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Abstract

This thesis presents an individual tip control (IPC) system based on blade tip deflection measurements.
The controller is based on novel sensor inputs which measure flapwise tip deflection distance at a high
sampling rate. IPC plays a key role in reducing fatigue loads in wind turbine components. These fatigue
loads are caused by differential loads such as wind shear, yaw misalignment and turbulence. The presented
controller is implemented in HAWC2 and high fidelity load measurements are produced using the DTU10MW
Reference Wind Turbine. Lifetime equivalent load reductions were seen in both rotating and fixed frame
components under extreme turbulence, inverse shear conditions and in normal operating conditions. A
novel implementation of IPC is also presented where the blade tips are guided along a fixed trajectory to
maximise blade-tower clearance. The motivation of this implementation is to reduce the chance of blade-tower
interactions for large diameter turbine rotors. The theoretical background used in this study is presented
first along with details of controller discretisation methods. Details of the iterative control design process is
presented, and the simulated fatigue loads are compared for a number of control architectures. Finally, the
implementation of the tip trajectory tracking control is presented along with an analysis of the pitch rate
limits and the effect of IPC on electrical power output.
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Nomenclature

U Wind speed

t Time

s Laplace variable

ψ(t) Rotor azimuth angle

f1p Once per revolution frequency

fnp n times per revolution frequency

j Imaginary unit

CPI PI Controller (Section 5.3)

Cfnp Single frequency targeting fnp (Section 5.4)

C2 Two frequency controller (Section 5.5)

Ar Tip Trajectory Tracking amplitude

ω Angular frequency

ζ Damping ratio

Kp Proportional gain

y(t), y(s) Tip deflection distance

ȳ(t), ȳ(s) Mean tip deflection distance

ỹ(t), ỹ(s) Tip deflection distance perturbation

θ(t), θ(s) Blade pitch angle

θ̄(t), θ̄(s) Mean blade pitch angle

θ̃(t), θ̃(s) Blade pitch angle perturbation

d(t), d(s) Blade disturbance

sm Stability margin

bi The ith feed-forward controller coefficient

ai The ith feed-backward controller coefficient

P (s) Plant transfer function

C(s) Controller transfer function

Important and reoccurring symbols are defined above. All other symbols are defined in-text.
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Chapter 1

Introduction

1.1 Background

Wind energy is one of the most prominent sources of renewable energy. The technology has seen remarkable
growth in recent decades and continues to push boundaries in efficiency and levelised cost of energy. In the
battle to reduce the cost of energy, turbine rotors are being upscaled with a larger, lighter, and more flexible
design. One of the major limitations of modern turbine design is fatigue stress in turbine components which
becomes more significant for larger turbine designs. As the blades sweep through the air, large differential
forces are experienced in the blade roots and the rotor shaft [1]. These stresses, caused by wind shear,
tower shadow, yaw misalignment, nacelle tilt and turbulence, result in accumulated fatigue damage, and can
reduce the operating lifetime of the turbine components [2].

Although these differential loads have been thoroughly investigated in literature, the control systems used in
modern wind turbines are typically designed with the assumption of uniform blade loading across the rotor
plane. Specifically, collective pitch control (CPC) is the standard approach to regulate rotor speed and power
output despite being ineffective at alleviating blade loads. This is the motivation behind individual pitch
control (IPC), where each blade is subject to a different pitch angle depending on the rotational position
of the rotor. IPC has shown promising results in reducing blade flapwise loads as well as in non-rotating
components such as the main rotor shaft. The use of IPC in wind farms could have a significant impact on
reducing the levelised cost of energy by extending the lifetime of turbine components.

IPC in literature has shown great reductions in turbine loads using a variety of controller designs. Bossanyi
[3] showed an 18% reduction in equivalent fatigue loads in the out-of-plane blade root moments, as well as a
noticeable reduction in shaft and yaw bearing moments when using IPC compared to CPC. Larsen [4] shows
a 25% reduction in blade flapwise equivalent loads as well as a 9% reduction in shaft equivalent loads using
IPC using local blade flow measurements. Trudnowski [5] achieved an 86% reduction in flapwise blade loads
using only the rotor angle as an input signal, however, the analysis neglected the effects of turbulence.

Given the success of IPC in experiments and simulations, a range of control methodologies has been adapted
with varying degrees of success. Mirzaei et al. [6] showed comparable reductions in out-of-plane blade root
bending moments using both PI (proportional-integral) control and model predictive control based on LI-
DAR measurements. Selvam [7] compares IPC systems using PI control as well as linear quadratic gaussian
(LQG) control. PI control achieved load reductions at low frequencies, and the LQG controller was able to
achieve load reductions at a higher bandwidth, including f2p and f3p in the rotating frame, therefore able to
reduce loads on non-rotating parts such as the nacelle, yaw bearing and tower. IPC using H∞ control was
addressed in [8], [9], [1] and [10], showing not only reductions in OOP blade root bending moments, but also
adequate robustness from unmodelled and stochastic behaviour in the system.
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1.2 Motivation

Although numerous IPC strategies exist in literature, the vast majority of the methods share a commonality.
That is, IPC is performed with feedback control using strain gauge sensors at the blade roots as the main
control input. There are a number of complications which can arise in the use of strain gauges. Strain gauges
can be difficult to calibrate for long term operation as they are highly sensitive to external factors such as
temperature and humidity. They can experience long term drifting, as well as difficulty in measuring stresses
in anisotropic material [11]. With improving sensing technology, alternatives to strain gauge sensors have
been explored for use in IPC and other smart rotor technologies. For example, Larsen investigated the use
of IPC using local blade flow measurements [4].

In this project, blade tip deflection sensors are investigated for use in IPC. The use of tip deflection sensors
in wind turbines is very rare in literature. Bossanyi briefly mentions the possibility of using accelerometers
in the blade tips as an alternative to strain gauges, and also mentions the difficulty of maintaining such
sensors due to inaccessibility of the blade tips [3]. Berg and Wilson use blade tip deflection and velocity as
inputs for their turbine controller designs, however they focus on active flap control [12, 13]. To the best
of the author’s knowledge, no research has been performed on individual pitch control using tip deflection
sensors.

One sensor with potential use in a feedback controller is the iRotor sensor developed by LM Wind Power [14].
The iRotor can provide high-bandwidth flapwise tip deflection measurements for each blade via radio signals.
The benefit of using the iRotor over strain gauges is its ability to produce high precision measurements of the
blade tip deflection in real time at a high sampling rate. The focus of this project is to show the potential
applications of this sensor. In addition to investigating load reduction strategies, methods for increasing
blade-tower clearance are also considered.

1.3 Report Outline

The goal of this project is to study the applications of blade tip deflection sensors for IPC applications. The
report structure is outlined as follows:

Chapter 2: Simulation Setup

This chapter gives details of how the high-fidelity simulations are set up in HAWC2. The additional tools
used to implement IPC in HAWC2 are introduced as well as the DTU10MW reference turbine. Finally, the
key simulation parameters are defined.

Chapter 3: Theoretical Framework

The theoretical framework used in this report is outlined in this section. First, a relationship between
tip deflection and blade loads is found both analytically and from simulated data. Secondly, the control
framework for IPC is outlined including the performance and robustness measures used in this report.
Commonly used blade transformations are outlined and the use of single-bladed control is justified, and the
considerations regarding control discretisation are discussed.

Chapter 4: System Identification of Blade System

This section describes how the pitch to tip deflection transfer function is obtained for a single blade using
system identification. A simplified version of the DTU10MW wind turbine is simulated at various wind
speeds subject to a step pitch input. The tip deflection output signal is analysed with the step input signal
to estimate the transfer function. This transfer function is used as the plant in designing the control system
in Chapter 5.
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Chapter 5: Tip Disturbance Rejection Control Design

This section outlines the design process and results of various IPC configurations with the objective of
disturbance rejection. First, the behaviour of the open loop turbine system is simulated in HAWC2 and
analysed. Next, a baseline PI controller is designed and the performance is analysed. A single frequency
controller is designed and implemented separately for once per revolution frequency (f1p) to four times per
revolution frequency (f4p) to identify where the greatest load reductions are found. Lastly, a synthesis of
the f1p and f2p controllers is created which is found to improve load reductions in both the turbine blades
and in the fixed frame compared to the PI and single frequency controllers.

Chapter 6: Tip Trajectory Trajectory Tracking

The IPC controller is modified to perform tracking on the tip position so that the blade tips follow a trajectory
away from the tower. The motivation for this is to reduce the chance of tower strikes for highly flexible blades
by maximising the distance between blade and tower. Various trajectory amplitudes are tested under both
power law and inverse shear conditions. The effects of TTT on turbine loads and blade pitching limits are
also investigated.

Chapter 7: Conclusion and Recommendations

In this chapter, the conclusions drawn from the project work are outlined and recommendations for future
work on the topic are provided.
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Chapter 2

Simulation Setup

This chapter provides details on how the HAWC2 aeroelastic code is used to perform simulations and obtain
data for this project. Additionally, the DTU10MW turbine is introduced as well as the modifications made
for the purpose of this study. Finally, key parameters for the design load case simulations are discussed.

2.1 HAWC2 Simulation Environment

HAWC2 is an aeroelastic code able to simulate wind turbine responses in the time domain. HAWC2 is used
in this project to produce high fidelity simulation data to evaluate and verify the effectiveness of the control
system. In particular, time series data of the bending moments of various components, tip deflection of the
blades, and blade pitch angle signals are collected [15]. Two Dynamic libraries (DLL) where used in this
project to assist in the control design and verification, described as follows:

Python Interface Via TCP/IP

A Python module (Appendix B) was written for the purpose of rapid prototyping and testing on the reference
turbine. The module is able to receive sensor data from, and send commands to HAWC2 in real-time. Custom
controllers can be implemented with ease using the module which interfaces a Python script with HAWC2
using the TCP/IP protocol DLL. For a number of the simulations in this project, this module is used to
send tip deflection signals to a Python script, which then sends back the appropriate blade pitch demands
to HAWC2.

Individual Pitch Control Augmentation

A DLLs was written in Fortran for this project which is able to perform individual pitch control. Unlike the
Python module, the DLL is able to run in the HAWC2 native environment, allowing for better integration in
the simulations, and no dependency on Python. The IPC controller parameters are defined in the main input
file. The controller is designed to be augmented over the standard controller and is able to implement discrete
single-bladed individual pitch control defined by a list of feed-forward and feed-backward filter coefficients
(see Appendix B).

2.2 DTU-10MW Reference Turbine

The DTU-10MW Reference Wind Turbine Model is used in this project for the design and testing of the
control systems [16]. The standard controller used for this turbine is the Basic DTU Wind Energy controller
described in [17]. The IPC controllers analysed in this project are designed to extend the standard controller.
Some of the key specifications used in this project are tabulated in Table 2.1.
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Table 2.1: DTU10MW Reference Wind Turbine Model Key Parameters.

Parameter Value
Wind regime IEC Class 1A

Rated power output 10MW
Rated wind speed 11.4 m/s

Rotor diameter 178.3m
Hub height 119.0m

Minimum rotor speed 6 RPM (0.1Hz)
Rated rotor speed 9.6 RPM (0.16Hz)

Two modifications are made to the default turbine simulation settings.

1. The saturation limits for the pitch rate and pitch acceleration are deactivated in the pitch actuator
DLL. This change ensures the pitch actuator limit does not interfere with the IPC controller. This mod-
ification ensures the actuator DLL exhibits linear behaviour only and prevents unexpected controller
behaviour due to the nonlinearities introduced due to saturation. A pitch rate analysis is performed
in this report to determine the required pitching limits for the designed IPC controller.

2. The pitch deviation monitor in the Basic DTU Wind Energy Controller is deactivated. This monitor
shuts down the turbine in the event that a blade’s pitch angle deviates from the standard controller
reference pitch angle by a given threshold. As it is in the nature of IPC for blade pitch angles to
deviate from the standard reference, this safeguard is deactivated.

2.3 Design Load Case (DLC) Key Parameters

The majority of simulations are based on DLC 1.1 as defined in the IEC-61400 standards [18]. This DLC
is used for normal power production, and is suited to determine fatigue loads on the turbine. The different
controllers in this project are therefore tested in normal power production simulations in order to analyse
the controller performance. Additional DLCs are also performed using extreme turbulence (DLC 1.3) and
extreme wind shear (DLC 1.5) [18] in Chapters 5 and 6 to investigate the performance and robustness of the
controllers in extreme conditions. Some of the key simulation parameters are outlined in table 2.2.

Table 2.2: HAWC2 DLC Key Parameters [16].

Parameter Value
Simulation sampling frequency 100Hz

Simulation duration 700s (first 100s discarded)
Wind speeds 4, 6, ..., 24, 26 m/s

Turbulence model Mann
Turbulent seeds 3 per wind speed

Tower shadow method Potential flow

Unless otherwise specified in the report, the simulations use the following guidelines by default:

• The wind shear profile used is the power law profile with shear coefficient α = 0.2.

• The turbulence intensity is determined using the normal turbulence model (NTM) defined in IEC-61400
[18].

• Tip deflection measurements are taken in the flapwise direction which is defined in the blade frame of
reference as the direction of least bending resistance.
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Chapter 3

Theoretical Framework

This section outlines the theoretical content for the analysis in this project. A relationship between tip
deflection and blade root bending moment is first established, both theoretically and through simulation.
The control theory and terminology used for the controller design is described, including the choice of blade
transformation and the controller discretisation process. Finally, the tip deflection individual pitch control
algorithm is provided.

3.1 Relationship between Tip Deflection and Blade Loads

For individual pitch control systems, it is standard practice for wind turbine loads to be measured with
strain gauges. Strain gauge measurements can estimate the blade bending moments which are used as the
controller input for the majority of IPC literature [1, 3, 7, 8, 19]. However, there are a number of short-
comings to strain gauge measurements, including sensitivity to temperature, humidity, mounting error and
long term drift [11]. Tip deflection measurements, although subject to their own sources of error, could be a
viable alternative to strain gauges in IPC systems. In order to control blade loads with tip deflection control,
a relationship between blade loads and tip deflection must exist. This section explores this relationship by
investigating the tip deflection distance and the blade flapwise root bending moment (RBM).

the bending moment at the blade root is of interest as this is where the largest load occurs. In order
to analytically show a relationship, a simplified structural model of a wind turbine blade is presented in this
section. It should be noted that loads and deflections are only considered in the flapwise direction.

