.10c)

□

Proof. The condition in (5.10a) implies that Mα ≻ 0 (by diagonal dominance and
positivity of the diagonal elements, as can be checked by recalling that θ ≤ θ0,µ≤ θ0, N ≥
2, σ̄ < 1). The inequalities in (5.10b)-(5.10c) are the Sylvester’s criterion for the matrix
I2 − Mα: they impose that [I2 − Mα]1,1 > 0 (5.10b) and det(I2 − Mα) > 0 (5.10c), hence
I2 −Mα ≻ 0. Altogether, this implies ∥Mα∥ < 1. ■

Remark 5.2. The conditions in (5.10) always hold for α small enough, since, in the
monomial inequality (5.10c), the constant term is 2µ(1− σ̄2) > 0. While explicit solu-
tions are known for cubic equations, we prefer the compact representation in (5.10c).
The bounds in (5.10) are not tight, and in practice better bounds on the step size α are
obtained by simply checking the Euclidean norm of the 2× 2 matrix Mα in (5.8). In-
stead, the key observation is that the conditions in (5.10) do not depend on the number
of agents: given the parameters σ̄, µ, θ0 and θ, a constant α that ensures convergence
can be chosen independently of N . On the contrary, the rate

p
ρα does depend on N

and, in fact, it approaches 1 as N grows unbounded (analogously to the results in [120],
[136], [135]). □

Remark 5.3. Compared to [135, Alg. (7)] (or [136, Alg. 1]), in Algorithm 5.1 the agents
first exchange information with their neighbors, and then evaluate their gradient term.
Moreover, differently from [135, Th. 1], Theorem 1 provides a contractivity property for
the iterates in (5.7) that holds at each step. This has beneficial consequences in terms of
robustness, see Remark 5.6. □
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5.3.1. TECHNICAL DISCUSSION
In Algorithm 5.1, the partial gradients ∇xi Ji are evaluated on the local estimates x i ,−i , not
on the actual strategies x−i . Only if the estimates of all the agents coincide with the ac-
tual value, i.e., x = 1N⊗x, we have that F (x) = F (x). As a consequence, the mappingR⊤F
is not necessarily monotone, not even under strong monotonicity of the game mapping.
Indeed, the loss of monotonicity is the main technical difficulty arising from the partial-
decision information setup. Some works [63], [120], [136], [109], [23] deal with this issue
by leveraging a restricted strong monotonicity property, which can be ensured, by op-
portunely choosing the parameterγ, for the augmented mapping Fa(x) := γR⊤F (x)+Lx ,
where L = L ⊗ In and L is the Laplacian of a fixed undirected connected network. Since
the unique solution of the VI(Fa,Ω) is x∗ = 1N ⊗x∗, with x∗ the unique NE of the game in
(5.1) [136, Prop. 1], one can design NE seeking algorithms via standard solution meth-
ods for variational inequalities (or the corresponding monotone inclusions, [109]). For
instance, in [136], a FB algorithm [56, p. 12.4.2] is proposed to solve VI(Fa,Ω), resulting
in the algorithm

xk+1 = projΩ
(
xk −τ(Fa(x))

)
. (5.11)

We also recover this iteration when considering [109, Alg. 1] in the absence of coupling
constraints. However, exploiting the monotonicity of Fa results in conservative upper
bounds on the parameters τ and γ, and hence in slow convergence (see §5.4-5.5). More
recently, the authors of [135] studied the convergence of (5.11) based on contractivity
of the iterates, in the case of a fixed undirected network with doubly stochastic weight
matrix W , unconstrained action sets (i.e., Ω = Rn), and by fixing τ = 1, which results in
the algorithm:

xk+1 = (W ⊗ IN )x −αR⊤F (xk ). (5.12)

Nonetheless, the upper bound on α provided in [135, Th. 1] is decreasing to zero when
the number of agents N grows unbounded (in contrast with that in Theorem 5.1, see
Lemma 5.2).

5.4. BALANCED DIRECTED GRAPHS

I N this section, we relax the double stochasticity condition in Assumption 5.1 to the
following.

Assumption 5.3. For all k ∈N, the communication graph Gk is weight balanced:
(1⊤

N Wk )⊤ =Wk 1N . □
For weight-balanced digraphs, in-degree and out-degree of each node coincide.

Therefore, the matrix L̃k := (Lk +L⊤
k )/2 = Dk −(Wk +W ⊤

k )/2 is itself the symmetric Lapla-
cian of an undirected graph. Besides, such a graph is connected by Standing Assump-
tion 5.3; hence L̃k has a simple eigenvalue in 0, and the others are positive, i.e., λ2(L̃k ) > 0.

Assumption 5.4. There exist σ̃, λ̄> 0 such that σmax(Lk ) ≤ σ̃ and λ2(L̃k ) ≥ λ̄, for all k ∈N.
□

Remark 5.4. Assumptions 5.2 and 5.4 always hold if the networks are chosen among a
finite family. Yet, σ̄, σ̃ and λ̄ are global parameters, that could be difficult to compute in a
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Algorithm 5.2. Forward-backward for fully-distributed NE seeking

Initialization: for all i ∈ I , set x0
i ∈Ωi , x0

i ,−i ∈Rn−ni .

Iterate until convergence: for all i ∈ I ,

x̂k
i =∑N

j=1 wk
i , j (xk

i −xk
j )

xk+1
i = projΩi

(
xk

i −τ(γ∇xi Ji (xk
i )+ x̂k

i ,i )
)

xk+1
i ,−i = xk

i ,−i −τx̂k
i ,−i .

distributed way; upper/lower bounds might be available for special classes of networks,
e.g., unweighted graphs. □
To seek a NE over switching balanced digraphs, we propose the iteration in Algo-
rithm 5.2. In compact form, it reads as

xk+1 = projΩ
(
xk −τ(γR⊤F (xk )+Lk xk )

)
, (5.13)

where Lk = Lk ⊗ In . Clearly, (5.13) is the same scheme of (5.11), just adapted to take the
switching topology into account. In fact, the proof of convergence of Algorithm 5.2 is
based on a restricted strong monotonicity property of the operator

F k
a (x) := γR⊤F (x)+Lk x , (5.14)

that still holds for balanced directed graphs, as we show next.

Theorem 5.2. Let Assumptions 5.3-5.4 hold, and let

M := γ
[ µ

N − θ0+θ
2
p

N

− θ0+θ
2
p

N
λ̄

γ −θ

]
,

µ̄ := λmin(M),

γmax := 4µλ̄
(θ0+θ)2+4µθ

,

θ̄ := θ+ σ̃
τmax := 2µ̄/θ̄2,

ργ,τ := 1−2τµ̄+τ2θ̄2.

(5.15)

If γ ∈ (0,γmax), then M ≻ 0 and, for any τ ∈ (0,τmax), for any initial condition, the se-
quence (xk )k∈N generated by Algorithm 5.2 converges to x∗ = 1N ⊗ x∗, where x∗ is the
unique NE of the game in (5.1), with linear rate: for all k ∈N,

∥xk −x∗∥ ≤ (√
ργ,τ

) k ∥x0 −x∗∥. □

Remark 5.5. Differently from the boundαmax in (5.8), τmax in (5.15) vanishes as N grows
(fixed the other parameters), as µ̄ decreases to 0 (by continuity of the eigenvalues). □
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Figure 5.1: Distance from the NE with step sizes that guarantee convergence, for different pseudo-gradient
NE seeking methods: our method (Algorithm 5.1), the FB method (Algorithm 5.2), the accelerated gradient
method in [136, Alg. 2], the ADMM-based method in [120, Alg. 1].

Remark 5.6. Based on Theorems 5.1, 5.2, it can be proven that the discrete-time systems
(5.7), (5.13) are ISS with respect to additive disturbances, with ISS-Lyapunov function
∥x − x∗∥2. By Lipschitz continuity of the updates, this implies ISS for noise both on the
communication and in the evaluation of the partial gradients. □

5.5. NUMERICAL EXAMPLE: A NASH-COURNOT GAME

W E consider the Nash-Cournot game in [109, §6]. N firms produce a commodity that
is sold to m markets. Each firm i ∈ I = {1, . . . , N } can only participate in ni ≤ m of

the markets; its action xi ∈ Rni is the vector of quantities of product to be sent to these
ni markets, bounded by the local constraints 0ni ≤ xi ≤ Xi . Let Ai ∈ Rm×ni be the ma-
trix that specifies which markets firm i participates in. Specifically, [Ai ]k, j = 1 if [xi ] j is
the amount of product sent to the k-th market by agent i , [Ai ]k, j = 0 otherwise, for all
k = 1, . . . ,m, j = 1, . . . ,ni . Let A := [A1 . . . AN ]; then Ax =∑N

i=1 Ai xi ∈Rm are the quantities
of total product delivered to each market. Firm i aims at maximizing its profit, i.e., min-
imizing the cost function Ji (xi , x−i ) = ci (xi )−p(Ax)⊤Ai xi . Here, ci (xi ) = x⊤

i Qi xi +q⊤
i xi

is firm i ’s production cost, with Qi ∈ Rni×ni , Qi ≻ 0, qi ∈ Rni . Instead, p : Rm → Rm

associates to each market a price that depends on the amount of product delivered to
that market. Specifically, the price for the market k, for k = 1, . . . ,m, is [p(Ax)]k = P̄k

-χk [Ax]k , where P̄k , χk > 0. We set N = 20, m = 7. The market structure is as in [109,
Fig. 1], that defines which firms are allowed to participate in which markets. Therefore,
x ∈Rn , with n = 32. We select randomly with uniform distribution rk in [1,2], Qi diagonal
with diagonal elements in [14,16], qi in [1,2], P̄k in [10,20], χk in [1,3], Xi in [5,10], for all
i ∈ I , k = 1, . . . ,m. The resulting setup satisfies Standing Assumptions 5.1-5.2 [109, §VI].
The firms cannot access the production of all the competitors, but can communicate
with some neighbors on a network.

We first consider the case of a fixed, undirected graph, under Assumption 5.1. Algo-
rithm 5.2 in this case reduces to [136, Alg. 1]. We compare Algorithms 5.1-5.2 with the in-
exact ADMM in [120] and the accelerated gradient method in [136], for the step sizes that
ensure convergence. Specifically, we set α as in Theorem 5.1 for Algorithm 5.1. The con-
vergence of all the other Algorithms is based on the monotonicity of Fa in (5.14); hence
we set γ as in Theorem 5.2. Instead of using the conservative bounds in (5.15) for the
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Figure 5.2: Distance from the NE for our method (Algorithm 5.1), with step size α= 2∗10−3 (upper bound in
Theorem 5.1), and the gradient play method in [135, Alg. 1], with step size α= 4∗10−6 (upper bound in [135,
Th. 1]). Algorithm 5.1 converges much faster, thanks to the larger step size. The scheme in [135, Alg. 1] still
converges if we set α= 2∗10−3 (dashed line, not supported theoretically).
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Figure 5.3: Comparison of our method (Algorithm 5.1) and the FB method (Algorithm 5.2), on a time-varying
graph, for 20, 50 or 100 agents, with the step sizes set to their theoretical upper bounds.

parameters, µ̄ and θ̄, we obtain a better result by computing the values numerically. Fa

is (non-restricted) strongly monotone for our parameters, hence also the convergence
result for [136, Alg. 2 ] holds. Figure 5.1 shows that Algorithm 5.1 outperforms all the
other methods (we also note that the accelerated gradient in [136, Alg. 2] requires two
projections and two communications per iterations). As a numerical example, we also
compare Algorithm 5.1 with the scheme in (5.12) by removing the local constraints, in
Figure 5.2.

For the case of doubly stochastic time-varying networks, we randomly generate 5
connected graphs and for each iteration we pick one with uniform distribution. In Fig-
ure 5.3, we compare the performance of Algorithms 5.1-5.2, for step sizes set to their
upper bounds as in Theorems 5.1-5.2. Since the theoretical convergence rate in Theo-
rems 5.1-5.2 worsens as the number of agents grows, to show how the performance is
affected in practice, we repeat the experiment for different values of N and random mar-
ket structures (Figure 5.3).

Finally, in Figure 5.4, we test Algorithm 5.2 with communication topology chosen at
each step with uniform distribution between two unweighted balanced directed graphs:
the directed ring, where each agent i can send information to the agent i +1 (with the
convention N+1 ≡ 1), and a graph where agent i is also allowed to transmit to agent i+2,
for all i ∈ I .
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Figure 5.4: Distance from the NE for the FB method in Algorithm 5.2, on a time-varying digraph. Since the
networks are sparse, Theorem 5.2 ensures convergence only for small step sizes (γ = 5∗ 10−4, τ = 3∗ 10−4),
and convergence is slow (solid line). However, the bounds are conservative: the iteration still converges with τ
1000 times larger than the theoretical value (dashed line).

5.6. CONCLUSION

N ASH equilibrium problems on time-varying graphs can be solved with linear rate
via fixed-step pseudo-gradient algorithms, if the network is connected at every iter-

ation and the game mapping is Lipschitz continuous and strongly monotone. Our algo-
rithm proved much faster than the existing gradient-based methods, when the step sizes
satisfy their theoretical upper bounds. The extension to games with coupling constraints
is left as future research. It would be also valuable to relax our uniform connectedness
assumption, i.e., allowing for jointly strongly connected directed graphs.

5.7. APPENDIX

5.7.1. PROOF OF THEOREM 5.1

We define the estimate consensus subspace E := {y ∈ RN n | y = 1N ⊗ y, y ∈ Rn} and its
orthogonal complement E⊥ = {y ∈ RN n | (1N ⊗ In)⊤y = 0n}. Thus, any vector x ∈ RN n

can be written as x = x∥+ x⊥, where x∥ = projE (x) = 1
N (1N 1⊤

N ⊗ In)x , x⊥ = projE⊥ (x), and

x⊤
∥ x⊥ = 0. Also, we use the shorthand notation F x and F x in place of F (x) and F (x). We

recast the iteration in (5.7) as

xk+1 = projΩ(x̂k −αR⊤F x̂k ), x̂k =Wk xk . (5.16)

Let x∗ be the unique NE of the game in (5.1), and x∗ = 1N ⊗ x∗. We recall that x∗ =
projΩ(x∗−αF x∗) by (5.2), and then x∗ = projΩ(x∗−αR⊤F x∗). Moreover, Wk x∗ = (Wk ⊗
In)(1N ⊗ x∗) = 1N ⊗ x∗ = x∗; hence x∗ is a fixed point for (5.16). Let xk = x ∈ RN n and
x̂ =Wk x = x̂∥+ x̂⊥ = 1N ⊗ x̂∥+ x̂⊥ ∈RN n . Thus, it holds that

∥xk+1 −x∗∥2

= ∥projΩ(x̂ −αR⊤F x̂)−projΩ(x∗−αR⊤F x∗)∥2

≤ ∥(x̂ −αR⊤F x̂)− (x∗−αR⊤F x∗)∥2

= ∥x̂∥+ x̂⊥−x∗+αR⊤(−F x̂ +F x∗+F x̂∥−F x̂∥)∥2
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= ∥x̂∥−x∗∥2 +∥x̂⊥∥2

+α2∥R⊤(F x̂ −F x̂∥+F x̂∥−F x∗)∥2

−2α(x̂∥−x∗)⊤R⊤(F x̂ −F x̂∥)

−2α(x̂∥−x∗)⊤R⊤(F x̂∥−F x∗)

−2αx̂⊤
⊥R⊤(F x̂ −F x̂∥)

−2αx̂⊤
⊥R⊤(F x̂∥−F x∗)

(5.17)

≤ ∥x̂∥−x∗∥2 +∥x̂⊥∥2 +α2(θ2∥x̂⊥∥2 + θ2
0

N ∥x̂∥−x∗∥2

+ 2θ0θp
N
∥x̂∥−x∗∥∥x̂⊥∥)+ 2αθp

N
∥x̂∥−x∗∥∥x̂⊥∥

− 2αµ
N ∥x̂∥−x∗∥2 +2αθ∥x̂⊥∥2 + 2αθ0p

N
∥x̂⊥∥∥x̂∥−x∗∥,

where the first inequality follows by nonexpansiveness of the projection ([8, Prop. 4.16]),
and to bound the addends in (5.17) we used, in the order:

• 3rd term: ∥R∥ = 1, Lipschitz continuity of F , and ∥F x̂∥−F x∗∥ = ∥F x̂∥−F x∗∥ ≤ θ0∥x̂∥−
x∗∥ = θ0p

N
∥x̂∥−x∗∥;

• 4th term: ∥R(1⊗ (x̂∥−x∗))∥ = ∥x̂∥−x∗∥ = 1p
N
∥x̂∥−x∗∥;

• 5th term: (x̂∥−x∗)⊤R⊤(F x̂∥−F x∗) = (x̂∥−x∗)⊤(F x̂∥−F x∗) ≥µ∥x̂∥−x∗∥2 = 1
N ∥x̂∥−x∗∥2;

• 6th term: Lipschitz continuity of F ;
• 7th term: ∥F x̂∥−F x∗∥ ≤ θ0p

N
∥x̂∥−x∗∥ as above.

Besides, for every x = x∥+ x⊥ ∈ RN n and for all k ∈N, it holds that x̂ = Wk x = x∥+Wk x⊥,
where Wk x⊥ ∈ E⊥, by doubly stochasticity of Wk , and ∥x̂⊥∥ = ∥Wk x⊥∥ ≤ σ̄∥x⊥∥ by (5.4)
and properties of the Kronecker product. Therefore we can finally write, for all k ∈N, for
all xk ∈RN n ,

∥xk+1 −x∗∥2 ≤
[∥xk

∥ −x∗∥
∥xk

⊥∥
]⊤

Mα

[∥xk
∥ −x∗∥
∥xk

⊥∥
]

≤ λmax(Mα)(∥xk
∥ −x∗∥2 +∥xk

⊥∥2)

= λmax(Mα)∥xk −x∗∥2. ■

5.7.2. PROOF OF THEOREM 5.2

Let x∗ be the unique NE of the game in (5.1), and x∗ = 1N ⊗ x∗. We recall that the
null space null(Lk ) = E = {y ∈ RN n | y = 1N ⊗ y, y ∈ Rn} by Standing Assumption 5.3.
Therefore, Lk x∗ = 0N and x∗ is a fixed point of the iteration in (5.13) by (5.2). With F k

a
as in (5.14), for all k ∈N, for any x ∈ RN n , it holds that (x − x∗)⊤(F k

a x − F k
a x∗) = (x −

x∗)⊤γR⊤(F x−F x∗)+(x−x∗)⊤Lk (x−x∗) = (x−x∗)⊤γR⊤(F x−F x∗)+(x−x∗)⊤L̃k (x−x∗),
where L̃k = (Lk+L⊤

k )/2 = (Lk+L⊤
k )⊗In/2 = L̃k⊗In , and L̃k is the Laplacian of a connected

graph (see §5.4) and λ2(L̃k ) > λ̄ by Assumption 5.4. Therefore we can apply [109, Lemma
3] to conclude that (x−x∗)⊤(F k

a x−F k
a x∗) ≥ µ̄∥x−x∗∥2, with µ̄> 0 as in (5.15). Also, F k

a is
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Lipschitz continuous with constant θ̄ = θ+σ̃, σ̃ as in Assumption 5.4. Therefore we have

∥xk+1 −x∗∥2

= ∥projΩ(xk −τF k
a (xk ))−projΩ

(
x∗−τF k

a x∗)∥2

≤ ∥(xk −τF k
a xk )− (x∗−τF k

a x∗)∥2

= ∥xk −x∗∥2 −2τ(xk −x∗)⊤(F k
a xk −F k

a x∗)+τ2∥F k
a xk −F k

a x∗∥2

≤ (1−2τµ̄+τ2(θ+ σ̃)2)∥xk −x∗∥2 = ργ,τ∥xk −x∗∥2,

where in the first inequality we used [8, Prop. 4.16], and ργ,τ ∈ (0,1) if τ is chosen as in
Theorem 5.2. ■





6
NE SEEKING OVER DIRECTED

GRAPHS

Oh yes, the past can hurt. But you can either run from it, or learn from it.

Rafiki (The Lion King, movie 1994)

Learning is rooted in repetition and convexity, meaning that the reading of a single text
twice is more profitable than reading two different things once.

Nassim Nicholas Taleb

We consider the Nash equilibrium problem in a partial-decision information scenario.
While the existing methods assume undirected or balanced communication, in this
chapter we allow for non-balanced, directed graphs. We propose a fully-distributed
pseudo-gradient scheme, which is guaranteed to converge with linear rate to a Nash
equilibrium, under strong monotonicity and Lipschitz continuity of the game mapping.
Our algorithm requires global knowledge of the communication structure, namely of the
Perron-Frobenius eigenvector of the weight matrix and of a certain constant related to
the graph connectivity. Therefore, we adapt the procedure to setups where the network
is not known in advance, by computing the eigenvector online and by means of vanish-
ing step sizes.

Parts of this chapter have been published in [27].
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6.1. INTRODUCTION

G AME theory is a powerful tool to model and control the decision-making process
of selfish agents, that aim at optimizing their individual, but inter-dependent, ob-

jective functions. This scenario arises in several relevant engineering applications, such
as congestion control in traffic networks [6], smart-grid management [119], demand re-
sponse in competitive markets [88] and analysis of social dynamics [68]. Often, the goal
(either of the agents or of a coordinator that pursues network regulation by imposing
incentives or behavioral rules) is the attainment of a NE, a joint strategy from which it is
not convenient for any agent to unilaterally deviate.

In fact, a recent part of the literature focuses on designing distributed NE seeking
algorithms, where the computational effort is partitioned among the agents [11], [46],
[126]. Nonetheless, typically these methods still assume the presence of a central coor-
dinator that can broadcast some data – for instance, the average of all the agents’ strate-
gies, in the case of aggregative games [12]. Unfortunately, this requirement is imprac-
tical in some domains [133]. To overcome this limitation, we consider fully-distributed
schemes, where the agents only rely on the information locally exchanged over a net-
work, via peer-to-peer communication. In particular, the main challenge is that the cost
function of each agent may depend on the strategies of some other non-neighboring
agents. One example is the Cournot competition model described in [82], where the
profit of each of a group of firms depends not only on its own production, but also on
the total supply, a quantity not directly accessible by any of the firms. To remedy the lack
of knowledge, each agent can estimate and eventually reconstruct the strategies of all the
competitors (or an aggregation value), based on the data received from its neighbors.

Such a partial-decision information setup has only been introduced very recently.
Most of the available results resort to (projected) pseudo-gradient and consensus dy-
namics [10], [47], [83], [109], [137], [146]. Alternatively, schemes based on a proximal-
point iteration were studied in [22]; a fully-distributed fictitious play algorithm was pro-
posed in [133]. These approaches assume undirected communication, which might be
unrealistic, e.g., in wireless systems, if the agents send signals at different power lev-
els, implying unilateral transmission capability. Fewer works deal with asymmetric net-
works. Under the assumption of balanced weights, continuous-time dynamics were pro-
posed in [50] for aggregative games; most recently, we also addressed generally-coupled-
cost games via a fixed-step forward-backward method [25]. To the best of our knowl-
edge, the only discrete-time NE seeking algorithm that takes into account non-balanced
digraphs is the asynchronous gossip-based scheme in [123].

