
Literature survey on implementation techniques for type systems
Exploring name binding techniques

Hasan Kocakaya1

Supervisor(s): Jesper Cockx1, Bohdan Liesnikov1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Hasan Kocakaya
Final project course: CSE3000 Research Project
Thesis committee: Jesper Cockx, Bohdan Liesnikov, <Examiner>

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
Names are essential for structuring and reason-
ing about programs. However, the implementation
of names differs across many programming lan-
guages. There is an abundance of choice between
various implementation techniques with regards to
name-binding techniques. As such, when design-
ing a programming language it is not clear which
technique one should choose. This paper attempts
to give an exhaustive overview of the various tech-
niques that exist, compares them on properties such
as alpha-equivalence, ease of implementation and
enforcing well-scopedness. Furthermore, the pos-
sibility of a one-fits-all solution is explored.

1 Introduction
Name binding is a crucial feature of type systems, and type
systems are a crucial component of programming languages
[21]. Name binding refers to the concept of binding identi-
fiers to the associated entities(functions,variables,types) [23].
Thus, depending on the manner of implementation of name
binding, a given program could have different behaviours.
There are a variety of different techniques to implement name
binding. Unfortunately, there isn’t a technique that is consid-
ered the best, nor is there a consensus on which technique
should be used.

Name binding is closely related to scoping. An identifier
can be resolved to different associated entities depending on
the scope it is resolved from. Given that this is a fundamen-
tal part of programming languages, it is valuable to do fur-
ther research on this topic and explore all avenues available.
Future languages, and already existing languages can benefit
from having a clear overview of the currently available tech-
niques, such that informed choices can be easily made with
regards to name-binding techniques. In this literature survey
paper we attempt to provide an overview of the currently ex-
isting research on name-binding and compare the proposed
techniques, identifying their strengths and weaknesses.

Some surveys have already been done, however these sur-
veys were not the main focus of the papers, and have therefore
not attempted to be exhaustive [2; 1; 4; 22].

An example of a name-binding technique is de Bruijn in-
dices [8]. In the domain of lambda calculus it can be used to
represent terms without naming the bound variables. This
concept can be used to implement name-binding by using
nameless encoding [4] which has been used to solve com-
mon issues that are encountered when implementing name
binding. It works as follows: a reference to a name-binding
receives an index equal to the amount of bindings that are
present in-between the reference and binding location. Thus,
traversing an amount of steps equal to the index is how the
reference can be resolved. This removes the need for having
a string representation of the name.

Since the aim of this paper is to give a high level overview
of the currently known name-binding techniques, details such
as proofs will not be discussed, as that is beyond the scope of
this paper. To give an effective overview of all the currently

available implementation techniques in the literature, the fol-
lowing research questions are answered in the paper:

• What are the different techniques that exist to implement
name binding?

• What are the advantages and disadvantages of these
techniques?

• Is there a technique that can be identified as being supe-
rior?

The paper is structured as follows. First the research
methodology is discussed in section 2. Then the general con-
cept of name binding is introduced and various techniques
that have been proposed are explored and discussed in section
3. Subsequently the techniques are analyzed and compared,
as well as the comparison metrics are discussed in section 4.
Then in section 5 scientific integrity and the applied research
practices is discussed in the context of responsible research.
In section 6 the findings of the comparisons are discussed, as
well as advice for language implementers is discussed with
regards to the findings. Finally the paper is concluded and
future research is discussed in section 7.

2 Methodology
The set of papers that are considered in this survey were col-
lected as follows: First a look was taken at the most common
name binding technique, de Bruijn indices. Because most if
not all papers mention de Bruijn, additional techniques were
easy to identify from within the list of papers that cite this
paper.

The grouping method for implementation techniques also
follows from this method, as some papers of interest that
were identified already made clear categorizations and group-
ings. Some groupings are: named, unnamed, first-order
approaches, higher-order approaches, nominal approaches.
These groupings are used and added on to with the discov-
ered techniques.

The comparison dimensions were determined by looking at
the common properties of techniques discussed in the found
papers. For example, a technique being invariant under alpha-
equivalence is an important notion mentioned in every single
technique. Therefore, it was considered to be of the utmost
importance and selected as one of the main dimensions for
comparison.

3 Implementation Techniques
In this section, a general description of name-binding is
given. Then the various techniques with which name-binding
can be implemented are listed and explained.