The blade is assumed to behave as an Euler-Bernoulli cantilever beam with length L. The flapwise de-
flection of the beam, u(t, z), at a transverse distance, z, from the fixed end, and at a time, t, can be
expressed a linear combination of the mode shapes:

u(t, z) =

∞∑
i=1

αi(t)γi(z) (3.1)

where αi is the amplitude of the ith mode, and γi is the non-dimensional shape of the ith mode such that
its value at the tip is γi(L) = 1. Therefore, the deflection at the blade tip is:

u(t, L) =

∞∑
i=1

αi(t) (3.2)

From Euler-Bernoulli beam theory, the bending moment, M(z), is expressed as:

M(t, z) = EI(z)
∂2u

∂z2
(z) (3.3)
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where EI(z) is the flexural rigidity defined as the product of the area moment of inertia and the Young’s

Modulus of the beam material, and ∂2u
∂z2 (z) is the curvature at position z along the blade. Substituting

Equation 3.1 into 3.3, and noting that αi is invariant to transverse displacement, the expression for M(z)
becomes:

M(t, z) = EI(z)

∞∑
i=1

αi(t)
∂2γi
∂z2

(z) (3.4)

Now assume only the first flapwise mode is relevant and the contribution from all higher modes is negligible.
That is, assume:

u(t, z) ≈ α1(t)γ1(z) (3.5)

and

M(t, z) = EI(z)α1(t)
∂2γ1

∂z2
(z) (3.6)

From Equation 3.4, the tip deflection y(t) = u(t, L) and the root bending moment, MR(t) = M(t, 0), can be
related by:

M(t) = EI(0)
∂2γ1

∂z2

∣∣∣∣
z=0

y(t) (3.7)

Or put another way, with redefined variable names for brevity, the proportionality between tip deflection
and root bending moment is:

y(t)

MR(t)
=

1

EI0κ0
(3.8)

where κ0 = ∂2γ1
∂z2

∣∣∣
z=0

and EI0 = EI(0)

It can be seen in Equation 3.8 that the relationship between tip deflection and RBM does not depend on
the deflection amplitude, α1(t).

From the specifications of the DTU10MW turbine, this proportionality constant can be approximated. The
first modal shape is determined using the eigenvalue solver in HAWC2, which provides γi(z). A spline is fit
to γ1(z), which is then numerically integrated twice and evaluated at z = 0 to get the curvature at the root.
Using the parameters in Table 3.1 to evaluate Equation 3.8, the proportionality between tip deflection and
RBM is estimated to be y(t)/MR(t) = 3.827× 10−7m/Nm.

Table 3.1: Flexural rigidity and curvature values at root of DTU 10MW blades.

Parameter Value
EI0 6.101× 1010Nm2

κ0 4.2827× 10−5m−2

This theoretical evaluation of Equation 3.8 is verified against time series data generated by high fidelity sim-
ulations. Time series data for tip deflection and blade root bending moment were generated using HAWC2
over a range of windspeeds from 4m/s to 26m/s, using the normal turbulence model defined in IEC 61400.
For each wind speed, 30 minutes of simulation data is collected with a sampling frequency of 100Hz.

To demonstrate and quantify the proportionality, y(t)/MR(t), flapwise tip deflection and flapwise root bend-
ing moment data points for all three blades are binned and plotted in 2D histogram in Figure 3.1. Darker
regions indicate a larger frequency of occurrence of data points. Linear regression is performed on this data,
and the fitted line is represented as the red dashed line. The tip deflection and RBM data is centered about
the mean in order to correspond to the theoretical analysis above.
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The plot shows a strong correlation between the two measurements. Two key observations can be made
from the analysis of Figure 3.1. First, the simulated results show linear proportionality between tip deflec-
tion and RBM, where the proportionality constant remains at a similar value ( 3×10−7 to 3.5×10−7m/Nm)
as the wind speed changes. The constant proportionality is supported by the Euler-Bernoulli cantilever anal-
ysis above, however it is noted that the simulated results have a lower proportionality constant compared
to the predicted value of y(t)/MR(t) = 3.827× 10−7m/Nm. This is likely due to the dynamic nature of the
simulation, whereas the theoretical analysis considers a statically loaded blade. Secondly, the coefficient of
determination (R2) represents how well the linear regression explains the data points, where a value close
to 1 indicates a perfect fit. The coefficient of determination of the experimental fit shows a high similarity
between tip deflection and RBM for low wind speeds (0.92), and a decrease in similarity for higher wind
speeds (0.84). This is visually indicated by the spreading of the cloud of data points relative to the line.
Higher wind speeds tend to have more spread data points, indicating that tip deflection measurements do
not completely explain the variations in RBM measurements, likely due to the increased turbulence at these
wind speeds. Despite this, the correlation suggests that an IPC which reduces tip deflection fluctuations will
also show a reduction in the blade root bending moment.

Figure 3.1: Tip deflection vs RBM correlation analysis. Based on HAWC2 simulations of the DTU 10MW Reference
Turbine (NTM).

Another way of observing the correlation of tip deflection and RBM is in a time series plot (Figure 3.2). A
clear periodicity between the measurements can be observed, which is a result of the oscillating azimuth-
dependent loads. To better demonstrate the periodicity, the tip deflection and RBM are bin plotted against
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rotor azimuth angle in Figure 3.3, where darker regions indicate a higher level of occurrence. The dominating
f1p disturbances are clearly observed as each blade follows an almost sinusoidal distribution for tip deflection
and RBM. As expected, each blade measurement is offset by 120o due to three-fold rotational symmetry of
the rotor.

Although the f1p oscillation can clearly be seen in Figure 3.3, there are in fact higher order harmonic
components. To better show this, the tip deflection of the blade is represented in the frequency domain.
Figure 3.4 shows the power spectral density (PSD) of the tip deflection at different wind speeds. A sig-
nificant observation is the similarity between the PSD above rated wind speed (11.4m/s). This suggests a
single controller targeting f1p should be adequate in the full load region, but insufficient below rated due
to the shift in the f1p frequency and its harmonics. The figure confirms the observation in Figure 3.3 that
f1p fluctuations dominate, however, it can also be seen that harmonics of f1p are also present in the signal
despite being less significant. This indicates that attenuating tip deflection oscillations at multiples of f1p

should be adequate in reducing flapwise blade loads.

Figure 3.2: Example time series of HAWC2 simulation showing root bending moment and tip deflection. (U = 6m/s,
NTM)
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Figure 3.3: Tip deflection, RBM versus azimuth angle (U = 18m/s, NTM)

Figure 3.4: Tip deflection power spectral density under normal operating conditions.

The key observations from this section are as follows:

• Flapwise tip deflection and RBM are correlated, and therefore a reduction in tip deflection fluctuations
should show a reduction in RBM fluctuations.
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• The energy of tip deflection fluctuations is concentrated at harmonics of f1p, and these frequencies
should be targeted in order to effectively reduce the fluctuating blade loads.

• The power spectrum retains a similar shape above rated wind speed, suggesting that a single controller
could be designed for this operating region.

3.2 Quantifying Fatigue Loads

The turbine simulations produce complicated time histories of the loads experienced in the various compo-
nents of the turbine. In order to quantify and compare the fatigue damage experienced in these components,
a load spectrum is calculated. A load spectrum decomposes a complicated stress history into stress cycles
of varying amplitude. This can be achieved using rainflow counting [20]. The fatigue loads in the turbine
components can be quantified by calculating the 1Hz equivalent load. The equivalent load is the amplitude
of a 1Hz oscillating load which produces the same amount of fatigue damage to a component as a mixed load
spectrum. It is a way of comparing different load spectra of the same component. The short term equivalent
load, Leq, for a given hub height wind speed, U , is calculated for Neq cycles as follows:

Leq(U,Neq) =

(∑
iNiSi(U,Neq)

m

Neq

) 1
m

(3.9)

where Si(U,Ni) is the ith load cycle amplitude, Ni is number of full cycles at Si, m is the material Wöhler
curve exponent of the component in question. In this analysis, a Wöhler curve exponent of 4 and 10 is used
for steel (tower, shaft, etc) and composite materials (ie. blades) respectively. Neq is the number of cycles
experienced of load Leq. For 600 second simulations, which is the case for this analysis, A 1Hz equivalent
load requires Neq = 600. It can be observed from Equation 3.9 that the damage equivalent load is highly
sensitive to large amplitude oscillations due to the exponentiation of the Wöhler curve exponent. Therefore
even a small reduction in load amplitudes can lead to a large reduction in lifetime fatigue loads in the turbine
components.

Another way of quantifying equivalent loads is the 1Hz lifetime equivalent loads, Llt, which are determined
from the short term Leq by integrating:

Llt =

∫ Uout

Uin

Leq(U,Neq)p(U)dU (3.10)

where Uin and Uout are the cut-in or cut-out wind speeds, and p(U) is the probability density function for
the occurrence of a hub height wind speed. The advantage of using the 1Hz lifetime equivalent loads is that
the expected distribution of wind speeds is also taken into account, giving a better estimate of the fatigue
damage experienced over the lifetime of the turbine. As the project presented in this report is not site
specific, p(U) is defined to follow a Weibull distribution fitted for the specifications of a Class I wind turbine
as defined in IEC 61400 [18], shown in figure 3.5.
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Figure 3.5: Class I Weibull distribution (k = 2).

3.3 Disturbance Rejection Theory

The focus of this project is on integrating flapwise tip deflection sensors into an individual pitch control
system. Unlike the collective pitch controller, which aims to minimise the error between the power out-
put/torque and a rated power/torque, the task of an IPC is to reject tip deflection perturbations. Consider
the linear feedback system in Figure 3.6. The system to be controlled, also known as the plant in control
theory, is represented as P (s). The output, ỹ(s), is passed through a controller transfer function C(s) which
is to be designed to achieve a certain objective. In Chapter 4, it is shown that the flapwise blade system
can be modelled in this form. Frequency components of the disturbance signal, d(s) are passed through to
the output, ỹ(s) described by the closed loop transfer function. The closed loop transfer function reveals
important characteristics of how the system behaves. A number of different transfer functions made up
of P (s) and C(s) are referred to in this report, each with a different application and purpose. These are
described as follows:

Figure 3.6: Wind turbine system block diagram.

Open Loop Transfer Function (Plant), P (s)

P (s) represents the system without any feedback control. P (s) is estimated in Section 4.2. Knowledge
of P (s) is required to design an effective controller, and can be used to measure the closed loop system
performance.
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Closed Loop Transfer Function, GCL(s)

GCL(s) =
P (s)

1 + P (s)C(s)
(3.11)

GCL(s) represents the transfer function of the closed loop. It describes the behaviour of the disturbance on
the output when the controller is connected in feedback, and can help estimate the controller performance.
From Equation 3.11, it can be seen that disturbances are attenuated when the denominator of GCL(s) is
large, and disturbances are passed through to the output when the denominator is small

Loop Transfer Function, L(s)

L(s) = P (s)C(s) (3.12)

The loop transfer function is a component of the denominator of GCL(s). Analysing L(s) provides important
information about the stability and robustness of the controller. In particular, it can be seen in Equation
3.11 that GCL(s) is unstable when L(s) = −1, and therefore the controller should be designed to avoid this
condition.

Sensitivity Function, S(s)

S(s) =
1

1 + P (s)C(s)
(3.13)

The sensitivity function describes how sensitive the closed-loop system is to disturbances in the frequency
domain. For any frequency component, the system attenuates when |S(s)| < 1 and amplifies when |S(s)| > 1.

Complementary Sensitivity Function, T (s)

T (s) = F (s)
P (s)C(s)

1 + P (s)C(s)
(3.14)

The complementary sensitivity function describes how the system output responds to a reference input. It is
based on a different system block diagram introduced later in Figure 6.1. It consists of an additional transfer
function block, F (s), which is a precompensator for the reference signal. The use of this transfer function is
described in further detail in Chapter 6.

3.3.1 Performance Measures for Disturbance Rejection

The objective of the controller is to attenuate the effect of disturbances, d(s) on the system output, ỹ(s) (see
Figure 3.6). One way of measuring the effectiveness of a disturbance rejection control system is to analyse
the magnitude of the sensitivity function, S(s).

The sensitivity function is simply the closed loop transfer function (Equation 3.11) divided by the plant,
P (s). By looking at the magnitude of the sensitivity function, the level of attenuation or amplification of
the closed loop system compared to the open loop system can be determined. Furthermore, if it is assumed
that the disturbance spectrum is the same for the open and closed loop system, then the level of attenuation
or amplification does not require knowledge of the input signal at all. Instead, it is sufficient to estimate the
close loop output spectrum if the open loop output spectrum and the sensitivity function is known. This
conjecture is demonstrated below:

Consider an open loop system, P (s) with input d(s) and output YOL(s), and the closed loop system,
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P (s)/(1 + P (s)C(s)) with the same input, d(s), and output YCL(s). The magnitudes of YOL(s) and YCL(s)
are expressed as:

|YOL(s)| = |P (s)||d(s)| (3.15)

|YCL(s)| = | P (s)

1 + P (s)C(s)
||d(s)| (3.16)

Dividing Equation 3.16 by 3.15 gives an alternative expression for the sensitivity function:

|YCL|
|YOL|

=
1

|1 + PC|
= |S| (3.17)

Therefore, one is able to estimate the closed loop output, YCL(s) for a given P (s), C(s) and YOL(s), and
this is possible without knowing the disturbance spectrum d(s). Additionally, the level of amplification or
attenuation is determined by the magnitude of the sensitivity function. A naive approach of designing a
disturbance rejection controller would be to have low sensitivity over a wide bandwidth. However, there are
theoretical limitations in doing so. Bode’s Integral Formula is a Theorem outlining a fundamental constraint
in tuning the sensitivity function of a control system.

Theorem 1 (Bode’s integral formula). Assume that the loop transfer function L(s) of a feedback system
goes to zero faster than 1/s as s → ∞, and let S(s) = 1/(1 + L(s)) be the sensitivity function. If the loop
transfer function has no poles in the right half-plane, then the sensitivity function satisfies the following
integral [21]: ∫ ∞

0

log|S(iω)|dω = 0

This is essentially a conservation law of the area under the sensitivity function. If a system attenuates a
signal at a certain frequency, it must amplify the signal at another. A trade-off must therefore be made
between disturbance attenuation and amplification. This can be taken into account be only attenuating
short bands of the signal at f1p, f2p etc, and amplifying frequencies with a small disturbance contribution.

The performance of a controller in this project is quantified by determining the percent reduction or in-
crease in f1p, f2p, f3p and f4p frequency components of tip deflection compared to the open loop system.
Given P (s) and C(s), this can be determined by evaluating |S(s)| at these frequencies. Although looking
at these four values gives insight into how the controller performs, it is not the whole picture. It does not
take into account stability and robustness of the system which is explored further in the following section.
In Section 5.4, the effectiveness of attenuating each of these frequencies individually is explored to see which
frequencies provide the greatest fatigue load reduction.

3.3.2 Robustness Measures for Disturbance Rejection

As well as achieving performance specifications, the closed loop system must be stable. Stability can be
inferred in a number of ways. One such method is to ensure that the closed loop system, GCL(s), has
no poles in the right hand plane of the s-plane. Another method is to analyze the bode plot of the loop
transfer function to determine the gain and phase margins. An equivalent way of determining stability is to
count the encirclements on a Nyquist plot. A Nyquist plot represents L(s) as a 2D contour where the real
and imaginary components are plotted on the X and Y axis respectively. The Nyquist stability criterion is
elaborated in [21], and is as follows.