Even in the context of distributed optimization, most algorithms are designed with
doubly stochastic weight matrices, which enjoy several convenient properties, not least
that the average of the agents’ estimates is preserved over time. However, doubly
stochastic weights cannot be easily assigned over directed networks. An alternative is
to rely on column stochastic graphs, which maintain the average invariance and only
require the agents to know their out-degree. Yet, this is impractical in setups where the
agents broadcast some information, but ignoring which of the other nodes can receive
it; or if some of the communication links can fail. In contrast, distributed design of row
stochastic matrices is straightforward, as it suffices for each agent to locally assign appro-
priate weights to the incoming information. However, the use of row stochastic graphs
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comes with technical challenges, since many properties of doubly stochastic matrices
are lost. Of major interest for this chapter is the approach in [143]: to correct the imbal-
ance caused by employing row stochastic weights, the algorithm exploits the informa-
tion contained in the Perron-Frobenius (PF) eigenvector of the weight matrix, which is
computed online.

Contribution: Motivated by the above, we design the first synchronous, fully-
distributed algorithm to compute a NE over directed non-balanced communication net-
works. Our contributions are summarized as follows:

• We prove that any row stochastic primitive matrix with positive diagonal enjoys a
contractivity property, in a Hilbert space weighted by its PF eigenvector. We later
exploit this general result to prove convergence of our equilibrium seeking dynam-
ics (§6.2);

• We design a fully-distributed, fixed-step gradient algorithm to seek a NE over
strongly connected directed graphs, which is guaranteed to converge with liner
rate under strong monotonicity of the game mapping. In our method, the pseudo-
gradient component is divided by the entries of the PF eigenvector of the net-
work. Although this technique has already been adopted in distributed optimiza-
tion [143], we give a new, powerful, monotone-operator-theoretic interpretation,
which greatly simplifies our analysis (§6.3.1);

• We show that convergence is retained even if the graph is not known in advance
and the PF eigenvector is computed online, provided that a small-enough step size
is chosen. Since computing the upper bound distributedly can be troublesome, we
also provided convergence guarantees for vanishing steps (§6.3.2).

To improve readability, the proofs are in the chapter appendix. We refer to Appendices
A, B, C for the basic notation and mathematical background.

6.2. MATHEMATICAL SETUP

6.2.1. THE GAME

W E consider a set of agents, I := {1, . . . , N }, where each agent i ∈ I shall choose its
decision variable (i.e., strategy) xi from its local decision set Ωi ⊆ Rni . Let x :=

col((xi )i∈I ) ∈ Ω denote the stacked vector of all the agents’ decisions, with Ω := Ω1 ×
·· · ×ΩN ⊆ Rn the overall action space and n := ∑

i∈I ni . The goal of agent i ∈ I is to
minimize its objective function Ji (xi , x−i ), which depends both on the local variable xi

and on the decision variables of the other agents x−i := col((x j ) j∈I\{i }). The game is then
represented by the inter-dependent optimization problems

∀i ∈ I : min
yi∈Ωi

Ji (yi , x−i ). (6.1)

The technical problem we consider here is the distributed computation of a NE, as for-
malized next.

Definition 6.1. A collective strategy x∗ = col
(
(x∗

i

)
i∈I ) is a Nash equilibrium if, for all

i ∈ I ,
Ji

(
x∗

i , x∗
−i

)≤ inf{Ji
(
yi , x∗

−i

) | (yi , x∗
−i ) ∈Ω}. □
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Next, we postulate common regularity assumptions for the constraint sets and cost
functions [109, Ass. 1], [137, Ass. 1].

Standing Assumption 6.1. For each i ∈ I , the set Ωi is non-empty, closed and convex;
Ji is continuous and Ji (·, x−i ) is convex and continuously differentiable for every x−i . □

Under Standing Assumption 6.1, a collective strategy x∗ is a NE of the game in (6.1)
if and only if it is a solution of the variational inequality VI(F,Ω)1 [56, Prop. 1.4.2], where
F is the pseudo-gradient mapping of the game:

F (x) := col
(
(∇xi Ji (xi , x−i ))i∈I

)
. (6.2)

Equivalently, x∗ is a NE if and only if

∀i ∈ I : x∗
i = projΩi

(x∗
i −βi∇xi Ji (x∗

i , x∗
−i )), (6.3)

for arbitrary positive scalars βi ’s [56, Prop. 1.5.8]. A sufficient condition for the existence
and uniqueness of a NE is the strong monotonicity of the pseudo-gradient [56, Th. 2.3.3],
as postulated next. This assumption has always been used for NE seeking under partial-
decision information with fixed step sizes, e.g., [109, Ass. 2], [47, Ass. 4], [137, Ass. 2].

Standing Assumption 6.2. The pseudo-gradient mapping F in (6.2) is µ-strongly mono-
tone and θ0-Lipschitz continuous, for some µ, θ0 > 0. □

6.2.2. NETWORK COMMUNICATION
The agents can exchange information with some neighbors over a directed communica-
tion network G(I ,E). The ordered pair (i , j ) belongs to the set of edges, E , if and only if
agent i can receive information from agent j . We denote W ∈RN×N the weight matrix of
G and wi , j := [W ]i , j , with wi , j > 0 if (i , j ) ∈ E , wi , j = 0 otherwise; di := deg(i ) =∑N

j=1 wi , j

and Ni = { j | (i , j ) ∈ Ek } the in-degree and the set of in-neighbors of agent i , respectively.

Standing Assumption 6.3. The communication graph G is strongly connected. □
Standing Assumption 6.4. The weight matrix W satisfies the following conditions:

(i) Self-loops: wi ,i > 0 for all i ∈ I ;

(ii) Row stochasticity: Wk 1N = 1N . □
Remark 6.1. Standing Assumption 6.4 can be fulfilled on any digraph, if the agents can
access their own in-degree, by locally assigning weights to the received information. □

Under Standing Assumptions 6.3-6.4, by the PF theorem, W has a simple eigenvalue
in 1; all the other (complex) eigenvalues of W have absolute value strictly smaller than 1.
Besides, there exist a vector q = col((qi )i∈I ) such that

q ∈RN
>0, q⊤W = q⊤, 1⊤

N q = 1. (6.4)

1We recall that, given a set S ⊆ Rm and a mapping ψ : S → Rm , the VI(ψ,S) is the problem of finding ω∗ ∈ S
such that 〈ψ(ω∗),ω−ω∗〉 ≥ 0, for all ω ∈ S.
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We call q the (left) Perron-Frobenius eigenvector of W . Let

Q := diag((qi )i∈I ). (6.5)

Clearly, Q ≻ 0. Unless W is doubly stochastic, W is not nonexpansive in HI , i.e.,
σmax(W ) > 1. This is one of the main technical challenges to face when studying fixed-
point iterations over directed graphs [123]. To deal with this complication, it was shown
in [36, Lemma 1] that W is nonexpansive (averaged, indeed) in HQ . Next, we provide an
additional contractivity result, which we exploit later on.

Lemma 6.1. For any y ∈ RN , ∥W (y − 1N q⊤y)∥Q ≤ σ̄∥y − 1N q⊤y∥Q , where σ̄ :=
σN−1(Q

1
2 W Q− 1

2 ) < 1. □

If W is also column stochastic, Lemma 6.1 holds with q = 1
N 1N and Q = 1

N IN , and we
recover a well-known property of doubly stochastic matrices [25, Eq. 4].

Remark 6.2. [143, Lemma 1] states that there exist a norm and σ̄> 0 such that the prop-
erty in Lemma 6.1 holds; instead, we explicitly characterized both the norm and σ̄, which
proves very advantageous in our analysis (particularly so because the matrix Q is diago-
nal), see §6.3. □

6.2.3. PARTIAL-DECISION INFORMATION SCENARIO
In our setup, agent i ∈ I can only access its own feasible set Ωi and an analytic expres-
sion of its own cost function Ji . However, the agents cannot evaluate the actual value of
the cost Ji (xi , x−i ) (or the partial derivative ∇xi Ji (xi , x−i )), since they cannot access the
strategies of all the competitors x−i . Instead, the agents only rely on the information ex-
changed locally with their neighbors over the communication graph G. To cope with the
lack of knowledge, the general assumption for this partial-decision information scenario
is that each agent keeps an estimate of all other agents’ actions [109], [82], [47]. Then,
the agents aim at reconstructing the actual values, based on the data received from their
neighbors. We denote x i = col((x i , j ) j∈I ) ∈ Rn , where x i ,i := xi and x i , j is agent i ’s esti-
mate of agent j ’s action, for all j ̸= i ; x j ,−i = col((x j ,l )l∈I\{i }); x = col((x i )i∈I ). As in [109,
Eq.13-14], we define

Ri :=[
0ni×n<i Ini 0ni×n>i

]
, (6.6)

where n<i := ∑
j<i , j∈I n j , n>i := ∑

j>i , j∈I n j . In simple terms, Ri selects the i -th ni -
dimensional component from an n-dimensional vector, i.e., Ri x i = x i ,i = xi . We denote
by R := diag

(
(Ri )i∈I

)
; thus, we have x =Rx . Moreover, we define the extended pseudo-

gradient mapping F as

F (x) := col
(
(∇xi Ji

(
xi , x i ,−i

)
)i∈I

)
. (6.7)

Lemma 6.2 ([23, Lemma 3]). The mapping F in (6.7) is θ-Lipschitz continuous, for some
θ ∈ [µ,θ0]: for any x , y ∈RN n , ∥F (x)−F (y)∥ ≤ θ∥x − y∥. □
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We remark that in (6.7), each agent i evaluates its partial gradients ∇xi Ji
(
xi , x i ,−i

)
on

the local estimate x i ,−i , not on the actual strategies x−i . Only when the estimates of all
the agents coincide with the actual value, i.e., x = 1N ⊗ x, we have that F (x) = F (x). As a
consequence, the mapping R⊤F is not monotone, not even under strong monotonicity
of the game mapping F in Standing Assumption 6.2. Indeed, the loss of monotonicity is
the main technical difficulty arising in the partial-decision information scenario [109],
[137].

6.3. FULLY-DISTRIBUTED NASH EQUILIBRIUM SEEKING

I N this section, we present a pseudo-gradient method (along with some variants) to
seek a NE in a fully-distributed way. Before going into details, we need some defini-

tions. Let

Q̄ := diag((qi Ini )i∈I ), Q :=Q ⊗ In . (6.8)

We define the consensus subspace as E = {y ∈ RN n |y = 1N ⊗ y, y ∈ Rn} and its orthog-
onal complement in HQ as EQ

⊥ = {y ∈ RN n |(q ⊗ In)⊤y = 0n}. Let us also denote by

projQ
S : RN n → S the Q-weighted Euclidea projection onto a closed convex set S ⊆ RN n ,

i.e., projQ
S (x) = argminξ∈S ∥x − ξ∥Q . Thus, any vector of estimates x ∈ RN n can be writ-

ten as x = x∥+ x⊥, where x∥ = projQ
E (x) = (1N q⊤⊗ In)x , x⊥ = projQ

EQ
⊥

(x), and it holds that

〈x∥, x⊥〉Q = 0. Clearly, if the estimates of the agents x ∈ E , then x i = x for all i ∈ I , namely
the estimate of each agent coincides with the actual collective strategy x.

6.3.1. CASE 1: KNOWN q AND σ̄
Our basic fully-distributed NE seeking algorithm is summarized in Algorithm 6.1, where
α is a fixed step size. Each agent update its estimates according to consensus dynamics,
then its strategy via a projected pseudo-gradient step. We remark that each agent com-
putes the partial gradient of its cost in its local estimate, not on the actual joint strategy
x.

Compared to similar pseudo-gradient dynamics proposed in the literature [137],
[25], the novelty of Algorithm 6.1 is that the cost related components ∇xi Ji are weighted
by the reciprocal of the elements qi of the PF eigenvector. This operation enables con-
vergence on row stochastic graphs, and in fact it is not necessary for doubly stochas-
tic graphs, for which q = 1. The idea behind this key modification is that (W −1q⊤) is
contractive in HQ , while the game-mapping F is strongly monotone in HI ; instead, we
would like both properties to hold in the same space. Division by the PF eigenvector
achieves this goal, as we show next. Let

F̄ (x) =: Q̄−1F (x), F̄ (x) := Q̄−1F (x). (6.9)

Lemma 6.3. The operator F̄ is µ̄-strongly monotone in HQ̄ and ℓ̄0-Lipschitz continous

in HQ̄ , for some µ̄, ℓ̄0 > 0. The mapping F̄ is ℓ̄-Lipschitz continuous from HQ to HQ̄ , for

some ℓ̄> 0, i.e., for any x , y ∈RN n , ∥F̄ (x)− F̄ (y)∥Q̄ ≤ ℓ̄∥x − y∥Q . □
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Algorithm 6.1. NE seeking with known PF eigenvector

Initialization: ∀i ∈ I , set x0
i ∈Ωi , x0

i ,−i ∈RN−ni .
Iterate until convergence: each agent i ∈ I does:

x̂k
i =∑

j∈Ni
wi , j xk

j

xk+1
i = projΩi

(x̂k
i ,i − α

qi
∇xi Ji (x̂k

i ))

xk+1
i ,−i = x̂k

i ,−i .

Remark 6.3. Lemmas 6.1 and 6.3 provide a general, operator-theoretic interpretation
of the approach in [143], where a similar technique is used in the context of distributed
optimization. □

In compact form, Algorithm 6.1 reads as

xk+1 = projΩ(F (xk )), (6.10)

whereΩ := {x ∈RN n |Rx ∈Ω}, W :=W ⊗ In and

F (x) :=W x −αR⊤F̄ (W x). (6.11)

The following Lemma shows a contractivity property of the operator F and represents
the cornerstone we use to prove convergence of our NE seeking schemes. The result is
based on the strong monotonicity of F̄ in HQ̄ and on Lemma 6.1.

Lemma 6.4. Let

Mα :=
[

1−2αµ̄λmin(Q)+α2ℓ̄2 (2αℓ̄)σ̄
(2αℓ̄)σ̄ (1+2αℓ̄+α2ℓ̄2)σ̄2

]
(6.12)

If the step size α> 0 is chosen such that

ρα := λmax(Mα) = ∥Mα∥ < 1, (6.13)

then the operator F in (6.11) is
p
ρα-restricted contractive in HQ with respect to the

consensus subspace E , i.e., for any x ∈ RN n , y ∈ E , it holds that ∥F (x) −F (y)∥Q ≤p
ρα∥x − y∥Q . □

Remark 6.4. The condition in (6.13) can always be satisfied by choosingα small enough;
an explicit upper bound can be obtained as in [25, Lemma 2]. □

Theorem 6.1. Let α > 0 satisfy the condition in (6.13). Then, for any initial condition,
the sequence (xk )k∈N generated by Algorithm 6.1 converges to x∗ = 1N ⊗x∗, where x∗ is
the NE of the game in (6.1), with linear rate: for all k ∈N,

∥xk −x∗∥Q ≤ (p
ρα

) k ∥x0 −x∗∥Q . □
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Algorithm 6.2. NE seeking with online estimation of PF eigenvector

Initialization: ∀i ∈ I , set x0
i ∈Ωi , x0

i ,−i ∈RN−ni , q̂0
i = eN

i .
Iterate until convergence: each agent i ∈ I does:

q̂k+1
i =∑

j∈Ni
wi , j q̂k

j

xk+1
i = projΩi

(x̂k
i ,i −αk (q̂k

i ,i )−1∇xi Ji (x̂k
i ))

xk+1
i ,−i = x̂k

i ,−i x̂k
i =∑

j∈Ni
wi , j xk

j .

Proof. By (6.3), we infer that x∗ is the NE if and only if x∗ = projΩ(x∗−αQ−1F (x∗)).
Together with W x∗ = x∗ and F (x∗) = F (x∗), this implies that x∗ is a fixed point for the
iteration in (6.10). Therefore we can write

∥xk+1 −x∗∥Q = ∥projΩ(F (xk ))−projΩ(F (x∗))∥Q

= ∥projQ
Ω(F (xk ))−projQ

Ω(F (x∗))∥Q

≤ ∥F (xk )−F (x∗)∥Q

≤p
ρα∥xk −x∗∥Q ,

where the second equality follows by Q = Q ⊗ In and the definition of Ω (note that

proj
qi Ini
Ωi

= projΩi
), the first inequality follows by nonexpansiveness of the projection [8,

Prop. 4.16], and the second inequality by Lemma 6.4. ■
We note that Algorithm 6.1 requires a priori knowledge of the communication graph

G, both to compute the PF eigenvector q and to tune the step size α. In the next subsec-
tion, we relax this hypothesis.

6.3.2. CASE 2: ONLINE COMPUTATION OF q
When the PF eigenvalue q is not known in advance, it can be computed online in a dis-
tributed fashion. The procedure is illustrated in Algorithm 6.2. Each agent i ∈ I keeps an
extra variable q̂i = col((q̂i , j ) j∈I ), which is an estimate of q , initialized as the i -th vector

of the canonical basis eN
i ∈RN .

Notably, each estimate q̂i converges to the real value q . In fact, the updates in Algo-
rithm 6.2 can be written compactly as

q̂ k+1 = (W ⊗ IN )q̂ k , (6.14)

where q̂ := col((q̂i )i∈I ). Therefore, by the PF theorem (and by Standing Assumptions 6.3-
6.4), q̂ k converges linearly to (1N q⊤ ⊗ IN )q̂ 0 = 1N ⊗ q . In particular, q̂k

i ,i → qi . Also,

q̂k
i ,i > 0 for all k ≥ 0, since q̂0

i ,i > 0 and W is nonnegative with positive diagonal. As such,
Algorithm 6.2 is always well defined. We first show its convergence for a fixed step size.

Theorem 6.2. Let α> 0 satisfy the condition in (6.13), and αk =α ∀k ∈N. Then, for any
initial condition, the sequence (xk )k∈N generated by Algorithm 6.2 converges to x∗ =
1N ⊗ x∗, where x∗ is the NE of the game in (6.1), with linear rate: for any ϵ > 0, there
exists K > 0 such that, for all k ∈N,

∥xk −x∗∥Q ≤ K
(p
ρα+ϵ

) k ∥x0 −x∗∥Q . □
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While in Algorithm 6.2 the PF eigenvector is estimated online, the upper bound on
α in Theorem 6.2 is still a function of the network parameter σ̄, which can be difficult
to compute distributedly. Upper/lower bounds might be available for some classes of
networks, e.g., unweighted graphs. This is analogous to [143, Th. 2], where q is com-
puted online, but the step size depends on global, not easily accessible, information. In
fact, this notion of fixed but small-enough step sizes is not uncommon in distributed
algorithms literature.

When estimating a step α that satisfies (6.13) is impossible, convergence to a NE can
still be guaranteed by allowing for diminishing step sizes. In this case, also the informa-
tion on the game (i.e., Lipschitz and monotonicity constants of the pseudo-gradient) is
not needed for the tuning.

Theorem 6.3. Let (αk )k∈N be a positive nonincreasing sequence such that
∑

k∈Nαk =∞
and limk→∞αk = 0. Then, for any initial condition, the sequence (xk )k∈N generated by
Algorithm 6.2 converges to x∗ = 1N ⊗x∗, where x∗ is the NE of the game in (6.1). □

6.4. NUMERICAL EXAMPLE: A NASH-COURNOT GAME

W E consider the Cournot competition model in [109, §6]. N firms produce an uni-
form commodity that is sold to m markets. Each firm i ∈ I = {1, . . . , N } is allowed to

participate in ni ≤ m of the markets; its decision variable is the vector xi ∈Rni of quanti-
ties of product to be delivered to each of the ni markets, bounded by the local constraints
0ni ≤ xi ≤ Xi . Let Ai ∈ Rm×ni such that [Ai ]k, j = 1 if [xi ] j is the amount of commodity
sent to the k-th market by agent i , [Ai ]k, j = 0 otherwise, for all j = 1, . . . ,ni , k = 1, ...,m.
Hence, Ax = ∑N

i=1 Ai xi ∈ Rm , where A := [A1 . . . AN ], are the quantities of product de-
livered to each market. Firm i aims at maximizing its profit, i.e., minimizing the cost
Ji (xi , x−i ) = ci (xi )−p(Ax)⊤Ai xi . Here, ci (xi ) = x⊤

i Qi xi +q⊤
i xi is firm i ’s production cost,

with Qi ≻ 0; p :Rm →Rm associates to each market a price that depends on the amount
of product delivered to that market. Specifically, for k = 1, . . . ,m, [p(x)]k = P̄k -χk [Ax]k ,
where P̄k ,χk > 0. We set N = 20, m = 7. The market structure (i.e., which firms partici-
pate in each market) is defined as in [109, Fig. 1]. Therefore, x = col((xi ))i∈I ) ∈ Rn and
n = 32. We select randomly with uniform distribution rk in [1,2], Qi diagonal with diag-
onal entries in [14,16], qi with elements in [1,2], P̄k in [10,20], χk in [1,3], Xi in [5,10],
for all i ∈ I , k = 1, . . . ,m. This setup satisfies Standing Assumptions 6.1-6.2 [109, §6].
The firms communicate over a randomly generated strongly connected row stochas-
tic directed network, but cannot access the production of all the competitors. We set
α ≈ 3× 10−5 to satisfy the condition in (6.13). We compare the performance of Algo-
rithms 6.1 and Algorithm 6.2, the latter both with a fixed (αk = α) and vanishing step
size (αk = 1

k+1 ), in figure 6.1. Due to the small α, the schemes with fixed step are almost
indistinguishable, and diminishing step sizes result in faster convergence. The good per-
formance obtained with vanishing step suggests that the choice of α is quite conserva-
tive. Indeed, Algorithms 6.1-6.2 still converge, and much faster, with a fixed step size 400
times larger than its theoretical upper bound (dashed lines).
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Figure 6.1: Distance from the Nash equilibrium, when the PF eigenvector is known (Algorithm 6.1) or com-
puted online (Algorithm 6.2), with the step sizes chosen to satisfy the theoretical bounds (solid lines) or with a
fixed step size chosen 400 times larger than the theoretical upper bound (dashed lines).

6.5. CONCLUSION

C ERTAIN properties of doubly stochastic matrices carry on to row stochastic matrices,
but in a different Hilbert space, weighted by their left Perron-Frobenius eigenvector.

We exploited one such contractivity property to solve, in a fully-distributed way, Nash
equilibrium problems over directed networks. Any requirement for global knowledge of
the graph and of the game mapping can be avoided in the case of vanishing step sizes.

The extension of our results to generalized games, where the agents share some com-
mon constraints, is left as future research. It would be also valuable to relax our connec-
tivity and monotonicity assumptions, namely allowing for jointly connected networks
and (strictly) monotone game mappings.

