
De
lft
Un

ive
rs
ity

of
Te
ch
no
log

y

Master Thesis
Advancing thin-tile vaults:
structural analysis and robotic construction

J. H. Welles

Master Thesis
Advancing thin-tile vaults:

structural analysis and robotic construction

by

J. H. Welles
in partial fulfilment of the requirements for the degree of

Master of Science

in Civil Engineering (Building Engineering)

at the Delft University of Technology,

to be defended publicly on Tuesday, second of November, 2021

Student Number: 4270592
Project Duration: December, 2020 - October, 2021

Faculty: Civil Engineering and Geosciences (CiTG)
Thesis Committee: prof. dr. ir. J.G. Rots 3MD (CiTG) (chair)

dr. S. Asut AE+T (BK)
ir. L.P.L. van der Linden 3MD (CiTG)
ir. J. Driessen WSP (daily supervisor)

This thesis can be found online on https://repository.tudelft.nl

Cover Image: Roof mNACTEC, The Art of Structural Tile by J. Ochsendorf

https://repository.tudelft.nl
https://images-na.ssl-images-amazon.com/images/I/71yfSBNsfBL.jpg

Preface
It is hard to imagine to have reached this point, where I can hand in my last work as student. With the
completion of this report, a new phase in my life will start. I have completed my Masters, and with that
the complete study of Civil Engineering at the TU Delft. I see getting to this point as one of hard work but
also one of coincidences. For instance, besides the minimal curriculum for the specialisation Structural
Design in the master track Building Engineering, I have completed the course on Structural Dynamics.
My motivation for doing this was something the supervisor at my internship said: if I had done anything
with dynamics, and my answer was no. Another example of these coincidences is the topic of this thesis.
One day, while finishing the report for one of my courses, I needed to find a representative value for the
thickness of a shell structure. I came across the website of Pierre Hoogenboom. He had a video link on
his website to something called ’Catalan vaults’. Intrigued by the video I started looking into this topic and
after a long journey, this is the end product of that spark.
I would like to expressmy gratitude to Jeroen Driessen, who has helpedme for the past months immensely
with keeping me focused on the topic and improving my output. I’ve enjoyed our meetings very much and
I am grateful I had the chance to work with you, also at the office of WSP. I am very grateful to the rest of
my committee as well. Jan has shown interest in my topic from the start, even relating it to projects with
the Utrechtse werfkelders. Lennert has given me the assurance and provided me sources to tackle the
reporting of my research. With Serdar I have teamed up to make the most out of my robotic simulation.
I think I have taught you something as well, in return. For your guidance, knowledge and company, I
am ever grateful. A special mention for Paul Korswagen and Telesilla Bristogianni, who helped me with
DIANA and epoxies, respectively.
I would also like to thank all those that have stood by me during my thesis. First of all I would like to thank
Kostas, with whom I’ve started and ended this process simultaneously. Our cooperation, discussions and
lunch breaks have been a part I would not have wanted to miss at all. I am glad we have experienced this
process together. Secondly, I would like to thank Bas, who has helped me with my brick experiment. If
you want you can share in this memory by taking some bricks with you, Bas. Furthermore, I would like to
thank a couple of students with whom I’ve had the pleasure to enjoy the master thesis with, even if it was
for only a part. Thank you, Thijs, Thijs and Laura. Additionally, all the other people at U-BASE and at the
TU Delft with whom I’ve had the pleasure to share drinks, laughs, ideas and frustrations with. Lastly, I
would like to thank my family and (non TU-Delft) friends, who have stood by me and supported me in their
own way.
Nothing else can be said than to wish the reader a joyful read, and good luck!

J. H. Welles
Delft, November 2021

iii

Summary
Thin-tile vaults are a a type of vaults that went out of fashion in the early twentieth century. Its origins
are around the Mediterranean, but modern interest is mostly due to Guastavino, and the research done
at MIT and ETH. The thin-tile vaults have a unique construction method without any temporary support.
Eventually the increase in labour costs and the advancements in concrete and steel made the structure
non-competitive.
Robotics are a type of machines that can perform (semi)-automated tasks. In the past decades the
development of robots have led to their implementation in the construction industry. Robots developed
specifically for masonry show a high promise where they’re able to lay much more bricks than even the
most skilled mason.
This research aims to investigate the time it takes for a robot to construct a thin-tile vault, and thereafter
to advance the possibilities of research into and construction of the thin-tile vault. This is researched by
answering the following question:
How does a robotic construction of a parametrically designed thin-tile vault perform based on step-wise
structural analyses?

To answer this question a parametric model has been made to include the design of the thin-tile vault, the
structural analysis and the robotic construction. This model is made in Grasshopper, but is supported by
Python and RoboDK. Python performs any calculation necessary and analysis of this output. RoboDK is a
robotic simulation program aimed to give users a tool to translate their design to robotic instructions. The
structure of this report is based on the three aspects of the parametric model.
In the first part the state of the art and the relevance of this research is stated. Thereafter the objectives,
questions and methodology are noted.
The first part of the model is related to the design. In the first chapter a literature review is provided on thin-
tile vaults and similar vault structures. The second chapter of this part describes how the design model
has been made. First the global shape of the vault is set as a barrel vault formed as a catenary arch. Then
the bricks are placed on this vault surface using a similar approach as map projection. This is done with
the introduction of the centre point approach. This ensures that proper information is maintained, like the
course and the position within the course per brick. With this approach it is possible to fill this surface
even with courses misaligned to the primary curvature. Bricks at the edge of the vaults surface are cut
to fit within its domain. The last step is to thicken the bricks, which thus far had been represented as
surfaces, into volumes.
The structural analysis consists of three major parts. In the first chapter literature is shown to justify the
use of a linear elastic analysis on masonry. Additionally the behaviour of this uncommon type of masonry
is tried to be found in literature. The materials brick, mortar and epoxy are looked into as well. Bricks
have time-independent properties, making these similar as found in the Eurocode, by manufacturers and
in research. Mortar and gypsum plaster especially (also known as Plaster of Paris), are described in their
material properties as well. Due to uncertainty in these properties, epoxy is investigated as well and found
to have more theoretical values useful for this research. A small-scale experiment with bricks and epoxy
has been done to verify what values from epoxy should be used.
After the literature review on material properties, the structural analysis is done. The flow of this chapter
starts with the form from the design model, through the forces of a cantilever, to the stresses occurring
in the structure. The vault has been simplified to an arch during construction. Thrust is not present. The
sectional forces are found by first considering the (partial) arch as a cantilever with a vertical shear force
and rotational moment. Next this shear force is converted into the normal and shear force in the cross-
section of the arch. This calculation has been worked out in a Python script.

v

vii

In the last chapter a possible stress distribution is shown. The analysis is based on a phased structural
analysis. Each time step is equivalent to the placement of one row of bricks, which have a similar cantilever
length. The stresses of the bottom and top side are shown, as well as the stresses between the wythes
of the vault. In a DIANA model it is shown these wythes behave more like a monolithic material than a
layered one.
The last part is related to the robotic construction. First literature is shown related to masonry robotics. In
the second chapter the stations the robot visits, are described. At the pallet station three instructions are
described. The adhesive station has a number of instructions which is dividable by four. The vault station
again has three instructions. This is similar to a pick&place work order, but with the adhesive station in
between. Two configurations are considered. The first is when the robot is outside the vault, where it is
closer to the support than to the apex. In the second configuration the robot is placed within the vault,
where it is positioned close to the apex. In the last chapter the robot is chosen. Additionally the path is
described with boundary conditions.
The results are shown for 8 computations: a basis computation; one with the robot changed; one with
the shape of the vault changed; one with the orientations of the wythes changed; one with an increase of
the adhesive hardening time; one with a small course length of the vault; one with a different work space
configuration; and lastly one with a different preferred construction sequence.
In conclusion the models and results show that the construction of a thin-tile vault is similar to other
masonry robotics, if the hardening time is excluded. Included, the number of bricks built per day is similar
to two masons building a thin-tile vault prototype. The hardening time is the primary influence of the total
construction time and any reduction here is advised. Further optimisation of the movement of the robots is
possible with a more in-depth optimization of the work space configuration and an optimization where the
shortest movements are considered across instructions. The linear-elastic structural analysis has been
found to be possible to use for the calculation of the thin-tile vault during construction. Additionally, two
construction sequence preferences work well with the multiple wythes, but one preference shows better
results when more bricks with more cantilever length need to be placed, due to reducing the stresses on
the edge of the extrados wythe.
Further research into thin-tile vaults is still required to fully understand andmodel the thin-tile vault. Related
to the three models (design, engineering and robotics) each have been improved in the models made for
this research, but are still a long way away from full implementation.

Contents

Preface iii
Summary v
List of Figures xiii
List of Tables xix

I Introduction 1
1 Research motivation 3
1.1 The timbrel vault . 3
1.2 Robotics . 4
1.3 Digital construction of brick structures . 5

2 Research definition 7
2.1 Aim & objectives. 7
2.2 Research question. 8
2.3 Methodology . 8
2.4 Software . 9

II Design of the thin-tile vault 11
3 Literature on thin-tile vaults 13
3.1 Catalan vault. 13
3.2 Guastavino vault. 14
3.3 Thin-tile vaults and computational modelling . 17

4 The workflow of the design model of a thin-tile vault 19
4.1 Masonry definitions . 19
4.2 Basic outline of the design model . 20
4.3 Parametric modelling . 21
4.4 Draping bricks: a map projection approach. 22
4.5 Implementing projection in the parametric model . 23
4.6 Cutting corners . 24
4.7 From surfaces to volumes representing the bricks . 25

III Phased structural analysis
on the construction of the vault 29
5 Literature on masonry and materials 31
5.1 Masonry material properties. 31
5.2 Bricks . 33
5.3 Adhesives . 33
5.4 Eurocode . 36

6 Structural analysis 39
6.1 From shape to stresses . 39
6.2 Funicular curve . 39
6.3 Equilibrium and sectional forces . 42
6.4 Stress distribution . 43
6.5 Implementation in the parametric model . 46

ix

Contents xi

7 Stress distribution in the phased construction 49
7.1 Preferred placement of the bricks . 50

IV Robotics and the work
process for thin-tile vaults 61
8 Literature on robotics 63
8.1 Robotic typologies . 63
8.2 Construction robotics . 64
8.3 Dutch robotic/construction industry . 64

9 Stations 67
9.1 Pallet station: the source of the bricks . 67
9.2 Adhesive station: moving passed a glue gun . 69
9.3 Vault station: the target of the bricks . 70
9.4 Environment . 71

10 Model input 73
10.1 Robot . 73
10.2 Tool path. 74

V Results & Conclusion 79
11 Results 81
11.1 Parameters of the model . 81
11.2 Configurations . 81
11.3 Computation 0: the base parameter input . 82
11.4 Computation 1: Fanuc robotic arm . 86
11.5 Computation 2: Factor = 1.25 . 87
11.6 Computation 3: Wythe orientations swapped . 88
11.7 Computation 4: Potlife = 5 minutes . 89
11.8 Computation 5: L=0.8m . 91
11.9 Computation 6: Configuration 2 . 92
11.10 Computation 7: preferred sequence: a.l.a.p. 93
11.11 Overview & final cantilevers in design model . 94

12 Discussion 97
12.1 The applicability of the models . 97
12.2 The reliability of the parameter values . 103
12.3 Remarks on the results . 105

13 Conclusion 107
13.1 Recommendations. 109

References 114

Appendices 115
A The Grasshopper model: from design to work procedure A-119
B DIANA: modelling the monolithic property B-123
C Brick experiment: testing the bond strength development C-137
D Phased Structural Analysis in Python D-147
E Robotic arms from the RoboDK library E-187

List of Figures
1 Example of thin-tile vaults: Droneport | Foster+partners 2

1.1 Guastavino on top of the vaults for the Boston Public Library | Boston Public Library . . 3
1.2 Grand Hall on Ellis Island | https://upload.wikimedia.org/wikipedia/commons/3/3a/Ellis_

Island_-_Great_Hall.JPG . 4
1.4 Brick Labyrinth, in Zurich 2017 | Gramazio Kohler Research 5
1.3 Evolution of robotics. Current trends are leading towards more complex, more personalized

systems and robot services. This implies flexible systems that are able to perform tasks in
an unconstrained, human-centered environment | Haidegger et al., 2013 5

1.5 Masonry roboticss | Construction Robotics . 6
1.6 Cooperative assemblymethod. First phase: themiddle arch is built by alternating the robots

used to place and then support the structure. Second phase: the construction is continued
on either side of the middle arch | Parascho et al., 2020 6

3.1 Specimens for the strength tests made by Guastavino. | (Huerta, 2003) 15
3.2 The line of thrust has to go through the core (kern) of the cross-section, otherwise both

tensile and compressive forces are present in the structure. In thin-tile vaults the defiance
from the line of thrust can be larger. | OC . 17

3.3 Thrust Network Analysis with Rhinovault. | (Davis et al., 2012) 18

4.1 Wythes creating a brick wall of multiple layers | OC . 19
4.2 Masonry definitions in a brick wall | OC . 19
4.3 Definition of brick faces, with Waalformaat and a thin brick | OC 19
4.4 The different orientation of thin bricks in wythes | OC . 19
4.5 The main principle of parametric modelling: to make a design with the help of an algorithm

| OC . 20
4.6 The basic sequence of making a brick pattern: first the courses, last the wythes | OC . 20
4.7 Courses represented as lines, equally distanced over a flat surface | OC 21
4.8 The outline approach | OC . 21
4.9 The centre point approach | OC . 21
4.10 A point on the surface is relative to the curves | OC . 22
4.11 Map projections of a globe using planar surfaces as projection reference | ucgis.org . . 23
4.12 The orientation of the wrapping paper determines the minimal required

size. | https://content.instructables.com/ORIG/F1V/BCT8/K4EF4SXA/
F1VBCT8K4EF4SXA.jpg?auto=webp&frame=1&width=933&height=1024&fit=bounds&
md=de6b11b13f381b35478083f1ec3a677b . 23

4.13 Tiling the surface. | OC . 24
4.14 Different starting positions and orientations of the brick pattern. | OC 25
4.15 Plane of the centre points and in extension to that the brick | OC 26

5.1 Tensile failure in masonry arch | (Como, 2017) . 31
5.2 Comparison between conventional masonry and thin-tile vaults. | OC 32
5.3 Tests results from biaxial and uniaxial tests with a vertical compressive force and an altering

angle of the courses to the sample (Como, 2017) . 32
5.4 The development of strength as the hemihydrate sets in gypsum plaster | (Lewry &

Williamson, 1994b) . 34
5.5 A glue gun | https://www.ubuy.com.tr/en/product/12... 35
5.6 The difference in force directions between the Eurocode and the thin-tile vault | OC . . 37

6.1 Relationship of forces versus shape in a furnicular curve | OC 40

xiii

List of Figures xv

6.2 Sectional forces in a cantilever. | OC . 42
6.3 A structure partly constructed | OC . 43
6.4 The similarity between the vectors of the forces and the vectors from the geometry | OC 44
6.5 Position of the stresses used in calculations | OC . 44
6.6 The cooperation between layers or wythes in the stress- & strain-distribution | OC . . . 45
6.7 FEA model . 45
6.8 Set of bricks placed per row . 46
6.9 The loading scheme with a discrete load distribution | OC 46

7.1 The stresses in the structure after 1 brick has been placed | OC 53
7.2 The stresses in the structure after 1 brick has been placed | OC 54
7.3 The stresses in the structure after 2 bricks have been placed | OC 55
7.4 The stresses in the structure after 3 bricks have been placed | OC 56
7.5 The stresses in the structure after 4 bricks have been placed | OC 57
7.6 The stresses in the structure after 32 bricks have been placed | OC 58
7.7 | OC . 59

8.1 Overlap of industrialisation with modular construction, prefab and robotisation. | ING
Economisch Bureau . 65

9.1 Four coordinate systems in robotics | (Technical reference manual - RAPID Overview,
2019) . 67

9.2 Packing arrangement of the bricks in the pallet station | OC 68
9.3 Routines at pallet station | OC . 68
9.4 Routines at adhesive station | OC . 69
9.5 Approach path through ’sliding’ | OC . 70
9.6 Routines at vault station | OC . 70
9.7 Work environment during construction (top view, configuration 1) | OC 71
9.8 Work environment during construction (top view, configuration 2) | OC 71
9.9 Spatial robotic assembly at ETH Zürich | https://www.researchgate.net/publication/

330250435_End-Effector_Pose_Correction_for_Versatile_Large-Scale_Multi-Robotic_
Systems . 72

10.1 The relative positions of bricks around a bricki;j , with the required edges in gray. | OC 74
10.2 The relative positions of bricks around a bricki;j , with the required edges in gray. | OC 75
10.3 The layout of the adhesive on the bottom side of the bricks from the second and third wythe.

Both a whole and cut brick are shown. | OC . 76

11.1 The design or geometric related parameters in the model. | OC 81
11.2 The construction sequence of the first computation. | OC 83
11.3 The results from the structural analysis of the first computation 84
11.4 The construction time results of the first computation. | OC 85
11.5 The configuration in the simulation.. | OC & RoboDK . 86
11.6 The construction time results of the second computation. | OC 86
11.7 The results from the structural analysis of the third computation 87
11.8 The construction time results of the third computation. | OC 88
11.9 The results from the structural analysis of the fourth computation 89
11.10 The construction time results of the fourth computation. | OC 89
11.11 The results from the structural analysis of the fifth computation 90
11.12 The construction time results of the fifth computation. | OC 90
11.13 The results from the structural analysis of the sixth computation 91
11.14 The construction time results of the sixth computation. | OC 92
11.15 The configuration in the simulation. | OC & RoboDK . 92
11.16 The construction time results of the seventh computation. | OC 93
11.17 The construction sequence of the eigth computation. | OC 93
11.18 The results from the structural analysis of the eigth computation 93
11.19 The construction time results of the eighth computation. | OC 94

List of Figures xvii

11.20 Design models after each computation and their full construction. | OC 95

12.1 X-positions ’belonging to’ the bricks ’A’ and ’B’ where the assigned strengths (fk(t) in MPa)
for those x-positions is shown above and the ’long’ arms for the stresses. The dashed
red area is the actual strength of that section, if the strength and stresses were assigned
separately. 98

12.2 The stresses, strengths and unity checks of the first computation with different initial
strenghts | OC . 99

12.3 The stresses, strengths and unity checks of the seventh computation with different initial
strenghts | OC . 100

12.4 The theoretical time of a joint rotation. | OC . 101
12.5 The placement of paving bricks. | https://www.youtube.com/watch?v=j6BSwYAbQIo . 101
12.6 The construction of the dome of Saint John the Divine. | (Dugum, 2013) 102
12.7 Avoiding object collision. | OC . 102
12.8 A thread used for alignment of the brick course to the plans. |

https://www.verbouwkosten.com/metselwerk-kosten/ 103
12.9 The strength development of various retarders, with an indication of how the shape of the

curve of strength development used in the model relates to those shapes of the retarders. |
(SIKA, 2021) (altered) . 104

A.1 The complete canvas in Grasshopper. A-119
A.2 The workflow of the Grasshopper model based on the groups created on the Grasshopper

canvas . A-120
A.3 The tiling cluster exploded. A-122
A.4 A detailed and (digitally) zoomable figure of the canvas. A-122

B.1 The elastic modulus at different orientations in a three wythe sandwich panel found with
DIANA. B-123

C.1 Siko-Clearbond properties . C-137
C.2 The weather on the days of experimentation | https://www.hetweeractueel.nl/

weer/delft/historie/2021/05/. C-138
C.3 First brick experiment. C-139
C.4 Second brick experiment. C-140
C.5 Third brick experiment. C-141
C.6 Fourth brick experiment. C-142
C.7 Fifth brick experiment. C-143
C.8 Sixth brick experiment. C-144
C.9 Seventh brick experiment. C-145

D.1 Python workflow of the structural analysis. D-147

E.1 Work process in RoboDK (as GUI). E-189
E.2 Workflows in Python. E-189

List of Tables

3.1 Mean strength of timbrel specimens as presented by Guastavino (1893) | (Huerta, 2003) 15

5.1 Parameters of tuff blocks | (Como, 2017) . 33
5.2 Physical performance of building gypsum | (Zhang et al., 2020) 34
5.3 | . 37

6.1 Factors with which to multiply the maximum bending stress | OC 44
6.2 Factor α from (6.13) | OC . 45
6.3 Maximum allowable stresses| OC . 45

8.1 Most common robots applied in architecture | (Estrella, 2017) 63

10.1 Maximum speed of joint axes | (Motoman, 2019; Fanuc, 2019, 2017; Kawasaki, 2020) 73

11.1 Parameters of the model and related information. 82
11.2 Base parameter input . 83
11.3 Altered parameter for computations . 83
11.4 An overview of all computations and their total assembly results. 94

xix

Part I

Introduction

1

2

Figure 1: Example of thin-tile vaults: Droneport.

The building industry has a long and diverse
history. In the past centuries the knowledge
of structural mechanics, building materials
and construction techniques has increased
significantly. Machinery is now a necessity on
and off the construction site, whether it being
a lorry or a crane. With the addition of digital
advances, combining machine work with offsite
oversight from experts has become a possibility
as well. While these modern technologies expand
the realm of possibilities for the building industry,
old techniques and applications have gathered
interest as well. Vernacular architecture has seen
a resurgence now the standard palette of the
structural engineer has expanded beyond steel
and concrete structures. Although both directions
should be encouraged, this research will focus on
combining an old technique with new innovations.
One vernacular construction technique that has
sparked more interest, is that of the Catalan
vault. Also known as the timbrel vault and bóveda
tabicada, the Catalan vault is a thin-shell structure
with, traditionally, alternating layers of (very) thin
bricks and mortar (Benfratello et al., 2012). The
timbrel vault has advantages compared to other
vaults and spanning (floor) structures. Due to the
low self-weight of the structure, the lateral thrust
on its foundation (most likely vertical elements)
is reduced. The vault’s design also allows for
a better rise/span ratio compared to the better-
known barrel vault, Roman arch and pointed
arch. However, due to the properties of a well-

designed arch, it requires no or minimal (steel)
reinforcement, unlike most modern beams and
slabs. One more advantage is the construction
technique. Whereas Roman arches need a
centring as support until the keystone is put in
place and prefabricated slabs need falsework
until the in-situ concrete has dried, the Catalan
vault can be constructed without the need of any
falsework, besides guide strings. This makes the
timbrel vault an interesting structural design to
improve for further use.

The timbrel vault did go out of fashion in
the twentieth century. One of the reasons is
the labour-intensive construction method. With
modern technologies, the Catalan vault can once
again become a feasible construction technique.
In the context of this research the modern
technology of robotics can be the solution to
reduce the labour costs and in return make the
Catalan vault more desirable. Robotics boils
down to the use of robots for tasks previously done
or impossible to accomplish by humans. Since
the 1980’s robotics have been implemented in
the building industry to increase the quality and
quantity of the products and processes, while
reducing costs and time on others (Bock, 2007). A
variety of robotic applications has been developed
to cater to the needs of the building industry.
With the complex structure of the timbrel vault
the range of applications for robotics may be
expanded further.

1
Research motivation

This research sets out to combine the vernacular
architecture of the Catalan vault and the modern
technology of robotics. This chapter shows
the relevance and development into both areas
by giving an historic overview, an overview of
applications and recent research and interest in
both. The third part of this chapter focuses on
the overlap of both areas. Here, an overview of
the current research and possibilities of the digital
construction of brick structures is given.

1.1. The timbrel vault
The use of bricks as a building material has
been common place for millennia. To see the
origins of the Catalan vault, the use of its main
visual characteristics throughout history has to
be found. As set out by Benfratello et al., 2012
the characteristics of the Catalan vault are the
flat-oriented bricks, the gypsum and the absence
of ribs. These three, combined or individually,
are found throughout the Mesopotamian and
Mediterranean regions, where the latter followed
the first. The period of use in Spanish and
Italian regions can be seen from the end of the
Middle Ages up to the twentieth century. It
is clear from documents at the time that the
main advantage to other arch-like structures was
known. The reduced weight due to the material
choice and orientation results in a lower thrust on
its foundation.
In the eighteenth-century further research into the
Catalan vault resulted in a broader understanding
and a further spread of knowledge. In this age
the fire resistance and monolithic behaviour of the
vault has been studied. Starting in France the
structure gatheredmore interest in Europe with an
overview of the state of the art of the Catalan vault
published in French, Italian and German.
The most well-known buildings with the bovéda
tabicada are built around the turn of the twentieth

century. One company in particular used the
structural and safety properties of the Catalan
vault to create a business. The Catalan architect
Rafael Guastavino Moreno used his expertise to
construct thousands of buildings in the United
States with the use of the Catalan vault. The
Guastavino room in the Boston Public Library,
parts of Carnegie Hall, the registration hall of Ellis
Island and the Oyster bar in the Grand Central
Station of New York (Ochsendorf & Freeman,
2010), which is also a whispering gallery, are
some examples of of his work.

In order to proof the structural safety of the
Catalan vault, or Guastavino vault in the US,
Guastavino developed various experiments and
studies to provide empirical and theoretical
evidence. He attributed the structural
performance of the vault primarily to the multiple
layers combined with the mortar. Benfratello et al.,
2012 disputes that claim and points out that the
cohesion between the layers is mostly beneficial
for the constructional performance. The mortar
makes it possible to create angled

Figure 1.1: Guastavino on top of the vaults for the Boston
Public Library.

3

4 Chapter 1. Research motivation

Figure 1.2: Grand Hall on Ellis Island.

gaps between the bricks, whereas a joint due
to the gravitational friction is only as good as
where the elements touch. Guastavino compiled
his theoretical works in Essay on the Theory
and History of Cohesive Construction Applied
Especially to the Timbrel Vault (1892). Additional
research has shown as well that Guastavino’s
thinking was not completely scientific, but more of
experimental nature (Dugum, 2013).
His son continued with his fathers’ work and
used the membrane theory to get to the internal
stresses of the vault. He and his father
issued a number of patents, with one about the
reinforcement of the brick structure.
Meanwhile in other parts of the world architects
like Gaudi and Dieste were exploring geometric
variations. Gaudi, known for his work in
Barcelona and Catalonia, explored different
geometric and spatial designs, while adhering
to the technique of the Catalan vault. Dieste
worked in an environment where materials like
timber and steel were lacking. Thus, he relied on
the principles of the Catalan vault to span large
spaces. Nowadays the existing structures are
in need of repair and maintenance. To improve
these operations, various institutions across the
world have been exploring and researching this
vernacular architecture. John Ochsendorf at
MIT, Boston, is one of the leading experts on the
Catalan vault and the tabicada technique. He has
published a book about Guastavino: Guastavino
Vaulting: The Art of Structural Tile.
Research in the USA related to this topic is
concentrated around MIT. This is not surprising,
given the location of these structures. In Europe
the research is more spread out. In this
regard a major distinction can be made between
the research into existing structures and the
exploration of building and designing the structure.
At Italian and Spanish universities, again regions
where the thin-tile vault is common place, the

focus is more on this first category. At the ETH in
Zürich, especially by the Block Research Group,
the focus has been on producing the structure.
Their latest research in thin-tile vaults is from
2016 and focuses on the state of the art of thin-
tile vaults. In recent years their focus has been
on failure of unreinforced masonry structures,
with extra attention for gothic structures, and
on concrete shell structures combined with its
formwork, integration of the thin-tile vault and the
double-curved shell.

1.2. Robotics
The definition of a robot, according to the
Cambridge dictionary, is a machine controlled
by a computer that is used to perform jobs
automatically.

Within the building industry, the use of robotics
started in the 1980’s. Research and application
have been motivated with various reasons, of
which the trends in workforce; concern for health
& safety; the physical environment; and progress
in robotics technology are some examples (Haas
et al., 1995). In the early years of robotics in
civil engineering research has been in a wide
range of applications and phases of the building
industry, with siteworks being the largest group.
These years also saw a regional difference, with
Japan being the clear leader in the development
of robotics in the building industry. Over these
years, a relative shift has occurred in the papers
from conceptual to prototype systems.

At the end of the twentieth century, advancements
has been made in various areas, of which the
most important have been in the motion control of
these robots, the automated levelling and grading
and the tipping- and proximity sensing. The paper
from 1995 already predicts machines that can lay
bricks robotically.

Li, 2018 defines three different types of robotics
used in the construction industry. These types
are the wearable robots, the robotic arm and the
traditional robot which resembles the human form
(with arms and legs). The trend described by
this paper comes from Haidegger et al., 2013
and shows that the intelligence of the robots
is evolving. The distinction shown is split in
industrial robots and service robots. Here,
industrial robots follow set forth procedures
without the ability to adapt to a changing
environment, while service robots can interact
with their surroundings.

From this paper comes figure 1.3, where the

1.3. Digital construction of brick structures 5

description makes it clear that a bricklaying robot
is most likely to be between the two categories.
Although this is dependent on the fabrication and
construction process. If the fabrication is done
off-site in a factory, a changing environment or
interaction with humans is limited. When the robot
is on an operating building site, the situation will
change often, with changing weather and human
movements as examples.
As Bloss, 2014a describes, architectural projects
and research related to robotics are executed with
three software packages: Rhino, Grasshopper
and YOUR. As the paper describes:

“Grasshopper is a visual programming
language used in conjunction with
Rhino. It allows the programmer
to drag and drop components to
construct three-dimensional (3-D)
model design. Rhino (Rhinoceros
3-D) is a graphic modeling tool
software package widely used
in architectural robotics projects.
YOUR is a software package used
to create a 3-D interface from the
computer. Together, these three
software tools are used by many of
the research teams.”

The paper also shows the application of a robotic
arm to make a small-scale brick wall.
Besides the earlier mentioned robotic types, other
types of robots are now in development. These
include the use of flying robotics, like drones, or
swarm-operated robots.

1.3. Digital construction of brick
structures

The use of robotically constructed masonry
structures can be split into three categories. The
first category is the architectural exploration of
brick-laying. The primary focus of this research
is the expansion on design alternatives, mainly
for brick walls. The main alterations to the more
convenltional brick wall designs are on the shape
of the wall overall and of the brick pattern itself.
The ETH in Zürich has projects related to DFAB
and NCCR. The focus of this organisation is in the
digital fabrication and it has had some cooperation
with the Block Research Group in the past. One
of their projects can be seen in figure 1.4.

The second category is the development of brick-
laying robots to be used in on-site construction.
This robotic development is different from the

Figure 1.4: Brick Labyrinth, in Zurich 2017.

Figure 1.3: Evolution of robotics. Current trends are leading towards more complex, more personalized systems and robot
services. This implies flexible systems that are able to perform tasks in an unconstrained, human-centered environment.

6 Chapter 1. Research motivation

(a) SAM100

(b) MULE135

Figure 1.5: Masonry robotics

previous category in two ways. The first is that
the robots are to be used on the construction
site and the development of these robots has
a direct driver to be used by contractors. The
second difference can already be seen in figure
1.4. The architectural exploration has a focus
on the placing of bricks, but masonry structures
also include the application of mortar between
the bricks. Thus, this category develops robots
that can apply mortar to bricks as well. The
main output of these robots is their speed. With
the procedure and quality of the construction set,
the main development is to improve the speed
of the brick-laying. However, the architectural
exploration allows for differently orientated bricks,
these quick brick-laying robots are limited in the
designs they can be applied for. Two examples
of commercially available robots aiding in the
brick laying are MULE135 and SAM100 from
Construction Robotics.
The third category is those structures that are
not a wall. This research is related most to this
category, with some overlap to the second. The
use of robots for masonry structures besideswalls
is somewhat limited. Recently a vault of funicular
shape has been built with the help of two robotic
arms (Parascho et al., 2020). This vault was
made using the glass brick expertise from the
TU Delft. These glass bricks were placed in
a fishbone pattern by the robots, after an initial,
stable arch was completed.

Figure 1.6: Cooperative assembly method. First phase: the middle arch is built by alternating the robots used to place and then
support the structure. Second phase: the construction is continued on either side of the middle arch

2
Research definition

2.1. Aim & objectives
This research aims to investigate the time it takes
for a robot to construct the vault. This may result
in an advance of the possibilities of research into
and construction of the thin-tile vault.
A couple of terms are used to describe the
investigated structure, some adequately, others
confusingly. Common terms are the ’timbrel vault’,
the ’Catalan vault’, the ’Guastavino vault’ and the
’thin-tile vault’. In this research the thin-tile vault
is used as the structure. However, it is necessary
to provide the relation between this term and the
other three. Therefore, a review of the literature
will show each definition.
The typology of the structure is the thin-tile vault
and this defines some geometric and structural
properties. The geometrical properties narrow
down the scope of the research. This results
in a type of the thin-tile vault, where a set of
parameters creates design variations.
The building envelope is of little use for the
construction phase. The construction of a
masonry structure involves the placement of
elements (bricks) with the help of an adhesive.
Therefore, it is important to know the position
and orientation of the bricks of the thin-tile vault.
Furthermore, the order of construction of these
bricks is required. Although the design plays a
trivial role in this determination, a proper set-up of
the design definition of these bricks and the thin-
tile vault eases the determining process in other
stages.
The typology of the structure is the thin-tile vault
and this defines some geometric and structural
properties. The structural properties of the thin-
tile vault justify the used structural analysis. The
major interest is the structural working of the thin-
tile vault compared to traditional masonry (vaults).
These properties of the thin-tile vault result in a

loading scheme for the element to withstand.
In a time-independent structure, as is considered
with any structural analysis on the structure after
construction, the maximum stresses of a vault
can be found at the base of the structure, where
the normal force is at its maximum. However,
this structure is time-dependent. This results
in a different structural scheme as long as the
structure does not encompass the thrust line of the
vault. Additionally, the adhesive will go through
a change of its properties. Before hardening
it can be moulded, while after hardening it is
able to withstand stresses. This process takes
time. This means not only will the maximum
occurring stresses be of importance, but also
those positions where the strength has not yet
developed properly.
During construction the structural scheme of the
thin-tile vault is different than after completion.
The most important property of vaults is the lack
or insignificant amount of bending in the structure.
This property is not present until a section of
the structure spans the vault. Thus, bending is
present in the structure. This results in different
requirements for the materials in masonry. Even
a different material may be required.
Some materials show a change in their properties
during construction. Other materials remain the
same after construction as they were before
construction. Timber and steel elements are
examples of this last category. (In-situ) concrete
and paint are of the first. In masonry, the
properties of bricks remain unchanged, while
the mortar hardens, changing from moldable
to strength resisting. This means that as the
construction progresses, the material properties
change. This has to be taken into account
when choosing the appropriate materials. When
how much the structure can be loaded at which
locations determines the size of the structure and

7

8 Chapter 2. Research definition

the speed of construction.

A wide range of robots exist. However, not all
robots will be suited as construction robot. The
robot should be able to perform tasks similar
to a mason. For some tasks assistance would
be the better option, cooperating with robots.
Furthermore, the usability and limitations of the
robots is required as well. A look into the (Dutch)
construction industry may reduce the number of
possible robots even further. This should lead to
a (small or limited) stock of robots where from the
robots are chosen that are used in this research.

The design process is mostly done digitally
nowadays. From basic (technical) drawings and
sketches to complete 3D-, or even 5D-models, the
model is on the computer. This is no different for
this research. The design model and engineering
model are both in a digital environment. The same
applies to the model for the robotic construction
simulation. However, both operate differently.
The first two models are done from the principles
of CAD, while the robotics is done from CAM.
CAD is Computer-Aided Design and has resulted
in structural analysis and design software. Here
input from reality and designers or engineers
create a design model and results of the structural
analysis. CAM is Computer-Aided Manufacturing
and uses as input a design model or work station
and outputs a code to operate the robot with. The
translation from CAD to CAM may be as simple
as using the design model for CAM-software, or it
may require a specific output.

2.2. Research question
Based on the objectives described in the previous
section, the following question can be stated.

How does a robotic construction of a
parametrically designed thin-tile vault
perform based on step-wise structural
analyses?

This results in the following sub-questions:

1. What is the parametric model of a thin-tile
vault?

2. What stresses (can) develop in the
construction of the thin-tile vault?

3. How does a robot construct a thin-tile vault?

These sub-questions are reflected in the outline of
this report, with each its own part.

2.3. Methodology
The question requires a method of three major
steps. The first step is to create a design model of
the thin-tile vault. The second step is to calculate
the stresses occurring within the structure during
construction, which is done in an engineering
model. The last step is to use the design model
and the results from the engineering model to
provide a simulation of the construction by a robot.

2.3.1. Design model
The design model needs to provide the
information for the engineering and robotics
model. To produce the design model, three major
steps have to be undertaken, as described in
the previous section. The first step is to provide
literature which defines the thin-tile vault. The
second step is to find the characteristics of the
thin-tile vault and define these in the designmodel.
The last step is to define the bricks in the thin-tile
vault.
The first step places this research within context.
As the introduction already provides, a starting
point is the research done at both MIT and ETH.
The first is to define the thin-tile vault in historic
context, while the second provides starting
conditions which aligns with recent research.
With the definition of the thin-tile vault the main
part of the design model can be made. The
design of the thin-tile model results in a vault
made of a brick pattern. Thus, the first step is
to define a vault surface of zero thickness. With
this base surface, the bricks can be positioned on
this surface. Masonry consists of courses with
the bricks in a certain bond. The model needs
a definition of these courses and a definition of
the bricks relative to each other based on the
bond. The path of the courses needs to take the
curvature into acocunt as well. With the courses
and the bond defined, the vault with brick pattern
is made.
The last step for the design model is to translate
the global design of the vault to the required
information from the bricks for the engineering
and robotics models. This step can be integrated
from the start with the other steps, to avoid
redoing previous work. Two sets of information
have to be retrieved from the design model
and kept consistent for the other models. The
plane of the bricks is needed to apply individual
transformations on the bricks relative to the vault.
For instance, the bricks have to come from a
source before they’re placed in the structure. This
source needs the planes of the bricks to provide

2.4. Software 9

proper placement. The second set of information
is the position of the brick relative to others. Here
position is not the spatial position, but in which
course the brick is placed, or how bricks in other
courses are related to each other.

2.3.2. Engineering model
The engineering model has four steps to look into.
First, the characteristics of the thin-tile vault are
applied from an engineering approach. Second,
the applied characteristics result in the strength
of the structure and where critical stresses may
arise. The third step is to analyse which materials
are suitable for the thin-tile vault. The last step is
to implement the stresses and strengths with time
as a variable.
The literature from ETH and MIT may also
provide the structural characteristics of the thin-
tile vault. Furthermore, the Eurocode provides
a first estimation of the structural properties.
Additional research and literature may be needed
where the first two lack data.
With the structural characteristics of the thin-tile
vault and additional information from literature,
the approach for the structural analysis is
made. First any simplication of vault should
be applied where possible, which results in a
structural model. Second, an analysis of this
structural model is done to better understand
the behaviour of geometric parameters on the
structural performance. This results in a step-by-
step description to get from the geometric shape
of the structure to the stresses.
The literature of masonry in general is
complemented with literature on suitable
materials. The literature provides estimations
on the behaviour of the material. From literature
the strength development of the material is also
gathered. Additionally, the material is tested in a
small-scale experiment to verify the used values.
The stresses and strengths are calculated for
the entire structure after the placement of each
brick, or a similar time step. This is done
by evaluating the cross-sections at a set of
positions. This set has to be large enough to cover
all important locations to test for strength and
stresses. Additionally, this will limit the possible
combinations in which bricks can be constructed.

This results in the sequence in which the bricks
are placed.

2.3.3. Robotics model
The robotics model translates the design model
with the help of the engineering model to the
information required for a robot. The required
information is dependent on the robot used.
The possible availability of a physical robot should
be pushed aside. That means all models stay
within a simulated environment. Thus, the first
step is to determined what software is capable
of robotic simulation. Together with the software
and literature, a stock of robots can be determined.
Based on the specifications of the robots and the
requirements for construction, the robots to be
used can be determined.
The software and the robot together define
how the information between the design and
engineering models and the robotic model are
handled. The general path of the robot will be
from a source where the bricks are placed, to the
target in the vault. In between the adhesive has to
be applied. This path is a set of actions that the
robot has to perform, similar to actions taken by a
mason. This path is then translated or converted
to the format for either the software or the robot.

2.4. Software
The entire process relies heavily on software.
In this research the main program used is
Grasshopper 1 in Rhino 6. Additionally,
the structural analysis is programmed in
Jupyter Notebook (Python 3) connected with
Grasshopper with a csv-file. RoboDK is the
robotic simulation program. Again a csv-file
connects the two programs. RoboDK comes
with two Python files which will need some
alteration. The first imports the csv-file into
RoboDK, while the second one exports the
simulation construction times into a csv-file for
further analysis.
Beside these main programs, Maple and Excel
are also used to providemathematical analyses or
any analysis on the csv-data, respectively. DIANA
provides the possibility to model masonry to the
latest understanding, which can be used in a
generalization for further structural analyses.

Part II

Design of the thin-tile vault

11

12

The first part of the research is related to the
structure known as the thin-tile vault. This type of
structure has a lot of names, with which the exact
definition diffuses. From literature the definition
and the properties of the thin-tile vault should be
found. The focus is primarily on the geometrical
properties, but showcasing structural properties
alongside these is no issue. With these definition
and properties a design model can be made for
further use in the structural analysis and robotic
construction.
To get to that model this part is set up in two
chapters. The first chapter provides the literature
which is used to make and define the design
model. The literature is ordered chronologically,
starting with the Catalan vault, its origins and early
understandings. The Guastavino vault describes
both the work and understanding of the vaults
made by Guastavino and his son. In the last
section modern research into the thin-tile vault

and free-form vaults is shown. Special attention
is given to the works done at ETH Zürich and the
development of Rhinovault.

The second chapter describes the design of the
structure. It starts with showing the definitions
used for the masonry structure, both from the
perspective of the vault and from the unit elements.
Next the goals and outputs of the parametric
model are given in an overview, followed by
a description of parametric modelling and the
core principles used for the model definition. In
the next section the principle of map projection
shows how the core principles of the model
definition can be used for the curved vault. The
implementation of the model definition so far in an
algorithmic and mathematical setting are shown
in the section thereafter. In the last two sections
attention is given to the edges of the vault and the
visualisation of the model for user interpretation.

3
Literature on thin-tile vaults

The structure used in this research has many
names: Catalan vault, timbrel vault, Guastavino
vault, bóveda tabicada and thin-tile vault. This is
no surprise considering the history of the thin-tile
vault, as briefly described in section 1.1. In this
chapter research previously done on this vault will
be shown. For this the research and examples
have been split based on three chronological
periods. The first era is the work done in the
Old World, in the time prior to the inventions of
Rafael Guastavino. In the second time period,
the work of Guastavino will be considered. The
research of John Ochsendorf on Guastivino is
also included in this section. The third section
describes recent research related to the thin-tile
vault. The main focus here will be research that
made use of Rhinovault.

Timbrel vaults are masonry vaults
made with brick and mortar. Their
uniqueness derives from their
construction: the bricks are placed
flatly, forming one or more layers
and they are constructed without
centering or other support. The
bricks are placed in arches or
successive rings to complete the vault
[...], During construction, the bricks
are supported by the adhesion of the
fast-setting mortar to the completed
courses, or to the bordering walls.
There is no formwork, but guides are
used to control the geometry of the
vault,[...] (Huerta, 2003)

3.1. Catalan vault
Huerta, 2003 gives an extensive overview of
the history of timbrel vaults in general and the
method used for the structural analysis. In his
paper, published in Essay on the History of
Mechanics with the help of John Ochsendorf, he

describes how the early application of the timbrel
vault changed during the nineteenth century. The
structure was used as the ceiling of churches,
as flooring and as staircases. However, with
the industrial revolution in Spain and France, the
structure started being used as roof of industrial
buildings as well. Based on his article, it seems
the introduction of Portland cement widened the
application of this structure: it could be used as a
roof structure, without the need of a cover. This
is different to its use in churches, where it only
acted as ceiling, with the timber roof structure
spanning over the vault. The timbrel vault became
a symbol of Catalan culture, becoming vernacular
architecture. Later on, the Catalan builder Rafael
Guastavino would use this ’Catalan vault’ as his
legacy.

Huerta, 2003 goes on, stating that the Catalan
vault has been used since at least the fourteenth
century. One of the key sources from this
first era is Fray Lorenzo and his publication in
1639. Lorenzo describes the necessity of lateral
supports. In other words, the existence of thrust
from the vault was known. This may not surprise
modern engineers and scientists, but later on it
becomes clear this aspect of the vault got lost.

TheCatalan vault has also been applied in France.
The Count of Espie liked the structure due to
its fire-resistance and light weight, and would go
on to do tests (Huerta, 2003). Espie believed
the ’flat vault’, as he called it, did not exert any
thrust on the walls. His thinking is based on the
adhesive in the bricks acting at such quality the
structure is considered monolithic. He proofed
this with his tests, but Huerta disputes this stating
”many of the tests can be made with normal
masonry vaults with the same results”. His work
from 1754 was well received at the time and the
Catalan vault became a structure known for its
fire resistance and the absence of thrust. Later

13

14 Chapter 3. Literature on thin-tile vaults

publications by other writers cemented the idea
and at the start of the nineteenth century Catalan
vaults were thought to be absent of thrust, even
back in Spain. Huerta does mention that in the
Spanish translation of the Espie’s book, the book
startswith a comment from the architect ofMadrid,
Ventura Rodríguez, disagreeing entirely with the
theory and mainly the observations of the Count
of Espie.

In the nineteenth century sources become scarcer
(Huerta, 2003). One experiment in France
tests the loading capacity of the Catalan vault,
using spans common for textile factories (3.75
and 4 metres). Besides the loading capacity,
which turned out to be 2.700 and 1.250 kg/m²
respectively, this experiment did include the thrust
from the structure. A publication in 1841 from
Spain describes in detail the construction of the
Catalan vault for various typologies like staircases
and domes. Interestingly, in the first part and in
the projects described in the publication thrust
is considered in the design. However, in the
second part, the ideas of Espie are mentioned,
contradicting the rest of the publication.

3.2. Guastavino vault
(Huerta, 2003) continues with Guastavino, maybe
the most important practitioner of this structure.
Rafael Guastavino was born in 1842 in Valencia.
After his studies and constructing a couple of
buildings with the Catalan vault, he moved to
the United States in 1881 with his son Rafael
Guastavino Jr. Convinced the Catalan vault
was to be applied extensively, he would use this
vault in his first big project: the Boston Public
Library. Guastavino knew the main advantage
of the timbrel vault: an easy to erect roof
structure that is fire resistant as well. In 1889,
he called his company the Guastavino Fireproof
Construction Company. As Huerta mentions,
American buildings at the time preferred timber
and iron structures to hang fals vaults from,
instead of heavy and cumbersome stone and
masonry vaults. Having a light weight structure
like the timbrel or Catalan vault was useful in
the eyes of the American architects. However,
since the structure was less known in the US,
Guastavino had to proof the promised properties.
As Huerta mentions, with Guastavino the timbrel
vault was analysed in a scientific way for the first
time.

Guastavino went on to promote his structure
with seminars, magazine articles, two books
and other articles and papers. In 2001, Huerta

gave a bibliography of all of Guastavino’s work,
including coordinating the genesis of Parks on
Guastavino’s first book. This book, Essay on the
Theory and History of Cohesive Construction,
applied especially to the timbrel arch from
1892, is the main product on Guastavino’s
understanding of the Guastavino vault. The
first distinction Guastavino made, was between
construction by gravity and construction by
cohesion. The construction by gravity creates
a total mass in equilibrium, without considering
the adhesion between the solids or elements. The
construction by cohesion gets its properties based
on the cohesion between materials, making it one
material.

Guastavino tried to give his vault a historic
background, which can be seen in the numerous
buildings Guastavino considered being built as
a construction by cohesion. However, Huerta
points out that Guastavino may only have
looked at structures with a good adhesion,
including Roman concrete, instead of looking
at the structural system. Huerta also explains
why Guastavino compared a construction by
cohesion to how nature makes ”conglomerates”,
or monolithic structures. Guastavino was awed
by a cave in Spain, especially how all elements
of the structure, its walls, roof and floor, were
all one element or solid. Something nature
was able to make, but humans were not. With
this perspective, he considered the construction
by cohesion the natural way of construction.
Although his motivation stemmed from a wrong
understanding, Guastavino would go on to
improve the cohesive property of the Guastavino
vault, improving the vault construction as a whole.

Guastavino continues with his distinction
by comparing two timbrel arches (Huerta,
2003). The first timbrel arch, representing the
construction by gravity, is made of one layer of
bricks. Clear joints are present between the
bricks of the arch. These joints break up thewhole
cross-section of the arch. The second timbrel
arch, representing construction by cohesion, is
made of two layers. Besides the mortar between
the two layers, the bricks overlap (similar to a
stretcher bond). This means each joint between
the bricks only takes up half the cross-section
of the arch. With this cohesive structure, the
arch should be able to resist bending. Huerta
confirms that Guastavino has shown this property
of the multi-layered timbrel arch. This second
arch was built and within a few hours construction
workers were able to walk on the vault. The
dimensions Huerta provides, indeed show that

3.2. Guastavino vault 15

bending moments need to be taken in the vault.
The vault had a span of 6 metres and a thickness
of 7,5 centimetres. Assuming a heavy brick with
a density of 2000kg/m³, this gives a distributed
load of 1, 5kN/m². A couple of workers on
top of the vault would give some significant
point loads. It is unlikely an arch or a vault is
shaped precisely on these varying point loads.
Guastavino demonstrates this aspect of the multi-
layered arch with a photo on which he is standing
on top of one of these arches. See figure 1.1. In
Guastavino’s understanding, the construction by
cohesion can be improved by lowering the amount
of joints, with the ultimate goal to have a structure
without any joints.

Huerta’s list of structures Guastavino uses
to give the Guastavino vault includes some
made of Roman concrete, as mentioned
earlier. Guastavino seemed to understand
that an unreinforced concrete arch would be a
construction by cohesion without any (vertical)
joints. However, Guastavino considered concrete
too costly and too unpredictable in its setting
to be investigated further. It is, ironically, the
advancements in steel and concrete that will be
the downfall of the timbrel vault (Dugum, 2013).

Huerta continues with the tests Guastavino
performed on specimens representing the timbrel
arch. See figure 3.1. Huerta provides a summary
of the results, which can be seen in table 3.1. He
also comments the lack of any material property
like the Young’s modulus.