Theorem 2 (Simplified Nyquist criterion). Let L(s) be the loop transfer function for a negative feedback
system and assume that L(s) has no poles in the closed right half-plane (Res ≥ 0) except for single poles
on the imaginary axis. Then the closed loop system is stable if and only if the closed contour given by
Ω = {L(iω) : −∞ < ω <∞} :⊂ C has no net encirclements of the critical point, s = −1 [21].
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In other words, as long as the Nyquist contour does not encircle the critical point, s = −1, then the feed back
control system is stable. It is also important to ensure the controller is robust to account for uncertainty in
the modelling. Robustness of a system is quantified in this project by determining the stability margin, sm,
as defined in [21]. sm is the minimum distance between the Nyquist plot and the critical point at s = −1.
A system is considered more robust for larger values of sm, where sm can range from 0 to 1.

Applications of the stability margin are presented in Chapters 5 and 6.

3.4 Blade System Transformations

As IPC controls all three turbine blades simultaneously, it is common for a system transformation to be
performed in order to simplify the control system. In literature, typically the Coleman transformation is
used in IPC [3], however, in this project, single blade control is used instead. Single blade control assumes
all three blades are independent from one another and requires a separate controller for each of blades. This
method has the advantage of being simple to implement, assumes each blade is uncoupled, and does not
require each blade to communicate with each other. For a three bladed turbine, three identical single-input
single-output (SISO) controllers can be cascaded to determine the pitch demands (Figure 3.7). Additionally,
the controller does not require the rotor azimuth angle as a measurement. Single blade control requires the
input signal to be centred at the mean such that only perturbation measurements are used [19]. Single blade
control has been successfully implemented in simulation in [22] and [4].

The use of single blade control over Coleman transform-based control is justified on a theoretical basis.
The Coleman transform transforms the stresses or tip deflection measurements from the rotating frame of
reference to the stationary frame of reference. When used in a control system, the measurements for the
three blades are decomposed into a tilt and yaw component, where the control action is performed. Coleman
transform-based control typically assumes the tilt and yaw axes are decoupled, which can cause problems
in the control design. Lu provides a mathematical formulation of the tilt-yaw coupling, showing that the
assumption that tilt and yaw are decoupled does not hold in certain scenarios [8] and therefore requires
further attention in the control design process. Furthermore, the transformation itself is nonlinear, causing
a frequency shift in the transformed domain. In particular, the f1p blade loads are shifted to f0p and f2p in
the fixed frame. Similarly, f3p oscillations in the fixed frame manifest themselves as f2p and f4p oscillations
in the rotating frame [8, 9, 23]. These effects can cause poor control performance if they are not taken into
account in the design process.

To overcome these issues, single blade control is performed instead. It is shown in [9] that a single blade
control law can be converted to an equivalent Coleman transform-based control law, and that these equiv-
alent controllers yield identical performance. The advantage of designing the controller in this way is that
the converted single blade controller already takes into account the effects tilt-yaw coupling, which is often
overlooked in Coleman transform-based control design. For this reason, it is chosen to explore the single
blade control which treats each blade as an independent system. Careful attention is paid towards the effects
of different frequencies on blade loads in Section 5.4.
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Figure 3.7: Single blade transform block diagram. The pitch demand for each blade, θ̃i, is determined only from the
measurement of that blade, ỹi.

3.5 Filter Design Using Loop Shaping

The controller is designed using loop shaping, which involves adjusting the frequency response of the close-
loop systems to achieve certain control objectives. In the case of this project, the close-loop transfer function
is desired to have attenuation at harmonics of f1p, while passing low frequency signals. The frequency re-
sponse of the entire control loop can be adjusted by designing the control transfer function, C(s) to have
the required frequency response.

A common method for doing this is called H∞ loop shaping. H∞ loop shaping is an efficient process
of shaping a robust control loop through optimisation. More information of this method can be found in
[24]. For the sake of transparency, the controllers in this project are shaped manually instead of using
H∞ optimisation. At a fundamental level, this involves placing the poles and zeros of the transfer function.
To represent this in a more structured way, three basic transfer functions, shown in Figure 3.8, are used to
make up the controller transfer functions designed in Chapter 5. These transfer functions are detailed below.

(a) Lead compensator G(s) = Tas+1
as+1

(b) Low pass filter G(s) =
ω2
cf

s2+2ζωcf+ω2
cf

(c) Band pass filter G(s) =
s2+2ζ1ω1+ω

2
1

s2+2ζ2ω2+ω
2
2

Figure 3.8: Transfer function building blocks used to construct the controller in this project.
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Lead compensator

A lead compensator provides a phase lead angle over a band of frequencies. It was found that adding
lead compensators provided better robustness by overcoming the many sources of lag in the system. Lead
compensators are able to reduce the lag of a system without introducing as much noise amplification as a
derivative controller. For a desired phase lead, φω at a frequency, ω, the lead compensator shape and time
constant, a and T can be found using:

a =
1 + sin(φω)

1− sin(φω)
(3.18) T =

1

ω
√
a

(3.19)

Low pass filter

A second order low pass filter with a low damping ratio (ζ ≈ 0.05) is used to target certain frequencies over
a short band of frequencies for attenuation, and is unresponsive to high frequencies. This comes at a cost
of introducing phase lag into the system which can lead to instability. This can be overcome by cascading
lead compensators. The peak magnitude occuring near the cutoff frequency can be designed by setting the
damping ratio using the relation, Mcf = 1/2ζ.

Band pass filter

A band pass filter passes frequencies over a small range of frequencies and attenuates frequencies outside this
range. Unlike the low pass filter, a band pass filter can introduce a phase lead in the system, which helps
provide robustness. Multiple cascaded band pass filters are used for targeting multiple frequencies.

3.6 Controller Discretisation

In order to implement the controllers designed in Chapters 5 and 6, the controller transfer functions must be
discretised so that they can be implemented in the time domain. For this reason, the continuous controller
must be transformed to be implemented as a discrete time controller.

It is not possible to produce a discrete controller which perfectly matches the frequency and time domain
performance of its continuous counterpart. For this reason, many methods exist, each with advantages and
disadvantages. The impulse invariant method, zero order hold method, and first order hold method are
examples of continuous-to-discrete methods which produce discrete systems which exactly match certain
time-domain response behaviours of a continuous system, namely the impulse, step, and ramp response re-
spectively. The zero order hold method, for example, is the default method used in MATLAB’s c2d function.
Despite its common use, time-domain methods do not preserve the frequency domain response of a system
as well as other methods. As the frequency response of an IPC controller is of high importance, a different
discretisation method is sought after.

Two methods were investigated which better preserve the frequency response of the system: the matched-
pole-zero approximation and the bilinear transform. Both methods showed comparable frequency responses
due to the high sampling frequency of the controller compared to the frequencies of the wind turbine system.
However, it was found that the matched-pole-zero approximation encountered numerical instabilities more
easily than the bilinear transform.

3.6.1 Matched-Pole-Zero Approximation (MPZ)

The MPZ method involves directly mapping the continuous poles and zeros, sp and sz from the s-domain to
equivalent locations in the z-domain, zp and zz, using the transformation zp = espTs and zz = eszTs where
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Ts is the sampling time of the discrete system. Expressed another way, a continuous transfer function of the
form:

Ha(s) = Ka

n∏
i=0

(s− szi)
m∏
i=0

(s− spi)
(3.20)

is transformed to a discrete transfer function:

Hd(z) = Kd

n∏
i=0

(z − espiTs)

m∏
i=0

(z − esziTs)
(3.21)

Additionally, the continuous zeros at infinity are mapped to discrete zeros at z = −1, and the gain of the
digital transfer function is chosen such that the low frequency gain of both transfer functions is equal. That
is:

Ha(s)|s=0 = Hd(z)|z=1 (3.22)

⇒ Ka
b0
a0

= Kd

∑
bi∑
ai

(3.23)

where bi and ai are the controller transfer function numerator and denominator coefficients.

3.6.2 Bilinear Transformation

The bilinear transformation is a first order approximation of the exact mapping between the s and the z
domain: s← 1

Ts
ln z. the bilinear transformation is defined as:

s← 2

Ts

z − 1

z + 1
(3.24)

Substituting Equation 3.24 into 3.20 gives the following expression for discrete transfer function:

Hd(z) ≈ Ha(s)|s= 2
Ts

z−1
z+1

=

(
Ts
2

(z + 1)

)r m∏
i=1

[(1− Ts

2 szi)z − (1 + Ts

2 szi)]

n∏
i=1

[(1− Ts

2 spi)z − (1 + Ts

2 spi)]
(3.25)

where r is the relative order of the continuous system (number of poles - number of zeros). The purpose of
the first term to the rth power is to place r discrete zeros at z = −1 to account for the continuous zeros at
infinity [25]. As a result, the discrete transfer function always has the same number of poles and zeros.

Both the bilinear transform and the MPZ method preserve stability between the continuous and discrete
systems. Although both methods are found to produce similar discretisations, the bilinear transform is more
generally used in literature due to the ability to prewarp the response at a particular frequency [26]. It was
also observed in this project that the bilinear transform was more successful in mapping high order filters,
whereas the MPZ method tends to produce numerical instabilities. Furthermore, the MPZ method was
more likely to deviate in the phase response of the filter compared to the bilinear transform, as shown in
Figure 3.9, which can lead to unforeseen instabilities in the closed loop system. For this reason, the bilinear
transform is used for the discretisation of the continuous controllers designed in Chapter 5.
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Figure 3.9: Bilinear transformation versus MPZ method for continuous to discrete conversion. The MPZ method can
be seen to deviate in the phase response more than the bilinear transform (fs = 5Hz).

3.6.3 Effect of sampling rate on frequency response

The sampling rate of the discrete system should be chosen such that it is high enough to not experience
aliasing and frequency response warping while not being too high as to be redundant. The Nyquist-Shannon
sampling theorem gives a theoretical boundary stating that the sampling rate should be at least twice the
required bandwidth [27]. However, for a better margin of error, a more common and practical guideline is
to have a sampling frequency at least ten times greater than the desired bandwidth of the controller [25].
The choice of the controller bandwidth draws from Bergami et al. [28], which shows that the majority of
fatigue occurs at frequencies below 2Hz for the NREL 5MW turbine. This frequency limit corresponds to
the 10P frequency of the NREL turbine operating at above rated speeds. The corresponding 10P frequency
for the DTU10MW turbine used in this project is 1.6Hz. Therefore to be able to account for this full range
of load-relevant frequencies as well as having a sufficient amount of room for error, the minimum sampling
rate of the sensor should be 16Hz. As an example, the continuous transfer function in Figure 3.10 was
discretised using the bilinear transformation with different sampling rates. A sampling rate above 5Hz is
seen to be sufficient to address up to f4p with little distortion in the frequency response. frequency of 16Hz
would certainly be sufficient for this range of frequencies. In this project, it is assumed that the tip deflection
sensor sampling rate is significantly higher than the required bandwidth, and that controller calculations
can be performed without delay. To simplify the working code, the sampling rate is set to 100Hz in order
to match the sampling rate of the HAWC2 simulation. However it should be noted that a lower sampling
rate could be used.
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Figure 3.10: Bilinear transform performed for different sampling frequencies. Vertical dotted lines indicate 1p fre-
quencies and its multiples.

3.6.4 Discrete frequency to discrete time domain transformation

In the above sections, methods for transforming a continuous controller transfer function into a discrete
controller transfer function is outlined. The final step is to convert the transfer function, which is in the
frequency domain, into a time domain function which can be executed and implemented in machine code.
For a discrete transfer function of the form:

Hd(z) =
Y (z)

X(z)
=
b0 + b1z

−1 + ...+ bmz
−m

1 + a1z−1 + ...+ anz−n
(3.26)

the transformation from the z-domain to the time domain yields the expression:

yk(t) =b0xk(t) + b1xk−1(t) + ...+ bmxk−m(t) (3.27)

− a1yk−1(t)− a2yk−2(t)− ...− anyk−n(t) (3.28)

Where xk(t) and yk(t) are respectively the discrete input and output signal at the kth time step. It can
be seen that the coefficients, bi and aj for i = 0, 1, ...m and j = 0, 1, ..., n are the same for both Equations
3.26 and 3.27. This makes it simple to convert a transfer function in the z-domain into the time domain by
inspection. Additionally, Equation 3.27 is a linear difference equation which is easily executed in machine
code. A control transfer function converted to this form can be executed digitally in a wind turbine.

3.7 Control Algorithm and Properties

In this section, the single blade individual pitch control algorithm outlined. The algorithm follows the form
outlined in [19] and has been adapted to use the discrete time execution formulated in this project. The
same algorithm is implemented for each blade. A Python implementation of these steps can be found in
Appendix B.
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1 - Collect measurements

For an individual blade, the discrete tip deflection measurement, yk(t) as well as the collective pitch control
demand is collected. It is assumed that all measurements are obtained at the same time step, k.

2 - Subtract the mean from the measurements

The mean value of the three tip deflection measurements (collected from each blade) is determined and
subtracted from each signal to produce a tip deflection perturbation.

ỹik(t) = yik(t)− ȳk(t) (3.29)

for each blade i = 1, 2, 3 and where

ȳk(t) =
y1
k(t) + y2

k(t) + y3
k(t)

3
(3.30)

3 - Calculate the pitch demand perturbations, θ̃k(t)

The pitch demand perturbation, θ̃k(t), for the blade is a linear combination of new tip deflection measurement
as well as the the previous N − 1 tip deflection measurements and pitch demands:

θ̃k(t) =

N−1∑
j=0

bj ỹk−j(t)−
N−1∑
j=1

aj θ̃k−j(t) (3.31)

The constant feed forward and feed-backward coefficients, bj and aj are the same as the discretised controller
coefficients are found using the method in section 3.6. It is assumed that a and b have the same number of
elements. In this project, the bilinear transformation is used for discretisation which enforces that a and b
are the same length.

4 - Superimpose IPC signal over CPC signal

The overall blade pitch demand for the blade, θk(t), can then be calculated as:

θk(t) = θ̃k(t) + θ̄k(t) (3.32)

where θ̄k(t) is the CPC pitch demand. It is assumed that the calculations can be returned to the pitch
actuator within the current time step.
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Chapter 4

System Identification of Blade System

This chapter provides details of the linear model used for the wind turbine blades. This is essentially deriving
a model for the plant system, P (s), described in Section 3.3, and is achieved using system identification
methods. Additionally, details are also provided of how the open loop output spectrum is obtained. A
simple analytical turbine model is presented to describe the interaction between blade pitching, flapwise tip
deflection and all external disturbances. The linear model is used to estimate the performance and robustness
of different controllers. In Chapter 5, the controllers are then run using the high-fidelity HAWC2 turbine
model and a comparison is made with the linear model in the following section.