6.6. APPENDIX

6.6.1. PROOF OF LEMMA 6.1
Note that, since q⊤1N = 1 and W 1N = 1N , it holds that W (y−1N q⊤y) =W (y−1N q⊤y)−
1N q⊤y +1N (q⊤1N )q⊤y = (W −1N q⊤)(y −1N q⊤y), and hence

∥W (y −1N q⊤y)∥Q ≤ ∥W −1N q⊤∥Q∥y −1N q⊤y∥Q .

Therefore, it suffices to show that ∥W −1N q⊤∥Q = σ̄< 1. Let p := col((
p

qi )i∈I ). Then,

∥W −1N q⊤∥2
Q

= ∥Q
1
2 (W −1N q⊤)Q− 1

2 ∥2

= λmax((Q
1
2 W Q− 1

2 −pp⊤)⊤(Q
1
2 W Q− 1

2 −pp⊤))

(a)= λmax(Q− 1
2 W ⊤QW Q− 1

2 −pp⊤)

:= λmax(M −pp⊤),
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where in (a) we used p⊤p = 1, and M = Q− 1
2 W ⊤QW Q− 1

2 . Since M is symmetric and
M p = p, M has a basis of eigenvectors, say {v1, . . . , vN−1, p}, with associate eigenvalues
{s1, . . . , sN−1,1}. By orthogonality and p⊤p = 1, it follows that the eigenvalues of M −pp⊤
are {s1, . . . , sN−1,0}, with associate eigenvectors {v1, . . . , vN−1, p}. Since M ⪰ 0, it suffices
to show that si < 1, for i = 1, . . . , N −1. Seeking a contradiction, let j ∈ {1, . . . , N −1} such

that s j ≥ 1, and v̄ :=Q− 1
2 v j . Thus, we have ∥W v̄∥2

Q = v⊤
j Q− 1

2 W ⊤QW Q− 1
2 v j = v⊤

j M v j ≥
v⊤

j v j = v̄Qv̄ = ∥v̄∥2
Q . By [36, Lemma 1], it also holds, for some γ> 0, for any y ∈ RN , that

∥W y∥Q ≤ ∥y∥Q −γ∥(IN −W )y∥Q . Hence, by Standing Assumption 6.3, it must hold that
v̄ = β1N , for some β ̸= 0. Equivalently, v j = βp. This is a contradiction, since p and v j

must be orthogonal. The conclusion follows with σ̄=
√
λN−1(M). ■

6.6.2. PROOF OF LEMMA 6.3
For any x, y ∈ Rn it holds that 〈Q̄−1(F (x)−F (y)), x − y〉Q̄ = 〈F (x)−F (y), x − y〉 ≥ µ∥x −
y∥2 ≥ µ

λmax(Q̄)
∥x−y∥2

Q̄
, and that ∥Q̄−1(F (x)−F (y))∥2

Q̄
= ∥F (x)−F (y)∥2

Q̄−1 ≤ λmax(Q̄−1)
λmin(Q̄)

θ2
0∥x−

y∥2
Q̄

. Analogously, by Lemma 6.2, it holds that, for any x , y ∈RN n , ∥Q̄−1(F (x)−F (y))∥2
Q̄
≤

λmax(Q̄−1)
λmin(Q) θ

2∥x − y∥2
Q . ■

6.6.3. PROOF OF LEMMA 6.4
We use the shorthand notation F̄ x and F̄ x in place of F̄ (x) and F̄ (x). Let x ∈ RN n , y =
1⊗ y ∈ E , and x̂ :=W x = x̂∥+ x̂⊥ = 1N ⊗ x̂∥+ x̂⊥ ∈RN n , with x̂⊥ ∈ EQ

⊥ . Thus, we have

∥F (x)−F (y)∥2
Q

= ∥(x̂ −αR⊤F̄ x̂)− (y −αR⊤F̄ y)∥2
Q

= ∥x̂∥− y∥2
Q +∥x̂⊥∥2

Q +α2∥R⊤(F̄ x̂ − F̄ y)∥2
Q

−2α〈x̂⊥,R⊤(F̄ x̂ − F̄ y)〉Q

−2α〈x̂∥− y ,R⊤(F̄ x̂ − F̄ x̂∥)〉Q

−2α〈x̂∥− y ,R⊤(F̄ x̂∥− F̄ y)〉Q

(6.15)

≤ ∥x̂∥− y∥2
Q +∥x̂⊥∥2

Q +α2ℓ̄2(∥x̂⊥∥2
Q +∥x̂∥− y∥2

Q )

+2αℓ̄∥x̂⊥∥(∥x̂⊥∥Q +∥x̂∥− y∥Q )

+2αℓ̄∥x̂∥− y∥Q∥x̂⊥∥Q −2αµ̄λmin(Q)∥x̂∥− y∥2
Q ,

and to bound the addends in (6.15) we used:

• 3rd, 4th, 5th terms: Lipschitz continuity of F̄ , the Cauchy-Schwartz inequality,
∥R⊤v∥Q = ∥v∥Q̄ for any v ∈Rn , ∥x̂ − y∥2

Q = ∥x̂∥− y∥2
Q +∥x̂⊥∥2

Q (by orthogonality);

• 7th term: 〈x̂∥ − y ,R⊤(F̄ x̂∥ − F̄ y)〉Q = 〈x̂∥ − y, F̄ x̂∥ − F̄ y〉Q̄ ≥ µ̄∥x̂∥ − y∥2
Q̄
≥ µ̄λmin(Q̄)∥x̂∥ −

y∥2 = µ̄λmin(Q̄)∥x̂∥ − y∥2
Q , and the last equality follows since x̂∥, y ∈ E , Q = Q ⊗ In and

1⊤
N q = 1.
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Besides, for every x = x∥ + x⊥ ∈ RN n , with x∥ ∈ E and x⊥ ∈ EQ
⊥ , it holds that x̂ = W x =

x∥ +W x⊥, where W x⊥ ∈ EQ
⊥ (since (q ⊗ In)⊤W x⊥ = (q ⊗ In)⊤x⊥ = 0n , by definition of W

and q). Consequently, by Lemma 6.1 and by x⊥ = (IN n −1N q⊤⊗ In)x , we have ∥x̂⊥∥Q =
∥W x⊥∥Q ≤ σ̄∥x⊥∥Q . Therefore, we can finally write

∥F (x)−F (y))∥2
Q ≤

[∥x∥− y∥Q

∥x⊥∥Q

]⊤
Mα

[∥x∥− y∥Q

∥x⊥∥Q

]
≤ λmax(Mα)(∥x∥− y∥2

Q +∥x⊥∥2
Q )

= λmax(Mα)∥x − y∥2
Q . ■

6.6.4. PROOF OF THEOREM 6.2
We recast Algorithm 6.2 as

xk+1 = projΩ(F̂k (xk )),

where F̂k (xk ) := W xk −αR⊤(Q̄ + Q̃k )−1F (W xk ), and Q̃k = diag(((q̂k
i ,i − qi )Ini )i∈I ). We

noted in §6.3.2 that (Q̄ + Q̃k ) = diag((q̂k
i ,i Ini )i∈I ) ≻ 0, for all k; also, q̂k

i ,i − qi → 0,

for all i ∈ I . Intuitively, Theorem 6.2 is based on the fact that F̂k approaches F
in (6.11) asymptotically (i.e., when Q̃k ≈ 0), hence a contractivity property similar to
Lemma 6.4 can be ensured for any big-enough k. Specifically, we note that (Q̄ +Q̃k )−1 =
Q̄−1 − (Q̄(Q̄ + Q̃k ))−1Q̃k =: Q̄−1 −P k , since the matrices involved are diagonal. There-
fore F̂k (x) = F (x) +αF̃k (W x), with F as in (6.11) and F̃k (x) := R⊤P k F (x). Anal-
ogously to Lemma 6.3, it can be shown that F̃k is ℓ̃k -Lipschitz in HQ , with ℓ̃k :=
λmax(P k )θ

√
λmax(Q)/λmin(Q). Then, by Lemma 6.4, F̂ is (

p
ρα +αℓ̃k )-restricted Lips-

chitz in HQ with respect to E (cf. Lemma 6.4). Then, analogously to Theorem 6.1, it
holds, for all k ∈N, that

∥xk+1 −x∗∥Q ≤ (
p
ρα+αθ̃k )∥xk −x∗∥Q .

We remark that ℓ̃k → 0, since Q̃k → 0. Hence, for any ϵ > 0, the conclusion follows with

K = (
∏k̄

k=1 max{
p
ρα+αθ̃k ,1})(

p
ρα+ϵ)−k̄ , where k̄ := max{k |αθ̃k > ϵ}. ■

6.6.5. PROOF OF THEOREM 6.3
Analogously to the proof of Theorem 6.2, for all k ∈N, it holds that ∥xk+1 − x∗∥Q ≤
δk∥xk −x∗∥Q , δk := (

p
ραk +αk θ̃k ), with ραk as in (6.13) and (θ̃k )k∈N a vanishing nonneg-

ative sequence. The conclusion follows because
∏∞

k=0δ
k = 0, as we show next. By explicit

computation of the quantity in (6.13) and Taylor expansion at α= 0, it holds, in a neigh-
borhood V0 of α = 0, that

p
ρα = 1− µ̄λmin(Q)α+o(α), where o(α) is a series of mono-

mial terms at least quadratic in α. Take k̄ such that, for all k ≥ k̄, ℓ̃k ≤ θ∗ < µ̄λmin(Q)
for some θ∗, αk ∈ V 0 and δk < 1 (which is always possible, because ℓ̃k → 0, αk → 0
and δk = 1 − (µ̄λmin(Q) − ℓ̃k )αk + o(αk ) if αk ∈ V 0). Then,

∏∞
k=k̄

δk = 0 if and only if∑∞
k=k̄

− log(δk ) = ∞. In turn, by the asymptotic comparison theorem and by the Tay-

lor expansion at αk = 0, the latter series diverges if the series
∑∞

k=k̄
αk (µ̄λmin(Q)− ℓ̃∗)

diverges, which holds by the assumption on (αk )k∈N. ■



7
THE END: A FRAMEWORK FOR

EFFICIENT DISTRIBUTED

EQUILIBRIUM SEEKING

This is the end, my only friend, the end

The Doors

Continuous improvement is better than delayed perfection.

Mark Twain

Multi-agent decision problems are typically solved via distributed algorithms, where the
computational burden is partitioned among a group of agents, only allowed to commu-
nicate on a peer-to-peer network. To cope with the limited information available, each
processor is required to store a copy of certain variables, while agreement among the
local copies is enforced via consensus protocols. This structure often leads to redun-
dancy of the information, poor scalability with the network size, communication and
memory overhead. In this chapter, we develop a framework for the design and analysis
of distributed algorithms, named Estimation Network Design (END), to systematically
assign local copies only to a subset of the agents, while still ensuring consistency. END
unifies and generalizes several existing (application-specific) approaches, and leverages
the original sparsity of the problem to improve efficiency and minimize redundancy. We
illustrate the flexibility and potential of END for several methods in the context of con-
sensus optimization and game equilibrium seeking.

Parts of this chapter are based on [28].
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7.1. INTRODUCTION

L ARGE-SCALE problems in machine learning [33], signal processing [57] and decen-
tralized control [114] involve huge volumes of data, often spatially scattered. In this

scenario, distributed multi-agent computation – featuring peer-to-peer communication
only, without central gathering of the data – is emerging as a fundamental paradigm to
enable scalability, privacy preservation and robustness. On the downside, distributed al-
gorithms require storage and transmission of multiple local copies of some variables, a
form of redundancy that is absent from centralized processing. For instance, in consen-
sus optimization [103], NE seeking over networks [63] and common fixed point compu-
tation [62], each agent keeps and exchanges with its neighbors an estimate of the entire
decision variable – and possibly of some other global quantities, as the cost gradient or
dual variables. This may results in prohibitive memory and communication require-
ments, and hinders scalability when the dimension of the estimates grows with the net-
work size.

It is natural to question if this complexity can be mitigated. In particular, is it possible
to leverage the structure of a distributed problem to reduce the amount of copies allo-
cated and exchanged in the network? We review the efforts made in this direction for two
prominent applications: multi-agent optimization and games under partial-decision in-
formation.

Distributed optimization: Modern big data problems are typically partially separa-
ble [101], i.e., the objective function is the sum of local costs, each depending only on
a limited portion of the overall optimization vector. Nevertheless, most consensus opti-
mization algorithms entail the agents reaching agreement on the whole solution [102],
[144] – even in applications where each agent finally discards most of the optimal vector,
as in resource allocation and network control [104].

Part of the literature focuses on partitioned optimization, where the local cost of each
agent only depends on its own “action” (local decision variable) and on the actions of
its neighbors over the communication graph [104]. Then, approximating the actions of
non-neighboring agents is superfluous [53], [104], [138]. Similarly, in constraint-coupled
optimization, storing an estimate of the entire dual variable is not needed if each con-
straint only involves the actions of an agent and its neighbors [44]. Notably, both cases
require that the communication graph matches the interference graph (describing the
coupling among the agents in the cost or constraints), which allows the distributed im-
plementation of many centralized methods [98]. Remarkably, general (non-partitioned)
problems are addressed via dual methods by Mota et al. [98], and later by Alghunaim,
Yuan and Sayed [2], [3]: in this approach, each component of the optimization vari-
able is estimated by a suitably chosen cluster of agents, including all the agents whose
cost depends on that component, but conceivably smaller than the entire network. As a
drawback, the dual reformulation is only effective over undirected communication net-
works.

Nash equilibrium seeking: In NE problems under partial-decision information, each
agent can only communicate with some neighbors, although its private cost function
depends also on the action of non-neighboring agents. To cope with the lack of knowl-
edge, it is typically assumed that each agent estimates all the competitors’ actions [22],
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[109], [146] – even if its cost might depend on a much smaller subset of them. This ap-
proach raises concerns in terms of efficiency and is impractical for large networks. Scal-
able solutions are known for the class of aggregative games, where the agents only need
to reconstruct an aggregation value (e.g., the average of all the actions) to evaluate their
objective functions [82], [108]. While this setup was extensively studied, the problem
remains widely open for more general, partially coupled, costs. The only results we are
aware of are the algorithms proposed by Salehisadaghiani and Pavel [121], [123]: assum-
ing that the communication network can be freely designed, each agent only needs to
keep proxies of the decisions that directly influence its cost. Moreover, memory and
communication efficient methods for GNE problems (where the agents are also coupled
via shared constraints) are not known in literature.

Contributions: Our work is motivated by the observation that, in distributed ap-
plications, the coupling among the agents often exhibits some sparsity. This sparsity
could and should be exploited to design efficient algorithms and reduce the number of
repeated variables in the network. While some particular scenarios are addressed via
ad-hoc schemes [104], [121], what is missing is a systematic methodology to exploit the
specific structure of a given problem – without resorting to a case-by-case convergence
analysis.

To fill this gap, we introduce Estimation Network Design (END), a framework for the
analysis and design of distributed iterations. Specifically, we provide a graph-theoretic
language to describe how the estimates of the components of any variable of interest are
allocated and combined among the agents in a generic distributed algorithm (in Sec-
tion 7.2). The notation we develop allows one to seamlessly cope with complex network
interaction and with the non-homogeneity of the agents’ copies (e.g., the local vectors
kept by distinct agents may have different dimensions). Our framework is:

• Versatile and algorithm-free: The variables of interest can include any quantity
some agents need to reach consensus upon, for instance decision vectors or dual
multipliers in variational problems, but also the gradient of a cost or an aggrega-
tive function. For this reason, END can be employed in virtually any networked
decision problem;

• General: END unifies the convergence analysis of standard (sparsity-unaware) al-
gorithms (e.g., [122]) with that of algorithms specifically devised for problems with
unique sparsity structure (e.g., [121]);

• Customizable: END algorithms can be tailored for specific instances of a prob-
lem, by embedding efficiency criteria (e.g., minimal memory allocation, band-
width constraints), while preserving consistency.

We showcase the flexibility of END by generalizing several distributed algorithms in the
literature. In particular:

1. For NE problems over networks, we prove linear convergence of a pseudo-gradient
algorithm over directed graphs. Our result improves on existing work by relaxing
the assumptions on the communication network [27], and by allowing for much
more ductile estimate assignment [121], [123]. Moreover, special cases of our
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method recover both the full- and the partial-decision information setup (and a
plethora of intermediate scenarios), for which a joint convergence analysis was
not available. For GNE problems, we study a novel class of aggregative games,
generalizing that considered in [54], and we demonstrate that END can reduce the
amount of copies allocated on the network for both the aggregation function and
the dual variables (Section 7.3);

2. We present the END version of several popular consensus optimization algo-
rithms. In the case of dual methods, our setup coincides with that studied in [2],
[3], [98]; compared to these works, we also consider primal methods and directed,
time-varying graphs. In particular, we obtain a gradient-tracking method where
each agent only has to approximate a portion of the whole gradient; and a push-
sum distributed gradient descent (DGD) where each agent only estimates some
components of the optimization variable (Section 7.4);

3. We numerically compare END algorithms against their sparsity-unaware counter-
parts. Our simulations suggests that not only communication and memory over-
head are significantly reduced, but even that convergence speed can be improved
(Section 7.5).

To improve readability, the proofs are in the chapter appendix. We refer to Appen-
dices A, B, C for the basic notation and mathematical background. In addition, to avoid
notation jargons, in this chapter we denote by nx the dimension of any vector x, and by

N (i ) := { j | ( j , i ) ∈ E}, N (i ) := { j | (i , j ) ∈ E}

the in-neighbors and out-neighbors of agent i over a graph G = (I ,E).

7.2. ESTIMATE NETWORK DESIGN FRAMEWORK

7.2.1. THE END SETUP

W E start by introducing a generic information structure, useful both to describe ex-
isting distributed algorithms and to design new ones. It is characterized by:

• a set of agents I := {1,2, . . . , N };

• a given (directed) communication network GC = (I ,EC), over which the agents can
exchange information: agent i can receive information from agent j if and only if
j ∈N C(i );

• a variable of interest y ∈ Rny partitioned as y = col((yp )p∈P ), where, for each p ∈
P := {1, . . . ,P }, yp ∈Rnyp , and ny =∑

p∈P nyp ;

• a given bipartite directed interference graphGI = (P ,I ,E I), E I ⊆P×I , that specifies
which components of y are indispensable for each agent: p ∈ N I(i ) means that
agent i needs (an estimate of) yp to perform some essential local computation.1

1For ease of notation, we assume that N I(p) ̸=∅ for all p ∈P (i.e., each component of y is indispensable for
some agent). We recall that we use the superscript to distinguish between different graphs and the related
quantities, e.g., N I(p) are the out-neighbors of node p over the graph GI.
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The agents may be unable to access the value of the variable of interest y . Instead, each
agent keeps an estimate of some (possibly all) the components yp ’s, and exchanges its
estimates with some neighbors, as specified by:

• a bipartite directed estimate graph GE = (P ,I ,EE), EE ⊆P×I , that specifies which
components of y are estimated by each agent: agent i keeps an estimate y i ,p ∈
R

nyp of yp if and only if p ∈N E(i );

• P directed design graphs {GD
p }p∈P , with GD

p = (N E(p),ED
p ), to describe how the

agents exchange their estimates: agent i can receive y j ,p from agent j if and only

if i ∈ND
p ( j ).2

Example 7.1 (Partially separable optimization). Consider the distributed optimization
problem

min
y∈Rny

∑
i∈I fi (y), (7.1)

where fi : Rny → R̄ is a private cost function of agent i , and the optimization variable is
partitioned as y = col((yp )p∈P ). In several engineering applications, like network control
and data ranking [101], each cost function fi depends only on some of the components
of y , as specified by an interference graph GI: fi depends on yp if and only if p ∈N I(i ) ⊆
P . With some abuse of notation, we highlight this fact by writing

fi (y) = fi ((yp )p∈N I(i )). (7.2)

The common approach to solve (7.1) over a communication network GC is to assign to
each agent i ∈ I a copy ỹ i := col((y i ,p )p∈P ) ∈ Rny of the whole decision variable and to

let the agents exchange their estimates with every neighbor over GC; in END notation,
we write this as3

EE =P ×I , GD
p =GC (∀p ∈P). (7.3)

This choice of graphsGE and {GD
p }p∈P does not take advantage of the structure in (7.2). In

fact, agent i only needs (yp )p∈N I(i ) to evaluate (the gradient of) its local cost fi ; storing

a copy of the whole vector y could be unnecessary and inefficient – especially if GI is
sparse and P is large. □

7.2.2. DESIGN

From an algorithm design perspective, the graphs GC and GI shall be considered fixed a
priori and part of the problem formulation; in contrast, the graphs GE and {GD

p }p∈P are

2Note that the vertices of GD
p are N E(p), namely all the agents that keep an estimate of yp : in fact, agent i can

only receive an estimate of yp if it is keeping an estimate of yp . Note that the graphGE is uniquely determined

by {GD
p }p∈P ; for this reason, in the following, we often only refer to the design graphs {GD

p }p∈P .
3In the following, we often refer to (7.3) as the “standard” setup, as it is the most widely studied scenario. With
Gc =GD

p we also imply W C =W D
p .
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Figure 7.1: An example of END. On the left, the given communication and interference graphs, with I =
{1,2,3,4} and P = {1,2}. On the right, a possible choice for the estimation graphs GD

1 and GD
2 , and the re-

sulting estimation graph. GD
1 is designed to have minimum number of edges, provided that is rooted at 1 (and

the conditions in Problem 7.1(i) and 7.1(ii) are met); the graph is found by solving UDST(GC,1, {1,4}) (please
see Appendix B.3). Informally speaking, the goal is to minimize the transmission cost for one round of com-
munication, but allowing the information on y1,1 to reach agent 4. Note that agent 3 estimates y1, despite this

variable is not indispensable for its local computation (i.e., 1 ∉N I(3)): otherwise, the information on y1 could
not reach agent 4. Instead, GD

2 is designed to be strongly connected, with minimum number of nodes (i.e.,

solving SCSS(GC, {2,3,4})), to minimize the memory allocation for the copies of y2.

design choices. Informally speaking, the goal is to design the graphs GE and {GD
p }p∈P so

that it is possible to distributedly and (possibly) efficiently solve a given decision prob-
lem. In mathematical terms, this objective translates to imposing extra structure on the
estimate and design graphs.

Problem 7.1. Given the communication graph GC and the interference graph GI, design
the estimate graph GE and the design graphs {GD

p }p∈P such that:

(i) GI ⊆GE;

(ii) GD
p ⊆GC, for all p ∈P ;

(iii) “additional requirements” on GE, {GD
p }p∈P are met. □

In particular, it must hold that GE ⊆ GI, namely each agent estimates at least the
components of y which are indispensable for local computation (in fact, GI expresses
the minimal information necessary for each agent). Moreover, since data transmission
can only happen over the communication graph GC, it must hold that GD

p ⊆ GC, for all
p ∈P .