Guastavino was able to calculate the thrust of
flat vaults by formula 3.1 (The formula, already
changed in notation by Huerta, has been adapted
to notations common at the TU Delft). Sadly,
Huerta failed to note that Guastavino’s formula
does not result in the same unit on both sides
(Guastavino, 1893). The left hand side results
in the thrust, or horizontal force (per unit length)
in the arch, while the right hand side gives a
distributed load (per unit length). Huerta even
provides an example calculation from Guastavino.
An obvious correction would be to square the
span, which would give the thrust as the moment
at midspan over the rise at midspan. However,
applying equation 3.1 with this correction does
not result in the same values as (Huerta, 2003)
provides.

A · σbr =
q · l
8 · f

(3.1)

where:

A = cross-sectional area of the vault at the
crown per unit length;

σbr = breaking stress in compression;
q = total load (self-weight + live load) per

unit length;
l = span of the vault;
f = rise of the vault.

Nonetheless, Guastavino had a second formula
to calculate the required thickness at the support.
Huerta therefore concludes Guastavino used an
equilibriumanalysis to provide a varying thickness
of the vault. The thrust would be compensated
by either buttresses or iron ties. At the end of
his book, Essay [...] timbrel arch, Guastavino
provides a table of elastic stresses (Huerta, 2003).
These were calculated by a professor of applied
mechanics from MIT.
Table 3.1: Mean strength of timbrel specimens as presented

by Guastavino (1893)

Property Strength [N/mm²]
Compression 14,60
Tension 2,00
Shear 0,90

(a) Tension;

(b) Shear;

(c) Bending;

Figure 3.1: Specimens for the strength tests made by
Guastavino, (Huerta, 2003, Guastavino, 1893 from)

Huerta states the difference between the elastic
theory and the calculations by Guastavino to be

16 Chapter 3. Literature on thin-tile vaults

insignificant. Moving on to domes, Guastavino is
inspired by works of others to determine the thrust.
However, as Huerta states, the assumed thrust
is a conservative value. Guastavino is aware
his thrust values were higher than required, but
safer as well. All things considered, Huerta states,
based on the Essay, that Guastavino had a deep
understanding of the Guastavino vault, but lacked
theoretical knowledge.
Huerta concludes his reflection on Guastavino
by saying that although his scientific contribution
isn’t large, it is clear he is a master vault builder.
Guastavino designed and built by the geometry,
and not by the material. He understood the theory
on equilibrium and was able to apply graphic
statics in an extensive way. Huerta shows in his
writing a deep appreciation for the skill with which
Guastavinowas able to construct vaults and apply
reinforcements on domes, based on the designs
from the builder kept in the Avery Library.
His son, Rafael Guastavino Jr. (Rafael),
continued his fathers company. Raised and
educated by the master himself, he was a skilled
master builder as well. Similar to how Guastavino
used the modern theories at the time to verify
his structure, Rafael continued including the
latest calculation methods in his designs. After
the development of the elastic theory in the
late 1800’s, the twentieth century would start of
with (scientific) developments in the membrane
theory (Huerta, 2003). Rafael would apply this
theory to improve the design and construction of
(un)reinforced masonry domes (and shells). As
the twentieth century progresses, Rafael battled
the upcoming concrete construction fiercely with
more research in different coloured bricks and
acoustics. Of Rafael only his patents, seminars
and buildings remain. He never published papers.

3.2.1. Correcting the monolithic or
cohesive construction theory

In Huerta, 2003 the error in thinking from Espie
and the Guastavino’s is related to the elastic
theory. Basically, Guastavinowas right to assume
a timbrel vault behaved differently than more
traditional vaults and arches, like arches made of
voussoirs. However, this difference in behaviour
did not result in a different or lack of thrust. Huerta
uses the publications of Domenech, Martorell
and Bayó (all early 20th century) to show the
implementation of the timbrel arch in elastic theory.
The first two include the bending moment in the
calculation. To them, the design of a masonry
vault should be similar as to the line of thrust,
found using elastic theory. The timbrel vault

can, miraculously, deviate from this line of thrust.
Martorell even notes ”as if they were metallic
shells” (Huerta, 2003).

In the end, Bayó shows a true understanding of
the structural behaviour using elastic theory. He
compares the timbrel vault to steel arches. With
this comparison he is able to explain why the
timbrel arch behaves different than a traditional
voussoir arch. The traditional arch can only
resist compression, following the line of thrust
closely in its geometry. The timbrel arch has
some capacity to take tensile forces, resulting
in a possible deviation from the line of thrust.
This is similar to the distinction Guastavino made
with his construction by gravity and by cohesion.
However, unlike Guastavino, this explanation
does not neglect that in fact the structure is an
arch, of which its geometry is essential to resist
the applied loads, including a thrust. Although
Huerta leaves it at that, the comparison with
a traditional arch can be approached differently
as well. Masonry (and other brittle, or stony
materials) is generally calculated as having no
tensile stress resistance at all (Hartsuijker &
Welleman, 2007). In other words, the stresses
in the entire cross-section are of the same sign,
usually the one assigned to compression. To get
to this result with any line of thrust, this line has
to go through a certain area of the cross-section.
In more conventional terms: the centre of force
has to be within the core of the cross-section to
result in stresses all of the same sign (Hartsuijker
& Welleman, 2007). See figure 3.2a for this
area of a traditional barrel vault. One property
of this core is when the centre of force is right
on the boundary of the core. When this occurs,
the neutral axis is exactly on the corresponding
edge of the cross-section (on the opposing side
to its normal-force centre). The neutral axis here
represents the axis in a cross-section where on
each side a different sign exists. Thus, starting
from this boundary, moving the centre of force in
the core pushes the neutral axis away from the
cross-section. In the opposite direction, moving
the centre of force outside of the core results in a
neutral axis inside the core, with compression on
one side and tension on the other.

As established, the timbrel vault has a higher
resistance to tensile stresses than traditional
vaults. Thus, the general assumption to need
a cross-section with stresses of only one sign,
cannot go for the timbrel vault. This is its essential
difference to traditional arches. Consequently,
the centre of force can go outside of the core.
Because of this (small) tensile capacity, a new

3.3. Thin-tile vaults and computational modelling 17

type of core can be constructed. As long as the
centre of force is within this new type of core, the
timbrel vault can take the (minor) tensile stresses.
This is shown in figure 3.2b. Using this approach
gives a clear and intuitive way to look at the design
possibilities of timbrel vaults.
With the contribution of Bayó a full explanation
of the structural behaviour of the timbrel vault
is related to the elastic theory. The no-tension
model of Heyman is not applicable to the
Guastavino vault (Como, 2017). However, in
examples to calculate the vault with elasticity,
Bayó leaves it at a barrel vault (Huerta, 2003).
Later contributions also struggle to implement the
elastic theory on the more complex structures,
which builders, like the Guastavino’s, seem to
be able to construct with little effort. Terradas
(after 1919) tried the famous staircases, Goday
(1934) disliked using membrane analyses, and
Torroja (1956) was awed at what builders
could make and engineers were incapable of
calculating. The lack of scientifically proven
engineering calculations even existed in 1999,
with J.L. González, Professor Architectural
Technology of the Polytechnic University of
Catalonia, considering empirically deriving the
strength of a timbrel vault staircase the best
approach (Huerta, 2003).
Huerta provides some additional builders and
engineers that tried to tackle the timbrel vault.
Moya (1957) states the insufficient calculations
from the elastic theory are due to a lack of
material properties of the composite. Pereda
(1951) uses a similar approach as described
earlier, keeping the line of thrust within the
middle third of the section. Huerta also shows
the timbrel vault has been analysed with the
Finite Element Method (FEM) by Gulli (1990’s).
However, he argues whether even a non-linear
analysis improves the calculations significantly
compared to the elastic analysis. It is, however,
unclear from Huerta, 2003 how advanced the
FEM-calculations have been. In the past decades
FEM has been improving, with DIANA FEA being
a prime example (DIANA, 2008). Of special
interest is the development of interface elements
to model the likely crack formation of solids.
The use of the equilibrium method, or analyses
like the one Pereda used, gives a Limit Analysis
that is guaranteed safe (Huerta, 2003). The
condition that as long as the masonry is in
compression, it is safe. However, this analysis
applies to the end-product, to the finished
structure. It is during construction the advantages
of the additional tensile stress resistance of the

timbrel vault are apparent.

3.3. Thin-tile vaults and
computational modelling

The Guastavino Fireproof Construction Company
ceased to exist in 1962, marking the end of
masonry vaulting with thin bricks. With it, most
of its knowledge was gone as well. Only few
knew or remembered what the company did. In
recent decades that became crucial to rediscover
the technique of thin-tile vaulting. With the
help of these people the basic principles and
understandings of thin-tile vaulting were not lost.
John Ochsendorf at MIT started to research the
structures made by the Guastavino’s. Particularly
interesting to him was the performance of the
structures after decades, especially considering
their maintenance. At universities around the
Mediterranean interest rose as well (Benfratello
et al., 2012; Michael H. Ramage, 2004). Here
again the focus on the maintenance of existing
structures was the driving force.

Ochsendorf continued his studies, where
eventually he would supervise the PhD of Philippe
Block (Block Research Group, n.d.). Philippe is
now professor at the ETH Zürich and the Block
Research Group (BRG) has been focussing on
the interface of both fields of architecture and
structural engineering. The ETH is known, among
other things, for its research into digital fabrication,
with the NCCR as the main example of this. The
Block Research Group has analysed existing
masonry structures and applied modern

σ+ σ+

nx nx
no no

(a) Traditional masonry;

σ+

nx nx

(b) Thin-tile masonry;

Figure 3.2: The line of thrust has to go through the core
(kern) of the cross-section, otherwise both tensile and

compressive forces are present in the structure. In thin-tile
vaults the defiance from the line of thrust can be larger. In the
figures are shown a cut out of the cross-section with the core
cross-dotted; valid (x) and invalid (o) lines of thrust with their
respective stress diagrams and neutral axis (n-n); the crossed
out stresses that cannot be taken by masonry; the ’extended
core’ (matrix-dotted) that allows a greater deviance of the

centroid from the line of thrust. The valid lines of thrust in both
figures are similar lines of thrust of similar geometric shape.

18 Chapter 3. Literature on thin-tile vaults

Figure 3.3: Thrust Network Analysis with Rhinovault. |
(Davis et al., 2012)

structural analyses like Finite Element Modelling
to better understand these structures. One of the
key outcomes of the BRG is the further research
into thin-tile vaulting. The PhD of Philippe Block
introduces the Thrust Network Analysis (Block,
2009). This analysis is capable of analysing the
shape of 3D, compression-only structures. The
Thrust Network Analysis uses the gravitational
loading of a vaulted surface and presents possible
funicular solutions. This analysis has allowed
the BRG to research existing masonry structures
like Gothic vaults and develop and construct new
thin-tile vaults. The Thrust Network Analysis has
been developed into a user-friendly tool within the
Grasshopper-Rhino environment: Rhinovault(2).
In general, the Block Research Group has
focused on the following fields (Block Research
Group, n.d.):

• Analysis of masonry structures

• Graphical analysis and design methods
• Computational form finding and optimisation
• Design of discrete assemblies
• Fabrication and construction systems

Their analysis on masonry structures mostly
concerns existing (Gothic) structures, while
their recent contributions in fabrication and
construction systems has been primarily on the
development of HiLo, which uses rib-stiffened
funicular floor systems (Nervi is the historic
example of this practice) and a concrete shell
roof with the formwork or mould existing of a
lightweight cable-net with fabric.

In recent years the BRG has assisted in various
projects to show the potential of the thin-tile vault
and the advancements made in their 3D free-form
design of them. Some projects used the same
modelling and design/structural analysis, but
lacked the thin-tile vaults, using voussoirs instead.
The temporary pavilion at the ETH Zürich campus
showed the loading the structure can take (Davis
et al., 2012; Philippe Block & Matthias Rippmann,
2013). The estimated labour for bricklaying was
set at 21 days for 2 masons, 8 hours per day,
with a total of 2.300 bricks. That results in
110 bricks per day per 2 masons (it is unclear
how much cooperation is required of the two
masons to achieve such a speed). Additionally,
destroying the structure was a tougher challenge
than predicted. The construction of the free-form
vault was aided by the use of cardboard, both
as guide line and to minimize the cantilevering
length of such a structure. Further advancements
with the thin-tile vault are proposed in streamlining
the design, engineering and construction process.
The Thrust Network Analysis form and force
diagrams should be coupled with tiling patterns
and thereby also the construction sequence of
the bricks. Another project was ’Bricktopia’ in
Barcelona (López López et al., 2014). This
pavilion was partly constructed with the help of
cardboard and partly with the use of a steel rod
net. The steel rod net replaced the cardboard to
ensure a work space for the masons.

The use of (thin-tile) masonry vaulting has also
been a topic for poverished or underdeveloped
regions, where steel and concrete may be hard to
come by, while labour and clay are in abundance.
One example is the Droneport by Foster &
partners, see figure 1. The United Nations has
drafted a report on the construction of thin-tile
vaulting, in part with the help of the BRG (Blanco,
2014).

4
The workflow of the design model of a

thin-tile vault

4.1. Masonry definitions
Important for a model is to improve
communication by defining the different parts of
the structure. The definitions used for the timbrel
vault are based on an existing and more common
structure: the masonry wall. A brick wall has
been used time and time again in the past and
definitions for this structure have been developed
throughout time. An important identical aspect
of both the vault and a wall is the size of the
dimensions. The height andwidth of awall are of a
larger magnitude than its depth. This means that
both structures can be represented by a surface,
thickened by its bricks. Thus, when defining the
masonry definitions, only a part of this surface is
enough to illustrate the necessary definitions.

Continuing with the wall as similar structure,
common definitions from this structure can be
found as well for the definitions. The first definition
is to define the layers of the vault. In brick walls
a wythe is like these layers: it spans the entire
surface and has a depth of one brick. Brick walls
usually have one wythe, or two when talking about
a cavity wall. In figure 4.1 a brick wall of three
wythes can be seen. With the thin-tile vault the
number of wythes can be greater than two, but the
principle is the same.

The next definition is to define the second type of
layers. A brick wall consists of layers with bricks
laid back to back. These layers are also called
courses. Between courses mortar may be used
to increase the cohesion between bricks. This
mortar between courses is called a bed. The
bricks within one course are also seperated by a
layer of mortar. This mortar is called a perpend.
See figure 4.2 as well.

Wythes

Figure 4.1: Wythes creating a brick wall of multiple layers.

Perpend

Bed

Courses

Stretcher Bond

Stretcher
Bricks

Figure 4.2: Masonry definitions in a brick wall.

Figure 4.3: Definition of brick faces, with Waalformaat (left)
and a thin brick (right).

Figure 4.4: The different orientation of thin bricks in wythes.

19

20 Chapter 4. The workflow of the design model of a thin-tile vault

Figure 4.5: The main principle of parametric modelling: to
make a design with the help of an algorithm.

Vault Base Surface

Courses

Bricks

Wythes

Big

to small

Figure 4.6: The basic sequence of making a brick pattern:
first the courses, last the wythes.

Bricks are laid in certain patterns, also known
as bonds. The most basic bond is called the
stretcher bond (halfsteenverband). This bond
is easily described as a pattern in which the
alternating courses have an offset of half the
length of the bricks. The faces of the bricks along
this length are called the stretchers. The headers
are the faces with which the bricks within a course
meet each other. The faces the bricks have with
other courses are called the beds. So, when
laying bricks, a new brick is placed on the beds
of the previous course, and pushed against the
header of its predecessor. When one wythe or the
structure is done, the stretchers are still visible.
There is one more type of brick-laying that has
a common definition: the way bricks can be
laid within one course. Here, bricks can be
classified as either header bricks or stretcher
bricks. Stretcher bricks have been explained
before, these are laid with the headers touching
and the stretcher visible. With header bricks
this is reversed. The stretchers are touching
and the headers are visible. However, these
header bricks are more common as connection
between wythes, as can be found in Flemish
bonds. Connections between wythes are not a
requirement for the thin-tile vault. Thus, it will not
be further used in this research.

With these definitions the design of the vault
model can be clear in further descriptions. It
should be noted though, that if the faces of thin-tile
bricks are the same in a structure, the faces based
on a bricks dimensions are different (or vice-
versa). With the Stretcher bond in conventional
masonry, the stretcher bricks are the visible face
(figure 4.2). The visible faces for thin-tile vaults
are their biggest surface area, see figures 4.4 and
1. Thus, if the faces of the brick are based on
the bond used, the largest surface area, normally
called ’bed’, is now the stretcher face, while the
middle sized one is now the bed face. Defining
the faces based on the bond results in a difference
with both the presentation in figure 4.3 and the
assumed fabrication of thin bricks, see section
5.2.

4.2. Basic outline of the design
model

The design model has to accomplish two outputs:
1. A parametric model with which a visual

representation of the structure can bemade;
2. A list of positions, orientations, volumes and

quantities of the bricks to be placed.
The goal of the parametric model is to automate
a change in design, which enables a multitude
of (slightly) different designs to be analysed
based on the same principles and models,
including possible errors and margins. The
visual representation also reduces the need for
(technical) drawings of each design. This gives
a greater focus on the engineering and robotic
simulation.
The list of all the brick properties are necessary for
the translation to a virtual construction. It stands to
reason that with robotic construction the need for
a full scale model is high. Contrary to the mason
given guidance by a rectangle and some text on
a technical drawing, a robot needs a more in
depth instruction, for it cannot analyse nor reflect.
Besides the construction part of information, this
process can include digital fabrication as well,
as part of a BIM-approach. This integral design
requires the information upfront, of which the
quantity of each brick volume is a necessity.
These two outputs are dependent on a few
parameters. First of all the dimensions of both
the structure and the material are required. This
means the size of uncut bricks and the base
surface that represents the final design of the vault.
Besides these lengths, the number of wythes and
their angle relative to each other are important.

4.3. Parametric modelling 21

These inputs and outputs are used as the basis
for the parametric model.

4.3. Parametric modelling
The main principle of parametric engineering is
to create algorithms for a CAD environment. An
example of how these algorithms create a design
can be found in figure 4.5. In this figure a collection
of data, in this case the point coordinates, is used
to create a curve, seen in the frame for output. The
algorithm is a set of operations to describe the
curve with these points, in this case as a Bézier
curve. The algorithm, thus, is a means to get to
a design, applying the same operations on a data
set. With this, design variations can be created
using the same algorithm, but with a different
data set, like parameters. As can be seen in the
figure, the data set used as input is also called
parameters.

Another important factor is how an algorithm like
the one for a Bézier curve defines that curve. In
this case, the algorithm travels from point to point
to use these as the basis for the curve. In other
words: the curve has a start and an end, which
can be unitized (also known as reparametrized).
This aspect, together with the main principle, is
useful to further develop a design model for the
thin-tile vault as a parametric model.

Components make it more convenient to
produce an algorithm. These components are
some common sets of operations themselves.
Software for parametric modelling has a bunch
of predefined components, but it is possible to
make your own or add a set of components from
a extensions or plug-ins. Appendix A provides a
more in depth overview of the components used
and if their from an extension.

From section 4.2 the inputs and the required
outputs for the algorithm have been set. The
design approach of the model is to create the
courses of the bricks first, and afterwards place
the bricks within the course. The last step is to
create the wythes, possible in two ways: either
creating new base surfaces for these wythes, or
moving the bricks in each wythe with a unique
offset per wythe. This design procedure for the
algorithm can be found in figure 4.6. The base
surface is the design definition of the vault. Except
for the thickness, it describes the vault and needs
to be ’filled’ with bricks.

The first step is to define the courses along the
vault. As figure 4.2 shows, a course can be
described as a line on which bricks are placed at a

certain interval. This means that the base surface
has curves running over itself, separated by the
width of the courses. This concept can be seen in
figure 4.7 for a flat, free-form surface.

The bricks in each course can be defined in
two ways in the parametric model: an outline
approach and a centre point approach. The
outline approach uses the lines of the courses as
the outline for the bricks. By adding perpendicular
lines between these course lines,

Figure 4.7: Courses represented as lines, equally distanced
over a (random) flat surface.

Figure 4.8: The outline approach with the course edges in
blue and the remaining outlines of the bricks perpendicular to

these in green.

Figure 4.9: The centre point approach with the center of the
courses in blue and the center of each brick in green. The

resulting outline of bricks is not shown for clarity.

22 Chapter 4. The workflow of the design model of a thin-tile vault

}v{
{u}

0

0,6

0,2

1

Figure 4.10: A point on the surface is relative to the curves.

the outline of the bricks are defined. This
approach has the advantage to visually show the
process in the algorithm displayed on the base
surface. This may help with adjusting the brick
patter design, without the need to fully develop
it. A disadvantage is to align the course lines
correctly to ensure the perpendicular lines are
indeed perpendicular. Otherwise, these outlines
will not fit with bricks shaped like a thickened
rectangle.
Where the outline approach places the bricks
between the course lines, the centre point
approach places the bricks centred on these lines.
With this approach the course lines are changed
into points along this line. These points are
the centre points of the bricks surfaces. The
advantage here is the independence of each
course line. A downside is that this approach
requires more information for the process: the
distance between the course lines, the position
of the points, the orientation and direction of the
surfaces and, again, the distances for the size of
the bricks.

4.3.1. Using extensions to simplify the
parametric definition

By using extensions with the software the
parametric model, and consequently the
modelling required for this research, can be
simplified. After all, ’we’re standing on the
shoulders of giants’. For instance, a parametric
definition for a masonry wall is available in an
extension on the software. However, these
definitions and extensions need to be investigated
properly and to be understood by the users. In
current extensions available, their application
is limited to walls where courses run along the
primary (non-zero) curvature. The parametric
model in this study has the ability to place the
courses not aligned with primary curvatures.
Maybe future studies may be able to make a
more simplified definition in their design model,
based on a wider availability and application of
extensions or software.
The definition of the vaults basic surface is

possible with the components from the software.
A catenary curve describes the vaults cross
section, while the path of the vault is limited
to a straight line. Although improving on the
approachesmentioned in this section, would allow
to use free-form curves instead of this straight line.
These two curves allow the software to create a
vault with a catenary shape as cross-section.

4.4. Draping bricks: a map
projection approach

With the definition and the procedure of the brick
positions, it is possible to place the bricks on
a curved surface. An important drawback in
this procedure is the implementation of various
orientations of the bricks. When the courses
are parallel to the cross-section of the vault, the
definition of the courses is simple. However, to
create courses in any other direction requires a
more sophisticated definition. This can be seen
in figure 4.10.
As this figure shows, a position on a (curved)
surface is described with the relative position
along its definition. In other words: the curves
with which the vault are made, also describe the
position on a vault. An interesting given with this
fact is that if the procedure of the brick positions is
made, this process can easily be scaled to other
proportions.
If a flat or planar surface is considered, like in
figure 4.7, it makes sense to see the courses as
straight lines: each brick is in the same direction
relative to the surface. This analogy can be
expanded to curved surfaces as well. As long
as the course has the same direction relative to
the surface, it should uphold a tight and rightly
distributed brick pattern. However, this does not
mean that two courses next to each other will
guarantee a correct orientation of the brick pattern
between them. Thus, the outline approach from
before is less suited for further use.
The next step is to define these courses given
the relative positions to the vaults curves. For
this the use of map projection can be used. Map
projection is the problemwhere a 3D surface like a
globe cannot be copied one on one to a 2D surface
like a map. One property of the globe has to be
deformed to allow for a correct projection. Figure
4.11 shows this as well.
A difference, however, is that for this design the
reverse needs to be accomplished. Instead of
projecting a globe on a flat surface, the flat brick
pattern has to be projected on a curved surface. It

4.5. Implementing projection in the parametric model 23

would be similar to how a cloth or wrapping paper
is draped over an oddly shaped object. Thus, the
procedure within the parametric model should be
to describe the brick pattern as if it were on a flat
surface and scale this pattern correctly to drape
the surface.

4.5. Implementing projection in
the parametric model

The parametric model makes use of the centre
point approach in the following manner.
First the steps of bricks within a course in both u
and v direction along the surface are calculated,
using the orientation of the courses and the
transformation matrix R. The next step is to use a
starting position on the surface and calculate the
position of each brick within a course, based on
this step times the bricks number. This creates
one course of bricks. Important to note is that
in this process the course itself is never actually
defined. However, only the positions of the bricks
are grouped and it is these positions that can be
used to create a line-like representation of the
course.

∆brick =

[
1
2

(
lunit + 2 · 1

2 · hmortar

)
bunit + 2 · 1

2 · hmortar

]
(4.1)

∆course =

[
lunit + 2 · 1

2 · hmortar

0

]
(4.2)

R =

[cosα sinα
− sinα cosα

]
(4.3)[

ui,j

vi,j

]
= coursei ·R ·∆course

+ brickj ·R ·∆brick +

[
u0,0

v0,0

] (4.4)

where:
lunit = length of the brick;
bunit = width of the bricks;
hmortar = thickness of the adhesive or mortar

beds;
α = angle orientation of the brick

pattern.

To create the next course is to do a similar
transformation as has been used to make the
bricks in one course. The steps to the next course
needs to be defined in both u and v directions.
With these steps the starting position from the
first course can be used to define the starting
positions of all other courses. With all these

starting positions, the bricks in all courses can be
defined. See figure 4.13.

One problem is to make sure that these courses
will cover the full surface. Thus, the first starting
position needs to be outside the surface. u and v
are negative! Afterwards, the number of bricks
(steps within a course) and number of courses
(steps along the course) need to be sufficient as
well. For this the final step in both operations
should result in positions where u and v are bigger
than 1!

With different orientations of the brick patterns,
a different number of courses and number of
bricks per course need to be calculated. Again,
the analogy with wrapping paper can be used.
The same piece of wrapping paper can be big
enough to wrap an object completely. However,
with certain orientations, the same piece won’t be
enough. More paper is required. Similarly, with
different orientations, more computational power
may be needed, to calculate the higher amount of
bricks.

However, this approach gives the position of
bricks in a rectangular order, that can be
differently orientated than the vaults surface. See
figure 4.14. So, wrapping the vault completely
with more brick positions, may not result in more

Figure 4.11: Map projections of a globe using planar
surfaces as projection reference.

Figure 4.12: The orientation of the wrapping paper
determines the minimal required size.

24 Chapter 4. The workflow of the design model of a thin-tile vault

(a) The origin {u0,0, v0,0} is positioned outside the surface domain;

(b) The creation of bricks within a course is done with the unitized
steps based on equation 4.4;

(c) After the origin point, the starting points of courses are created,
where the last course still start outside the surface domain;

(d) The bricks per course are created (see the encircled course and
its starting point);

(e) The implementation of this in the model on a unit surface, where
the much longer vault arch length (compared to the vault course

length) results in a significant downscale of the bricks unitized steps in
u-direction, packing the centre points in u-direction;

Figure 4.13: Tiling the surface: the red (flat) unit surface is to
be covered with the centre points, where u,v are the surface
coordinates. Starting with the origin point, the starting point of
each course is created. Afterwards the points in each course

are created.

bricks needed to make the vault. It depends on
the number of brick positions completely outside
the vault surfaces boundaries (where u and v are
negative or bigger than 1).

Themodel takes this into account by checking this
relative position. With this all brick positions are
set and these can be used to create the bricks
surfaces. As mentioned earlier with the centre
point approach, the orientation and the position
are needed. With the relative coordinates u and
v known, the local planar surfaces can be derived
with the curvature of the vault at these coordinates.
These planar surfaces are the planes onwhich the
bricks are positioned, see figure 4.15. However,
this does result in misalignment between the
bricks surfaces. This is to be expected. After all,
one property has to be skewed to give a correct
map projection. This misalignment results in a
varying thickness of the adhesive. As long as the
deviation is within limits, the variation should not
result in an unfortunate outcome.

4.5.1. Only barrel vaults
As the model stands it can only take vaults
with a curvature in one direction. Although the
approach already used gives a handle with which
to expand for vaults with double curvatures, it has
not been implemented. Dimensions, however, are
not a limiting factor. This is dependent on the
computational power.

The model also lacks a way to extract the
volume of the mortar. The same goes for the
misalignment of sequential bricks. Excessive
rotation differences, and thus too big gaps (both
perpends and beds) between the bricks may
occur as of now.

4.6. Cutting corners
When all brick surfaces are created, some are cut
to fit within the vault surface definition. This results
in the second type of bricks: cut bricks. Again,
this can be seen as similar to the wrapping paper:
wrapping an object and cutting any material that
is unnecessary.

This is done by two sets of information. The first
set is the (outline of the) tiles. The second set is
the base surface. The base surface is thickened
perpendicular to its curvature to create a volume.
This volume is intersected with the tile surfaces,
which gives the cuts for the whole bricks. A
volume is needed, since the tile surfaces are not
in the plane of the base surface, but tangent.

It should be noted the tree containing the tile

4.7. From surfaces to volumes representing the bricks 25

surfaces has been grafted. This means each
object has its own list. The tree has the same
amount of lists as objects. Since not all objects
interest the boundary of the volume described
above, not all lists will have a cut. With the tiles
each in a list in one tree and a corresponding
list with or without a cut in another tree, these
two trees can be combined again to cut the tile
surfaces at the right place.

Now the data tree has lists with one (no cut
happened) or more (the brick has been cut) items
in them. From each list the correct surface has
to be chosen: the surface within the volume
made from the base surface. By using the
centroid of each surface, this can checked and the
unimportant surfaces removed from the tree. This
cull includes surfaces entirely outside the base
surface. This leaves only the whole bricks and
the correct part of the cut bricks that are within the
base surface boundaries.

Meanwhile, the orientation of the planes of these
surfaces have to be maintained. From the original
tile surfaces, the plane is taken, see figure 4.15.
Again, with the same information on which tile
surface is inside or outside the base surface
boundaries, the correct planes are chosen.

Now that some whole bricks have been cut, one
last step is necessary. The brick pattern draped
over the base vault surface can result in a brick
tile surface being insignificant. In the parametric
model, the largest brick surface area is chosen
as the baseline. Any brick area smaller than
1% of this brick surface is removed. A smaller
percentage could be chosen as well, this is
dependent on the precision of the cutting machine
or the qualities of the assisting mason.

4.7. From surfaces to volumes
representing the bricks

After the bricks are the correct shape and in the
right place, the surfaces can be thickened or
extruded. First, each wythe of bricks is moved
outwards, in the normal direction of the base
surface. Of course, the first wythe stays in place.
This means that the base vault surface represents
the bottom of the vault (model). The outward
movement of the other wythes is the thickness of
the brick tiles plus the thickness of the mortar joint.

With the wythes in their correct place, the brick tile
surfaces are extruded by their thickness. The next
group of components allows for each wythe

(a) The approach leads to a rectangular surface draped over the vault.
Here shown as cloth draped over various objects. Note how the cloth

exceeds the objects. | macrovector on freepik.com

(b) 157 full bricks and 28 cut
bricks: 185 in total;

(c) 159 full bricks and 32 cut
bricks: 191 in total;

(d) 157 full bricks and 32 cut
bricks: 189 in total;

(e) 156 full bricks and 34 cut
bricks: 190 in total;

(f) 156 full bricks and 35 cut
bricks: 191 in total; (g) 157 full bricks and 33 cut

bricks: 190 in total;

Figure 4.14: Different starting positions and orientations of
the brick pattern. Each tiling has a similar amount of full or
whole bricks, while the cut bricks can differ more, but here

two half cuts could be gotten from one whole.

26 Chapter 4. The workflow of the design model of a thin-tile vault

Figure 4.15: Plane of the centre points and in extension to
that the brick. The gap width between the brick is smallest

near the base surface and largest away from it.

to be of a different colour, creating an intuitive
visualisation.

Part III

Phased structural analysis
on the construction of the vault

29

30

The second part of the research is related to
the structural analysis of the thin-tile vault. This
structural analysis takes the time-component of
construction into account. This is done with a
phased structural analysis. Here the structural
properties of masonry and the thin-tile vault are
described in further detail with Part II as the
starting point. In the end an engineering model
provides input for the robotic construction and the
extend to which thin-tile vaults can be constructed
without using any additional support.
To get to that model this part is made of three
chapters. The first chapter shows literature on
masonry and its materials. The first section
provides the general approach to analyse
masonry, but also shows how the unique
properties which allow the absence of centring,
make this approach unfit for the thin-tile vault.
The linear-elastic analysis is chosen as the
better option. Afterwards the main material
properties of brick are shown and how the
properties for traditional translate to bricks used
in thin-tile vaults. The next section provides a
selection of suitable adhesives, as far as their
specifications, properties and other information
have been researched or provided. Lastly,
relevant information from the most important
source on engineering structures is provided: the
Eurocode. The values presented in the Eurocode
are related to the thin-tile vault.
The second chapter describes the principle
method of the structural analysis. Starting with
the geometric input from the design model and
the structural & material properties, the end goal
is to provide the construction sequence for the

robotic model. This sequence is based on
the stresses found in the structure with each
time step. The time step is dependent of the
sequence, as will become clear in this chapter.
To get from the geometry to the construction
sequence, a number of steps have to be taken.
The first section provides an overview and the
scope of this analysis. With the definition of
the design model also came a shape of the
vault in a lateral cross-section. The funicular
curve has some interesting properties. These
properties are the result of its structural scheme.
However, only the shape derived from this curve
is important to provide the structural analysis
with sectional forces. This section shows how
the partly constructed vault relates to a standard
cantilever. The sectional forces found are used
in the next section to calculate the stresses in
the structure. Special attention is given into the
stress distribution: either cohesive or incoherent
monolithic. Last, the implementation is shown of
how this analysis, this procedure, is used in the
parametric model. It shows the use of a discrete
set of analysed points, opposed to a continuous
stress distribution analysis.

In the third and last chapter, the method of
interpretation and verification is shown. Graphs
are presented for further use in the results.
Additionally, the two algorithms and their sets of
rules are described with which the construction
sequence is determined. Besides the use of the
unity check, certain practicalities and structural
optimizations can be taken. These result in two
approaches which do not differ much, but differ
none the less.

5
Literature on masonry and materials

5.1. Masonrymaterial properties
Masonry is a composite material made of
bricks or stones and a binding paste (generally
mortar). The compressive strength of masonry
is dependent on the strengths of its composite
materials and therefore, the compressive
strength is somewhere between the compressive
strength of bricks (upper bound) and that of
mortar (lower bound). Both materials have a
different elastic modulus, which will result in an
interaction between the two materials due to the
different deformations and their cohesion. Five
factors determine the reduction of the masonry
compressive strength compared to the brick or
stone compressive strength (Como, 2017):

• The ratio between the elastic moduli of the
mortar and bricks;

• The ratio between the compressive and
tensile strengths of mortar;

• The same ratio, but for bricks;
• The ratio between the thickness of the
mortar bed and the height of the bricks;

• The Poisson’s ratios.
These factors coincide with formulas found
for FEM-calculations with masonry (Lourenco,
1996).
The tensile strength of masonry comes from
the adhesion between the mortar and the brick
(Como, 2017). Longitudinally tensile loaded
masonry will fail in the interface between the
mortar bed (fig. 4.2) and the brick, see figure
5.1. As discussed in chapter 3, the thin-tile vault
has been attributed more tensile capacity than
conventional masonry. In one of Guastavino’s
experiments, as described in the same chapter,
the thin-tile vault can take up a bending moment.
He attributes this due to the lack of the mortar
beds taking up the full cross-section, stating that

a structure without any joints is the ultimate goal
to improve ’construction by cohesion’. However,
it is more likely that due to the lack of an interface
between the mortar bed and the bricks spanning
the whole cross-section, another tensile failure
mode has to take place before the masonry
fails, which results in a higher tensile capacity of
the structure. See figure 5.2 for the difference
between traditional masonry and thin-tile vaulting
when the mode of failure is failure in the bonding
between the adhesive and the brick. The plane
of failure & bonding in traditional masonry is not
present in thin-tile vaulting. Whatever crack can
be thought of, never will all three wythes have a
plane of failure & bonding at the same place.

The shear strength of masonry is determined by
two factors, each with their own failure mode due
to shear. The first failure mode is when a masonry
wall is subjected to a compressive and shear force.
In general tests these two forces have the same
value, and this results in a diagonal crack running
through the bricks

Figure 5.1: Tensile failure in masonry arch

31

32 Chapter 5. Literature on masonry and materials

failure in plane of bonding

brick adhesive

no adhesive
complicated plane
of bonding & failure

Figure 5.2: Comparison between conventional masonry and
thin-tile vaults, seen at front view (normal to a brick wall) and
view in the normal direction of the vault. On the left is the first
mode of failure in tension in traditional masonry. The plane of
failure is between a bed and a course of bricks (indicated with
a thin line where adhesion has become absent). On the right
is the same mode of failure in thin-tile vaults (three wythes are
shown with angles (from intrados to extrados) -45°, 45° and
0°), showing that this type of failure is more difficult to occur.

(a) test results Samaringhe and Hendry, 1980;

(b) test results Facconi et al., 2014: the vertical axis is the
compressive strength, the horizontal axis the angle;

Figure 5.3: Tests results from biaxial and uniaxial tests with
a vertical compressive force and an altering angle of the

courses to the sample (Como, 2017).

and mortar, splitting the wall in two. The other
failure mode is when the mortar is of poor quality
and the crack does not run through brick and
mortar, but solely through the mortar. There’s
a third, hybrid failure mode, where both factors
are present: the axial (compressive) force is quite

high and the mortar is of poor quality. This failure
mode exhibits both types of crack (Como, 2017).
Tests with biaxial loading (vertically a
compressive and horizontally a tensile force) and
uniaxial compression have been done in the past.
The samples are (small) masonry walls where the
courses have a varying angle to the walls/sample
horizontal. In Como, 2017 two studies are
presented that have a differing outcome. Of most
importance is the maximum compression with
the horizontal tensile force at 0. In the biaxial
study, the compressive strength reduces with 0°
(courses run horizontal, as is usual) as maximum
and 90° as minimum. However, in the uniaxial
study, the compressive strength is lowest around
45°, while both 90° and 0° are the maxima
(with 0° being slightly greater). As is shown in
appendix B and as Como, 2017 continues, it is
more likely that the uniaxial test shows a truer
relation between the compressive strength and
the angle. The main factor is the ratio between
brick surface area and mortar area in the cross-
section. In figure 5.3 the results of both studies
are shown.
For most, almost all, calculations done on
masonry structures, the no-tension model of
Heyman can be used. However, one of the main
assumptions is that masonry can take very little
tension. It has been presented that thin-tile vaults
can take some tension. Thus, one of Heyman’s
assumptions is invalid. The construction of thin-
tile vaults is better suited as if it were an elastic
material, but completion of the structure comes
with its own modelling approach. This shows thin-
tile vaults form a unique typology within masonry
structures. The different approaches for these
two phases are well described in Como, 2017:

Masonry may, in some exceptional
cases, exhibit non-negligible tensile
strength and its behavior could,
at first sight, be modeled as
a traditional elastic material.
However, random dynamic actions,
which can produce cracks in the
masonry mass, will eventually cause
the material to revert to no-tension
behavior. The effects of subsequent
slow penetration of humidity into
the cracks can then make things
even worse. In such cases, it is
possible that a masonry structure
which in its pristine state is able to
sustain the action of given loads by
virtue of its initial non-negligible
tensile strength, will not be able to

5.2. Bricks 33

sustain the same loads later, when
this strength is fading. In such cases
the long-term behavior of masonry
can be conservatively assumed to
follow the no-tension model.

The no-tensionmodel is not the only alternative for
the structural analysis and modelling of masonry.
The no-tension model of Heyman has proven to
be fruitful for the stability of masonry structures.
Continuum models of masonry have the masonry
hypothesized as a perfectly no-tension material.
Geometry-based models when used for the
analysis of the stability of masonry vaults and
domes, also make use of the no-tension model
(D’Altri et al., 2020). This includes the Thrust
Network Analysis of Philippe Block (Block, 2009)

5.2. Bricks
Fired bricks generally have a compression
strength of 20 to 25 N/mm². Though, this may
turn out lower when the bricks have been poorly
fabricated, down to 5 N/mm². In general, the
tensile strength is assumed as a tenth of the
compression strength (Como, 2017).
Another material to look into is masonry made
of rocks instead of (fired) bricks. Rocks come
in many shapes and sizes, but most have a
compressive strength from under 20 N/mm² up to
over 30 N/mm². One of the interesting rock types
are tuff blocks. These are volcanic rocks which
have a high strength, but low density. In table
Table 5.1 somemechanical parameters of tuff can
be found (Como, 2017).
Thin-tile vaults, as the name suggests, make
use of relatively thin bricks. The production and
fabrication of these thin bricks is assumed to be
similar as those found for brick façades with the
use of brick slips (steenstrips). Vandersanden
describes perfectly why these can be used for the
thin-tile vault:

"Een steenstrip is normaal
gesproken een 2 cm dikke schijf,
gezaagd van een baksteen. Doordat
we de strip rechtstreeks van
de baksteen zagen, blijven de
kwalitatieve eigenschappen van de
baksteen grotendeels behouden. Zo
is de steenstrip even vorstbestendig
als de baksteen enheeft deze dezelfde
druksterkte."

The bricks used in brick slips by Vandersanden
are from the common types like Waal-format.
These bricks are cut in their depth, changing

the dimensions from 210×100×50 to 210×20×50.
With the thin-tile vaults, the cut is better performed
in the other direction, to keep the bigger surface:
from 210×100×50 to 210×100×20 (or a similar
thickness).

As the quote also shows, the mechanical and
physical properties of the cut bricks remain mostly
constant with that of the original. Como, 2017
mentions the theory of proportions where the
scale of the masonry structure is unimportant for
its strength. Thus, it is likely the mechanical
properties attributed to a masonry structure with
Waal-format bricks is similar as of those with thin
tile bricks.

5.3. Adhesives
5.3.1. Mortar
Mortar is a paste to bind and fill the bricks together.
In general, mortars are made of an aggregate like
sand, a binder like cement or lime and water.

There are generally four types of binder used in
mortar: gypsum, lime, hydraulic lime and cement
(Como, 2017). Gypsum is the oldest of these
four and is made from the calcium-sulphate in
gypsum stone. Gypsum has a relatively low
strength. Lime (from limestone) is baked and
slaked to create slaked lime (calcium hydroxide).
Combinedwith sand andwater simple limemortar
is made. Combining the slaked lime with a
volcanic ash will create hydraulic lime. Their main
difference is that the hydraulic lime is able to set
underwater. The strength of both also varies quite
a bit. Simple lime has a compressive strength
of just 0,5 MPa, while hydraulic lime is about
2 MPa. A more complicated process including
both lime and gypsum will create cement. This
more complicated process also results in higher
strengths. Mixtures of both cement and hydraulic
lime (sometimes referred

Table 5.1: Parameters of tuff blocks

Parameter Value Unit
Poisson’s ratio v 0,15
Elastic modulus 30–150 · 10³ kg/cm²
Unit weight (volcanic
tuff)

1,1–1,7 · 10³ kg/m³

Compression
strength

40–50 kg/cm²

Tensile strength 1/15 fc

https://www.vandersanden.com/nl-nl/bieden-steenstrippen-dezelfde-kwaliteit-als-bakstenen

34 Chapter 5. Literature on masonry and materials

Table 5.2: Physical performance of building gypsum (only
strength in MPa) | (Zhang et al., 2020)

Flex. strength Compr. strength
2h 2,25 3,05
1d 2,62 4,46

3d (dry) 2,74 5,42

1,4

20 min.

3,2

45 min.

Figure 5.4: The development of strength as the hemihydrate
sets in gypsum plaster (altered) | (Lewry & Williamson,

1994b)

to as ’composite mortar’) have a strength of 5
MPa, while pure cement mortars can go up to 12
MPa.

5.3.2. Plaster
Gypsum plaster has been the standard binder
material for Guastavino. He used its quick setting
properties to build the first layer. After this
initial layer, he covered it with Portland cement
and attached the second layer on top of the
first. Thus, only for the first steps in construction
would he use plaster. See illustration 5 in
Philippe Block and Matthias Rippmann, 2013.
The mechanical properties of gypsum plaster are
quite low. That’s why the first layer was built with
gypsumplaster, which has a setting time of 5 to 20
seconds (depending on environmental conditions
like temperature), and the rest of the masonry
bonded with cement (Davis et al., 2012).
It should also be noted that throughout literature, it
isn’t often quite unclear whether plaster or mortar
has been applied. In Davis et al., 2012 it states
”[...] gypsum mortar (plaster of Paris), [...]”. In
the abstract of Hashempour et al., 2021 it states
”Gypsum mortar is a common building material
that can be used especially for plastering the
walls.” It is also clear from definitions of both
that a difference is made, but that it is unclear
when a substance can be considered a mortar or

when a plaster. Only its final use provides some
guidance.

• Mortar: a mixture of sand, water, and
cement or lime that is used to fix bricks or
stones to each other when building walls;

• Plaster: a substance that becomes hard as
it dries and is used especially for spreading
on walls and ceilings in order to give a
smooth surface (Cambridge, 2020).

Thus, two distinctions can be made. Mortar is
used as a structural material with relatively high
strength, while plaster is used as a finisher. In
general, the ratio between the aggregate, the
binder and water have a major influence on the
properties of the mix, resulting in two different
applications as well. As may have been noticed
already from the previous section, information
from literature, for instance regarding the strength
development, is split on whether that piece of
literature refers to their material as ’mortar’ or
’plaster’.
Zhang et al., 2020 looked into the effects of
several retarders on the setting time and strength
of ’building gypsum’ (gypsum plaster). The
material used is so called β-type building gypsum
from a Chinese factory. The characteristics are
an initial and final setting time of 4,0 and 6,0
minutes and a strength grade of 2,0. The article
provides a table of the physical performance of the
gypsum, copied here in table 5.2. As can be seen,
the flexural strength has already almost reach its
maximum within an hour, while the compressive
strength keeps growing in the days after. Sadly,
the study does not provide any information for
within the first few minutes, when the gypsum
is actually setting. This is most crucial for the
construction phase.
The Dutch Trade Association Gypsum (NBVG)
provides a table of mechanical properties the
varying types of gypsum have to fulfill according
to DIN 1168 part 2 (NBVG, 2006). Although
these are the minimum requirements for finished
products, they can be indicative for other studies
and give an indication of the performance of
gypsum. In general, gypsum with a minimum
requirement for flexural strength and compressive
strength, have these at, respectively, at least 1,0
N/mm² and at least 2,5 N/mm².
Lewry and Williamson, 1994b is part of a series
of studies on gypsum. This second part looks
at the developing microstructure and its strength.
Figure 2 in that study, here figure 5.4, shows
a detailed progression of the flexural strength in

5.3. Adhesives 35

the 24 hours. Added are the values of the first
measurements in both series. From this figure it is
clear gypsum plaster rapidly develops a sufficient
strength within the first hour. After respectively
20 and 45 minutes, the first measurement was
done, resulting in a flexural strength of 1,4 and 3,2
N/mm². This study also provides an overview of
the development of the microstructure and relates
it to the strength development. The rapid rise
of the strength development in the first hour is
attributed to the formation of a matrix of dihydrate
needles.

However, it is unclear how this first stage (the
hydration reaction of hemihydrate) relates to
the setting time. From the first part (Lewry
& Williamson, 1994a) it is clear that this first
stage coincides with the complete formation of
dihydrate, while the temperature rises rapidly
(more than 20 degrees Celsius). Again, it is
unclear how this relates to the setting time. Yu
et al., 2009 looks into the hydration process of
gypsum, both looking at the dissolution of the
hemihydrate and the precipitation of the dihydrate.
This is related to the setting time of gypsum.
From this study and other studies like the ones
mentioned above, the setting time of gypsum
plaster is much lower than an hour. It should be
noted though, that both studies are performerd on
different plaster (different manufacturer) and may
not be completely comparably.

Thus, Lewry and Williamson, 1994b provides
valuable information on the formation process of
gypsum, and even in an earlier stage than other
studies, but it still misses the vital information for
the construction process.

The above mentioned studies provide some
indication on the strength development of gypsum
plaster. Other studies, like Karni and Karni, 1995,
also looked into the hardening process of gypsum
plaster, but none gives an indication into how the
strength develops during the setting time, during
the first minutes. It is important this development
is known in the first few minutes, since it is the
adhesive that binds the bricks together and holds
them in place, while the structure is still unstable
or cantilevering. The only graph that provides the
information looked for, comes from SIKA, 2021.
However, the axes provide too little information
and after contact with SIKA, the information is
either not present or impossible to share.

5.3.3. Epoxy
Epoxy resins are reactive intermediates used
to produce a versatile class of thermosetting

polymers (Pham & Marks, 2005). A
categorisation of epoxies can be into one-
component and two-component epoxies. One-
component has the elements already mixed
and requires a kick-start to start the hardening
process. Two-component epoxies mixes the
epoxy as it is ejected. The method of application
of the epoxy differs per use. For floor coating,
for instance, the epoxy-components are mixed
in a bucket and spread evenly over the floor
with the help of special brooms and other tools.
Sometimes products that require an epoxy
coating are dipped in a bath of epoxy. For most
applications, the method for epoxies are quite
similar to those for paint.
In case of small surfaces, especially with one
dimension quite larger than the other, it is also
possible to use special epoxy glue guns, see
figure 5.5. These guns have a reservoir of two
compartments and when ejected the components
from each compartment are mixed and will start
to harden. Important in the use of these guns
is the time the epoxy spends in the nozzle. If
the glue hardens in there, the nozzle has to be
replaced. Not amajor struggle to domanually, but
not useful when a robot has to do it. Two important
characteristics of epoxy are its pot life and the cure
time. These can, roughly, be seen as similar to
the initial and final setting time for mortars and
other cement-products. The pot life determines
how long a batch can be worked with, before it
has hardened too much for further moulding. The
cure time is used as a quality assurance, at which
time the epoxy can be loaded.
Epoxy is influenced significantly by the

Figure 5.5: A glue gun

environmental temperature. General purpose
epoxies will be comfortable with temperatures
ranging from 10 to 30 degrees Celsius. However,
for freezing temperatures special epoxies need to

36 Chapter 5. Literature on masonry and materials

be made, while the pot life and curing time can
shrink significantly between 10 and 30 degrees.
There’s a wide abundance of epoxies. This is
necessary since epoxies have a lot of parameters
that determine the most optimal epoxies to use.
Besides the mentioned temperature and pot
life/cure time, one can think of the adhesion
with the base material (general distinction can be
made between metals, thermosets composites,
thermoplasts and various substrates, (Huntsman,
2020)), the viscosity, the mechanical properties,
the ductility, the colour, and many more. Again,
temperature and the setting times are important
for construction. Additionally, the mechanical
properties, the viscosity and the adhesion to the
base material are important. A full analysis of
which epoxy to use will not be necessary, but
in table 5.3 the characteristics of some of the
epoxies are shown.