3.1 Name-Binding
In programming languages, name-binding is the process of
associating ‘identifiers‘, which can be seen as names, with
their respective values or bindings. It’s the process of estab-
lishing the link between a name and what it represents, al-
lowing programmers to refer to specific entities of a program
using their given names.

When writing code, names are used to represent variables,
functions, classes, and other elements of a program. These



names facilitate referring to these elements throughout a pro-
gram. Name binding ensures that when a name is used, it
points to the right underlying binding. A name cannot always
be resolved, as the binding for a specific name might not have
been created, or is not accessible. And thus, there are many
different ways in which this association can be implemented.

Name binding techniques can be categorized in several
ways. A distinction can be made between First-Order ap-
proaches and Higher-Order approaches. Another way to dis-
tinguish them is to consider approaches where names are
present, approaches where names are abstracted away and ap-
proaches where a combination of the two are applied.

3.2 de Bruijn Indices
De Bruijn indices provide a way to implement name-binding
without relying on variable names. Instead, variables are rep-
resented using numeric indices that encode their binding in-
formation. When using de Bruijn indices, variables are rep-
resented by numbers that indicate the number of binders be-
tween the reference to the binder and its binding site. An in-
dex of 0 represents that no binding is in between the binding
reference and its binding site. This numeric system represents
the relative positions of these bindings. By using de Bruijn
indices, we eliminate the need for variable names and repre-
sent all binding information using numeric indices relative to
their binders. This approach simplifies the manipulation and
analysis of lambda terms, as it avoids issues related to vari-
able capture, renaming, and conflicts. It also enables efficient
operations such as substitution, scoping, and checking for al-
pha equivalence by directly encoding the binding structure
within the indices. For example, substitution does not require
renaming operations, since there are no names present. To
substitute, the operations that are performed are simply the
traversal and updating of indices.

3.3 Locally named
The essence of the locally named [1; 13] technique is to make
a distinction between a bound and unbound variable. This
representation of syntax eliminates the difficulties associ-
ated with reasoning about capture-avoiding substitutions. By
making a distinction between (bound) variables and (free) pa-
rameters in syntax, the occurrence of a parameter being cap-
tured by a variable binder during substitution is completely
prevented. Additionally, because both variables and param-
eters are represented as names, it is a very human readable
format.

3.4 Locally nameless
The locally nameless [1; 3] representation of syntax with
binding is a technique which combines de Bruijn indexes with
names. The fundamental idea is to make use of two seperate
syntactic classes to represent variables depending on whether
they are bound or free. Bound variables are represented us-
ing de Bruijn indices, and free variables are represented us-
ing names. An advantage of this approach is that it combines
the best of both named and de Bruijn indices. By using the
named syntactic class to display names for human readabil-
ity, and by using de Bruijn indices for internal manipulations,
substitutions and other operations.

3.5 Well-scoped de Bruijn
Well-scoped de Bruijn syntax [18; 10; 17] refers to using de
Bruijn indices to represent name-binding. However an addi-
tional constraint is added, such that bindings that are not in
scope cannot be referenced. This is done by introducing a
set of bound variables. Any element not in the set of bound
variables, is not in scope. Thus, this representation is well-
scoped.

3.6 Higher-Order Abstract Syntax
Higher-Order Abstract Syntax (HOAS) [15; 9] refers to us-
ing the abstraction rules present in the host/meta-language to
represent the binders in the object language. By doing so, this
allows the underlying host language type system to help catch
potential errors during the development process.

3.7 Nominal Logic
Nominal logic [16; 19] is a technique that takes a differ-
ent approach to name-binding. Using nominal sets, a math-
ematical theory of atomic names, with properties invariant
under permuting names [6]. It uses the concept of ‘atoms‘
which are singular syntactic units. An operation exists to
swap two atoms. An operation also exists to determine the
‘freshness‘ of an atom, to determine whether the name of
that atom is unique. Using these concepts, it is possible to
reason about names and binders, their freshness and equality
between atoms.

3.8 Nameless Painless
The nameless painless [17] technique is an approach that
makes use of de Bruijn indices, however some additional re-
strictions apply. A ‘world‘ would represent the scope. In
Pouillard’s implementation, a world is represented as a list
of boolean values. To determine whether a variable is within
scope, a simple lookup of the nth value in the list would re-
turn either true or false, indicating whether it is in scope or
not. This concept allows for simple reasoning about variable
binding and scoping, due to offering a systematic way to dis-
tinguish between scopes.