4.1 Background

In order to effectively design an IPC, the wind turbine dynamics must be modelled. A block diagram of a
wind turbine system with both CPC and IPC is shown in Figure 4.1. The flapwise tip deflection of the ith
blade, yi(t), is considered an output of this system. The two relevant inputs for system are the blade pitch
angle, θi(t), and all other disturbances which influence tip deflection, which is encapsulated in the input
term d(t). d(t) represents disturbances from wind shear, tower shadow, yaw misalignment, turbulence and
sensor measurements. Although it may seem over-simplistic to encapsulate these disturbances into a single
signal, it is shown in the next chapter that the majority of the energy of this disturbance is concentrated at
f1p and its harmonics. As described in Section 3.3, d(t) does not need to be directly quantified in order to
proceed with the control design. The collective pitch control loop is presented in this figure to show how a
typical wind turbine controls pitch angle to achieve a desired power output.

Whereas the CPC responds to changing rotor speed, the IPC responds to the flapwise tip deflection of
all three blades. Note how the total pitch demand is a superposition of the collective and individual pitch
control loops. This control architecture is common in literature, and is justified by the fact that the band-
width of the CPC is much lower than the IPC loops, and is therefore essential decoupled [7].
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Figure 4.1: Wind turbine system block diagram with IPC control block.

Due to the highly nonlinear nature of the wind turbine system, the models presented in literature vary
greatly. It is found in this project that a linear approximation of the turbine system is adequate in designing
a controller that provides load reductions using tip deflection inputs. This assumption is supported in
literature for IPC systems using strain gauge sensors [3]. By encapsulating and linearising the wind turbine
model as well as the CPC loop about a fixed mean rotor speed, tip deflection and blade pitch angle, the
block diagram can be split into a plant block, P (s) and a controller block, C(s), with a disturbance input,
d(s), and tip deflection of each blade in the vector ỹ(s). Note an additional assumption is put in place in
this block diagram. Namely, the disturbance signal and pitch demand signal are additive. Therefore, the
effect of any disturbance signal can be rejected by providing an appropriate pitch demand signal.

Figure 4.2: Linearised wind turbine block diagram.

The total system is simplified to a single linear block in Figure 4.3. The transfer function between the
disturbances and the tip deflection output now match the disturbance rejection model outlined in Section
3.3. In order to use this model to design a controller, the plant, P (s), shall be estimated using system
identification.
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Figure 4.3: Simplified linear wind turbine block diagram.

4.2 System Identification of Plant

The dynamics describing how a changing blade pitch angle affects the flapwise tip deflection for a single blade,
referred to as P (s), is complicated. Referring to Figure 4.4, pitch demands are passed through many dynamic
systems including the pitching actuator, the structural dynamics of the blade and the interaction with the
aerodynamics of the wind. Each of these systems has their own set of nonlinearities and disturbances. One
method of estimating the plant would be to model each of these components individually. However, it is not
always possible to determine the parameters of each component, especially in a real world situation. In order
to overcome potential errors in the modelling, and to remain applicable to real world situations, a different
method called system identification is used.

Figure 4.4: Flow chart indicating the systems involved between the transfer of blade pitch signal demands and tip
deflection.

System identification is the process of estimating the system dynamics of a black box system only with
knowledge of the input and output of the system. One method of performing system identification is to
perform a frequency sweep [29]. A frequency sweep involves subjecting the black box system to a sinusoidal
input of a particular frequency, and measuring the amplitude and phase response of the output signal. This
is repeated for a range of frequencies to estimate the frequency response of the system, from which a transfer
function can be fitted. A more efficient way of performing system identification is to subject the system to a
step input and to fit a transfer function to the step response of the system. Theoretically, this is valid because
a step signal is composed of a wide range frequencies and is therefore typically used in system identification
problems [19]. Using the System Identification Toolbox in Matlab, the transfer function of a system can be
estimated given an arbitrary input signal and its corresponding output signal.

In this project, the pitch demand of one blade is the input signal, and the flapwise tip deflection is the
output, and the transfer function linking these two signals is the unknown system to be found. To isolate the
effects of pitching on tip deflection, all components on the turbine are set to stiff apart from the blades. To
eliminate disturbances from f1p oscillations, the incoming wind is set to have a constant vertical wind profile
with no turbulence, and the nacelle tilt is set to zero. It is assumed that the behaviour of the blade system
depends on the turbine operating conditions (rotor speed, pitch angle), and therefore a different transfer
function is found for each wind speed, U = 4, 6, ..., 26m/s.
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Figure 4.5 shows time series data from the HAWC2 simulations used for the system identification at different
wind speeds. The tip deflection can be seen to respond only to the step changes in pitch angle, and converge
to a constant value at all other times, verifying the simulation is not influenced by other aerodynamic and
structural influences.

It should be noted that system identification can only be used for a linear, time invariant system. To
verify the assumption of linearity and time invariance, two step inputs are provided at different amplitudes.
The first step output is projected (dotted line) and scaled over the second step output. From the figure it
can be seen that at above rated wind speed, the step size of the output signal scales with the magnitude
of the input step. This supports the underlying assumption that the blade system behaves linearly under
small pitch perturbations, and is invariant to the time shift of the step inputs. Below rated wind speed, this
linearity does not hold as can be seen by the misfitting projection at U = 6m/s. This is likely a result of
interactions with the torque control in this region.

Figure 4.5: Pitch step input and output data. The dotted lines are a projection of the first step response onto the
second in order to demonstrate linearity and time invariance.

The transfer function estimation is performed in Matlab using the time series data plotted above. The time
series input and output are run through the spafdr function (spectral analysis with frequency-dependent
resolution) to obtain an estimate for the frequency response of each time series. This allows the system
identification to be performed in the frequency domain instead of the time domain. As an IPC is targeting

26



frequency components, it is important to have a good estimate of the plant in the frequency domain.

The spafdr function uses a similar method outlined by Ljung [19]. First, the autospectrum of the dis-
crete input and output signal, Φxx(ω) and Φyy(ω), as well as the cross spectrum, Φxy(ω) is estimated. The
frequency response of blackbox system, G(z) is estimated as:

G(ejω) =
Φxy(ω)

Φxx(ω)
(4.1)

The estimated frequency response is run through the tfest function to find the best fitting transfer function
coefficients. A transfer function with four poles and three zeros was found to fit most appropriately. Figure
4.6 shows the bode plot corresponding to the fitted plant transfer functions for various wind speeds. The
system behaves similar to a low pass filter, implying that high frequency pitching is attenuated due to the
system dynamics. It can also be seen that the blade models above rated wind speed closely match, whereas
the below rated wind speed models show some deviations. This once again suggests that an IPC suitable
above rated will not be as suitable below rated.

The continuous transfer functions are tabulated in Appendix A.

Figure 4.6: Blade transfer functions derived using system identification.
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Chapter 5

Tip Disturbance Rejection Controller

In this section, the iterative design process used to design an effective IPC is detailed. This chapter draws
from the theory and modelling outlined in the previous chapters. In particular, the plant system, P (s) is
used to determine the robustness and linear performance of each controller. This prediction is then compared
to high-fidelity simulation results by implementing each IPC in HAWC2.

The chapter is arranged as follows. First, the open loop system output is analysed in Section 5.2. Next,
a baseline PI controller is designed in Section 5.3 which is used as a benchmark controller for comparison
purposes. In Section 5.4, four single frequency controllers are then designed to specifically target frequen-
cies which are harmonics of f1p. The load reduction capabilities of each of these controllers is investigated.
The final control design iteration is carried out in Section 5.5, where a controller which targets f1p and f2p

disturbances is designed. Finally, the tip deflection sensor based control is compared to strain gauge based
control, and the effect of IPC on power output is investigated.

5.1 Background

The unique aspect of this project is the use of tip deflection measurements in the implementation of IPC.
This is contrary to many of the control designs in literature which use strain gauge measurements instead
[3, 8, 9, 22, 30]. Nevertheless, the control design process remains similar. Instead of rejecting disturbances
in the blade root bending moments, tip deflection disturbances are rejected. Due to the high correlation of
the two signals, minimising tip deflection oscillations will also minimise blade loads as outlined in Section 3.1.

The controllers in this section are designed to attenuate frequencies between f1p and f4p. This is achieved by
performing loop shaping, where the controller transfer function is designed in the frequency domain (refer to
Chapter 3). In literature, loop shaping is typically performed using H∞ optimisation to improve robustness
and performance ([8], [9], [1] and [10]). For clarity in this section, H∞ optimisation is not performed and
the controller is tuned manually.

IPC typically operates in conjunction with CPC, so it is important to ensure both controllers do not interfere
with each other. This is achieved in two ways. Firstly, the IPC controller ensures that the average pitch of
each blade is equal to the CPC pitch demand, ensuring that the power output of the turbine remains unaf-
fected. Secondly, IPC operates at a significantly higher bandwidth than CPC. Therefore the pitch demand
of the two controllers can be superimposed without noticeable interference [7].

One consequence of this decoupling that the control algorithm is unable to respond to multiples of f3p

frequency components [23]. This is due to the three-fold rotational symmetry of the rotor, and appears in
many of the results in this paper (Figures 5.3a, 5.5, 5.6). To demonstrate this analytically, let ω be the
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turbine rotor angular frequency. If each blade tip deflection signal is offset by 120o then a f3p tip deflection
signal for all three blades is:

y1(t) = A sin(3ωt+ φ) (5.1)

y2(t) = A sin

(
3

(
ωt+

2π

3

)
+ φ

)
= A sin(3ωt+ φ+ 2π) (5.2)

y3(t) = A sin

(
3

(
ωt+

4π

3

)
+ φ

)
= A sin(3ωt+ φ+ 4π) (5.3)

for an amplitude and phase, A and φ. Due to periodicity, y1(t) = y2(t) = y3(t), and therefore, centering
about the mean gives ỹ1 = ỹ2 = ỹ3 = 0. Therefore when applying Equation 3.31 in step 3 of the control
algorithm to these inputs, zero IPC pitch action will be produced. This insensitivity at multiples of f3p is
observed in Section 5.4. It should also be noted that this phenomenon is not unique to single blade control.
The same insensitivity is present for Coleman based control.

An issue with IPC is the increased pitch rate of the blades. As IPC requires the blades to continuously
pitch, the rate at which they pitch is significantly higher than CPC. IPC pitch rates required to achieve
decent reductions in fatigue load are around ±10 deg s−1, which is considered quite high [2]. However, the
required pitching rate decreases with rotor diameter due to the decrease in rotational frequency. This justifies
the use of IPC for larger wind turbine models. Higher order harmonic control may not meet the limiting pitch
rate requirements, which explains why most papers consider low frequency oscillations (usually up to 3P) [10].

It is worth mentioning that IPC is just one of many methods for performing disturbance rejection in turbine
blades, especially in the higher frequency range where IPC is unable to operate. Active aerodynamic load
control (AALC) devices such as trailing edge flaps and micro tabs have also been an active area of research.
The advantage of AALC devices is their high bandwidth, allowing for controllability of high frequency dy-
namics. Berg [12] and Wilson [13] have researched the effects of load reduction using trailing edge flaps,
showing a 20-32% reduction in blade root stress, which can allow for a 10% increase in blade length without
exceeding the original equivalent fatigue damage. Lackner [31] explores this concept and proposes a hybrid
control system using both IPC and active flaps, showing excellent blade load reductions over a larger band-
width than IPC alone. Bergami performed a similar study in HAWC2, showing 15% reduction in lifetime
equivalent loads using active flaps alone, and up to 30% life time equivalent load reductions using both active
flaps and pitch control [32].

5.2 Open Loop Output Estimation

In order to compare the performance of the controllers designed in this chapter, results are collected for the
open loop system (CPC only). The tip deflection frequency response is of interest for two reasons. First, it
can be used to compare open loop and output simulation results. Second, the closed loop frequency response
can be estimated with the open loop response by using the theory developed in 3.3.

The open loop output frequency response refers to the frequency decomposition of the flapwise tip deflection
for a turbine without tip deflection control. This is found by running simulations using the DTU10MW
turbine with full structural flexibility, realistic aerodynamic effects including wind shear, tower shadow and
turbulence. A different frequency response is produced for each wind speed. Three simulations of 10 minutes
each with different turbulent seeds were run for each wind speed U = 4, 6, ..., 26m/s. From these simula-
tions, time series data of blade flapwise tip deflection is collected. A variation of the Welch method is used
to generate a smooth frequency response. The one sided Fourier transform is taken of each of these time
series. For a given wind speed, the average Fourier transform is taken over all three blades and turbulent
seeds to produce an averaged frequency response. Furthermore, each time series is split into six segments of
10000 data points each, from which the Fourier transform is taken and averaged. The result is a smoothed
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frequency response as demonstrated in Figure 5.1. The discrete one sided Fourier transform is defined and
normalized as:

F {y[n]} =
2

N

N−1∑
m=0

y[m] · e−2πimk
N for k = 0, 1, ...,

N − 1

2
(5.4)

where N is the length of the time series, k/N is the per sample frequency. This particular normalization
is chosen so that the frequency component amplitude matches the tip deflection amplitude in meters. The
shape of the frequency responses above rated wind speed show a similar shapes to each other, having a large
peak at f1p, and smaller peaks at harmonics of this frequency. Below rated wind speed, this peak shifts due
to the changing rotor speed.

Figure 5.1: Open loop frequency magnitude response of the high-fidelity turbine model tip deflection (NTM).

5.3 Baseline Control Design

IPC control is notoriously difficult to compare in literature. There is great variation between the aeroelastic
code used, control methodology and wind turbine model. In order to better compare the controllers de-
signed in this project, a baseline proportional-integral (PI) controller is designed. By doing so, it is assured
that the same model, software and assumptions are used in comparing the performance. Additionally, the
theoretical tools outlined in Chapter 3 will be used to demonstrate the disadvantages of using PI control for
single-bladed IPC.

A PI controller has a transfer function of the form:

CPI(s) = Kp

s+ 1
Ti

s
(5.5)
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where Kp is the proportional gain, Ti is the controller time constant. From the form of Equation 5.5, it is
clear that the controller has a single pole and a single zero, which is a lower order than the other controllers
analysed in this project.

The PI control parameters, Kp and Ti were chosen using an iterative process such that a balance is struck
between the attenuation level at f1p and the system robustness. Figure 5.2 shows the Nyquist plots for
varying controller parameters, Kp and Ti at a wind speed of U = 18m/s. The linear sensitivity at f1p is
indicated in the lower left corner of each plot. The key insight from these plots is the distance between the
critical point (marked as a red cross) and the Nyquist plot itself. If the Nyquist plot encircles the critical
point, then the system is unstable. To account for uncertainties in the system modelling, the distance
between the Nyquist plot and the critical point should be as large. it can be seen that there is a trade-off
between the stability margin, indicated as the length of the red dotted line, and the f1p attenuation. That
is, the plots towards the lower left have high robustness but poor tip deflection attenuation, whereas the
plots towards the upper right have low robustness but better attenuation. The parameters Kp = 0.015 and
Ti = 1.0 were chosen as a compromise between the two parameters.

Figure 5.2: Nyquist plots the linear turbine model with different PI controller variations (U = 18m/s).