The “additional requirements” in Problem 7.1(iii) can encode feasibility conditions
(for instance, we always need some type of connectedness for the graphs {GD

p }p∈P , to en-
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sure that the agents can reach consensus on their estimates), but also efficiency specifi-
cations (treated as soft constraints, e.g, we might aim at reducing the memory allocation
by minimizing the overall number |EE| of copies employed).

For continuity of presentation, we discuss in Section 7.7.1 several instances of Prob-
lem 7.1, solution methods and design choices. A simple example is also illustrated in
Figure 7.1.

7.2.3. UNIFIED ANALYSIS
All in all, the choice of the estimate and design graphs is vastly problem-dependent.
Luckily, differently from most existing works, we do not need to consider a specific struc-
ture. Instead, we simply assume some level of connectedness for the design graphs.

Assumption 7.1 (Connectedness). At least one of the following conditions holds:

(i) For each p ∈P , there exists rp ∈ I such that GD
p is rooted at rp .

(ii) For each p ∈P , GD
p is strongly connected.

(iii) For each p ∈P , GD
p is undirected and connected. □

Throughout the chapter, we also assume that the design graphs are chosen to satisfy
the specifications in Problem 7.1(i) and 7.1(ii), without further mention.

Standing Assumption 7.1 (Consistency). It holds that GI ⊆ GE and that GD
p ⊆ GC for all

p ∈P . □
The conditions above ensure some properties for the estimate exchange, akin to

those exploited in the analysis of standard consensus-based algorithms (as exemplified
in Lemmas 7.1 and 7.2 below). This simple observation allows us to generalize the con-
vergence analysis of several distributed algorithms to the END framework, allowing for
great freedom in the estimates exchange, as we show in Sections 7.3 and 7.4. However,
before proceeding, we need to introduce the stacked notation used througout in our
analysis.

7.2.4. END NOTATION

For all p ∈P , let Np := ∣∣N E(p)
∣∣ be the number of copies of yp . We define:

y p := col((y i ,p )i∈N E(p)) ∈R
Np nyp , ∀p ∈P ; (7.4)

y := col((y p )p∈P ) ∈Rny , (7.5)

where we recall that y i ,p is the estimate of the quantity yp kept by agent i ; ny :=∑
p∈P Np nyp . Note that y p collects all the copies of yp , kept by different agents. For

each p ∈P , for each i ∈N E(p), we denote by

ip :=∑
j∈N E(p), j≤i 1 (7.6)

the position of i in the ordered set of nodes N E(p). For all i ∈ N E(p), we denote by
Ri ,p ∈ Rnyp ×Np nyp the matrix that selects y i ,p from y p , i.e., y i ,p = Ri ,p y p . We denote
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W D := diag((W D
p ⊗ Iny p

)p∈P ), LD := diag((LD
p ⊗ Iny p

)p∈P ), where we recall that W D
p is the

weight matrix of GD
p , and LD

p is its Laplacian. For all p ∈P , let

Cp := {y p ∈RNp nyp | y p = 1Np ⊗ v, v ∈Rnyp }, (7.7)

be the consensus space for y p , namely the subspace where all the estimates of yp are
equal. The overall consensus space for the estimates is denoted by C :=∏

p∈P Cp . Given
y = col((yp )p∈P ) ∈ Rny , we define C (y) := col((1Np ⊗ yp )p∈P ). We denote by C⊥ the com-

plementary subspace of C ; by Π∥ := diag(((1N p 1⊤
Np

⊗ Inyp
)/Np )p∈P ) and Π⊥ := I −Π∥ the

projection matrices onto C and C⊥, respectively.
Sometimes it is useful to define agent-wise quantities, which we indicate with a tilde.

Let

ỹ i := col((y i ,p )p∈N E(i )), ∀i ∈ I ; (7.8)

ỹ := col((ỹ i )i∈I ) ∈Rny , (7.9)

where ỹ i collects all the estimates kept by agent i . Let P ∈ Rny×ny be the permutation
matrix such that Py = ỹ ; the graph structures corresponding to ỹ can be defined via
permutations, e.g., W̃ D := PW DP⊤, L̃D := PLDP⊤, C̃ := PC .

The following lemmas follow by stacking over p ∈P well-known graph-theoretic
properties (see Appendix B.3).

Lemma 7.1. Let Assumption 7.1(i) hold. Then, null(LD) = C . Moreover, null(L̃D) = C̃ . □
Lemma 7.2. Let Assumption 7.1(ii) hold and assume that W D

p is balanced, for all p ∈P .

Then, for any y ∈Rny , 〈y ,LD y〉 ≥ λ̄2 ∥(I −Π∥)y∥2, where λ̄ := minp∈P {λ2(LD
p
⊤+LD

p )} > 0. □

7.3. GENERALIZED NASH EQUILIBRIUM SEEKING

I N this section we consider GNE problems. In particular, each agent i ∈ I is equipped
with a private cost function Ji (xi , x−i ), Ji : Rnxi ×Rnx−i → R, which depends both on

its local action (decision variable) xi ∈Rnxi and on the actions of the other agents x−i :=
col((x j ) j∈I\{i }) ∈ Rnx−i . Each agent chooses its action in a local feasible set Ωi ⊆ Rnxi ; let
x := col((xi )i∈I ) ∈Ω be the overall action, withΩ :=∏

i∈IΩi ⊆Rnx . The agents’ decisions
are also coupled via shared constraints: specifically, the overall feasible set isX :=Ω∩{x ∈
Rnx | Ax = a}, where A ∈ Rnλ×nx , a ∈ Rnλ . We call generalized game the following set of
interdependent optimization problems:

(∀i ∈ I) minimize
xi∈Rnxi

Ji (xi , x−i ) s.t. (xi , x−i ) ∈X . (7.10)

The goal is to distributedly compute a GNE, a set of decisions simultaneously solving all
the problems in (7.10). Formally, a GNE is an I -tuple x⋆ = col((x⋆i )i∈I ) ∈X such that, for
all i ∈ I , Ji (x⋆i , x⋆−i ) ≤ infxi {Ji (xi , x⋆−i ) | (xi , x⋆−i ) ∈ X }. Let us define the pseudo-gradient
operator F :Rnx →Rnx ,

F (x) := col((∇xi Ji (xi , x−i ))i∈I ). (7.11)
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We restrict our attention to convex and strongly monotone games; the following are stan-
dard conditions for GNE seeking over graphs [82, Asm. 1], [136, Asm. 1-2], [109, Asm. 1-2].

Assumption 7.2. For all i ∈ I , Ωi is closed and convex, Ji is continuous and Ji (·, x−i ) is
convex and differentiable for every x−i ; X is non-empty and satisfies Slater’s constraint
qualification. □
Assumption 7.3. The pseudo-gradient F in (7.11) is µ-strongly monotone and θ-
Lipschitz continuous, for some µ,θ > 0. □

We focus on the partial-decision information scenario, where each agent i only relies
on the data received locally from some neighbors over a communication network GC.
To cope with the limited information, the solution usually explored in the literature is to
embed each agent with an estimate of the whole vector x [146], [136] (and possibly a copy
of a dual variable [109]). Critically, this approach fails to exploit the possible sparsity in
the cost and constraint coupling. We remedy in the remainder of this section.

7.3.1. END PSEUDO-GRADIENT DYNAMICS FOR NE SEEKING
We start by considering games without coupling constraints (i.e., X =Ω): then, the no-
tion of GNE boils down to that of a NE. Under Assumptions 7.2 and 7.3, the game in (7.10)
has a unique NE. We describe the cost coupling via an interference graph GI = (I ,I ,E I),
where (p, i ) ∈ E I if and only if Ji explicitly depends on xp , for all i ̸= p, and (i , i ) ∈ E I for
all i ∈ I ; we also write, with some abuse of notation,

Ji ((xp )p∈N I(i )) := Ji (xi , x−i ).

Hence, we choose the variable of interest for the END framework to be the overall
action, i.e. y = x; P = I and yi = xi for all i ∈ I (finer partitions are also possible). Each
agent i keeps and sends the copies {y i ,p , p ∈N E(i )}, estimating the actions of a subset of
the other agents. Since the action xi is actually a local variable, under the control of agent
i , we formally define y i ,i := xi (i.e., agent i ’s estimate of its own action coincides with the
real value). We study the following iteration (we recall the notation in Section 7.2.4): each
agent i ∈ I performs

(∀p ∈N E(i )) ŷ k
i ,p := ∑

j∈N D
p (i )

[W D
p ]ip , jp y k

i ,p (7.12a)

(∀p ∈N E(i )\{i }) y k+1
i ,p = ŷ k

i ,p (7.12b)

y k+1
i ,i = projΩi

(
ŷ k

i ,i −α∇xi Ji ((ŷ k
i ,p )p∈N I(i ))

)
. (7.12c)

In (7.12a), the estimates of the agents are updated according to a consensus protocol,
with an extra (projected) gradient step for the own estimate y i ,i . The algorithm retrieves

[25, Alg. 1] if W D
i =W C for all i ∈ I , (i.e., the standard setup in (7.3)). Since GD

i ⊆ GC, the
algorithm is distributed. Note that the local gradient ∇xi Ji is computed on the local es-
timates kept by agent i , not on the real action xk = col((y k

i ,i )i∈I ). We define the extended
pseudo-gradient mapping

F (y) := col((∇xi Ji ((y i ,p )p∈N I(i )))i∈I ), (7.13)
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R := diag((Ri ,i )i∈I ), with Ri ,i as in Section 7.2.4, and Ω := {y | Ry ∈Ω}. Then, (7.12a) can
be written in stacked form in one line:

y k+1 = projΩ

(
W D y k −αR⊤F (W D y k )

)
. (7.14)

Assumption 7.4. For each i ∈ I , GD
i is rooted at i and W D

i 1Ni = 1Ni ; we denote by qD
i ∈

RNi the unique nonnegative vector such that qD
i
⊤

W D
i = qD

i
⊤

, 1⊤
Ni

qD
i = 1. □

Assumption 7.4 is very mild: rootedness is necessary for the consensus of the esti-
mates; row-stochasticity can be immediately satisfied whenever the agents have access
to their own in-degree. One major technical complication – with respect to the usual,
more restrictive strongly connectedness assumption – is that the (Perron) eigenvectors
qD

i ’s might have zero elements. In addition, we require one technical condition.

Assumption 7.5. For all i ∈ I , there is a matrix Qi ≻ 0 such thatσi := ∥W D
i −1Ni qD

i
⊤∥Qi <

1, [1⊤
Ni

Qi ]ii = 1, and 1⊤Ni
Qi W D

i (INi −1Ni qD
i
⊤

) = 0⊤
Ni

, and either (i) Qi is diagonal, or (ii)

Ωi =Rnxi . □
Remark 7.1. Assumption 7.5(i) alone is general enough to comprise all the cases con-
sidered in the existing literature:

i. if GD
i is strongly connected with self-loops, then Assumption 7.5(i) holds with Qi =

diag(qi /[qi ]ii ) [27, Lem. 1]; in particular, if W D
i is doubly stochastic, Qi = I ;

ii. if GD
i is the directed star graph (namely, there are all and only the edges from node

i to every node in N E(i )), then Assumption 7.5(i) holds with Qi = I (and σi = 0,
qi with only one nonzero element [qi ]ii = 1); note that having this structure for all
i ∈ I correspond to the classical full-information scenario (i.e., estimates and true
values coincide), as detailed below.

Other relevant cases, satisfying Assumption 7.5 but never addressed in literature, are
discussed in the remainder of the section. □
Theorem 7.1. Let Assumptions 7.2 to 7.5 hold, and let

Ξ := diag((Qi ⊗ Inxi
)i∈I ) σ̄ := maxi∈I {σi }

θ̄ := θ
√

maxi∈I {[Qi ]ii ,ii }/λmin(Ξ)

γ :=
√

1/maxi∈I {1⊤Qi 1}, γ̄ :=
√

1/mini∈I {1⊤Qi 1}

Mα :=
 1−2αµγ2 +α2θ2γ̄2 σ̄(α(θ̄+θγ̄)+α2θ̄θγ̄)

σ̄(α(θ̄+θγ̄)+α2θ̄θγ̄) σ̄2(1+2αθ̄+α2θ̄2)


Let α> 0 be chosen such that

ρα = λmax(Mα) < 1. (7.15)
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Then the sequence (y k )k∈N generated by (7.14) converges linearly to y⋆ := C (x⋆), where
x⋆ is the NE of the game (7.10): for all k ∈N ,

∥y k+1 − y⋆∥2
Ξ ≤ ρα∥y k − y⋆∥2

Ξ. □

The condition (7.15) always holds for α small enough (explicit bounds are obtained
as in [25]). Let us now highlight some of the novelties of Theorem 7.1:

(a) Consider the standard scenario in (7.3), where agents store and exchange an esti-
mate of the whole x. If GC is strongly connected and W C is doubly stochastic, The-
orem 7.1 retrieves exactly [25, Th. 1]. If W C is only row stochastic, Theorem 7.1 im-
proves on the results in [27] since (7.14) does not require the knowledge of any Per-
ron eigenvector, but just a small-enough step; this is achieved by using the weight
matrix Ξ in the analysis.

(b) To our knowledge, the only other works that consider partial coupling are [121],
[123]. The authors propose gossip algorithms where, assuming a lower bound for
the strongly connected graph GC related to GI, each agent must only estimate the
actions that directly affect its cost.4 However, this setup requires that the cost
of each agent only depends on the actions of its communication neighbors and
neighbors’ neighbors [123, Lem. 3]. By allowing some agents to estimate a larger
subset of actions (if needed), Theorem 7.1 avoids this limitation.

(c) Theorem 7.1 also allows for graphs GD
i ’s that are not strongly connected. For in-

stance, if {GD
i }i∈I are all star graphs (i.e., Remark 7.1.ii), the action update in (7.14)

is

xk+1
i = projΩi

(xk
i −α∇xi Ji (xk )) (7.16)

which is the standard pseudo-gradient method for the full-information scenario.
In particular, when GE is complete, Theorem 7.1 retrieves the well-known bound
α< 2µ/θ2 (since σ̄= 0, γ2 = γ̄2 = 1

N ) [8, Prop. 26.16].

(d) Another (not strongly-connected) case not addressed before is that of a matrix

W D
1 =

[
1 0⊤

Ni −1

c W̄

]
, c ∈ RNi−1

≥0 , representing a leader-follower protocol (with agent 1

as the leader for ease of notation). If Ω1 = Rnxi and Assumption 7.4 holds, it can

be checked that Assumption 7.5 is verified with qD
1 = e1, Q1 =

[
1+1⊤X221 −1⊤X2,2
−X221Ni −1 X22

]
,

where X =
[ X1,1 X1,2

X ⊤
1,2 X2,2

]
≻ 0 is any matrix such that ∥W D

1 −1qD
1
⊤∥X < 1. As a special

case, if [c] j1 = 1, we have ŷk
j ,1 = xk

1 and agent j can use the real action x1 when

evaluating its cost. We can also model a scenario in which the exact information
on x1 propagates over GD

1 but with some delay, by choosing GD
1 as a directed tree.

4This is also achieved in Theorem 7.1 by the choice GD
i = (N I(i ),EC ∩ (N I(i ) ×N I(i ))) if all the resulting

{GD
i }i∈I are strongly connected, which is a much weaker assumption than [123, Asm. 6].
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(e) Each graph GD
i can be chosen independently. For instance, one variable xi might

be publicly available (choose GD
i as a star graph), while other actions can only be

reconstructed via consensus. The convergence of these cases would otherwise re-
quire ad-hoc analysis (e.g., to determine bounds on the step sizes).

7.3.2. GNE SEEKING IN AGGREGATIVE GAMES
In this section we also address the presence of coupling constraints. As per standard
practice, we only focus on v-GNEs, namely GNEs with identical dual variables, which
are computationally tractable and economically more justifiable [55]. Under Assump-
tions 7.2 and 7.3, there is a unique v-GNE; moreover x⋆ is the v-GNE of (7.10) if and only
if there exists a dual variables λ⋆ ∈Rnλ satisfying the KKT conditions [57, Th. 4.8]:

0nx ∈ F (x⋆)+NΩ(x⋆)+ A⊤λ⋆, 0nλ = Ax⋆−a. (7.17)

The coupling constraints are partitioned in M blocks, i.e., A = [Am,i ]m∈M,i∈I , a =
col((

∑
i∈I am,i )m∈M), where, for all m ∈ M := {1,2, . . . , M }, Am,i ∈ Rnλm ×nxi and am,i ∈

Rnλm are local data kept by agent i . The coupling constraints sparsity pattern is de-
scribed by the interference graph GI,λ = (M,I ,E I,λ), where (m, i ) ∈ E I,λ if agent i is in-
volved in the constraints block indexed by m; in other terms,

(∀(m, i ) ∉ E I,λ) Am,i = 0, am,i = 0, (7.18)

and the m-th block constraint can be written as
∑

i∈N I,λ(m) Am,i xi − am,i = 0. Corre-
spondingly, we partition the dual variable as λ= col((λm)m∈M), λm ∈Rnλm .

We further study aggregative games [14], [71], where the cost coupling arises via an
aggregation mapping σ :Rnx →Rnσ , so that for all i ∈ I , Ji (xi , x−i ) = J̄i (xi ,σ(x)) for some
function J̄i . Let σ be partitioned as σ = col((σq )q∈Q), Q := {1,2, . . . ,Q}, and let GI,σ =
(Q,I ,E I,σ) be an interference graph such that, for all x (and with the usual overloading)

σq (x) =σq ((xi )i∈N I,σ(q)) (7.19)

J̄i (xi ,σ(x)) = J̄i (xi , (σq (x))q∈N I,σ(i )), (7.20)

namely, (q, i ) ∈ E I,σ whenever either σq (x) explicitly depends on xi , or J̄i (xi ,σ) explicitly
depends on σq . Finally, we consider affine aggregation functions, so that

σq (x) :=∑
i∈N I,σ(q) Bq,i xi +bq,i , (7.21)

σ(x) = B x +b, (7.22)

Bq,i ∈ Rnσq ×nxi , bq,i ∈ Rnσq being local data of agent i , B := [Bq,i ]q∈Q,i∈I , b = ∑
i∈I bi ,

bi := col((bq,i )q∈Q); Bq,i := 0 and bq,i = 0 if q ∉N I,σ(i ).5

When M = Q = 1, this setup boils down to standard generalized aggregative games
[22], [64], where each agent must estimate the whole dual variable λ ∈ Rnλ and the
whole aggregative value σ(x) ∈ Rnσ . Instead, our idea is to leverage the possible prob-
lem sparsity by assigning to each agent copies of only some of the components of the

5This setup includes non-aggregative games as well, via σ(x) = x.
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dual variable and of the aggregation function, as specified by two6 estimate graphs
GE,λ = (M,I ,EE,λ), GE,σ = (Q,I ,EE,σ). We postpone the discussion of a motivating ap-
plication to Section 7.5. To the best of our knowledge, the partial-coupling in the con-
straints or aggregation has not been considered in the literature. The only exception is
the (non-generalized) game studied in [54], where the cost of each agent is only affected
by some of the components of a (specific) aggregation function: nevertheless, this algo-
rithm requires strong conditions on the (undirected) communication network – neces-
sary to allow the choice GI =GE, see Example 7.6 in Section 7.7.1.

Let us define the extended pseudo-gradient mapping

F̃ (x,σ) := col((∇xi J̄i (xi ,σ̃i )+ B̃⊤
i ∇σ̃i J̄i (xi ,σ̃i ))i∈I ), (7.23)

where (with the customary overloading) J̄i (xi ,σ̃i ) := J̄i (xi , (σi ,q )q∈N I,σ(i )), B̃i :=
col((Bq,i )q∈N E,σ(i )). Note that F̃ coincides with the pseudo-gradient mapping when the

estimates are exact and at consensus, i.e., F̃ (x,Cσ(σ(x))) = F (x). We study the following
distributed iteration:

xk+1 = projΩ(xk −β(αF̃ (xk ,σk )+B⊤LD,σσk + A⊤λk )) (7.24a)

σk+1 =σk −βLD,σσk +B (xk+1 −xk ) (7.24b)

zk+1 = zk +βLD,λλk (7.24c)

λk+1 =λk −β(LD,λ(2zk+1 − zk )− A(2xk+1 −xk )+a), (7.24d)

where α > 0, β > 0 are step sizes; z = col((zm)m∈M) ∈ Rnλ , zm = col((z i ,m)i∈N E,λ(m)),

where, for all m ∈N E,λ(i ), z i ,m ∈ Rnλm is an auxiliary dual variable kept by agent i ; A :=
Pλ⊤diag((Ãi )i∈I ), where Ãi := col((Am,i )m∈N E,σ(i )) (we recall that Pλ is the permutation

matrix such that Pλ⊤λ̃ = λ); a := Pλ⊤col((ãi )i∈I ) with ãi = col((am,i )m∈N E,λ(i )); B :=
diag((Nσ

q Inσq
)q∈Q)Pσ⊤diag((B̃i )i∈I ) (we recall that Nσ

q = |N E,σ(q)|). Moreover, let b :=
diag((Nσ

q Inσq
)q∈Q)Pσ⊤col((b̃i )i∈I ) with b̃i := col((bq,i )q∈N E,σ(i )); we impose

σ0 = B x0 +b, (7.25)

or, agent-wise, σ̃0
i = col((Nσ

q Bq,i x0
i + Nσ

q bq,i )q∈N E,σ(i )). The algorithm is based on

primal-dual pseudo-gradient dynamics, where the update in (7.24b) represents a dy-
namic tracking of the aggregation functionσ, over the graphs {GD,σ

q }q∈Q. It is inspired by
the methods in [64], [109], and in fact as in these works it is derived as a FB method [8,
§26.5].

Assumption 7.6. For each m ∈M, GD,λ
m is undirected and connected and W D,λ

m is sym-
metric. For each q ∈Q, GD,σ

q is strongly connected and W D,σ
q is balanced. □

6Here we consider END problem for two variables of interest λ and σ. The notation in Section 7.2 is recovered
by setting y = col(λ,σ(x)), with P = M +Q. However, for brevity, here we treat the two variables separately, as
two independent instances of END, where the corresponding quantities in Section 7.4.1 are distinguished via

the superscripts λ andσ (e.g., GD,λ
m describes how the agents exchange the estimates of λm ). We also indicate

the estimates ofλm andσq (x) kept by agent i withλi ,m andσi ,q (in place of yλi ,m and yσi ,q ), and analogously

for the stacked vectors — e.g., σq = col((σi ,q )
i∈N E,σ(q)

), σ= col((σq )q∈Q).
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Theorem 7.2. Let Assumptions 7.2, 7.3 and 7.6 hold, and assume that F̃ (x,σ) is θ-
Lipschitz continuous. Then, for any small-enough α > 0 there is a small-enough β > 0
such that the sequence (xk ,σk , zk , y k )k∈N generated by (7.24) converges to a point
(x⋆,Cσ(σ(x⋆)), z⋆,Cλ(λ⋆)), where (x⋆,λ⋆) satisfies the KKT conditions in (7.17), hence
x⋆ is the v-GNE of the game in (7.10). □

7.4. DISTRIBUTED OPTIMIZATION ALGORITHMS

I N this section, we leverage the END framework to extend several distributed optimiza-
tion algorithms and deal with partial coupling. In particular, we consider again the

cost-coupled problem in Example 7.1, hereby recalled:

min
y∈Rny

f (y) :=∑
i∈I fi ((yp )p∈N I(i )), (7.26)

where fi is a private cost function of agent i . We denote by Y⋆ the solution set of
(7.26), assumed to be nonempty. We take the optimization variable y = col((yp )p∈P )
as the variable of interest in the END; with the usual abuse of notation, let us write
fi ((y i ,p )p∈N E(i )) = fi ((y i ,p )p∈N I(i )).