Experiment
To investigate how the strength of epoxy develops
during the setting time, a small scale experiment
has been done. The layout of the experiment was
to glue some ordinary bricks together with the help
of a glue gun as shown in figure 5.5, and support
one end of the brick while cantilevering the other.
This way two aspects have been looked into: the
shear strength or adhesion of the bond during
setting and the tensile capacity during setting.
In appendix C the full experiment is shown. The
main conclusion from this experiment is that it is
best to assume the finale setting time, or cure
time, as the minimum time before loading can be
taken. Since this is a minimum loading (only its
own weight), the required strength is similar to the
categories ’walkable’ (SIKA, 2012) and ’LSS > 1
MPa’ (Huntsman, 2017).

5.4. Eurocode
Internationally, the Eurocodes are the most
complete set of standards for designing and
testing building structures for structural safety
(“Eurocodes”, n.d.). The Eurocodes provide
information on calculation methods and values of
parameters that can be used in a safe way. For
the structural calculation of masonry, it is useful
to provide this information from the Eurocode
where applicable. The Eurocode concerned
with masonry design is “Eurocode 6 - Design
of masonry structures - Part 1-1: General
rules for reinforced and unreinforced masonry
structures”, 2013. Three sections specifically are
useful in this research: the strength capacities
of masonry according to the Eurocode. The

following three are described here: compressive
strength, flexural (tensile) strength and shear
strength. (sections 3.6.1, in “Eurocode 6 - Design
of masonry structures - Part 1-1: General rules for
reinforced and unreinforced masonry structures”,
2013)

5.4.1. Compressive strength
Based on tests, bricks are given a normalised
mean compressive strength (fb). Similarly, the
mortar has a compressive strength as well
(fm). The characteristic compressive strength
of masonry is then determined by tests or
by equation (5.1) using the two values of the
components and the constants K, α and β.
These constants always reduce the characteristic
strength (always <1,0), compared to the strengths
of the bricks and themortar independently. Based
on the brick classification the equation can be
simplified. Bricks used in this research, and for
thin-tile vaults in general, are class 1 bricks. The
simplified formula is shown in equation (5.2).

fk = Kfα
b f

β
m (5.1)

fk = Kf0,7
b (5.2)

The simplified equation and K are both
dependent on the mortar used. Three types of
mortar can be found in the Eurocode: general
purpose mortar, thin-layer mortar and lightweight
mortar. Since it is unusual for masonry to be
constructed with epoxy, without any mortar, no
standardisation has happened on this type of
masonry. Thus, it is assumed epoxy, if it does
fall under the types of mortar, is similar to thin-
layer mortar. The difference between this thin-
layer mortar and general purpose mortar is the
maximum grain size of the aggregate (less than 2
mm). Epoxy corresponds best with this category.
K for clay bricks in group 1 with thin-layer mortar
is set as 0,75. To get to the design compressive
strength, fk should be divided by γm, which in
this case ranges from 1,5 (temporary structures)
up to 2,5 (monuments and bridges). Here, it is
assumed γm is 2,2 (Buildings and other general
structures).

5.4.2. Shear strength
The shear strength of the masonry is calculated
with equation 5.3. The calculation method for
the shear strength in the Eurocode is based on
a different situation that requires some attention
when applying it to a thin-tile vault. In the
previous section the influence of the vertical

5.4. Eurocode 37

compressive force has been mentioned (Como,
2017). However, this situation has the direction
of the compressive and shear forces in the same
direction. In the thin-tile vault, which in chapter
6 will be discussed further, these two forces are
orthogonal, similar to that of a beam, see figure
5.6. Thus, a part of the formula can be neglected
(σd = 0).

fvk = fvk0 + 0, 4 · σd (5.3)

fvk0 is the initial shear strength, usually taken
from tests. However, in a broader framework,
the values provided by the Eurocode will suffice.
Again, following the same assumptions from
the previous section fvk0 should be taken as
0, 30N/mm2.

(a) Compressive and shear force directions in
the Eurocode

(b) Compressive and shear force directions in the thin-tile vault

Figure 5.6: The difference in force directions between the
Eurocode and the thin-tile vault

Table 5.3

Name Proc. Temp.
(°C)

Bond
strength
(MPa)

Tensile
strength
(MPa)

Pot life
(min)

Cure time source

Sikadur-51 8-30 ≥ 1,5 ≥ 2,5 60 (20°C) 1-2 days (SIKA,
2012)

Araldite
2015-1 10-40 - 31 45 (25°C) 4 hours (Huntsman,

2017)
Araldite
2011 10-40 - - 100 7 hours (Huntsman,

2020)
Araldite
2012 10-40 - - 6 20 minutes (Huntsman,

2020)
Araldite
2019 10-40 - - 110 4,5 hours (Huntsman,

2020)
Araldite
2031-1 10-40 - - 60 3 hours (Huntsman,

2020)
Araldite
2051 0-40 - - 5 15 minutes (Huntsman,

2020)
Araldite
2053-
05/15

10-40 - - 5-15 20-40
minutes

(Huntsman,
2020)

Epoxy
Brick
Adhesive

- 2 (7 days) 15,2 (3
days)

20 12 hours
(20°C)

(Epoxy
Products
Ltd, 2020)

38 Chapter 5. Literature on masonry and materials

5.4.3. Flexural strength
The flexural strength determines the maximum
tensile stresses in bending. The Eurocode makes
use of two flexural strengths (respectively fxk1
and ffxk2. The first is bending where the
curvature is perpendicular to the courses (the
plane of failure is parallel to the bed joints). The
second is bending where the curvature is parallel
to the courses (the plane of failure is through the
courses and perpends). Again, when possible
these two values should be based on tests on the
masonry. The Eurocode also provides values for
these two flexural strengths if data is unavailable.
With the previous made assumptions, fxk1 and
fxk2 have the same value: 0, 15N/mm².
However. as stated in section 5.1, it is most likely
the flexural strength of the thin-tile vault is higher
than that considered safe for ordinary masonry.
Since the adhesion is not themode of failure, it can
be assumed the flexural strength can be higher.
The values of fxk1 for instance, can be considered
useless. The plane of failure is parallel to the
bed joints and the mode of failure in this direction
would be between the bed joints and the course of
bricks. Thus, the failure for fxk1 is likely the failure
in adhesion, which is not present in a similar way
for thin-tile vaults.
fxk2 has two modes of failure: either a plane
of failure right through the course and perpends,
or a plane of failure snaking around the bricks
failing in the adhesion. These two modes of
failure are similar to the shear failure modes.
It could be possible the second failure mode
(snaking around the bricks) is non-existent in thin-
tile vaults. One reason is in the different wythes
with each having their plane of failure at a different
point. A misalignment of the perpends per
wythe occurs due to the different curvatures. A
second reason is in possible different orientations.
The Eurocode does not provide planes of failure
that run neither parallel nor perpendicular to the
courses/bed joints. Studies on (two-way) bending
of unreinforced masonry walls also lacked wythes
with different orientations.
However, even with these two reasons, a full-
scale experiment or in-depth analytical model
would be required to confirm this. This is outside
the scope of this research. The other mode
of failure, where the plane of failure cuts right
through the bricks, is determined by the lowest
tensile strength. The tensile strength of bricks

can vary on the type of bricks of used. One
study found that a hollow clay block has a ratio
of 0,039 between its compressive strength (34,7
N/mm²) and its tensile strength (1,343 N/mm ²)
(Mojsilović, 2011). Although the block type is
different than that of a solid block, this provides
some indication into an expected tensile strength
of bricks. The tensile strength of the mortar or
the glue differs with time. Even after the adhesive
has set, the strength capacity is still developing.
The strength of mortars can vary greatly, but
table 5.2 provides an indication for gypsumplaster
after two hours, while figure 5.4 shows it after
half an hour. Similarly, epoxy will have a final
tensile strength of a couple of MegaPascal, but to
get there the strength development only happens
after the epoxy has set. Thus, it is likely the
adhesive will surpass the tensile strength of brick,
but until then the tensile strength of the adhesive
is decisive.

Which failure mode will happen first is hard
to estimate, as well as the flexural strength
during construction. In a review of analytical
formulations on the capacity of unreinforced
masonry subjected to two-way bending, an
overview of the mechanical properties of masonry
walls taken from 8 studies have been shown in
their table 1 (Chang et al., 2020). Important is
that fx1 in that study ranges from 0,14 up to 1,37
N/mm² (with a half-way split roughly at 0,5 N/mm²)
and fx2 ranges from 0,41 up to 4,12 N/mm² (with
the same split at roughly 1,5 N/mm²). This would
mean assuming a flexural strength for the thin-tile
vault of 0,5 N/mm² is a safe assumption, more
than three times the value found in the Eurocode.
However, as stated earlier, fx1 will likely be higher
in the configuration of the thin-tile vault. Thus,
taking into account the maximum strength of the
individual elements as well, it is likely the flexural
strength will develop from a minimum value after
setting time, up to 1,0 N/mm² as a conservative
estimation.

’NPR 9096-1-1:2012 nl’ provides some more in-
depth values. Important is table 4 in the code
where ’thin layer mortar with clay bricks from
group 1 with additional specification in the scope
statement’ gives fxk1 and fxk2 of respectively
0,6 and 1,22 MPa. One of the assumptions
is the flexural strength of clay bricks at 2,0
MPa, indicating the provided flexural strength of
masonry is governed primarily by the mortar.

6
Structural analysis

6.1. From shape to stresses
The approach to determine the construction
sequence is based on the maximum allowable
stresses. The construction is assumed to take
place from the base to the crown. This also allows
for an implementation of such a construction
sequence in more free-form vault designs.
However, the vault design considered here is
a barrel vault, with assumed insignificant lateral
loads. This simplifies the spatial geometry to a
planar geometry: from a vault to an arch. As will
become clear in section 6.2, this arch is symmetric
in a barrel vault. Thus, whatever analysis is used
to determine the construction sequence, can be
applied to the other side as well. To get the
stresses within the structure, a similar procedure
can be used as is generally applied to slender
structures. Starting from the base, the structure
during construction is modelled as a cantilevering
(curved) beam with a width of unit length.
The position of the bricks is determined by the
design. The design should be seen as a shape,
zx. This 1D-element (in 2D-space) is modelled
as a (curved) line. This line should be assumed
as the neutral line. Based on this line, this
design, the diagrams for the displacement, the
bending moment (Ms), the shear force (V (s))
and the normal force (N(s)) can be found. It
should be noted though that the displacement
of the structure during construction is omitted.
Based on the diagrams of these sectional forces,
the diagrams of the normal and shear stresses
can be determined. However, to get from
the sectional forces to the stress distribution,
the cross-section is required as well. The
cross-section is a rectangle (with width as ’per
unit length’). Thus, the cross-section is only
dependent on the thickness of the vault, which in
turn is dependent of the number of wythes.
The material determines the maximum allowable

stresses, together with the cross-section. Thus,
the occurring stresses need to be within the
domain these allowable stresses create. As the
cantilever progresses, the only way to increase
this domain is to increase the cross-section, thus
the wythes of the vault. This is essential for
determining the constructing sequence: when to
apply the additional wythe on top of what has
already been constructed.

6.2. Funicular curve
The first step is to define the design of the vault. As
is clear from chapter 4, the design is limited to that
of a barrel vault. However, research and projects
of the past years have used the Rhinovault plugin
from Grasshopper. This plugin designs the vaults
as furnicular curves. Thus, the barrel vault also
takes the shape of a furnicular curve. Since all
parameters, or factors, are constant along its path,
the vault can be simplified to an arch of unit width.
Therefore, the standard formula for a furnicular
curve can be used, see equation (6.1).

z(x) =
H

q
cosh(C1 +

q · x
H

) + C2 (6.1)

where:

H = constant horizontal compressive
force throughout structure (or:
horizontal component of the thrust)
[kNm−1];

q = downwards acting load along
shape (describing the self-weight)
[kNm m−1];

C1 , C2 = constants in this family of functions
[−], [m].

The constants in this equation are determined

39

40 Chapter 6. Structural analysis

0 1 2 3 4 5
0

0.2

0.4

H
q·L

ris
e

L

Figure 6.1: Relationship of forces versus shape in a
furnicular curve, based on equation (6.2)

with the design space of the structure. In this
case the design space is defined by the span and
the rise. However, this design space should be
anchored, or still a family of functions is possible,
resulting in a family of values for the constants as
well. In this research every analysis is assumed to
be with the axis of symmetry at x = 0. This results
in the following boundary conditions:

z(x = 0) = rise
z′(x = 0) = 0

Immediately those familiar with mathematical
analysis will recognize that with this assumption
this results in:

C1 = 0

Furthermore, with the general assumption, the
domain of the structure has a lower and upper
bound:

xLower = −span
2

xUpper =
span
2

At these bounds the other constant can be found,
following this elaboration:

z(x = −span
2

) = 0

C2 = −H

q
cosh(q · span

2 ·H
)

The hyperbolic function cosh() has an important
characteristic, resulting in the same value from
either side of the structure.

cosh(−span

2
) = cosh(span

2
)

Implementing these constants in the formula gives
equation (6.2).

z(x) =
H

q

(
cosh(q · x

H
)− cosh(q · L

2 ·H
)

)
(6.2)

where:
L = span of the structure, only positive values

[m].

From this the rise of the structure can be found for
x = 0:

rise =
H

q

(
1− cosh(q · L

2 ·H
)

)
Within structural design, the ratio between the rise
and the span is quite important for the designs
performance. Relating these gives:

rise
span =

H

qL

(
1− cosh(qL

2H
)

)
Now it becomes clear both the term inside the
hyperbolic function as the overall multiplication
are related (off by a factor 2). Making it possible
to plot this relationship, as can be seen in figure
6.1. Interesting to note as well, is that the y-axis
displays the ratio of geometry, while the x-axis
displays the ratio of forces. From this figure, it is
clear that the function has an asymptote at H

q·L =

0, which makes sense, given that the thrust is
dependent on the geometry. In a similar way, the
asymptote at riseL is impossible, since the structure
would be like a beam, requiring an immense thrust.
Another point of interest is when H

q·L = 1, or
when the thrust is equal to the total load. At this
point, the rise is almost equal to an eighth of the
span. An eighth is a well known constant from the
calculation of uniform distributed loads:

M =
1

8
qUDL · l2 = H · rise

The reason it isn’t exactly an eighth, in this case, is
that the load is non-uniform: the self-weight along
x is more where the slope of the structure is larger.

6.2.1. Deriving the formula for a
furnicular curve

Now that it’s clear how the function of a funicular
curve influences its geometry, it is useful to take a
step back at the derivation of this formula, to use
its analogy further for the structural analysis.
In figure ?? the fundamentals of the arch typology
are shown. Notice how the load is not projected

6.2. Funicular curve 41

onto the arch, but is following it. For convenience,
the notation already takes into account that the
limit of ∆x goes to zero. The first step is to define
the load. q is the self-weight of the structure,
dependent on the volume of the structuralmaterial.
This volume can be defined as the (constant)
thickness perpendicular to the funicular curve
times the length of the curve. Thus, the total load
can be found in equation (6.3).

Ftotal(x) = q · s(x) = ρ · t · s(x) (6.3)
where:
s(x) = the length of the structure along its

geometry.

The length of the structure can be approximated
by the Cartesian coordinates x and z(x). A
section of the structure∆s is almost similar to the
hypotenuse of ∆x and ∆z(x). Taking the limit,
this difference becomes zero. Rewriting this gives
equation (6.4).

∆s(x)2 ≈ ∆x2 +∆z(x)2

ds(x)2 = dx2 + dz(x)2

ds =

√
dx
dx

2

+
dz
x

2

dx

ds =

√
1 +

dz
dx

2

dx (6.4)

To relate the loading to the (horizontal component
of the) thrust, the equilibrium of forces is
required. The first is the moment equilibrium
from equation (6.5) and the second is the vertical
force equilibrium from equation (6.6). A horizontal
equilibrium already exists, since H has to be
constant throughout the arch.

ΣT (+dx) = 0 = −H · dz − V (x) · dx+
1

2
qdsdx

= −H · dz − V (x) · dx (6.5)

where:
V (x) = the shear force in the xz-plane.

ΣFV (+dx) = 0 = −V (x) + qds+ V (x) + dV

= −V (x) + q
ds
dxdx+ V (x) + dV

(6.6)

The last term in (6.5) is equal to zero and the
term qds in (6.6) can be rewritten to relate to x.
Combining equations (6.3), (6.4), (6.5) and (6.6),
results in equation (6.7)

H
d2z
dx2

= q

√
1 +

dz
dx

2

(6.7)

This equation is further altered by substituting
dz
dx = sinh(ζ), resulting in equation (6.1).

H
sinh(ζ)
dx = q

√
1 + sinh(ζ)2

cosh(ζ)2 + sinh(ζ)2 = 1

d
dxsinh(ζ) = cosh(ζ)

H cosh(ζ)dζdx = q cosh(ζ)
dz
dx = sinh(ζ) = sinh(qx

H
+ C1)

6.2.2. Aligning planes & the cantilever
The forces considered above are in the xz-plane.
However, to calculate the maximum stresses, it is
necessary to align the plane to the geometry. For
this, an sr-plane is introduced. This plane has
as orientation the s-axis aligned to the tangent of
the geometry and the t-axis aligned to the normal.
The plane of reference is the global xz-plane and
consequently the transformation happens from
the xz-plane to the sr-plane. This transformation
is a rotation of size α. This rotation is equal to the
angle the geometry makes with the x-axis. This
angle has been defined before as the derivative of
the geometry. Thus, the rotation between planes
is equal to the slope of the geometry.

Rα(x, z) → (s, r)

tan(α) = dz
dx

42 Chapter 6. Structural analysis

(a) The sectional forces in a cantilever aligned with global Cartesian
directions;

(b) The sectional forces in a cantilever of an unfinished arch;

Figure 6.2: Sectional forces in a cantilever used for the
equilibrium method. The arrows shown indicate the moment,

the shear force and the normal force.

This transformation can be used later to
transform the global forces to the sectional forces.
Additionally, during construction the structure
behaves differently than after completion. During
construction, only part of s(x) or z(x) is built. This
has some implications for the further analysis
of the structure. Mainly, from here on out, the
structure is not considered an arch anymore. It
is a cantilevering curved beam (or shell per unit
length), clamped on one side (at x = −L

2) and free
on the other. The x-position of this free end varies
during construction. To determine this position,
and of every brick in between, the equations
previously introduced need to shift from s(x) to
x(s).

s = n · l

x(s) =
H

q

(
arcsinh

(
−qs

H
+ sinh(qL

2H
)

))
where:
n = index of brick along geometry;
l = length of one brick unit.

6.3. Equilibrium and sectional
forces

As already touched upon in the previous section,
the analysis of the forces happens in two stages.
First the forces are calculated from the reference
of the xz-plane, then these are transformed to the
sectional forces in the sr-plane.

The global forces are calculated using the
equilibrium method. If the cantilevering beam,
as described in subsection 6.2.2, is assumed
as a rigid body, it becomes clear this structure
is statically determinate. This allows for the
calculation of the reaction and internal forces,
without the need for material properties. With
the construction of this structure, two situations
can be analysed. Either the load is considered
continuous along the structure (q) or the load is
a series of point loads, positioned at the centroid
of each brick unit. Both situations have their
advantages and disadvantages.
For the first, this is useful as this loading is
independent of the orientation of the bricks
along the structure, as described in chapter 4.
Additionally, as the structure becomes larger
(as the construction progresses), the existing
structure is uniformly loaded and becomes a
larger fraction of the total load on the structure.
The point loads, however, represent better the
way the loading is over time. As each brick is
added, it increases the loading at once, instead of
a gradual increase as the distributed load would
suggest. Another perspective can be seen when
these loading schemes are related to a variable.
Based on the described (dis)advantages, the
distributed load helps to understand the loading
on and forces in the entire structure at a given
time, while the concentrated loads show a
better development over time. The effects of
the distributed load is best analysed from the
perspective of x, while the effects of the point
loads is best analysed from t, where x is the
extend of the cantilever and t is the construction
time.
Fromhere on out the calculations are done using a
distributed load. Mathematically this aligns better
with the structural analysis done on (continuous)
elements. Furthermore, the point loads can be
rewritten as a distributed load, if the software
with which the calculation is made, makes this
possible.
In figure 6.2a this simplified structure is shown for
the equilibrium method. Similarly to subsection
6.2.1 the necessary calculations can be done,
given the following equations.

ΣT (+dx) = 0 = M +Vxdx−M − dM − 1

2
qdsdx

ΣFV (+dx) = 0 = Vx − Vx − dVx − q
ds
dxdx

These will result in equations (6.8) & (6.9). A

6.4. Stress distribution 43

visual representation of these equations can be
seen in figure 6.3.

dM
dx = Vx (6.8)

dVx

dx = −q
ds
dx = −q

√
1 + (

dz
dx)

2 (6.9)

where:

q = either a continuous, constant value q(s),
or a function with point loads F spread
evenly with ∆s.

However, the forces from these equations are
within the xz-plane, the global coordinate system.
These forces need to be transformed for the sr-
plane, where s is in the direction dz

dx and r is
perpendicular to that in the same rotation as z
is to x. The sectional forces V (x) and M(x)
then result in (V (s), N(s) and M(s). Since the
moment is the rotation around the normal of the
xz-plane, and the normal does not undergo any
transformation, the moment in the sr-plane is the
same: M(x) = M(s). The forces V (s) and
N(s) are the resolution in the sr-plane of the force
V (x). The orthogonal triangle of these forces has
a geometrical equivalent. This can be seen in
figure 6.4.

When these have similarity, the forces in the sr-
plane can be found using the known geometrical
values. The relationships are shown in (6.11).
Important is that the correct signs are used. Since
the global z-axis is downwards, the slope of the
arch/vault in the first half, as shown in figure 6.3a,
is negative. Also, from figure 6.4a it is clear
that a positive shear force in the global system
(V (x)) results in a negative normal force along the
geometry (N(s)). In this figure, the slope direction
of the arch is already taken into account. Noted,
if this was shown in the direction with a positive
dz
dx , the resolution of V (x) would have resulted in
a N(s) and V (x) of the same sign.

Due to the similarities between the vectors of
force and geometry, equation (6.10) can be made.
Rewriting this equation results in the calculation
of V (s) and N(s), as shown in (6.11). With this
the sectional forces in the cross-section of the
structure are known. These are necessary to test
whether the occurring stresses will exceed the
maximum allowable stresses.

V (x)
ds
dx

=
V (s)

1
=

−N(s)

− dz
dx

(6.10)

V (s) =
V (x)
ds
dx

N(s) =
V (x) dzdx

ds
dx

(6.11)

6.4. Stress distribution
The sectional forces result in normal and
shear stresses. As presented in (Hartsuijker
& Welleman, 2007), (the maximum of) these
stresses can be found given the equations
(6.12). However, the cross-section is symmetric,
resulting in a simplification and rewriting the
factors Irr, t and Sr. These are shown in

−1.2 −0.6 0 0.6 1.2

−1
−0.8
−0.6
−0.4
−0.2

0

x [m]

z
[m

]

(a) Shape z(x) partly constructed (solid line) and final shape (dotted
line);

−1.2 −0.6 0 0.6 1.2
0

0.2

0.4

q
[k
N
/m

m
−
1
]

(b) Load q(x) projected onto shape z(x);
−1.2 −0.6 0 0.6 1.2

0

0.1

0.2

0.3V
[k
N

m
−
1
]

(c) Shear force V(x) in the xz-plane for loading q(x);

−1.2 −0.6 0 0.6 1.2

−0.1

−0.05

0M
[k
N
m

m
−
1
]

(d) Bending moment M(x) in the xz-plane for loading q(x);

Figure 6.3: A structure partly constructed and its
accompanying loads, shear forces in the global coordinate

system and the moment.

44 Chapter 6. Structural analysis

N(s)

V (s)
V (x)M(x) M(s)

(a) Resolution of force V (x) in V (s) andN(s), andM(s) andM(x)
shown (positive directions shown);

1

dz
dxds

dx

(b) Resolution of the geometry in the xz-plane (positive directions
shown);

Figure 6.4: The similarity between the vectors of the forces
and the vectors from the geometry.

t

t

t

h(s)

σ0(s)

σ1(s)

σ2(s)

σ3(s)

(a) Three wythes constructed;

th(s)

σ0(s)

σ1(s)

σ2(s)
τ2(s)

(b) One wythe constructed;

Figure 6.5: Position of the stresses used in calculations.

Table 6.1: Factors with which to multiply the maximum
bending stress from equation (6.13)

Number of wythes constructed
1 2 3

Po
sit
ion

0 -1 -1 -1
1 1 0 -1/3
2 - 1 1/3
3 - - 1

equation (6.13).

σ(r) = σN + σM =
N

A
+

Mr

Irr

σsm = τ(r) = −VrSr

bIrr

(6.12)

σ(r) = σN + σM =
N

A
± M

W

σsm = τ(r) = −Vr
12α2 − 3

2h(s)

(6.13)

where:
σ(r) = normal stresses in the structure due to

N(s) andM(x) [N
mm2];

τ(r) = shear stresses due to V (s) [N
mm2];

A = area of the cross-section [m2m−1];
W = section modulus of the cross-section

as Irr
r

[m3m−1];
α = relative height from -0.5 to 0.5, with the

neutral axis at α = 0 [−];
h(s) = height of the cross-section at s;
Irr = h3

12
, moment of inertia for this

cross-section in the sr-plane [m4m−1];
Sr = h2 4α2−1

8 , static moment for this
cross-section in the sr-plane [m3m−1].

As can be seen in these equations, A and W are
per stretching meter. For instance, the area is
normally height times width, but here the width
is neglected, since the model has been reduced
from a 3D vault to a 2D arch. Thus, formally
the area is still in square meters, but per meter
along the vault. This results in A = h(s) and
W = Irr

1/2h(s) .
The thickness of the vault (h) varies during the
construction. So, actually, it should be h(s, t)
with s being along the structure and t being the
construction time. However, as will be shown
later, the construction time can be ignored for the
calculation. The thickness of the cross-section (t)
varies between four discrete values: 0, 1, 2, 3
times the thickness of the bricks. A thickness of
zero is of course for that part of the structure that
has not yet been constructed (see the dotted line
in figure 6.3a). h increases with t for each wythe
constructed at that point. Thus, with three wythes,
the maximum increase is 3t.
The maximum normal or bending stresses occur
at the top and bottom of the height of the cross-
section. However, this height varies over the
structure’s path and it varies in time. To be able
to calculate these maximum stresses with ease,
as can be seen in section 6.5, the stresses are
measured only at specific locations of the cross-
section. This is done at the start and end of each
wythe. In subsection 6.4.1 it is shown that where
two wythes meet, the stresses are continuous as
if the structure were monolithic. Thus, the total of
specific locations is only four: 0t, 1t, 2t and 3t. See
figure 6.5.
The normal stresses are constant with the height.
However, to be able to add these to the bending
stresses, these values are also presented at these
specific points. The bending stresses at each
location are the value found from equation (6.13)

6.4. Stress distribution 45

multiplied with the factors to the relative height.
These factors can be found in table 6.1. SinceW
already takes the height into account, the factors
are normalized. After all, the bending stress
distribution can only take place along the existing
height of the structure. By multiplying from -1 to
+1, the sign of M

W in equation (6.13) is always
positive.

The maximum shear stress can be found with
3/2V /A at half the height. However, throughout
the construction this midway point will shift. Thus,
it is important to calculate the shear stresses
at multiple points as well. The formula from
equation (6.13) makes it possible to do that.
Again positions along the cross-section height are
chosen. Different to the bending stresses, now it
is the three mid-points per wythe, of which τ2 is
shown in figure 6.5. The factor α is shown in table
6.2.

With these factors the applied stresses σ(s, r) and
tau(s, r) for any h(s) can be found. These are
compared to the maximum allowable stresses in
a unity check. The maximum allowable stresses
are found in literature and are repeated in table
6.3. The unity check shows whether the structure
can hold its own weight.

6.4.1. FEA Modelling of the monolithic
structure

The challenge with a layered structure is to know
with certainty how much the layers or wythes
work together. Probably the most well-known
cooperating layers are (concrete-steel) composite
floors and cross-laminated timber. This last
one is most similar to the structure in this
research: an adhesive between more familiar
material layers. In CLT-design it is assumed
the glue has a higher strength than the timber.
This makes the material monolithic: the strain
and stresses are distributed continuously over the
cross-section. Otherwise, each layer would have
its own distribution, resulting in discontinuous
endings of the elements. See figure 6.6 for a
visualization. A Finite Element Analysis program
has been used to find out which of these two
models is best suited for the structure.

In this FEA program two models have been
made. The first model is one volume which acts
as a monolithic material. The second model
is three volumes which have been connected
with interface elements. Both models have the
same material properties, and the same loading
schemes. In appendix B an overview of the full
model is given. In figure 6.7 the stresses in both

models can be seen. These stress distributions
show that the material can best be seen as a

Table 6.2: Factor α from (6.13)

Number of wythes constructed
1 2 3

Po
sit
ion 0 0 -1/4 -1/3

1 - 1/4 0
2 - - 1/3

Table 6.3: Maximum allowable stresses after full hardening.
Note fk is derived from −0, 75 · fb0,7

yield strengths value [N/mm2]
compressive strength -6,11
tensile strength 2,00
shear strength 0,30

(a) Cohesive monolithic
element;

(b) Incoherent composite
element;

Figure 6.6: The cooperation between layers or wythes in the
stress- & strain-distribution.

Figure 6.7: An FEA model of multi-layered masonry. In the
top left the model is shown. The wythes are modelled as
plates or solids. Three plates are connected with their

interfaces to each other (lines from blue to red dots). The
closest plate is supported on its top and bottom edges (red
arrows) and the loading is a distributed load normal to this
first plate (orange box and arrows). The other two images

show the displacement in the plates. All plates have a similar
displacement (bottom image), showing their working as one
material. Additional information can be found in appendix B.

46 Chapter 6. Structural analysis

Figure 6.8: Set of bricks placed per row. Green are a row of
bricks in the first wythe, blue a row in the second wythe,

yellow for the third wythe.

−1.2 −0.6 0 0.6 1.2
0

0.02
0.04
0.06
0.08
0.1

x [m]

q
[k
N
/m

m
−
1
]

(a) Loading q(x) with point load F);
−1.2 −0.6 0 0.6 1.2

0

0.1

0.2

0.3V
[k
N

m
−
1
]

(b) Shear force V(x) in the xz-plane (in dark gray the loading from
6.3c;

−1.2 −0.6 0 0.6 1.2

−0.1

−0.05

0M
[k
N
m

m
−
1
]

(c) Bending moment M(x) in the xz-plane (in dark gray the loading
from 6.3d;

Figure 6.9: The loading scheme with a discrete load
distribution, differing from figure 6.3b

monolithic material. Thus, the stresses within
the structure are calculated with a continuous
distribution.

6.5. Implementation in the
parametric model

In the parametric model the calculation from the
previous sections has been done in a script
component written in a programming language.
The full code of this model can be found in

appendix A. The programming language can be
found in appendix D.
As described in chapter 4, the design model
results in bricks oriented and positioned correctly
in a 3D-space. In chapter 9 the sequence to build
the bricks is further described, but for now it is
assumed the bricks are laid down in such a way
that the added bricks have a similar cantilever
length, beforemoving on to the next set of bricks to
be placed, see figure 6.8. This is done to keep the
simplification from the structural analysis: reduce
the structure from 3D to 2D. In the parametric
model this simplification is implemented by taking
the average position of the set of bricks to be
placed and use these as the cantilever length of
the structure so far.
These distances result in the loading scheme
of and during construction. With the same
procedure from figure 6.3, figure 6.9 shows how
this loading results in the shear force and the
bending moment in the structure. However, the
calculation in the parametric model is done at
certain intervals. The programming language
requires the calculation at specified locations and
these have been defined in list x of size n. The
same goes for the centroids of the bricks: for each
wythe a list yi is used. Both lists are in the same
direction (x in the figures here and y in the global
coordinate system of the parametric model. Again
the goal is to get to the stresses of the structure. In
the programming language, the stresses can be
found in thematrixΣwith dimensionsn×m, where
m comes from figure 6.5.
It is important that for each row of bricks added, a
change happens in the matrix Σ. Thus, equation
(6.14) should hold. This also means that n is
bigger than the amount of rows to be placed per
wythe. For computational purposes, n should be
as low as possible, however. It is easy to assume
that xi should be between the connection of two
rows of bricks, roughly halfway yi,j and yi,j−1.
However, with different orientations, the length of
each yi is different (the amount of bricks per wythe
differs). Thus, in the programming language the
span of the vault is split with a constant step to
create x. After that the code checks whether
every consecutive couple in yi has any value of
x in between. If this would not be the case, it is
advised to decrease ∆x, increasing n.

∆x = xi − xi−1

∆yi = yi,j − yi,j−1

∆x < ∆yi (6.14)

6.5. Implementation in the parametric model 47

As mentioned before, scripting requires positions
to make the calculations. This is the purpose of
the positions in x. Simultaneously, the script in
the programming language creates zero list hwith
scale n. Within the script, with each iteration, the
four force lists are created as well, all with scale
n. See 6.4a for these forces. These force lists are
divided by the lists A and W, both dependent on
the values from h, to get to the stresses at that
position. A number of these lists can be seen in
equation (6.15).

Subsequently, it is required to create the factor
matrices for σ and τ . As mentioned before, the
stresses are matrices n×m. Thus, these factor
matrices F have the same dimensions. Based
on the value hi, the value of these factors are
determined. For the four, respectively three
values in fi the values of one column in table
6.1 are used. These matrices are used to check
whether the maximum allowable stresses are
surpassed. Σ can be seen in equation (6.16).

x =

x0

x1

...
xn−2

xn−1

 ,h =

h0

h1

...
hn−2

hn−1

 ,

A =

A0

A1

...
An−2

An−1

 ,W =

W0

W1

...
Wn−2

Wn−1

(6.15)

Σ =

σ0,0 σ1,0 σ2,0 σ3,0

σ0,1 σ1,1 σ2,1 σ3,1

...
σ0,n−2 σ1,n−2 σ2,n−2 σ3,n−2

σ0,n−1 σ1,n−1 σ2,n−1 σ3,n−1

(6.16)

It is the unity check that determines whether or not
a row of bricks is added to the structure. The unity
check should be lower than 1. Since this research
does not aim to optimize the structure, it is not
necessary to approach this upper bound value.
However, it is better to analyse the influence of the
unity check on the maximum cantilevering length.
In the early phase of construction this upper bound
value is best to be even lower than 1. This is
further looked into in chapter 7.

7
Stress distribution in the phased

construction
On the next pages the output of the structural
analysis is shown. The parameters used for
this calculation are similar to those used for the
first computation in section 11.2. Shown are the
structural analysis after one, two, three, four and
thirty-one bricks have been placed. For each
position in x a stress distribution diagram can be
made. For clarity purposes a select view are
shown, see figure 7.1a. These four cross-sections
have been selected based on x = (4 ∗ i)2 [m] with
i being one of [0,1,2,3]. These four, combined
with the chosen analyses, show how each stress
diagram comes to be, and how these translate to
the figures used in chapter 11.
Figure 7.1 is an introduction into the stress
diagrams. The position of the four cross-
sections are shown on the vault, see figure 7.1a.
Figure 7.1b shows the stress diagrams and what
markings have been added for translation to
the later figures. It starts with a classic stress
diagram with tension on the positive side. This
stress diagram results in a couple of significant
stresses in this cross-section, indicated with
circled markings. Furthermore, the strength also
changes over time. Thus, it is important to show
how the stresses relate to these strengths. These
are shown as background filling in the colours
maroon (compression) and navy (tension). Again,
significant strengths can be found that are used
for later figures, indicated with crossed markings.
Only stresses and strengths can be seen for x =
0.0 [m], since only in this cross-section do the
centroids of the bricks placed, extend further. In
the stress diagrams of the figures 7.2 to 7.6 the
upper and lower bound of the horizontal axis have
been changed to ensure all occurring stresses can
be shown. In figure 7.1 these bounds have been
reduced to maximize the extend of the stresses
and strengths after one (row of) brick(s) has been

placed.
On a side note, since each row of bricks is
calculated as one, the figures may simply state
’after brick i is placed’, while fully it would be ’after
row of bricks i is placed’.
In figure 7.2 the stresses and strengths after
one row of bricks are shown. As stated before,
only for the cross-section x = 0.0 [m] do these
occur. The stress diagrams have been placed
along the structure, positioned similarly as the
cross-section markings are in figure 7.1a. Since
only one wythe of bricks has been placed, only
two significant stresses are found. As showing
each cross-section would clutter the pages, an
alternate visualisation has been found. Note how
the axes have changed in this new figure! In the
stress diagrams the horizontal axis is the stress,
and the vertical axis is the position in the cross-
section after all three wythes are constructed. In
this new figure, figure 7.2b, the vertical axis is now
the stress, and the horizontal axis is the position of
the cross-section on the vault (based on the global
Cartesian coordinates). The lines represent the
stresses σ and the areas represent the strengths
f . Since both from the stresses and from the
strengths two significant values are found, only
four of the nine lines/areas are shown in figure
7.2b. The markings from the stress diagrams are
also present in this figure.
In total nine lines/areas will become visible, see
the later figures. The four stresses are based
on figure 6.5. The colours (red, magenta, blue,
green) are based on their likely stress state: red
for the interface under compression, magenta
for the interface switching signs, and blue and
green for the interfaces always under tension.
The colours of the strengths are based on their
accompanying stress. The second interface σ1

49

50 Chapter 7. Stress distribution in the phased construction

has two strengths in these graphs. This interface
can be both tension and compression. Thus, for
whichever sign the stress has, the accompanying
strength is shown. Hence why both fk,1 and fkt,1
are present.

These graphs are able to show that in each cross-
section each significant stress does not surpass
its accompanying strength. For each new row
of bricks it is determined whether this will be
the first, second or third wythe. Two factors
determine which wythe is chosen: the preferred
placement of these rows and the unity check, see
also 6.5. First the unity check determines whether
or not it is possible at all if the row of bricks can
be placed. Secondly, if placement at multiple
wythes is possible, the preferred placement is
used. The combination of the visual progress in
the design model, see figures 7.2a, 7.3a, 7.4a,
7.5a and 7.6a, and the comparison overview
of all strengths and stresses, see figures 7.2b,
7.3b, 7.4b, 7.5b and 7.6b, ensure that these
two factors can be verified to work. For even
further analysis, chapter 11 not only shows this
graph of each stress and strength, but also shows
their resulting unity check. Since this reduces
the clutter, two additional stresses/strengths of
interest are shown: the other stresses/strengths
at interfaces 1 and 2.

Figure 7.7 is an additional visualisation to figure
7.6. Here, the stress diagram at x = 0.64 [m] is
placed in figure 7.7b, of course rotated to align the
axes representing the stress σ. Arrows are drawn
between the two graphs to show how the position
of the circled markings translates between them.
It should also be noted that in this figure and in
figure 7.6 one may see that the lines/areas stop
earlier than the bricks in the design model. To
restate: the structural analysis is done based on
the centroids of the bricks and are assumed to be
a point force load, instead of a distributed load.
Thus, stresses and strengths develop in a certain
cross-section only after the centroid of the row
of bricks in that wythe has surpassed that cross-
section.

7.1. Preferred placement of the
bricks

The construction sequence is based on the unity
check per wythe for the next placement, with
thereafter additional preference of placement.
How the unity check is calculated can be found in
chapter 6. The preferred placement of the bricks
is either based on an optimization analysis or on
a set of rules. Since the optimization analysis is

outside the scope of this research, a set of rules is
put in place to determine the preferred placement.

The first rule for the preferred placement has to do
with practicalities andwith the initial optimal stress
accumulation. The robot needs to be able to place
the bricks appropriately. Here it makes sense to
do either of the following:

• Inside out - place the inner wythe first, the
middle wythe second and the outer wythe
last. Using the indices of the wythes so far
that would be 0− 1− 2.

• Outside in - the same as the previous, but
reversed. This gives 2− 1− 0.

• Middle outwards - start with the middle
wythe and place on both bottom and top.
This results in both 1 − 0 − 2 and 1 − 2 −
0. More wythes increases the number of
possible wythe orders.

Based on the figures 7.2 to 7.6, a couple of
principles can be found regardless of the work
order.

1. The stresses at a certain cross-section are
a summation of the stresses due to each
row of bricks placed thereafter andwhen the
second and third wythe were placed.

2. The stresses at a certain cross-section
are symmetric, but will be skewed since
each wythe is placed at a different moment,
resulting in a difference in summation.

It is clear the order in which each wythe is placed
determines the stress distribution in that cross-
section. As can be seen in the figures 7.2
to 7.6, in the cross-sections where only one wythe
is present the stress distribution is symmetric.
Meaning the maximum tensile and compressive
stresses are equal and on the outer bounds. A
stress of zero is at the middle of the wythe’s
height. Additionally, when a second wythe is
present in that cross-section, this distribution will
not alter further. It is only due to the addition of
the stress distribution with two wythes (and later
three) that the total stress distribution of the cross-
section changes. This is shown with equation
7.1. This equation does not show the quantity of
the stresses based on their position in the cross-
section. This is explained in section 6.4 and table
6.1. As can be seen in this table, each interface
may have a different sign based on the number
of wythes at that cross-section. This means that
based on the order the wythes are placed, the

7.1. Preferred placement of the bricks 51

signs and magnitude per interface may change.

σi =

nb−1∑
i=na

σia +

nc−1∑
i=nb

σib +

n∑
i=nc

σic (7.1)

where:
i = number of rows of bricks placed;
na = the ith brick placed when the

cross-section becomes one wythe
thickness;

nb = ” ” becomes two wythes thickness;
nc = ” ” becomes three wythes thickness;
n = total number of rows of bricks placed;
a, b, c = the first, second and third wythe to

pass this cross-section.

The magnitude, and sometimes the sign as well,
of the stresses per interface are dependent on
the order of wythes. Table 6.1 shows the factors
for the situation Inside out. If Middle outwards
is chosen (with wythe0 as second), only the first
column changes with -1 at position 1 and 1 at
position 2. The other two scenarios have the
same factors, but reversed. If these are compiled
together, the equations (7.2) to (7.5) can be made.
σ0 and σ3 are opposites of each other in each
scenario. If σ3 has to be minimized, equations 7.2
and 7.3 are best to be used. For σ0 the reverse
is true. Similarly, σ1 and σ2 are each others
opposites. If σ2 had to be minimized, equations
7.2 and 7.4 are the best, depending on which is
larger: na or nb. A couple can also be found. If the
tensile stresses in general have to be reduced, σ2

and σ3 are most likely the first to hit those, while
the opposite is true for compressive stresses.
σ1 and σ2 are dependent on the ratio between na,
nb and nc for their sign and therefore their value.
This means that concluding anything for these
two is dependent on the case specific. Therefore,
speaking in general situations, it is assumed σ1 is
couple with σ0 in the compressive stresses and
σ2 with σ3 for the tensile stresses. Using this and
the other parameters like the strengths, additional
principles can be found.

3. Where tensile stresses are the determining
factor, scenario Inside out is best, where
compressive stresses are, Outside in has
to be chosen;

4. Based on the literature in chapter 5,
the tensile strength is much lower after
completion than the compressive strnegth;

5. The tensile and compressive strength are
comparable after the initial setting time;

With the tensile strength as the weaker of the two,
it is preferred to use the Inside out scenario (0 −
1 − 2). This results in the lowest tensile stresses
for the outer interfaces, which coincides with the
lower tensile strength. Of course, when applied
on a project case, the specific circumstances
may result in a different scenario. These specific
circumstances are considered unlikely though.

σ0 = −1 · na · σavg,a − 1 · nb · σavg,b − 1 · nc · σavg,c

σ1 = 1 · na · σavg,a + 0 · nb · σavg,b −
1

3
· nc · σavg,c

σ2 = 1 · nb · σavg,b +
1

3
· nc · σavg,c

σ3 = 1 · nc · σavg,c

(7.2)
σ0 = −1 · nb · σavg,b − 1 · nc · σavg,c

σ1 = −1 · na · σavg,a + 0 · nb · σavg,b −
1

3
· nc · σavg,c

σ2 = 1 · na · σavg,a + 1 · nb · σavg,b +
1

3
· nc · σavg,c

σ3 = 1 · nc · σavg,c

(7.3)
σ0 = −1 · nc · σavg,c

σ1 = −1 · na · σavg,a − 1 · nb · σavg,b −
1

3
· nc · σavg,c

σ2 = 1 · na · σavg,a + 0 · nb · σavg,b +
1

3
· nc · σavg,c

σ3 = 1 · nb · σavg,b + 1 · nc · σavg,c

(7.4)
σ0 = −1 · nc · σavg,c

σ1 = −1 · nb · σavg,b −
1

3
· nc · σavg,c

σ2 = −1 · na · σavg,a + 0 · nb · σavg,b +
1

3
· nc · σavg,c

σ3 = 1 · na · σavg,a + 1 · nb · σavg,b + 1 · nc · σavg,c

(7.5)

Additionally, the placement of the robot is
important as well. When the robot places the
bricks from the outside (or top), Inside out is the
preferred scenario anyways. With the robot on
the inside (or beneath), problems may arise with
reachability near the end. It could be useful in that
case to switch to Outside in, even if it is only for
the last rows of bricks. Considering the previous
reason due to the stresses, it is best to start with
Inside out. but a switch near the end will have
little influence on this reason.
The second rule also has to do with practicalities
and can be seen as a continuation of the first

52 Chapter 7. Stress distribution in the phased construction

rule. The order of wythes is established, which
determines which wythe crosses a cross-section
first. However, the row of bricks have a different
length. This could result in an overlap of the
following wythes on their preceding wythe (wythe
2 follows after wythe 1 and wythe 0 precedes
wythe 1 in Inside out. Thus, the end of a possible
row of bricks to be placed may not extend further
than the start of the next row of bricks to be
placed in the preceding wythe. Figure 6.8 gives
an example of this. With Inside out, the yellow
coloured bricks cannot be placed as long as the
cyan coloured bricks haven’t. The same goes for
cyan and green. Thus, the preceding wythes will
always extend further than their following wythes.
These two rules say when it is possible to switch
to the next wythe, but they do not mention when.
It stands to reason that the first option is to place
the next wythe as soon as possible. To go back to
figure 6.8, the placement of the green row in wythe
0 is followed by the placement of the cyan row in
wythe 1, instead of the placement of another row
in wythe 0. The reason this is useful is based on
the factors of the normal stress. This stress is
based on the normal force and the moment. The
latter of these is much greater than the first. As
equation 6.12 shows, the thickness of the vault is
a major factor in the stresses due to the moment.
Thus, it is best to have the greatest thickness as
soon as possible. This is done by placing the next
or following wythe as soon as rule 1 & 2 allow it.
This option is also shown in figures 7.2 to 7.6.
The second option is based on the stress
development found in those same figures. As can
be seen in figure 7.6b, σ3 will soon hit the tensile
strength capacity at the support, even with the
preferred placement in favour of σ3! Thus, to
lower this stress, it is better to place the last wythe
as late as possible. This results in an increase of
stresses at the other interfaces. Both σ0 and σ2

seem to be the next limiting place in this scenario.
If the third wythe is not built, both will increase with
the same amount, see in equation 7.2 the terms
with nb. As figure 7.6b indicates, σ2 has roughly
1,5 MPa capacity left before reaching the tensile
strength, while σ0 has roughly -4MPa left. Thus, if
σ3 is relieved, σ2 becomes the next limiting factor.
The rows of bricks placed have the same
coordinates with both options. This means that
the stresses σavg due to the placement of a row do
not change with the second option. However, nb

and nc do change. Therefore, an estimation of the
decrease in stresses for σ3 and the increase for σ2

can be stated, see equation 7.6. This estimation
does not take into account that both σavg from the

previous equation will change as well. Thus, the
estimation is an approximation.

∆σ2 =
2

3
·∆nc · σavg

∆σ3 = ∆nc · σavg

(7.6)

Additionally, the change with this option is only
when the first row of bricks will be placed. The
later rows in the last wythe can only be placed
after the first row in that wythe has been placed.
Furthermore, the maximum stresses in the last
wythe in the first option are at the support, which
remains so for the second option as well. Thus,
if the second option aims to delay σ3 for reaching
the tensile strength, the only ’when’ that matters is
when the first row of the last wythe is placed. The
equation 7.6 contains a lot of numbers which may
vary per configuration. It is not possible to give
a general formula or indication how much ∆nc

should be, for the second option to be ofmaximum
use. However, because the second option results
in the last wythe entirely to be placed last, it isn’t
hard to investigate this maximum with trial & error.
Without the last wythe themaximum reach is when
σ2 has exceeded the tensile strength. By placing
the last wythe earlier than that, the exceedance
of σ2 is postponed. This lowers the stresses in
σ2 in the last possible row of bricks to be placed
and increases it in σ3. This should also result in
more possible bricks to be placed. This continues
until σ3 has exceeded its strength. Either this last
configuration or the one before (where σ2 was the
exceeder) will have the most possible bricks to be
placed.
A third option could be to extend the second
option to the first and second wythe as well. Here
the implementation is much simpler. Since the
addition of the second wythe does not change
the value of σ1 (see equation 7.2, second term),
it is not a question of when the maximum stress
occurs at σ1. However, the development of the
strength is more significant here. Thus, for this
option it is more important to place in the second
wythe when the first would result in exceedance of
strength anywhere in the structure. It seems this
allows for even more bricks to be placed. Thus,
this is investigated when option 2 is also explored.
Both result in a placement of the following wythe
as late as possible.
This gives two preferred placements beyond rule
1 & 2. The third rule is the placement of the
following wythe to be either as soon as possible,

7.1. Preferred placement of the bricks 53

or as late as possible. In the computations this
is abbreviated to wrule = a.s.a.p. or wrule =

a.l.a.p. See figures 11.2 and 11.17 for a visualized
construction sequence.

x = 0.0 [m]

x = 0.0 [m]
w [m]

x = 0.16 [m]

x = 0.16 [m]

x = 0.64 [m]

x = 0.64 [m]

x = 1.44 [m]

x = 1.44 [m]

(a) The position of the cross-sections of x = 0, 0meters, x = 0, 16, x = 0, 64, x = 1, 44; the stress diagrams shown after are based on 1 brick
placed, hence the dark-colored part; the shaded part is the rest of the structure, to be constructed, and shown for clarity;

(b) The stress distributions at the cross-sections of x = 0, 0meters, x = 0, 16, x = 0, 64, x = 1, 44 when 1 brick has been placed, also showing
the significant strength and stress values used in later figures;

Figure 7.1: The stresses in the structure after 1 brick has been placed, where both the stress distribution in four cross-sections is
shown and the stresses along the entire cantilever.