3.9 Scope Graphs
Scope graphs are a different way to think about the name-
binding structures of a program. Instead of reasoning about
names, bindings and environments based on abstract syntax
trees; scope graphs allow us to reason about the structure of a
program based on graphs [14]. ‘In scope graphs, nodes repre-
sent scopes and declarations, which are connected by labeled
edges. References are resolved by finding paths to eligible
declarations, subject to visibility and shadowing policies ex-
pressed in terms of edge labels.

Up till now, techniques have all defined name-binding
based on lexical scoping. Lexical scoping refers to using
the program’s structure to determine scoping rules. However,
for features such as imports and class inheritance, using non-
lexical scoping is simpler.

Using this formalism, many different (non-lexical) binding
patterns can be encoded‘ [23, p. 32:2]. Scope graphs focus
on non-lexical binding, in particular this facilitates a more



straightforward method to implement name-binding for im-
ports and class inheritance [20].

3.10 Hypergraphs
Name-binding with hypergraphs is a technique which has
been implemented to represent name binding using a general-
ization of graphs [22]. To represent name-binding in a hyper-
graph, each vertex/node corresponds to a specific name, while
the hyperedges represent the references or associations be-
tween names and their respective entities. A hyperedge con-
nects a set of vertices/nodes, indicating that the names within
that set are bound together. This allows for more flexible and
expressive name-binding relationships, as multiple names can
be bound simultaneously.

3.11 Co-de Bruijn indices
Another variant of de Bruijn indices is the Co-de Bruijn [11]
variant. It is a nameless representation, however with addi-
tional constraints. In this variant, unused variables are dis-
carded. The scope is reduced to a minimal version, where
only variables that actually occur within an expression are
present. By doing so, it avoids unnecessary shifting of in-
dices.

4 Comparison of implementation techniques
In this section the dimensions on which the implementation
techniques are compared are listed and expanded upon. Also
the selection criteria for the comparison dimensions them-
selves are given. The advantages and disadvantages of each
technique listed in section 3 are discussed.

4.1 Selection of dimensions
The dimensions to compare on are selected while keeping
in mind the limitations of a literature survey. Therefore as-
pects that are mentioned in the original papers, as well as
easily identifiable properties of name-binding techniques are
selected for the comparison.

4.2 invariance under alpha-equivalence
Alpha-equivalence [7] is useful when two expressions only
differ in the names of bound variables, while maintaining
the same syntactic structure and scope. In such cases, alpha
equivalence facilitates comparison on the similarity of the ex-
pressions’ structure instead of the specific names associated
with variables. The concept of alpha equivalence is essential
as it allows us to reason about expressions without being con-
cerned about variable naming. By treating alpha-equivalent
expressions as equivalent, it allows for reasoning about the
structure and meaning of expressions, while excluding irrele-
vant details such as the arbitrarily chosen variable names.

Alpha equivalence is important when talking about
capture-avoiding substitution. When a substitution of a vari-
able occurs in an expression, it is critical to avoid variable
capture, which is when a free variable is unintentionally cap-
tured by a bound variable.

Alpha equivalence facilitates the comparison of expres-
sions while disregarding the naming of the bound variables.
It allows reasoning about expressions based on syntactical
structure and behavior.

4.3 Ease of implementation
Whether an implementation exists of a particular technique
is an important factor to consider. For example, it shows
whether actually implementing a technique is feasible. Ad-
ditionally the lack of such an implementation being present
could point to potential short-comings of the technique. Fur-
thermore it is important to distinguish between theoretical
techniques and techniques that have been successfully imple-
mented in practice.

4.4 Enforces well-scopedness
Well-scopedness is an important aspect for name-binding
techniques. If a technique guarantees intrinsic well-
scopedness, it means that it is impossible to use variables out-
side of their scope. It saves effort during the development of
a programming language if the name-binding technique al-
ready ensures this.

4.5 de Bruijn Indices
Basic De Bruijn indices enforce alpha-equivalence. Since it
is one of the most fundamental techniques used in nameless
representations, an existing implementation is present. This
basic form of De Bruijn does not enforce well-scopedness,
thus ill-scoped terms can be constructed.

This name-binding technique is a very basic one, and is
therefore easy to implement. However, it is difficult to reason
about due to its index-based nature. Another drawback of de
Bruijn indices is the need for constant bookkeeping and index
shifting when introducing new bound variables.