7.4.1. END DUAL METHODS
Under Standing Assumption 7.1, we can recast (7.26) by introducing local estimates and
consensus constraints.The reformulation in the following proposition is not novel, and
in fact it was employed for the dual methods in [2], [3], [98].

Proposition 7.1. Let Assumption 7.1(iii) hold. Then, problem (7.26) is equivalent to:
min

ỹ∈Rny

∑
i∈I fi (ỹ i )

s.t. y i ,p = y j ,p ∀p ∈P ,∀(i , j ) ∈ ED
p .

(7.27)

□
If GD

p = GC for all p ∈P , then (7.27) recovers the formulation used in the deriva-
tion of standard dual methods [7], [33], [140]: these algorithms require each agent to
store a copy of the whole optimization vector. Instead, choosing a sparse GE can con-
veniently reduces the number of variables and constraints in (7.27). Regardless, due
to its structure (i.e., separable costs and coupling constraints compliant with the com-
munication graph), the problem in (7.27) can be immediately solved via several es-
tablished Lagrangian-based algorithms (provided that the functions fi ’s are sufficiently
well-behaved). In practice, this allows one to extend most (virtually all) the existing dual
methods to the END framework.

Example 7.2 (END ADMM). Let Assumption 7.1(iii) hold, and assume that fi is proper
closed convex, for all i ∈ I . Then, applying the alternating direction method of multipli-
ers (ADMM) in [7] to the problem in (7.27)7 results in the iteration

ỹ k+1
i = argmin

ỹ i

{
fi (ỹ i )+∑

p∈N E(i )

∑
j∈N D

p (i )

(
∥y i ,p∥2 −〈zi , j ,p , y i ,p〉

)}
(7.28a)

7After decoupling the constraints in (7.27) by introducing auxiliary bridge variables as {y i ,p = h(i , j ),p ,h(i , j ),p =
h( j ,i ),p ,h( j ,i ),p = y j ,p }; the approach is standard and we refer to [7] for a complete derivation.
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zk+1
i , j ,p = (1−α)zk

i , j ,p −αzk
j ,i ,p +2αy k+1

j ,p , (7.28b)

where zi , j ,p is an auxiliary variable kept by agent i , for each i ∈ I , p ∈N E(i ), j ∈ND
p (i ).

Then, for any α ∈ (0,1), y i ,p converges to y⋆p , where y⋆ = col((y⋆p )p∈P ) is a solution of

(7.26), for all i ∈ I and p ∈N E(i ). Note that performing the update (7.28b) requires agent
i to receive data from its neighbor j ∈ND

p (i ) (while (7.28b) requires no communication).

If GD
p = GC for all p ∈P , then the method retrieves the standard ADMM for consensus

optimization [7, Eq. (13)]. However, in general (7.28) requires the agents to store and
exchange with their neighbors less (auxiliary) variables. □

The edge constraints in (7.27) can be replaced by equivalent node conditions (as
LD y = 0). Furthermore, Proposition 7.1 would hold under the weaker Assumption 7.1(i),
but distributed algorithms to efficiently solve (7.27) typically require undirected com-
munication.

7.4.2. END ABC ALGORITHM
In this subsection, we propose an END version of the ABC algorithm, recently developed
in [144]. For differentiable costs fi ’s, let us consider the iteration: (∀i ∈ I)(∀p ∈N E(i ))

y k+1
i ,p =−zk

i ,p +∑
j∈N E(p)

(
[Ap ]ip , jp y k

j ,p −γ[Bp ]ip , jp∇yp f j (ỹ k
j )

)
(7.29a)

zk+1
i ,p = zk

i ,p +∑
j∈N E(p)[Cp ]ip , jp y k+1

j ,p , (7.29b)

where z i ,p ∈Rnyp is a local variable kept by agent i ; for all p ∈P , Ap ,Bp ,Cp are matrices
in RNp×Np ; γ > 0 is a step size (and we recall the definitions of ip , jp in Section 7.2.4).
Note that if the matrices Ap ,Bp ,Cp ’s are compliant with the corresponding graphs GD

p ’s

(e.g., Ap = Bp =Cp = W D
p ), then the iteration (7.29) is distributed. We can rewrite (7.29)

in stacked form as

y k+1 = Ay k −γB∇y f (y k )− zk (7.30a)

zk+1 = zk +C y k+1, (7.30b)

where A := diag((Ap ⊗ Inyp
)p∈P ), B := diag((Bp ⊗ Inyp

)p∈P ) and C := diag((Cp ⊗ Inyp
)p∈P )

belong to Rny×ny , z := col((z p )p∈P ) with z p := col((z i ,p )i∈N E(p)), and f (y) :=∑
i∈I fi (ỹ i ).

Theorem 7.3. Let D := diag((Dp ⊗ Inyp
)p∈P ), for some {Dp ∈ RNp×Np }p∈P . Assume that

fi is L-smooth and convex for each i ∈ I , and that:

(i) A = BD and B ≽ 0, D ≻ 0;

(ii) (∀y ∈ C ) D y = y , B y = y ;

(iii) C ≽ 0, null(C ) = C ;

(iv) B and C commute: BC =C B ;

(v) I − 1
2C −p

BD
p

B ≽ 0.
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Let y⋆ ∈Y⋆, y⋆ := C (y⋆), and consider the merit function

M(y) := max{∥Π⊥y∥∥∇y f (y⋆)∥, | f (y)− f (y⋆)|}. (7.31)

Then, for any y 0 ∈ Rny , z0 = 0ny , γ ∈ (λmin(D)
L ), the sequence (y k )k∈N generated by (7.30)

satisfies
M

(
y k

avg

)
=O

( 1
k

)
, (7.32)

for all k ∈N , where y k
avg := 1

k

∑k
t=1 y t . □

It is shown in [144] that many celebrated schemes for consensus optimization can
be retrieved as particular instances of the ABC algorithm, by suitably choosing the ma-
trices A, B , C [144, Tab. 2]: EXTRA [127], NEXT [94], DIGing [103], NIDS [92], and others.
Theorem 7.3 permits the extension of each of these methods to the END framework. We
only discuss an example below; for the other schemes, the analysis can be carried out
analogously, see also [144, §III.A].

Example 7.3 (END AugDGM). The following gradient-tracking algorithm is the END ver-
sion of [145, Alg. 1]: (∀i ∈ I)(p ∈N E(i ))

y k+1
i ,p = ∑

j∈N D
p (i )

[W D
p ]ip , jp (y k

j ,p −γv k
j ,p )

v k+1
i ,p = ∑

j∈N D
p (i )

[W D
p ]ip , jp (v k

j ,p +∇yp f j (ỹ k+1)−∇yp f j (ỹ k )),

or, in stacked form,

y k+1 =W D(y k −γv k ) (7.34a)

v k+1 =W D(v k +∇y f (y k+1)−∇y f (y k )); (7.34b)

we impose y(0) = 0, v (0) = W D∇y f (y 0). Here, v i ,p represents an estimate of
∇yp

∑
j∈I f j (y)/Np kept by agent i . Note that agent i only estimates and exchanges

the components of the cost gradient (and of of the optimization variable) specified by
N E(i ), instead of the whole vector as in [145, Alg. 1] – the two algorithms coincide only if
W D

p =W C for all p ∈P . By eliminating the v variable in (7.34), we obtain

y k+2 = 2W D y k+1 − (W D)
2

y k

−γ(W D)
2

(∇y f (y k+1)−∇y f (y k )).
(7.35)

Instead, eliminating z from (7.30) we get

y k+2 = (I −C + A)y k+1 − Ay k

−γB(∇y f (y k+1)−∇y f (y k )).
(7.36)

which retrieves (7.35) for A = B = (W D)
2

, C = (I −W D)
2

.8 This choice satisfies the condi-
tions in Theorem 7.3, with D = I , if Assumption 7.1(iii) holds and if each W D

p is symmet-
ric and doubly stochastic.

8In fact, the sequence (yk ) generated by (7.30) coincide with that generated by (7.34) for the given initialization.
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Corollary 7.1. Let Assumption 7.1(iii) hold; assume that W D
p 1Np = 1Np , W D

p =W D
p

⊤
, for

all p ∈P , and that fi is L-smooth and convex, for all i ∈ I . Then, for any γ ∈ (0, 1
L ) the

rate (7.32) holds for (7.34). □
Theorem 7.3 requires a recovery procedure (i.e., (7.32) holds for the running average

only), as e.g., in [112], but pointwise convergence could be shown for several special
cases of (7.30), see e.g., [145]. We also note that Theorem 7.3 enhances customizability
with respect to [144, Th.24], even in the standard scenario (7.3) (GD

p = GC, for all p ∈P),
by allowing for non-identical blocks Ap ’s (or Bp ’s, Cp ’s).

Remark 7.2 (Strong convexity and linear convergence). For certain design choices, the
ABC algorithm achieves linear convergence when each function fi is strongly convex
in y [94, Th. 15]. Interestingly, it can be analogously shown that the END ABC (7.30)
converges linearly under a weaker assumption, namely strong convexity of each fi with
respect to ỹ i only. This condition requires GE =GI, which is only a viable choice in some
cases (see in Examples 7.5 and 7.6 in Section 7.7.1); future work should investigate the
convergence rate of (7.30) when only strong convexity of fi with respect to (yp )p∈N I(i )
(or of f in y , as in [127]) is postulated. □

7.4.3. END PUSH-SUM DGD
Techniques to solve optimization problems over switching or directed graphs also find
their counterpart in the END framework. As an example, here we generalize the push-
sum subgradient algorithm in [102, Eq. (1)].

Let the agents communicate over a time-varying network (GC,k )k∈N , where GC,k =
(I ,EC,k ) represents the communication topology at time-step k. Given a fixed estimate
graph GE ⊇ GI, for each p ∈P we consider a time-dependent design graph (GD,k

p )k∈N ,

GD,k
p = (N E(p),ED,k

p ) ⊆ GC,k (note that the set of nodes is fixed in GD,k
p ). For all i ∈ I and

p ∈N E(i ), agent i performs the following updates:

qk+1
i ,p =∑

j∈N E(p)[W
D,k
p ]ip , jp qk

j ,p (7.37a)

w k+1
i ,p :=∑

j∈N E(p)[W
D,k
p ]ip , jp zk

j ,p (7.37b)

g k+1
i ,p ∈ ∂yp fi (ỹ k+1

i ), y k+1
i ,p :=

w k+1
i ,p

qk+1
i ,p

(7.37c)

zk+1
i ,p = w k+1

i ,p −γk g k+1
i ,p , (7.37d)

initialized at z0
i ,p ∈ Rnyp , q0

i ,p = 1. With respect to [102, Eq. (1)], agent i keeps one scalar

qi ,p for each p ∈ N E(i ) (instead of one overall), but does not store and exchange the
variables z i ,p ∈Rnyp for p ∉N E(i ).

Assumption 7.7. For all k ∈N and p ∈P , it holds that:

(i) Self-loops: for all i ∈N E(p), (i , i ) ∈ ED,k
p ;

(ii) Column-stochasticity: 1⊤
Np

W D,k
p = 1⊤

Np
;
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(iii) Finite weights: [W D,k
p ]ip , jp ≥ ν> 0, ∀(i , j ) ∈ ED,k

p . □

Assumption 7.8. There exists an integer Q > 0 such that, for all p ∈P , (GD,k
p )k∈N is Q-

strongly connected. □

Example 7.4 (Design of GD,k
p ). Assume thatGC ⊆⋃(k+1)Q−1

t=kQ GC,k for all k ∈N , whereGC is

a strongly connected graph. Let (GD
p )p∈P satisfy Standing Assumption 7.1 and Assump-

tion 7.1(ii). Then, Assumption 7.8 holds by choosing GD,k
p = GD

p
⋂GC,k , for all p ∈P for

all k ∈N . □

Theorem 7.4. Let Assumptions 7.7 and 7.8 hold. Assume that, for all i ∈ I , fi is convex,
and there is L > 0 such that, for all y ∈ Rny and gi ∈ ∂y fi (y), it holds that ∥gi∥ ≤ L. Let
(γk )k∈N be a positive non-increasing sequence such that

∑∞
k=0γ

k =∞,
∑∞

k=0(γk )2 <∞.

Then, the sequence (y k )k∈N generated by (7.37) converges to C (y⋆), for some y⋆ ∈ Y⋆.
□

7.4.4. CONSTRAINT-COUPLED DISTRIBUTED OPTIMIZATION

We consider now a different, constraint-coupled problem:


min

xi∈Rnxi ,i∈I
∑

i∈I fi (xi )

s.t.
∑

i∈N I(p) Ap,i xi −ap,i = 0, ∀p ∈P

(7.38a)

(7.38b)

for a given interference graph GI = (P ,I ,E I), where fi and {Ap,i ∈ R
nyp ×nxi , ap,i ∈

R
nyp }p∈N I(i ) are private data kept by agent i (and the constraints (7.38b) are not com-

pliant with the communication graph GC, namely N I(p) ̸⊆ N C(i ) for any i ). Existing
distributed methods to address (7.38) typically require each agent to store a copy of the
entire dual variable (here, also our variable of interest) y = col((yp )p∈P ) ∈ Rny (and pos-
sibly of other variables in Rny , e.g., an estimate of the constraint violation) [58], [89].
END primal-dual or dual methods can improve efficiency by exploiting the sparsity of
GI. For instance, (a simplified version of) (7.24) can be directly used to solve (7.38) over
undirected graphs.9 Alternatively, let us consider the dual of (7.38):

max
y∈Rny

∑
i∈I ϕi ((yp )p∈N I(i )) (7.39)

ϕi (y) := minxi∈Rnxi fi (xi ) +∑
p∈N I(i )〈yp , Ap,i xi − ap,i 〉; note that (7.39) is in the form

(7.26). In fact, (7.39) was solved in [3] via the reformulation (7.27); this approach has
the disadvantage of requiring undirected communication. Nonetheless, (7.39) can also
be solved over directed (time-varying) networks, e.g., via the iteration in (7.37).10

9In fact, under convexity of the functions fi ’s, (7.17) coincides with the optimality conditions for (7.38).
10If each fi is convex with compact domain, where the subgradients of the local dual function ϕi can be

computed as g k
i ,p = Ap,i x⋆i (ỹk

i )−ap,i , with x⋆i (ỹ i ) ∈ argminxi ∈Rnxi fi (xi )+∑
p∈N I(i )

〈y i ,p , Ap,i xi −ap,i 〉.
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7.5. ILLUSTRATIVE APPLICATIONS

I N this section, we compare numerically some END algorithms and their sparsity-
unaware counterparts, investigating how performance scales with the problem di-

mension, connectivity and sparsity.

7.5.1. UNICAST RATE ALLOCATION

We study a bandwidth allocation problem with fixed routing [4], [54], here modeled as
a GNE problem – see Figure 7.2 for an illustration. Consider an undirected connected
communication network GC = (I ,EC). From each node i ∈ I , a user sends data with rate
xi ∈ [0,1], over a path Li – i.e., a sequence of consecutive edges over the graph GC. User
i aims to choose xi to minimize the cost function

Ji (xi , x−i ) = J̄i (xi , {σl }l∈Li ) =−U (xi )+∑
l∈Li

cl (xi ,σl )

σl :=∑
j |l∈L j

x j ,

where Ui is an utility function, σl represents the aggregative rate over the link (i.e., edge)
l , and cl is a penalty related to link l (e.g., quantifying the loss of service quality due to
congestion [4] or a tax imposed by a network manager [54]). Furthermore, the capac-
ity of each link l is bounded by the coupling constraints σl ≤ al , for some al > 0. Our
objective is to seek a v-GNE of the resulting generalized game, when the users can only
communicate over the graph GC.

Let us relabel the “active” edges
⋃

i∈I {l ∈Li } (i.e., the edges of GC hosting at least one
path) as {1,2, . . . ,P } =:P . Let us define for all p ∈P and i ∈ I ,

Ap,i = Bp,i =
{

1, if p ∈Li (user i uses link p)

0, otherwise,

the so-called routing matrix [4]. With these definitions, the problem retrieves an ag-
gregative game of the type described in Section 7.3.2 (although with inequality coupling
constraints), with M = Q = P . In particular, only the aggregative variables and con-
straints relative to the links in Li directly affect agent i , i.e., N I,σ(i ) = N I,λ(i ) = Li .11

A similar setup was considered in [54], [121] but modeled as a (non-aggregative) non-
generalized game, and further assuming that the graphs {GC

∣∣
N I(p)}p∈P are connected, cf.

Figure 7.2 (see also Example 7.6 in Section 7.7.1). Here, to compute a v-GNE, we employ
a modification of Algorithm (7.24), where the right-hand side of (7.24d) is replaced by
its positive part, to deal with inequalities coupling constraints.12 In particular, we fix
W D,σ

p =W D,λ
p =: W D

p for all p ∈P , and we compare the performance of the algorithm for
two different choices of the design graphs:

11The setup also fits more general cases where from a node i multiple distinct flows xi ,1, . . . , x1,nxi
are sent over

distinct paths Li ,1, . . . ,Li ,nxi
, by either a single user (adjusting the cost function) or by multiple competitive

users (considering an augmented communication graph GC′ ⊃GC).
12Correctness and convergence of the resulting algorithm can be proven analogously to Section 7.7.2: the

argument is standard [22], [109] and omitted.
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Figure 7.2: Unicast rate allocation game. No flow is sent from node 7, which works only as a communication
node (formally, L7 has length zero). Link (4,5) – labeled p – is used by users 3 and 5 (i.e., N I(p) = {3,5}), that
are not communication neighbors. Therefore, the graph GC|N I(p)

is not connected.

• Standard: W D
p ’s are chosen as in (7.3), i.e., each agent estimates the whole dual vari-

able and aggregative value: the problem sparsity is ignored;

• Customized: W D
p ’s are chosen to minimize the per-iteration communication cost, by

solving Problem 7.1(i) with: “(iii) GD
p is connected; GD

p has minimal number of edges”
(this corresponds to a Steiner tree problem, see Section 7.7.1 and Appendix B).

We choose Ui (xi ) = 10∗ log(xi +1), cl (xi ,σl ) =ψl
xi

1+e−σl with ψl sampled randomly
uniformly in the interval [0,1] (Assumption 7.3 is satisfied in the feasible set, invariant for
(7.24)), Metropolis-Hastings weights for every graph, α = 0.1, β = 10−3. The results are
illustrated in Figure 7.3. In our first experiment, we consider the scenario in Figure 7.2,
with N = P = 12. The customized algorithm converges to the unique v-GNE x⋆ over 10
times faster than the standard version; the communication burden at each step is also
reduced, as the mean size of the (aggregative/dual) estimates kept and transmitted by
each agent is 2.6, instead of P = 12. Since the latter quantity grows with the problem
dimension, we expect the gap between the two methods to increase for larger networks.
Simulations with N = 7,12,16,20 (P = 7,16,18,26) confirm this intuition: for the case
N = 20, the customized algorithm saves 99% of the communication cost (where send-
ing one scalar value to one neighbor on GC costs 1, in unicast fashion). Finally, for the
selected parameters and N ≥ 24, the standard algorithm fails to converge in our simula-
tions, while the customized algorithm still converges (at least) up to N = 50 – suggesting



7.5. ILLUSTRATIVE APPLICATIONS

7

125

10
0

10
3

10
6

10
7

10
-4

10
-2

10
0

8 12 16 20

10
-2

10
-1

10
0

Figure 7.3: Unicast rate allocationi via algorithm (7.24), for the scheme in Figure 7.2 (top) and for different
randomly generated networks, with maximal path length 4 and stopping criterion ∥x −x⋆∥ <= 10−2 (bottom).

tolerance to larger step sizes, with upper bounds less affected by the problem dimension.

In conclusion, while requiring some initial design effort, the customized method can
result in substantial efficiency improvement, especially if the v-GNE problem is solved
multiple times due to time-varying cost parameters or link capacities [4].

7.5.2. OPTIMAL ESTIMATION IN WIRELESS SENSOR NETWORKS

We study a regression problem with sparse measurements [2], [101], arising from dis-
tributed estimation in wireless and ad-hoc sensor networks. Let us consider some sen-
sors {1,2, . . . , N } =: I and some sources {1,2, . . . ,P } =: P , spatially distributed on a plane
in the square [0,1]× [0,1]. Each source p emits a signal ȳp ∈ R, sensed by all the sensors
in a radius rs > 0; in turn, each sensor i measures

hi := Hi col((ȳp )p∈N I(i ))+wi , (7.40)

where hi ∈Rnhi , Hi is a known output matrix, wi is the measurement noise, and N I(i ) is
the set of sources positioned less than rs away from sensor i . Sensor i can send informa-
tion to all the peers in a radius r i

c (e.g., proportional to the sensor specific power); this
induces a directed communication network GC = (I ,EC) among the sensors, which we
assume to be strongly connected (see Figure 7.4 for an illustration).
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Figure 7.4: Distribution of sources (red) and sensors (blue): the sensors in the red circle receive signal from
source p, while all those in the blue circle can receive by (but not necessarily sent to) sensor i .

LINEAR REGRESSION

In our first simulation, the sensors’ goal is to collaboratively solve the least square prob-
lem

min
y∈RP

∑
i∈I

∥∥∥hi −Hi col((yp )p∈N I(i ))

∥∥∥2
, (7.41)

which is in the form (7.26). We seek a solution via algorithm (7.37), comparing the per-
formance for two choices of the design graphs:

• Standard: W D
p ’s are chosen as in (7.3);

• Customized: W D
p ’s are chosen by (approximately) solving Problem 7.1(i) with: “( iii)

GD
p = GC|N E(p) is strongly connected and has minimal number of nodes” (solved as a

SCSS problem, see Section 7.7.1).