54 Chapter 7. Stress distribution in the phased construction

(a) The stress distributions at the cross-sections of x = 0, 0meters, x = 0, 16, x = 0, 64, x = 1, 44 when 1 brick has been placed;

(b) The stresses at the four interfaces as indicated in figure 7.2a when 1 brick has been placed;

Figure 7.2: The stresses in the structure after 1 brick has been placed, where both the stress distribution in four cross-sections is
shown and the stresses along the entire cantilever.

7.1. Preferred placement of the bricks 55

(a) The stress distributions at the cross-sections of x = 0, 0meters, x = 0, 16, x = 0, 64, x = 1, 44 when 2 bricks have been placed;

(b) The stresses at the four interfaces as indicated in figure 7.3a when 2 bricks have been placed;

Figure 7.3: The stresses in the structure after 2 bricks have been placed, where both the stress distribution in four cross-sections
is shown and the stresses along the entire cantilever.

56 Chapter 7. Stress distribution in the phased construction

(a) The stress distributions at the cross-sections of x = 0, 0meters, x = 0, 16, x = 0, 64, x = 1, 44 when 3 bricks have been placed;

(b) The stresses at the four interfaces as indicated in figure 7.4a when 3 bricks have been placed;

Figure 7.4: The stresses in the structure after 3 bricks have been placed, where both the stress distribution in four cross-sections
is shown and the stresses along the entire cantilever.

7.1. Preferred placement of the bricks 57

(a) The stress distributions at the cross-sections of x = 0, 0meters, x = 0, 16, x = 0, 64, x = 1, 44 when 4 bricks have been placed;

(b) The stresses at the four interfaces as indicated in figure 7.5a when 4 bricks have been placed;

Figure 7.5: The stresses in the structure after 4 bricks have been placed, where both the stress distribution in four cross-sections
is shown and the stresses along the entire cantilever.

58 Chapter 7. Stress distribution in the phased construction

(a) The stress distributions at the cross-sections of x = 0, 0meters, x = 0, 16, x = 0, 64, x = 1, 44 when 31 bricks have been placed;

(b) The stresses at the four interfaces as indicated in figure 7.6a when 32 bricks have been placed;

Figure 7.6: The stresses in the structure after 32 bricks have been placed, where both the stress distribution in four
cross-sections is shown and the stresses along the entire cantilever.

(a) The stress distribution at the cross-sections of x = 0, 64 when 31 bricks have been placed, which serves as an example of how the stresses of
the stress diagrams translate to the stresses in figure 7.7b;

(b) The stresses at the four interfaces as indicated in figure 7.6a when 32 bricks have been placed;

Figure 7.7

Part IV

Robotics and the work
process for thin-tile vaults

61

8
Literature on robotics

A robot is a machine controlled by a computer that
is used to perform jobs automatically (Cambridge,
2020). This definition shows three components
that are required to use a robot: a code, amachine
and a tool. Tools come in many shapes and sizes,
each designed for the job at hand. Machines can
also differ quite a lot, with machines for robotic
systems having its own design and functions.
The code to operate these machines is usually
very similar. However, program coding suited for
robots differs from coding for other applications,
like the computer. In this chapter this system is
further looked into, how it has been applied in the
construction industry and how this influences the
construction of a masonry vault.

8.1. Robotic typologies
The implementation of robotics in architecture
is relatively late compared to other industries
(Estrella, 2017). However, in the past decades
the digitalisation of the building industry has
taken flight. Since the 1970’s CAD (Computer-
aided Design) has been greatly implemented in
the building process, creating the field of digital
architecture. Since the 1990’s and especially
the early 2000’s the gap between design and
manufacturing within digital architecture has
decreased, with the introduction of robots and
other machines (Estrella, 2017). This is also
known as CAM (Computer-aided Manufacturing)
or digital fabrication. Nowadays robots can be
applied in a wide range of applications: design
processes, construction processes, single-tasks
robots and dynamic surfaces/living architecture.
Within these applications, four most commonly
used manufacturing methods can be categorised:
cutting, addition, formation and subtraction
(Estrella, 2017). This categorisation is not
definitive though. Joining and Generative may
be used as well (Bidgoli, 2015). However, the
ISO has (so far) only defined additive, subtractive

and formative shaping, stating the manufacturing
process can consist of one or a combination of
these principles (ISO/ASTM, 2017).

Table 8.1: Most common robots applied in architecture
(Estrella, 2017)

CNC machines

Subtractive processes
Formative processes
Cutting
Turning
Milling

Robotic Arms

Formative processes
Gluing
Melting
Drilling
Cutting
Pouring
Handling

3D-Printers Additive processes

The robotic machines commonly used in the
construction industry can be grouped in three
categories: CNC machines, robotic arms and 3D-
printers. CNC stands for Computer Numerical
Control. An overview of the applications per
group can be found in table 8.1. It should be
noted that this list is limited to robots applied in
manufacturing processes. This excludes robots
or processes for other purposes, i.e. to acquire
data with 3D-scanners. A robot that combines
such processes, though, is not unimaginable.
Since robotics, and especially digital fabrication,
is still a developing field, it is uncertain though how
long the distinction from table 8.1 is applicable.
Already, combining a robotic arm with CNC or
3D-printing is possible within software (RoboDK,
2021).
With digital architecture, CAD and CAM work
together to create structures and projects
with digital fabrication. CAD-software is used

63

64 Chapter 8. Literature on robotics

to generate the design, while CAM-software
converts that design to hardware code (Estrella,
2017). The conversion is needed to change
from file formats commonly used in CAD (i.e.,
.dwg) to formats used in CAM (i.e., STL).
Examples of CAD-software for additive processes
are Rhino3D, Blender, and SketchUp (Estrella,
2017). As explained before, Rhino3D (with
Grasshopper) can be expanded upon by its
users with the help of plugins. Some companies
have started to bridge the gap between CAD-
software and robots by implementing a CAM-
plugin. Examples are BrickDesign (ROB
Technologies, additive), KingKong (Robofold,
formative), Unicorn (Robofold, subtractive), IO
(Robofold, robotic arms) and RoboDK (RoboDK,
robotic arm) (Estrella, 2017), (RoboDK, 2021),
(RoboFold, 2013).

The reach of a robotic arm rarely exceeds
3.5 meters (Bidgoli, 2015) (RoboDK, n.d.).
Considering the reach of the arm as the radius
of a perfect sphere, the work space cannot be
larger than 7 meters across. Other factors may
downsize this further: the robots reach is not a
perfect sphere (similarly to how an arm cannot
reach all positions within its length) and the pose
of the tool (orientation and position) may not allow
a fully extended arm.

8.2. Construction robotics
8.2.1. SAM100
One of the first robots used in masonry projects
is the SAM100, where SAM stands for Semi-
Automated Mason. The robot consists of
a generator, lasers and sensors, a conveyor
belt, a concrete pump and a robotic arm with
gripper (Madsen, 2019). Companies that have
purchased and used the robot claim the speed of
brick-laying from human masons to the SAM100
goes up from 400 to over 2.000 bricks a day
or similar increases (Madsen, 2019). Similarly,
it seems people are more content with the
end result, the high quality, the robot provides.
Besides, the number of required workers on
site can be reduced where the masons are now
assisting the robot in its construction process
(Madsen, 2019). SAM100 still needs assistance
to operate efficiently. The mortar needs to be
mixed and bricks need to be cut and fed to the
robot. Someone has to operate the machine
as well and remove the excess mortar after
placement.

The application of the robot are limited, though.
The costs are high ($500.000 to buy and $20.000

per month to rent) and the high speed increase
in brick-laying is only achieved at certain types
of walls and after the robot has been set-up.
Preferably, the walls are long, straight and high,
like in warehouses. The construction time is
reduced significantly, but when the construction
site is complex (for instance, not on the ground
floor), the set-up time can nullify this effect
(Madsen, 2019).

8.2.2. Hadrian X
Still in development, the Hadrian X is a robot
developed with a different approach to brick-
laying. Different to the SAM100, this one is
fully independent and includes the feature to
determine the full brick laying sequence of the
structure (Bogue, 2018). It operates from a fixed
location and is even capable of cutting the bricks
and applying either mortar or adhesive to the
bricks under pressure.

8.2.3. Other construction robots
Students at the Bartlett School of Graduate
Studies in London have created a robot program
for bricklaying. The small-scale test included
monitoring masons for the proper technique and
a full process of bricklaying: the program is
able to pick and place the bricks; switch to the
appropriate tool or end effector; lay mortar and
remove excess mortar (Bloss, 2014b).

At the Massachusetts Institute of Technology
(MIT) a team combined a lorry with a robotic arm.
With a reach of 24 meters and a payload of 680
kilograms, the robot has eleven axes of freedom.
The lorry is a mobile with five axes and attached to
its end is a KUKA robotic arm with six axes (Bloss,
2014b).

8.3. Dutch robotic/construction
industry

8.3.1. ING
ING Economisch Bureau is the economic
research department of the ING Group, one of
the biggest banks in the world. Their publication
in May 2020 investigated the industrialisation
of the construction industry (Van Sante, 2020).
The publication reports industrialisation as ’the
mechanisation of the production processes in
which manual labour is done by machines to
increase the labour productivity’. The publication
continues with relating industrialisation of the
building industry to other terms from the
construction industry: modular construction,
prefab and robotisation. As can be seen in

8.3. Dutch robotic/construction industry 65

8.1 the department considers robotisation in its
entirety a subset of industrialisation, whereas
modularity and prefab can also be applied outside
the industrialisation.

(Van Sante, 2020) compares the robotisation
of the Dutch construction industry with other
industries and with other countries. Compared
to other industries, robots are used little in
construction (roughly 150 to 1). Compared to
other countries the Benelux is leading in the
robotisation in the building industry (in both
comparisons the Netherlands is grouped with
Belgium and Luxembourg), even more than
Japan, a country known for its robotics. Robots
can increase the industrialisation even further,
especially combined with prefabrication at indoor
facilities. The publication does emphasize that a
part for the high robotisation in the Netherlands
can be attributed to the high share of repetitive
buildings (like row houses) and the high labour
costs.

Figure 8.1: Overlap of industrialisation with modular
construction, prefab and robotisation. | ING Economisch

Bureau (Van Sante, 2020)

9
Stations

The robot will move from station to station
and perform a routine of instructions. Each
station has been developed in the parametric
model first, to set the proper information for the
robotic simulation software. See section 10.2 for
more about the proper information. Important
in robotics is the use of reference frames or
coordinate systems. In general, six reference
frames are essential for this construction. The first
reference frame is the world coordinate system,
all other reference frames are relative to this one.
This reference frame is also vital outside of robotic
construction, since this frame is also the starting
point in the real world. The second reference
frame is that of the robot itself. Positioned at the
base of the robot, it is commonly known as the
base coordinate system. Thirdly, the reference
frame of the tool or end effector is used: the tool
coordinate system. These two reference frames
essentially determine the shape the robot takes
(in the case of a robotic arm in which angle each
axis is positioned). The fourth reference frame
is from the export program. It contains all the
objects the robot has to be aware of. In industrial
applications this can be the surface on which
the operations are done, also known as the user
coordinate system. Within this reference frame
are two other, more variable, reference frames.
One is the reference frame of the object it holds,
the object coordinate system. The other is of
the target position, to which the robot has to
move. In figure 9.1 four of these reference frames
are presented. The terms used come from ABB
robotics.

The export from the parametric model provides
a general user coordinate system for all objects.
However, within this system, three stations are
present. In this situation a station is a defined
space in which the same routine of instructions
takes place, although with different objects. The
three stations here are the pallet station, the

adhesive station and the vault station.

9.1. Pallet station: the source of
the bricks

The pallet station is the area in which the objects
are assumed to be upon delivery and ready for
construction. As per the scope of this research,
the objects are assumed to be of the correct shape
before construction. Thus, this creates three initial
conditions for the construction.

• The objects are assumed to be of the
correct shape and finishing. No additive,
subtractive or formative manufacturing
processes have to happen to the object.

• The objects are assumed to be delivered
on a standard pallet. In the program
a Europallet is used with dimensions of
1200×800 millimetres.

• The packing arrangement of the objects
is similar to that of a pallet filled only
with whole bricks. This means, there’s
room around the cut bricks. It is possible
to apply other packing arrangements, but
due to simplification it is done with this
arrangement. See figure 9.2.

Figure 9.1: Four of the six described coordinate systems
and to which reference frame they are related to | (Technical

reference manual - RAPID Overview, 2019)

67

68 Chapter 9. Stations

Cut Bricks

Figure 9.2: Packing arrangement of the bricks in the pallet
station

a)

b)

c)d)

e)

Figure 9.3: Routines at pallet station (elements not to scale):
a) initial situation; b) approach to object; c) contact with
object; d) attachment of object; e) retreat with object.

The objects in this station contain two items
of information: the object itself and an object
coordinate system. This is why the packing
arrangement does not really matter, as long as
this information is set. The object is required for
visualisation in the virtual environment and the
parametric model has some functionalities that
are more intuitively when working with the object
as well. The reference frame of the object is set
as the projected point of the centroid on the top

face of the brick, with the z’-axis directed upwards,
see figure 9.2. Note that in this figure the local
axes for a whole brick are shown, and that for cut
bricks the centroid not aligns with the center of
grid cell. Using the centroid has three benefits. It
is easy to find the centroid (of a surface) in CAD
software (with parametric modelling capabilities).
The centroid will always be within the objects
geometric boundaries, meaning the robot actually
does grip onto something. Lastly, the centroid
is the point of an object on which it balances in
equilibrium. This ensures little additional forces
and movements of the objects while being moved
by the robot.

Important is the order in which the bricks are
placed in the pallet station. An object is only
reachable if its top surface is completely clear of
any obstructions. The order is based on when
the brick is constructed. In the parametric model
this order is done after the construction sequence
has been determined. The lists in the data
tree containing the bricks in the vault has been
reordered based on the construction sequence.
This data tree of multiple lists is flattened to one
list (’list with bricks’). The pallet station is a spatial
grid of points positioned at the centroid of each
grid cell. Again these points are collected in a
flattened list (’list with points’). Each item (each
brick) in the list with bricks is moved to each point
in the list with points, including with the required
rotation to ensure the stacking is done correctly.
Which brick has to go to which point is based on a
’First in, Last out’ ordering system. The bricks that
are to be placed last are linked to the first points,
the points at the bottom layer of the spatial grid.
This not only ensures that the bricks are reachable
when needed, but also provides the certainty that
the packing arrangement is physically possible:
the stack of bricks rests on the pallet and does not
have a void beneath it.

With the bricks placed correctly in the pallet
station, together with the transformation of the
object coordinate system, the tool path algorithm
has all the information required to reach each
object correctly. At the pallet station five routines
are repeated for each object. First the robot
moves to a point slightly above the object, with the
correct pose of the end effector or tool. Secondly,
the tool is lowered to the origin of the object
coordinate system. Thirdly, the tool is activated to
connect the object to the robotic system. Fourth,
a movement similar, but reversed, as the second
routine is done to the point slightly above where
the object used to be. Lastly, the object is moved
away to the next station. The first and last routines

9.2. Adhesive station: moving passed a glue gun 69

are the transitions from one station to the other.
See figure 9.3 for this cycle.

9.2. Adhesive station: moving
passed a glue gun

The adhesive station is the second station in the
construction process. The adhesive station is the
area where the adhesive, be it mortar, plaster or
glue, is added to the brick. The current set up in
the parametric and simulation models is suited for
glue guns, for instance for epoxy. The adhesive
station consists of two parts. The first is the glue
gun, or whatever tool is used for the application of
the adhesive. The second is space for the robot
to rotate and move objects in proximity of the gun,
to be able to orientate the correct faces to the glue
gun. Again this station has a couple of boundary
conditions.

• To limit robot movements, the adhesive is
applied horizontally (the surface on which
it is applied is vertical). This way the
orientation of the objects taken from the
pallet station stay constant (flat, with the
end effector above the object, pointed
downwards). Afterwards as well, the
orientation of the objects does not change
drastically. The movement mostly includes
a (slight) tilt of the object, to orientate it
correctly to the sloped surface of the vault.

• The adhesive is stationary and the objects
are moved alongside it for application. This
reduces the need of an assistant to the robot
(either human or machine). It is likely this
has little influence on the time it takes to
apply the adhesive.

• The adhesive has an adequate high
viscosity that it may smear slightly, but not
for more than a few millimetres within the
first minute, to ensure the adhesive does
not droop from the object. Epoxy glues
applicable for ceramics (bricks) that harden
in a relatively small time are likely to fit this
assumption.

• A scanner, laser or other measurement
device is present next to the nozzle of the
glue gun, to determine the moments to
activate the gun.

• Only one type of adhesive is used in this
model. If multiple adhesives (like the
combination of epoxy/gypsum mortar and
Portland cement) were to be used, it is best
to have enough separation to ensure the
scanners for each adhesive aren’t activated,

not even when just passing by in a robot
movement.

The information for this station is set in three
pieces. The first information is the attachment
point of the object (the projected centroid on
the top surface) to the robot. The second is
the position of the glue gun. The last piece of
information is the set of vector lines that represent
the sides of the object to be glued. These vector
lines consist of the length of the side and the
direction relative to the centroid. This determines
the orientation of the brick and the distance of
the brick with the end-point of the glue gun. A
couple of bricks will only have one vector line to be
glued, while most will have multiple. The order of
applying the glue to each vector line is continuous
with how the robot has to rotate for the next vector
line. In other words,

f)d) e)

g) h) i)

c)a) b)

Figure 9.4: Routines at adhesive station (elements not to
scale): a) approach to station; b) alignment to muzzle, with
muzzle summetry axis shown; c) placement of adhesive; d)
end of placement; e) retreat from station; f) approach with
different orientation; g) alignment to muzzle; h) end of

placement of adhesive; i) retreat from station.

70 Chapter 9. Stations

a) top view 90° b) side view 90° c) top view 45°

Figure 9.5: Approach path through ’sliding’ (elements not to
scale); ’+’ represents the area resisting more bending/tensile
stresses, ’//’ represents the area resisting more shear force.

a)

c)

b)

d)

e)

f)

Figure 9.6: Routines at vault station (elements not to scale):
a) approach to vault; b) place object; c) wait for hardening; d)
detachment of object; e) retreat from object; f) back to initial

position.

the end point of the previous vector line is the
starting point of the next one. However, the robot
retracts from the glue gun to rotate the object for
the next vector line. This creates four routines per
vector line.
With the first routine the object is moved closely to
the glue gun, with the correct rotation. Its position
is off-center, aligned with the starting point of the
vector line. The second routine is to move the
object parallel to the symmetry axis of the muzzle
of the gun (see in figure 9.4b). The object is
moved along this parallel line until it reaches the
correct distance to the glue gun. This distance
is dependent on the used adhesive. With most
a millimetre or two should be fine, but a practise
run is advised. The third routine is to move the
object perpendicular to this muzzle axis. In this
step the adhesive is applied. In the last routine

the object is moved away from the glue gun. The
next routine would either be to move the object
to the next station, if it was the last vector line,
or to move and rotate the object as described for
the first routine. In figure 9.4 the full cycle for this
station is shown, with two vector lines to be glued
for this object. The total number of routines is
4 · # of vector lines.

9.3. Vault station: the target of
the bricks

The vault station is the third and last station in the
process. The vault station is the area where the
actual structure is constructed. The vault station
is the first station to place in the environment. After
all, this station is the goal of the whole process.
The other two stations are placed around the
structure. As with the previous two, this station
has initial and boundary conditions.

• It is assumed the supports of the structure
are in good condition for the vault. This
includes a clean and dry foundation that
is stiff, stable and strong. The foundation
or supporting element(s) are designed in
such a way that the objects placed onto
the support will have, at minimum, the
same structural mechanical properties as
the vault structure itself.

• Besides the vault to be constructed, no other
objects or structures are within the work
space environment.

The vault station requires three sets of information.
The first is, again, the attachment point of the
object. The second is the position in the vault. The
third piece of information is the existing structure.
Similarly to the situation at the pallet station, the
objects in the vault station could obstruct each
other in the construction process. Although it
should be able to construct each object, the tool
path to the end position could be hindered by the
existing structure. For this a special approach
path to the end position is used. The objects are
slided in their position. The benefit of sliding is
that the adhesive will be less skewed after placing
than would have been the case were it lowered
from directly above (where ’above’ is normal to
the vaults surface/curvature). This skewness
happens due to the friction between the objects
surfaces and its neighbours. The adhesive will
be distributed more to the top of the connecting
surfaces than to the bottom due to this skewness.
Sadly it is not possible to remove this skewness
entirely, but it is possible to control which surfaces

9.4. Environment 71

get what kind of skewness. By sliding, this
skewness will be mostly concentrated to the sides
of the objects. The most important surfaces
to be the least affected by the skewness, are
those resisting the tensile stresses occurring in
the structure. To ensure the adhesive has
the proper tensile stress capacity, the adhesive
has to be predictable, with the least skewness
present. In other parts of the surface the tensile
stresses will be less, allowing for (slightly) more
unpredictability. Thus, it is best to approach the
end position in such a way that the (parts of the)
surfaces experiencing the most tensile stresses
will have the last contact with the other objects
and their surfaces. A visualisation can be seen
in figure 9.5 for the orientations of 90° and 45°.

With the defined approach path the routines at the
vault station are as follows. The six routines are
similar to those found in the pallet station. The
first step is to approach the end position, based on
the above described approach path. The second
routine is to position the object in its end position.
There, the robot has to wait for the adhesive to
develop the required strength. The fourth routine
is to release the object. At the fifth routine the
robot retreats to a position above (where, again,
above is related to the normal) the object. The
sixth and last routine is to return to the initial
position upon completion of the project, or to
return to the pallet station for the next object. This
is illustrated in figure 9.6.

9.4. Environment
In figure 9.7 the full work space during
construction is shown. The pallet is the standard
size of an EU-pallet. The robot is made to scale
with a base of approximately 500 mm and a reach
of 3.125 mm (radius of reach is 1.562 mm, see
section 10.1 for the reason behind this reach).
The vault can only have a maximum span of 1,7
meters with a length of 1,8 meters. Lowering this
length will allow for a slightly longer span, but
increasing the length will reduce the maximum
span even more. In this scenario the robot only
builds upto the apex of the vault (shown as a red
dashed line) 0,85 meters away. This requires the
robot to be moved to the other side to complete
the build.

Another configuration is to place the robotic arm
between the foundations. This way, the robot
can reach vault spans of 2,6 meters. Sadly this
reduces the length of the vault it can construct at
once. If the robotic arm is placed on a (single-axis)
track though, it would allow the

a)

c)

d)

e)

f)

b)

Figure 9.7: Work environment during construction (top view,
configuration 1): a) robotic arm (in gray the arm at each

station); b) the reach of the arm; c) Pallet Station; d) Adhesive
Station; e) Vault Station (red outline is total vault, with the

apex notated with a dashed red line as well); f) Foundation of
vault.

a)

c)

d)

e)

f)

b)

g)
g)

g)

Figure 9.8: Work environment during construction (top view,
configuration 2)): a) robotic arm (in gray the arm at each

station); b) the reach of the arm; c) Pallet Station; d) Adhesive
Station; e) Vault Station (red outline is total vault, with the
constructable area shown to the right of the red dashed
curve); f) Foundation of vault; g) Extendible length of vault

due to the single-axis track.

72 Chapter 9. Stations

Figure 9.9: Spatial robotic assembly at ETH Zürich | ETH
Zürich

length of the vault to be as long as the track
can be. Figure 9.8 shows this configuration,
including the track. This way two construction
strategies are possible. The first one is to build
the vault with a stationary robot, where the robot
is moved only when that part of the vault it
can reach has been constructed (see the curved
red line in figure 9.8). An advantage is that
the vault has reached a stable structure quite
quickly in the construction process. The brick
pattern becomes more important though, since
the method described in section 9.3 may not be
possible in this configuration.

The second strategy is to build the first line
of bricks (the ones placed on the foundation)
first, where the coordination of the robot with
the other stations and the track becomes much
more complex. The advantage is that the
construction sequence is very similar as to the
first configuration in figure 9.7. However, the
construction space becomes very narrow as
construction reaches the apex. This also requires
a precise calibration of the work space.
Of course, many more strategies for both
configurations are possible. The first configuration
can also make use of a track to lengthen the
vault, while the second configuration can have
the robot placed on wheels to provide dual-axis
movement. Other configurations are possible as
well. For instance something similar to the robotic
assembly done at ETH Zürich, see figure 9.9.
Here the robotic arms hang from a gantry system
attached to the ceiling. If the assembly of the
thin-tile vault were to take place within a factory
or a construction site with part of the building’s
structure already overhanging this work space,
this would be an alternative. However, when
prefabrication is used, dynamics during transport
need to be taken into account as well. The
dynamics of the masonry structure are outside
the scope of this research.

10
Model input

10.1. Robot
Current technology in robotics and especially
catered for masonry, shows the use of a robotic
arm as most suitable. The robotic simulation
program has a wide variety of these available
in their library. Similar to choosing the right
epoxy, this can seem overwhelming for picking
the right robotic arm. However, unlike epoxy,
robotic arms can be categorized based on only
five specifications: reach, payload, weight, speed
and repeatability (combined with accuracy). One
other factor could be the ability to attach end
effectors. However, since a robotic arm is
basically useless without its end effectors or tools,
they should be able to attach a wide variety of
them.

First of all the speed of robotic arms. These are
not specified by the simulation program. Table
10.1 shows the speed of a couple of robotic arms.
These six-axis robots can rotate around their base
left right (JT1), with their shoulder up-down, with
their elbow up-down again, with their forearm
around their axis, with their wrist up-down and
with their end around their axis again (JT6). Of
course, the speedsmay differ from these numbers
based on the weight attached to the arm and the
Cartesian movement of the tool path versus the
motions of the robotic arm. How these speeds
and the mentioned factors result in a speed of the
Cartesian movement, is unknown by the author.
However, the differences seem very little, with a
maximum of 70°/sec (16% lower than 430°/sec).

The second specification is the repeatability (and
accuracy). Repeatability and accuracy are two
terms that can give a lot of confusion. Accuracy is
the ability to hit on target, whatever the direction
of the miss. Repeatability is the ability to hit the
same spot again, whatever the distance to the
target. It is common to find the repeatability of a
robotic arm, but less so its accuracy. However,

the repeatability is not a determining factor in
choosing the robotic arm, since themargin of error
is smaller than half a millimetre, sometimes even
smaller than a tenth of a millimetre. For general
building applications, this is precise enough.

The payload of the arm is the third specification.
As can be seen in figure 10.1a, the payload is
quickly over ten kilograms, with one exception at 3.
The weight of one brick is barely one kilo (unless
very large bricks are used, like 250×250×20 mm).
However, this payload includes the end effector.
It is unspecified how much an end effector may
weigh, but a couple of kilos is not out of the
question. Therefore, a payload of 3 kilos may just
be too few, while a payload of 10 or higher seems
sufficient. Most robotic arms fulfil this with the next
specification in mind.

The reach of the robot may be the most important
factor. As already stated in section 9.4, the reach
of the robot influences the maximum dimensions
of the vault. And with a movable robotic arm, how
many calibrated positions are required. It seems
the reach of a robotic arm, without any additional
machines, is up to 4,5 meters.

Table 10.1: Maximum speed of joint axes: 1) Motoman
MH50 II-20; 2) Fanuc M-710iC-20L; 3) Fanuc M-710iC-12L;
4) Kawasaki RS015X (Motoman, 2019; Fanuc, 2019, 2017;

Kawasaki, 2020)

Robotic arm 1 2 3* 4*
JT1 (°/sec) 180 175 180 180
JT2 (°/sec) 178 175 180 180
JT3 (°/sec) 178 180 180 200
JT4 (°/sec) 400 350 400 410
JT5 (°/sec) 400 360 430 360
JT6 (°/sec) 600 600 630 610

73

74 Chapter 10. Model input

3,100 3,110 3,120 3,130 3,140 3,150

5

10

15

20

reach (mm)

pa
ylo

ad
(k
g)

(a) Robots payload reach;

3,100 3,110 3,120 3,130 3,140 3,150

500

600

700

reach (mm)

se
lf-
we

igh
t(
kg
)

(b) Robots weight reach;

500 550 600 650 700

5

10

15

20

weight (kg)

pa
ylo

ad
(k
g)

(c) Robots payload weight;

KUKA Comau Fanuc Kawasaki Motoman

Figure 10.1: The relative positions of bricks around a
bricki;j , with the required edges in gray.

This limits the design space (immovable arm)
and/or construction time greatly. For instance, in
dwellings it isn’t uncommon to find spans of 5,6
or 7,2 meters. Since no greater reaches can be
used in the robotic simulation program, the vault
will have to have limited dimensions.
The last specification is the weight of the
robot. Since it is assumed here the construction
happens on site, the structure supporting the
robot cannot be assumed to be of industrial
standards. Although a strong maximum is not
present, it is more preferred if the robot were
only 500 kilos than over a 1.000. With 500 kilo
the robot is close to, or within the range of point
loads used for the calculation of structures, as
found in the Eurocode. Thus, a defined range
is unspecified in this research, a low weight
should be chosen for if other specifications are not
lowered much.
In figure 10.1 a selection of robots found in
the library of the simulation program are shown.
These have been selected on two criteria: a six-

axis robot and a reach of over 2 meters. The
full range of robots can be found in the figures
in appendix E. The Kawasaki and the Fanuc
(both specified in table 10.1) have a high reach
and a sufficient payload within this group. Thus,
these two will be used for the analysis on the
construction time.

10.2. Tool path
The tool path is in continuation of the chapters 4
and 9. Chapter 4 described how the geometry has
been attained, while chapter 9 showed how this
geometry is connected to the construction site.

The tool path requires two descriptions. The first
is that of the order of visiting the stations. The
second is to describe the implementation of the
orientation of the end effector within the tool path.

The tool path is the route the robotic arm has
to follow. This information is exported from the
parametric model to the simulation program. The
export can either be a set of points through which
the robot has to move to, or a curve along which
the robot moves. With the latter the total path
is described in the parametric model. With the
first, only the starting and destination point are
described, with the movement inbetween left to
the robot and the simulation program to figure
out. The stations have been modelled in the
parametric model as well. The description and
conditions from section 9.1 for instance, have
resulted in a list of points to be used within
the parametric model. The same goes for
the adhesive station. Although, to get to the
information from section 9.2, a couple of other
steps have to be taken as well. This has resulted
in three groups of components each with the
following tasks: to find the edges to apply the
adhesive to; to describe the line of the adhesive
applied to the bottom surfaces connecting two
wythes together; to convert these edges and lines
into positions and orientations (in the parametric
model this results in planes).

10.2.1. Edges
The edges to apply the adhesive to are found
from the vault model. First the surfaces next to
each brick are identified. This is done with the
data handling so far. To recap, the data tree
containing all the bricks is made from two-level
lists. The first level is the wythe of the brick, with
0 being the inner and 2 the outer wythe. The
second level is the row it is away from the support.
These rows are different than the courses of the
brick. This allows for easy and general selection

10.2. Tool path 75

criteria for which bricks are adjacent. Based on
the orientation of the wythes, these criteria do
differ. In the model three categories have been
identified: under 0°, 0° and over 0°. A glimpse of
why can already be seen in section 9.3 and figure
9.5. Each orientation has their own (part of) sides
to apply the adhesive to. The bricks orientated
at 0° have their short bottom side and bottom
half of both long sides selected. Bricks under 0°
have their bottom side and one of the longer sides
entirely selected. Bricks over 0° have the same,
but it is the other longer side.
With the help of the data structure these sides
can be selected easily. In the case of 0°, two
situations are defined. When an ’upper’ brick is
placed, only the previous brick in the row and the
brick in the row beneath are selected. When a
’lower’ brick is placed, the two bricks on either side
in the previous row are selected aswell. For under
0° and over 0° these bricks are the two closest in
the previous row and the previous laid brick in its
own row. In other words, let the placed brick be
the j-th brick in row i, then for each category the
following bricks are selected. See figure 10.2.

• For 0° at {i;j}: {i-1;j}, {i;j-1}, {i-1;j+1} (lower)
or;

• For 0° at {i;j}: {i-1;j}, {i;j-1} (upper, see
bricki; j + 1 in 10.1b);

• For all others at {i;j}: {i-1;j}, {i;j-1}, {i-1;j+1}.
This list differs slightly from the bricks mentioned
above. This is due to two factors. The first is
to remove duplicate selections. i-1;j andi;j-1 for
others than 0°will select the same edge. Only one
has to be selected. i;j-1 is preferred, because the
first row of bricks (directly to the support) does not
have a previous row to select from, while it does
need this edge selected. The same goes for i;j-1
and i-1;j-1 for bricks at 0°, where i;j-1 is preferred.
The second difference is due to the data structure.
Although the long edges that need to be selected
for non-0° bricks are opposites, the wythes with
bricks over 0° will be laid in reverse. The data
structure, as mentioned before, has twolevel lists.
These lists contain all the bricks in one row from
left to right (or from lowest x-value to highest x-
value in the global coordinate system).
While this suits bricks for under and at 0°, the
approach described in section 9.3 needs to be
altered for over 0°. That’s why wythes with bricks
over 0° have their lists reversed. The lists has
all the bricks in one row from right to left. Hence
why the selection relative to i and j can stay
the same. This procedure results in the correct

edges positioned within the used data structure
(although now the tree is at level 3: besides each
wythe and each row, each brick has also been
given its own list). These edges are only selected
though. They’re position and orientation in the
model are still related to the vault design.

10.2.2. Interface and plane
The second group of components are needed to
apply adhesive between the wythes. The bricks
from the second and third wythe have the edges
of the brick and its bottom applied with adhesive.
As with the edges, the adhesive is applied on
one line and not altered, like smearing, afterwards.
This line has a thickness similar to the width of
the muzzle of the adhesive gun. To apply the
adhesive to the whole bottom of the surface, a
space-filling curve is required. The space-filling
curve here is lines parallel to the longer edges of
the brick, with these lines connected at their ends.
This shape is visualized in figure 10.3.

The third group of components relates the lines
from the edges and the interfaces to the position
and orientation of the bricks and end effector. As
mentioned in section 9.2 the adhesive is applied
around the brick. This means each of the edges
found in the first group has to be transformed to
the horizontal plane and in front of the adhesive

(a) bricks orientated at 0°
around i;j;

{i;j}

{i-1;j+1}

{i;j+1}

{i-1;j-1}

{i;j-1}

{i-1;j}

Support

Free-hanging

Fr
ee

 e
dg

e

Fr
ee

 e
dg

e

(b) bricks orientated over 0°
around i;j;

{i;j}

{i-1;j}{i-1;j+1}

{i;j+1}
{i;j-1}

{i+1;j}

Support

Free-hanging

Fr
ee

 e
dg

e

Fr
ee

 e
dg

e

(c) bricks orientated under 0°
around i;j;

{i;j}

{i-1;j} {i-1;j+1}

{i;j+1}
{i;j-1}

{i+1;j}

Support

Free-hanging

Fr
ee

 e
dg

e

Fr
ee

 e
dg

e

Figure 10.2: The relative positions of bricks around a
bricki;j , with the required edges in gray.

76 Chapter 10. Model input

Figure 10.3: The layout of the adhesive on the bottom side
of the bricks from the second and third wythe. Both a whole

and cut brick are shown.

l plane to have the adhesive station in the normal
direction of the bottom surface.
station. Meanwhile, the bricks in the vault design
have their plane as described in chapter 9. These
planes are transformed in parallel with the edges.
As can be seen from figure 10.2 and as described
in section 9.2, the adhesive is applied to a set of
lines, somewhat in a continuous fashion. Since
these lines are straight, the tool path created in
the robotic simulation program will be as desired,
if only the starting and destination points are
given. That is, so long as the orientation at both
is the same. Thus, with the edges transformed
correctly passed the adhesive station; with the
planes transforming along side the edges; and
with the end effector having sufficient information
from these planes, the third group results in a list
of planes (again in the three-level data structure)
through which the robotic arm has to move. The
derivation of the planes for the interface are in a
similar fashion. However, here the bricks aren’t
flat in the horizontal plane, but in the vertica

10.2.3. Passed stations
At each station the actions as described in chapter
9 lead to the tool path at that station. The previous
subsection also showed how the tool path at
the adhesive station is constructed. This also
included the planes throughwhich the robot has to
move. At the pallet and vault stations these planes
are derived much simpler. As described in their
respective sections, the position and orientation
of the end effector coincide with the centroid
projected on the top surface of the brick. All these
planes representing the actions ensure that the
robotic arm moves correctly through each station.

The movement between the stations is based on
the start and end planes of each station’s (first and
last) actions. The plane from the last action of one
station is the starting point for themovement to the
destination point, which is the plane from the first
action of the next station. The order in which the
robot visits the stations is as follows.

1. Home position of robotic arm;
2. Pallet station;
3. Adhesive station;
4. Vault station;
5. Repeat step 2-4 until the structure has been

constructed;
6. Home position of robotic arm.

The export from the parametric model to the
simulation program is done with a script provided
by the simulation program and altered for further
usability. This program takes a CSV-file of six
values: XYZWPR. These are standard robot
and airplane coordinates. Here XYZ are the
Cartesian coordinates and WPR are the Euler
angles (RoboDK, 2018). WPR stands for Yaw,
Pitch and Roll. Roll is the rotation around the
effector’s longitudinal axis. Pitch is the rotation
around the transverse axis. Yaw is the rotation
around the vertical axis of the end effector.
With the planes per station per brick now in
the correct order, a full list of positions and
orientations is ready for the robotic arm. However,
these planes need to be related to the base
reference frame for the simulation program.
That’s where XYZWPR is used. Dr. S. Asut
from the TU Delft has provided a component
for the parametric model. The output of this
component gives the yaw, pitch and roll. The
planes’ origin give the x-, y-, and z-coordinates.
Combining these in the correct order, separated
by commas, will give a csv from the parametric
model. Additionally, the CAD program can
stream the contents of a csv to a file. Thus,
the exported file is automatically updated. The
parametric model also exports a seventh CSV-
value. Besides XYZWPR, the wait time at each
plane is also exported. This is zero for almost
all planes, except for the third action at the vault
station. The script file in the simulation program
has been altered to extract this seventh value
appropriately.

.

Part V

Results & Conclusion

79

11
Results

11.1. Parameters of the model
The parameters used in the model can be split
into two categories: design and geometric related
parameters and structural related parameters.
The design and geometric related parameters are
shown in figure 11.1. All parameters and related
information are shown in table 11.1. Although
the global shape of the vault has the ability to
be double curved, this has not been worked out
for later stages in the parametric model. The
orientation of the brick pattern is similar. Although
most angles will work for the general shape, only
for -45°, 0° and 45° is the certainty this will work
in later stages. The parameters are based on the
following assumptions.

• The vault has a single curvature over the
span and a curvature of 0 along the length;

• The robots used are the Fanuc M-710iC-
12L and the Kawasaki RS015X (see section
10.1;

• The thin bricks are cut from normal clay
bricks, similar to brick slips;

• The vault can be reduced to an arch of
thickness per stretching meter;

• The vault is only analysed fromone side until
the apex, where the construction time of the
other side is assumed similar.

11.2. Configurations
The construction time of various parametric inputs
have been looked into. To reduce the number
of computations, a base parametric input has
been set-up. With each additional computation,
only one parameter will be altered to investigate
its influence. The base parametric input can
be found in table 11.2. The alteration per
computation is shown in table 11.3. The used
robot is changed in the first altered computation
to show the influence of the robotic movements

and the robotic dimensions. With a changed
design, the second altered computation puts the
influence of the shape and therefore the position
of the bricks in a spotlight. The third computation
switches the angles of the wythes to see if this
has any influence. The base computation uses
a relatively low pot life to give greater emphasis
to other aspects of the construction, since it is
expected that the hardening time will take a large
portion of the construction. Therefore, the pot life
is increased in the fourth altered computation to a
pot lifemore likely to bewithmost suitable epoxies.
Narrowing the length of the course of the vault in
the fifth computation influences both

BVault

Factor×BVault

LVault

∠α

Unit

lUnit

bUnit

hUnit
or t

hMortar

ρ

Figure 11.1: The design or geometric related parameters in
the model.

81

82 Chapter 11. Results

Table 11.1: Parameters of the model and related information.

Parameter Description Range Unit
Design or geometric parameters

BV ault The span of the vault (transverse axis) ≤ 2,6 m
LV ault The course length of the vault (longitudinal axis) 1,8 m
Factor The overlength of the catenary relative to the span >1,0 -
∠α The angle of the course with the transverse axis -45 - 45 °
hMortar The thickness of the adhesive beds (all sides) 0,001 - 0,020 m
lUnit The length of the brick units (edge of bed and stretcher

faces)
0,100 - 0,600 m

bUnit The width of the brick units (edge of bed and header
faces)

0,040 - 0,240 m

hUnit The thickness of the brick units (edge of stretcher and
header faces)

< lUnit∨bUnit m

t See hUnit* * m
Structural parameters

ρ Density of the brick unit (g = 9, 81m/s², γ is mass density) 1400 - 1800 kg/m³
fb The compressive strength of the brick units 5-30 MPa

fm,init The initial compressive strength of the adhesive upon
release of the unit

> compressive
stresses
due to the
weight of one
cantilevering
brick

MPa

fm,final The final compressive strength of the adhesive 1,5-7,5 MPa
fvk0 The initial shear strength of the masonry 0,30 MPa

fm,t,init The initial tensile strength of the adhesive upon release
of the unit

> tensile
stresses
due to the
weight of one
cantilevering
brick

MPa

fm,t,final The final tensile strength of the adhesive 0,5-2,5 MPa
tpotlife The time for the adhesive to reach fm,init and fm,t,init 0,5 - 100 minutes
∆x The step between analysed cross-sections in the

domain/shape of x within the parametric model
∆x < ∆rows m

the design, similar to Comp2, but also reduces
the time a row of bricks can develop strength
before moving on to the next one. The sixth
altered computation changes the work space or
work environment with which also the robotic
movements change. The last computation
changes the preferred construction sequence.

11.3. Computation 0: the base
parameter input

The first computation is the base parameter input.
In table 11.2 the used values for this computation
can be found.
The structure has been analysed on its phased
stresses, strengths and consequently unity check
through time. It is possible to lay 31 rows of

bricks before the analysis shows the strengths
have been exceeded. In figure 11.3 a couple
of these analyses are shown. The figures show
the stresses and strengths throughout the whole
structure after placement of the row of bricks 3, 17,
31 and the failure at 32. See chapter 7 for further
explanation of the graph.

The construction sequence shows a pattern in
line with the a.s.a.p. preference. Save for a few
exceptions, results the placement of a row in the
possibility of placing the next row in the wythe
following. The order 0 → 1 → 2 → 0 is the
standard. Deviation is likely due to the longer {u}
of the second wythe (α = 0°). The sequence is
shown in figure 11.2. This sequence results in 303
bricks being placed.

11.3. Computation 0: the base parameter input 83

Table 11.2: Base parameter input: Comp0

Parameter Value Unit
Robot Kawasaki -
Config. 1 -
BV ault 3,6 m
LV ault 1,2 m
Factor 1,1 -
∠α0 -45 °
∠α1 0 °
∠α2 45 °

hMortar 0,005 m
lUnit 0,210 m
bUnit 0,100 m
hUnit 0,020 m
ρ 1750 kg/m³
fb 20 MPa

fm,init 0,1 MPa
fm,final >fb MPa
fvk0 0,30 MPa

fm,t,init 0,1 MPa
ft,final 2,0 MPa
tpotlife 0,5 minutes
tcuretime 40 minutes

∆x 0,04 m
wrule a.s.a.p. -

Table 11.3: Altered parameter for computations

Parameter Value Unit
Comp1 Robot Fanuc -
Comp2 Factor 1,25 -
Comp3 ∠α0 0 °

∠α1 -45 °
Comp4 tpotlife 5 minutes
Comp5 LV ault 0,8 m
Comp6 Config. 2 -
Comp7 wrule a.l.a.p. -

w.0

w.1

w.2

3rd 17th 31st

Figure 11.2: The construction sequence of the first
computation.

(a) Left: Stresses (lines) and strengths (area) of the structure after the third brick has been placed; right: the unity check through the whole structure,
shown at the four interfaces from figure 6.5;

Figure 11.3: The results from the structural analysis of the first computation.

84 Chapter 11. Results

(b) The stresses, strengths and unity checks after the seventeenth brick;

(c) The stresses, strengths and unity checks after the thirty-first brick;

(d) The stresses, strengths and unity checks after the thirty-second brick; the dashed line in the left graph shows the x-position of failure, labelled in
the right graph as well;

Figure 11.3: The results from the structural analysis of the first computation. The x-axis is the cantilevering length of the structure.
On the y-axis are respectively the stresses (in MPa) and the unity check. In the left graph four lines are shown, which are the

stresses (σ) at the interfaces (see figure 6.5). Additionally, five strengths (f) are shown as an area. For the second interface two
strengths are shown, since both compression and tension occur at this interface. These strengths are not drawn simultaneously,
but only when the stresses are compressive or tensile as well. In the right graph six unity checks are shown. Besides the four from
the stresses on the left (solid lines), two additional checks are shown as well (dashed). These occur at the interfaces between the
wythes, and are the approach from the wythe below, as the other ones are with the approach from the wythe on top. The colours
are consistent for the interface: the bottom of the cross-section is red, the interface between the first and second wythe is purple,
the interface between the second and third is blue and the top of the cross-section is green. See chapter 7 for further explanation

of the graph.

11.3. Computation 0: the base parameter input 85

Figure 11.5 shows the simulation of the
construction with a robot. The construction time
noted is 1 hour and 8 minutes. However, this
is achieved with a wait time of 800 milliseconds.
This should be half a minute (30.000 seconds).
With 303 bricks, this is an increase of 2 hours and
28 minutes (8.847.600 milliseconds), resulting in
a total construction time of 3 hours and 36minutes.
The construction time per instruction, per brick
and per station are shown in figure 11.4. The
length to travel has little to do with the time for
each instruction. Excluding the hardening time,
an upper and lower bound can be found for the
cycle time. The little variance in cycle times with
high travel length is likely due to one joint rotation
taking up to 2 seconds and all other joints having
a less significant or smaller rotation. The higher

variance in cycle time for low travel lengths is
likely due to the little rotation all joints have to
take (low cycle time) and to one or more joints
requiring a high rotation due to the complicated
movement in close space. Another aspect is
the increased cycle time due to the increase in
instructions. As chapter 9 describes, the vault
and pallet station only have three instructions,
always. The adhesive station is dependent on
the number of edges, but at least 4. Therefore,
the reason for the difference in time per station
also becomes clear. Minor differences in required
movements won’t result in major differences (as
is the case between the vault and pallet station),
but the increase in instructions will. However,
this increase is little compared to the effect of the
hardening time.

(a) The time the robot needs to perform this instruction (top) in the first computation, and its accompanying average speed doing that (bottom), with
the hardening time included (left) and excluded (right, note the change in values of the vertical axis);

(b) The time the robot needs to place each brick (top) with (left) and without (right, note change in vertical axis and colouring is based on number of
instructions) the hardening time;

Figure 11.4: The construction time results of the first computation. Where possible have axes stayed the same. The instructions
at the vault take up a large amount of time. The cloud of points with a much higher cycle time in the top left graph of figure 11.4a
are the placement of the bricks including the hardening time. The time per instruction in general has an upper and lower bound,

with the increase in speed compensating for the increase in travel length. This continues with the time per brick as well, where the
increase in cycle time can be attributed to the increase in instructions. The total time per station in this computation shows that the

vault is the main component, but the adhesive surpasses it when the hardening time is excluded.

86 Chapter 11. Results

Figure 11.5: The configuration in the simulation.

11.4. Computation 1: Fanuc
robotic arm

The structural analysis is the same as in section
11.3. 303 bricks can be placed. The robotic arm

has changed, which has resulted in less longer
travel lengths compared to the first computation.
The total construction time is 3 hours and 43
minutes, which is an increase of 7 minutes (+3%)
compared to the first computation.

(a) The time the robot needs to perform this instruction (top) in the second computation, and its accompanying average speed doing that (bottom),
with the hardening time included (left) and excluded (right, note the change in values of the vertical axis);

(b) The time the robot needs to place each brick (top) with (left) and without (right, note change in vertical axis and colouring is based on number of
instructions) the hardening time;

Figure 11.6: The construction time results of the second computation. Where possible have axes stayed the same. Points of
interest visible here, but similar to figure 11.4, are not repeated. Using a different robotic arm has resulted in less extreme travel

lengths. The maximum travel length of any instruction has reduced with 33%.

11.5. Computation 2: Factor = 1.25 87

11.5. Computation 2: Factor =
1.25

The structural analysis of a changed design of the
vault has resulted in more bricks possible to place:
36 rows compared to 31. However, this does not
result in an increase of the cantilever length, since

the curve length of the vault has increased as well.
In other words, the same length of the bricks in a
row, result in less length in the global Cartesian
coordinates. 351 bricks are constructed. The
total construction time is 4 hours and 19 minutes.
This is an increase of 43 minutes (+20%).

(a) The stresses, strengths and unity checks after the thrity-sixth brick;

(b) The stresses, strengths and unity checks after the thirty-seventh brick; the dashed line of failure in the left graph is invisible since x=0, labelled in
the right graph as well;

Figure 11.7: The results from the structural analysis of the third computation. The x-axis is the cantilevering length of the structure.
On the y-axis are respectively the stresses (in MPa) and the unity check. In the left graph four lines are shown, which are the

stresses (σ) at the interfaces (see figure 6.5). Additionally, five strengths (f) are shown as an area. For the second interface two
strengths are shown. In the right graph six unity checks are shown. Besides the four from the stresses on the left (solid lines), two

additional checks are shown as well (dashed).