4.6 Locally named
The locally named representation does not enforce alpha-
equivalence, as the names of free variables matter [13]. Lo-
cally named has been used in ‘Pure Type Systems‘ (PTS),
for formal meta-theory. This representation does not enforce
well-scopedness.

The main advantage of this technique is the ease of differ-
entiating between bound and unbound variables. Another is
that, at some level, the name of a variable must be present
in one way or another, whether that be internally or for pars-
ing/printing. It should be noted that this technique was mainly
developed with metatheory in mind, so it remains unknown
whether this technique is practical for more traditional pro-
gramming languages.

4.7 Locally nameless
The locally nameless representation uses 2 seperate syntactic
classes for free and bound variables. It does enforce alpha-
equivalence, but does not enforce well-scopedness. The lo-
cally nameless representation has been used in practice, for
example Epigram [12] a dependently-typed language has
used the locally nameless representation in its implementa-
tion.

This technique combines the human readability of names,
and the convenience of de Bruijn indices for internal manip-
ulations. Another benefit is that by representing global vari-
ables and constants as names, environments can be imple-
mented in a simplistic manner [3].



4.8 Well-scoped de Bruijn
Well-scoped de Bruijn is similar to regular de Bruijn in the
aspect of how alpha-equivalence is treated. Therefore, well-
scoped de Bruijn is stable under alpha-equivalence. Because
well-scoped de Bruijn is implemented by adding additional
constraints on de Bruijn in the form of a scope or ‘world‘.
This increases the difficulty of the implementation, however
the pay-off is an intrinsically well-scoped name-binding tech-
nique.

Overall this technique is a more refined variant of the reg-
ular de Bruijn technique, with a slight cost in implementation
difficulty, but an added feature of well-scopedness.

4.9 Higher-Order Abstract Syntax
Because HOAS uses the binding constructs of the host
language [5], if the host language is stable under alpha-
equivalence, so will the object language. For the same rea-
son, the object language is well-scoped, as the host languages
scoping rules are applied on the object language.

As for the ease of implementation, being able to re-use the
host language binding constructs makes it potentially conve-
nient to use. However, the drawback is that HOAS is mainly
useful for doing metatheory, and less so for programming lan-
guage design [1].

4.10 Nominal Logic
Nominal logic is stable under alpha-equivalence. it is not in-
herently well-scoped. Nominal logic is not as simple to im-
plement as other techniques that rely on de Bruijn. As Yasen
said ‘the formalization of name binding with swapping and
freshness constraints, which are the fundamental part of the
nominal logic, seems somewhat difficult to understand for
non-experts‘ [22, p. 1139].

4.11 Nameless Painless
The nameless painless approach is stable under alpha-
equivalence. Additionally, the technique also enforces well-
scopedness. The nameless painless approach is implemented
as a library, written in Agda [17]. Because of this, making use
of the nameless painless approach using the library is rather
simple.

4.12 Scope Graphs
The scope graph technique is not stable under alpha-
equivalence. However, the technique does enforce well-
scopedness, because there must exist a path between a ref-
erence and the declaration of the reference within a graph.

This technique is complicated to implement. However,
there exists implementations and case studies [20]. The ad-
vantage of this technique is that it also allows for non-lexical
scoping, it facilitates simpler implementation of imports and
the technique attempts to standardize the treatment of name-
binding in programming languages.

4.13 Hypergraphs
The hypergraphs technique is not stable under alpha-
equivalence. However, the technique does enforce well-
scopedness. This technique has only been implemented in

‘HyperLMNtal‘, and requires familiarity with the language
and the graph type ‘hlground‘ [22].

A major downside of this technique is that it is not effi-
cient yet. Yasen mentions that it is planned as future work to
improve this inefficiency and to improve upon this technique.

4.14 Co-de Bruijn indices
The co-de Bruijn indices technique is stable under alpha-
equivalence. It is also well-scoped. Co-de Bruijn indices are
difficult to work with, as they are very unintuitive and ‘un-
suited to human comprehension‘. The main disadvantage of
this technique is the complexity, but the advantage that comes
with it is the precision and minimal scopes.

5 Responsible Research
In this section the ethics and repeatability of this paper are
discussed. Since this paper does not use any experimental
data, nor human test subjects, the focus will mostly be on
academic integrity.