We set N = 100, P = 20, and randomly generate sensor/sources positions as in Fig-
ure 7.4. We choose rs = 0.2, and draw each r i

c uniformly in [r min
c ,r min

c + 0.1]. For all
i ∈ I , we fix nhi = 10, we generate Hi by first uniformly drawing entries in [0,1] and
then normalizing the rows to unitary norm, we draw each element of wi from an unbi-
ased normal distribution with variance 0.1; each signal ȳp is uniformly randomly cho-
sen in [0,1]; the step size is set as γk = k−0.51 in (7.37).13 The advancement is evaluated
via the merit function V(y) := max{∥diag(( 1

Np
I )p∈P )Π⊥y∥∥∇y f (y⋆)∥, | f (Π∥y)− f (y⋆)|},

where y⋆ = C (y⋆) and y⋆ solves (7.41). Figure 7.5 shows the results for different values
of r min

c , where a higher value induces a denser graph GC. For r min
c = 0.1, the customized

method is 15 times faster then the standard one. Increasing r min
c only marginally re-

duces the per-iteration communication cost of the customized method. In fact already
for r min

c = 0.25, the graph GC|N I(p) is strongly connected for all p ∈P , so GE = GI can be

13Although the bounded subgradient assumption in Theorem 7.4 fails, boundedness of the sequences gener-
ated by (7.37), and hence convergence, can be established based on coercivity of the cost function.
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Figure 7.5: Linear regression via algorithm (7.37), for different values of the minimum sensor communication
radius r min

c and stopping criterion V(y) ≤ 10−2 (bottom), and the trajectories obtained with r min
c = 0.1 (top).

chosen: in other terms, the condition in Example 7.6, (Section 7.7.1) are satisfied, simi-
larly to the situation assumed – for undirected graphs – in the numerical examples in [2],
[3]. In this situation, the customized method achieves a reduction of the communication
cost (where sending a variable to all the neighbors on GC has a cost of 1, in a broadcast
fashion) of over 99.9%.

LASSO

We assume that only 30% of the sources emits a signal at a given instant (the vector ȳ is
sparse). The agents collaboratively solve the following problem, regularized to promote
sparsity,

min
y∈RP

∥y∥1 +
∑
i∈I

∥∥∥hi −Hi col(yp )p∈N I(i )

∥∥∥2
,

where ∥ · ∥1 is the ℓ1 norm. By defining fi ((yp )p∈N I(i )) = ∥hi − Hi col((yp )p∈N I(i ))∥2 +∑
p∈N I(i )

1
|N I(p)| |yp |, we retrieve the form (7.26). We set I = 10, P = 20, r min

c = 0.1, nhi = 1

for all i , generate random positions for the sensors and sources, and choose the other pa-
rameters as above, for both the standard and customized methods. Figure 7.6 compares
the results for different values of rs. For larger rs, the interference graph GI is denser, and
the gap between customized and standard method decreases: in fact, for rs = 0.8 the two
algorithms coincide, as GI is complete.
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Figure 7.6: LASSO via algorithm (7.37), and different source ranges rs.

7.6. CONCLUSION

W E presented END, a graph-theoretic language of consensus in distributed itera-
tions. END algorithms allow for unprecedented flexibility in the exchange of vari-

ables, while introducing little technical complication in the analysis with respect to their
standard counterparts. From a design perspective, END enables exploiting the intrin-
sic sparsity of a specific problem to improve scalability and reduce communication and
memory bottlenecks. Besides the equilibrium seeking and optimization instances we
considered, END can find application in virtually any distributed decision problem, for
example common fixed point computation [62], multi-cluster games, aggregative opti-
mization [90].

In principle, END algorithms could also be combined with other communication-
reduction techniques, such as data sparsification or compression [81], to further en-
hance efficiency. Future work should focus on computationally efficient and distributed
methods to perform the allocation of the estimates; in particular, it would be highly valu-
able to dynamically assign the estimates online, thus avoiding the need for any a priori
design.

7.7. APPENDIX

7.7.1. EXAMPLES OF THE END DESIGN PHASE

In this section, we present some examples of Problem 7.1(i) and discuss choices for the
design and estimate graphs.

MINIMAL MEMORY ALLOCATION

We consider the problem of minimizing, for each P , the number of copies of yp , pro-
vided that the conditions in Problem 7.1(i) and 7.1(ii) are satisfied and the graphs
{GD

p }p∈P enjoy some connectivity properties. In particular, consider Problem 7.1 with

(iii) for each p ∈P , GD
p is rooted at rp ∈ I [respectively, GD

p is strongly connected / GD
p is

undirected and connected]; the number |N E(p)| of nodes in GD
p is minimal (pro-

vided that all the other specifications are satisfied).
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If the problem is feasible, then by definition a solution is given by choosing each14 GD
p

as a solution of UDST(GC,rp ,N I(p)) [respectively, a solution of SCSS(GC,N I(p)) / a solu-

tion of UST(GC,N I(p))] (see Appendix B.3 for the definition of these Steiner problems).
In fact, this is the design choice suggested in [2], [98] (for the case of undirected graphs).
A sufficient condition for the existence of a solution is that the graph GC is strongly con-
nected [respectively, the graphGC is strongly connected / the graphGC is undirected and
connected]. A simple example is also illustrated in Figure 7.1.

Note that the solution is generally not unique. For example, let GUDST =
(VUDST,EUDST) be a solution of UDST(GC,rp ,N I(p)); then any graph G′ such that
GUDST ⊆ G′ ⊆ GC |VUDST is also a solution for Problem 7.1. In simple terms, we can add

edges to GUDST, an extra degree of freedom that can be employed to improve connectiv-
ity or robustness to link failures (possibly at the cost of extra communication).

OTHER CRITERIA

One can impose a different connectedness/efficiency specification on each graphs GD
p

(see Figure 7.1). Concerning the efficiency specifications, instead of minimizing the
overall dimension of ỹ , it can be convenient to promote allocations where the mem-
ory occupation (or the communication requirements) are partitioned equally among the
agents: for example, assuming that undirected connected graphs are required, this could
be achieved by sequentially designing the graphs GD

p ’s as solutions of a Steiner tree prob-
lem, but penalizing unbalanced allocations by opportunely choosing the edge weights
for each p. Bandwidth constraints can be addressed similarly, to avoid overloading some
channels of the communication network GC.

DESIGNING THE COMMUNICATION GRAPH

Here, we consider the graph GC as given, which is natural for ad-hoc networks or when
relying on existing infrastructures. Yet, other works [54], [121], [123] assume that the
communication network can be freely designed. In the END framework, this case is
addressed by formally assuming that GC is complete; then the graphs {GD

p }p∈P can be

chosen to fulfill some specifications (e.g., minimize the number of active edges in GC –
which determines the physical channels/edges actually needed).

COMPUTATIONAL COST

Many of the design problems considered in this section can be cast as Steiner problems
(see Appendix B), for which off-the-shelf algorithms are available [37], sometimes even
distributed [107]. While this is good news, it also reveals that solving Problem 7.1 can be,
by itself, computationally demanding15. Let us emphasize that Problem 7.1 is still part of
the development of an algorithm, to be subsequently used to solve an underlying deci-
sion problem. Are the benefits of an efficient estimate allocation – in terms of algorithm
execution – worth the additional initial design effort?

14Note that in this case Problem 7.1 splits into P independent problems, as Problem 7.1(ii) is equivalent to "(ii)
N I(p) ⊆N E(p), for all p ∈P .

15The Steiner problems considered are NP-hard, but polynomial algorithms are available to approximate a so-
lution. Note that generally it is not necessary to solve Problem 7.1 to optimality, as long as the approximated
solution ensures the feasibility conditions (e.g., connectedness).
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If GI is dense, it may be convenient to settle for a suboptimal,16 but readily available,
choice – for instance, ignoring the sparsity of GI, as in (7.3) (which is the standard solu-
tion in literature [102], [109]). On the contrary, for repeated problems like distributed op-
timal estimation or model predictive control [98] (where the same function is minimized
multiple times, but for different values of some parameters/measurements), a careful a
priori design is advantageous, despite the initial (one-time) computational cost of solv-
ing Problem 7.1. Finally, in many relevant applications, the specific problem structure
renders the choice of optimal graphs GD

p straightforward, as exemplified next.

Example 7.5 (Partitioned optimization). Motivated by distributed estimation and re-
source allocation applications, the works [53], [104], [138] solve optimization problems
of the form

min
yi∈Rnyi ,i∈I

∑
i∈I fi (yi , (y j ) j∈N C(i )), (7.42)

where the cost fi of agent i depends on its local action yi and on the actions of its neigh-
bors over the undirected communication network GC: this is a special case of Exam-
ple 7.1, with P = I , N I(i ) =N C(i )∪ {i }. Consider Problem 7.1, with “(iii) ∀i ∈ I , GD

i is

connected; GD
i has minimum number of nodes (provided that all other specifications are

met)”. A solution is to fix each GD
i as the undirected star graph centered in i with vertices

VD
i =N I(i ): then agent i keeps all and only proxies of the actions that affect its cost. In

fact, this is the solution employed in [53], [104], [138]. □

Example 7.6 (GE =GE). With the goal of minimizing the overall memory allocation, con-
sider the choice

GD
p =GC|N I(p), ∀p ∈P . (7.43)

In this case, GE = GI, i.e., each agent only estimates the minimum amount of variables
needed for local computation. This is only a viable option if the resulting graphs {GD

i }i∈I
ensure the desired connectedness properties in Problem 7.1(iii), which cannot be ex-
pected in general (see GD

1 in Figure 7.1), but holds in some cases (e.g., Example 7.5, GD
2

in Figure 7.1; see also [121, Asm. 5], [123, Asm. 6] for sufficient conditions in the context
of NE seeking). □

7.7.2. PROOFS

PROOF OF THEOREM 7.1
We study convergence of (7.14) in the space weighted by Ξ ≻ 0. Let y⋆ := C (x⋆), where
x⋆ is the NE of (7.10). Our proof is based on the following lemma.

Lemma 7.3. Let F (y) :=W D y −αR⊤F (W D y). Then, for any y ∈Rny , it holds that

∥F (y)−F (y⋆)∥Ξ ≤p
ρα∥y − y⋆∥Ξ. □

16Namely, ensuring the feasibility conditions in Problem 7.1(iii) (hard constraints), but not efficient in terms
of memory/communication requirements.
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Proof. Let y = y ∥+y⊥, where y ∥ := diag(((1Ni qD
i
⊤

)⊗Inxi
)i∈I )y ∈ C , and thus y ∥ = C (y∥)

for some y∥ ∈Rny . Let ŷ :=W D y = y ∥+ ŷ⊥, where ŷ⊥ :=W D y⊥ =W Ddiag(((I −1Ni qD
i
⊤

)⊗
Inxi

)i∈I )y and we used that W D y ∥ = y ∥ = C (y∥) (by row stochasticity). By Assumption 7.5,

we have qD
i 1⊤

Ni
Qi W D

i (I −1Ni qD
i
⊤

) = 0, and hence 〈y ∥, ŷ⊥〉Ξ = 0. Therefore

∥(ŷ −αR⊤F (ŷ))− (y⋆−αR⊤F (y⋆))∥2
Ξ

= ∥y ∥− y⋆∥2
Ξ+∥ŷ⊥∥2

Ξ

+α2∥R⊤(F (ŷ)−F (y ∥)+F (y ∥)−F (y⋆))∥2
Ξ

−2α〈ŷ⊥,R⊤(F (ŷ)−F (y⋆)〉Ξ
−2α〈y ∥− y⋆,R⊤(F (ŷ)−F (y ∥)〉Ξ
−2α〈y ∥− y⋆,R⊤(F (y ∥)−F (y⋆)〉Ξ.

≤ ∥y ∥− y⋆∥2
Ξ+∥ŷ⊥∥2

Ξ+α2(θ̄∥ŷ⊥∥Ξ+θγ̄∥y ∥− y ∥∥Ξ)2

+2αθ̄∥ŷ⊥∥Ξ(∥y ∥− y⋆∥Ξ+∥ŷ⊥∥Ξ)

+2αθγ̄∥y ∥− y⋆∥Ξ∥ŷ⊥∥Ξ−2αµγ2∥y ∥− y⋆∥2
Ξ (7.44)

where the last inequality follows by the Cauchy–Schwartz inequality and using that
∥R⊤v∥2

Ξ ≤ maxi∈I {[Qi ]ii ,ii }∥v∥2 for all v ∈ Rnx , because RΞR⊤ = diag(([Qi ]ii ,ii I )i∈I ); that
F is θ-Lipschitz continuous if F is (see [23, Lem. 3]); finally, that ∥F (y ∥) − F (y⋆)∥2 =
∥F (y∥)−F (x⋆)∥2 ≤ θ2∥y∥−x⋆∥ = θ2∥y ∥− y⋆∥diag((Qi⊗I /(1⊤Qi 1))i∈I ) (the last equality due to

(y ∥− y⋆) ∈ C ) and similarly that 〈y ∥− y⋆,R⊤(F (y ∥)−F (y⋆))〉Ξ = 〈y∥−x⋆,F (y∥)−F (x⋆)〉 ≥
µ∥y∥−x⋆∥2 =µ∥y ∥− y⋆∥2

diag((Qi⊗I /(1⊤Qi 1))i∈I )
, (by using the normalization [1⊤Qi ]ii = 1 in

Assumption 7.5). In addition, by Assumption 7.4, we have ∥ŷ⊥∥Ξ = ∥W D y⊥∥Ξ ≤ σ̄∥y⊥∥Ξ;
together with (7.44), this yields

∥F (y)−F (y⋆))∥Ξ

≤
[∥y ∥− y⋆∥Ξ

∥y⊥∥Ξ
]⊤

Mα

[∥y ∥− y⋆∥Ξ
∥y⊥∥Ξ

]
≤ λmax(Mα)(∥y ∥− y⋆∥2

Ξ+∥y⊥∥2
Ξ)

= λmax(Mα)∥y − y⋆∥2
Ξ.

■
To conclude the proof of Theorem 7.1, we note that (7.14) is equivalently written

as y k+1 = projΞΩ
(
W D y k −αR⊤F (W D y k )

)
, where projΞΩ is the projection in the space

weighted by Ξ. In fact, projΩ = projΞΩ block-wise under either Assumption 7.5(i) (due
to block diagonality of Qi and the rectangular structure ofΩ) or Assumption 7.5(ii) (triv-
ially). Moreover, y⋆ is a fixed point for (7.14). By nonexpansiveness of the projection
operator [8, Prop. 12.28], we can finally write

∥y k+1 − y⋆∥Ξ = ∥proxΞg (F (y))−proxΞg (F (y⋆))∥Ξ
≤ ∥F (y)−F (y⋆)∥Ξ,

and the conclusion follows by Lemma 7.3. ■
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PROOF OF THEOREM 7.2 (SKETCH)

We can rewrite (7.24) in terms of the variable s := σ−B x −b by replacing σk with sk +
B xk +b in (7.24a), and (7.24b) with

sk+1 = sk −βLD,σ(sk +B xk +b), (7.45)

and s0 = 0. Let us defineω := col(x, s, z ,λ),

A(ω):=


αF̃ (x,σ)+B⊤LD,σσ

LD,σσ

0
b


︸ ︷︷ ︸

:=A1

+


A⊤λ

0
−LD,λλ

LD,λz − Ax


︸ ︷︷ ︸

:=A2

+


NΩ

0
0
0


︸ ︷︷ ︸

:=A3

(7.46)

Φ :=


β−1I 0 0 A⊤

0 β−1I 0 0
0 0 β−1I LD,λ

−A 0 LD,λ β−1I

 , (7.47)

where σ is not not a variable but just shorthand notation for σ= s +B x +b. We assume
that β > 0 is chosen small enough, such that Φ ≻ 0. The proof is based on the following
auxiliary results.

Lemma 7.4 (Invariance). For all k ∈N ,Πσ∥ sk = 0. □
Proof. It follows by induction, by using (7.25) and (7.45). ■

Lemma 7.5 (Algorithm derivation). The iteration in (7.24), with (7.24b) replaced by
(7.45), can be written as

A2(ωk+1)+A3(ωk+1) =A1(ωk )+Φ(ωk+1 −ωk ), (7.48)

with A1, A2, A3 as in (7.46). □
Proof. It follows by expanding the terms, and by recalling that (Id+NΩ)−1 = projΩ. ■

Lemma 7.6 (Fixed points). The fixed points of (7.48) coincide with zer(A). The set
zer(A) ∩ Σ := {ω | Πσ∥ s = 0} is nonempty. Moreover, for any ω⋆ = (x⋆, s⋆, z⋆,λ⋆) ∈
zer(A)∩Σ, we have that σ⋆ := s⋆+B x⋆+b = C (σ(x⋆)), λ⋆ = C (λ⋆), where (x⋆,λ⋆) solve
(7.17), hence x⋆ is the v-GNE of the game in (7.10). □

Proof. (7.48) is the FB algorithm [8, §26.5] applied to the operator Φ−1A; it is known
that its fixed points are the zeros of A [109, Lem. 2]. Consider any ω⋆ ∈ zerA∩Σ. Note
that σ⋆ = Πσ∥ σ

⋆ = Πσ∥ s⋆ +Πσ∥ B x⋆ +Πσ∥ b = Cσ(σ(x⋆)), where the first equality follows
by the second row in (7.46) and Assumption 7.6 (and Lemma 7.1), and the second by
definition of B , b and Πσ∥ . By the third row in (7.46), λ⋆ ∈ Cλ; in turn, the first row re-
trieves the first KKT condition in (7.17). The second condition in (7.17) is obtained by
left-multiplying the last row in (7.46) by Πλ∥ . Conversely, zer(A)∩Σ ̸= ∅ can be shown
similarly to [22, Lem. 10]. ■
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Lemma 7.7 (Monotonicity properties). The operator A2 +A3 is monotone. For any α
small-enough, the operator A1 is η-restricted cocoercive, for some η > 0: for all ω ∈ Σ
and allω⋆ ∈ zer(A)∩Σ, 〈A1(ω)−A1(ω⋆),ω−ω⋆〉 ≥ η∥A1(ω)−A1(ω⋆)∥2. □

Proof. For the first part, A1 is monotone because it is a skew-symmetric linear oper-
ator [8, Ex 20.35], A2 is monotone because NΩ is [8]. The second statement follows as in
[64, Lemma 4] by using Lemma 7.2, that F̃ is Lipschitz, that F̃ (x,Πσ∥ σ) = F (x) and F (x) is
strongly monotone. ■

Lemma 7.5 recasts (7.24) as a preconditioned FB algorithm [109], applied to the op-
erators A1, A2 +A3, with preconditioning matrix Φ. Then, with Lemma 7.7 in place and
restricting the analysis to the invariant subspace Σ, the convergence of (7.48) to a fixed
point can be shown in the space HΦ analogously to [109, Th. 2]; finally, Lemmas 7.4
and 7.6 characterize such a fixed point as per statement. ■

PROOF OF THEOREM 7.3
We adapt the proof of [144, Th. 24]. We note that z0 = 0ny ∈ range(B); by the con-
ditions 7.3(i) and 7.3(iv), the update in (7.30), and an induction argument, we have
y k , zk ∈ range(B), for all k ≥ 1. Hence, we rewrite (7.30) as

y k = B y k , zk = γB zk (7.49a)

y k+1 = D y k −γ(∇y f (y k )+ zk ) (7.49b)

zk+1 = zk + 1
γC y k+1 (7.49c)

for all k ≥ 1. Let Φ(y , z) := f (y)+〈y , z〉; the form in (7.49) can be exploited to prove the
following lemma.

Lemma 7.8. Let (y k , y k , zk ) be a sequence generated by (7.49). Then, for all y ∈ C , z ∈ C⊥,
it holds that:

Φ(y k+1
avg , z)−Φ(y , z) ≤ 1

2k h(y , z),

where h(y , z) := 1
γ∥y 0 − y∥2

D +γ ∥B−Π∥∥
λ

∥z∥2 and λ := min{(λ2(Cp ))p∈P }. □
Proof. The proof is analogous to that of [144, Lemma 23], and omitted here. Note

that [144] uses a matrix notation (i.e., y ∈RI×n), while we need a stacked notation (as the
vectors (y i )i∈I are not homogeneous in size). Nonetheless, (7.49) matches [144, Eq. (33)],
which allows us to repeat all the steps in [144, Lem. 23] (with the only precaution of
replacing J , span(1m), λ2(C ) in [144] withΠ∥, C , λ). ■

For all z ∈ C⊥ (so that 〈z , y⋆〉 = 0), setting y = y⋆ in Lemma 7.8, together with
the definition of Φ, yields f (y k

avg) − f (y⋆) + 〈y k
avg, z〉 ≤ 1

2k h(y⋆, z). Further choosing

z = 2
Π⊥y k

avg

∥Π⊥y k
avg∥

∥z⋆∥, with z⋆ :=−∇y f (y⋆), leads to

f (y k
avg)− f (y⋆)+2∥z⋆∥

∥∥∥Π⊥y k
avg

∥∥∥≤ 1
2k h(y⋆,2z⋆). (7.50)

By convexity and since z⋆ ∈ C⊥ (by optimality conditions), it holds that f (y k
avg)− f (y⋆) ≥

−〈y k
avg − y⋆, z⋆〉 =−〈Π⊥y k

avg, z⋆〉 ≥−∥Π⊥y k
avg∥∥z⋆∥; the latter inequality and (7.50) imply

M(y k
avg) ≤ 1

2k h(y⋆,2z⋆). ■
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PROOF OF THEOREM 7.4
Note that, for each p ∈P , (7.37) is the standard perturbed push-sum protocol [102,
Eq. (4)], with perturbation term −γk g k+1

i ,p . Therefore, since g k+1
i ,p is uniformly bounded

by assumption and by the choice of (γk )k∈N , we can apply [102, Lem. 1] to infer that, for
all i ∈ I , p ∈N E(i )

lim
k→∞

∥y k
i ,p − z̄k

p∥ = 0, (7.51)∑∞
k=0γ

k∥y k
i ,p − z̄k

p∥ = 0, (7.52)

where z̄k
p := 1

Np

∑
i∈N E(p) zk

i ,p ∈Rnyp , for all k ∈N . Let us also define z̄k := col((z̄k
p )p∈P ) ∈

Rny . By (7.37) and Assumption 7.7(ii), it follows that

z̄k+1
p = z̄k

p −γk 1
Np

∑
i∈N E(p) g k+1

i ,p . (7.53)

We next show that limk→∞ z̄k = y⋆ ∈Y⋆; then, the theorem follows by (7.51). The main
complication with respect to the proof of [102, Th. 1] is that we need a modification of
[102, Lem. 8] to cope with the non-homogeneity of the estimates.