(a) The time the robot needs to perform this instruction (top) in the third computation, and its accompanying average speed doing that (bottom), with
the hardening time included (left) and excluded (right, note the change in values of the vertical axis);

Figure 11.8: The construction time results of the third computation

88 Chapter 11. Results

(b) The time the robot needs to place each brick (top) with (left) and without (right, note change in vertical axis) the hardening time;

Figure 11.8: The construction time results of the third computation. Where possible have axes stayed the same. Points of interest
visible here, but similar to previous figures, are not repeated. The different shape of the vault has resulted in some extreme

manoeuvres for execution. Manual alteration for these movements would be necessary, see 12.

11.6. Computation 3: Wythe orientations swapped
First wythe and second wythe swapped: α0 = 0 & α1 = −45. The extend of the first row of the first
wythe is important (howmuch is cut off from the bricks to make the cut bricks of the first row?). The further
the first row(s) are (the larger the bricks in the first row), the lower the number of bricks can be placed.
However, even in the most optimal form, only six bricks can be placed, without changing other parameters
as stated in table 11.3.

Second wythe and third wythe swapped: α1 = 45 & α2 = 0. The other possibility (the last one is
trivial with same, but opposite α) results in a similar structural analysis as the first computations. Now, 33
rows of bricks can be placed, where the second wythe, with its smaller length increments, results in more
rows to be placed. 321 bricks can be constructed. The total construction time is 4 hours and 0 minutes,
an increase of 24 minutes (+11%).

(a) The stresses, strengths and unity checks after the thrity-third brick;

Figure 11.9: The results from the structural analysis of the fourth computation

11.7. Computation 4: Potlife = 5 minutes 89

(b) The stresses, strengths and unity checks after the thirty-fourth brick; the dashed line in the left graph shows the x-position of failure, labelled in
right graph as well;

Figure 11.9: The results from the structural analysis of the fourth computation. The x-axis is the cantilevering length of the
structure. On the y-axis are respectively the stresses (in MPa) and the unity check. In the left graph four lines are shown, which are
the stresses (σ) at the interfaces (see figure 6.5). Additionally, five strengths (f) are shown as an area. For the second interface
two strengths are shown. In the right graph six unity checks are shown. Besides the four from the stresses on the left (solid lines),

two additional checks are shown as well (dashed).

(a) The time the robot needs to perform this instruction (top) in the fourth computation, and its accompanying average speed doing that (bottom), with
the hardening time included (left) and excluded (right, note the change in values of the vertical axis);

(b) The time the robot needs to place each brick (top) with (left) and without (right, note change in vertical axis) the hardening time;

Figure 11.10: The construction time results of the fourth computation. Where possible have axes stayed the same. Points of
interest visible here, but similar to previous figures, are not repeated. To reduce the calculation time of each computation,

computations have a reduced number of instructions (10% compared to the first three computations). This also results in a lack of
data to continue the analysis between the three stations.

11.7. Computation 4: Potlife = 5
minutes

The structural analysis with an increased pot
life has not resulted in any significant change
compared to the first computation. This is

reflected in the number of bricks that can be
constructed: 303. The total construction time,
however, has increased to 26 hours and 30
minutes, a change of 22 hours and 54 minutes
(+736%).

90 Chapter 11. Results

(a) The stresses, strengths and unity checks after the thirty-first brick;

(b) The stresses, strengths and unity checks after the thirty-second brick; the dashed line in the left graph shows the x-position of failure, labelled in
right graph as well;

Figure 11.11: The results from the structural analysis of the fifth computation. The x-axis is the cantilevering length of the
structure. On the y-axis are respectively the stresses (in MPa) and the unity check. In the left graph four lines are shown, which are
the stresses (σ) at the interfaces (see figure 6.5). Additionally, five strengths (f) are shown as an area. For the second interface
two strengths are shown. In the right graph six unity checks are shown. Besides the four from the stresses on the left (solid lines),

two additional checks are shown as well (dashed).

(a) The time the robot needs to perform this instruction (top) in the fifth computation, and its accompanying average speed doing that (bottom), with
the hardening time included (left) and excluded (right, note the change in values of the vertical axis);

(b) The time the robot needs to place each brick (top) with (left) and without (right, note change in vertical axis) the hardening time;

Figure 11.12: The construction time results of the fifth computation. Where possible have axes stayed the same. Points of interest
visible here, but similar to previous figures, are not repeated. The graph to show the time per station is omitted, as mentioned in the

previous section. The cycle times of the instructions including the hardening have changed, but that is to be expected.

11.8. Computation 5: L=0.8m 91

11.8. Computation 5: L=0.8m
The reduced length of the course of the vault has
resulted in less time for the strength to develop
before a next row/load is added. Only 12 rows of

bricks can be placed, resulting in 78 bricks in total.
The construction time has also reduced because
of this: 59 minutes. This is a reduction of 2 hours
37 minutes (-73%).

(a) The stresses, strengths and unity checks after the fifth brick;

(b) The stresses, strengths and unity checks after the thirteenth brick; the dashed line in the left graph shows the x-position of failure, labelled in right
graph as well; the stresses in the final construction are trivial;

Figure 11.13: The results from the structural analysis of the sixth computation. The x-axis is the cantilevering length of the
structure. On the y-axis are respectively the stresses (in MPa) and the unity check. In the left graph four lines are shown, which are
the stresses (σ) at the interfaces (see figure 6.5). Additionally, five strengths (f) are shown as an area. For the second interface
two strengths are shown. In the right graph six unity checks are shown. Besides the four from the stresses on the left (solid lines),

two additional checks are shown as well (dashed).

(a) The time the robot needs to perform this instruction (top) in the sixth computation, and its accompanying average speed doing that (bottom), with
the hardening time included (left) and excluded (right, note the change in values of the vertical axis);

Figure 11.14: The construction time results of the sixth computation

92 Chapter 11. Results

(b) The time the robot needs to place each brick (top) with (left) and without (right, note change in vertical axis) the hardening time;

Figure 11.14: The construction time results of the sixth computation. Where possible have axes stayed the same. Points of
interest visible here, but similar to previous figures, are not repeated.

11.9. Computation 6:
Configuration 2

The structural analysis is the same as in section
11.3. 303 bricks can be placed. The results
from this configuration differ from all other
computations. The upper and lower bound with

the cycle time are less clear, while the cycle
speeds are organized in two widening lines, like
tongs. The total construction time is 4 hours and
2 minutes, which is an increase of 26 minutes
(+12%). Figure 11.15 shows the configuration in
the simulation.

Figure 11.15: The configuration in the simulation.

(a) The time the robot needs to perform this instruction (top) in the seventh computation, and its accompanying average speed doing that (bottom),
with the hardening time included (left) and excluded (right, note the change in values of the vertical axis);

Figure 11.16: The construction time results of the seventh computation

11.10. Computation 7: preferred sequence: a.l.a.p. 93

(b) The time the robot needs to place each brick (top) with (left) and without (right, note change in vertical axis) the hardening time;

Figure 11.16: The construction time results of the seventh computation. Where possible have axes stayed the same. Points of
interest visible here, but similar to previous figures, are not repeated.

11.10. Computation 7: preferred
sequence: a.l.a.p.

The structural analysis results in 31 rows to
be constructed. This is similar to the first
computations and results in the same number of
bricks: 303. However, the resulting stresses,
especially at the support, are much lower than the
ones found in the first computation. This suggests
it could have gone further, had it not stopped due
to the low strengths and high stresses at the end
of the cantilever. The total construction time is
3 hours 44 minutes, which is an increase of 8

minutes (+4%).

w.0

w.1

w.2

3rd 17th 31st

Figure 11.17: The construction sequence of the eigth
computation.

(a) The stresses, strengths and unity checks after the thirty-first brick;

(b) The stresses, strengths and unity checks after the thrity-second brick; the dashed line in the left graph shows the x-position of failure, labelled in
right graph as well;

Figure 11.18: The results from the structural analysis of the eighth computation. The x-axis is the cantilevering length of the
structure. On the y-axis are respectively the stresses (in MPa) and the unity check. In the left graph four lines are shown, which are
the stresses (σ) at the interfaces (see figure 6.5). Additionally, five strengths (f) are shown as an area. For the second interface
two strengths are shown. In the right graph six unity checks are shown. Besides the four from the stresses on the left (solid lines),

two additional checks are shown as well (dashed).

94 Chapter 11. Results

(a) The time the robot needs to perform this instruction (top) in the eighth computation, and its accompanying average speed doing that (bottom), with
the hardening time included (left) and excluded (right, note the change in values of the vertical axis);

(b) The time the robot needs to place each brick (top) with (left) and without (right, note change in vertical axis) the hardening time;

Figure 11.19: The construction time results of the eighth computation. Where possible have axes stayed the same. Points of
interest visible here, but similar to previous figures, are not repeated.

11.11. Overview&final cantilevers
in design model

In figure 11.20 all vaults from the design model,
based on each computation, are shown. They

show the completion of the vault and each wythe.
Table 11.4 shows the results of the full assembly
of the vaults per computation.

Table 11.4: An overview of all computations and their total assembly results. Additionally representative values from literature are
presented as well.

Computation Bricks Time
[min] Length [m] Time per

brick [sec]
Length per
brick [m]

Bricks per
workday

” ” without
hardening

Comp0 303 216 2.702 42,8 8,92 673 2.250
Comp1 303 223 2.704 44,3 8,92 650 2.014
Comp2 351 259 3.223 44,3 9,18 650 2.014
Comp3 321 240 2.903 44,9 9,04 641 1.933
Comp4 303 1.590 2.881 314,8 9,51 91 1.946
Comp5 78 59 670 45,1 8,59 639 1.907
Comp6 303 242 3.148 47,9 10,39 601 1.609
Comp7 303 224 2.705 44,4 8,93 649 2.000
2 masons 110sec. 3.3 1200-

2000

11.11. Overview & final cantilevers in design model 95

(a) Final vault from the design model, with
computation 0;

(b) Final vault from the design model, with
computation 1;

(c) Final vault from the design model, with
computation 2;

(d) Final vault from the design model, with
computation 3;

(e) Final vault from the design model, with
computation 4;

(f) Final vault from the design model, with
computation 5;

(g) Final vault from the design model, with
computation 6;

(h) Final vault from the design model, with
computation 7;

Figure 11.20: Design models after each computation and their full construction.

12
Discussion

In this chapter the three models, the used values
and the results are discussed. The discussion
focusses on three points: the applicability of
the models, the reliability of the values and the
remarks on the results.

12.1. The applicability of the
models

This research has been split into three parts,
each with their own model. The design model
defines the structure and the bricks position and
orientation. The engineering model analyses the
strength and stresses occurring in the structure
and determining in which order construction has
to commence. The robotics model translates the
CAD-model for CAM-purposes. The model also
simulates the robotic movements to retrieve the
construction time and length.

12.1.1. Design model
The design model was originally intended to be
handled by additional software in Grasshopper.
Based on a preliminary literature review,
promising plug-ins like BrickDesign seemed
applicable for further use. However, the thin-tile
vault is a complicated structure and masonry is
little applied beyond walls. Two difficulties in this
research, which have not been fully explored,
are the positioning of the brick pattern along
non-primary curvatures and the reassurance the
bricks have a proper distance in-between.

The design model is therefore limited to single-
curvature vaults only. The definition of the thin-
tile vault in this design model, however, may
allow an easy expansion into more complex
curvatures and eventually free-form vaults. The
vaults in the research by ETH Zürich are based on
Rhinovault and therefore catenary curves. When
the (free-form) vault is partitioned in sections

with consistent curvature, the same procedure
as presented in this research is applicable. The
model also allows for an expansion into more
wythes than the used three. In one research at
ETH, ribs were even applied to the vault as well.
As long as the vault base surface is shaped to
allow these ribs, the author deems it possible
this can be implemented in this design model
as well, with relative ease. It is unclear how
the Block Research Group from the ETH made
their brick patterns, with some indication in their
research on voussoirs. With the use of skilled
masons, it may not be necessary to provide a
brick pattern in such detail as in this research.
Additionally, mathematics may allow for even
better definitions or widen the range of complex
geometries that can be used with this model. An
example is to combine this brick pattern definition
with Gaussian curvatures.

The single-curvature allowed for an easy
inspection of the voids between the bricks. It is
clear that the thickness of the adhesive is suitable
for the dimension ranges of this model. However,
two improvementswould allow amore conssistent
gap between the bricks. First of all, if each wythe
is created from their own vault base surface, the
distance between points may not have increased
with each next wythe placed on top. Furthermore,
the curvature of the vault can provide a maximum
and minimum thickness of that wythe’s mortar
beds, before the bricks collide with each other
due to that curvature. Additionally, this can also
provide the difference in distance between the top
of the bricks and the bottom, both per course as
well as between courses. This is true as well for
the distance between the bricks per wythe.

97

98 Chapter 12. Discussion

Figure 12.1: X-positions ’belonging to’ the bricks ’A’ and ’B’
where the assigned strengths (fk(t) in MPa) for those
x-positions is shown above and the ’long’ arms for the

stresses. The dashed red area is the actual strength of that
section, if the strength and stresses were assigned

separately.

12.1.2. Engineering model
The engineering model is a final product
based on an exploration and analysis in a
multitude of software. In the end the information
from Grasshopper has been combined with
Python to produce the results. Using Python
within Grasshopper has proven to give a slow
computation speed. Thus, moving to external
Python software was necessary. The benefit of
this interaction, which may have been possible
as well with other software, is the ease to transfer
data between the two programs with the help of
csv-files.

The structure in the engineering model is a
simplification of the design model. This leaves
a lot of room for further research. Three points
especially are of interest: the simplification to an
arch, the discrete analysis of the cross-sections
and the assignment of the strengths per cross-
section.
The vault has one curvature, has a thin cross-
section and is both wide enough to distribute
local force concentrations and small enough to be
homogeneous. This makes the simplification to
an arch justifiable. However, during construction
asymmetry occurs along the vault’s path when
half of the bricks of a row have been placed. This
could result in additional stresses that have not
been accounted for in this model. Furthermore,
the simplification will create problems when other
design types of the thin-tile vault are used. Double-
curvature, thicker cross-sections and larger
dimensions will not allow this simplification.

In the engineering model the bricks have been
reduced to one row and these rows again to a set
of points with which the structure is analysed for
collapse. The reduction is part of the simplification
of the arch, but collapsing the bricks of one row to

one point may result in less favourable situations.
To give two examples: the wythes analysed have
an angle of -45°, 0° and 45°. The design model
has had a limited test and seems to be working
for more angles, like 30° and 60°. This will result
in a problem for the engineering model, though.
Since bricks in one row may deviate a lot relative
to the average centre point of the entire row of
bricks, the occurring stresses will differ greatly per
brick. The distance of these bricks to the support
may differ too much compared to the average
centre point. The second example stems from the
overlapping of the bricks. In themodel this is done
by the starting and end points of the entire row. If
a next row of bricks is analysed for placement, it
could be denied, since one of these bricks would
have a greater cantilever than one of the bricks
already placed. However, these two bricks may
not be close to each other. Thus, the deny is
invalid. In this same alley, by using a set of cross-
sections to test the unity check, it is possible an
exceedance has occurred, but it did not happen
in any of the provided cross-sections. Although
the linear-elastic analysis has proven to be the
correct analysis to use, a more extensive analysis
will provide a better reassurance the strength has
not been surpassed by the stresses.

The structural analysis in Python also leaves room
for improvement. The stresses and strengths
are assigned to these average centre points as
well. A placed brick results in stresses in a given
cross-section when the centroid of that brick is
further from the support than the cross-section.
This results in lower stresses in a given cross-
section when the centroid of a brick is not further
than this cross-section, but the cross-section is
through that brick (see the first two blue lines
in figure 12.1). This is of little concern, since
the largest part of the stresses is due to the
cantilevering length, which is small in this case.
However, what goes for stresses, also applies to
strengths. Again the cross-section is further than
the centroid. This results in no stresses and no
strength for this cross-section. Now the next row
of bricks is placed. This cross-section will receive
the stresses and strengths based on this row of
bricks, making it similar to the other blue lines in
figure 12.1. Although this does not matter for the
stresses, it does create a problem for the strength.
Now the cantilevering length is relatively large,
while the strength is relatively low.
In reality, it would have a higher strength, since the
cross-section is actually in a brick which has been
placed earlier, and therefore has a higher strength.
This makes the analysis more conservative. In

12.1. The applicability of the models 99

figure 12.2 the first computation is done with a
slightly higher initial strength. Now ’brick 32’
can be placed (wythe 0, row 13). This was
not possible in the first computation, see figure
11.3 One more row hereafter and the tensile
stresses at the support would become too high,
which is independent of the problem described
in this paragraph. However, with this last row
placed, the first wythe would have reached the
apex of the vault. Qs stated in section 7.1, the
construction sequence based on a.l.a.p. gives a
longer construction sequence. Figure 12.3 and
section 11.10 indicate this as well.

With a.l.a.p. up to 36 rows can be placed, instead
of the 32 with a.s.a.p. and the 31 with the
lower initial strengths. 36 is not the maximum
due to the structural analysis, though. Here the
first wythe has reached the apex, and the other
wythes cannot be placed without overlap. Thus,
even more bricks can be placed than required
with a.l.a.p. and higher initial strengths, but the

structural analysis has not been checked if it could
take the downwards curved part of the vault.

12.1.3. Robotic model
The robotic model provides all the poses to be
applied on the robot. Each pose is made from
the plane describing the geometry. The robotic
instructions and programs are created while
importing the poses. This results in simulations
per instruction and per program. In both the
robotic model and in the simulation improvements
can be made.

The current script importing the poses
and creating the instructions and programs,
automaticallymakes everything joint moves. Joint
moves have the benefit that they are the fastest
movement possible, since the joints move as little
as possible. However, with certain instructions
it is not the robotic movement that is governing,
but the movement of the object. The instructions
for picking and placing, for instance, require

(a) Left: Stresses (lines) and strengths (area) of the structure after the thirty-second brick has been placed; right: the unity check through the whole
structure, shown at the four interfaces from figure 6.5;

(b) The stresses, strengths and unity checks after the thirty-third brick;

Figure 12.2: The stresses, strengths and unity checks of the first computation with the initial strengths raised to 0,13 MPa (+0,03
MPA). Shown are the last possible row of bricks to be placed and the row placement resulting in failure.

100 Chapter 12. Discussion

(a) Left: Stresses (lines) and strengths (area) of the structure after the thirty-sixth brick has been placed; right: the unity check through the whole
structure, shown at the four interfaces from figure 6.5;

(b) The stresses, strengths and unity checks after the thirty-seventh brick;

Figure 12.3: The stresses, strengths and unity checks of the seventh computation with the initial strengths raised to 0,13 MPa
(+0,03 MPA). Shown are the last possible row of bricks to be placed and the row placement resulting in failure.

the object to move in a predictable manner,
to ensure it does not collide with the other
objects. Therefore, linear movements should
be used here instead. However, that requires
a manual alteration in the robotic simulation after
the automatic creation of the instructions. The
joint movement of the robot is only optimized
from one pose to the next. This may result in
additional movement (like a full 360° rotation
around one joint axis) for the next instruction that
would not have happened if the first instruction
rotated more favourably. Joint moves are able
to solve this by rotating around that axis, or
performing a ’reset’ where the robot moves the
end effector far away from both source and target,
before approaching the target again. Linear
movements are constrained and may result in
an invalid move. Thus, the joint move is used to
ensure a simulation can happen. The model does
allow the generation of linear movements for the
appropriate instructions, but this has been turned
off currently for each simulation. It would require
a lot of manual fixing to solve this issue.

One way to solve this, is to calculate the
movements beforehand, and to analyse which
joints rotate around their axis (almost) completely.
Then, the previous instruction should be altered
to end that instruction where its next one no longer

has this full turn. Of course, this altered instruction
should be feasible as well. This operation could
be automated with the help of programming and
could be implemented in the import script used in
the robotic model.
To continue with the movement of the robot, the
speed of the robotic arm is also an important factor
at play. In general, the movement of the end
effector or the rotation of the joints is limited by
their acceleration and velocity. The acceleration
of the joints is generally not provided by the
specifications of the machine. Only the maximum
speed (°/sec) and themaximum torque (Nm) (and
based on that the moment of inertia (kgm²)) are
provided. These may be used to determine the
maximum acceleration, but the best way is to test
this empirically per robot and per (full) brick.
The movement of the end effector can be quite
high if no confinement is present. In RoboDK the
maximum velocity and acceleration of the robot
are set as 200°/sec and 150°/sec², respectively.
As figure 12.4 shows, the cycle times found in
the results follow this theoretical cycle time. The
figure shows that when a joint makes a full rotation
(360°), the time taken is a little over 3 seconds.
The maximum velocity is of little importance,
though. Only with rotations large enough, is this
velocity reached. In this case, rotations need to

12.1. The applicability of the models 101

be larger than 267° (time taken more than 2,67
seconds). With the Kawasaki RS015X, the lowest
maximum speed is 180°/sec. This is however in
joints (the first and second) which move little due
to the configuration: no rotation around the base
is large enough to reach 180°/sec. It is therefore
useful, when a simulation is present, to test which
joints will reach their maximum velocity and use
that to determine the lowest maximum velocity to
be used for the robotic simulation (200°/sec for
this simulation).

Furthermore, the simulation is limited to the
extend of software development. In that regard
major steps have been taken to ease the transition
from digital architecture to digital fabrication. This
process required less work than the original
intention, which was: the robotic movements
had to be done and calculated more before any
simulation would be possible. In that regard, the
robotic model and simulation turned out to be
quite the opposite in terms of its state of the art,
compared to the design model. The articulated
six-axis robotic arms are clearly well developed
and implemented in the field of robotics. These
have also been implemented in the construction
industry, though still in its developmental stage,
see section 8.2. Of course, besides the
development of software for simulation, empirical
testing and case studies are required as well to
improve a theoretical model.

It also shows further research with other robot
types may result in better outcomes. With the
maximum reach of robotic arms currently topped
at 4000 millimetres and their weight at hundreds
of kilos, it is questionable whether these would
be useful for construction sites. Two approaches
currently made ready for commercial use (little
arm on a wagon and an off-site truck) show
how this could be overcome, but as figure 1.3
illustrates, robotics is still a developing technology.
The improvements in drones and insect-like
robots may result in an improved feasibility for
masonry construction as well. Additionally, the
current construction time is primarily limited by the
hardening time of the adhesive. A development
in infrastructure construction may improve this
process. Figure 12.5 shows the use of suction
cups to attach, move and place multiple bricks
at once. Using this method, more attention
is required for the pallet station, where more
specifications on the arrangement are needed to
allow this method. Moreover, the suction cup tool
needs to be designed with this purpose in mind:
as the structural analysis has shown, it is best to
group the bricks together based on their wythe

and distance to the support, if they are grouped
together. This has to be taken into account for the
design.

When using robotic arms stays for the foreseeable
future, more configurations can be explored as
well. In this research the robot has been placed
outside the final used space by the vault and
underneath the vault. With more complex or
larger structures, the reach of 4000millimetres (or
3150 for the Kawasaki) becomes too constricting.
The use of conveyor belts or other robotic
support systems may increase their work space.
Simultaneously, the initialization and calibration
of such a work space will take more time as
well. Configurations for more complex structures
or more complex work spaces could be to use
multiple robotic arms in a similar fashion as figure
1.6. Furthermore, when the weight of the robotic
system will be less, placing the robotic

0 90 180 360 720
0

1

2

3

4

5

Joint rotation (°)

Ti
m
et
ak
en

(s
ec
)

Figure 12.4: The theoretical time of a joint rotation when the
rotation is 45°, 90°, 180°, 360° and 720°. Indicated is the

moment when maximum speed has been reached.

Figure 12.5: The placement of paving bricks with the help of
a vacuum suction cup.

102 Chapter 12. Discussion

Figure 12.6: The construction of the dome of Saint John the
Divine. On top are the work stations for the masons.

Figure 12.7: Avoiding object collision by changing the
orientation of the second joint (rotation indicated with black
arrow), which results in a slightly changed path (indicated

with black arrow and second yellow path).

arm on top of the part of the vault already
constructed becomes an option as well. This
has been done a lot by Guastavino, see figure
12.6. However, such configurations only influence
the total travelling length and less the total
construction time. This is still primarily dependent
on the hardening time. Nevertheless, when an
optimization for the travelling length is considered,
changing the configuration and the robot used
may reduce the required motions of the robot and
reduce the distance travelled by the objects, since
the stations can be placed closer.

The design model has been set up favourably for
the robotic model. The definition of the planes
of the bricks is based on the centroid of the
brick projected onto the surface where the robot
needs to grab it. The normal of this plane is
always pointed to the intrados. However, when
the design model can be omitted and a provided
design is the starting point, the bricks may need to
be redefined to ensure these planes are oriented
favourably for the robotic model.

In the simulations used to get the results, the
bricks were absent. This has been done due to
computational performance, but would have had
a significant impact on the tool paths found in
the simulations. The most notable change can
be expected in and near the vault station. In
the results, the end effector approaches the vault
station partially from underneath the vault. In
other words, the robotic arm moves through what
has been constructed already. Additionally, the
approach path for placement of the bricks will be
more complex as well. The program cannot use
a strange move, described earlier with the joint
moves, to get to its target. This would have little
influence on the total construction time, due to
the hardening time, but may have changed the
joint moves slightly to accommodate the objects.
Although the change should not be exaggerated.
The arc-like tool path due to the joint move would
remain similar and with the change of one joint,
the problem can be solved. The second joint (just
above the base) may retract more, which allows
the end effector to be higher, above the vault,
see figure 12.7. This will likely result in (small)
changes of the other joints as well.

Already the computation speed of the simulation
can take quite long. Importing the poses and
creating a program for each instruction, brick
and the total assembly takes quite some time.
Reducing this computation time has taken place
by reducing the number of instruction programs
for the simulation and by omitting the brick
objects from the program. As stated previously,
this may give different results when it was
simulated and computed to such an extend. It
would require more time though to make one
simulation than it would to use a robot and build
the structure. Hence, why such computation
times would be counter-productive. When the
structure or the configuration would become
larger or more complex, this could become
a problem again. Alternative computation
strategies should be sought after to solve this
problem. Otherwise the current computation
strategy should become more optimized and
sophisticated from a computer science approach.

Last but not least, there’s some major differences
at the moment between the robotic model &
simulation and if it were to be constructed. One
part of the simulated time, for instance, has not
been taken into account. It can take a long time to
prepare the site for construction, see section 8.2.
This time is entirely case-dependent though and
therefore no estimation can be given. This has an
impact on any comparison with other construction

12.2. The reliability of the parameter values 103

scenarios.
Another difference is the real-time scanning of
the environment and process. The simulation,
as is common with simulations, does not include
the tolerances of the objects & adhesive nor of
the robotic movements. For each a strategy can
be proposed. The objects can have a stricter
tolerance threshold to reduce the deviance of
the objects from the assumed and simulated
dimensions. Furthermore, the adhesive station
can apply a thick layer, more than enough to cover
the beds + any tolerance difference. This will
require more cleaning and finishing of the vault, to
ensure no adhesive will be dripping down. The
tolerances in the robotic movements depend on
the instruction. The bigger and faster movements,
where tolerances are more prone to happen, are
free from any object. This is not the case for their
start and finish, where the speed, and thereby the
tolerance difference, is lower.
Scanners and othermeasuring equipmentmay be
of use to ensure the tolerance remains as little as
possible. For instance, at the pallet station the
position of the end effector relative to the brick
can be measured right before the robot picks
the brick. This can include the rotation of the
last joint axis, and therefore the end effector, to
accommodate any unintended misplacements of
the bricks in the pallet. The tolerance issues at
the adhesive station have been covered already,
although a problem may arise if the stacking
of tolerances becomes too high to solve with
a thickened adhesive layer. At the vault two
solutions can be used. The first is to perform a
scan similar to the pallet station, but this involves a
scan with 3 degrees of freedom to check, making
it more complex. Alternatively, the robot can also
place a brick, after which a scan informs whether
the next brick has to compensate any tolerances
or not. Again, the thickness of the adhesive plays
a major role in compensating tolerances.
The strategy with traditional masonry is quite
similar, see figure 12.8. Here, the mason places
a thread from one side to the other. This thread
shows the mason where the next course of bricks
should reach to. If the brick is over this line, the
mason presses on the brick to reduce the mortar
bed. If the brick is under this line, the mason
either tries again, or makes a thicker mortar bed
for the next course. The thread here is similar
to scan technology. Laser technology comes to
mind especially. Additional pressure from the
robot to reduce the mortar bed in any direction
could be a solution as well. However, this would
require additional structural analyses.

12.2. The reliability of the
parameter values

The design model solely uses geometric
properties as its values, or relative geometric
properties like the overlength factor. Issues
of tolerances could occur, as described in the
previous section, but these should be no different
than would be the case for other structures.
A higher requirement of significant figures for
the geometric properties reduces this problem.
Similarly, adaptive design with real-time data
could compensate for any tolerances arising. The
lack of a test for the maximum and minimum
occurring adhesive width is missed in the design
model for further testing and verification.
Literature on the materials used in this study
has been scarce. The interest for engineers,
understandably, has been on finished products
and when that finished product has been
reached. However, when robots are to be
used, a better understanding is required, where
the experience of a skilled craftsman, like
masons, should be known for the construction
model. The construction industry often relies on
’best practices’ or directives, especially when
applied to the construction phase itself. The
gap between theory and practice within the
construction industry has, as of yet, not been
closed. Especially structures like masonry have
gathered more attention, but the material still has
a deficit to make up compared to concrete and
steel.
Three aspects in this study are related to the
material properties. The initial strength of the
material is set as 0,1 MPa, which aligns with the

Figure 12.8: A thread used for alignment of the brick course
to the plans.

brick experiment in appendix C. This strength
represents the strength to withstand the weight
of one brick added, while the time to reach this

104 Chapter 12. Discussion

Indicative, no relation to other setting periods suggested Engineering model

Figure 12.9: The strength development of various retarders, with an indication of how the shape of the curve of strength
development used in the model relates to those shapes of the retarders. | (SIKA, 2021) (altered)

initial strength is set similar to the pot life of the
epoxy, as a safety and ensurance precaution,
also based on the brick experiment. With both
values further research could provide a better
validation and even optimization for the used
values. In other research the time aspect of epoxy
hardening has been of less importance, which
may have increased values found there, like the
12-15 minutes per brick for the glass vault in
figure 1.6 (Parascho et al., 2020). On the other
hand, videos of construction of the Catalan vault
or dome have shown that merely seconds would
be enough for gypsum plaster or cement mortar to
work (Davis et al., 2012). ’When has the strength
of the adhesive developed enough to withstand the
self-weight of the attached object’ remains a mostly
unanswered question.

The second aspect is the strength development
between the initial and the final strength. The
formation process for plaster has two clear stages,
while epoxies seem to have an S-shaped curve
for their strength development, see figure 12.9.
If a rapid strength development occurs in the
beginning, the failures found in the structural
analysis of the first and last computation may be

even less of a problem. This shifts the focus
of the preferred construction sequence entirely
to the stress development in the later stages of
the construction, mainly at the support. If the
beginning shows a slow strength development,
this focus is reversed and the stresses in
the entire structure should be kept as low as
possible. Alternatively, the hardening time could
be expanded, which raises the initial strength as
well. That wouldmean an increase in construction
time as well.

The last aspect is that of the final strength of the
structure. Although research like Guastavino’s
has shown that a tensile strength of 2 MPa
can be expected for the final structure, more
understanding is required. This is most important
for the reason behind the increase in tensile
strength. Although it is obvious and easy to
assume this to be due to the alternating layers
(removing those mortar-brick interface planes
spanning the entire cross-section), it seems
no experiment has been conducted to proof
this undoubtedly. If the hypothesis is true, it
is interesting to expand this property to other
structural typologies as well, besides the vaults.

12.3. Remarks on the results 105

Masonry walls capable of withstanding more
flexural strength, and maybe more shear strength
as well, could be beneficial for the applicability
of masonry. Similarly, repairs and maintenance
could be improved by adding a layer of thin-tile
bricks to the existing structure. In that regard,
the resistance of dynamic forces may be the
most urgent interest to be looked into for the
Netherlands. The result could be the removal
of the need for complex (steel) reinforcements or
complex repairs of historic masonry walls. Further
research is required in this area.

The robotic model and simulation do not have any
numeric parameters for which a reliability issue
could arise. The given values from the robotic
arms, like their maximum speed, their weight and
so forth, are the only values used. However,
as stated before, testing a robot before using it
should always be done. Therefore, a test with
the used robotic arms may have given slightly
different results, but this should have little impact
on the overall results.

12.3. Remarks on the results
The results from chapter 11 show that the limiting
factor is the tensile strength of the structure.
The maximum span, which has been limited
due to the extend of the robotic arm, should be
limited even further to achieve the reach of the
apex and therefore the completion of one half of
the vault. However, as section 12.1.2 shows,
this could be reached with an improvement
on the structural analysis. With the preferred
construction sequence a.s.a.p., this would not
give a major improvement, but with a.l.a.p. the
possible bricks to construct even go further
than the apex. The increased time differs little
and could be due to small differences between
the design models and automated judgement of
the simulation program on the perceived best
movement. Additionally, the importance of the
maximum dimensions outweighs the importance
of such little time differences.

Additionally, changing the shape (increasing the
factor) has little consequences for the extend of
the cantilevering vault. However, even higher or
lower factors could give different results. After
all, the first wythe may have extended similarly,
but the second wythe did not. The increase
in weight may not be downplayed entirely by
the increase in normal force and the decrease
in cantilever length per brick. From a building
engineering approach, the reduction of the factor
would be beneficial. From a structural or from an

architectural approach the increased factor could
be sought after. The desired overlength depends
on the desired outcome and function of the vault,
but it is clear that at least for the range of 1,1 to
1,25 for the factor of overlength, the maximum
span of the vault is similar.
Although only the first computations have the
results on the time per station, these alreadymake
it clear that a majority of the time is spent at the
vault station. Additionally, the adhesive station
requires the most time for all the movements to
be made. This is no surprise given the higher
number of movements required at the adhesive
station (at least four compared to three at the other
stations). The first and third computation (base
& factor) show little difference between the times
per station. However, using a different robot does
result in larger differences. Including the lengths
per station in this comparison, it seems the Fanuc
requires more complicated movements than the
Kawasaki. The Fanuc has lower maximum
speeds for the third and fourth joint (’elbow’), but
higher for the fifth and sixth (’hand’). The Fanuc
performs better on range as well. No more ’reset’
movements should be expected with the Fanuc
as with the Kawasaki. One explanation could
be that the fifth and sixth joints never reach their
maximum speed, while the third and fourth may
do. Additionally, the slightly different dimensions
of the robotic armsmay result inmore complicated
moves for the Fanuc. These two explanations
seem likely, but it has not been and cannot be
proven with this study.
The cycle times per brick show an increased
time for an increase in instructions. This is not
surprising given it is the joints rotation combined
with large travel lengths that give the total cycle
time. This suggests the cycle time for brickswith a
lot of instructions (28) could be half if these would
have the least number of instructions (10) as well.
The cycle times per computation have resulted
in an area somewhat similar to a triangle: with
a minimal length boundary, an upper boundary
and a lower boundary. No reason can be found
from the research for this result. However, it
could be that this would be the case for other
robotic constructions and applications as well.
The convergence to one point at maximum travel
length suggests that the longer the end effector
travels, the more likely it is finished with the joint
rotations, with the longest taking joint rotation
always at the same joint. This longest joint
rotation determines the cycle time, which would
vary little over the increasing travel lengths with
a high speed and low additional rotation. The

106 Chapter 12. Discussion

linearity of the speeds suggests this as well.
Furthermore, the change in the spread at the
other configuration (computation 6) suggests that
each configuration may have its own spread of
cycle times. It would be interesting to see if any
relation or prediction can be found of the spread
of cycle times related to the configuration of the

work space.

In the robotic simulation only a part of the
instructions could be simulated, and therefore
shown. It could be that due to this certain
instructions are not shown that otherwise would
have been a point of interest.

13
Conclusion

The main question of this research has been:

How does a robotic construction of a
parametrically designed thin-tile vault
perform based on step-wise structural
analyses? To answer this question the set of
sub-questions have to be answered first:

1. What is the parametric model of a thin-tile
vault?

2. What stresses (can) develop in the
construction of the thin-tile vault?

3. How does a robot construct a thin-tile vault?

What is the parametric model of a thin-tile
vault? In part II a parametric model of a thin-
tile vault has been created. A thin-tile vault is a
masonry structure that consists of multiple layers
of brick and mortar (or other adhesives) where
the bricks are placed flat and have a relative
low thickness and where the mortar (or other
adhesive) is fast-setting and provides support
during construction. The thin-tile vault is different
from other forms of masonry, due to its capability
to endure tension. The multiple layers create a
mixture of brick and adhesive in any cross-section.
This increases the adhesion or bond strength
between brick and adhesive, which is generally
considered weak. This allows the thin-tile vault to
be calculated with a linear-elastic analysis.
The thin-tile vault in this parametric model is a
barrel vault of single curvature made of three
wythes. The shape of the vault is similar to that
of a catenary arch, which is in line with recent
research on thin-tile vaults and free-form vaults.
The bricks are placed in a stretcher bond in
directions of -45°, 0° and 45° relative to the non-
trivial primary curvature. The form of the catenary
vault is based on the overlength versus length of
an arch.

In the model the centre point approach is used to
place the bricks adequately in the vault. This has
resulted in a filled surface with gaps neither too
small nor too large for an adhesive to be applied
within. The bricks used in the model are based
on the commonWaal format bricks (210×100×50).
The thin bricks are made in a similar way as slip
bricks for façades are made.

What stresses (can) develop in the
construction of the thin-tile vault? The thin-
tile vault from the parametric model has been
simplified to an arch. During construction the
arch behaves like a cantilever, until a thrust line
can be created. The load of the structure is
its own weight, which is non-uniform distributed
along global Cartesian coordinates. The most
significant force is the normal stresses due to a
moment in the structure. The normal force and
shear force, both derived from a vertical directed
shear force, have little influence on the occurring
stresses in the structure. A phased structural
analysis is done after each set of bricks with
similar cantilevering length (a row of bricks) had
been placed.

The key locations where the stresses may
exceed the strength depend on the construction
sequence. Two possible locations have been
found. The tensile capacity has been reached at
the support, which is likely to occur in the upper
wythe, but may also occur earlier, before a brick
of the upper wythe has been placed. The strength
has not adequately developed, which is likely to
occur at the second to last row of bricks placed,
where exceedance of the tensile strength is more
likely.

In literature, video evidence and through buildings
still standing it is clear that bricks and Plaster
of Paris (quick-setting gypsum plaster) are
able to provide a tensile capacity for the

107

108 Chapter 13. Conclusion

construction of thin-tile vaults. Literature does
not provide any quantitative evidence and thus
only empirical evidence exist. This makes the use
of Plaster of Paris for the construction of thin-tile
vaults unsuitable when applied in a theoretical
framework. Epoxies are a quick-setting adhesive
as well, with good bond strength and tensile
capacity. The function type/shape of hardening
of epoxies is known, at least better than that of
gypsum plaster.
It is unknown how gypsum plaster hardens over
time. Literature shows research on the strength
development in common time stamps for mortar
and cement materials. These stamps are trivial
for the construction of any structure, due to the
high construction time. Some epoxies have a
much shorter setting time and research shows
time stamps closer to usable time periods for any
construction. Although values are not present,
the function type of epoxy hardening is that of
a logistic function, or an s-shaped curve. Brick
has time-independent material properties when
it comes to the construction phase. Due to the
higher tensile capacity, the combination of brick
and adhesive will likely result in a higher flexural
strength than found for traditional masonry, and
as found in the Eurocode.

How does a robot construct a thin-tile vault?
Articulated six-axis robotic arms are common in
the construction industry and provide a flexibility
required for the construction of the thin-tile vault.
Specifications of the arms differ greatly, but the
weight and the reach of the robot are its greatest
limitations in use. The weight of robots with a
high reach is similar to or even greatly surpassing
common values used for most structures as a
distributed load. The reach is also limited to 4
meters in any direction. With the help of linear
tracks this can be increased in one direction.
The speed of robotic arms is a compound of
their angular joint speeds, and is limited to the
maximum torque the arm can handle.
A CADmodel can be adjusted for the use of CAM.
For robotic arms or other end effector machines,
the CAD model needs to provide the poses of the
end effector. A pose consists of six coordinates,
three are the Cartesian coordinates, three are
based on Euler angles. More information, like the
speed or pause time can be used as well between
CAD and CAM.

How does a robotic construction of a
parametrically designed thin-tile vault
perform based on step-wise structural

analyses? A robotic arm can place roughly
2000 bricks per day in a thin-tile vault. Thismakes
it faster than placement by masons, and on par
with other masonry robotics like SAM100. This
does not take into account the time it takes for
the adhesive to harden and it excludes the site
preparation before construction can commence.
Including the hardening time, the number of bricks
reduces to over 600 bricks per day, which is on
par with slow masons constructing a wall and
exceeds the 110 bricks placed by two masons for
the temporary pavilion at ETH Zürich. Although
the pot life of 5 minutes has shown that the more
realistic or mid-range value of the hardening time
evaporates this difference completely.
The hardening time is the primary influence of
the total construction time. Any measurement
or strategy used to reduce the total time waiting
on the hardening will have a (major) impact on
the total construction time. If gypsum plaster
has been proven to have a favourable strength
development, its setting time of 5 to 20 seconds
could already reduce the total construction time by
25 to 60% compared to the computed results, and
even 94 to 99% compared to the increased pot life
of 5 minutes, which represented the more realisitc
pot life of epoxies. The minimal construction
time, in the used configurations, remains to be at
minimum 12 seconds per bricks, though.
The time spent per instruction is dependent
on either the minimal joint rotation or the total
distance to be travelled. The last one has been
reduced in this research with a thought through
positioning of the different stations, but different
configurations could reduce the work space of the
robot even further. Most important is to avoid any
full rotation of the robotic arm around its base.
This increases the time that instruction takes
significantly. The minimal joint rotation is the
fastest movement possible between two poses.
However, this optimization is a local optimum.
The poses could be altered to find a better minimal
joint rotation. In the current configurations this has
resulted in theminimumof 12 seconds. This could
be reduced even further with a more extensive
optimization.
The linear-elastic analysis of a thin-tile vault to
an arch simplified by grouping the bricks per
row has shown that quite a large cantilever can
be created with thin-tile vaults. It is best to
construct the wythes of the vault from the inside
out: first the intrados and ending with the extrados.
Additionally, two placement strategies can be
used: the a.s.a.p. method and the a.l.a.p. method.
The a.s.a.p. method starts with the intradoswythe,

13.1. Recommendations 109

but places the next row in thewythe above as soon
as that row is fully covered on the bottom side by
its inner or prior wythe. The added benefit is that
it is easy to reach up and over the vault when the
robot is positioned beneath the vault. The a.l.a.p.
method also starts with the intrados wythe, but
tries to postpone placement in the next wythe as
much as possible. This is to reduce the tensile
stresses in the upper or extrados wythes as much
as possible. The benefit is that more bricks can
be placed with this method, while using the same
design.

13.1. Recommendations
This study has looked at the most important
aspect of the thin-tile vault from an engineering
perspective: the construction phase. Previous
work from Ochsendorf and the Block Research
Group has mostly been focused on the history;
renovation of existing vaults; and the free-form
design of vaults. For each study where a full-
scale model was built, experienced masons from
Catalonia had to be hired. With this study a
first step into the robotic construction of a thin-
tile vault has been made. The completion of this
process has two major benefits. The amount of
research on masonry (vaults) can be increased,
since (expensive) masons and long construction
times can be cut. Another benefit is that one
of the factors resulting in the decline of thin-tile
vaults, high labour costs, may become obsolete.
With the first benefit (more research) the other

factor for decline could be eliminated as well:
a lack of understanding compared to concrete
and steel. Furthermore, the author wishes the
materials used in this study, brick and epoxy,
may be replaced with (even) more sustainable
materials, showcasing the progress of innovation.
The use of robotics for digital architecture has
become easier as well and the integration with
digital fabrication has come a long way. The three
models (design, structural and robotics) all show
further research is required. In terms of design
a further expansion of plugins like Brickdesign
could encourage more construction with masonry
in the future. Research both in this thesis and
at universities like the TU Delft and ETH Zürich
show the geometric challenge of filling free-form
spaces can be quite the challenge, but also
very rewarding. With the engineering model and
structural analysis it is clear a translation from
practice to theory is still required with masonry
structures and materials. If research into Plaster
of Paris or other adhesives proves to be fruitful,
this research is best to be repeated with these
materials, likely to result in better outcomes. The
robotics has shown that integrating a design &
engineering model with robotics requires some
attention, but can be easily implemented. The
challenge here is to practice and improve on
brick-laying, with the help of masons if possible.
Especially further development in fit-for-purpose
masonry robots could improve the feasibility of
masonry construction with robotics even more.

References
Benfratello, S., Caiozzo, G., D’avenia, M., & Palizzolo, L. (2012). TRADITION AND MODERNITY OF

CATALAN VAULTS: HISTORICAL AND STRUCTURAL ANALYSIS. Meccanica dei Materiali
e delle Strutture, 4(1), 44–54. https:
//www.unipa.it/dipartimenti/dicam/.content/MMS/MEMS{_}S-BENFRATELLO{_}4.pdfhttps:
//www.unipa.it/dipartimenti/ingegneria/meccanica-dei-materiali-e-delle-strutture/

Bock, T. (2007). Construction robotics. Springer, 22, 201–209.
https://doi.org/10.1007/s10514-006-9008-5

Ochsendorf, J., & Freeman, M. (2010). Guastavino Vaulting The Art of Structural Tile. Princeton
Architectural Press.

Dugum, H. (2013). Structural Assessment of the Guastavino Masonry Dome of the Cathedral of Saint
John the Divine (Master Thesis). Massachusetts Institute of Technology. Cambridge (
Massachusetts). https://dspace.mit.edu/handle/1721.1/82711

Haas, C., Skibniewski, M., & Budny, E. (1995). Robotics in Civil Engineering. Microcomputers in Civil
Engineering, 10(5), 371–381.

Li, R. Y. M. Robots for the Construction Industry. In: An economic analysis on automated construction
safety. Hong Kong: Springer Singapore, 2018. Chap. 2, pp. 23–46. ISBN: 978-981-10-5771-7.
https://doi.org/10.1007/978-981-10-5771-7_2.

Haidegger, T., Barreto, M., Gonçalves, P., Habib, M. K., Ragavan, S. K. V., Li, H., Vaccarella, A.,
Perrone, R., & Prestes, E. Applied ontologies and standards for service robots. In: Robotics and
autonomous systems. 61. (11). Elsevier, 2013, 1215–1223.
https://doi.org/10.1016/j.robot.2013.05.008.

Bloss, R. (2014a). Robots have come to architecture to model, construct, fabricate and offer new
approaches to create innovative designs, elements and structures. The Industrial Robot, 41(5),
403–407. https://doi.org/10.1108/IR-06-2014-0359

Parascho, S., Han, I. X., Walker, S., Beghini, A., Bruun, E. P. G., & Adriaenssens, S. (2020). Robotic
vault: a cooperative robotic assembly method for brick vault construction. Construction
Robotics. https://doi.org/10.1007/s41693-020-00041-w
Interesting links over the history of bricklaying robotics. Paper consists of three parts: 1.
Development of the fabrication method 2. Method underlying the design 3. Sequencing strategy
State o/t Art Focus on brick construction and robots cooperating together 1.