The PI controller is tested on the nonlinear turbine model in HAWC2 under NTM and the results are com-
pared to the linear model results. Figure 5.3a shows the sensitivity of using the PI controller on both the
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linear and the HAWC2 model. A number of weaknesses in the PI controller can be identified. Firstly, the
controller is expected to attenuate frequencies near f0p based on the linear model results. However, frequency
components at this frequency cannot be suppressed in the rotating frame of reference due to the rotational
symmetry of the rotor as outlined earlier in this chapter. This is verified in the high-fidelity HAWC2 simu-
lations (dotted orange line), which shows insensitivity near at as the frequency approaches zero, and also at
f3p. Secondly, it can also be seen that there is a large amplification at f4p. Although this is not desirable,
the result is present in both the linear and the HAWC2 model, verifying that the blade modelling and the
control design function as expected.

Another way of representing the frequency response of the controller is in the spectral contour plot in
Figure 5.3b, which shows the percent change in tip deflection frequency components over a range of operat-
ing wind speeds. The results from this plot are from HAWC2 simulations. The advantage of representing
the frequency data in this way is that the amplification and attenuation of each frequency component can
be easily compared over all operating conditions. The f1p attenuation and f4p amplification can be clearly
seen at operating conditions above rated wind speed (11.4m/s). The performance drops off below rated wind
speed, where the rotor speed deviates from the controller target frequencies. This is found to be the case for
all controllers investigated in this chapter.

Due to the conservation law outlined in Bodes Integral Formula (Theorem 1), signal attenuation at some
frequencies require signal amplification at others. The controller could be better designed by suppressing
different frequencies. For example, less attenuation could be performed at low frequencies (¡f1p) as this
frequency range is uncontrollable. This would allow for further attenuation at the target frequencies, and
would reduce the amplification at f4p.

(a) Sensitivity function of linear and HAWC2 turbine model
(U = 18m/s).

(b) Frequency sensitivity contour indicating the increase/de-
crease in tip deflection frequency components by using CPI on
HAWC2 model.

Figure 5.3: Sensitivity plots for PI controller.

5.4 Single frequency Control Design

One clear shortfall of the PI controller is that it is unable to target particular frequencies without influencing
other frequencies. To address this, a controller which has high levels of attenuation at a single frequency is
designed. The motivation for this section is to investigate the load reductions of different turbine components
when different blade frequencies are attenuated.
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A controller targeting f1p frequencies has the transfer function shown in Equation 5.6. The controllers
for f2p to f4p have a slightly different form shown in Equation 5.7. These controllers consist of a second
order low pass or band pass filter with a cutoff frequency set at the frequency component of interested, as
well as two identical lead compensators in order to increase the phase response which helps increase the
system robustness.

C1p(s) = Kp
1

s2 + 2ζ2ω2s+ ω2
2︸ ︷︷ ︸

Low pass filter

(1− aTs)2

(1− Ts)2︸ ︷︷ ︸
Lead compensator

(5.6)

Cnp(s) = Kp
s2 + 2ζ1ω1s+ ω2

1

s2 + 2ζ2ω2s+ ω2
2︸ ︷︷ ︸

Band pass filter

(1− aTs)2

(1− Ts)2︸ ︷︷ ︸
Lead compensator

for n = 2, 3, 4 (5.7)

where Kp is the proportional gain, ω and ζ refer to cut-off frequencies and damping ratios respectively, and
a and T are the lead compensator shape and time parameters as described in Section 3.5. The values of
these parameters are defined in Appendix A.

These controllers were tested in HAWC2 in order to determine the fatigue load reductions. From these
results it is able to be determined which frequency components influence the loads of particular turbine com-
ponents, and to what degree these loads can be reduced. Figure 5.4 shows the linear sensitivity functions
of each single frequency controller, showing high levels of attenuation at a single multiple of f1p as per the
design. Unlike the PI controller (orange dotted line), the single frequency controllers show little action at
frequencies between f0p and f1p, which allows for more flexibility in targeting specific frequencies.

Figure 5.4: Sensitivity functions of single frequency controllers (U = 18m/s).

5.4.1 Tip Deflection Frequency Analysis

To see if the four single frequency controllers perform as expected, the frequency response generated from
HAWC2 simulations using these controllers is compared to the linear model case as well as open loop case.
Figure 5.5 shows the frequency response for the four controllers at a wind speed of U = 18m/s. It was found
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that the predictions from the linear model (black dotted line) fit quite closely with the simulated output
(red line). With the exception of the f3p controller, the single frequency controllers show similar reductions
in tip deflection fluctuations between the linear and the HAWC2 model at the target frequencies.

To visualise the level of amplification and attenuation at all operating wind speeds, Figure 5.6 shows the rel-
ative frequency response as a function of wind speed as a contour plot. Blue regions represent tip deflection
signal attenuation, whereas red regions represent signal amplification. Above rated wind speed (11.4m/s),
the behaviour of the system outputs does not vary significantly. This agrees with the findings in Chapter
4 where the blade models show similarities above rated wind speed. Below rated, the controllers do not
attenuate the the target rotor frequency. This is a limitation of the controller architecture which is unable
to adjust its frequency response to the changing rotor speed of the turbine. It is possible to overcome this
issue by introducing gain scheduling.

The particular behaviour of the f3p controller can also clearly be observed. As mentioned in Section 5.1, the
IPC algorithm is unresponsive to f3p fluctuations. This is shown to indeed be the case in Figure 5.5 and 5.6
which shows no change in the magnitude response at f3p.

Figure 5.5: Tip deflection frequency magnitude response of closed loop single frequency control (linear and HAWC2
models) versus open loop system.
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Figure 5.6: Frequency sensitivity contour of single frequency controllers. Each controller successfully attenuates their
target frequency except for the f3p controller.

5.4.2 Equivalent Load Reduction

Figure 5.7 and Table 5.1 show the lifetime equivalent loads for the first three single frequency controllers
with a comparison against the no control case and the PI controller. The largest reduction in loads can
be seen in the blade flapwise root bending moment. The f1p controller has a 19.97% reduction in lifetime
equivalent loads, which outperforms the PI controller which shows an 11.89% reduction. The only controller
which shows reductions in the main bearing loads is the f2p controller, showing a 10.98% reduction in
tilt equivalent loads, and a 12.84% reduction in yaw equivalent loads. This result agrees with the work
of Bossanyi [3]. As the main bearing is in the fixed frame, the frequency components of interest in the
rotating frame are f2p and f4p. For this reason, the f1p controller shows negligible bearing load reductions.
Furthermore, the PI controller shows increasing loads in the main bearing compared to the open loop case.
This can be attributed to the PI controller’s sensitivity function (Figure 5.4) where amplification can be
seen at f4p. There are no significant changes in edgewise loads for all controllers as expected. Furthermore,
for the change in loads due to the f4p controller are negligible compared to the f1p and f2p controllers.

Table 5.1: Lifetime equivalent loads of single frequency controllers on HAWC2 turbine model. Percentage change is
relative to the no-IPC case.

PI Control f1p Control f2p Control f3p Control
Llt[kNm] % chng Llt[kNm] % chng Llt[kNm] % chng Llt[kNm] % chng

Blade (flap) 17579 -11.89 15966 -19.97 18726 -6.14 19572 -1.90
Blade (edge) 15535 -1.80 15814 -0.03 15865 +0.29 15883 +0.41

Main Bearing (tilt) 12355 +3.96 11860 -0.21 10579 -10.98 11673 -1.78
Main Bearing (yaw) 11333 +2.50 11006 -0.47 9638 -12.84 10802 -2.31
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Figure 5.7: Lifetime equivalent loads of single frequency controllers on HAWC2 turbine model.

5.5 Two Frequency Control Design

From the results in the previous section, it can be seen that the largest blade load reduction can be achieved
by targeting f1p, whereas the largest main bearing load reduction can be achieved by targeting f2p. This
suggests that a hybrid controller targeting both these frequencies could show sufficient reductions in both the
fixed and rotating frame. This strategy matches that used by Leithead and Dominguez [22] who also used
single blade control to target f1p and f2p frequencies. A hybrid controller is designed to have the following
form:

C2(s) = Kp

(
s2 + 2ζ1ω1s+ ω2

1

s2 + 2ζ2ω2s+ ω2
2

)(
s2 + 2ζ3ω3s+ ω2

3

s2 + 2ζ4ω4s+ ω2
4

)(
1− aTs
1− Ts

)2

(5.8)

The values of these parameters is tabulated in Appendix A.

The controller consists of two band pass filters targeting f1p and f2p, as well as two identical lead com-
pensators. The magnitude plot of the transfer function of this controller (hereon referred to as C2) is plotted
and compared to the PI and C1p controllers in Figure 5.8. The parameters have been chosen to have large
control action only near the two target frequencies while passing through frequencies near f0p, f3p, and
f4p. A slight amplification can be seen above f4p, a result of Bode’s integral formula (Theorem 1). As the
majority of the tip deflection energy is before f4p, this amplification has negligible effects.
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Figure 5.8: C2 controller transfer function compared against CPI and Cf1p controllers.

In addition to shaping the control loop for adequate performance, the robustness of the controller is also
considered. The Nyquist plot is shown in Figure 5.9a for U = 18m/s, showing a stability margin of sm = 0.67.
Figure 5.9b shows the standard measures for stability in a bode plot, showing a gain and phase margin of
12.13dB and 87o. The stability margin is compared for various controllers on the following section.

(a) Nyquist Plot. (b) Bode plot.

Figure 5.9: Stability plots of C2 controller (U = 18m/s).
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5.5.1 Tip Deflection Frequency Analysis

The tip deflection frequency response was calculated from HAWC2 simulations using the C2 controller, shown
in Figure 5.10. The C2 controller successfully attenuates f1p and f2p tip deflection oscillations at above-rated
wind speed, which is visible in the plots as a reduction in sensitivity at f1p and f2p compared to the open
loop case. It can also be seen that the frequency response shows similar behavior above rated wind speed,
and is unable to attenuate the peak frequencies effectively below rated (U = 6m/s). This is a result of the
reduced rotor speed in this operating region for which C2 has not been designed.

The HAWC2 frequency response matches closely with the linear approximation (dashed lines). This is
also demonstrated in Table 5.2 where the sensitivity and stability margin of various controllers is compared
at key frequencies. It can be seen in this table that the linear approximation for the controller sensitivity
over estimates the attenuations at all frequencies.

The controller sensitivity at different frequencies varies based on the controllers in Table 5.2. The C2

controller shows a 67.88% reduction in f1p oscillations, which outperforms the PI controller which has a
reduction of 37.24%. The Cf1p controller shows better attenuation at this frequency (83.10%) than the C2

controller, however, this comes at a cost of lower robustness (sm = 0.65) than the C2 controller (sm = 0.67),
as well as worse attenuation at higher frequencies. The C2 is able to attenuates f2p frequencies to a higher
degree than both the CPI and Cf1p controllers. At f3p, the HAWC2 model shows negligible attenuation and
amplification compared to the predicted attenuation/amplification by the linear model. This is a result of
the f3p cancellation mentioned earlier in this chapter which is not take into account in the linear model.

Figure 5.10: Tip deflection frequency magnitude response of closed loop C2 control (linear and HAWC2 models)
versus open loop system.
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Table 5.2: Controller sensitivity and stability margin, sm (U = 18m/s).

Controller Turbine Model Sensitivity [%] sm

f1p f2p f3p f4p

CPI
Linear -47.45 -7.46 28.05 69.84 0.58

HAWC2 -37.24 -0.67 0.78 56.10 -

Cf1p

Linear -87.07 -1.68 46.47 41.15 0.65

HAWC2 -83.10 3.98 1.71 23.57 -

C2

Linear -71.82 -63.70 -7.02 -0.77 0.67

HAWC2 -67.88 -59.00 -1.18 4.44 -

5.5.2 Equivalent Load Reduction

The load reductions for the C2 controller are plotted and tabulated in Figure 5.11, and Table 5.3 respectively.
The 1Hz equivalent load results are compared to the CPI controller, the f1p controller, and the open loop
system. The C2 is able to reduce loads in both the rotating and non-rotating by a larger factor than both
the CPI and F1p controllers. The blades experience a 25.10% reduction in flapwise RBM lifetime equivalent
loads, and the main bearing experiences a 13.19% and a 17.88% reduction in the tilt and yaw directions
respectively. It can be seen that the C2 has the greatest degree of load reduction even though the controller
has a lower attenuation level at f1p compared to the Cf1p controller. This is a result of the f2p attenuation
which also has a contribution to flapwise blade load reduction. The C2 controller therefore is able to achieve
better load reductions with less aggressive control action at f1p, and a higher level of robustness than either
CPI or Cf1p.

Figure 5.11: Short term equivalent loads (HAWC2, NTM).
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Table 5.3: Lifetime equivalent loads of C2 control.

PI Control f1p Control C2 Control
Llt[kNm] % chng Llt[kNm] % chng Llt[kNm] % chng

Blade (flap) 17579 -11.89 15966 -19.97 13942 -25.10
Main Bearing (tilt) 12355 +3.96 11860 -0.21 8675 -13.19

Main Bearing (yaw) 11333 +2.50 11006 -0.47 7636 -17.88

Comparing these results to literature, the load reductions in this project are in a similar range depending on
the implementation. Single blade IPC control using local inflow measurements as a control input as explored
by Larsen [4]. Larsen demonstrated a 25% reduction in 20 year equivalent blade flapwise loads, and a 9%
reduction in the shaft loads on a smaller turbine model (2MW). Bossanyi shows a 17.8% reduction in blade
flapwise 1Hz equivalent loads using a Coleman-based approach. The performance of the C2 controller shows
comparable blade load reductions to the Larsen implementation, and an improved reduction in shaft loads.

To visually demonstrate the operation of the IPC controller, Figures 5.12 and 5.13 show the tip deflec-
tion as a function of time and rotor azimuth respectively. In Figure 5.12, it can be seen that the fluctuation
levels with C2 IPC are lower than CPC alone, however there still exists some oscillations. It is possible to
further reduce these oscillations at the cost of decreasing controller robustness. Plotting the tip deflection
perturbations against azimuth angle gives a clearer representation of the f1p attenuation as the IPC data
shows a flatter tip deflection response than CPC alone. Furthermore, the perturbations show less deviation
when IPC is present, represented as the thinner spread of data points.

Figure 5.12: Tip deflection time series with and without IPC (U = 20m/s, NTM)
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Figure 5.13: Tip deflection versus rotor azimuth angle (U = 20m/s, NTM).

5.5.3 Performance in Extreme Turbulence

The three key controllers in this project comparison are subjected to extreme turbulence as defined in the
IEC standards for two main reasons. First, to determine by what degree these IPC controllers can reduce
turbine loads in high levels of turbulence, and second, to test the limits of the controller stability. HAWC2
simulations are run in a similar fashion to the results in the section above with the turbulence model changed
to the extreme turbulence defined in [18].