An effort has been made to not misrepresent the original
papers cited in this literature survey, such that misinformation
is not spread, nor the authors’ words twisted. Additionally all
direct quotes are attributed to their original papers, and indi-
rect quotes are paraphrased sufficiently such that they deviate
adequately from the original work.

6 Discussion
In section 4 the various techniques implementation tech-
niques for name-binding are compared on the metrics such as
ease of implementation and stability under alpha-equivalence.
Each technique has both advantages and disadvantages.
There seems to be no obvious one-size-fits-all solution. For
example if simplicity and ease of implementation is the fo-
cus, one might find that a de Bruijn implementation of name-
binding is sufficient. If however the focus lies on imple-
menting various types of imports and class inheritance, scope
graphs should be opted for.

The advice to programming language implementers would
therefore be to assess the situation and requirements of the
programming language they are implementing, and make an
informed choice based on the comparisons in this paper.

There are limitations to this literature survey. This research
paper attempts to be exhaustive, however this is not guaran-
teed and new developments should be considered.

Another limitation is the paper is descriptive, and not crit-
ical of the work presented. Therefore, the correctness of the
contents of the paper are limited to what the papers volunteer
as information.

Finally, the comparison dimensions selected in this paper
provide some insights on the strengths and weaknesses of the
techniques. However they may not capture the full range of
considerations for evaluating name-binding techniques.

7 Conclusion and Future work
In this paper, the currently existing name-binding techniques
are explored, discussed and a comparison was made on sev-
eral aspects. The advantages and disadvantages of each tech-



nique are explored, and the research question ‘Is there a tech-
nique that can be identified as being superior?‘ is answered.

This paper attempts to compare all currently existing name-
binding techniques. Since these techniques vastly differ on
their approach to name-binding, they are sometimes not eas-
ily comparable. It is difficult to say in which cases, if at all, a
certain technique is more favourable to choose for a potential
programming language. It is also the case that these name-
binding techniques, and their respective papers use differ-
ent setups, languages, workbenches or frameworks to achieve
their goal.

Therefore an interesting future work might look towards
implementing all these name-binding techniques within the
same language. By doing so, external factors are isolated,
and the true merits of the name-binding technique can be ex-
plored. A vastly superior comparison would be possible in
such a study. Currently in this paper, a comparison is made
on the claims and theory of the techniques, without any real
practical comparison.

Undoubtedly it is also important to look at the practical as-
pect, because the main purpose of a name-binding technique
is to be used in practice, as part of a type-system for a pro-
gramming language.

References
[1] Brian Aydemir, Arthur Charguéraud, Benjamin C.

Pierce, Randy Pollack, and Stephanie Weirich. Engi-
neering formal metatheory. In Proceedings of the 35th
annual ACM SIGPLAN-SIGACT symposium on Princi-
ples of programming languages, pages 3–15, San Fran-
cisco California USA, January 2008. ACM.

[2] J.-P. Bernardy and N. Pouillard. Names for free - poly-
morphic views of names and binders. pages 13–24,
2013.

[3] Arthur Charguéraud. The Locally Nameless Represen-
tation. Journal of Automated Reasoning, 49(3):363–
408, October 2012.

[4] James Cheney and Christian Urban. Prolog: A Logic
Programming Language with Names, Binding and -
Equivalence. In Bart Demoen and Vladimir Lifs-
chitz, editors, Logic Programming, Lecture Notes in
Computer Science, pages 269–283, Berlin, Heidelberg,
2004. Springer.

[5] Adam Chlipala. Parametric higher-order abstract syntax
for mechanized semantics. In Proceedings of the 13th
ACM SIGPLAN international conference on Functional
programming, pages 143–156, Victoria BC Canada,
September 2008. ACM.

[6] Ranald A. Clouston and Andrew M. Pitts. Nominal
Equational Logic. Electronic Notes in Theoretical Com-
puter Science, 172:223–257, April 2007.

[7] Roy L. Crole. Alpha equivalence equalities. Theoretical
Computer Science, 433:1–19, May 2012.

[8] N.G De Bruijn. Lambda calculus notation with name-
less dummies, a tool for automatic formula manipula-
tion, with application to the Church-Rosser theorem.

Indagationes Mathematicae (Proceedings), 75(5):381–
392, 1972.