Huerta, S. U. P. d. M. The Mechanics of Timbrel Vaults: A Historical Outline (A. Becchi, M. Corradi,
F. Foce, & O. Pedemonte, Eds.). In: In Essay on the history of mechanics (A. Becchi,
M. Corradi, F. Foce, & O. Pedemonte, Eds.). Ed. by Becchi, A., Corradi, M., Foce, F., &
Pedemonte, O. Genova: Birkhaüser, Basel, 2003. Chap. 5, pp. 89–134. ISBN:
978-3-0348-8091-6. https://link.springer.com/chapter/10.1007/978-3-0348-8091-6{_}5

Guastavino, R. (1893). ESSAY ON THE THEORY AND HISTORY OF COHESIVE CONSTRUCTION,
APPLIED ESPECIALLY TO THE TIMBREL VAULT. (second). TICKNOR; CO MPANY.
http://www.antichefornaci.it/files/biblioteca/Guastavino{_}Essay{_}on{_}the{_}theory{_
}and{_}history{_}of{_}cohesive{_}construction{_}applied{_}especially{_}to{_}the{_
}timbrel{_}vault.pdf

Hartsuijker, C., & Welleman, J. W. (2007). Engineering Mechanics: Stresses, Strains, Displacements.
Springer Netherlands. https://doi.org/10.1007/978-1-4020-5763-2

Como, M. (2017). Statics of Historic Masonry Constructions: An Essay (M. Frémond & F. Maceri, Eds.;
3rd ed., Vol. 9). Springer. https://doi.org/10.1007/978-3-319-13003-3_3

DIANA. (2008). DIANAFEA Manual - D.4 Historical Notes. Retrieved May 31, 2021, from
https://dianafea.com/manuals/d93/GetStart/node104.html

111

https://www.unipa.it/dipartimenti/dicam/.content/MMS/MEMS{_}S-BENFRATELLO{_}4.pdf https://www.unipa.it/dipartimenti/ingegneria/meccanica-dei-materiali-e-delle-strutture/
https://www.unipa.it/dipartimenti/dicam/.content/MMS/MEMS{_}S-BENFRATELLO{_}4.pdf https://www.unipa.it/dipartimenti/ingegneria/meccanica-dei-materiali-e-delle-strutture/
https://www.unipa.it/dipartimenti/dicam/.content/MMS/MEMS{_}S-BENFRATELLO{_}4.pdf https://www.unipa.it/dipartimenti/ingegneria/meccanica-dei-materiali-e-delle-strutture/
https://doi.org/10.1007/s10514-006-9008-5
https://dspace.mit.edu/handle/1721.1/82711
https://doi.org/10.1007/978-981-10-5771-7_2
https://doi.org/10.1016/j.robot.2013.05.008
https://doi.org/10.1108/IR-06-2014-0359
https://doi.org/10.1007/s41693-020-00041-w
https://link.springer.com/chapter/10.1007/978-3-0348-8091-6{_}5
http://www.antichefornaci.it/files/biblioteca/Guastavino{_}Essay{_}on{_}the{_}theory{_}and{_}history{_}of{_}cohesive{_}construction{_}applied{_}especially{_}to{_}the{_}timbrel{_} vault.pdf
http://www.antichefornaci.it/files/biblioteca/Guastavino{_}Essay{_}on{_}the{_}theory{_}and{_}history{_}of{_}cohesive{_}construction{_}applied{_}especially{_}to{_}the{_}timbrel{_} vault.pdf
http://www.antichefornaci.it/files/biblioteca/Guastavino{_}Essay{_}on{_}the{_}theory{_}and{_}history{_}of{_}cohesive{_}construction{_}applied{_}especially{_}to{_}the{_}timbrel{_} vault.pdf
https://doi.org/10.1007/978-1-4020-5763-2
https://doi.org/10.1007/978-3-319-13003-3_3
https://dianafea.com/manuals/d93/GetStart/node104.html

112 References

Michael H. Ramage. (2004). Building a Catalan vault. Retrieved February 25, 2021, from http:
//web.mit.edu/cron/Backup/project/guastavino/www/resources/writings/ramage{_}text.pdfhttp:
//web.mit.edu/cron/Backup/project/guastavino/www/resources/resources{_}writings.htm{\#}

Block Research Group. (n.d.). Prof. Dr. Philippe Block. Retrieved October 21, 2021, from
https://block.arch.ethz.ch/brg/people/philippe-block

Davis, L., Rippmann, M., Pawlofsky, T., & Block, P. (2012). Innovative funicular tile vaulting: A prototype
vault in Switzerland. The Structural Engineer, 90(11), 46–56.
www.thestructuralengineer.orghttps://block.arch.ethz.ch/brg/files/2012{_}J-IStructE{_}Davis-
Rippmann-Pawlofsky-Block.pdf

Block, P. (2009). Thrust Network Analysis Exploring Three-dimensional Equilibrium Submitted to the
Department of Architecture in Partial Fulfillment of the Requirements for the Degree of
(Doctoral dissertation). Massachusetts Institute of Technology.
https://block.arch.ethz.ch/brg/content/publication/thrust-network-analysis-exploring-three-
dimensional-equilibrium

Philippe Block, & Matthias Rippmann. (2013). The Catalan Vault – A Historical Structural Principle with
a Bright Future. DETAIL: Review of Architecture, 53(5), 528–536.
https://block.arch.ethz.ch/brg/files/2013-detail-block-rippmann-katalanisches-
gewoelbe{_}1396861318.pdf

López López, D., Domènech Rodríguez, M., & Palumbo Fernández, M. (2014). ”Brick-topia”, the thin-tile
vaulted pavilion. Case Studies in Structural Engineering, 2, 33–40.
https://doi.org/10.1016/j.csse.2014.09.001

Blanco, Z. G. (2014). The Thin Tile Vaulting Manual. www.unhabitat.orghttps://www.hamk.fi/wp-
content/uploads/2018/09/Thin-tile-Vaulting-Manual-Draft{_}ZB2018.pdf

Lourenco, P. (1996). Computational strategies for masonry structures (Doctoral dissertation). Delft
University of Technology. https://repository.tudelft.nl/islandora/object/uuid{\%}3A4f5a2c6c-
d5b7-4043-9d06-8c0b7b9f1f6f

D’Altri, A. M., Sarhosis, V., Milani, G., Rots, J., Cattari, S., Lagomarsino, S., Sacco, E., Tralli, A.,
Castellazzi, G., & de Miranda, S. (2020). Modeling Strategies for the Computational Analysis of
Unreinforced Masonry Structures: Review and Classification. Archives of Computational
Methods in Engineering, 27 (4), 1153–1185. https://doi.org/10.1007/s11831-019-09351-x

Zhang, Y., Yang, J., & Cao, X. (2020). Effects of several retarders on setting time and strength of
building gypsum. Construction and Building Materials, 240, 117927.
https://doi.org/10.1016/J.CONBUILDMAT.2019.117927

Lewry, A. J., & Williamson, J. (1994b). The setting of gypsum plaster - Part II The development of
microstructure and strength. Journal of Materials Science, 29(21), 5524–5528.
https://doi.org/10.1007/BF00349943

Hashempour, M., Samani, A. A., & Heidari, A. (2021). Essential improvements in gypsum mortar
characteristics. International Journal of Engineering, Transactions B: Applications, 34(2),
319–325. https://doi.org/10.5829/IJE.2021.34.02B.03

Cambridge. (2020). VIDEO-ON-DEMAND | meaning in the Cambridge English Dictionary. Retrieved
August 10, 2021, from https://dictionary.cambridge.org/dictionary/english/video-on-demand?
fbclid=IwAR1taABjqQt6wSdu12pzBGCQDVznFPdCjLwukvRVm48pH244Lp1QYF0GhIo

NBVG. III Gebrand gips en Stukadoorsgips (1st ed.). In: Alles over gips (1st ed.). 1st ed. Nederlandse
Branche Vereniging Gips, 2006. Chap. 3, pp. 17–33. www.stabu.nl

Lewry, A. J., & Williamson, J. (1994a). The setting of gypsum plaster - Part I The hydration of calcium
sulphate hemihydrate. Journal of Materials Science, 29(20), 5279–5284.
https://doi.org/10.1007/BF01171536

Yu, Q., Brouwers, H., & de Korte, A. Gypsum hydration: a theoretical and experimental study (H. Fischer
& K. Bode, Eds.). In: In Proceedings 17th ibausil, international conference on building materials
(internationale baustofftagung) (H. Fischer & K. Bode, Eds.). Ed. by Fischer, H., & Bode, K.
Weimar: Bauhaus-Universitat Weimar, 2009, 6. ISBN: 978-3-00-027265-3.
https://josbrouwers.bwk.tue.nl/publications/Conference51.pdf

http://web.mit.edu/cron/Backup/project/guastavino/www/resources/writings/ramage{_}text.pdf http://web.mit.edu/cron/Backup/project/guastavino/www/resources/resources{_}writings.htm{\#}
http://web.mit.edu/cron/Backup/project/guastavino/www/resources/writings/ramage{_}text.pdf http://web.mit.edu/cron/Backup/project/guastavino/www/resources/resources{_}writings.htm{\#}
http://web.mit.edu/cron/Backup/project/guastavino/www/resources/writings/ramage{_}text.pdf http://web.mit.edu/cron/Backup/project/guastavino/www/resources/resources{_}writings.htm{\#}
https://block.arch.ethz.ch/brg/people/philippe-block
www.thestructuralengineer.org https://block.arch.ethz.ch/brg/files/2012{_}J-IStructE{_}Davis-Rippmann-Pawlofsky-Block.pdf
www.thestructuralengineer.org https://block.arch.ethz.ch/brg/files/2012{_}J-IStructE{_}Davis-Rippmann-Pawlofsky-Block.pdf
https://block.arch.ethz.ch/brg/content/publication/thrust-network-analysis-exploring-three-dimensional-equilibrium
https://block.arch.ethz.ch/brg/content/publication/thrust-network-analysis-exploring-three-dimensional-equilibrium
https://block.arch.ethz.ch/brg/files/2013-detail-block-rippmann-katalanisches-gewoelbe{_}1396861318.pdf
https://block.arch.ethz.ch/brg/files/2013-detail-block-rippmann-katalanisches-gewoelbe{_}1396861318.pdf
https://doi.org/10.1016/j.csse.2014.09.001
www.unhabitat.org https://www.hamk.fi/wp-content/uploads/2018/09/Thin-tile-Vaulting-Manual-Draft{_}ZB2018.pdf
www.unhabitat.org https://www.hamk.fi/wp-content/uploads/2018/09/Thin-tile-Vaulting-Manual-Draft{_}ZB2018.pdf
https://repository.tudelft.nl/islandora/object/uuid{\%}3A4f5a2c6c-d5b7-4043-9d06-8c0b7b9f1f6f
https://repository.tudelft.nl/islandora/object/uuid{\%}3A4f5a2c6c-d5b7-4043-9d06-8c0b7b9f1f6f
https://doi.org/10.1007/s11831-019-09351-x
https://doi.org/10.1016/J.CONBUILDMAT.2019.117927
https://doi.org/10.1007/BF00349943
https://doi.org/10.5829/IJE.2021.34.02B.03
https://dictionary.cambridge.org/dictionary/english/video-on-demand?fbclid=IwAR1taABjqQt6wSdu12pzBGCQDVznFPdCjLwukvRVm48pH244Lp1QYF0GhIo
https://dictionary.cambridge.org/dictionary/english/video-on-demand?fbclid=IwAR1taABjqQt6wSdu12pzBGCQDVznFPdCjLwukvRVm48pH244Lp1QYF0GhIo
www.stabu.nl
https://doi.org/10.1007/BF01171536
https://josbrouwers.bwk.tue.nl/publications/Conference51.pdf

References 113

Karni, J., & Karni, E. (1995). Gypsum in construction: origin and properties. Materials and Structures,
28(2), 92–100. https://doi.org/10.1007/BF02473176

SIKA. (2021). Dry Mortar - Sika Performance Additive Technologies.
https://www.sika.com/content/dam/dms/corporate/n/glo-dry-mortar-additives.pdfhttps:
//www.sika.com/en/construction/gypsum-dry-mortar.html

Pham, H. Q., & Marks, M. J. (2005). Epoxy Resins. Ullmann’s Encyclopedia of Industrial Chemistry.
https://doi.org/10.1002/14356007.A09_547.PUB2

Huntsman. (2020). THE ADHESIVES YOU NEED NO MATTER YOUR INDUSTRY: Araldite 2000.
https://huntsman-pimcore.equisolve-
dev.com/Documents/Araldite2000corerangebrochure{_}EU.pdf

SIKA. (2012). Sikadur ®-51. SIKA. www.sika.nlhttps://www.viba.nl/media/files/tds/tds0000566.pdf
Huntsman. (2017). Araldite ® 2015-1 Two component epoxy paste adhesive Key properties. Huntsman.

www.aralditeadhesives.com.https://www.viba.nl/media/files/tds/tds0001457.pdf
Eurocodes. (n.d.). Retrieved August 19, 2021, from

https://www.nen.nl/en/bouw/constructieve-veiligheid/eurocodes
Eurocode 6 - Design of masonry structures - Part 1-1: General rules for reinforced and unreinforced

masonry structures. (2013).
https://connect.nen.nl/standard/openpdf/?artfile=557416{\&}RNR=185662{\&}token=d81f5e3c-
e553-47d7-ae6d-0c90a05ce027{\&}type=pdf{\#}pagemode=bookmarks

Epoxy Products Ltd. (2020). Outstanding Adhesive ▲ Rapid Strength Development ▲ Twin Pack-50/50
Mix-No Waste ▲ Excellent Chemical Resistance THE RANGE Manufacturers of High
Performance Floor Coatings and Re-Surfacing Screeds. Epoxy Products Ltd.
https://www.epoxyproducts.co.uk/BrickAdhesive.pdf

Mojsilović, N. (2011). Tensile strength of clay blocks: An experimental study. Construction and Building
Materials, 25(11), 4156–4164. https://doi.org/10.1016/J.CONBUILDMAT.2011.04.052

Chang, L. Z., Messali, F., & Esposito, R. (2020). Capacity of unreinforced masonry walls in out-of-plane
two-way bending: A review of analytical formulations. Structures, 28, 2431–2447.
https://doi.org/10.1016/J.ISTRUC.2020.10.060

Estrella, G. P. (2017). Robotics in Architecture Potential applications and current limitations Robotics in
Architecture Potential applications and current limitations.
https://www.academia.edu/34623222/Robotics{_}in{_}Architecture{_}Potential{_
}applications{_}and{_}current{_}limitations{_}Robotics{_}in{_}Architecture{_}Potential{_
}applications{_}and{_}current{_}limitations

Bidgoli, A. (2015). Towards an integrated design making approach in architectural robotics
(Doctoral dissertation). Pennsylvania State University.
https://etda.libraries.psu.edu/catalog/27238

ISO/ASTM. (2017). ISO/ASTM 52900,
https://connect.nen.nl/Family/Detail/62069?compId=10037{\&}collectionId=0

RoboDK. (2021). RoboDK. Retrieved August 10, 2021, from
https://robodk.com/blog/robot-machining-rhinocam-robodk/

RoboFold. (2013). RoboFold. Retrieved August 10, 2021, from https://robofold.com/make/software
RoboDK. (n.d.). Robot Library | RoboDK. Retrieved August 10, 2021, from https://robodk.com/library
Madsen, A. J. (2019). The SAM100: Analyzing Labor Productivity (tech. rep.). California Polytechnic

State University. https://digitalcommons.calpoly.edu/cmsp/243/
Bogue, R. (2018). What are the prospects for robots in the construction industry? Industrial Robot: An

International Journal, 45(1), 1–6. https://doi.org/10.1108/IR-11-2017-0194
Bloss, R. (2014b). Robots have come to architecture to model, construct, fabricate and offer new

approaches to create innovative designs, elements and structures. Industrial Robot, 41(5),
403–407. https://doi.org/10.1108/IR-06-2014-0359

https://doi.org/10.1007/BF02473176
https://www.sika.com/content/dam/dms/corporate/n/glo-dry-mortar-additives.pdf https://www.sika.com/en/construction/gypsum-dry-mortar.html
https://www.sika.com/content/dam/dms/corporate/n/glo-dry-mortar-additives.pdf https://www.sika.com/en/construction/gypsum-dry-mortar.html
https://doi.org/10.1002/14356007.A09_547.PUB2
https://huntsman-pimcore.equisolve-dev.com/Documents/Araldite 2000 core range brochure{_}EU.pdf
https://huntsman-pimcore.equisolve-dev.com/Documents/Araldite 2000 core range brochure{_}EU.pdf
www.sika.nl https://www.viba.nl/media/files/tds/tds0000566.pdf
www.aralditeadhesives.com. https://www.viba.nl/media/files/tds/tds0001457.pdf
https://www.nen.nl/en/bouw/constructieve-veiligheid/eurocodes
https://connect.nen.nl/standard/openpdf/?artfile=557416{\&}RNR=185662{\&}token=d81f5e3c-e553-47d7-ae6d-0c90a05ce027{\&}type=pdf{\#}pagemode=bookmarks
https://connect.nen.nl/standard/openpdf/?artfile=557416{\&}RNR=185662{\&}token=d81f5e3c-e553-47d7-ae6d-0c90a05ce027{\&}type=pdf{\#}pagemode=bookmarks
https://www.epoxyproducts.co.uk/Brick Adhesive.pdf
https://doi.org/10.1016/J.CONBUILDMAT.2011.04.052
https://doi.org/10.1016/J.ISTRUC.2020.10.060
https://www.academia.edu/34623222/Robotics{_}in{_}Architecture{_}Potential{_}applications{_}and{_}current{_}limitations{_}Robotics{_}in{_}Architecture{_}Potential{_}applications{_}and{_}current{_}limitations
https://www.academia.edu/34623222/Robotics{_}in{_}Architecture{_}Potential{_}applications{_}and{_}current{_}limitations{_}Robotics{_}in{_}Architecture{_}Potential{_}applications{_}and{_}current{_}limitations
https://www.academia.edu/34623222/Robotics{_}in{_}Architecture{_}Potential{_}applications{_}and{_}current{_}limitations{_}Robotics{_}in{_}Architecture{_}Potential{_}applications{_}and{_}current{_}limitations
https://etda.libraries.psu.edu/catalog/27238
https://connect.nen.nl/Family/Detail/62069?compId=10037{\&}collectionId=0
https://robodk.com/blog/robot-machining-rhinocam-robodk/
https://robofold.com/make/software
https://robodk.com/library
https://digitalcommons.calpoly.edu/cmsp/243/
https://doi.org/10.1108/IR-11-2017-0194
https://doi.org/10.1108/IR-06-2014-0359

114 References

Van Sante, M. (2020). Industrialisatie in de bouw. Retrieved August 6, 2021, from
https://www.ing.nl/media/EBZ{_}ING-Industrialisactie-in-de-bouw{_}mei-2020{_}tcm162-
194858.pdf

Technical reference manual - RAPID Overview (tech. rep.). (2019). ABB Robotics.
https://abb.sluzba.cz/Pages/Public/OmniCoreRoboticsDocumentationRW7/Controllers/
RobotWare/RAPID/en/3HAC065040-001.pdf

Motoman. (2019). SPECIFICATIONS: MH50 II-20. Retrieved August 21, 2021, from
https://www.motoman.com/getmedia/e24fd3d6-107b-4825-b6f8-50201e3d0c9d/MH50II-
20.pdf.aspx

Fanuc. (2019). FANUC M-710iC/20L industriële robot. Retrieved August 21, 2021, from
https://www.fanuc.eu/be/nl/robots/robot-filter-pagina/m-710-serie/m-710ic-20l

Fanuc. (2017). FANUC M-710iC/12L industriële robot. Retrieved August 21, 2021, from
https://www.fanuc.eu/be/nl/robots/robot-filter-pagina/m-710-serie/m-710ic-12l

Kawasaki. (2020). RS015X Robot | R series | Small-Medium Payload | Kawasaki Robotics. Retrieved
August 21, 2021, from https://robotics.kawasaki.com/en1/products/robots/small-medium-
payloads/RS015X/index.html?language{_}id=4

https://www.ing.nl/media/EBZ{_}ING-Industrialisactie-in-de-bouw{_}mei-2020{_}tcm162-194858.pdf
https://www.ing.nl/media/EBZ{_}ING-Industrialisactie-in-de-bouw{_}mei-2020{_}tcm162-194858.pdf
https://abb.sluzba.cz/Pages/Public/OmniCoreRoboticsDocumentationRW7/Controllers/RobotWare/RAPID/en/3HAC065040-001.pdf
https://abb.sluzba.cz/Pages/Public/OmniCoreRoboticsDocumentationRW7/Controllers/RobotWare/RAPID/en/3HAC065040-001.pdf
https://www.motoman.com/getmedia/e24fd3d6-107b-4825-b6f8-50201e3d0c9d/MH50II-20.pdf.aspx
https://www.motoman.com/getmedia/e24fd3d6-107b-4825-b6f8-50201e3d0c9d/MH50II-20.pdf.aspx
https://www.fanuc.eu/be/nl/robots/robot-filter-pagina/m-710-serie/m-710ic-20l
https://www.fanuc.eu/be/nl/robots/robot-filter-pagina/m-710-serie/m-710ic-12l
https://robotics.kawasaki.com/en1/products/robots/small-medium-payloads/RS015X/index.html?language{_}id=4
https://robotics.kawasaki.com/en1/products/robots/small-medium-payloads/RS015X/index.html?language{_}id=4

Appendices

115

References 117

A The Grasshopper model: from design to work procedure A-119

B DIANA: modelling the monolithic property B-123

C Brick experiment: testing the bond strength development C-137

D Phased Structural Analysis in Python D-147

E Robotic arms from the RoboDK library E-187

A
The Grasshopper model: from design to

work procedure

This appendix describes the model made in grasshopper. The model is a combination of three models
as described in the report. The first part consists of the design model, the second part is the engineering
model, the third part is the robotic model. The input is shown on the left as purple, the models are shown
as red, green and blue respectively, and the output is shown on the right in orange.

The input parameters can be found in table 11.1, with a few additional inputs for the transition between
models and programs, like the file imports. The output consists of the visualisation of the vault’s design,
the information for each following model, the input for the structural analysis in Python and the poses and
additional information for RoboDK.

The following images are present in this appendix to illustrate and show the Grasshopper model:

• Figure A.1: The entire canvas in the Grasshopper model, also showing the work space created in
Grasshopper.

• Figure A.2: The canvas is represented as a process in a diagram.

• Figure A.3: A detail of the map projection cluster from chapter 4.

• Figure A.4: The entire canvas again, with enougb resolution for visible components.

Figure A.1: The complete canvas in Grasshopper. On the left is the input, on the right is the output. The red box is the design
model, the green box is the engineering and the blue box is the robotics.

A-119

A-120 Appendix A. The Grasshopper model: from design to work procedure

lBrick
bBrick
hBrick
hMortar

LVault
BVault
overlength

angle α0
α1
α2

Cull
splinters

Adjuster
wythes
0,1,2

Vault Base
Surface

Brick pattern
wythe 0

Brick pattern
wythe 2

Brick pattern
wythe 1

Other inputs

Cull brick
splinters

Move
outwards

Thicken brick
surfaces

Make preview

Preview of
design
model

Bricks
in

Vault

Planes of
bricks

Course line
as support

lBrick
hBrick

angle α0
α1
α2

Self weight
ρ

LVault
BVault

Bricks &
Planes

Adhesive
curing time

Cross-section
calculation step

Timer

Seperate
wythes

Start branch per
wythe at {*;0}

Bricks per row per
wythe

Restructure tree
from course to row

Return wythes
to origin again

Prepare data for
Python

Preview of bricks to
(almost) be placed

Use timer to see per
row construction

Export
Python

Preview
Construc-
ted bricks

Construction
sequence

Bricks and
planes, in
sequence

Bricks and
planes, order

of design

Import
Python

lBrick
bBrick
hBrick

angle α0
α1
α2

Adhesive
curing time

Course line as
support

Construction
sequence

File path &
Object names

Pallet size

Distance
adhesive
interface

Bricks and
planes, in
sequence

Bricks and
planes, order

of design

Position Pallet
and adhesive

station

Split wythes
based on angle

Split edges of
bricks

Edges at support

Preceding bricks

Select edges and
their domain

Select interface
between wythes

Creating Pallet
Station

Create glue path

Convert stations
to planes

Convert planes to
poses & export

Export objects to
RoboDK

Object
Export

Pose export

Design

Engineering

Robotics

Figure A.2: The workflow of the Grasshopper model based on the groups created on the Grasshopper canvas

A-121

(a) The tiling cluster within the GH canvas; (b) The tiling cluster exploded, with three more clusters visible in yellow, green and cyan;

(c) Tiling the surface: the yellow cluster;

(d) Reducing points to compute: the green cluster;

Figure A.3: The tiling cluster exploded.

A-122
AppendixA.TheGrasshopperm

odel:from
designtoworkprocedure

(e) Project points from unit surface to base vault surface: the cyan cluster;

Figure A.3: The tiling cluster exploded.

Figure A.4: A detailed and (digitally) zoomable figure of the canvas.

B
DIANA: modelling the monolithic property
This chapter provides the full DIANA model used for section 6.4.1

Figure B.1: The elastic modulus at different orientations in a three wythe sandwich panel found with DIANA.

B-123

1/13

Report 3 panels 1

Contents
• Chapter 1

– Project information
– Units
– Directions
– Definitions

• Chapter 2
– Shapes
– Interfaces
– Dimensions
– Geometry load ‘Bending’
– Geometry support ‘Supports’
– Geometry: Masonry wall x=(1;0;0)
– Geometry: Masonry wall x=(1;0;var)
– Geometry: Wythe bed
– Geometry: Masonry wall x= 1
– Material: Brick
– Material: Wythe bed
– Data: Element data 1

• Chapter 3
– Mesh Sets

• Chapter 4
– Analysis: Analysis1

• Definition
• DCF Commands
• Phases

• Chapter 5

Chapter 1

Project information

Diana project name

W:/student-
homes/w/jwelles/Documents/Master_
Thesis/Rhino Files/Untitled.dpf

Analysis aspects

[‘Structural’]

Model dimension

[‘Three dimensional’]

Default mesher type

HEXQUAD

Default mesher order

QUADRATIC

2/13

Diana version

Diana 10.4, Latest update: 2021-03-
05 13:13:13

System

Windows NT 6.2 Build 9200

Model sizebox

10.0

Units

The following units are applied

Quantity

Unit

Symbol

Length

meter

m

Mass

kilogram

kg

Force

newton

N

Time

second

s

Temperature

kelvin

K

Angle

radian

rad

Directions

The following directions are defined:

Name

X

Y

Z

X

1

0

0

Y

0

1

0

Z

0

0

1

Definitions

Name

Value

Acceleration of gravity

-9.81 m/s2

Fluid density

1000 kg/m3

Reference point for total head

0 0 0

3/13

Rayleigh damping coefficients

a: 0 b: 0

Design safety factor concrete
compressive strength

1

Design safety factor concrete uniax.
tensile strength

1

Design safety factor concrete stiffness

1

Design safety factor steel yield stress

1

Design safety factor steel stiffness

1

Direction of gravity

Z

Chapter 2

4/13

The model consists of the following shapes, reinforcements, piles and interfaces:

Shapes

Name

Set

Elemen
t Class

Materia
l

Geome
try

Seedin
g
method

Elemen
t size

[m]

Divisio
n

Wythe
1

Shapes

CURS
HL

Brick 1

Masonr
y wall
x=(1;0;
0)

Divisio
ns

0

19

Wythe
2

Shapes

CURS
HL

Brick 1

Masonr
y wall
x=(1;0;
var)

Divisio
ns

0

19

Wythe
3

Shapes

CURS
HL

Brick 1

Masonr
y wall
x=(1;0;
0)

Divisio
ns

0

19

Sheet 1

Shapes
1

CURS
HL

Brick

Masonr
y wall
x= 1

Divisio
ns

0

19

Block 1

Shapes
2

STRSO
L

Brick
no gap

Wall no
gap

 0

0

Block 2

Shapes
2

STRSO
L

Brick
no gap

Wall no
gap

 0

0

Block 3

Shapes
2

STRSO
L

Brick
no gap

Wall no
gap

Divisio
ns

0

9

Block 4

Shapes
3

STRSO
L

Brick
no gap

Wall no
gap

 0

0

Block 5

Shapes
3

STRSO
L

Bed no
gap

Wall no
gap

 0

0

Block 6

Shapes
3

STRSO
L

Brick
no gap

Wall no
gap

 0

0

Block 7

Shapes
3

STRSO
L

Bed no
gap

Wall no
gap

 0

0

Block 8

Shapes
3

STRSO
L

Brick
no gap

Wall no
gap

 0

0

5/13

Interfaces

Name

Interface Type

Element Class

Material

Wythe 1

Interface

STPLIF

Wythe bed

Wythe 2

Interface

STPLIF

Wythe bed

Wythe 3

Block 1

Interface

STPLIF

Wythe bed

Block 2

Block 2

Interface

STPLIF

Wythe bed

Block 3

Dimensions

Axes

Minimum coordinate [m]

Maximum coordinate [m]

X

-1

1

Y

-2

2.6

Z

-1

1

Geometry load ‘Bending’

Name

Target

Type

Direction

DOF

Value

Unit

Load
Bending
wythe 1

SURFAC

FORCE

NORMA
L

 1000

N/m2

6/13

Geometry support ‘Supports’

Name

Target

Translation

Rotation

Roller

LINE

Y

Simple support

LINE

X,Y,Z

7/13

Geometry: Masonry wall x=(1;0;0)

Name

Value

Geometry class

Sheets

Geometry model

Regular curved shell elements

Thickness

0.028 m

Element x axis

1 0 0

Geometry: Masonry wall x=(1;0;var)

Name

Value

Geometry class

Sheets

Geometry model

Regular curved shell elements

Thickness

0.028 m

Element x axis

1 0 0

8/13

Geometry: Wythe bed

Name

Value

Geometry class

Sheets

Geometry model

Structural surface interface elements

Element x axis

1 0 0

Geometry: Masonry wall x= 1

Name

Value

Geometry class

Sheets

Geometry model

Regular curved shell elements

Thickness

0.084 m

Element x axis

1 0 0

Material: Brick

Name

Value

Material class

Concrete and masonry

Material model

Linear elastic orthotropic

Color

grey

Element type

Curved shell

Young’s modulus

6.5e+09 6.5e+09 6.5e+09 N/m2

Poisson’s ratio

0.15 0.15 0.15

Shear modulus

2.82e+09 2.82e+09 2.78e+09 N/m2

Mass density

1800 kg/m3

9/13

Material: Wythe bed

Name

Value

Material class

Interface elements

Material model

Linear elasticity

Color

silver

Type

3D surface interface

Normal stiffness modulus-z

9.17e+10 N/m3

Shear stiffness modulus-x

3.36e+10 N/m3

Shear stiffness modulus-y

3.36e+10 N/m3

Data: Element data 1

Name Value —— ——- —— ——-

Chapter 3

10/13

The Mesh consists of the following parts:

Mesh Sets

Name

Elements

Material

geometry

Data

Wythe 1

361

Brick 1

Masonry wall
x=(1;0;0)

Wythe 2

361

Brick 1

Masonry wall
x=(1;0;var)

Wythe 3

361

Brick 1

Masonry wall
x=(1;0;0)

Sheet 1

361

Brick

Masonry wall
x= 1

Block 1

390

Brick no gap

Wall no gap

Block 2

474

Brick no gap

Wall no gap

Block 3

534

Brick no gap

Wall no gap

Block 4

100

Brick no gap

Wall no gap

Block 5

544

Bed no gap

Wall no gap

Block 6

100

Brick no gap

Wall no gap

Block 7

471

Bed no gap

Wall no gap

Block 8

100

Brick no gap

Wall no gap

Connection
1-2

361

Wythe bed

Wythe bed

Connection
2-3

361

Wythe bed

Wythe bed

Con12

100

Wythe bed

Wythe bed

Con23

100

Wythe bed

Wythe bed

11/13

Chapter 4

Analysis: Analysis1

Definition

 Structural linear static

 Structural linear static

 Evaluate model

 Evaluate elements

 Average nodal normals

 Tolerance angle = 0.349066

 Evaluate composed elements

 Assemble Elements

 Degree of freedom tolerance = 1e-06

 Setup element stiffness matrices

 Setup load vectors

 Solve the system of equations

 Method = Parallel Direct Sparse

 Convergence tolerance = 1e-08

 Parallel Direct Sparse

 Factorization

 Output linear static analysis

 Output linear static analysis

 Device = DIANA native

 Option = Binary

 Seltyp = USER

 Select

 Blknam = OUTPUT

 Modsel = Complete

 Loads

 User selection = ALL

 Casety = LOADS

 User

 Displacements

 Displacements

 Form = TRANSL

 Oper = GLOBAL

 Type = TOTAL

 Total

 Displacements

 Form = TRANSL

 Oper = LOCAL

 Type = TOTAL

 Total

 Strains

 Stresses

12/13

 Stresses

 Form = CAUCHY

 Oper = GLOBAL

 Type = TOTAL

 Total

 Stresses

 Form = CAUCHY

 Oper = LOCAL

 Type = TOTAL

 Total

 Stresses

 Form = DISFOR

 Oper = LOCAL

 Type = TOTAL

 Total

 Stresses

 Form = DISFOR

 Oper = LOCAL

 Type = ELEMEN

 Element contribution

 Forces

 Model parameters

 Element forces

DCF Commands

*LINSTA LABEL="Structural linear static"

 MODEL EVALUA CHECK OFF

 SOLVE PARDIS

 BEGIN OUTPUT

 TEXT "Output linear static analysis"

 BINARY

 SELECT LOADS ALL /

 DISPLA TOTAL TRANSL GLOBAL

 DISPLA TOTAL TRANSL LOCAL

 STRESS TOTAL CAUCHY GLOBAL

 STRESS TOTAL CAUCHY LOCAL

 STRESS TOTAL DISFOR LOCAL

 STRESS ELEMEN DISFOR LOCAL

 END OUTPUT

*END

Phases

13/13

Chapter 5

C
Brick experiment: testing the bond

strength development

This chapter provides the experiment done on standard bricks from the hardware store and epoxy
glue provided by the TU Delft. The epoxy glue is a Siko-Clearbond glue of 50 mL, with a 2K-Methyl
methacrylaat. The following figures are present in this appendix:

• Figure C.1: Properties of the glue.

• Figure C.2: Weather of the days of experimentation.

• Figure C.3: The first brick experiment on the 24th of May.

• Figure C.4: The second brick experiment.

• Figure C.5: The third brick experiment.

• Figure C.6: The fourth brick experiment.

• Figure C.7: The fifth brick experiment.

• Figure C.8: The sixth brick experiment on the 28th of May, with cobblestone bricks.

• Figure C.9: The seventh brick experiment with hardware store bricks again.

The brick did not fail with a hardening time of 7 minutes and 33
seconds (figure C.5), 9 minutes and 15 seconds (figure C.7), 7
minutes and 30 seconds (figureC.8) and 4minutes and 23 second
(figure C.9).

Figure C.1: Siko-Clearbond properties

C-137

https://www.gamma.nl/assortiment/baksteen-waalformaat-handvorm-brakels-rood-1-1-pallet/p/B610721

C-138 Appendix C. Brick experiment: testing the bond strength development

Figure C.2: The weather on the days of experimentation | https://www.hetweeractueel.nl/ weer/delft/historie/2021/05/.

C-139

(a) T=14:33:15, set up; (b) T=2:11, applying adhesive; (c) T=2:18, attaching;

(d) T=4:13, pressure for placement; (e) T=6:24, pressure for placement,
sideways;

(f) T=7:42, failure;

(g) T=7:51, check failure; (h) T=8:51, ending the experiment; (i) T=9:14, headers of bricks;

Figure C.3: First brick experiment.

C-140 Appendix C. Brick experiment: testing the bond strength development

(a) T=14:51:09, applying adhesive; (b) T=1:06, pressing for placement; (c) T=4:54, failure;

Figure C.4: Second brick experiment.

C-141

(a) T=14:58:45, applying adhesive; (b) T=0:20, hardening;

(c) T=7:33, place horizontally;

(d) T=7:47, extra loading; (e) T=7:57, failure; (f) T=8:29, headers;

Figure C.5: Third brick experiment.

C-142 Appendix C. Brick experiment: testing the bond strength development

(a) T=15:27:40, set up;

(b) T=1:32, applying adhesive;

(c) T=4:53, removing support;

(d) T=5:05, failure;

Figure C.6: Fourth brick experiment.

C-143

(a) T=15:35:11, applying adhesive; (b) T=5:36, trying to remove support; (c) T=5:39, put support back before
failure;

(d) T=9:15, removing support;

(e) T=10:28, failure; (f) T=10:30, failure, close up;

(g) T=12:19, headers; (h) T=21:31, ripping off adhesive;

Figure C.7: Fifth brick experiment.

C-144 Appendix C. Brick experiment: testing the bond strength development

(a) T=11:17:18, applying adhesive; (b) T=1:03, applying additional
adhesive; (c) T=7:30, removing support;

(d) T=8:28, adding weight, but more
counterweight is needed;

(e) T=9:04, adding the weight again,
with additional counterweight; (f) T=9:17, failure;

(g) T=10:12, headers, close up; (h) T=10:47, headers;

Figure C.8: Sixth brick experiment.

C-145

(a) T=11:31:02, sanding; (b) T=5:15, applying adhesive; (c) T=9:38, removing support;

(d) T=13:09, additional load; (e) T=16:22, failure with two bricks; (f) T=16:27, failure, overview;

(g) T=21:52, headers;

(h) T=22:37, comparison with figure C.8;

Figure C.9: Seventh brick experiment.

D
Phased Structural Analysis in Python

The phased structural anlysis has been done with an import file from Grasshopper, resulting in an export
file to Grasshopper. The workflow is given. In the script afterwards not only the calculation is included,
but also the making of the visualisations.

Figure D.1: Python workflow of the structural analysis.

D-147

1

In [1]: __author__ = "Joris"
__version__ = "2021.08.26"
#
import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.animation as ani
from matplotlib.animation import FuncAnimation as Fani
from IPython.core.display import display, HTML
display(HTML("<style>.container { width:45% !important; }</style>"))
%config InlineBackend.figure_formats = ['retina']
mpl.rcParams['figure.dpi'] = 600
print(mpl.rcParams['figure.dpi'])
import csv
print("INPUT:")

<IPython.core.display.HTML object>

600.0
INPUT:

In [2]: #
GH = pd.read_csv(

"C:/Users/Joris/Documents/Master Thesis quick access/GH_to_Python.csv",
error_bad_lines=False)

GH = pd.read_csv(
"C:/Users/Joris/Documents/Master Thesis quick access/GH_to_Python.csv",
header=None, sep='\n')

GH = GH[0].str.split(';', expand=True)

GH = GH.values.tolist()
GH = [[ele for ele in GH[ind] if str(ele) != 'nan'] for ind,ele in enumerate(GH)]
GH = [[ele for ele in GH[ind] if str(ele) != 'None'] for ind,ele in enumerate(GH)]

GH_top = GH[0]
GH = GH[1:]

for i in range(len(GH_top)):
if len(GH[i])>1:

exec(GH_top[i] + " = [float(ele) for ele in GH[i]]")
else:

exec(GH_top[i] + " = float(GH[i][0])")
exec("print(" + "GH_top[i])\nprint(" + GH_top[i] + ")\nprint()")

print("INPUT^")
print("FUNCTIONS:")

sm
[20.0, 0.1, 0.3, 0.1, 2.0, 0.04, 0.5, 40.0]

L
3.6

lu
0.21

t
0.02

rho
1750.0

y0b
[0.001942, 0.004363, 0.12204, 0.24266, 0.366599, 0.494935, 0.626936, 0.762191, 0.900692, 1.042161, 1.186268, 1.332786...

y1b
[-0.013907, -0.001186, 0.117076, 0.239484, 0.364786, 0.494101, 0.627385, 0.764148, 0.90285, 1.045686, 1.191479, 1.339...

y2b
[-0.029768, 0.017589, 0.190165, 0.371265, 0.559851, 0.756109, 0.959366, 1.169021, 1.383607, 1.601516, 1.821049, 2.040...

y0e
[0.067261, 0.185694, 0.307957, 0.433913, 0.564524, 0.698096, 0.834715, 0.974734, 1.117627, 1.262972, 1.410713, 1.5597...

y1e
[0.061141, 0.180306, 0.304216, 0.430439, 0.562536, 0.698043, 0.836294, 0.977588, 1.122094, 1.268772, 1.418042, 1.5688...

y2e
[0.096149, 0.272971, 0.457876, 0.649016, 0.848577, 1.055176, 1.266654, 1.482252, 1.700828, 1.92046, 2.139227, 2.35532...

2

A0
[0.040683, 0.139165, 0.139165, 0.139165, 0.139165, 0.139165, 0.139165, 0.139165, 0.139165, 0.139165, 0.139165, 0.1391...

A1
[0.052435, 0.139165, 0.139165, 0.139165, 0.139165, 0.139167, 0.139172, 0.139178, 0.139183, 0.139186, 0.139184, 0.1391...

A2
[0.103116, 0.1995, 0.1995, 0.1995, 0.1995, 0.1995, 0.1995, 0.1995, 0.1995, 0.1995, 0.1995, 0.1995, 0.1995, 0.1995, 0.1...

y0
[0.021823, 0.095505, 0.215188, 0.338746, 0.465814, 0.596443, 0.730637, 0.868174, 1.00878, 1.152152, 1.297881, 1.445516...

y1
[0.008651, 0.087761, 0.208485, 0.332874, 0.461473, 0.593586, 0.729094, 0.868036, 1.010159, 1.154967, 1.302475, 1.45177...

y2
[0.012579, 0.144002, 0.323122, 0.509154, 0.703541, 0.904715, 1.112227, 1.325243, 1.542039, 1.76096, 1.980261, 2.198153...

Dir0
[0.817056, 0.778442, 0.726475, 0.666186, 0.589992, 0.5287, 0.472582, 0.411248, 0.349787, 0.288724, 0.220057, 0.159523,...

Dir1
[0.81852, 0.776537, 0.713992, 0.669917, 0.591574, 0.52023, 0.460946, 0.401482, 0.339271, 0.282871, 0.214852, 0.151768,...

Dir2
[0.817891, 0.754174, 0.646288, 0.568826, 0.469041, 0.379546, 0.29128, 0.198586, 0.10745, 0.017397, -0.073506, -0.16695...

row
[8.0, 8.0, 11.0]

INPUTˆ
FUNCTIONS:

In [3]: #
def lim(y,l,i,j=0):

try:
return y[l[i]+j]

except IndexError:
return y[0]

#return: either y[l[i]+j] or y[0]

def ll(l,i):
try:

return l[i]
except IndexError:

return 0
#return: either l[i] or 0

def geom(x,yi, diri):
ii = []; dsdxi = []; dzdxi = []
ii.append([np.argmax(yi > ele) +(len(yi))*(yi[-1] < ele) for ele in x])
ii = ii[0]
dzdxi.append([-lim(diri,ii,ele[0]) for ele in enumerate(x)])
dzdxi = dzdxi[0]
dsdxi.append([(1+dzdxi[ele[0]]**2)**0.5 for ele in enumerate(x)])
dsdxi = dsdxi[0]
ia = ii
if max([ele<0 for ele in yi]):

ia.extend([ele for ele, a in enumerate([not(ele>0) for ele in yi]) if a])
if not (all(x in ia for x in range(len(yi)))):

print('not every brick is represented in linspace x')
print('x:')
print(x)
print(ia)
print(set(ia).difference(range(len(yi))))
exit()

return ii,dsdxi,dzdxi
#return: ii,dsdxi,dzdxi

def zero(i):
zeros = np.zeros((i,len(x)))
return zeros

#return: zeros

def new(l,h_old):
n = min(len([l0,l1,l2][l]) , len([y0,y1,y2][l])-1)
ii = [i0,i1,i2][l]
h = np.array([ele+t if ii[ind]==n else ele for ind,ele in enumerate(h_old)])
return(h,n)

def section_forces(n,yi,Ai,dsdx,dzdx,h):
weight = rho*9.81*t #N/mš
y=yi[n] #m

3

A=Ai[n] #mš/mź (Sum(l*b)/L)

Vx = np.piecewise(x, [x<=y,x>y], [weight*A,0])
M = weight*(y-x)*A
M = [0 if ele < 0 else ele for ele in M]

Vs = Vx/dsdx
Ns = Vx*dzdx/dsdx

W = 1/6 * h**2
A = h
return M,Vs,Ns,W,A

#return: M,Vs,Ns,W,A

def sigmadef():
dist = [[

np.linspace(-1,1,int(h[j]/t+1))[i]
if int(h[j]/t)>=i
else 0
for j in range(len(x))]
for i in range(lmax+1)]

sigma_m = np.array(
[[
M[j]/W[j] *10**(-6) * dist[i][j]
if h[j] != 0
else 0
if h[j]/t>=i
else 0
for j in range(len(x))]
for i in range(lmax+1)])

sigma_n = np.array(
[[
Ns[j]/A[j] *10**(-6)
* (h[j]/t>=i)
if h[j] != 0
else 0
for j in range(len(x))]
for i in range(lmax+1)])

tau = np.array(
[[
Vs[j]*(6*dist[i][j]**2 - 3/2)/h[j] *10**(-6)
if (h[j] != 0 and h[j]/t>=i)
else 0
for j in range(len(x))]
for i in range(lmax+1)])

return dist,sigma_m,sigma_n, tau
#return: dist, sigma_m, sigma_n, tau

def settings(l,n,setting):
setting = [[

min(i+[r0,r1,r2][l],1) #number of bricks
#placed since this brick has been placed. similar to i+= row placed

if i !=0
else i
for i in setting[j]]
for j in range(3)] #setting has shape of wythe Œ x

setting[l] = [[r0,r1,r2][l] if n==ele else setting[l][ind]
for ind,ele in enumerate([i0,i1,i2][l])]

setting = np.array(setting)
return setting

#return: setting

def yielding(setting,h_old,t,set):
for j in range(4):

for i in range(len(h_old)):
if (int(j <= h_old[i]/t)) and (h_old[i] >0):

sump = max(int(h_old[i]/t) -1,0)
set[j][i] = setting[min(sump,j)][i]

yield_t = [[fti+ele*(ftk-fti) for ele in set[j]] for j in range(4)]
yield_k = [[fm+ele*(fk-fm) for ele in set[j]] for j in range(4)]
yield_t,yield_k = np.array(yield_t),np.array(yield_k)
return yield_t,yield_k

#return: yield_t,yield_k

def unitc(sigma,inter,strength):
unitsc = np.array([sigma[0]/strength[0],

sigma[1]/strength[0],
(sigma[1]-inter[1])/strength[1],
sigma[2]/strength[1],
(sigma[2]-inter[2])/strength[2],
sigma[3]/strength[3]])

return unitsc
#return: uccomp,uctens,uctau

4

def annot_max(x,y, ax=None,textp=[0.75,0.95]):
xmax = x[np.argmax(y)] #xvalue
ymax = y.max() #yvalye
text= "@x:{:.2f}, uc={:.2f}".format(xmax, ymax) #text
textpo = [textp[0],textp[1]] # textbox position
if not ax:

ax=plt.gca()
bbox_props = dict(boxstyle="square,pad=0.3", fc="w", ec="k", lw=0.72) # textbox
arrowprops=dict(arrowstyle="->",connectionstyle="angle,angleA=0,angleB=120")

arrow
kw = dict(xycoords='data',textcoords="axes fraction",

arrowprops=arrowprops, bbox=bbox_props, ha="left", va="top")
ax.annotate(text, xy=(xmax, ymax), xytext=(textpo[0],textpo[1]), **kw)

print("FUNCTIONS")
print("SCRIPT")
print("INPUT,OUTPUT AND PARAMETERS")

FUNCTIONS
SCRIPT
INPUT,OUTPUT AND PARAMETERS

In [4]: # ##directe bewerking input
L = L #float
[fb,fm,fvk,fti,ftf,deltax,pot,cure] = sm #list of floats
fti,fm = .13,.13
fk = -0.75*fb**0.7
fm = -fm
ftk = ftf
fy = fk #####!!!!!
fyt = ftk
ftk = 5
fyv = fvk
y0 = [ele for ele in y0 if ele<L]; #list of floats
y1 = [ele for ele in y1 if ele<y0[-1]-lu/4]
y2 = [ele for ele in y2 if ele<y1[-1]-lu/4]
#t & rho is also one float number A0,A1,A2,row are lists of floats

##output
seq=["layer;brick"]

##overige parameters

l0=[];l1=[];l2=[]; lmax=3

ymin = min(
min([j-i for i, j in zip(y0[:-1], y0[1:])]),
min([j-i for i, j in zip(y1[:-1], y1[1:])]),
min([j-i for i, j in zip(y2[:-1], y2[1:])]))
CHECK = (deltax < ymin)
if CHECK==False:

print("Reduce deltax!")
print(ymin)

x = np.arange(0,max(y0[-1],y1[-1],y2[-1]),deltax)
i0,dsdx0,dzdx0 = geom(x,y0,Dir0) #list of floats
i1,dsdx1,dzdx1 = geom(x,y1,Dir1)
i2,dsdx2,dzdx2 = geom(x,y2,Dir2)

sigma_M = zero(4); sigma_N = zero(4); Tau = zero(4)
sigma_m = zero(4); sigma_n = zero(4); tau = zero(4); dist = zero(4)
h_old = np.zeros(len(x))

setting = zero(3); set = zero(4)
[r0,r1,r2] = row #number of bricks per row
r0,r1,r2 = r0*pot/cure,r1*pot/cure,r2*pot/cure
r = zero(4)
yield_t,yield_k = yielding(setting,h_old,t,set)
inter = zero(4)

UCseries = []
UCseries_ = []

Distr = []
Sigres = []
Cstrres = []
Tstrres = []
Cucres = []
Tucres = []
ut=[]

Sigd0 = [[],[]]
Sigd9 = [[],[]]

5

Sigd18 = [[],[]]
Yied0 = [[],[]]
Yied9 = [[],[]]
Yied18 = [[],[]]
UCd = [[],[]]
apexl0=False
print("INPUT,OUTPUT AND PARAMETERS^")
print("FOR LOOP:")

INPUT,OUTPUT AND PARAMETERSˆ
FOR LOOP:

In [5]: #
for runloop in range(len(y0)+len(y1)+len(y2)):
Layer 0 (1st)

print('layer 0:',apexl0==False) # check if y0 is over the apex
if apexl0==False:

if lim(y0,l0,-1,1)<=(L+2*lu)/2 or len(l0)<1:
l=0
h,n = new(l,h_old)

M,Vs,Ns,W,A = section_forces(n,y0,A0,dsdx0,dzdx0,h)
dist, sigma_m, sigma_n, tau = sigmadef()

sigma = sigma_M + sigma_m + sigma_N + sigma_n

ttau = Tau + tau

uccomp = unitc(sigma,inter,yield_k)
uctens = unitc(sigma,inter,yield_t)
uctau = ttau/fvk

uccomp = (sigma-inter)/yield_k
uccomp[uccomp < 0],uctens[uctens < 0] = 0,0
UCmax = max([np.max(ele) for ele in [uccomp,uctens,uctau]])

ucs = UCmax; UCm1='na'; UCm2='na'; UCm0 = UCmax

print('layer 1:',lim(y0b,l0,-1,1),' > ',
lim(y1e,l1,-1,1),
lim(y0b,l0,-1,1) > lim(y1e,l1,-1,1)) # check if new brick in

#2nd layer gives overlap for a new brick in 1st layer
Layer 1 (2nd)

if lim(y0b,l0,-1,1) > lim(y1e,l1,-1,1):# and (UCm0>1 or apexl0==True):
a.l.a.p. += and (UCm0>1 or apexl0==True)

if y0[max(len(l0)-1,0)]-lu/2 > y1[max(len(l1)-1,0)] or UCmax>1:
l=1
h,n = new(l,h_old)

M,Vs,Ns,W,A = section_forces(n,y1,A1,dsdx1,dzdx1,h)
dist, sigma_m, sigma_n, tau = sigmadef()

sigma = sigma_M + sigma_m + sigma_N + sigma_n
ttau = Tau + tau

uccomp = unitc(sigma,inter,yield_k)
uctens = unitc(sigma,inter,yield_t)
uctau = ttau/fvk

uccomp[uccomp < 0],uctens[uctens < 0] = 0,0
UCmax = max([np.max(ele) for ele in [uccomp,uctens,uctau]])

ucs = UCmax; UCm1 = UCmax

print('layer 2:',lim(y1b,l1,-1,1),' > ',
lim(y2e,l2,-1,1),
lim(y1b,l1,-1,1) > lim(y2e,l2,-1,1)) # check if new brick in

#3rd layer gives overlap for a new brick in 2nd layer

Layer 2 (3rd)
if lim(y1b,l1,-1,1) > lim(y2e,l2,-1,1):# and runloop>14:

a.l.a.p. += and runloop>14
l=2
h,n = new(l,h_old)

M,Vs,Ns,W,A = section_forces(n,y2,A2,dsdx2,dzdx2,h)
dist, sigma_m, sigma_n, tau = sigmadef()

sigma = sigma_M + sigma_m + sigma_N + sigma_n
ttau = Tau + tau

uccomp = unitc(sigma,inter,yield_k)
uctens = unitc(sigma,inter,yield_t)