As it can be seen in Figure 5.14 and Table 5.5, the CPI , Cf1p and C2 controllers remain operational under
extreme turbulence and show slightly lower load reductions compared to the normal turbulence case. The
C2 controller shows a 20.74% reduction in lifetime equivalent blade loads compared to the 25.1% reduction
in normal turbulence 5.5. A similar performance drop can be seen for the bearing loads.
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Figure 5.14: Short term equivalent loads of controllers in extreme turbulence.

Table 5.4: Lifetime equivalent loads in extreme turbulence.

PI Control f1p Control C2 Control
Llt[kNm] % Llt[kNm] % chng Llt[kNm] % chng

Blade (flap) 21322 -7.34 19816 -13.89 18238 -20.74
Main Bearing (tilt) 14805 +4.76 14165 +0.23 12386 -12.35

Main Bearing (yaw) 13570 +3.11 13143 -0.14 10968 -16.66

5.6 Strain Gauge versus Tip Deflection Based Control

The performance of IPC using strain gauge sensors is outlined in this section to compare with the tip
deflection implementation earlier in this chapter. In order to compare the strain gauge and tip deflection
based controllers, the C2 controller has been adapted for flapwise root bending moment measurements instead
of tip deflection measurements. The HAWC2 simulations are adapted to take RBM measurements as inputs
instead, and the controller transfer functions are scaled by a factor of 3.4× 10−4m/kNm to account for the
change in input signal. This scaling factor was determined from the proportionality analysis performed in
Section 3.1. The HAWC2 simulation results are shown in Figure 5.15, and Table 5.5, showing comparable
load reductions when using either tip deflection sensors or strain gauge sensors. Slight discrepancies in the
results exist due to the differences in the feedback system, variations in the proportionality between tip
deflection and RBM, as well as statistical errors which could be mitigated by increasing the seed count in
the simulations. The conclusion from these results show that tip deflection sensors could be used as an
alternative to strain gauge sensors for the use in IPC without significant differences in the turbine load
reductions.

42



Figure 5.15: Short term equivalent loads of IPC with tip deflection sensors versus strain gauge sensors. The same
turbulent seeds are used for both simulation sets.

Table 5.5: Lifetime equivalent loads for strain gauge based IPC.

Tip Deflection Sensors Strain Gauge Sensors
Llt[kNm] % chng Llt[kNm] % chng

Blade (flap) 14942 -25.10 14682 -26.40
Main Bearing (tilt) 10317 -13.19 10231 -13.92

Main Bearing (yaw) 9081 -17.88 9308 -15.82

It should be noted that it would be beneficial to use both tip deflection and strain gauge sensors together
to provide better control performance. A combination of both sensors could provide better estimates of
root bending moment or tip deflection than using a single sensor. The topic of sensor fusion is not explored
in this study, however a Kalman filter is a typical approach to fuse the measurements from two noisy
sensors. Kalman filtering has been explored for IPC applications in [7]. Another application for using both
strain gauges and tip deflection sensors together is provided in Appendix C. In the appendix, a theoretical
framework for estimating the full flapwise blade deformation is provided. This is achieved by estimating the
excitation of the first two blade modes. As this topic falls outside the scope of the project, it is not included
in the main report.

5.7 Influence on Power Output

One underlying assumption of IPC is that the electrical power output of the turbine remains unaffected.
The reasoning for this is that the IPC is decoupled from the CPC by ensuring the average pitch angle of all
three blades is equal to the CPC pitch demand. To verify this assumption, the influence on power output
due to tip deflection control has been investigated in this section. The distribution of electrical power output
with and without tip deflection control is displayed in a violin plot for each wind speed in Figure 5.16. Two
plots are provided at different zoom levels for clarity. Not only are the mean and range of the power output
almost identical, the distribution itself also follows comparable shapes. This observation confirms that the
IPC is able to operate without significant influence on the power output, especially above rated wind speed
which is where the controller is designed to operate.
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(a) U = 4 to 14m/s (b) U = 16 to 26m/s

Figure 5.16: Electrical power output distributions with and without IPC (C2 controller, NTM).
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Chapter 6

Tip Trajectory Tracking Controller

Blade-tower clearance is an important factor in wind turbine design. The nacelle tilt angle, the rotor cone
angle and the blade prebend can be optimally chosen in the design phase to leave enough tower clearance
to accommodate for extreme blade bending and possible tower strikes [33]. In this chapter, an innovative
approach to increasing tower clearance using IPC is introduced.

The work in this chapter outlines a control method to guide the blade tips away from the tower as the
blades pass the tower. To do so, the single blade controllers introduced in the previous chapter are modified
to include a tip deflection reference signal. The controller aims to minimise the distance between the mea-
sured tip deflection and the reference tip deflection. That is, to guide the blade tips along a desired path
around the rotor. This control strategy is referred to in this chapter as Tip Trajectory Tracking (TTT).

6.1 Background

A straightforward way of achieving TTT is by modifying the tip disturbance rejection controller from the
previous chapter to include a tracking reference signal, r(t) (or r(s) in the s-domain). The system block
diagram in Figure 4.2 is modified in Figure 6.1 to include a reference signal, r(s) which is precompensated
by the transfer function F (s). F (s) is designed such that the closed loop system tracks the reference with
the correct phase and magnitude.

The sensitivity function S(s), which is the transfer function between the disturbance, d(s) and the out-
put, ỹ(s) remains unchanged. There is an additional transfer function to consider called the complimentary
sensitivity function, T (s) [21]. The complimentary sensitivity function describes the connection between r(s)
and ỹ(s), and is the focus of this chapter. From the block diagram, T (s) can be shown to be:

T (s) =
F (s)P (s)C(s)

1 + P (s)C(s)
(6.1)

The following analysis describe a way of integrating F (s) directly into the reference signal to simplify the
implementation of the TTT controller.
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Figure 6.1: IPC control block diagram with TTT.

The simplest reference signal is a sinusoid with a frequency of f1p, a desired amplitude of Ar, and with a
phase offset of 120 degrees for each blade. The phase of the signal is chosen such that the tip deflection
distance is furthest from the tower when the blade faces downwards. To enforce the correct phase, the
azimuth angle of the rotor, ψ(t), is used to generate the reference signal. The mean of the three reference
signals is zero to ensure the tracking does not interfere with the CPC. Using three phase shifted sinusoids
meets this condition:

r1(t) = Ar cos (ψ(t)) (6.2)

r2(t) = Ar cos

(
ψ(t) +

2π

3

)
(6.3)

r3(t) = Ar cos

(
ψ(t) +

4π

3

)
(6.4)

r1(t) + r2(t) + r3(t) = 0 (6.5)

In order for the tip deflection to track the reference sinusoid, a precompensator, F (s), must be implemented
so that the gain and phase of the output matches the gain and phase of the reference signal. As the reference
signal is a sinusoid oscillating at a frequency of f1p, it is sufficient to design F (s) such that only f1p frequency
components are compensated correctly.

Consider the complimentary sensitivity function in Equation 6.1 split into two factors: F (s), and P (s)C(s)/(1+
P (s)C(s)):

ỹ(s)

r(s)
= F (s)

P (s)C(s)

1 + P (s)C(s)
(6.6)

The latter transfer function is known, and is plotted in Figure 6.2 for the Cf1p and C2 controllers from the
previous chapter. To ensure the output tracks the reference, let ỹ(s) = r(s), which sets the left hand side to
1. Evaluating the right hand side of Equation 6.6 at the reference signal frequency (s = j2πf1p) yields:

1 = F (j2πf1p)ae
jb (6.7)

where a and b are real numbers and aejb is a known complex number in exponential form such that
aejb = P (j2πf1p)C(j2πf1p)/(1 + P (j2πf1p)C(j2πf1p)). The values of a and b can be obtained directly
from Figure 6.2. a equals the magnitude at f1p, and b equals the phase at f1p (red crosses).

Rearranging Equation 6.7 gives F (j2πf1p) = e−jb/a. If this condition is true, then y(s) will track r(s)
with the same magnitude and phase assuming r(s) is of the form of Equations 6.2 - 6.4.
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The reference signals in Equations 6.2 - 6.4 can be adjusted for phase and magnitude to directly take into
account this precompensation of F (s). The adjusted reference signals are:

r̃1(t) =
1

a
Ar cos (ψ(t)− b) (6.8)

r̃2(t) =
1

a
Ar cos

(
ψ(t) +

2π

3
− b
)

(6.9)

r̃3(t) =
1

a
Ar cos

(
ψ(t) +

4π

3
− b
)

(6.10)

In other words, by using a reference signals r̃1(t), r̃2(t), and r̃3(t), the tip deflection of the three blades will
track the signals r1(t), r2(t), and r3(t) with correct phase and amplitude. The purpose of the analysis in
this section is to accommodate digital implementation. The compensated reference signals are implemented
in HAWC2 using the DLL described in Appendix B by specifying a desired tracking amplitude, Ar, and the
compensation terms, a and b.

Figure 6.2: Transfer functions of PC/(1+PC) (U = 18m/s).

Table 6.1: Precompensator terms.

Controller a [-] b [o]
Cf1p 0.891 4.56
C2 0.719 0.40
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6.2 Considered Wind and Controller Conditions

Simulations are set up under two load case regimes. The first being the normal turbulence level simulations
with power law shear profile as defined in the DLC 1.1. The second case also uses the normal turbulence
model, but with an inverted shear profile defined in the DLC 1.5. To investigate the long term effects of
extreme shear, the inverse shear profile is modified from the IEC standards [18] to be persistent instead of
a gust. Equation 6.11 shows the profile used.

V (z) = Vhub

(
z

zhub

)α
− 2

(
z − zhub

D

)(
2.5 + 0.2βσ1

(
D

Λ1

) 1
4

)
(6.11)

where α = 0.2, β = 6.4, Λ = 42 is in accordance to [18] for the DTU10MW turbine, σ1 is in accordance with
the normal turbulence model, and zhub and D are set to the hub height and rotor diameter of the turbine
respectively.

An example of the inverted shear profile at U = 18m/s is demonstrated in Figure 6.3. Inverted shear profiles
are generated for all simulation wind speeds and implemented in HAWC2 using the user defined shear

option.

Figure 6.3: Inverted vertical shear profile (U = 18m/s

Two controllers were tested in this section: Cf1p and C2, which have been adjusted to include TTT, are
simulated using the tracking reference path defined in Equation 6.8, and for different sinusoid amplitudes,
Ar. Simulations are run for both inverted and normal shear over a range of wind speeds, V=4, 6, ..., 26m/s.
Three 10 minute seeds are run for each wind speed and the turbulence model used is NTM. Although both
Cf1p and C2 controllers were successfully implemented in simulation, only the results for C2 are shown in
this chapter for clarity.
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6.3 Results in Normal and Inverse Shear

In this section, the performance of the TTT controller in HAWC2 simulations is analysed. The simulations
are first run without any IPC to ensure the inverted shear functions correctly. Next, the performance of the
tracking is analysed for different tracking amplitudes (Ar) and different shear profiles. The increase in tower
clearance is then quantified, and the limitations of the controller is analysed by inspecting the equivalent
loads and the blade pitch rate.

Figure 6.4 shows the tip deflection as a function of rotor azimuth angle in a 2D histogram. The verti-
cal dashed lines indicate the angles at which the blades are facing downwards, and therefore are closest to
the tower. The normal and inverted shear cases show approximately 180o of azimuth phase difference in the
tip deflection oscillation, and the inverted shear cases show a closer proximity to the tower. This is expected
as the inverted shear has a higher wind speed at lower altitudes compared to the normal shear case, causing
more deflection when the blades face downward.

Figure 6.4: Tip deflection versus azimuth angle for normal and inverse shear. Positive tip deflection is away from the
tower (no IPC, U = 18m/s).

6.3.1 Tracking performance

This section quantifies how well the controller is able to guide the blade tips along the set trajectory. Different
reference signals were tested by changing the sinusoid tracking amplitude, Ar between 0m and 4m. Figure
6.5 shows tip deflection results of the HAWC2 simulations for the first blade under both normal (upper plot)
and inverted shear (lower plot) cases. The C2 controller is able to successfully track the reference signal (red
dotted line) with comparable phase and amplitude. The TTT controllers with a tracking amplitude set to
Ar = 0 is equivalent to the disturbance rejecting controller in the previous chapter as it aims to bring to the
tip deflection to zero at all azimuth angles.

The controller is unable to track the reference signal as accurately in inverse shear conditions compared
to normal shear. The controller must act more aggressively to reach the target trajectory in inverted shear
conditions, leading to worse tracking. To better quantify the tracking performance the standard deviation
of the tracking error is investigated in Figure 6.6. The C2 controller is able to track approximately 15%
lower standard deviation than the Cf1p controller in normal shear conditions, and 3% to 11% lower standard
deviation in inverse shear. The tracking error experiences a minimum error near Ar = 2m for the normal
shear case. The reason for this is because the tracking path matches closely with the open loop tip deflection
path. As a result, the controller requires less pitch action to guide the tip trajectory and can perform with
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a lower error. This is in contrast to the tracking error in inverse shear conditions, where the error increases
monotonically with tracking amplitude.

Figure 6.5: Tip deflection of first blade versus azimuth angle for different tracking amplitudes. (C2 controller,
U = 18m/s).

Figure 6.6: Standard deviation of tracking error for Cf1p and C2 controllers in normal and inverse shear (U = 18m/s).

6.3.2 Minimum tower clearance

In this section, the increase in tower clearance due to TTT control is investigated. This is in contrast to the
previous section which focuses on how well the blade tips follow a tracking signal. To more accurately measure
the passing distance between the tower and the blades, the tower clearance mblade DLL in HAWC2 is used
to provide a tower clearance signal. This module measures the shortest distance between all three turbine
blades and the tower, and it takes into account the diameter of the tower, the tower motion, and the motion
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and pitch of the blade. Figure 6.7 shows an example of the tower clearance signal. To summarise the data
better, only the magnitude of the lower peaks is collected (indicated with red crosses) which represent the
minimum distance between the tower and blade each time a blade passes. These data points are collected
and used to generate a probability distribution of the closest tower passes.

Figure 6.7: Minimum distance between tower and all three blades (Inverse shear, no IPC, U = 18m/s). The
distribution of the lower peaks is analysed.

Figure 6.8 and Table 6.2 show the tower clearance statistics for normal and inverted shear conditions over
a range Ar. Looking at the normal shear case (left plot), it can be seen that the IPC controller with zero
tracking amplitude actually decreases the blade-tower clearance. This is a result of the reduction in f1p

fluctuations. Without IPC, the blade will tend to move away from the tower due to a reduced wind speed at
this azimuth angle due to wind shear and tower shadow. The IPC controller without tracking counteracts
this effect. Nevertheless, when a tracking amplitude is introduced in 1 meter increments (Ar = 0, 1, 2, 3,
4), the minimum tower clearance increases by corresponding 1 meter increments (12.30m, 13.33m, 14.46m,
15.37m, and 16.11m respectively) indicating that the tracking controller is indeed reducing the chance of
blade-tower interactions. The mean and minimum tower clearance statistics are summarised in Table 6.2
which shows the increased clearance.