Lemma 7.9. For all y⋆ ∈Y⋆, for all k ∈N , it holds that

∥z̄k+1 − y⋆∥2
D ≤ ∥z̄k − y⋆∥2

D −2γk ( f (z̄k )− f (y⋆))

+4Lγk
∑
i∈I

∑
p∈N E(i )

∥z̄k
p − ỹ k+1

i ,p ∥+ (γk )2N L2,

where D := diag((Np Inp )p∈P ). □
Proof. By (7.53), we have

∥z̄k+1 − y⋆∥2
D = ∥z̄k − y⋆∥2

D

−2γk
∑

p∈P

〈
z̄k

p − y⋆p ,
∑

i∈N E(p) g k+1
i ,p

〉
+ (γk )2

∑
p∈P

1
Np

∥∥∥∑
i∈N E(p) g k+1

i ,p

∥∥∥2
. (7.54)

The third addend on the right-hand side of (7.54) is bounded above by (γk )2N L2. For the
second addend, we have∑

p∈P

〈
z̄k

p − y⋆p ,
∑

i∈N E(p) g k+1
i ,p

〉
= ∑

i∈I

∑
p∈N E(i )

〈
(z̄k

p − y k+1
i ,p )+ (y k+1

i ,p − y⋆p ), g k+1
i ,p

〉
(a)≥ ∑

i∈I
−L∥col((z̄k

p )p∈N E(i ))− ỹ k+1
i ∥+ fi (ỹ k+1

i )− fi (y⋆)

(b)≥ ∑
i∈I

−2L∥col((z̄k
p )p∈N E(i ))− ỹ k+1

i ∥+ fi (z̄k+1)− fi (y⋆),
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where in (a) we used that g k+1
i ∈ ∂ỹ i

fi (ỹ k+1
i ) and convexity of fi , and (b) follows by

adding and subtracting (inside the sum) fi ((z̄k+1
p )p∈N E(i )) = fi (z̄k+1) and by L-Lipschitz

continuity of fi . The result follows by substituting the bound back into (7.54). ■
We finally note that, due to (7.52) and the choice of (γk )k∈N , the inequality in

Lemma 7.9 satisfies all the conditions of [102, Lem. 7], in the norm ∥ · ∥D ; hence we can
conclude that z̄k → y⋆, for some y⋆ ∈Y⋆. ■
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8
CONCLUDING REMARKS

Results? Why man, I have gotten a lot of results. I know several thousand things that
won’t work.

Thomas Edison

There will come a time when you believe everything is finished. That will be the
beginning.

Louis L’Amour

In this dissertation, we have studied distributed algorithms for generalized Nash equi-
librium seeking, fitted for coordination and control of modern complex network sys-
tems. In this last chapter, we summarize our contributions to the field of games in
partial-decision information, and we assess to which extent our research goals have been
achieved. Finally, we conclude the thesis by highlighting prominent open challenges and
research prospects.

139
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8.1. CONTRIBUTIONS

T HIS PhD dissertation contributes to the advancement of game-theoretical methods
for intelligent coordination of network systems, by developing distributed, center-

free approaches for GNE seeking. We focused on the partial-decision information sce-
nario, and designed algorithm integrating consensus dynamics within the local decision
processes. In detail, the novelties of this thesis are summarized as follows:

• Fully-distributed preconditioned proximal-point algorithms
We introduced the first single-layer fixed-step fully-distributed GNE seeking iter-
ations based on proximal best-response. In Chapter 2, we showed, theoretically
and numerically, that the proposed algorithms outperform the state of the art
methods, in terms of both computation and communication requirements. Our
operator-theoretic derivation also facilitates the convergence analysis in case of
aggregative games, acceleration schemes and inexact updates. Furthermore, in
Chapter 3, we proved that our proximal-point algorithms are suitable to address
convex games in partial-decision information under a mild condition that does
not require strong monotonicity nor smoothness of the game mapping.

• Feedback GNE seeking for dynamical agents
In Chapter 4, we designed continuous-time fully-distributed feedback compen-
sators to solve generalized (aggregative) games played by dynamical agents. We
focused on networks of feedback linearizable systems, and devised dynamic con-
trollers based on primal-dual pseudo-gradient algorithms. As a key contribution,
we proved closed-loop global asymptotic stability of the v-GNE, in the presence of
general nonlinear coupling constraints. Furthermore, our controllers can be tuned
in a totally decentralized way and without requiring any global information – on
the game or on the communication graph – thanks to the use of uncoordinated
integral gains.

• Games over switching and directed graphs
We addressed NE problems in partial decision information without requiring sym-
metric and time-invariant communication. In Chapter 5, we studied a pseudo-
gradient iteration that converges Q-linearly over time-varying, doubly-stochastic
networks. Thanks to an original convergence argument, we provided step sizes
bounds independent of the number of agents. In Chapter 6, we extended the
analysis to the case of a fixed, but row stochastic, networks, by using (for the up-
dates) the PF eigenvector, that can be computed online. In Chapter 7, we fur-
ther improved on this result and showed that single-iteration contractivity can be
achieved (in a suitable norm) by means of a small-enough step and without knowl-
edge of the PF eigenvector.

• Exploiting the game sparsity
In Chapter 7, we proposed a graph-theoretic language for design of efficient dis-
tributed algorithms, where the sparsity in the agents’ coupling is taken into ac-
count to reduce the amount of variables estimated and transmitted by each agent.
We also leveraged our framework to unify the convergence analysis of pseudo-
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gradient methods in full- and partial- decision information, and to develop a scal-
able solution method for a novel class of generalized aggregative games.

• Fundamental theoretical results and methods
Our research on games in partial-decision information also led to several fun-
damental results of independent and general interest. Here we mention: (i) the
analysis of the proximal-point algorithm under a mild restricted monotonicity as-
sumption, in Chapter 2; (ii) a methodology to study the dynamic tracking of a vari-
able in the context of operator-splitting methods (specifically, a forward step), by
means of a change of coordinates, in Chapters 2 and 4; (iii) a linear convergence
proof, based on contractivity and monotonicity properties over two complemen-
tary subspaces: this strategy – that immediately extends to different variational
problems over graphs – exploits orthogonality to provide stronger results with re-
spect to existing approaches (Chapter 5) and is suitable to cope with directed com-
munication (Chapters 6 and 7).

ANSWERING THE RESEARCH QUESTIONS
We next summarize how the key research questions formulated in Section 1.4 are ad-
dressed in this thesis.

Q1. How to achieve fast, scalable, communication-efficient, fully-distributed GNE
seeking?

Algorithms that are extremely fast and only require one communication per
update can be designed by leveraging preconditioned proximal-point methods,
based on consensus and proximal best-response dynamics, as shown in Chap-
ter 2. Beside their efficiency, PPPAs scale well with the network dimension and
their performance is guaranteed for a wide range of game parameters.

Alternatively, Chapter 5 proves that a a contractivity analysis can be exploited to
improve on the known step sizes bounds for a gradient-based fully-distributed NE
seeking iteration, thus achieving superior guaranteed convergence rate. This ap-
proach answers one key tuning problem of pseudo-gradient algorithms, where
large step sizes can jeopardize convergence, but theoretical upper-bounds are
usually impractically small.

Finally, independently of the methodology of choice, efficiency can (and should)
be enhanced by adjusting the algorithms to the specific structure of the applica-
tion at hand, for instance aggregative costs or partial coupling among the agents
(in the objectives or constraints). Chapter 8 copes with the latter issue, and pro-
vides a means to boost communication-efficiency and scalability, in many practi-
cal scenarios, via judicious design of sparsity-aware consensus dynamics.

Q2. What methods can be employed to relax monotonicity and smoothness require-
ments in GNE seeking under partial-decision information?

While some literature focuses on pseudo-gradient based algorithms for non-
strongly monotone games [66], [87], this dissertation puts forward the proximal-
point method, as a natural candidate to relax both monotonicity and smoothness



8

142 8. CONCLUDING REMARKS

assumptions for fully-distributed GNE seeking. Although the partial-decision in-
formation scenario introduces some technical difficulties, Chapter 3 shows that a
preconditioned proximal-point algorithm can be used to seek a GNE under the re-
stricted monotonicity of an augmented operator, a condition that can be difficult
to verify but is very mild in practice, requiring neither monotonicity nor continuity
of the game mapping.

Q3. How to design distributed controllers to solve GNE problems in the presence of
dynamical agents?

A modular solution is to study primal-dual fully-distributed continuous-time algo-
rithms for computing a GNE; then such algorithms can be employed as a building
block to design feedback controllers, depending on the specific physical dynamics
of the systems considered. For multi-integrator agents, this is achieved by means
of a proportional compensator and by leveraging a change of coordinates; in turn,
nonlinear agents with maximal relative degree can be addressed via a linearizing
feedback (Chapter 4). The stability analysis in this thesis is based on monotonic-
ity properties, and immediately extends to some networks of passive agents [118],
or even passive networks of dynamically interconnected systems. The approach
is complementary to methods based on singular perturbation (where exponential
stability is required) [15], [111], all together providing a solid base to address GNE
problems for a broad class of dynamical systems.

Q4. How to analyze convergence to an equilibrium in games played over directed,
time-varying communication networks?

For strongly monotone NE problems in partial-decision information, the conver-
gence of pseudo-gradient algorithms can be studied by looking at one-step con-
tractivity properties of the iterates. In fact, for the case of doubly stochastic (bal-
anced) communication, Q-linear convergence can be proven even if the network
topology is time-varying, as shown in Chapter 5. While this thesis focused on net-
works that are (strongly) connected at every instant, the approach carries on to
jointly connected graphs. The case of row stochastic (unbalanced) networks is
more complex, because strong monotonicity of the game mapping and restricted
contractivity of the network matrix holds for two different inner products. This
problem is solved by using a modified algorithm (where the game mapping is
modulated by the PF eigenvector, as in Chapter 6), or by performing the analysis
in a suitably weighted space (Chapter 7). Unfortunately, this technique does not
extend to generalized games over directed (or time-varying) networks, for which
fixed-step solution methods are currently unknown.

8.2. FUTURE RESEARCH AND RECOMMENDATIONS

S OME prominent open problems specific to the field of GNE seeking under partial-
decision information, directions for future research, as well as possible extensions of

the results in this thesis, are discussed next:

• Solving merely monotone games
In Chapter 3, we have proven convergence of our PPPA under the restricted mono-
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tonicity of an augmented operator, depending both on the game and network pa-
rameters. While this condition is significantly weaker than the (usually postulated)
strong monotonicity of the game mapping, it is often hard to verify: future work
should provide sufficient conditions for its satisfaction, at least for some preva-
lent classes of games (e.g., linearly coupled). It would be also highly valuable to
extend the applicability of our method by studying its convergence under (mere)
monotonicity of the game mapping, a well-studied assumption for which analyti-
cal tests are available. In fact, the only works that address merely monotone GNEPs
via fully-distributed algorithms require double-layer iterations [148] or vanishing
step sizes, which compromise efficiency and prevent real-time implementation.
How to solve merely monotone (possibly smooth) GNEPs, under partial-decision
information, via single-layer and fixed-step methods? Working out this question
in its full generality (with no further assumptions, if at all possible) will likely re-
quire a new methodological approach, that does not rely on the monotonicity of
extended operators (cf. Chapters 3 and 4) nor on the contractivity of game-related
mappings (cf. Chapter 5).

• GNE seeking over directed and time-varying networks
The approach in Chapters 5 and 7 to solve strongly monotone NEPs over a directed
graph could be extended, with some modifications, to prove linear convergence in
the case of time-varying networks (not necessarily strongly connected at every it-
eration). More complex is the case of games with coupling constraints. If allowing
for vanishing step-sizes, and having access to column-stochastic weights, fully-
distributed iterations can be obtained by leveraging known consensus protocols
(e.g.,, [125, §3]) and a Krasnosel’skii-Mann analysis as in [10]; nonetheless, it is not
clear how to study fixed-step methods. The technical complications are similar to
those encountered with merely monotone games (since the KKT operator, enclos-
ing the primal-dual optimality conditions, is not strongly monotone, even if the
game mapping is), although the problem exhibits more structure. For the case of
asymmetric but time-invariant communication, a promising option is the choice
of a non-self adjoint preconditioning matrix, for our PPPA (Chapter 2) or for pre-
conditioned FB methods as in [109], an idea that was first proposed in [34].

• Dealing with disturbed and constrained dynamical agents
Chapter 4 introduced feedback controllers to achieve a GNE when the agents’ dy-
namics are perfectly modeled. Future work should consider the presence of un-
known disturbances, measurement noise and parametric uncertainties. Current
approaches for NEPs [116], [154] exploit ISS, which would not be ensured for non-
strongly monotone games. One interesting alternative is to leverage the integral
input-to-state stability properties guaranteed by averaged operators [41], when
disturbances can be asymptotically compensated. Moreover, in safety critical ap-
plications (e.g., autonomous driving), it is paramount to enforce certain operat-
ing constraints at every instant, even during the system transient. This problem
was addressed, for a particular class of passive systems with output constraints, in
[117], [118] (based on penalty methods). Nonetheless, the problem remains largely
unexplored for more general dynamics and for the case of input constraints.
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• Equilibrium seeking for passive networks and power systems
The fully-distributed feedback controllers developed in Chapter 4 are also suit-
able (under mild assumptions) for GNE seeking in dynamical networks with
equilibrium-independent passivity properties [128]. In general, this further re-
quires the design of a smart feedforward term or a suitable integral action, to ren-
der the unknown GNE a steady state. The most interesting case is that of systems
with cyberphysical coupling, where the agents’ physical dynamics are also inter-
twined. This scenario arises for instance in multi-agent power flow problems on
passive energy networks [48], where each microgrid is regarded as a self-interested
decision maker, that aims at maximizing its profit while obeying power balance
coupling constraints. One of the main complications is that the power demand is
typically unknown and acts as a disturbance on the dynamical network, making
the design of fully-distributed GNE seeking controllers in this setup a challenging
problem.

• Pseudo-gradient methods for nonsmooth games
Nonsmooth GNEPs (where the part of the pseudo-gradient that couples the agents
is not Lipschitz) were solved via resolvent based iterations, as the Douglas–
Rachford [75] or the proximal point (Chapter 3) algorithms. It would be also in-
teresting to study gradient-based alternatives, resting on either line search [152]
or adaptive rules for the step sizes that can account for local smoothness [96].
Whether such procedures can be effectively implemented in a distributed way –
and beat the performance of implicit methods – is the question to be answered in
future research.

• Design of adaptive step sizes and dynamic estimate assignment
In the literature of fully-distributed GNE seeking algorithms, the theoretical
bounds for the step sizes are typically: (i) dependent on global parameters, not
available locally; (ii) based on a worst-case scenario, hence overly conservative in
practice (as demonstrated by our numerical studies). A solution to both issues is
provided by adaptive step sizes (updated online), that can greatly improve con-
vergence speed and allow for a fully uncoordinated tuning, without giving up on
a-priori convergence guarantees. While we have successfully exploited this op-
tion for the continuous-time method (Chapter 4), it would be highly valuable to
design adaptive rules for discrete-time algorithms as well. To further decentralize
the algorithm deployment, future work should also focus on computationally ef-
ficient and distributed methods to dynamically assign the estimates kept by each
agent (see Chapter 7), for instance in the spirit of [5]. This could reduce memory
and communication overhead for sparse problems, without requiring preliminary
design effort and even allowing for plug-and-play operation.

• Performance guarantees
With regards to strongly monotone non-generalized games, in Chapters 2 and 5
we provided algorithms with faster guaranteed linear convergence rate, compared
to the existing literature. One intriguing unresolved question is whether meth-
ods can be designed where: (i) the step sizes can be chosen independently of the
communication topology; (ii) the convergence rate depends on the parameters of
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the game and of the network in a decoupled way (and possibly matches the rate
of centralized algorithms for sufficiently connected, but not complete, graphs).
This rate separation was only recently achieved for consensus optimization [91],
[144]. It would be also interesting to study assumptions that can ensure linear con-
vergence to an NE, under partial-decision information, in the absence of strong
monotonicity. For instance, can linear convergence be achieved when the (merely
monotone) game mapping is inverse Lipschitz continuous (see Chapter 3)? Such
property ensures uniqueness of the equilibrium, as well as the contractivity of cer-
tain resolvents, a fact that could be used in the analysis. Also challenging is the
case of games with multiple NEs, where geometric convergence should be to the
set of solutions.

• Research beyond the scope of this thesis
We next mention some critical issues, often encountered in engineering systems
and practical implementation, that were not addressed in this dissertation:

– Stochasticity: In application like transportation systems and electricity mar-
kets, the uncertainty on some quantities is modeled via stochastic GNEP, with
expected value cost functions. This setup was addressed in [59] via a fully-
distributed pseudo-gradient method. To improve the sample efficiency, an
attracting idea would be to instead exploit proximal-best response dynamics
as in Chapter 2.

– Asynchronicity and imperfect communication: Asynchronous algorithms can
reduce idle time, transmission and memory-access congestion, and elimi-
nate the need for synchronization, which is costly in large networks. Al-
though some GNE seekinh methods that allow the use of delayed informa-
tion have been introduced [35] – even in partial-decision information [150]
– it would be valuable to analyze algorithms in the more general partially
asynchronous scenario [18], to ensure convergence in face of lossy commu-
nication and uncoordinated updates as well. It would be also interesting to
quantify the robustness of GNE seeking algorithms to noisy communication
(in the absence of coupling constraints, this can be done via ISS arguments,
see Chapter 5).

– Presence of adversarial agents: As partial-decision information methods rely
on peer-to-peer data exchange, they are inherently prone to communication
attacks and susceptible to the presence of non-truthful – or even adversarial
– decision makers. This problem was first addressed, via a resilient consen-
sus protocol, in [65], [67], but for unconstrained games only and under some
restrictive assumptions.

– Time-varying games: The agents in a game often operate in a dynamic en-
vironment, for instance in GNEP for multiple autonomous vehicles, power
system applications and cognitive radio networks. In such context, it might
be necessary to explicitly account for the evolution of the environment, via
non-constant objective functions (or constraints), with the goal of tracking a
GNE of the time-varying game [16]. To the best of our knowledge, this prob-
lem was not addressed in games under partial-decision information.
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8.3. A BIRD’S-EYE VIEW

W ITH the increased complexity and liberalization in large-scale multi-agent engi-
neering systems, game theory is emerging as a powerful framework to achieve ro-

bust and efficient operation of many critical infrastructures. The present dissertation
focuses on games played in the partial-decision information scenario. Addressing such
a setup is a fundamental building block for the development of coordination mecha-
nisms that can improve dependability – and save money and energy – in multi-agent
autonomous driving systems, cognitive radio systems, and virtually in any network ap-
plication where the decision makers can only rely on peer-to-peer communication.

While network optimization has come a long way, the research in GNE seeking under
partial-decision information is still in its infancy. The field has been increasingly recog-
nized in the latest years, for aggregative games and beyond; the original technical chal-
lenges arising in this setup are even stimulating the development of novel mathematical
tools, distributed learning and operator-theoretical methods. Nonetheless, many essen-
tial questions demand an answer, before a reliable practical implementation is possible.
In this perspective, this thesis advances the theoretical understanding of games in the
partial-decision information scenario, and provides a broad tool kit for designing effi-
cient algorithmic solutions, suitable to cope with complex network interaction and dy-
namic coupling. We hope this work will bring the deployment of fully-distributed GNE
seeking methods in industry one step closer.
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A
BASIC NOTATION

T HE following notation is used throughout the disseration. For convenience, a list of
symbols is also provided at the end of the thesis.

• N is the set of natural numbers, including 0.

• R is the set of real numbers, R≥0 is the set of nonnegative real numbers, R>0 is the
set of positive real numbers, R :=R∪ {∞} is the extended real line.

• Rq is the set of real (column) vectors of dimension q , Rq
≥0 is the set of nonnegative

real vectors of dimension q.

• (a,b) and [a,b] denote open and closed intervals, i.e., (a,b) = {x ∈ R | a < x < b},
[a,b] = {x ∈R | a ≤ x ≤ b};

• Rp×q is the set of real matrices with p rows and q columns, Rp×q
≥0 is the set of real

matrices, with p rows, q columns and nonnegative elements.

• ℓ1 is the set of absolutely summable sequences.

• X×Y ,X∪Y ,X∩Y ,X \Y ,X+Y denote the Cartesian product, union, intersection,
difference and Minkowsi sum of two sets X and Y , respectively.

• 0q ∈Rq is a vector with all elements equal to 0; 1q ∈Rq is a vector with all elements
equal to 1; Iq ∈ Rq×q is an identity matrix. The subscripts may be omitted when
the dimension can be inferred from the context.

• ei denotes a vector of appropriate dimension with i -th element equal to 1 and all
other elements equal to 0.

• ⊗ denotes the Kronecker product.

• Given f : R→ R and g : R→ R, the notation f (x) = O(g (x)) means that there exist
ϵ,c > 0 such that f (x) ≤ cg (x) for all x such that ∥x∥ ≤ ϵ.
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• For a matrix A ∈Rp×q :

– A⊤ is its transpose;

– [A]i , j is the element on row i and column j ;

– null(A) := {x ∈Rq | Ax = 0n} is the null space of A;

– range(A) := {v ∈Rp | v = Ax, x ∈Rq } is the range of A;

– if A is square, then det(A) is its determinant, ρ(A) is its spectral radius, Λ(A)
is its spectrum;

– σmin(A) =:σ1(A) ≤ . . . ≤σq (A) =:σmax(A) denote the singular values of A;

– ∥A∥ =σmax(A) is the largest singular value of A;

– ∥A∥∞ is is the maximum of the absolute row sums of A.

• If A = A⊤ ∈Rq×q is a symmetric matrix, then:

– λmin(A) =: λ1(A) ≤ . . . ≤ λq (A) =: λmax(A) denote its eigenvalues;

– A ≻ 0 stands for a positive definite matrix;

– A ≽ 0 stands for a positive semidefinite matrix.

• Given N (column) vectors x1, x2, . . . , xN , we denote by col(x1, x2, . . . , xN ) :=[
x⊤

1 x⊤
2 . . . x⊤

N

]⊤
the concatenated vector.

• Given N matrices A1, A2, . . . , AN , we denote by diag(A1, A2, . . . , AN ) the block diag-
onal matrix with A1, A2, . . . , AN on its diagonal.

• Euclidean spaces
Given a symmetric positive definite matrix Rq×q ∋Φ≻ 0:

– 〈x | y〉Φ = x⊤Φy is theΦ-weighted inner product;

– ∥ ·∥Φ is theΦ-induced norm, i.e., ∥x∥2
Φ = 〈x | x〉Φ;

– HΦ := (Rq ,〈· | ·〉Φ) is the Euclidean space obtained by endowing Rq with the
Φ-weighted inner product;

– For a matrix A ∈Rp×q , itsΦ-induced norm is ∥A∥Φ := supx ̸=0
∥Ax∥Φ
∥x∥Φ .

In all cases, we omit the subscripts ifΦ= I . Unless otherwise stated, we assume to
work in H =HI . We emphasize that in this dissertation we always work in finite
dimensional spaces.



B
GRAPH THEORY

G RAPHS are used to mathematically model pairwise relations between objects. In this
appendix, we recall relevant notation, definitions and results from graph theory; we

refer to [70] for a complete discussion.

B.1. DEFINITIONS
Let us start by introducing the main definitions and notation used in this thesis.

• Graph
A (directed) graph G = (V ,E ) consists of a nonempty set of vertices (or nodes) V =
{1,2, . . . , N } and a set of edges (or links) E ⊆ V ×V . We emphasize that each edge
(v,u) ∈ E is an ordered pair. If (u, v) ∈ E whenever (v,u) ∈ E , then we say that G is
undirected.