6

uctau = ttau/fvk

uccomp[uccomp < 0],uctens[uctens < 0] = 0,0
UCmax = max([np.max(ele) for ele in [uccomp,uctens,uctau]])

ucs = UCmax; UCm2 = UCmax

#Apex reached?
if runloop>30:

print(lim(y2e,l2,-1,1),lim(y1b,l1,-1,1),' ',
lim(y1e,l1,-1,1),lim(y0b,l0,-1,1),' ',
lim(y0,l0,-1,1),(L+2*lu)/2,' ', len(l0)>0)

if lim(y2e,l2,-1,1)>lim(y1b,l1,-1,1) \
and lim(y1e,l1,-1,1)>lim(y0b,l0,-1,1) and lim(y0,l0,-1,1)>(L+2*lu)/2 \
and len(l0)>0:

print("Apex has been reached! No more bricks can be added!")
break

if lim(y0,l0,-1,1)>(L+2*lu)/2 and len(l0)>0 and apexl0==False:
print("Apex has been reached! The first layer is done!")
apexl0=True

Print UC's
if l == 0:

if isinstance(UCm0,np.float64):
UC_0 = np.round(UCm0,3)

else:
UC_0 = 'finished'

print('UC0 = %s' % (UC_0))

UC_0
elif l == 1:

if isinstance(UCm0,np.float64):
UC_0 = np.round(UCm0,3)

else:
UC_0 = 'finished'

if isinstance(UCm1,np.float64):
UC_1 = np.round(UCm1,3)

else:
UC_1 = 'no try'

print('UC0, UC1 = %s, %s' % (UC_0,UC_1))

UC_0
elif l == 2:

if isinstance(UCm0,np.float64):
UC_0 = np.round(UCm0,3)

else:
UC_0 = 'finished'

if isinstance(UCm1,np.float64):
UC_1 = np.round(UCm1,3)

else:
UC_1 = 'no try'

if isinstance(UCm2,np.float64):
UC_2 = np.round(UCm2,3)

else:
UC_2 = 'no try'

print('UC0, UC1, UC2 = %s, %s, %s' % (UC_0,UC_1,UC_2))
UC_0

if len([l0,l1,l2][l])<len([y0,y1,y2][l]):
[l0,l1,l2][l].append(n)

if l!=0: # inter #
inte = [ind for ind,ele in enumerate([i0,i1,i2][l]) if ele==n]
inter[l,inte[0]:inte[-1]+1] = sigma[l,inte[0]:inte[-1]+1]

seq.append(str(l) + ";" + str(n))

h_old = h

sigma_M = sigma_M + sigma_m #is correct sign for position on cross-section
sigma_N = sigma_N + sigma_n #negative is correct
sigma_norm = sigma_M+sigma_N
Tau = Tau + tau #positive is correct

UCseries.append(ucs)
UCseries_.append([runloop,UCm0,UCm1,UCm2])

Distr.append(runloop)

Sigres.append(sigma_norm-inter)
Tstrres.append(yield_t)
Cstrres.append(yield_k)
Cucres.append(uccomp)
Tucres.append(uctens)

setting = settings(l,n,setting)

7

yield_t,yield_k = yielding(setting,h_old,t,set)

indc = [[0,lst,ind] for (lst,ind),ele in np.ndenumerate(uccomp) if ele==UCmax]
indt = [[1,lst,ind] for (lst,ind),ele in np.ndenumerate(uctens) if ele==UCmax]
indv = [[2,lst,ind] for (lst,ind),ele in np.ndenumerate(uctau) if ele==UCmax]
ut.append((indc or indt or indv)[0])

if UCmax>1.0:
print("")
if UCmax==UCm2:

if type(UCm1)!='float': UCm1 = 3
print('Check this: ',

'UC0, UC1, UC2 = %s, %s, %s' % (np.round(UCm0,3),
np.round(UCm1,3),np.round(UCm2,3)))

print("UC too big!")
if y0[n]>(L+2*lu)/2:

print('Apex has been reached in layer 1!')
l_last,n_last = l,n
del seq[-1]
break

print('brick %s placed in layer %s as row %s' % (str(runloop+1),str(l),str(n)))

nope = False
if nope:

Sigd0[0].append(sigma_M[0,0])
Sigd0[1].append(sigma_M[1,0])
Sigd9[0].append(sigma_M[0,9])
Sigd9[1].append(sigma_M[1,9])
Sigd18[0].append(sigma_M[0,18])
Sigd18[1].append(sigma_M[1,18])
Yied0[0].append(yield_k[0,0])
Yied0[1].append(yield_t[1,0])
Yied9[0].append(yield_k[0,9])
Yied9[1].append(yield_t[1,9])
Yied18[0].append(yield_k[0,18])
Yied18[1].append(yield_t[1,18])
UCd[0].append(uccomp[0,0])
UCd[1].append(uctens[1,0])

uccomp = sigma/yield_k
uctens = sigma/yield_t
uctau = ttau/fvk

print()
print("FOR LOOP^")
print("OUTPUT:")

layer 0: True
layer 1: 0.001942 > 0.061141 False
layer 2: -0.013907 > 0.096149 False
UC0 = 0.05
brick 1 placed in layer 0 as row 0
layer 0: True
layer 1: 0.004363 > 0.061141 False
layer 2: -0.013907 > 0.096149 False
UC0 = 0.412
brick 2 placed in layer 0 as row 1
layer 0: True
layer 1: 0.12204 > 0.061141 True
layer 2: -0.013907 > 0.096149 False
UC0, UC1 = 0.696, 0.147
brick 3 placed in layer 1 as row 0
layer 0: True
layer 1: 0.12204 > 0.180306 False
layer 2: -0.001186 > 0.096149 False
UC0 = 0.696
brick 4 placed in layer 0 as row 2
layer 0: True
layer 1: 0.24266 > 0.180306 True
layer 2: -0.001186 > 0.096149 False
UC0, UC1 = 0.766, 0.241
brick 5 placed in layer 1 as row 1
layer 0: True
layer 1: 0.24266 > 0.304216 False
layer 2: 0.117076 > 0.096149 True
UC0, UC1, UC2 = 0.721, no try, 0.188
brick 6 placed in layer 2 as row 0
layer 0: True
layer 1: 0.24266 > 0.304216 False
layer 2: 0.117076 > 0.272971 False
UC0 = 0.721
brick 7 placed in layer 0 as row 3
layer 0: True
layer 1: 0.366599 > 0.304216 True

8

layer 2: 0.117076 > 0.272971 False
UC0, UC1 = 0.793, 0.239
brick 8 placed in layer 1 as row 2
layer 0: True
layer 1: 0.366599 > 0.430439 False
layer 2: 0.239484 > 0.272971 False
UC0 = 0.771
brick 9 placed in layer 0 as row 4
layer 0: True
layer 1: 0.494935 > 0.430439 True
layer 2: 0.239484 > 0.272971 False
UC0, UC1 = 0.846, 0.342
brick 10 placed in layer 1 as row 3
layer 0: True
layer 1: 0.494935 > 0.562536 False
layer 2: 0.364786 > 0.272971 True
UC0, UC1, UC2 = 0.846, no try, 0.267
brick 11 placed in layer 2 as row 1
layer 0: True
layer 1: 0.494935 > 0.562536 False
layer 2: 0.364786 > 0.457876 False
UC0 = 0.846
brick 12 placed in layer 0 as row 5
layer 0: True
layer 1: 0.626936 > 0.562536 True
layer 2: 0.364786 > 0.457876 False
UC0, UC1 = 0.947, 0.284
brick 13 placed in layer 1 as row 4
layer 0: True
layer 1: 0.626936 > 0.698043 False
layer 2: 0.494101 > 0.457876 True
UC0, UC1, UC2 = 0.947, no try, 0.216
brick 14 placed in layer 2 as row 2
layer 0: True
layer 1: 0.626936 > 0.698043 False
layer 2: 0.494101 > 0.649016 False
UC0 = 0.947
brick 15 placed in layer 0 as row 6
layer 0: True
layer 1: 0.762191 > 0.698043 True
layer 2: 0.494101 > 0.649016 False
UC0, UC1 = 0.979, 0.319
brick 16 placed in layer 1 as row 5
layer 0: True
layer 1: 0.762191 > 0.836294 False
layer 2: 0.627385 > 0.649016 False
UC0 = 0.784
brick 17 placed in layer 0 as row 7
layer 0: True
layer 1: 0.900692 > 0.836294 True
layer 2: 0.627385 > 0.649016 False
UC0, UC1 = 0.931, 0.423
brick 18 placed in layer 1 as row 6
layer 0: True
layer 1: 0.900692 > 0.977588 False
layer 2: 0.764148 > 0.649016 True
UC0, UC1, UC2 = 0.931, no try, 0.329
brick 19 placed in layer 2 as row 3
layer 0: True
layer 1: 0.900692 > 0.977588 False
layer 2: 0.764148 > 0.848577 False
UC0 = 0.931
brick 20 placed in layer 0 as row 8
layer 0: True
layer 1: 1.042161 > 0.977588 True
layer 2: 0.764148 > 0.848577 False
UC0, UC1 = 0.985, 0.339
brick 21 placed in layer 1 as row 7
layer 0: True
layer 1: 1.042161 > 1.122094 False
layer 2: 0.90285 > 0.848577 True
UC0, UC1, UC2 = 0.81, no try, 0.378
brick 22 placed in layer 2 as row 4
layer 0: True
layer 1: 1.042161 > 1.122094 False
layer 2: 0.90285 > 1.055176 False
UC0 = 0.81
brick 23 placed in layer 0 as row 9
layer 0: True
layer 1: 1.186268 > 1.122094 True
layer 2: 0.90285 > 1.055176 False
UC0, UC1 = 0.993, 0.464
brick 24 placed in layer 1 as row 8
layer 0: True

9

layer 1: 1.186268 > 1.268772 False
layer 2: 1.045686 > 1.055176 False
UC0 = 0.993
brick 25 placed in layer 0 as row 10
layer 0: True
layer 1: 1.332786 > 1.268772 True
layer 2: 1.045686 > 1.055176 False
UC0, UC1 = 1.043, 0.561
brick 26 placed in layer 1 as row 9
layer 0: True
layer 1: 1.332786 > 1.418042 False
layer 2: 1.191479 > 1.055176 True
UC0, UC1, UC2 = 0.903, no try, 0.612
brick 27 placed in layer 2 as row 5
layer 0: True
layer 1: 1.332786 > 1.418042 False
layer 2: 1.191479 > 1.266654 False
UC0 = 0.903
brick 28 placed in layer 0 as row 11
layer 0: True
layer 1: 1.481037 > 1.418042 True
layer 2: 1.191479 > 1.266654 False
UC0, UC1 = 0.986, 0.721
brick 29 placed in layer 1 as row 10
layer 0: True
layer 1: 1.481037 > 1.568822 False
layer 2: 1.339571 > 1.266654 True
UC0, UC1, UC2 = 0.823, no try, 0.784
brick 30 placed in layer 2 as row 6
layer 0: True
layer 1: 1.481037 > 1.568822 False
layer 2: 1.339571 > 1.482252 False
UC0 = 0.848
brick 31 placed in layer 0 as row 12
layer 0: True
layer 1: 1.630597 > 1.568822 True
layer 2: 1.339571 > 1.482252 False
1.482252 1.339571 1.568822 1.630597 1.7444 2.0100000000000002 True
UC0, UC1 = 1.036, 0.905
brick 32 placed in layer 1 as row 11
layer 0: True
layer 1: 1.630597 > 1.720447 False
layer 2: 1.489541 > 1.482252 True
1.482252 1.489541 1.720447 1.630597 1.7444 2.0100000000000002 True
UC0, UC1, UC2 = 1.036, no try, 0.981
brick 33 placed in layer 2 as row 7
layer 0: True
layer 1: 1.630597 > 1.720447 False
layer 2: 1.489541 > 1.700828 False
1.700828 1.489541 1.720447 1.630597 1.7444 2.0100000000000002 True
UC0 = 1.05

UC too big!

FOR LOOPˆ
OUTPUT:

In [6]: # export Grasshopper
print(np.round(sigma,2))
sig_com = min([min(ele) for ele in sigma])
sig_ten = max([max(ele) for ele in sigma])
taut = max([max(ele) for ele in Tau])

#location of highest compressive stresses compared to strength there
sind = [[lst,ind] for (lst,ind),ele in np.ndenumerate(sigma) if ele==sig_com][0]
print('l:',sind[0],'br:',sind[1]), print(

'f_k',sigma[sind[0]][sind[1]]), print('f_R',yield_k[sind[0]][sind[1]])

#location of highest tensile stresses compared to strength there
sind = [[lst,ind] for (lst,ind),ele in np.ndenumerate(sigma) if ele==sig_ten][0]
print('l:',sind[0],'br:',sind[1]), print(

'f_tk',sigma[sind[0]][sind[1]]), print('f_tR',yield_t[sind[0]][sind[1]])

#location of highest shear stresses compared to strength there
sind = [[lst,ind] for (lst,ind),ele in np.ndenumerate(Tau) if ele==taut][0]
print('l:',sind[0],'br:',sind[1]), print(

'f_vk',Tau[sind[0]][sind[1]]), print('f_vR',fvk)

maxcomp, maxtens, maxshear = np.max(uccomp), np.max(uctens), np.max(uctau)
sind = [[lst,ind] for (lst,ind),ele in np.ndenumerate(uctens) if ele==maxtens][0]
print(sind),print()

print('maximum unity checks:',"maxcomp: ",np.round(maxcomp,3),

10

" maxtens: ", np.round(maxtens,3),
" maxshear: ", np.round(maxshear,3)), print()

print(seq),print(len(seq)),print()
print (np.round(np.array(UCseries),3)),print()

UCseries_ = [[np.round(ele,1) if
type(ele)==np.float64 else ele for ele in UCseries_[j]]

for j in range(len(UCseries_))]
for i in range(len(UCseries_)):

print(UCseries_[i])
layer = [ele.split(';')[0] for ele in seq]
brick = [ele.split(';')[1] for ele in seq]
print()
names = ['names','x','i0','i1','i2','h','sigma','seq']
output = [names,x,i0,i1,i2,h,sigma,seq]
output = [ele.tolist() if type(ele)==np.ndarray else ele for ele in output]

export

np.savetxt('C:/Users/Joris/Documents/Master Thesis quick access/Python_to_GH.csv',
output, delimiter = ';', fmt = '%s')

#print(output)

a = [[' x',' y0',' y1',' y2',' h','sigm0','sigm1','sigm2','sigm3']]
b = np.transpose([x,i0,i1,i2,h,sigma[0],sigma[1],sigma[2],sigma[3]])
b = [[str("{:.2f},".format(ele)) for ele in b[j]] for j in range(len(b))]
a += b
print(np.array(a))

l: 0 br: 1
f_k -2.3276665855266727
f_R -6.106357973053566
l: 3 br: 0
f_tk 2.09957120344815
f_tR 2.0
l: 0 br: 1
f_vk 0.11499622611018762
f_vR 0.3
[5, 0]

maximum unity checks: maxcomp: 1.036 maxtens: 1.05 maxshear: 0.383

['layer;brick', '0;0', '0;1', '1;0', '0;2', '1;1', '2;0', '0;3', '1;2', '0;4', '1;3', '2;1', '0;5', '1;4', '2;2', '0;6',
'1;5', '0;7', '1;6', '2;3', '0;8', '1;7', '2;4', '0;9', '1;8', '0;10', '1;9', '2;5', '0;11', '1;10', '2;6', '0;12',
'1;11', '2;7']

34

[0.05 0.412 0.147 0.696 0.241 0.188 0.721 0.239 0.771 0.342 0.267 0.846
0.284 0.216 0.947 0.319 0.784 0.423 0.329 0.931 0.339 0.378 0.81 0.464
0.993 0.561 0.612 0.903 0.721 0.784 0.848 0.905 0.981 1.05]

[0, 0.1, 'na', 'na']
[1, 0.4, 'na', 'na']
[2, 0.7, 0.1, 'na']
[3, 0.7, 'na', 'na']
[4, 0.8, 0.2, 'na']
[5, 0.7, 'na', 0.2]
[6, 0.7, 'na', 'na']
[7, 0.8, 0.2, 'na']
[8, 0.8, 'na', 'na']
[9, 0.8, 0.3, 'na']
[10, 0.8, 'na', 0.3]
[11, 0.8, 'na', 'na']
[12, 0.9, 0.3, 'na']
[13, 0.9, 'na', 0.2]
[14, 0.9, 'na', 'na']
[15, 1.0, 0.3, 'na']
[16, 0.8, 'na', 'na']
[17, 0.9, 0.4, 'na']
[18, 0.9, 'na', 0.3]
[19, 0.9, 'na', 'na']
[20, 1.0, 0.3, 'na']
[21, 0.8, 'na', 0.4]
[22, 0.8, 'na', 'na']
[23, 1.0, 0.5, 'na']
[24, 1.0, 'na', 'na']
[25, 1.0, 0.6, 'na']
[26, 0.9, 'na', 0.6]
[27, 0.9, 'na', 'na']
[28, 1.0, 0.7, 'na']
[29, 0.8, 'na', 0.8]
[30, 0.8, 'na', 'na']
[31, 1.0, 0.9, 'na']
[32, 1.0, 'na', 1.0]

11

[33, 1.0, 'na', 'na']

In [7]: # export Excel
distr = [Distr,Sigd0[0],Sigd0[1],Sigd9[0],Sigd9[1],Sigd18[0],Sigd18[1], Yied0[0],Yied0[1],Yied9[0],Yied9[1],
#Yied18[0],Yied18[1],UCd[0],UCd[1]]
for i in range(len(distr)):
distr[i].insert(0,['n',0,0,9,9,18,18,0,0,9,9,18,18,0,0][i])
print(len(Sigres))
print(len(Sigres[0]))
print(len(Sigres[0][0]))
sigres = np.transpose(Sigres)
tres = np.transpose(Tstrres)
cres = np.transpose(Cstrres)

distr = []
list = [sigres[0][0],sigres[0][1],sigres[0][2],sigres[0][3],

cres[0][0],cres[0][1],tres[0][1],tres[0][2],tres[0][3]]
for i in range(len(list)):

distr.append(list[i])
print(sigres[0][3][0:50])

np.savetxt('C:/Users/Joris/Documents/Master Thesis quick access/Stress_dist.txt',
distr, delimiter = ';', fmt = '%s')

for i in range(len(Sigres)):
distr = Sigres[i]
np.savetxt('C:/Users/Joris/Documents/Master Thesis quick access/Stress_dist_%s.txt' % (i), distr,
delimiter = ';', fmt = '%s')
#print(output)

34
4
91
[0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 3.68681070e-04 2.68415776e-02 4.29403158e-02
7.95325484e-02 1.05537275e-01 1.21254326e-01 1.68249483e-01
2.04495470e-01 2.40661554e-01 2.98343542e-01 3.45111306e-01
4.13746351e-01 4.71307812e-01 5.28712031e-01 6.08544540e-01
6.77174465e-01 7.56770657e-01 8.48020906e-01 9.27973034e-01
1.03082873e+00 1.12231642e+00 1.22487941e+00 1.33949234e+00
1.44272744e+00 1.56898081e+00 1.69546215e+00 1.81058390e+00
1.96115600e+00 2.09957120e+00]

In [8]: def sub(x):
normal = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+-=()"
subs = "CDGQwZw"
res = x.maketrans(''.join(normal), ''.join(subs))
return x.translate(res)

In [9]: # normal stresses after brick[i]
ll = [int(ele.split(';')[0]) for ele in seq[1:]]
nn = [int(ele.split(';')[1]) for ele in seq[1:]]
ll.append(l_last),nn.append(n_last)
ll.append(1),nn.append(8)
n0,n1,n2 = -2,-2,-2
id0,id1,id2 = 0,0,0

C0res=np.array([[[0 if Sigres[brk][lay][idx]>0 else ele
for idx,ele in enumerate(Cstrres[brk][lay])]

for lay,Lay in enumerate(Cstrres[brk])]
for brk,Brk in enumerate(Cstrres)])

T0res=np.array([[[0 if Sigres[brk][lay][idx]<0 else ele
for idx,ele in enumerate(Tstrres[brk][lay])]

for lay,Lay in enumerate(Tstrres[brk])]
for brk,Brk in enumerate(Tstrres)])

UCres=np.array([[[Tucres[brk][lay][idx] if ele==0 else ele
for idx,ele in enumerate(Cucres[brk][lay])]

for lay,Lay in enumerate(Cucres[brk])]
for brk,Brk in enumerate(Cucres)])

UC_maxi = np.array([[np.max(UCres[-1][:,idx])
for idx,ele in enumerate(UCres[-1][lst])]

for lst,Lst in enumerate(UCres[-1])][0])
plotall = []
for i in range(len(Sigres)):
for i in range(4):

n0,n1,n2 = nn[i] if ll[i]==0 else n0, nn[i] if \
ll[i]==1 else n1, nn[i] if ll[i]==2 else n2

id0,id1,id2 = i0.index(n0+1) if n0>-1 else -1, i1.index(n1+1) if \
n1>-1 else -1, i2.index(n2+1) if n2>-1 else -1

print('n',n0+1,n1+1,n2+1)

12

plt.rcParams["figure.figsize"] = (16,4) # (w, h)
fig, (ax0,ax1,ax2) = plt.subplots(2,2,sharex=True,sharey=False)

ax0 = plt.subplot(1,2,1)
ax1 = plt.subplot(9,2,(2,6), sharex=ax0)
ax2 = plt.subplot(9,2,(10,18), sharex=ax0)
AX = [ax1,ax2]
Yl = [[.8,1.1],[-.1,.4]]

#
ax0.spines['left'].set_position('zero')
ax0.spines['right'].set_color('none')
ax0.yaxis.tick_left()

ax0.spines['bottom'].set_position('zero')

ax0.spines['top'].set_color('none')
ax0.xaxis.tick_bottom()

xx = x
print(Sigres[i][0][:id0+1])

ax0.plot(xx[:id0+1],Sigres[i][0][:id0+1], label = '\u03C3%s' % (sub('0')),
color='red')

ax0.plot(xx[:id0+1],Sigres[i][1][:id0+1], label = '\u03C3%s' % (sub('1')),
color='magenta')

ax0.plot(xx[:id1+1],Sigres[i][2][:id1+1], label = '\u03C3%s' % (sub('2')),
color='blue')

ax0.plot(xx[:id2+1],Sigres[i][3][:id2+1], label = '\u03C3%s' % (sub('3')),
color='green')

alp = .1
ax0.fill_between(xx[:id0+1],C0res[i][0][:id0+1], color='red',alpha=alp,

label = 'f%s' % (sub('k,0')))
ax0.fill_between(xx[:id0+1],C0res[i][1][:id0+1], color='magenta',alpha=alp,

label = 'f%s' % (sub('k,1')))
ax0.fill_between(xx[:id0+1],T0res[i][1][:id0+1], color='magenta',alpha=alp,

label = 'f%s' % (sub('kt,1')))
ax0.fill_between(xx[:id1+1],Tstrres[i][2][:id1+1], color='blue',alpha=alp,

label = 'f%s' % (sub('kt,2')))
ax0.fill_between(xx[:id2+1],Tstrres[i][3][:id2+1], color='green',alpha=alp,

label = 'f%s' % (sub('kt,3')))

ax0.set_xlabel('x [m]')
ax0.set_ylabel('\u03C3 (N/mmš)')
ax0.title.set_text(

'Normal stresses throughout structure after brick %s is placed (wythe %s, row %s)' % (i+1,ll[i],nn[i]))

ax0.legend(loc=8, prop={"size":12},ncol=5)
ax0.set_ylim([-3.5,2.5]), ax0.set_xlim([0,L/2])

#

ax1.spines['bottom'].set_visible(False)
ax2.spines['top'].set_color('none')

ax2.spines['top'].set_visible(False)
ax2.spines['bottom'].set_position('zero')

ax2.xaxis.tick_bottom()
ax1.xaxis.tick_top()
ax1.tick_params(labeltop=False)
ax2.spines['left'].set_position('zero')
d,D = .014,.06
rate = [.625,.375]

for j in range(len(AX)):
ax = AX[j]
ax.spines['right'].set_color('none')
ax.yaxis.tick_left()

ax.plot(xx[:id0+1],Cucres[i][0][:id0+1], label = '0_low(0)',
color='red')

ax.plot(xx[:id0+1], UCres[i][1][:id0+1], label = '0_high(1)*',
color='magenta',linestyle='dashed')

ax.plot(xx[:id0+1], UCres[i][2][:id0+1], label = '1_low(1)',
color='magenta')

ax.plot(xx[:id1+1],Tucres[i][3][:id1+1], label = '1_high(2)*',
color='blue',linestyle='dashed')

ax.plot(xx[:id1+1],Tucres[i][4][:id1+1], label = '2_low(2)',
color='blue')

ax.plot(xx[:id2+1],Tucres[i][5][:id2+1], label = '2_high(3)',
color='green')

ax.hlines(1,0,L/2,color='k',linewidth=.75,linestyle='dashdot')

ax.set_ylabel('Unity check')

13

ax.set_ylim(Yl[j])#, ax.set_xlim([0,L/2])

dj,Dj = rate[j]*d,rate[j]*D
kwargs = dict(transform=ax.transAxes, color='k', clip_on=False)
ax.plot((-d, +d), (j-dj, j+dj), **kwargs) # bottom-left diagonal
ax.plot((-d, +d), (j-dj+Dj, j+dj+Dj), **kwargs) # bottom-left diagonal

ax1.title.set_text(
'Unity Check throughout structure after brick %s is placed' % (i+1))

ax2.set_xlabel('x [m]')
ax1.legend(loc=9, prop={"size":12},ncol=2)
if i == len(Sigres)-1:

try:
del textp

except:
print()

annot_max(xx,UC_maxi, ax=ax1,textp=[0.015,0.9])
xmax = xx[np.argmax(UC_maxi)]
ax0.vlines(xmax,-3.5,2.5,linestyle=(0,(2,12)))

print(id0,id1,id2)
plt.show()

14

15

16

17

18

19

20

In [10]: #
get = 28
Cfan = np.array(Cstrres)[:,:,get]
Tfan = np.array(Tstrres)[:,:,get]
Sigan = np.array(Sigres)[:,:,get]

start = [min([idx if ele==wth else len(ll) for idx,ele in enumerate(ll)])
for wth in [0,1,2]]

start.append(start[-1])

Inter = np.array([[0 if lst<start[idx] else ele
for idx,ele in enumerate(inter[:,get])]

for lst,Lst in enumerate(range(len(seq)))])

Sigani = np.array([np.zeros(len(seq)),Sigan[:,0],Sigan[:,1]+Inter[:,1],Sigan[:,1],
Sigan[:,2]+Inter[:,2],Sigan[:,2],Sigan[:,3],np.zeros(len(seq))])

Cfani = np.array([Cfan[:,0],Cfan[:,0],Cfan[:,1],Cfan[:,1],Cfan[:,2],Cfan[:,3]])
Tfani = np.array([Tfan[:,0],Tfan[:,0],Tfan[:,1],Tfan[:,1],Tfan[:,2],Tfan[:,3]])
Cfani[2:4,:2],Tfani[2:4,:2] = np.nan,np.nan
Cfani[4:7,:6],Tfani[4:7,:6] = np.nan,np.nan

print(Cfani)
print(Tfani)
print(Sigani)

[[-0.1 -0.1 -0.1 -0.1 -0.1 -0.1
-0.1 -0.1 -0.1 -0.1 -0.1 -0.1
-0.1 -0.1 -0.1 -0.1 -0.1 -0.1
-0.1 -0.1 -0.1 -0.1 -0.1 -0.7006358
-1.30127159 -1.90190739 -2.50254319 -3.32841741 -3.92905321 -4.52968901
-5.35556323 -5.95619902 -6.10635797 -6.10635797]

[-0.1 -0.1 -0.1 -0.1 -0.1 -0.1
-0.1 -0.1 -0.1 -0.1 -0.1 -0.1
-0.1 -0.1 -0.1 -0.1 -0.1 -0.1
-0.1 -0.1 -0.1 -0.1 -0.1 -0.7006358
-1.30127159 -1.90190739 -2.50254319 -3.32841741 -3.92905321 -4.52968901
-5.35556323 -5.95619902 -6.10635797 -6.10635797]

[nan nan -0.1 -0.1 -0.1 -0.1
-0.1 -0.1 -0.1 -0.1 -0.1 -0.1
-0.1 -0.1 -0.1 -0.1 -0.1 -0.1
-0.1 -0.1 -0.1 -0.1 -0.1 -0.7006358
-1.30127159 -1.90190739 -0.7006358 -1.52651002 -2.12714582 -2.72778161
-3.55365583 -4.15429163 -4.75492743 -5.58080165]

[nan nan -0.1 -0.1 -0.1 -0.1
-0.1 -0.1 -0.1 -0.1 -0.1 -0.1
-0.1 -0.1 -0.1 -0.1 -0.1 -0.1
-0.1 -0.1 -0.1 -0.1 -0.1 -0.7006358
-1.30127159 -1.90190739 -0.7006358 -1.52651002 -2.12714582 -2.72778161
-3.55365583 -4.15429163 -4.75492743 -5.58080165]

[nan nan nan nan nan nan
-0.1 -0.1 -0.1 -0.1 -0.1 -0.1
-0.1 -0.1 -0.1 -0.1 -0.1 -0.1
-0.1 -0.1 -0.1 -0.1 -0.1 -0.1
-0.1 -0.1 -0.7006358 -1.52651002 -2.12714582 -2.72778161
-3.55365583 -4.15429163 -4.75492743 -0.92587422]

[nan nan nan nan nan nan
-0.1 -0.1 -0.1 -0.1 -0.1 -0.1
-0.1 -0.1 -0.1 -0.1 -0.1 -0.1
-0.1 -0.1 -0.1 -0.1 -0.1 -0.1

21

-0.1 -0.1 -0.1 -0.1 -0.1 -0.1
-0.1 -0.1 -0.1 -0.92587422]]

[[0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1 0.1 0.29 0.48 0.67 0.86
1.12125 1.31125 1.50125 1.7625 1.9525 2. 2.]

[0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1 0.1 0.29 0.48 0.67 0.86
1.12125 1.31125 1.50125 1.7625 1.9525 2. 2.]

[nan nan 0.1 0.1 0.1 0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1 0.1 0.29 0.48 0.67 0.29
0.55125 0.74125 0.93125 1.1925 1.3825 1.5725 1.83375]

[nan nan 0.1 0.1 0.1 0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1 0.1 0.29 0.48 0.67 0.29
0.55125 0.74125 0.93125 1.1925 1.3825 1.5725 1.83375]

[nan nan nan nan nan nan 0.1 0.1 0.1
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.29
0.55125 0.74125 0.93125 1.1925 1.3825 1.5725 0.36125]

[nan nan nan nan nan nan 0.1 0.1 0.1
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1 0.1 0.1 0.36125]]

[[0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00]

[0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 -2.37071738e-02 -2.37071738e-02

-1.51863356e-01 -1.58455012e-01 -1.58455012e-01 -2.17113514e-01
-2.50139704e-01 -2.50139704e-01 -3.35502123e-01 -3.95281863e-01
-4.18935571e-01 -4.68881929e-01]

[0.00000000e+00 0.00000000e+00 1.48887260e-01 1.48887260e-01
1.48887260e-01 1.48887260e-01 1.48887260e-01 1.48887260e-01
1.48887260e-01 1.48887260e-01 1.48887260e-01 1.48887260e-01
1.48887260e-01 1.48887260e-01 1.48887260e-01 1.48887260e-01
1.48887260e-01 1.48887260e-01 1.48887260e-01 1.48887260e-01
1.48887260e-01 1.48887260e-01 1.71268984e-01 1.71268984e-01
2.98099716e-01 1.48887260e-01 1.48887260e-01 1.48555897e-01
1.48230705e-01 1.48230705e-01 1.47899343e-01 1.47574165e-01
1.39541349e-01 1.22745290e-01]

[0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 2.23817241e-02 2.23817241e-02
1.49212456e-01 2.77555756e-17 2.77555756e-17 -3.31362426e-04

-6.56554315e-04 -6.56554315e-04 -9.87916741e-04 -1.31309461e-03
-9.34591112e-03 -2.61419693e-02]

[0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 2.47730000e-01 2.47730000e-01 2.47730000e-01
2.47730000e-01 2.47730000e-01 2.47730000e-01 2.47730000e-01
2.47730000e-01 2.47730000e-01 2.47730000e-01 2.47730000e-01
2.47730000e-01 2.47730000e-01 2.47730000e-01 2.47730000e-01
2.47730000e-01 2.47730000e-01 2.47730000e-01 2.47730000e-01
2.47730000e-01 2.53671263e-01 2.53671263e-01 3.11667041e-01
3.44042847e-01 3.44042847e-01 4.28742541e-01 4.87871925e-01
2.47730000e-01 2.64084241e-01]

[0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 5.94126308e-03 5.94126308e-03 6.39370409e-02
9.63128469e-02 9.63128469e-02 1.81012541e-01 2.40141926e-01
0.00000000e+00 1.63542416e-02]

[0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00

22

0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
2.32089651e-02 7.27135065e-02]

[0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00
0.00000000e+00 0.00000000e+00]]

In [11]: #
len(Cfani)
phasedC = Cfani
phasedT = Tfani
phasedS = Sigani
np.savetxt('C:/Users/Joris/Documents/Master Thesis quick access/PhasedC.txt',

phasedC, delimiter = ';', fmt = '%s')
np.savetxt('C:/Users/Joris/Documents/Master Thesis quick access/PhasedT.txt',

phasedT, delimiter = ';', fmt = '%s')
np.savetxt('C:/Users/Joris/Documents/Master Thesis quick access/PhasedS.txt',

phasedS, delimiter = ';', fmt = '%s')

In [12]: # posi stands for the x-linspace, plcd stands for bricks placed:
posi=0 is at support, plcd=0 is 1 brick placed
xshift=4
runn = []

[runn.append([[0,0,0],[0,xshift*1**2,0],[0,xshift*2**2,0],
[0,xshift*3**2,0]][ele]) for ele in range(4)]

[runn.append([[0,0,1],[0,xshift*1**2,1],[0,xshift*2**2,1],
[0,xshift*3**2,1]][ele]) for ele in range(4)]

[runn.append([[0,0,1],[0,xshift*1**2,1],[0,xshift*2**2,1],
[0,xshift*3**2,1]][ele]) for ele in range(4)]

[runn.append([[0,0,1],[0,xshift*1**2,1],[0,xshift*2**2,1],
[0,xshift*3**2,1]][ele]) for ele in range(4)]

manu = [0,1,2,3,4,5,6,7,8,12,16,20,24,28,30]
if len(seq)>8:

manu = np.linspace(0,8,9).tolist()
else:

manu = np.linspace(0,len(seq)-1,len(seq)).tolist()
manu.extend([ele for ele in np.arange(0,100,4) if ele>manu[-1] and ele<len(seq)-3])
manu.extend([len(seq)-3,len(seq)-2])
manu = [int(ele) for ele in manu]
manu = [1,2,3,4,5,6,7,8,12,16,20,24,28,30]
manul = len(manu)
for i in range(len(manu)*4):

runn.append([manu[int(i/4)], xshift*int((i%4)**2), 1]) # plcd, posi, labelled
print(runn)
print()

for plc in range(len(runn)):
posi = runn[plc][1]
plcd = runn[plc][0]
lbl = runn[plc][2]
hh = [[-1.5*t,-1.5*t,-.5*t,-.5*t,.5*t,.5*t,1.5*t,1.5*t]

for ele in range(len(Sigani[0]))]
hh = [-1.5*t,-1.5*t,-.5*t,-.5*t,.5*t,.5*t,1.5*t,1.5*t]

Cfan = np.array(Cstrres)[:,:,posi]
Tfan = np.array(Tstrres)[:,:,posi]
Sigan = np.array(Sigres)[:,:,posi]

length = [sum([1 if ele==wth else 0 for idx,ele in enumerate(ll[0:plcd+1])])-1
for wth in [0,1,2]]

start = [y0[length[0]]<x[posi], y1[length[1]]<x[posi], y2[length[2]]<x[posi]]
start = [True if length[idx]==-1 else ele for idx,ele in enumerate(start)]
start.append(start[-1])

Inter = np.array([[0 if lst<start[idx] else ele
for idx,ele in enumerate(inter[:,posi+1])]
for lst,Lst in enumerate(range(len(seq)))])

Inter = np.array([[0 if start[idx] else ele
for idx,ele in enumerate(inter[:,posi+1])]

for lst,Lst in enumerate(range(len(seq)))])

Sigani = np.array([np.zeros(len(seq)),#0
Sigan[:,0],#1
Sigan[:,1]+Inter[:,1],#2

23

Sigan[:,1],#3
Sigan[:,2]+Inter[:,2],#4
Sigan[:,2],#5
Sigan[:,3],#6
np.zeros(len(seq))])#7

Cfani = np.array([Cfan[:,0],Cfan[:,0],Cfan[:,1],Cfan[:,1],Cfan[:,2],Cfan[:,3]])
Tfani = np.array([Tfan[:,0],Tfan[:,0],Tfan[:,1],Tfan[:,1],Tfan[:,2],Tfan[:,3]])
Sigani[5] = [0 if Inter[:,2][idx]==0 else ele

for idx,ele in enumerate(Sigani[5])]
Sigani[3] = [0 if Inter[:,1][idx]==0 else ele

for idx,ele in enumerate(Sigani[3])]

for i in range(len(Sigani)-2-1,0,-1): # i is per interface
i +=2
for j in range(len(Sigani[i])): # j is per plcd

if Sigani[i-1][j]==0 and Sigani[i-1][j-1]!=0:
Sigani[i-1][j]+=10**-6

if i>1 and i<7 and Sigani[i][j]==0:
Cfani[i-1][j] = np.nan
Tfani[i-1][j] = np.nan

if Sigani[i-1][j]==0:# and Sigani[i-1][j-1]==0:
Sigani[i][j] = np.nan

if plcd==2:
Cfani[2:4,plcd] = fm
Tfani[2:4,plcd] = fti

fig = plt.figure()
fig.set_figwidth(4),fig.set_figheight(4)
ax = fig.add_subplot(1, 1, 1)
if plc>=4*4 or len(runn)/4==len(manu):

ax.set_xlim(-2.4,2.1)
else:

ax.set_xlim(-.1257,.11)
ax.set_ylim(-1.75*t,1.75*t)
ax.spines['left'].set_position('zero')
ax.spines['right'].set_color('none')
ax.yaxis.tick_left()
ax.spines['bottom'].set_position(('axes',0))
ax.spines['top'].set_color('none')
ax.xaxis.tick_bottom()
ax.set_xlabel('\u03C3 [N/mmš]', fontsize=14)
ax.set_ylabel('w [m]', fontsize=14)
fig.suptitle('Stress distribution at x=%s [m] \n after brick %s is placed' % (x[posi],plcd+1),fontsize=12)

if lbl==1:
lyrs = np.count_nonzero([ele for ele in Sigani[:,plcd]

if (not np.isnan(ele))])
if lyrs==2:

sig = [1,2,4,6]
elif lyrs==4:

sig = [1,3,4,6]
else:

sig = [1,3,5,6]

clr = ['r','m','b','g']
sig = [ele for ele in sig if (Sigani[:,plcd][ele]!=0)*(

not np.isnan(Sigani[:,plcd][ele]))]
for i in range(len(sig)):

text= "\u03C3%s" % (sub('%s,%s,%s' % (i,plcd+1,x[posi]))) #text
labpo = [-np.sign(Sigani[sig[i],plcd])/2+0.5,hh[sig[i]]/sum(

np.abs(ax.get_ylim()))+0.5]
ax.annotate(text, xy=(labpo[0],labpo[1]), xycoords='axes fraction',

color=clr[i], ha=['left','right'][int(labpo[0])],
fontsize=14)

plt.plot(Sigani[sig[i],plcd],hh[sig[i]], 'o', ms=10, mfc='none',
mew=2, mec=clr[i])

if plc>=3*4 or len(runn)/4==len(manu):
if Sigani[sig[i],plcd]<0:

plt.plot(Cfani[sig[i]-1,plcd],hh[sig[i]], 'x', ms=8, mfc='none',
mew=1.5, mec=clr[i])

if Sigani[sig[i],plcd]<0 and Cfani[sig[i]-1,plcd]<-2.4:
plt.arrow(-2.4+.4, hh[sig[i]], -.4, 0, length_includes_head=True,

shape='full',width=.0004, head_width = .0015,
head_length = .15, ec = 'none', fc = clr[i])

if Sigani[sig[i],plcd]>=0:
plt.plot(Tfani[sig[i]-1,plcd],hh[sig[i]], 'x', ms=8, mfc='none',

mew=1.5, mec=clr[i])

print ('Sig:',Sigani[:,plcd])
print('Cf',Cfani[:,plcd])
print('Tf',Tfani[:,plcd])

ax.plot(Sigani[:,plcd],hh,color='k',lw=2)
x_fill = np.zeros(len(hh))
if plc>=2*4 or len(runn)/4==len(manu):

24

ax.fill_betweenx(hh[1:7],Cfani[:,plcd],x_fill[1:7],color='maroon',alpha=.1)
ax.fill_betweenx(hh[1:7],Tfani[:,plcd],x_fill[1:7],color='navy',alpha=.1)

if plc==len(runn)-2:
fig.set_figwidth(12),fig.set_figheight(4)
saveplt = ax

plt.show();

[[0, 0, 0], [0, 4, 0], [0, 16, 0], [0, 36, 0], [0, 0, 1], [0, 4, 1], [0, 16, 1], [0, 36, 1], [0, 0, 1], [0, 4, 1],
[0, 16, 1], [0, 36, 1], [0, 0, 1], [0, 4, 1], [0, 16, 1], [0, 36, 1], [0, 0, 1], [0, 4, 1], [0, 16, 1], [0, 36, 1],
[1, 0, 1], [1, 4, 1], [1, 16, 1], [1, 36, 1], [2, 0, 1], [2, 4, 1], [2, 16, 1], [2, 36, 1], [3, 0, 1], [3, 4, 1],
[3, 16, 1], [3, 36, 1], [4, 0, 1], [4, 4, 1], [4, 16, 1], [4, 36, 1], [5, 0, 1], [5, 4, 1], [5, 16, 1], [5, 36, 1],
[6, 0, 1], [6, 4, 1], [6, 16, 1], [6, 36, 1], [7, 0, 1], [7, 4, 1], [7, 16, 1], [7, 36, 1], [8, 0, 1], [8, 4, 1],
[8, 16, 1], [8, 36, 1], [12, 0, 1], [12, 4, 1], [12, 16, 1], [12, 36, 1], [16, 0, 1], [16, 4, 1], [16, 16, 1],
[16, 36, 1], [20, 0, 1], [20, 4, 1], [20, 16, 1], [20, 36, 1], [24, 0, 1], [24, 4, 1], [24, 16, 1], [24, 36, 1],
[28, 0, 1], [28, 4, 1], [28, 16, 1], [28, 36, 1], [31, 0, 1], [31, 4, 1], [31, 16, 1], [31, 36, 1], [32, 0, 1],
[32, 4, 1], [32, 16, 1], [32, 36, 1]]

25

26

27

28

In [13]: #
n0,n1,n2 = -2,-2,-2
id0,id1,id2 = 0,0,0

C0res=np.array([[[0 if Sigres[brk][lay][idx]>0 else ele
for idx,ele in enumerate(Cstrres[brk][lay])]

for lay,Lay in enumerate(Cstrres[brk])]
for brk,Brk in enumerate(Cstrres)])

T0res=np.array([[[0 if Sigres[brk][lay][idx]<0 else ele
for idx,ele in enumerate(Tstrres[brk][lay])]

for lay,Lay in enumerate(Tstrres[brk])]
for brk,Brk in enumerate(Tstrres)])

for i in range(len(manu)):
posi = np.array(runn)[:4,1]
i,add=manu[i],i
n0,n1,n2 = [sum([1 if ele==wth else 0 for idx,ele in enumerate(ll[0:i+1])])-1

for wth in [0,1,2]]
id0,id1 = i0.index(n0+1) if n0>-1 else -1, i1.index(n1+1) if n1>-1 else -1
id2 = i2.index(n2+1) if n2>-1 else -1

fig = plt.figure()
fig.set_figwidth(12),fig.set_figheight(8)
ax = fig.add_subplot(1, 1, 1)

#
ax.spines['left'].set_position('zero')
ax.spines['right'].set_color('none')
ax.yaxis.tick_left()

ax.spines['bottom'].set_position('zero')

ax.spines['top'].set_color('none')
ax.xaxis.tick_bottom()

xx = x

ax.plot(xx[:id0+1],Sigres[i][0][:id0+1], label = '\u03C3%s' % (sub('0')),
color='red')

ax.plot(xx[:id0+1],Sigres[i][1][:id0+1], label = '\u03C3%s' % (sub('1')),
color='magenta')

ax.plot(xx[:id1+1],Sigres[i][2][:id1+1], label = '\u03C3%s' % (sub('2')),
color='blue')

ax.plot(xx[:id2+1],Sigres[i][3][:id2+1], label = '\u03C3%s' % (sub('3')),
color='green')

alp = .1
ax.fill_between(xx[:id0+1],C0res[i][0][:id0+1], color='red',alpha=alp,

label = 'f%s' % (sub('k,0')))
ax.fill_between(xx[:id0+1],C0res[i][1][:id0+1], color='magenta',alpha=alp,

label = 'f%s' % (sub('k,1')))
ax.fill_between(xx[:id0+1],T0res[i][1][:id0+1], color='magenta',alpha=alp,

label = 'f%s' % (sub('kt,1')))
ax.fill_between(xx[:id1+1],Tstrres[i][2][:id1+1], color='blue',alpha=alp,

label = 'f%s' % (sub('kt,2')))

29

ax.fill_between(xx[:id2+1],Tstrres[i][3][:id2+1], color='green',alpha=alp,
label = 'f%s' % (sub('kt,3')))

ax.set_xlabel('x [m]', fontsize=14)
ax.set_ylabel('\u03C3 (N/mmš)', fontsize=14)
ax.title.set_text('Normal stresses throughout structure after brick %s is placed (wythe %s, row %s)
' % (i+1,ll[i],nn[i]))

ax.legend(loc=8, fontsize=14,ncol=5)
ax.set_ylim([-3.5,2.5]), ax.set_xlim([-0.005,1.715])

hd_wd = .008*sum(np.abs(ax.get_xlim()))
hd_ln = 8*hd_wd
for ar in range(len(posi)):

if np.sign(Sigres[i][0][posi[ar]]) != 0:
ax.plot(xx[posi[ar]], Sigres[i][0][posi[ar]], 'o', ms=10, mfc='none',

mew=2, mec='r')
ax.plot(xx[posi[ar]], C0res[i][0][posi[ar]], 'x', ms=8, mfc='none',

mew=1.5, mec='r')
#

if np.sign(Sigres[i][1][posi[ar]]) != 0:
ax.plot(xx[posi[ar]],Sigres[i][1][posi[ar]], 'o', ms=10, mfc='none',

mew=2, mec='m')
if Sigres[i][1][posi[ar]]<0:

ax.plot(xx[posi[ar]], C0res[i][1][posi[ar]], 'x', ms=8,
mfc='none', mew=1.5, mec='m')

if Sigres[i][1][posi[ar]]>=0:
ax.plot(xx[posi[ar]], T0res[i][1][posi[ar]], 'x', ms=8,

mfc='none', mew=1.5, mec='m')
#

if np.sign(Sigres[i][2][posi[ar]]) != 0:
ax.plot(xx[posi[ar]],Sigres[i][2][posi[ar]], 'o', ms=10, mfc='none',

mew=2, mec='b')
ax.plot(xx[posi[ar]], Tstrres[i][2][posi[ar]], 'x', ms=8, mfc='none',

mew=1.5, mec='b')
#

if np.sign(Sigres[i][3][posi[ar]]) != 0:
ax.plot(xx[posi[ar]],Sigres[i][3][posi[ar]], 'o', ms=10, mfc='none',

mew=2, mec='g')
ax.plot(xx[posi[ar]], Tstrres[i][3][posi[ar]], 'x', ms=8, mfc='none',

mew=1.5, mec='g')

if i<manu[5] or i==manu[-1]:
ax.plot([xx[posi[ar]],xx[posi[ar]]],ax.get_ylim(),

ls=(0,(2,7,4,7)),c='k',lw=1)
if i<manu[3] or i==manu[-1]:

ax.annotate(" x = %s" % (x[posi[ar]]),
xy=(xx[posi[ar]],ax.get_ylim()[1]), color='k',
fontsize=12, va='top')

plt.show()