In the inverted shear case in Figure 6.8b, it can first be seen that the minimum tower clearance with-
out IPC (9.25m) is approximately 4 meters less than with normal shear (13.03m). Introducing IPC, even
with a tracking amplitude of zero, the tower clearance is already greatly increased (11.34), with the min-
imum clearance increasing by 2.1m. The average tower clearance in inverted shear conditions increases in
accordance with Ar. The minimum tower clearance also increases with Ar, but at a lesser rate. For example,
the minimum tower clearance at Ar = 4 (14.11m) is only 2.77m greater than for Ar = 0 (11.34m) instead of
the expected 4m. This is likely a result of the larger tracking error in the inverse shear cases compared to
the normal shear cases.
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(a) Normal shear (b) Inverse shear

Figure 6.8: Probability distribution of minimum tower clearance for varying TTT amplitudes and wind shear profiles
(U = 18m/s). Kernal density estimation is used on HAWC2 data to produce distribution.

Table 6.2: Minimum tower clearance statistics under inverse shear (U = 18m/s).

Shear Condition Statistic Tower Clearance [m]

No IPC Ar = 0 Ar = 1 Ar = 2 Ar = 3 Ar = 4

Normal Shear
mean 17.85 16.87 17.80 18.72 19.60 20.45

min 13.03 12.30 13.33 14.46 15.37 16.11

Inverse Shear
mean 14.28 15.60 16.45 17.28 18.08 18.86

min 9.25 11.34 12.18 12.74 13.35 14.11

6.3.3 Effect on fatigue loads

TTT introduces a tip deflection oscillation with a frequency of f1p which can increase blade loads. This is
contrary to the work in Chapter 5 which goes into detail of rejecting tip deflection oscillations to reduce blade
loads. In this section, the loads on the turbine components are analysed when different tracking amplitudes
are used to identify what amplitude of TTT can be implemented without increasing blade loads.

The 1Hz equivalent flapwise bending loads in normal shear conditions (Figure 6.9) increase as tracking
amplitude increases due to the induced oscillation. It can be seen that a tracking amplitude of Ar = 2m can
be introduced and still maintain a lower blade load level than if no IPC were to be used at all. This observa-
tion can also be seen in the lifetime equivalent loads shown in Table 6.3. Introducing a tracking amplitude of
Ar = 2m still yields a reduction in 1Hz lifetime equivalent loads by 2.13%. In inverse shear conditions, the
load trends show a similar pattern (Table 6.4). Blade loads increase with increasing Ar, and furthermore,
a tracking amplitude of Ar = 4m can be introduced while still maintaining a reduction in blade loads (1.26%).

Main bearing loads are mostly unaffected when TTT is introduced in normal shear conditions. The tilt
moment in the main bearing increase by 233kNm, when Ar is increased from 0m to 4m, which is only a
2.6% increase in lifetime equivalent loads. Nevertheless, the bearing loads still remain significantly lower
than using no IPC at all.

In inverted shear conditions, the effect of TTT on main bearing loads is more significant than normal
shear conditions, showing a 9.4% increase in main bearing life time equivalent loads in the tilt direction
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when Ar is increased from 0m to 4m (Table 6.4). The source of this load increase can be seen in the lower
plots of Figure 6.9 at U = 12m/s. At this wind speed, both the yaw and tilt bearing loads increase with Ar.
It is possible that the TTT is interfering with the CPC controller in this region as it is in a transition point
between rated and below rated operating conditions.

The negligible influence of TTT on bearing loads compared to blade loads can be explained due to the
change in frame of reference. As the tracking introduces a f1p oscillation in the rotating frame, there are
only small fluctuations introduced in the fixed frame due to cancellation between all three blades. For this
reason, the main bearing loads are insensitive to this form of tip tracking. This is also the case in inverse
shear conditions.

Figure 6.9: Short term equivalent loads under normal and inverse shear conditions and varying tracking amplitudes
(C2 controller).

Table 6.3: Lifetime equivalent loads [kNm] of TTT controller under normal shear conditions. Percent change is based
on the no-IPC case.

Ar = 0 Ar = 1 Ar = 2 Ar = 3 Ar = 4
Llt % chng Llt % chng Llt % chng Llt % chng Llt % chng

Blade (flap) 13942 -25.10 15744 -15.42 18218 -2.13 20965 +12.63 23872 +28.25
Main Bearing (tilt) 8675 -13.19 8706 -12.89 8762 -12.33 8799 -11.96 8908 -10.87

Main Bearing (yaw) 7636 -17.88 7633 -17.91 7649 -17.73 7680 -17.40 7763 -16.51
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Table 6.4: Lifetime equivalent loads [kNm] of TTT controller under inverse shear conditions. Percent change is based
on the no-IPC case.

Ar = 0 Ar = 1 Ar = 2 Ar = 3 Ar = 4
Llt % chng Llt % chng Llt % chng Llt % chng Llt % chng

Blade (flap) 14795 -28.09 14254 -30.72 15621 -24.07 17790 -13.53 20315 -1.26
Main Bearing (tilt) 8762 -11.79 8861 -10.80 9014 -9.26 9231 -7.07 9590 -3.45

Main Bearing (yaw) 7693 -17.32 7758 -16.62 7865 -15.47 8053 -13.45 8354 -10.21

6.3.4 Effect on blade pitching rate

Another effect to consider is the blade pitch rate and pitch angle. TTT greatly increases the movement of a
bearing, which can wear the bearings at a faster rate. With IPC and tip tracking, the rate at which the blades
pitch increases with tracking amplitude (Figure 6.10). Although no specific bearing model is investigated in
this analysis, a pitch rate of 10o/s is used as an indicator for an upper limit and is based on [2]. It can first be
seen that the TTT controller shows a broader distribution of pitch rates than the no-IPC case. Furthermore,
the TTT controller predominately remains within the pitch limit of 10o/s in normal shear conditions, and
slightly exceeds the limit in inverse shear. For the most aggressive case (Ar = 4m), the pitch rate remains
within the limit 99.86% of the time in normal shear, and 98.44% of the time in inverse shear based on the
estimated probability density functions in Figures 6.10. The large pitch rates in the C2 controller are a result
of the f2p control action which requires faster pitching that the f1p control action. One way to ensure the
controller does not exceed this limit is to make the controller less aggressive at this frequency at the cost of
reducing disturbance rejection performance. Another method is to set a saturation limit for the pitch rate.
However, this can cause instability in the controller as a saturation limit is a nonlinear phenomenon.

The difference between normal and inverse shear can also be seen. Under inverse shear conditions, there is a
broader distribution of pitch rates. Additionally, the pitch rate shows a stronger bimodal distribution com-
pared to the normal shear case. This distribution is typical of a sinusoidal signal subject to noise, indicating
that the f1p tracking signal dominates the control action.

(a) Normal shear (b) Inverse shear

Figure 6.10: Pitch rate probability distributions for varying TTT amplitudes. Calculated using kernel density esti-
mation. (C2 controller, U = 18m/s).

In addition to investigating the blade pitch rate, the pitch angle deviation from the mean is also investigated
in Figure 6.11. Without IPC, the pitch angle shows no deviation from the CPC pitch demand by definition.
The introduction of IPC increases the variation from the CPC pitch angle deviation. Larger deviations also
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occur with larger tip tracking amplitudes and in inverted shear. Again, the bimodal shape is more prominent
for higher tracking amplitudes and for inverse shear conditions.

IPC causes specific types of damage to the pitch bearing due to more frequent small oscillation in the
blade pitch angle. Fretting and false brinelling are causes of surface contact damage. These effects are seen
to be significant hurdles in applying IPC in practice [34]. It is beyond the scope of this project to investigate
the specific types of damage in the bearings and more research is required in this field. Nevertheless, the
pitch angle and rate investigation in this section provide an insight into what the pitch requirements are to
perform different degrees of TTT.

(a) Normal shear (b) Inverse shear

Figure 6.11: Pitch angle probability distribution for varying TTT amplitudes. Calculated using kernel density
estimation. (C2 controller, U = 18m/s).
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Chapter 7

Conclusion and Recommendations

In this study, applications for blade tip deflection sensors in IPC systems was investigated. The conclusions
drawn from the results of this report as well as a summary of future work is presented in this chapter.

7.1 Conclusion

An individual pitch controller (IPC) based on tip deflection sensors is presented in this study. The motiva-
tion of doing so is to verify the performance of tip deflection sensors in IPC systems compared to the more
typical strain gauge sensors at the blade roots. A preliminary study in this report demonstrates the highly
correlated nature between blade flapwise bending moment and flapwise tip deflection, which indicates that
the two measurements can be substituted for IPC applications.

The individual pitch controller was designed for the DTU10MW Reference Turbine Model. A linear approxi-
mation of the blade pitch angle to flapwise tip deflection dynamics was estimated using system identification
techniques. HAWC2 simulations were run over a range of operating wind speeds and the turbine model was
subject to a step pitch signal in order to identify the system dynamics of the blade. From this estimate,
a loop shaping design approach was performed to design various individual pitch controllers. To deal with
model uncertainty and nonlinearities, a Nyquist-based stability margin (sm) was maximised to robustify the
controller.

The IPC follows a single-blade control approach. That is, each blade is controlled by three independent
single-input single-output controllers. This is in contrast to Coleman-based control which is more common
in IPC. Single blade control avoids issues of tilt-yaw coupling which is often overlooked in Coleman-based
control. First, four prototype controllers were designed to attenuate key frequencies over a narrow band-
width. In particular, f1p (once per revolution) to f4p (four times per revolution) frequencies were targeted
and tested for their attenuation and load reduction capabilities. As the controller operates in the rotating
frame, tip deflection attenuations at f1p showed the greatest level of load reductions in the blades, whereas
fixed frame loads (ie. main shaft loads) were attenuated when f2p and f4p frequencies were targeted. Har-
monics of f3p frequencies could not be attenuated as the IPC controller architecture is decoupled form the
collective pitch controller. Based on this analysis, a hybrid controller, referred to as the C2 controller, was
produced which targets f1p and f2p tip deflection frequencies.

The C2 disturbance rejection controller showed promising fatigue load reductions in both the rotating and
non-rotating frame. Lifetime equivalent flapwise blade loads, main bearing tilt loads and yaw loads were re-
duced by 25.10%, 13.19% and 17.88% respectively compared to the no-IPC case. Furthermore, this controller
greatly outperformed a PI controller architecture by 14.4% in lifetime equivalent blade load reductions. The
PI controller was unable to attenuate fixed frame loads which was a result of performing control in the rotat-
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ing frame. The C2 controller has a stability margin of sm = 0.67, which exceeds the stability margin of the
PI controller (sm = 0.58), showing that the design approach in this study produced better performing and
more robust controllers than a PI based approach. The controller showed negligible effects on the electrical
power output of the turbine. Furthermore, the C2 showed comparable performance when either tip deflection
or strain gauge measurements was used as an inputs.

The C2 controller was further modified to perform tip trajectory tracking (TTT). The motivation of this
is to reduce the chance of blade-tower interactions. To the best of the authors knowledge, tower clearance
has not been addressed using active control techniques in previous studies. TTT control was successfully
able to guide the blade tips along a sinusoidal path away from the tower in both normal and inverted shear
conditions. The controller was implemented by introducing a sinusoidal reference signal to the C2 controller.
The blade tips were able to track the reference signal with a standard deviation of less than 0.76m in normal
shear conditions. In normal shear, up to 2 meters of average tower clearance could be introduced while still
maintaining a lower lifetime equivalent load than the standard CLC controller, and up to 4 meters of mean
tower clearance could be introduced while keeping the pitch limit below 10o/s for 99.86% of operating time.

The control design process presented lends itself to real world applications, and has an emphasise on digital
implementation. The controller was discretised using the bilinear transformation with a sampling frequency
of 100Hz, although a sampling frequency as low as 16Hz could have been used with comparable performance.
Two software implementations of the controller are presented in Appendix B in Python and HAWC2.

The research in this study assumed ideal tip deflection measurements with no noise or low pass filtering.
Therefore the results presented shall be considered as best case scenarios. Nevertheless, it is straight forward
to modify the control design process to take into account tip deflection sensor dynamics and measurement
noise.

7.2 Future Work

Sensor Measurement Error Modelling and Sensor Fusion

The analysis in this project assumes an ideal tip deflection sensor operating at a high sampling rate (100Hz).
In reality, there will be some degree of measurement error and noise due to low pass filtering and noise. The
use of a Kalman filter can be investigated as a state estimator to optimally estimate the tip deflection based
on noisy measurements and knowledge of the blade dynamics. Furthermore, sensor fusion can be performed
using a Kalman filter to combine measurements from both strain gauges and tip deflection sensors.

Active Aerodynamic Load Control (AALC)

A major limitation of IPC is its response time. There are limits to how fast a blade can pitch which limits the
bandwidth of IPC. An alternative to pitching is using AALC devices such as trailing edge flaps or microtabs.
a fusion of IPC and AALC shows has shown promising results in [31] as it can target both low and high
frequency components effectively. The use of tip deflection sensors could benefit such a control system by
providing an additional measurement input.

Robust Stabilisation

The controllers in this project are designed using an manual loop shaping approach. More sophisticated
optimisation methods exist for designing such a controller and to provide additional robustness. One such
method is H∞ loop shaping such as the Glover-Macfarlane method. H∞ methods are often used in literature
for IPC design [35] and could provide improved performance and robustness than the method presented in
this project.
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Pitch Bearing Damage Mechanisms

The use of IPC introduces more frequent small oscillation in the blade pitch angle. This can lead to additional
wear in the pitch bearing by means of fretting and false brinelling. The lifetime damage that this can cause
on pitch bearings has not been thoroughly investigated, and is a necessary area of research befor IPC becomes
widely adapted in the wind industry.

Gain Scheduling

The presented controllers are designed at the rated rotor speed. This causes a performance drop when the
turbine is operating below this speed. Although the presented controllers do not significantly increase the
loads in this region, they do not provide a noticeable added benefit. Gain scheduling could be implemented
to adjust the target frequencies of the controller to the actual rotor speed. An alternative to gain scheduling
could be to use adaptive control techniques.

Reactive Tip Deflection Control

It is assumed that the IPC controller operates at all times, however this does not need to be the case. An
alternative is to perform the necessary pitch action only during high risk situations. For example, the tip
deflection sensors could be used to detect increased tower strike risk, or abnormally high blade loads. During
such events, the controller could react by performing IPC or by simply pitch the blades out to mitigate such
risks. Such a controller could reduce pitch bearing wear, potentially increasing pitch bearing lifetime.
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Appendix A

Transfer Functions

A.1 Plant Transfer Functions

The continuous plant transfer functions used to design the controller are tabulated in Table A.1 for each
wind speed.

Table A.1: Plant transfer functions.