[9] M. Fiore, G. Plotkin, and D. Turi. Abstract syntax and
variable binding. In Proceedings. 14th Symposium on
Logic in Computer Science (Cat. No. PR00158), pages
193–202, Trento, Italy, 1999. IEEE Comput. Soc.

[10] Daniel R. Licata and Robert Harper. A universe of bind-
ing and computation. In Proceedings of the 14th ACM
SIGPLAN international conference on Functional pro-
gramming, pages 123–134, Edinburgh Scotland, August
2009. ACM.

[11] Conor McBride. Everybody’s Got To Be Somewhere.
Electronic Proceedings in Theoretical Computer Sci-
ence, 275:53–69, July 2018.

[12] Conor Mcbride and James Mckinna. The view from
the left. Journal of Functional Programming, 14(1):69–
111, January 2004.

[13] James McKinna and Robert Pollack. Pure type sys-
tems formalized. In Marc Bezem and Jan Friso
Groote, editors, Typed Lambda Calculi and Applica-
tions, volume 664, pages 289–305. Springer-Verlag,
Berlin/Heidelberg, 1993. Series Title: Lecture Notes
in Computer Science.

[14] Pierre Neron, Andrew Tolmach, Eelco Visser, and
Guido Wachsmuth. A Theory of Name Resolution. In
Jan Vitek, editor, Programming Languages and Sys-
tems, volume 9032, pages 205–231. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2015. Series Title: Lec-
ture Notes in Computer Science.

[15] F. Pfenning and C. Elliott. Higher-order abstract syntax.
ACM SIGPLAN Notices, 23(7):199–208, July 1988.

[16] Andrew M. Pitts. Nominal logic, a first order theory
of names and binding. Information and Computation,
186(2):165–193, November 2003.

[17] Nicolas Pouillard. Nameless, painless. In Proceedings
of the 16th ACM SIGPLAN international conference on
Functional programming, pages 320–332, Tokyo Japan,
September 2011. ACM.

[18] Nicolas Pouillard and François Pottier. A fresh look
at programming with names and binders. In Proceed-
ings of the 15th ACM SIGPLAN international confer-
ence on Functional programming, pages 217–228, Bal-
timore Maryland USA, September 2010. ACM.

[19] Christian Urban, Andrew M. Pitts, and Murdoch J. Gab-
bay. Nominal unification. Theoretical Computer Sci-
ence, 323(1-3):473–497, September 2004.

[20] Hendrik Van Antwerpen, Casper Bach Poulsen, Arjen
Rouvoet, and Eelco Visser. Scopes as types. Pro-
ceedings of the ACM on Programming Languages,
2(OOPSLA):1–30, October 2018.

[21] Larisse Voufo, Marcin Zalewski, and Andrew Lums-
daine. Scoping rules on a platter: a framework for un-
derstanding and specifying name binding. In Proceed-
ings of the 10th ACM SIGPLAN workshop on Generic



programming, pages 59–70, Gothenburg Sweden, Au-
gust 2014. ACM.

[22] Alimujiang Yasen and Kazunori Ueda. Name Binding
is Easy with Hypergraphs. IEICE Transactions on In-
formation and Systems, E101.D(4):1126–1140, 2018.

[23] Aron Zwaan and Hendrik van Antwerpen. Scope
Graphs: The Story so Far. In Ralf Lämmel, Pe-
ter D. Mosses, and Friedrich Steimann, editors, Eelco
Visser Commemorative Symposium (EVCS 2023), vol-
ume 109 of Open Access Series in Informatics (OASIcs),
pages 32:1–32:13, Dagstuhl, Germany, 2023. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik. ISSN:
2190-6807.


	Introduction
	Methodology
	Implementation Techniques
	Name-Binding
	de Bruijn Indices
	Locally named
	Locally nameless
	Well-scoped de Bruijn
	Higher-Order Abstract Syntax
	Nominal Logic
	Nameless Painless
	Scope Graphs
	Hypergraphs
	Co-de Bruijn indices

	Comparison of implementation techniques
	Selection of dimensions
	invariance under alpha-equivalence
	Ease of implementation
	Enforces well-scopedness
	de Bruijn Indices
	Locally named
	Locally nameless
	Well-scoped de Bruijn
	Higher-Order Abstract Syntax
	Nominal Logic
	Nameless Painless
	Scope Graphs
	Hypergraphs
	Co-de Bruijn indices

	Responsible Research
	Discussion
	Conclusion and Future work