• Operations on graphs
We use roman font superscripts to distinguish between different graphs and the
corresponding quantities (e.g., vertices, edges), as in GA = (VA,EA) and GB =
(VB,EB). We write GA ⊆ GB if GA is a subgraph of GB, i.e., if VA ⊆ VB and EA ⊆ EB.
We define GA ⋃GB := (VA ∪VB,EA ∪EB), and GA ⋂GB := (VA ∩VB,EA ∩EB). The re-
striction of the graph G to a set of vertices VA ⊆ V is defined as G |VA := (VA,E ∩
(VA ×VA)).

• Neighbors, paths and connectedness
Given a graph G = (V ,E ), we denote by Nv := {u | (u, v) ∈ E } and N v := {u | (v,u) ∈
E } the set of in-neighbors (or simply neighbors) and out-neighbors of vertex v ∈V ,
respectively. A path from v1 ∈ V to vN ∈ V of length T is a sequence of vertices
(v1, v2, . . . , vT ) such that (vt , vt+1) ∈ E for all t = 1, . . . ,T −1. G is rooted at v ∈ V if
there exists a path from v to each u ∈ V\{v}; we say that G is rooted if there exists
v ∈V such that G is rooted at v . G is strongly connected if there exist a path from u
to v , for all u, v ∈V ; if G is undirected, we simply say that G is connected. Clearly, a
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connected graph is strongly connected, and a strongly connected graph is rooted.
A sequence of graphs (Gk )k∈N, where Gk = (V ,Ek ), is called Q-strongly connected

if the joint graph
⋃(k+1)Q−1

t=kQ Gk is strongly connected for all k ∈N.

• Bipartite graphs
A graph G = (V ,E ) is called bipartite if there exist two sets VA,VB ⊂ V such that
VA ∪VB = V , VA ∩VB = ∅ and E ⊆ VA ×VB, namely there are only edges from
vertices in VA to vertices in VB. We also write G = (VA,VB,E ) to highlight that G is
bipartite.

• Graph weights and matrices
Let G = (V ,E ), with V = {1,2, . . . , N }. We may associate to G a weight matrix W ∈
RN×N
≥0 compliant with G , namely

wu,v := [W ]u,v > 0 ⇔ (v,u) ∈ E ,

wu,v = 0 otherwise. We denote by

deg(v) =∑
u∈V wu,v

deg(v) =∑
v∈V wv,u

the in-degree and out degree of vertex v , respectively. Let

D = diag
(
(deg(v))v ∈V)= diag

(
deg(1),deg(2), . . .deg(N )

) ∈RN×N
≥0

L = D −W ∈RN×N

be the in-degree and Laplacian matrices, respectively. A graph with associated
weight matrix W is called:

– unweighted, if wu,v = 1 whenever (v,u) ∈ E ;

– balanced, if deg(v) = deg(v), for all v ∈V ;

– doubly stochastic, if deg(v) = deg(v) = 1, for all v ∈V ;

– row stochastic, if deg(v) = 1, for all v ∈V (equivalently, W 1N = 1N );

– column stochastic, if deg(v) = 1, for all v ∈V (equivalently, 1⊤
N W = 1⊤

N ).

Clearly, a doubly stochastic graph is both row stochastic and column stochastic;
furthermore it is balanced. A graph with symmetric weight matrix W =W ⊤ is bal-
anced: this is the situation commonly considered for undirected graphs.

• Weighted incidence matrix for undirected graphs
Let G = (V ,E ) be an undirected graph, with associated weight matrix W ∈ RN×N

≥0 .
Assume that the graph has no self-loops, i.e., (v, v) ∉ E and wv,v = 0, for all v ∈
V . Denote by Ē ⊂ E an arbitrary set of edges obtained by removing from E one
edge from each couple (u, v), (v,u) ∈ E (i.e., selecting only one direction for each
bidirectional edge). Furthermore, label the edges in Ē as (eℓ)ℓ∈{1,...,E }, where E is
the cardinality of Ē . We define the weighted incidence matrix V ∈RE×N , as [V ]ℓ,u =√

(wu,v ) if eℓ = (u, v), [V ]ℓ,u =−√
(wu,v ) if eℓ = (v,u), [V ]ℓ,u = 0 otherwise.
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B.2. PROPERTIES
We next recall some well-known graph-theoretic properties that are used throughout the
dissertation. The first result is based on the Perron–Frobenius theorem.

Lemma B.1 (Properties of the weight matrix). Let G = (V ,E) be a graph with compliant
weight matrix W ∈RN×N

≥0 , and assume that W is row stochastic. Then, its spectral radius
ρ(W ) = 1. Also, 1 is an eigenvalue of W , W 1N = 1N , and there exists a nonnegative vector
w ∈ RN

≥0 such that w⊤W = w⊤, with w⊤1N = 1. Furthermore, the following statements
hold:

• If 1 is a simple eigenvalue of W and every other eigenvalue has absolute value
strictly smaller than 1, then limk→∞W k = 1N w⊤; furthermore, there exists Φ ≻ 0
such that ∥W −1N w⊤∥Φ < 1. A necessary condition for the hypothesis to hold is
that G is rooted;

• If G is strongly connected and wv,v > 0 for all v ∈ V , then 1 is a simple eigen-
value of W , every other eigenvalue has absolute value strictly smaller than 1, w
is strictly positive, limk→∞W k = 1N w⊤; furthermore, there exists Φ ≻ 0 such that
∥W −1N w⊤∥Φ < 1;

• if G is strongly connected, W is doubly stochastic and wv,v > 0 for all v ∈ V , then
limk→∞W k = 1

N 1N 1⊤
N and ∥W − 1

N 1N 1⊤
N∥ < 1; □

Lemma B.2 (Properties of the Laplacian). Let G be a graph with Laplacian L ∈ RN×N .
Then, the following statements hold:

• L1N = 0N ;

• 1⊤
N L = 0N if and only if G is balanced;

• null(L) = {κ1N ,κ ∈ R} if and only if G is rooted: in this case, L has a simple eigen-
value in zero, and the other eigenvalues have positive real parts;

• if G is undirected and connected, and L = L⊤, then L ≽ 0 and L has a simple eigen-
value in zero, thus λ2(L) > 0 (the quantity λ2(L) is named algebraic connectivity).

• if G is strongly connected and balanced, then λ2

(
L+L⊤

2

)
> 0 and x⊤

(
L+L⊤

2

)
x ≥

λ2

(
L+L⊤

2

)∥∥(I − 1
N 1N 1⊤

N )x
∥∥2

, for all x ∈RN . □
Lemma B.3 (Properties of the incidence matrix). Let G be an undirected graph with
Laplacian L = L⊤ ∈ RN×N . Let V ∈ RE×N be the associate weighted incidence matrix.
Then, L =V ⊤V , and V 1N = 0E . Furthermore, if G is connected, then null(V ) = null(L) =
{κ1N ,κ ∈R}. □

B.3. STEINER PROBLEMS
The term Steiner problems refers to a class of problems in combinatorial optimization;
here we introduce some particular instances that are used in Chapter 7. Specifically,
given a graphG = (V ,E ), compliant weights W ∈RN×N

≥0 , a root r ∈V and a set of terminals
T ⊆V , we define:
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• Steiner tree problem ST(G ,T ,W ): find an undirected connected subgraph G* =
(V*,E *) ⊆G , T ⊆V*, with minimum cost (i.e., minimizing

∑
(v,u)∈E* wu,v );

• Unweighted Steiner tree problem, UST(G ,T ): find an undirected connected subgraph
G* = (V*,E *) ⊆G , T ⊆V*, with minimum number of edges;

• Directed Steiner tree problem, DST(G ,r,T ,W ): find a subgraph G* = (V*,E *) ⊆ G , T ⊆
V*, rooted at r , with minimum cost (i.e., minimizing

∑
(v,u)∈E* wu,v );

• Unweighted directed Steiner tree problem, UDST(G ,r,T ): find a subgraph G* =
(V*,E *) ⊆G , T ⊆V*, rooted at r , with minimum number of edges;

• Strongly connected Steiner subgraph problem, SCSS(G ,T ): find a strongly connected
subgraph G* = (V*,E *) ⊆G , T ⊆V*, with minimal number of vertices.



C
OPERATOR THEORY AND FIXED

POINT ITERATIONS

I N this appendix, we review some selected concepts and theorems from fixed point
theory and operator theory, including the notions of monotone and nonexpansive op-

erators. The interested reader can find an exhaustive collection of results in [8], [113]. We
will assume that the reader is familiar with standard convex analysis.

C.1. OPERATORS
The notationF :Rq âRq means that the set-valued mappingF , or operator, maps every
point x ∈ Rq to a (possibly empty) set F (x) ⊆ Rq . An operator F : Rq â Rq is character-
ized by its graph,

gra(F ) := {(x,u) | u ∈F (x)}.

For an operator F :Rq âRq , we also define its:

• domain, dom(F ) := {
x ∈Rq |F (x) ̸=∅

}
;

• set of fixed points, fix(F ) := {
x ∈Rq | x ∈F (x)

}
;

• set of zeros, zer(F ) := {
x ∈Rq | 0 ∈F (x)

}
;

• inverse operator, F−1 : Rq â Rq , defined via its graph as gra
(F−1

) ={
(u, x) | (x,u) ∈ gra(F )

}
.

Given two operatorsF :Rq âRq andA :Rq âRq , and a scalarλ ∈R, the operatorF+λA
is defined by

gra(F +λA) = {
(x,u +λv) | (x,u) ∈ gra(F ), (x, v) ∈ gra(A)

}
.
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In particular, note that dom(F +λA) = dom(F )∩dom(A). We use the notation F :X →
Rq to highlight that the operator F is single-valued on the its domain X := dom(F ), i.e.,
F (x) is a singleton for all x ∈X . We denote by Id the identity operator, i.e., Id :Rq →Rq ,

(∀x ∈Rq ) Id(x) = x.

C.2. NONEXPANSIVE OPERATORS
Let HΦ = (Rq ,〈· | ·〉Φ), be the Φ-weighted Euclidean space, with Φ ≻ 0. Let X ⊆ Rq be a
nonempty set. The single-valued operator F :X →Rq is:

• Lipschitz continuous in HΦ with constant θ ∈R>0, if

(∀x ∈X )(∀y ∈X ) ∥F (x)−F (y)∥Φ ≤ θ∥x − y∥Φ;

• Nonexpansive in HΦ, if it is 1-Lipschitz continuous in HΦ, i.e.,

(∀x ∈X )(∀y ∈X ) ∥F (x)−F (y)∥Φ ≤ ∥x − y∥Φ;

• Contractive in HΦ, if it is θ-Lipschitz continuous in HΦ with θ < 1, i.e.,

(∃θ ∈ (0,1))(∀x ∈X )(∀y ∈X ) ∥F (x)−F (y)∥Φ ≤ θ∥x − y∥Φ;

• Averaged in HΦ with parameter α ∈ (0,1), if there exists an operator B : X → Rq

that is nonexpansive in HΦ, such that F = (1−α) Id+αB. Equivalently, if it holds
that

(∀x ∈X )(∀y ∈X ) ∥F (x)−F (y)∥2
Φ ≤ ∥x − y∥2

Φ− 1−α
α ∥(Id−F )(x)− (Id−F )(y)∥2

Φ;

• Firmly nonexpansive in HΦ, if it is 1
2 -averaged in HΦ, i.e.,

(∀x ∈X )(∀y ∈X ) ∥F (x)−F (y)∥2
Φ ≤ ∥x − y∥2

Φ−∥(Id−F )(x)− (Id−F )(y)∥2
Φ;

• Quasi-nonexpansive in HΦ, if it is nonexpansive in HΦ w.r.t. fix(F ), i.e.,

(∀x ∈X )(∀y ∈ fix(F )) ∥F (x)−F (y)∥Φ ≤ ∥x − y∥Φ;

• Firmly quasi-nonexpansive in HΦ, if it is firmly nonexpansive in HΦ w.r.t. fix(F ),
i.e.,

(∀x ∈X )(∀y ∈ fix(F )) ∥F (x)−F (y)∥2
Φ ≤ ∥x − y∥2

Φ−∥(Id−F )(x)∥2
Φ;

• Inverse Lipschitz in HΦ, with constant R ∈R>0, if F−1 is R-Lipschitz continuous in
HΦ, i.e.,

(∀x ∈X )(∀y ∈X ) R∥F (x)−F (y)∥Φ ≥ ∥x − y∥Φ.

In all cases, wheneverΦ= I , we omit the indication “in HΦ.”
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C.3. MONOTONE OPERATORS
Let HΦ = (Rq ,〈· | ·〉Φ) be the Φ-weighted Euclidean space, with Φ≻ 0. A set-valued oper-
ator F :Rq âRq is:

• Monotone in HΦ, if

(∀(x,u) ∈ gra(F ))(∀(y, v) ∈ gra(F )) 〈x − y | u − v〉Φ ≥ 0;

• Maximally monontone in HΦ, if it is monotone in HΦ and there exists no operator
B :Rq âRq monotone in HΦ such that gra(F ) is a strict subset of gra(B);

• Strictly monotone in HΦ, if

(∀(x,u) ∈ gra(F ))(∀(y, v) ∈ gra(F )) x ̸= y ⇒〈x − y | u − v〉Φ > 0;

• Strongly monotone in HΦ with constant µ ∈R>0, if

(∀(x,u) ∈ gra(F ))(∀(y, v) ∈ gra(F )) 〈x − y | u − v〉Φ ≥µ∥x − y∥2
Φ;

• Hypomonotone in HΦ with constant ν ∈R>0, if

(∀(x,u) ∈ gra(F ))(∀(y, v) ∈ gra(F )) 〈x − y | u − v〉Φ ≥−ν∥x − y∥2
Φ.

Furthermore, a single-valued operator F :Rq →Rq is

• Cocoercive inHΦ with constantβ ∈R>0, ifβF is firmly nonexpansive inHΦ. Equiv-
alently, if F−1 is β-strongly monotone in HΦ. Equivalently, if it holds that

(∀x ∈Rq )(∀y ∈Rq ) 〈x − y |F (x)−F (y)〉Φ ≥β∥F (x)−F (y)∥2
Φ.

In all cases, wheneverΦ= I , we omit the indication “in HΦ”.

C.4. EXAMPLES AND RELEVANT OPERATORS
We present next some examples of monotone and nonexpansive operators, and we in-
troduce some important operators, of major interest for this dissertation.

• The identity operator Id is firmly-nonexpansive and 1-strongly monotone, with
fix(Id) =Rq , and zer(Id) = {0};

• F =− Id is nonexpansive and 1-hypomonotone, with fix(F ) = zer(F ) = {0};

• Subdifferential
Consider a function ψ :Rq →R=R∪ {∞}; we denote by dom(ψ) := {x ∈Rq |ψ(x) <
∞} its domain. Its subdifferential operator ∂ψ : dom(ψ) âRq is defined as

∂ψ(x) := {v ∈Rq |ψ(z) ≥ψ(x)+〈v | z −x〉,∀z ∈ dom(ψ)}.
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∂ψ is a monotone operator, for any functionψ. Furthermore, ifψ is closed, convex
and proper, ∂ψ is a maximally monotone operator. The set ∂ψ(x) is always closed
and convex, but it can be empty. However, if ψ is convex, then ∂ψ(x) ̸=∅ for all
x ∈ relint(dom(ψ)), where relint denotes the relative interior. Furthermore, if ψ is
differentiable and convex, then ∂ψ is a single valued operator, and it coincides with
the gradient of ψ, i.e., ∂ψ = ∇ψ. Conversely, the gradient ∇ψ of a differentiable
functionψ :Rq →Rq is monotone if and only ifψ is convex (we emphasize that we
only consider gradients and subdifferentials in HI in this dissertation);

• Normal cone
For a set S ⊆Rq , let us denote by ιS :Rq →R the indicator function of S, i.e., ιS (x) =
0 if x ∈ S, ∞ otherwise. The operator NS :Rq âRq , defined as

NS (x) :=


∅, if x ∉ S{

v ∈Rq | sup
z∈S

〈v | z −x〉 ≤ 0

}
, otherwise

is called the normal cone of S. If S is closed and convex, then ∂ιS = NS , hence NS is
a maximally monotone operator.

• Resolvent
The resolvent operator JF :Rq âRq of an operator F :Rq âRq is

JF := (Id+F )−1.

If F is maximally monotone in HΦ, then JF is single-valued, dom(JF ) = Rq , and
JF is firmly nonexpansive in HΦ.

• Projection
If S ⊆ Rq is closed and convex, then the resolvent of the normal cone equals the
Euclidean projection onto S, i.e.,

JNS = (Id+NS )−1 = projS ,

where projS : Rq → Rq , projS (x) = argminξ∈S ∥x −ξ∥. It follows that projS is firmly
nonexpansive.

C.5. FIXED POINTS OF NONEXPANSIVE OPERATORS
A variety of mathematical and engineering problems can be reformulated as the problem
of finding a fixed point of an operator. In this section, we recall some fundamental results
concerning the existence of such a fixed point, and algorithms for their computation
(also called fixed point iterations).

Theorem C.1 (Browder, [8, Th. 4.29]). Let X ⊂ Rq be a nonempty compact set, and let
F :X →X be nonexpansive in some space HΦ. Then, fix(F ) ̸=∅. □
Theorem C.2 (Banach [17, Th. 2.1]). Let X ⊂ Rq be nonempty, and let F : X → X be
contractive in some space HΦ. Then, fix(F ) is a singleton. □
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Theorem C.3 (Banach–Picard iteration [17, Th. 2.1]). Let X ⊂ Rq be nonempty, and let
F : X →X be θ-contractive in some space HΦ, with θ ∈ (0,1). Then, for any initial con-
sition x0 ∈X , the sequence (xk )k∈N generated by the iteration

(∀k ∈N) xk+1 =F (xk ),

converges to the unique fixed point x⋆ ∈ fix(F ) with linear rate, i.e., ∥xk−x⋆∥Φ ≤ θk∥xk−
x∗∥Φ, for all k ∈N. □

Theorem C.4 (Krasnosel’skii–Maan iteration [8, Th. 5.15] ). Let X ⊂Rq be nonempty, let
F : X →X be nonexpansive in some space HΦ and such that fix(F ) ̸=∅. Let (γk )k∈N be
a sequence in [0,1] such that

∑
k∈Nγk (1−γk ) =∞. Then, for any initial condition x0 ∈X ,

the sequence (xk )k∈N generated by the iteration

(∀k ∈N) xk+1 = xk +γk (F (xk )−xk ),

converges to a fixed point x⋆ ∈ fix(F ). □

Corollary C.1. LetX ⊂Rq be nonempty, and letF :X →X beα-averaged in some space
HΦ, with α ∈ (0,1), and such that fix(F ) ̸=∅. Then, for any initial condition x0 ∈X , the
sequence (xk )k∈N generated by the iteration

(∀k ∈N) xk+1 =F (xk ),

converges to a fixed point x∗ ∈ fix(F ). □

C.6. ZEROS OF MONOTONE OPERATORS
The problem of finding a zero of (monotone) operators plays an important role in opti-
mization, games and in general variational inequalities.

Example C.1 (Variational inequality). Given a convex closed set S ⊆ Rq and a single-
valued operator F : S → Rq , the variational inequality VI(F ,S) is the problem of finding
x⋆ ∈ S such that

〈F (x⋆) | x −x⋆〉 ≥ 0, ∀x ∈ S.

By definition, the problem is equivalent to finding x⋆ such that

0 ∈F (x⋆)+NS (x⋆)

i.e., finding a zero of the operator F +NS . □

Zero-finding problems are also strictly related to fixed point problems, since zer(F ) =
fix(Id−F ) for any operator F . In fact, the solution to both problems is typically based on
fixed point iterations, where monotonicity/nonexpansiveness properties are exploited
to prove convergence. We present two examples in the remainder of this section.
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C.6.1. PROXIMAL-POINT ALGORITHM
Given an operator F , consider the problem of finding x⋆ such that

0 ∈F (x⋆).

Note that

0 ∈F (x⋆) ⇔ x⋆ ∈ (Id+F )x⋆

⇔ (Id+F )−1 ∋ x⋆

⇔ x⋆ ∈ fix(JF ).

When F is maximally monotone, a solution can be found based on Corollary C.1, since
JF is firmly nonexpansive (hence, 1

2 averaged).

Theorem C.5 (Proximal-point algorithm [8, Th. 23.41]). Let F : Rq â Rq be maximally
monotone operator such that zer(F ) ̸= ∅. Then, for any initial condition x0 ∈ Rq , the
sequence (xk )k∈N generated by the proximal-point iteration

(∀k ∈N) xk+1 = JF (xk )

converges to some x⋆ ∈ zer(F ). □

C.6.2. FORWARD-BACKWARD ALGORITHM
Given two operators F and B, consider the problem of finding x⋆ such that

0 ∈F (x⋆)+B(x⋆).

The problem could be solved via the proximal-point algorithm applied to the opera-
tor (F +B). However, computing the resolvent of the latter operator might be complex;
instead, it is often convenient to devise methods where the operators F and B are em-
ployed at different computational steps. This general idea motivated the development
of numerous operator splitting methods. We provide an example next. It can be shown
that

x⋆ ∈ zer(F +B) ⇔ x⋆ ∈ JγB(x⋆−γF (x⋆))

for any γ ∈R>0. This fact suggests the so-called forward-backward algorithm.

Theorem C.6 (Forward-backward algorithm [8, p. 26.14]). Let B :Rq âRq be maximally
monotone; let F be β-cocoercive, for some β ∈ R>0; let γ ∈ (0,2β). Assume that zer(F +
B) ̸=∅. Then, for any initial condition x0 ∈ Rq , the sequence (xk )k∈N generated by the
forward-backward iteration

(∀k ∈N)

{
yk = xk −γB(xk )

xk+1 = JγF (yk )

converges to some x⋆ ∈ zer(F +B). □
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ADMM alternating direction method of multipliers

DGD distributed gradient descent

END Estimation Network Design

FB forward-backward

GNE generalized Nash equilibrium
GNEP GNE problem

ISO independent system operator
ISS input-to-state-stable

KKT Karush–Kuhn–Tucker

NE Nash equilibrium
NEP Nash equilibrium problem

PF Perron-Frobenius
PPA proximal-point algorithm
PPP preconditioned proximal-point
PPPA preconditioned PPA

v-GNE variational GNE
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:= equal to by definition
| such that
∈ belongs to
∃ there exists
∀ for all
⇒ implies
⇔ if and only if
→ maps to an element
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SET, SPACES AND SET OPERATORS

N set of natural numbers (including 0)
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R :R∪ {∞}, set of extended real numbers
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R>0 set of positive real numbers
Rn set of real n-dimensional vectors
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ℓ1 set of absolutely summable sequences
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A∩B intersection of the sets A and B
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col(v1, . . . , vN ) := [
v⊤

1 v⊤
2 . . . v⊤

N

]⊤
diag(A1, . . . , AN ) block-diagonal matrix with matrices A1, . . . , AN on the diagonal
(vk )k∈N sequence of vectors vk
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OPERATOR THEORY
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fix(F ) fixed-point set of the operator F
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