Wind speed [m/s] P(s)

4 −20.8462s3+137.9195s2+1.4947s+−5.5565
s4+2.9405s3+11.0112s2+−1.3023s+0.1142

6 −22.8369s3+155.6219s2+72.1321s+18.4033
s4+3.1049s3+11.7084s2+3.2239s+0.6901

8 3.5201s3+−90.1913s2+1374.1849s+833.0069
s4+7.7312s3+33.3743s2+80.4849s+25.2398

10 3.0869s3+−165.5213s2+2045.5058s+765.3664
s4+8.1594s3+35.4788s2+76.7278s+17.0833

12 −44.4296s3+303.6120s2+375.6548s+146.0925
s4+4.0627s3+12.4423s2+7.6577s+4.9489

14 −23.6444s3+101.7049s2+1179.8646s+483.0086
s4+4.3583s3+22.0046s2+22.6862s+15.5734

16 −15.7581s3+46.0359s2+1488.9400s+753.3842
s4+4.7121s3+25.6926s2+30.0381s+22.5229

18 −11.9307s3+23.9174s2+1621.7506s+1018.0156
s4+4.9132s3+27.6913s2+35.0812s+29.1484

20 −9.9619s3+16.3604s2+1665.8556s+1276.9854
s4+5.0184s3+28.8681s2+38.9551s+35.6853

22 −9.1095s3+16.6020s2+1655.4116s+1547.3149
s4+5.0579s3+29.6321s2+42.1713s+42.5659

24 −8.9044s3+21.2896s2+1613.4809s+1834.6691
s4+5.0591s3+30.1636s2+45.0344s+49.8681

26 −8.9127s3+26.3289s2+1561.0250s+2143.1836
s4+5.0482s3+30.7345s2+47.9828s+57.9452
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A.2 Controller Transfer Functions

A.2.1 PI Control

The PI controller has a transfer function of the form:

CPI(s) = Kp

s+ 1
Ti

s
(A.1)

The parameters used in this report are Ti = 1s and Kp = 0.015rad/m

A.2.2 Single Frequency Control

The single frequency controller targeting f1p frequencies has a transfer function of the form:

CnP (s) = Kp
1

s2 + 2ζωns+ ω2
n

(1− aTs)2

(1− Ts)2
(A.2)

where the parameters are set to K = 0.9217, ωn = 1.005rad/s, ζ = 0.05, a = 83.3739 and T = 0.1089.
The single frequency controller targeting higher harmonics of f1p has a different transfer function form:

CnP (s) = Kp
s2 + 2ζ1ω1s+ ω2

1

s2 + 2ζ2ω2s+ ω2
2

(1− aTs)2

(1− Ts)2
(A.3)

Table A.2: Parameters for Cf2p, Cf3p, and Cf4p.

f2p f3p f4p

K 0.03712 0.02858 0.01328
ω1 2.8148 3.116459 1.00530
ω2 2.0608 3.06619 4.07150
ζ1 0.7 0.7 0.07
ζ2 0.05 0.05 0.02
a 7.5486 7.5486 7.5486
T 0.1207 0.1207 0.1207

A.2.3 Two Frequency Control

The two frequency controller has a transfer function of the form:

C2(s) = Kp

(
s2 + 2ζ1ω1s+ ω2

1

s2 + 2ζ2ω2s+ ω2
2

)(
s2 + 2ζ3ω3s+ ω2

3

s2 + 2ζ4ω4s+ ω2
4

)(
1− aTs
1− Ts

)2

(A.4)

where the parameters are set to K = 0.042539, ω1 = 0.95504rad/s, ω2 = 1.56828rad/s, ω3 = 2.01061rad/s,
ω4 = 3.015928rad/s, ζ1 = 0.15, ζ2 = 0.1, ζ3 = 0.1, ζ4 = 0.3, a = 13.9282 and T = 0.2665.
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A.3 Controller performance

Table A.3: tip deflection controller sensitivity at key frequencies and stability margin, sm (U = 18m/s, NTM).

Model Sensitivity [%] sm

f1p f2p f3p f4p

CPI
Linear -47.45 -7.46 28.05 69.84 0.58

HAWC2 -37.24 -0.67 0.78 56.10 -

Cf1p

Linear -87.07 -1.68 46.47 41.15 0.65

HAWC2 -83.10 3.98 1.71 23.57 -

Cf2p

Linear -7.06 -70.68 -10.05 2.69 0.82

HAWC2 -11.49 -65.36 -2.28 4.40 -

Cf3p

Linear -2.54 -8.50 -65.38 0.98 0.81

HAWC2 -6.60 -10.45 -3.67 9.46 -

Cf4p

Linear 0.17 1.33 6.09 -59.47 0.90

HAWC2 -3.55 -0.81 -1.57 -47.85 -

C2

Linear -71.82 -63.70 -7.02 -0.77 0.67

HAWC2 -67.88 -59.00 -1.18 4.44 -
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Appendix B

Code Implementation

B.1 Python-HAWC2 Interface

Python-HAWC2 Interface is a tool written for the purpose of rapid control prototyping in HAWC2. The
repository allows a custom Python function to run in HAWC2 in realtime. The repository is available at
github.com/jaimeliew1/Python-HAWC2-Interface.

An implementation of the tip deflection single blade individual pitch controller using the Python-HAWC2
Interface is provided below:

"""

Institution : DTU

Course : Master Thesis Project

Date : 20-Jan-2018

Author : Jaime Liew - S141777

Email : Jaimeliew1@gmail.com

Description : Demonstration if individual pitch control. This script

contains the controller code which is interfaced in realtime with a

HAWC2 simulation using the HAWC2Interface Module.

demand to each blade.

"""

from HAWC2_TCP import HAWC2Interface

import numpy as np

class IPC(HAWC2Interface):

# A class which executes your custom python function.

def __init__(self, modeldir, K, b, a):

HAWC2Interface.__init__(self, modeldir)

self.N = len(b) # order of filter

self.K = K # Proportional gain of filter

self.b = b # Numerator coefficients of filter

self.a = a # Denominator coefficients of coefficients

#note. len(b) == len(a) == N

# placeholders for storing the past N inputs and outputs.

# Assumes 3 blades

self.x_ = np.zeros([3, self.N])
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self.y_ = np.zeros([3, self.N])

def update(self, array1):

theta = array1[1:4] # Power pitch demand

x = array1[4:7] # tip deflection [m]

x = x - np.mean(x) # Center about the mean

# shift index of past states by 1. eg: [1,2,3,4] -> [4,1,2,3]

N = self.N

self.x_[:, 1:N] = self.x_[:, 0:N-1]

self.y_[:, 1:N] = self.y_[:, 0:N-1]

self.x_[:, 0] = x

self.y_[:, 0] = [0, 0, 0]

#apply filter to x_ and y_ to find newest y_

for i in [0,1,2]: # For each blade...

for j in range(N): # for each past input and output value...

# apply filter coefficients.

self.y_[i,0] += self.b[j] * self.x_[i, j] - self.a[j] * self.y_[i, j]

#Calculate control feedback action

theta_ = -self.K*self.y_[:,0]

# Superimpose IPC control action (theta_) over power pitch

# demand (theta)

out = list(theta + theta_)

return out

if __name__ == '__main__':

# IPC filter coefficients

K = -1

b = [0.04139865635722332, -0.24724984420650856, 0.6153247291080708,

-0.8167730078549886, 0.6098892568550152, -0.24290112363655772,

0.04031133337781191]

a = [1.0, -5.918976177119697, 14.597287405477822, -19.19933888234148,

14.204054827782327, -5.6043617399861, 0.9213345662369582]

simTime, sampleTime = 100, 0.01

N_iters = int(simTime/sampleTime)

# Run HAWC2 with Python interface.

HAWC2 = IPC('DTU10MW_Turbine/', K, b, a)

HAWC2.run('htc/IPCExample.htc', N_iters)
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B.2 HAWC2 IPC DLL

This section describes how the IPC DLL is integrated into a HAWC2 simulation. First, the file IPC HAWC2.dll

should be placed in the control folder of the wind turbine model. In the dll section of the .htc file, the IPC
DLL should be defined. An example of a definition is as follows:

begin type2_dll;

name IPC ;

filename ./control/IPC_HAWC2.dll ;

dll_subroutine_init init_ipc;

dll_subroutine_update update_ipc ;

arraysizes_init 100 1 ;

arraysizes_update 100 100 ;

begin init ;

constant 1 5 ; N Length of filter

constant 2 -1 ; Kp Gain of controller [rad/m]

constant 3 7.166307797783242e-09 ; Feed-Forward Coefficients, b0

constant 4 1.577142916498056e-11 ; b1

constant 5 -1.4316835489060785e-08 ; b2

constant 6 -1.5754074483536844e-11 ; b3

constant 7 7.150545045958984e-09 ; b4

constant 8 1.0 ; Feed-Backward Coefficients, a0

constant 9 -3.82336227575735 ; a1

constant 10 5.4780848051918065 ; a2

constant 11 -3.486056534625313 ; a3

constant 12 0.831334783268205 ; a4

end init ;

begin output;

dll type2_dll dtu_we_controller inpvec 2; #1 Pitch1 demand angle [rad]

dll type2_dll dtu_we_controller inpvec 3; #2 Pitch2 demand angle [rad]

dll type2_dll dtu_we_controller inpvec 4; #3 Pitch3 demand angle [rad]

mbdy state pos blade1 26 1.0 blade1 only 2; #4 Blade 1 Flapwise tip deflection [m]

mbdy state pos blade2 26 1.0 blade2 only 2; #5 Blade 2 Flapwise tip deflection [m]

mbdy state pos blade3 26 1.0 blade3 only 2; #6 Blade 3 Flapwise tip deflection [m]

constraint bearing1 shaft_rot 2 only 1; #7 Rotor azimuth angle [deg]

general constant 0; #8 TTT Amplitude [m]

general constant 0; #9 TTT Phase [deg]

general constant 0; #debug mode. 1= debug. 0=do not debug

end output;

end type2_dll;

In the init section, the controller gains are defined as described in Table B.1. In this example, the Cf1p

controller is implemented (Appendix A). The output section defines the inputs of the controller, which are
the CPC pitch demand for each blade (output 1, 2, and 3), and the flapwise tip deflection measurement
(output 4, 5, 6). Output 7 to 9 are used for tip trajectory tracking, and can be set to zero if not in use.
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Table B.1: init parameter definition

Constant Description
1 N , the number of coefficients in the filter, or the order of the

discrete controller transfer function. Note that it is assumed that
the number of feed forward and feed-backward coefficients is the
same and equal to N .

2 Kp, the proportional gain of the controller.
3 to 3+N b0, b1, ..., bN−1, the feed-forward coefficients.

4 +N to 4 + 2N a0, a1, ..., aN−1, the feed-backward coefficients.
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Appendix C

Full Blade Deformation Estimation

C.1 Strain Gauge and Tip Deflection Sensor Fusion

Although the analysis so far compares the use of either root strain gauges or tip deflection sensors, it is
also valuable to investigate using both sensors in conjunction with each other. Using both sensors provides
information about the root and the tip of the blade, which allows for better approximation of the state
of the blade system. Whereas using one sensor allows for the first blade mode to be observed, using two
sensors allows for the first two blade modes to be observed. To demonstrate this, consider Equations 3.4
and 3.5 derived in Section 3.1. These equations relate root bending moment, M(t), tip deflection, y(t) and
the flapwise blade mode excitation αi(t):

M(t) = EI0

∞∑
i=1

αi(t)
∂2γi
∂z2

∣∣∣∣
z=0

(C.1)

y(t) =

∞∑
i=1

αi(t) (C.2)

Now, considering only the first two modes (i = 1, 2), a linear set of equations connecting tip deflection, root
bending moment and the first two mode amplitudes can be formed. For brevity, the following notation is

introduced: γ′′i = ∂2γi
∂z2

∣∣∣
z=0 [

M(t)
y(t)

]
=

[
EI0γ

′′
1 EI0γ

′′
2

1 1

] [
α1(t)
α2(t)

]
(C.3)

As the mode shapes are orthogonal, the curvature terms are not equal. Therefore the matrix is invertible,
and therefore a transformation between state space and modal space can be found:[

α1(t)
α2(t)

]
=

[
1

EI0(γ′′1 −γ′′2 ) − γ′′2
γ′′1 −γ′′2

− 1
EI0(γ′′1 −γ′′2 )

γ′′1
γ′′1 −γ′′2

] [
M(t)
y(t)

]
(C.4)

Therefore

u(t, z) ≈ γ1 − γ2

EI0(γ′′1 − γ′′2 )
M0(t) +

γ′′1 γ2 − γ′′2 γ1

γ′′1 − γ′′2
y(t) (C.5)

C.2 Full Blade Deflection Estimation

By measuring the amplitude of the first two modes, the flapwise blade deformation along the entire blade
can be estimated if the first two mode shapes are known. The deformation of the entire blade could be useful
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in estimating the wind field, the force distribution along the blade, and for better control system modelling.
Although the implementation of these suggestions is not carried out in this project, a brief comparison of
the different estimation methods is outlined in this section.

ũTD, RBM(t, z) ≈ γ1 − γ2

EI0(γ′′1 − γ′′2 )
(M0(t) + C1) +

γ′′1 γ2 − γ′′2 γ1

γ′′1 − γ′′2
(y(t)− yp) (C.6)

It was found that adding an constant offset, C1, to the RBM measurement to account for steady error yielded
better results. The tip deflection measurement is also offset by the amount of prebend in the blade, y0. This
estimation is compared to using a single tip deflection sensor and a single RBM sensor:

ũTD(t, z) ≈ γ1(y(t)− yp) (C.7)

ũRBM(t, z) ≈ γ1

EI0γ′′1
(M(t)− C2) (C.8)

To test the accuracy of this estimation, a HAWC2 simulation is run on the DTU10MW turbine model at
a windspeed of 12m/s under with NTM (check if this abbreviation has been defined) for 30 minutes with
position sensors along the entire length of the blade.

Figure C.1: Full blade deflection estimation error distribution for different combinations of sensors.

To evaluate the performance, the mean square error, E, is determined for each estimation. That is,

e(t) =

∫ L

0

|u(z, t)− ũ(z, t)| dz (C.9)

The constant offsets, C1 and C2 were found such that the mean square error is minimised. The Mean square
error of these estimations are shown in Table C.1. A tip deflection sensor is able to provide a better estimate
of the blade deformation than an RBM sensor, however, using both sensors together provides a better overall
result. Figures C.2 show the worst case estimations for each of the sensors. The RBM sensor tends to poorly
estimate the deformation behaviour towards the blade tip. Discrepancies in the estimation are likely from
higher mode excitation and non-linear bending. These factors could be accounted for by including additional
sensors along the span of the blade or by using an alternative estimation method.
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(a) Strain gauge (b) Tip deflection sensor (c) Hybrid sensing

Figure C.2: Worst case (highest error) estimates of each sensor combination (U = 12m/s, NTM).

Table C.1: Mean estimation error for each sensing method.

Strain Gauge TD Sensor Hybrid Sensor
mean e [m2] 11.2054 5.4354 2.9653
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