30

31

In [14]: #
from matplotlib.transforms import Affine2D
import mpl_toolkits.axisartist.floating_axes as floating_axes
posi = np.array(runn)[:4,1]
fig = plt.figure(figsize=(16,6))
ax1 = fig.add_subplot(1,1,1)

if True:
i = manu[-1]
n0,n1,n2 = [sum([1 if ele==wth else 0 for idx,ele in enumerate(ll[0:i+1])])-1

for wth in [0,1,2]]
id0,id1 = i0.index(n0+1) if n0>-1 else -1, i1.index(n1+1) if n1>-1 else -1
id2 = i2.index(n2+1) if n2>-1 else -1
ax1.spines['left'].set_position('zero')
ax1.spines['right'].set_color('none')
ax1.yaxis.tick_left()

ax1.spines['bottom'].set_position('zero')

ax1.spines['top'].set_color('none')
ax1.xaxis.tick_bottom()

xx = x

32

ax1.plot(xx[:id0+1],Sigres[i][0][:id0+1], label = '\u03C3%s' % (sub('0')),
color='red')

ax1.plot(xx[:id0+1],Sigres[i][1][:id0+1], label = '\u03C3%s' % (sub('1')),
color='magenta')

ax1.plot(xx[:id1+1],Sigres[i][2][:id1+1], label = '\u03C3%s' % (sub('2')),
color='blue')

ax1.plot(xx[:id2+1],Sigres[i][3][:id2+1], label = '\u03C3%s' % (sub('3')),
color='green')

alp = .1
ax1.fill_between(xx[:id0+1],C0res[i][0][:id0+1], color='red',alpha=alp,

label = 'f%s' % (sub('k,0')))
ax1.fill_between(xx[:id0+1],C0res[i][1][:id0+1], color='magenta',alpha=alp,

label = 'f%s' % (sub('k,1')))
ax1.fill_between(xx[:id0+1],T0res[i][1][:id0+1], color='magenta',alpha=alp,

label = 'f%s' % (sub('kt,1')))
ax1.fill_between(xx[:id1+1],Tstrres[i][2][:id1+1], color='blue',alpha=alp,

label = 'f%s' % (sub('kt,2')))
ax1.fill_between(xx[:id2+1],Tstrres[i][3][:id2+1], color='green',alpha=alp,

label = 'f%s' % (sub('kt,3')))

ax1.set_xlabel('x [m]', fontsize=14)
ax1.set_ylabel('\u03C3 (N/mmš)', fontsize=14)
ax1.title.set_text('Normal stresses throughout structure after brick %s is placed (wythe %s, row %s)
' % (i+1,ll[i],nn[i]))

ax1.legend(loc=8, fontsize=14,ncol=5)
ax1.set_ylim([-3.5,2.5]), ax1.set_xlim([-0.005,1.715])

hd_wd = .008*sum(np.abs(ax1.get_xlim()))
hd_ln = 8*hd_wd
for ar in range(len(posi)):

if np.sign(Sigres[i][0][posi[ar]]) != 0:
ax1.plot(xx[posi[ar]], Sigres[i][0][posi[ar]], 'o', ms=10, mfc='none',

mew=2, mec='r')
ax1.plot(xx[posi[ar]], C0res[i][0][posi[ar]], 'x', ms=8, mfc='none',

mew=1.5, mec='r')

if np.sign(Sigres[i][1][posi[ar]]) != 0:
ax1.plot(xx[posi[ar]],Sigres[i][1][posi[ar]], 'o', ms=10, mfc='none',

mew=2, mec='m')
if Sigres[i][1][posi[ar]]<0:

ax1.plot(xx[posi[ar]], C0res[i][1][posi[ar]], 'x', ms=8,
mfc='none', mew=1.5, mec='m')

if Sigres[i][1][posi[ar]]>=0:
ax1.plot(xx[posi[ar]], T0res[i][1][posi[ar]], 'x', ms=8,

mfc='none', mew=1.5, mec='m')

if np.sign(Sigres[i][2][posi[ar]]) != 0:
ax1.plot(xx[posi[ar]],Sigres[i][2][posi[ar]], 'o', ms=10, mfc='none',

mew=2, mec='b')
ax1.plot(xx[posi[ar]], Tstrres[i][2][posi[ar]], 'x', ms=8, mfc='none',

mew=1.5, mec='b')

if np.sign(Sigres[i][3][posi[ar]]) != 0:
ax1.plot(xx[posi[ar]],Sigres[i][3][posi[ar]], 'o', ms=10, mfc='none',

mew=2, mec='g')
ax1.plot(xx[posi[ar]], Tstrres[i][3][posi[ar]], 'x', ms=8, mfc='none',

mew=1.5, mec='g')

if i<manu[5] or i==manu[-1]:
ax1.plot([xx[posi[ar]],xx[posi[ar]]],ax1.get_ylim(),

ls=(0,(2,7,4,7)),c='k',lw=1)
if i<manu[3] or i==manu[-1]:

ax1.annotate(" x = %s" % (xx[posi[ar]]),
xy=(xx[posi[ar]],ax1.get_ylim()[1]),
color='k', fontsize=12, va='top')

xstart = 6
subwidth = xstart + 7

tr_rot = Affine2D().scale(.1,100).rotate_deg(90)

ax2 = fig.add_axes([xx[posi[2]+xstart] / sum(np.abs(ax1.get_xlim())) *.775+.125,
(-2.4-ax1.get_ylim()[0]) / sum(np.abs(ax1.get_ylim())) *.755+.125,
(xx[posi[2]+subwidth]-xx[posi[2]+xstart]) / sum(np.abs(ax1.get_xlim())) *.775,
(2.1--2.4) / sum(np.abs(ax1.get_ylim())) *.755])

if True:
plc = len(runn)-2
posi = runn[plc][1]
plcd = runn[plc][0]
lbl = runn[plc][2]
hh = [[-1.5*t,-1.5*t,-.5*t,-.5*t,.5*t,.5*t,1.5*t,1.5*t]

for ele in range(len(Sigani[0]))]

33

hh = [-1.5*t,-1.5*t,-.5*t,-.5*t,.5*t,.5*t,1.5*t,1.5*t]

Cfan = np.array(Cstrres)[:,:,posi]
Tfan = np.array(Tstrres)[:,:,posi]
Sigan = np.array(Sigres)[:,:,posi]

length = [sum([1 if ele==wth else 0 for idx,ele in enumerate(ll[0:plcd+1])])-1
for wth in [0,1,2]]

start = [y0[length[0]]<xx[posi], y1[length[1]]<xx[posi], y2[length[2]]<xx[posi]]
start = [True if length[idx]==-1 else ele for idx,ele in enumerate(start)]
start.append(start[-1])

Inter = np.array([[0 if start[idx] else ele
for idx,ele in enumerate(inter[:,posi+1])]

for lst,Lst in enumerate(range(len(seq)))])

Sigani = np.array([np.zeros(len(seq)),#0
Sigan[:,0],#1
Sigan[:,1]+Inter[:,1],#2
Sigan[:,1],#3
Sigan[:,2]+Inter[:,2],#4
Sigan[:,2],#5
Sigan[:,3],#6
np.zeros(len(seq))])#7

Cfani = np.array([Cfan[:,0],Cfan[:,0],Cfan[:,1],Cfan[:,1],Cfan[:,2],Cfan[:,3]])
Tfani = np.array([Tfan[:,0],Tfan[:,0],Tfan[:,1],Tfan[:,1],Tfan[:,2],Tfan[:,3]])

Sigani[5] = [0 if Inter[:,2][idx]==0 else ele for idx,ele
in enumerate(Sigani[5])]

Sigani[3] = [0 if Inter[:,1][idx]==0 else ele for idx,ele
in enumerate(Sigani[3])]

for i in range(len(Sigani)-2): # i is per interface
i +=2
for j in range(len(Sigani[i])): # j is per plcd

if i>1 and i<7 and Sigani[i][j]==0:
Cfani[i-1][j] = np.nan
Tfani[i-1][j] = np.nan

if Sigani[i-1][j]==0:
Sigani[i][j] = np.nan

ax2.set_ylim(-2.4,2.1)
ax2.set_xlim(1.75*t,-1.75*t-.5*(3.5*t))
ax2.spines['bottom'].set_position('zero')

ax2.spines['top'].set_color('none')
ax2.yaxis.tick_left()
ax2.spines['left'].set_position(('axes',1))

ax2.spines['right'].set_color('none')
ax2.patch.set_edgecolor('k'),ax2.patch.set_linewidth('1')
ax2.xaxis.tick_bottom()
ax2.set_ylabel('\u03C3 [N/mmš]', fontsize=10,ha='left')
ax2.set_xlabel('w [m]', fontsize=10)
ax2.set_title('Stresses at x=%s (rotated)' % (x[posi]),loc='left')

if lbl==1:
lyrs = np.count_nonzero([ele for ele in Sigani[:,plcd]

if (not np.isnan(ele))])
if lyrs==2:

sig = [1,2,4,6]
elif lyrs==4:

sig = [1,3,4,6]
else:

sig = [1,3,5,6]

clr = ['r','m','b','g']
sig = [ele for ele in sig if (Sigani[:,plcd][ele]!=0)*(

not np.isnan(Sigani[:,plcd][ele]))]
for i in range(len(sig)):

text= "\u03C3%s" % (sub('%s,%s,%s' % (i,plcd+1,xx[posi]))) #text
labpo = [-np.sign(Sigani[sig[i],plcd])/2+0.5,

-(hh[sig[i]]-ax2.get_xlim()[0])/sum(np.abs(ax2.get_xlim()))]
ax2.annotate(text, xy=(labpo[1],labpo[0]),

xycoords='axes fraction', color=clr[i], fontsize=14,
va=['bottom','top'][int(labpo[0])],
rotation=90)

ax2.plot(hh[sig[i]],Sigani[sig[i],plcd], 'o', ms=10, mfc='none',
mew=2, mec=clr[i])

if plc>=3*4:
if Sigani[sig[i],plcd]<0:

ax2.plot(hh[sig[i]],Cfani[sig[i]-1,plcd], 'x', ms=8,
mfc='none', mew=1.5, mec=clr[i])

if Sigani[sig[i],plcd]<0 and Cfani[sig[i]-1,plcd]<-2.4:
ax2.arrow(hh[sig[i]], -2.4+.4, 0, -.4,

length_includes_head=True, shape='full',

34

width=.0004, head_width = .0015,
head_length = .15, ec = 'none', fc = clr[i])

if Sigani[sig[i],plcd]>=0:
ax2.plot(hh[sig[i]],Tfani[sig[i]-1,plcd], 'x', ms=8,

mfc='none', mew=1.5, mec=clr[i])
ax2.plot([ax2.get_xlim()[0],hh[sig[i]]],

[Sigani[sig[i],plcd],Sigani[sig[i],plcd]],
c=clr[i],ls=(1,(2,4)))

ax1.plot([xx[posi],xx[posi+xstart]],
[Sigani[sig[i],plcd],Sigani[sig[i],plcd]],
c=clr[i],ls=(1,(2,4)))

ax1.arrow(xx[posi+1],
Sigani[sig[i],plcd],
-xx[posi+1]+xx[posi],
0,
length_includes_head=True,
shape='full',
head_width = .12,
head_length = xx[posi+1]-xx[posi],
ec = 'none',
fc = clr[i])

ax2.plot(hh,Sigani[:,plcd],color='k',lw=2)
x_fill = np.zeros(len(hh))

ax2.fill_between(hh[1:7],Cfani[:,plcd],color='maroon',alpha=.1)
ax2.fill_between(hh[1:7],Tfani[:,plcd],color='navy',alpha=.1)

plt.show()

In [15]: def annot_max1(x,y, ax=None):
xmax = x[np.argmax(y)]
ymax = y.max()
text= "bricks placed={:}, uc={:.2f}".format(int(xmax), ymax)
if not ax:

ax=plt.gca()
bbox_props = dict(boxstyle="square,pad=0.3", fc="w", ec="k", lw=0.72)
arrowprops=dict(arrowstyle="->",connectionstyle="angle,angleA=0,angleB=60")
kw = dict(xycoords='data',textcoords="axes fraction",

arrowprops=arrowprops, bbox=bbox_props, ha="right", va="top")
ax.annotate(text, xy=(xmax, ymax), xytext=(0.82,0.96), **kw)

In [16]: # Maximum dimensions of vault
%matplotlib inline
%matplotlib inline
from matplotlib.patches import Rectangle
from matplotlib.patches import Circle
from matplotlib.patches import Ellipse

Ro = 3123 #mm
Ri = 1092.7
Ro = 3425
Ri = 1140
Ro,Ri = Ro/1000,Ri/1000
a2+b2=c2

plt.rcParams["figure.figsize"] = (2*(Ro),2*(Ro-Ri)) # (w, h)
fig, ax = plt.subplots()

course = np.linspace(0,Ro+1,30)
course = [ele for ele in course if abs(ele)<=Ro]

35

cant = [np.sqrt(Ro**2 - ele**2)-Ri for ele in course]
course = [ele for idx, ele in enumerate(course) if cant[idx]>=0]
cant = [ele for ele in cant if ele>=0]
span = [2*ele for ele in cant]
cours = [2*ele for ele in course]

plt.plot(cours,cant,color='k',label='cantilever')
plt.plot(cours,span,linestyle='dashed',color='k',label='span')
width = .8
height= 4.5/2
plt.plot(width,height,'+',color='k',ms=10,label='currently used',mew=3)
ax.add_patch(Rectangle((0,0),width,height,fill=None,hatch='//'))
ax.add_patch(Rectangle((0,height),width,height,fill=None, linestyle=(0,(6,6))))

plt.ylim([0,2*(Ro-Ri)]), plt.xlim([0,2*(Ro)])

plt.xlabel('length of course [m]')
plt.ylabel('cantilever or span [m]')
plt.legend(prop={"size":10})
plt.show()

#Other graph
x_0 = [-ele for idx,ele in enumerate(course) if idx % 3 ==1]
x_1 = [ele for idx,ele in enumerate(course) if idx % 3 ==1]
y_0 = [Ri for idx,ele in enumerate(cant) if idx % 3 ==1]
y_1 = [ele+Ri for idx,ele in enumerate(cant) if idx % 3 ==1]
y_2 = [ele+Ri for idx,ele in enumerate(span) if idx % 3 ==1]
d_x = [x_1[idx]-x_0[idx] for idx,ele in enumerate(x_0)]
d_y = [y_1[idx]-y_0[idx] for idx,ele in enumerate(x_0)]

plt.rcParams["figure.figsize"] = (2*(Ro+Ri),2*Ro-Ri) # (w, h)
fig, ax = plt.subplots()
lne = ['dashed','solid']

for i in range(len(x_0)):
g = float((i % 2)/3*2)
ax.add_patch(Rectangle((x_0[i], y_1[i]), (x_1[i]-x_0[i]), (y_1[i]-y_0[i]), fill=None,color=str(g),
linestyle = 'dashed'))
ax.add_patch(Rectangle((x_0[i], y_0[i]), (x_1[i]-x_0[i]), (y_1[i]-y_0[i]), fill=None,color=str(g),

label = 'Vault of %sŒ%s [m]' % (np.round(d_x[i],2),np.round(2*d_y[i],2))))

ax.add_patch(Circle((0,0), Ro,fill=None,linestyle=(0,(1,4))))
ax.add_patch(Ellipse((0,0), width=2*Ro,height=(4*Ro-2*Ri),fill=None,linestyle=(0,(1,6))))
ax.add_patch(Circle((0,0), Ri,color='darkgray'))

plt.ylim([0,2*Ro-Ri]), plt.xlim([-Ro-Ri,Ro+Ri])
plt.legend(prop={"size":10})
plt.show()

In [17]: from scipy.misc import derivative as diff
H1 = (8/3)
xq = np.linspace(0,7,101)
def func(xq):

afcd = (
(H1>(2*4/3))*(

(xq<(4/3))*(xq>=0) *
(.5*150*xq**2)
+ (xq>=(4/3))*(xq<=(H1-4/3)) *
(200*(xq-4/3)+0.5*150*(4/3)**2)
+ (xq>(H1-4/3))*(xq<=H1) *
(150*H1*xq -.5*150*xq**2 - .5*150*H1**2 +200*H1 - 800/3)
+ (xq>H1) *

36

(200*(H1-4/3))
)
+ (H1<=(2*4/3))*(

(xq<=(H1/2))*(xq>=0) *
(.5*150*xq**2)
+ (xq>(H1/2))*(xq<=H1) *
(150*H1*xq-.5*150*xq**2-150/4*H1**2)
+ (xq>H1) *
(150/4*H1**2)

)
)
return afcd

def dif(xq):
if H1>(2*4/3):
afcd2 = (xq<(4/3)) * (150*xq) + (xq>=(4/3))*(xq<=(H1-4/3)) * (200) + (xq>(H1-4/3))*(xq<=H1) *
(200 - 150*(xq-H1+4/3)) + (xq>H1) * 0
return afcd2
print(func(xq))
print('4/3',func(4/3))
print('d4/3',diff(func,4/3))
T = [(np.sqrt(30)/5),(2*np.sqrt(15)/5),(2*np.sqrt(30)/5),(47/15),(74/15),(101/15)]
Deg = [45,90,200,360,720,1080]
plt.figure(figsize=(20,8))
for i in range(len(T)):

H1 = T[i]
print('H1',func(H1),H1)
plt.plot(func(xq),xq,label=Deg[i]);

plt.plot((400/3),(4/3),"x",ms=20,mec='k',mew=5)
plt.legend();
plt.plot(dif(xq),xq);

4/3 133.33333333333331
H1 45.00000000000002 1.0954451150103321
H1 89.99999999999996 1.5491933384829668
H1 180.00000000000009 2.1908902300206643
H1 359.99999999999994 3.1333333333333333
H1 720.0 4.933333333333334
H1 1080.0 6.733333333333333

In [18]: #
travel = [15696,10667,2534,168,1451,16061,41464,18238,1451,1415,11049,252,1451,1666,1451...
travel[0] = 46624
times = [1414,2191,30425,123,408,2261,2014,1223,417,351,2191,176,422,1616,434,2191,30455,428,411,2495,2004,11...
speed = [1110,487,8,137,355,710,2058,1491,348,403,504,143,344,103,335,479,8,491,353,671,1841,1649,8,300,1463,...
times = [ele/1000 for ele in times]
travel = [ele/10 for ele in travel]
print(len(travel),len(times),len(speed))

comper = "6"

Per Instruction
plt.rcParams["figure.figsize"] = (15,4.5) # (w, h)
params = {'mathtext.default': 'regular' }
plt.rcParams.update(params)
fig,((ax0,ax1),(ax2,ax3)) = plt.subplots(2,2,sharex=True)
fig = plt.figure()
ax0 = fig.add_subplot(2,2,1)
ax1 = fig.add_subplot(2,2,2,sharex=ax0)
ax2 = fig.add_subplot(2,2,3,sharex=ax0)
ax3 = fig.add_subplot(2,2,1)

ax0.set_title("Cycle time per instruction in $comp_%s$" % (comper),fontsize=16,fontname="Helvetica")
ax0.set_xlabel("Travel length [mm]",fontsize=12,fontname="Helvetica")
ax0.set_ylabel("Cycle time [sec]",fontsize=12,fontname="Helvetica")

37

ax0.grid(which='major',lw=.5,alpha=0.75)
ax0.scatter(travel,times)
ax0.set_xlim(xlims)
xlims = ax0.set_xlim()

timesmin = [ele-30 if ele>30 else ele for ele in times]

ax1.set_title("Cycle time per instruction in $comp_%s$ without hardening time" % (comper),fontsize=16,
fontname="Helvetica")
ax1.set_xlabel("Travel length [mm]",fontsize=12,fontname="Helvetica")
ax1.set_ylabel("Cycle time [sec]",fontsize=12,fontname="Helvetica")
ax1.grid(which='major',lw=.5,alpha=0.75)
ax1.scatter(travel,timesmin)

ax2.set_title("Cycle speed per instruction in $comp_%s$" % (comper),fontsize=16,fontname="Helvetica")
ax2.set_xlabel("Travel length [mm]",fontsize=12,fontname="Helvetica")
ax2.set_ylabel("Cycle speed [mm/s]",fontsize=12,fontname="Helvetica")
ax2.grid(which='major',lw=.5,alpha=0.75)
ax2.scatter(travel,speed)

speedmin = [travel[ind]/timesmin[ind] for ind,ele in enumerate(travel)]

ax3.set_title("Cycle speed per instruction in $comp_%s$ without hardening time" % (comper),fontsize=16,
fontname="Helvetica")
ax3.set_xlabel("Travel length [mm]",fontsize=12,fontname="Helvetica")
ax3.set_ylabel("Cycle speed [mm/s]",fontsize=12,fontname="Helvetica")
ax3.grid(which='major',lw=.5,alpha=0.75)
ax3.scatter(travel,speedmin)
sns.regplot(np.array(travel), np.array(speedmin),ci=99.9,ax=ax3)
b3,a3 = np.polynomial.polynomial.polyfit(travel,speedmin,deg=1)
b30,b31 = b3+300, b3-300
upper,downer = [a3*ele+b30 for ele in travel], [a3*ele+b31 for ele in travel]
upper,downer = sum([speedmin[ind]<upper[ind] for ind,ele in enumerate(upper)]),sum([speedmin[ind]>downer[ind]
for ind,ele in enumerate(downer)])
print(upper/len(travel),downer/len(travel))
ax3.plot(travel, [a3*ele+b30 for ele in travel], ls='dotted', c='#1f77b4',alpha=0.5)
ax3.plot(travel, [a3*ele+b31 for ele in travel], ls='dotted', c='#1f77b4',alpha=0.5)
plt.subplots_adjust(hspace=0.45)

Per brick
travel0 = [57764,46934,50007,53566,57722,62457,67763,73616,67952,58728,53866,57012,61007,65541,69943,75678,7...
times0 = [41464,42016,41820,41676,41237,41058,40624,40580,40924,41282,41357,41466,41753,42197,41661,42614,43...
bri_ins0 = [10,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,10,18,24,24,24,24,24,24,24,24,24,24,24,14,14,...
travel1 = [49619,55060,56783,58894,60672,63523,66880,70619,65125,54613,60847,62892,65320,68098,70926,74409,7...
times1 = [41518,41798,41738,41627,41269,41078,40574,40468,40764,41103,41327,41436,41682,42068,41663,42570,43...
bri_ins1 = [10,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,10,18,24,24,24,24,24,24,24,24,24,24,24,14,14,...
travel2 = [63831,46128,48767,57125,57624,56944,61778,73027,67610,59040,61402,65765,74517,69024,69950,75236,7...
times2 = [38311,41047,41050,42782,42726,40463,40484,39937,40172,41376,41448,41527,43287,43079,40835,40847,41...
bri_ins2 = [10,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,10,18,24,24,24,24,24,24,24,24,24,24,24,14,14,...
travel3 = [56839,46613,49330,53002,57231,61936,67074,72606,67296,59995,54976,57935,61646,65899,70641,75864,7...
times3 = [39926,40849,40734,40590,40388,40143,39844,39603,40011,43540,43538,43477,43348,43241,42876,42265,42...
travel4 = [61686,53530,56147,59740,63913,68582,73702,79232,74154,64961,59545,62460,66142,70382,75123,80356,7...
times4 = [310782,312422,312318,312184,311990,311752,311460,311224,311641,312881,312852,312785,312651,312540,...
travel5 = [70294,57708,60291,63802,67954,72704,71767,70305,66683,69576,73154,71924,78787,73961,82426,80715,8...
times5 = [40077,41184,41074,40974,40868,40663,43463,43625,44122,43979,43842,38581,43330,46239,47497,46004,47...
travel6 = [75098,100549,101178,102773,104949,107657,110855,114504,108526,106988,97732,98774,100932,103650,106...
times6 = [41062,43799,43772,43759,43754,43755,43763,43775,43742,44686,44664,44658,44664,44679,44700,44743,447...
travel7 = [58029,47434,49753,53464,57756,62556,67827,73524,67778,59267,54663,57543,61249,65415,70187,75490,7...
times7 = [40663,41980,40941,40819,40639,40423,40134,39917,40349,42833,42724,42672,42560,41843,41521,40863,41...
times = [ele/1000 for ele in times6]
travel = [ele/10 for ele in travel6]
bri_ins = bri_ins1
speed = [travel[ind]/times[ind] for ind,ele in enumerate(travel)]

fig,((ax0,ax1),(ax2,ax3)) = plt.subplots(2,2,sharex="row")
plt.rcParams["figure.figsize"] = (15,1.8) # (w, h)
fig,(ax0,ax1) = plt.subplots(1,2,sharex="row")

ax0.set_title("Cycle time per brick in $comp_%s$" % (comper),fontsize=16,fontname="Helvetica")
ax0.set_xlabel("Travel length [mm]",fontsize=12,fontname="Helvetica")
ax0.set_ylabel("Cycle time [sec]",fontsize=12,fontname="Helvetica")
ax0.grid(which='major',lw=.5,alpha=0.75)
ax0.scatter(travel,times)
ax0.set_ylim(30,max(times)+12)

timesmin = [ele-30 if ele>30 else ele for ele in times]
colo10 = ['#79a3c7' for ind,ele in enumerate(bri_ins) if bri_ins[ind]==10]
colo12 = ['#6394bd' for ind,ele in enumerate(bri_ins) if bri_ins[ind]==12]
colo14 = ['#4d85b4' for ind,ele in enumerate(bri_ins) if bri_ins[ind]==14]
colo16 = ['#3776ab' for ind,ele in enumerate(bri_ins) if bri_ins[ind]==16]
colo18 = ['#306898' for ind,ele in enumerate(bri_ins) if bri_ins[ind]==18]
colo20 = ['#2a5b85' for ind,ele in enumerate(bri_ins) if bri_ins[ind]==20]
colo22 = ['#244e72' for ind,ele in enumerate(bri_ins) if bri_ins[ind]==22]
colo24 = ['#1e415f' for ind,ele in enumerate(bri_ins) if bri_ins[ind]==24]

38

colo26 = ['#18344c' for ind,ele in enumerate(bri_ins) if bri_ins[ind]==26]
colo28 = ['#122739' for ind,ele in enumerate(bri_ins) if bri_ins[ind]==28]
time10 = [ele for ind,ele in enumerate(timesmin) if bri_ins[ind]==10]
time12 = [ele for ind,ele in enumerate(timesmin) if bri_ins[ind]==12]
time14 = [ele for ind,ele in enumerate(timesmin) if bri_ins[ind]==14]
time16 = [ele for ind,ele in enumerate(timesmin) if bri_ins[ind]==16]
time18 = [ele for ind,ele in enumerate(timesmin) if bri_ins[ind]==18]
time20 = [ele for ind,ele in enumerate(timesmin) if bri_ins[ind]==20]
time22 = [ele for ind,ele in enumerate(timesmin) if bri_ins[ind]==22]
time24 = [ele for ind,ele in enumerate(timesmin) if bri_ins[ind]==24]
time26 = [ele for ind,ele in enumerate(timesmin) if bri_ins[ind]==26]
time28 = [ele for ind,ele in enumerate(timesmin) if bri_ins[ind]==28]
dist10 = [ele for ind,ele in enumerate(travel) if bri_ins[ind]==10]
dist12 = [ele for ind,ele in enumerate(travel) if bri_ins[ind]==12]
dist14 = [ele for ind,ele in enumerate(travel) if bri_ins[ind]==14]
dist16 = [ele for ind,ele in enumerate(travel) if bri_ins[ind]==16]
dist18 = [ele for ind,ele in enumerate(travel) if bri_ins[ind]==18]
dist20 = [ele for ind,ele in enumerate(travel) if bri_ins[ind]==20]
dist22 = [ele for ind,ele in enumerate(travel) if bri_ins[ind]==22]
dist24 = [ele for ind,ele in enumerate(travel) if bri_ins[ind]==24]
dist26 = [ele for ind,ele in enumerate(travel) if bri_ins[ind]==26]
dist28 = [ele for ind,ele in enumerate(travel) if bri_ins[ind]==28]

ax1.set_title("Cycle time per brick in $comp_%s$ without hardening time" % (comper),fontsize=16,
fontname="Helvetica")
ax1.set_xlabel("Travel length [mm]",fontsize=12,fontname="Helvetica")
ax1.set_ylabel("Cycle time [sec]",fontsize=12,fontname="Helvetica")
ax1.grid(which='major',lw=.5,alpha=0.75)
ax1.scatter(dist10,time10, color=colo10,label='10')
ax1.scatter(dist12,time12, color=colo12,label='12')
ax1.scatter(dist14,time14, color=colo14,label='14')
ax1.scatter(dist16,time16, color=colo16,label='16')
ax1.scatter(dist18,time18, color=colo18,label='18')
ax1.scatter(dist20,time20, color=colo20,label='20')
ax1.scatter(dist22,time22, color=colo22,label='22')
ax1.scatter(dist24,time24, color=colo24,label='24')
ax1.scatter(dist26,time26, color=colo26,label='26')
ax1.scatter(dist28,time28, color=colo28,label='28')
ax1.scatter(travel,timesmin)
ax1.legend(ncol=4, framealpha=0.4, handletextpad=0.2, columnspacing=1.2)
ax1.legend(['8 instructions','12 instructions','14 instructions','16 instructions','18 instructions',
'20 instructions','22 instructions','24 instructions','26 instructions','28 instructions'])
ax1.set_ylim(0,max(timesmin)+12)

Per Station
stat = ['Pallet','Adhesive','Vault']
stattim = [1220,5626,10470]
statdis = [1390628,1061459,1400550]

stattimmin = [stattim[0],stattim[1],stattim[2]-30*len(timesmin)]
stattimplu = [ele - stattimmin[ind] for ind,ele in enumerate(stattim)]

ax2.set_title("Total time for all instructions per station in $comp_%s$" % (comper),fontsize=16,
fontname="Helvetica")
ax2.set_xlabel("Station",fontsize=12,fontname="Helvetica")
ax2.set_ylabel("Time [sec]",fontsize=12,fontname="Helvetica")
ax2.bar(stat,stattimmin,width=0.6,label="Without hardening time")
ax2.bar(stat,stattimplu,width=0.6,bottom=stattimmin, color="cornflowerblue",label="Hardening time")
ax2.legend()
ax3.set_title("Total distance for all instructions per station in $comp_%s$" % (comper),fontsize=16,
fontname="Helvetica")
ax3.set_xlabel("Station",fontsize=12,fontname="Helvetica")
ax3.set_ylabel("Distance [mm]",fontsize=12,fontname="Helvetica")
ax3.bar(stat,statdis,width=0.6)

plt.subplots_adjust(hspace=0.5)
plt.show();

548 548 548

E
Robotic arms from the RoboDK library

This chapter provides a broader view of the robots that could have been selected and the overall
programming from the works done in RoboDK.

3,000 3,200 3,400 3,600 3,800 4,000 4,200 4,400 4,600 4,800

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

reach (mm)

pa
ylo

ad
(k
g)

ABB reach 3000-4000
KUKA reach 3000-4000
Comau reach 3000-4000
Fanuc reach 3000-4000

Kawasaki reach 3000-4000
Motoman reach 3000-4000
Nachi reach 3000-4000
Staubli reach 3000-4000

E-187

E-188 Appendix E. Robotic arms from the RoboDK library

3,000 3,200 3,400 3,600 3,800 4,000 4,200 4,400 4,600 4,800

0

0.2

0.4

0.6

0.8

1

1.2

·104

reach (mm)

se
lf-
we

igh
t(
kg
)

ABB reach 3000-4000
KUKA reach 3000-4000
Comau reach 3000-4000

Fanuc reach 3000+
Kawasaki reach 3000-4000
Motoman reach 3000-4000
Nachi reach 3000-4000
Staubli reach 3000-4000

E-189

Figure E.1: Work process in RoboDK (as GUI).

Figure E.2: Workflows in Python.

1

In [1]: print("This is python file CSV_XYZWPR_W_ID_2.py")

This is python file CSV_XYZWPR_W_ID_2.py

In [2]: # This macro can load CSV files from Denso programs in RoboDK.
Supported types of files are:
1-Tool data : Tool.csv
2-Work object data: Work.csv
3-Target data: P_Var.csv
This macro can also filter a given targets file

Type help("robolink") or help("robodk") for more information
Press F5 to run the script
Visit: http://www.robodk.com/doc/PythonAPI/
For RoboDK API documentation

from robolink import * # API to communicate with RoboDK
from robodk import * # basic matrix operations

Start communication with RoboDK
RDK = Robolink()

Ask the user to select the robot (ignores the popup if only
ROBOT = RDK.ItemUserPick('Select a robot', ITEM_TYPE_ROBOT)

Check if the user selected a robot
if not ROBOT.Valid():

quit()

Automatically retrieve active reference and tool

#Remove old stuff
##fram = RDK.Item('Targets', ITEM_TYPE_FRAME)# Get the first program called program_name
##if fram.Valid():
fram.Delete()
##fram = RDK.Item('Objects', ITEM_TYPE_FRAME)# Get the first program called program_name
##if fram.Valid():
fram.Delete()

FRAME = ROBOT.getLink(ITEM_TYPE_FRAME)
##print(FRAME)
##FRAME = Rhino.RDK.AddFrame('Targets','Rhino')
##FRAMO = Rhino.RDK.AddFrame('Objects','Rhino')
TOOL = ROBOT.getLink(ITEM_TYPE_TOOL)

##FRAME = RDK.ItemUserPick('Select a reference frame', ITEM_TYPE_FRAME)
##TOOL = RDK.ItemUserPick('Select a tool', ITEM_TYPE_TOOL)

if not FRAME.Valid() or not TOOL.Valid():# or not FRAMO.Valid():
raise Exception("Select appropriate FRAME and TOOL references")

103 7101
redoit = mbox("Is this a continuation? \n Type No if this is first iteration \n Check row 49",entry='No')
if redoit == 'No':

start=0
else:

start = int(redoit)

Function to convert XYZWPR to a pose
Important! Specify the order of rotation
def xyzwpr_to_pose(xyzwpr):

x,y,z,rx,ry,rz = xyzwpr
return transl(x,y,z)*rotz(rz*pi/180)*roty(ry*pi/180)*rotx(rx*pi/180)
#return transl(x,y,z)*rotx(rx*pi/180)*roty(ry*pi/180)*rotz(rz*pi/180)
#return KUKA_2_Pose(xyzwpr)

csv_file = 'C:/Users/Albert/Desktop/Var_P.csv'
csv_file = getOpenFile(RDK.getParam(r'C:/Users/Joris/Documents/Master Thesis quick access/RoboDK'))

Specify file codec
codec = 'utf-8' #'ISO-8859-1'

Load P_Var.CSV data as a list of poses, including links to reference and tool frames
def load_targets(strfile):

csvdata = LoadList(strfile, ',', codec) # X, Y, Z, W, P, R, wait, brick, instruction, # instr. per brick
poses = []
waits = []
idxs = []
for i in range(0, len(csvdata)):

x,y,z,rx,ry,rz = csvdata[i][0:6]
poses.append(xyzwpr_to_pose([x,y,z,rx,ry,rz]))
waits.append(csvdata[i][6])
#idxs.append(csvdata[i][6])
idxs.append(csvdata[i][7:10])

2

return poses, idxs, waits

Load and display Targets from P_Var.CSV in RoboDK
def load_targets_GUI(strfile,start):

#input
poses, idxs, waits = load_targets(strfile) # Values from csv file

program_name = 'Assembly' # Name program GH_RDK
program_name = program_name.replace('-','_').replace(' ','_')
print(program_name)
#Remove old stuff
program = RDK.Item(program_name, ITEM_TYPE_PROGRAM)# Get the first program called program_name
if start==0:

if program.Valid():
program.Delete()

#Add & set
program = RDK.AddProgram(program_name, ROBOT) # Add program and relate to used robot (optional)
#program.setFrame(FRAME) #Obsolete. reference frame of robot

program.setPoseFrame(FRAME) # Sets reference frame of robot
program.setPoseTool(TOOL) # Set the robot tool pose (TCP) with respect to the robot flange

#program.setTool(TOOL) #Obsolete. robot tool pose to robot flange
program.ShowInstructions(show=False)
RDK.setSimulationSpeed(1)

ls,js,la,ja = 100,200,150,150 #mm/s,deg/s,mm/sš,deg/sš
program.setSpeed(speed_linear=ls,speed_joints=js,accel_linear=la,accel_joints=ja)
js1,js2,js3,js4,js5,js6 = 180,180,200,410,360,610

program.setSpeedJoints(js1,js2,js3,js4,js5,js6)

#instructions
#1
program.MoveJ(ROBOT.JointsHome())

#2-...
proglist,statlist,instruclist = [],[],[]

for i in range(4):
stat_name = ['Pallet','Adhesive','Vault','Inbetween'][i] # Name program GH_RDK
stat_name = stat_name.replace('-','_').replace(' ','_')
#Remove old stuff
stat = RDK.Item(stat_name, ITEM_TYPE_PROGRAM)# Get the first program called program_name
if stat.Valid():
stat.Delete()
#Add & set
stat = RDK.AddProgram(stat_name, ROBOT) # Add program and relate to used robot (optional)
stat.setPoseFrame(FRAME) # Sets reference frame of robot
stat.setPoseTool(TOOL) # Set the robot tool pose (TCP) with respect to the robot flange
statlist.append(stat)

if start==0:
redo=int(idxs[-1][0])+1

else:
redo=0

for i in range(redo): #Create each program call, len() won't work, -1 is last brick, 0 is brick number
if (i+1)/10 == int((i+1)/10):

print(i+1,int(idxs[-1][0])+1)

program.RunInstruction('Brick_%s' % (i)) #Assemble all program calls
#Remove old stuff

brick_name = 'Bricks_P_%i' % (i)
bric = RDK.Item(brick_name, ITEM_TYPE_OBJECT)# Get the first program called program_name
if bric.Valid():
bric.Delete()
RDK.AddFile(r'C:/Users/Joris/Documents/Master Thesis quick access/RoboDK/Objects/Bricks_P_%i.stp' % (i))

prog_name = 'Brick_%s' % (i) # Name program GH_RDK
prog_name = prog_name.replace('-','_').replace(' ','_')
#Remove old stuff
prog = RDK.Item(prog_name, ITEM_TYPE_PROGRAM)# Get the first program called program_name
if prog.Valid():

prog.Delete()
#Add & set
prog = RDK.AddProgram(prog_name, ROBOT) # Add program and relate to used robot (optional)
prog.setPoseFrame(FRAME) # Sets reference frame of robot
prog.setPoseTool(TOOL) # Set the robot tool pose (TCP) with respect to the robot flange
prog.ShowInstructions(show=False)
prog.setSpeed(speed_linear=ls,speed_joints=js,accel_linear=la,accel_joints=ja)

prog.setSpeedJoints(js1,js2,js3,js4,js5,js6)
proglist.append(prog)

print('Brick_i done')

for j in range(start,len(idxs)):
bri, instr = int(idxs[j][0]), int(idxs[j][1])

proglist[bri].RunInstruction('Instruction_%s_%s' % (bri,instr)) #Assemble all program calls

3

if int(j/11)==j/11:
print(j,len(idxs)-1)
breakable = mbox("Are you sure you want to break the program?",b1 = 'Yes!', b2 = 'No!',t=.5)
if breakable == True:

print('Write down:' +j)
break

instruc_name = 'Instruction_%s_%s' % (bri,instr) # Name program GH_RDK
instruc_name = instruc_name.replace('-','_').replace(' ','_')
#Remove old stuff
instruc = RDK.Item(instruc_name, ITEM_TYPE_PROGRAM)# Get the first program called program_name
if instruc.Valid():

instruc.Delete()
#Add & set
instruc = RDK.AddProgram(instruc_name, ROBOT) # Add program and relate to used robot (optional)
instruc.setPoseFrame(FRAME) # Sets reference frame of robot
instruc.setPoseTool(TOOL) # Set the robot tool pose (TCP) with respect to the robot flange
instruc.ShowInstructions(show=False)
instruc.setSpeed(speed_linear=ls,speed_joints=js,accel_linear=la,accel_joints=ja)

instruc.setSpeedJoints(js1,js2,js3,js4,js5,js6)

for pose, idx, wait in zip(poses, idxs, waits):
bri, instr = int(idxs[i][0]), int(idxs[i][1])

if idx[0:2]==[bri,instr]:
name = '%i-%i' % (bri,instr) # Sets name of target to (GH_RDK-0)
#Remove old stuff
target = RDK.Item(name, ITEM_TYPE_TARGET) # Get the first target named 'name'
if target.Valid():

target.Delete()
#Add target
target = RDK.AddTarget(name, FRAME, ROBOT) # Add target to reference frame and to robot
target.setPose(pose) # Pose relative to robot reference frame

try:
if idx[1]==3 or idx[1]==idx[2]-3:
program.MoveJ(target)
else:
program.MoveL(target)

instruc.MoveJ(target)
if wait>0:

instruc.Pause(wait)
except:

if int(j/11)==j/11:
print('Warning: %s can not be reached. It will not be added to the program' % name)

try:
proglist[bri].MoveJ(target)
if wait>0:

proglist[bri].Pause(wait)
except:

print('Warning: %s can not be reached. It will not be added to the program' % name)
try:

program.MoveJ(target)
if wait>0:

program.Pause(wait)

if idx[1]==1:
AttachClosest(keyword='Bricks_P_%i' % (idx[0]),tolerance_mm=15)
if idx[1]==idx[2]-2:
DetachAll(parent=FRAMO)

except:
print('Warning: %s can not be reached. It will not be added to the program' % name)

if int(j/11)==j/11:
del instruc

statlist[].RunInstruction('Instruction_%s_%s' % (bri,instr)) #Assemble all program calls

program.MoveJ(ROBOT.JointsHome())
program.InstructionListJoints(flags=4,save_to_file=
r"C:\Users\Joris\Documents\Master Thesis quick access\RoboDK\jointlist.csv")
#

def load_targets_move(strfile):
poses, idxs = load_targets(strfile)

ROBOT.setFrame(FRAME)
ROBOT.setTool(TOOL)

ROBOT.MoveJ(ROBOT.JointsHome())

for pose, idx in zip(poses, idxs):
try:

ROBOT.MoveJ(pose)
except:

RDK.ShowMessage('Target %i can not be reached' % idx, False)
ROBOT.MoveJ(ROBOT.JointsHome())

4

Force just moving the robot after double clicking
#load_targets_move(csv_file)
#quit()

Recommended mode of operation:
1-Double click the python file creates a program in RoboDK station
2-Generate program generates the program directly

MAKE_GUI_PROGRAM = False

ROBOT.setFrame(FRAME)
ROBOT.setTool(TOOL)

if RDK.RunMode() == RUNMODE_SIMULATE:
MAKE_GUI_PROGRAM = True
MAKE_GUI_PROGRAM = mbox('Do you want to create a new program? If not, the robot will just move along
the tagets', 'Yes', 'No')

else:
if we run in program generation mode just move the robot
MAKE_GUI_PROGRAM = False

if MAKE_GUI_PROGRAM:
RDK.Render(False) # Faster if we turn render off
load_targets_GUI(csv_file,start)

else:
load_targets_move(csv_file)

RDK.ShowMessage('Program has run')

ModuleNotFoundError Traceback (most recent call last)

<ipython-input-2-01b1dc9e8f0f> in <module>()
11 # For RoboDK API documentation
12

---> 13 from robolink import * # API to communicate with RoboDK
14 from robodk import * # basic matrix operations
15

ModuleNotFoundError: No module named 'robolink'

In [3]: print("This is python file Cycle Time Asembly, Brick & Instructions.py")

This is python file Cycle Time Asembly, Brick & Instructions.py

In [4]: # This example shows how to quickly calculate the cycle time of all programs in the RoboDK station
#
Important notes and tips for accurate cycle time calculation:
https://robodk.com/doc/en/General.html#CycleTime

Start the RoboDK API
from robolink import * # RoboDK API
from robodk import *
import numpy as np
RDK = Robolink()
ROBOT = RDK.ItemUserPick('Select a robot', ITEM_TYPE_ROBOT)

Comp = 5

check_comp = mbox("Have you updated Comp? \n Please check \n Really awful if you hadn't",b1 = 'Yes!',
b2 = 'No, thanks!')
if check_comp == False:

print('Change comp!')
quit()

export = [["Program name","Have all targets been reached?","Travel length [mm]","Cycle Time [s]",
"Cycle Speed [mm/s]"]]
writeline = "Program name\tHave all targets been reached?\tTravel length\tCycle Time\tCycle Speed"
msg_html = "<table border=1><tr><td>"+writeline.replace('\t','</td><td>')+"</td></tr>"
Pallt,Adhet,Vault = [],[],[]
Pallx,Adhex,Vaulx = [],[],[]
exprt = [['Pallt','Pallx','Adhet','Adhex','Vault','Vaulx']]
i=0
tot = len(RDK.ItemList(ITEM_TYPE_PROGRAM))
targ = RDK.ItemList(ITEM_TYPE_TARGET)
targ = [[int(ta) for ta in ele.Name().split('-')] for ele in targ]

5

Ask the user to select a program
#program = RDK.ItemUserPick('Select a program', ITEM_TYPE_PROGRAM)
for program in RDK.ItemList(ITEM_TYPE_PROGRAM):

if int(i/5)==i/5 or i==1:
breakable = mbox("Are you sure you want to break the program?",b1 = 'Yes!', b2 = 'No!',t=.5)
if breakable == True:

print('Note down:' +i)
break

i+=1
print(i,tot)

else:
i+=1

if program == RDK.Item('Gripper Open'):
continue

elif program == RDK.Item('Assembly') or program == RDK.Item('Brick_0')
or program == RDK.Item('Instruction_0_0'):

ROBOT.MoveJ(ROBOT.JointsHome())
target = program
ROBOT.WaitFinished()

elif program.Name().split('_')[0]=='Instruction' and int(program.Name().split('_')[2])!=0:
name = '%i-%i' % (int(program.Name().split('_')[1]),int(program.Name().split('_')[2])-1)
target = RDK.Item(name, ITEM_TYPE_TARGET)
ROBOT.MoveJ(target)
ROBOT.WaitFinished()

else:
name = int(program.Name().split('_')[1])-1
name = '%i-%i' % (int(program.Name().split('_')[1])-1,max([int(ele[1]) for ele in targ
if int(ele[0])==name]))
target = RDK.Item(name, ITEM_TYPE_TARGET)
ROBOT.MoveJ(target)
ROBOT.WaitFinished()

if program == RDK.Item('Gripper Open'):
continue
elif program == RDK.Item('Assembly') or program == RDK.Item('Brick_0')
or program == RDK.Item('Instruction_0_0'):
ROBOT.MoveJ(ROBOT.JointsHome())
ROBOT.WaitFinished()
else:
name = '%i-%i' % (int(program.split('_')[1]),int(program.split('_')[2])-1)
target = RDK.Item(name, ITEM_TYPE_TARGET)
ROBOT.MoveJ(target)
##
start_inst = previ.Instruction(previ.InstructionCount()-1)[0]
if 'Instruction' in start_inst:
RDK.RunCode(start_inst)
else:
RDK.RunCode(previ.Name())
ROBOT.WaitFinished()
target = RDK.ItemUserPick(itemtype_or_list=ITEM_TYPE_TARGET)
ROBOT.MoveJ(target)
previ = program
Retrieve the robot linked to the selected program
#robot = program.getLink(ITEM_TYPE_ROBOT)
##
Output the linear speed, joint speed and time (separated by tabs)

result = program.Update()
instructions, time, travel, ok, error = result
speed = travel/time
if program in [RDK.Item('Brick_%s' %(i)) for i in range(3)]:

speed = travel/(time-30)
if program == RDK.Item('Assembly'):

speed = travel/(time-3*30)
if ok==1:

ok = 'Yes'
elif ok==0:

ok = 'No'
if 'Instruction' in program.Name():

nm,br,ins = program.Name().split('_')
sum_ins = len([ele for ele in RDK.ItemList(ITEM_TYPE_PROGRAM,True) if 'Instruction_%s' % (br) in ele])
if int(ins)<3:

Pallt = (time)
Pallx = (travel)
exprt.append([Pallt,Pallx,0,0,0,0])

elif int(ins)>sum_ins-4:
Vault = (time)
Vaulx = (travel)
exprt.append([0,0,0,0,Vault,Vaulx])

elif int(ins)>2 and int(ins)<sum_ins-3:
Adhet = (time)
Adhex = (travel)
exprt.append([0,0,Adhet,Adhex,0,0])

Print the information
newline = "%s\t %s \t %.1f mm \t %.1f s \t %.1f mm/s" % (program.Name(), str(ok), travel, time, speed)

6

export.append([program.Name(),str(ok),travel, time, speed])

msg_html = msg_html + '<tr><td>' + newline.replace('\t','</td><td>') + '</td></tr>'

try:
export = [[str(ele).replace('.',',') for ele in export[idx]] for idx,Ele in enumerate(export)]
exprt = [[str(ele).replace('.',',') for ele in exprt[idx]] for idx,Ele in enumerate(exprt)]
np.savetxt(r"C:\Users\Joris\Documents\Master Thesis quick access\RoboDK\CycleTime.csv",
export,delimiter ="; ",fmt ='% s')
np.savetxt(r"C:\Users\Joris\Documents\Master Thesis quick access\RoboDK\CycleTime2.csv",
exprt,delimiter ="; ",fmt ='% s')
np.savetxt(r"C:\Users\Joris\Documents\Master Thesis quick access\RoboDK\CycleTime_%s.csv" % (Comp),
export,delimiter ="; ",fmt ='% s')
np.savetxt(r"C:\Users\Joris\Documents\Master Thesis quick access\RoboDK\CycleTime2_%s.csv" % (Comp),
exprt,delimiter ="; ",fmt ='% s')
RDK.ShowMessage('CSV created/updated')

except:
pass

msg_html = msg_html + '</table>'

program_name = 'Assembly' # Name program GH_RDK
program_name = program_name.replace('-','_').replace(' ','_')
program = RDK.Item(program_name, ITEM_TYPE_PROGRAM)
program.InstructionListJoints(flags=4,save_to_file=r"C:\Users\Joris\Documents\Master Thesis quick access
\RoboDK\jointlist.csv")

RDK.ShowMessage(msg_html)

ModuleNotFoundError Traceback (most recent call last)

<ipython-input-4-d47a08201e1a> in <module>()
5
6 # Start the RoboDK API

----> 7 from robolink import * # RoboDK API
8 from robodk import *
9 import numpy as np

ModuleNotFoundError: No module named 'robolink'

	Preface
	Summary
	List of Figures
	List of Tables
	I Introduction
	Research motivation
	The timbrel vault
	Robotics
	Digital construction of brick structures

	Research definition
	Aim & objectives
	Research question
	Methodology
	Software

	II Design of the thin-tile vault
	Literature on thin-tile vaults
	Catalan vault
	Guastavino vault
	Thin-tile vaults and computational modelling

	The workflow of the design model of a thin-tile vault
	Masonry definitions
	Basic outline of the design model
	Parametric modelling
	Draping bricks: a map projection approach
	Implementing projection in the parametric model
	Cutting corners
	From surfaces to volumes representing the bricks

	III Phased structural analysis on the construction of the vault
	Literature on masonry and materials
	Masonry material properties
	Bricks
	Adhesives
	Eurocode

	Structural analysis
	From shape to stresses
	Funicular curve
	Equilibrium and sectional forces
	Stress distribution
	Implementation in the parametric model

	Stress distribution in the phased construction
	Preferred placement of the bricks

	IV Robotics and the work process for thin-tile vaults
	Literature on robotics
	Robotic typologies
	Construction robotics
	Dutch robotic/construction industry

	Stations
	Pallet station: the source of the bricks
	Adhesive station: moving passed a glue gun
	Vault station: the target of the bricks
	Environment

	Model input
	Robot
	Tool path

	V Results & Conclusion
	Results
	Parameters of the model
	Configurations
	Computation 0: the base parameter input
	Computation 1: Fanuc robotic arm
	Computation 2: Factor = 1.25
	Computation 3: Wythe orientations swapped
	Computation 4: Potlife = 5 minutes
	Computation 5: L=0.8m
	Computation 6: Configuration 2
	Computation 7: preferred sequence: a.l.a.p.
	Overview & final cantilevers in design model

	Discussion
	The applicability of the models
	The reliability of the parameter values
	Remarks on the results

	Conclusion
	Recommendations

	References

	Appendices
	The Grasshopper model: from design to work procedure
	DIANA: modelling the monolithic property
	Brick experiment: testing the bond strength development
	Phased Structural Analysis in Python
	Robotic arms from the RoboDK library

