



Delft University of Technology

**Document Version**

Final published version

**Licence**

CC BY

**Citation (APA)**

Kruisdijk, E., Corbera, F., Rubio, F., Müller, S., Schoonenberg, F., Laureni, M., Nijboer, M., & van Halem, D. (2026). pH-based control of  $\text{NH}_4^+$  and  $\text{Mn}^{2+}$  oxidation sequence in low-oxygen groundwater filters. *Water Research*, 293, Article 125436. <https://doi.org/10.1016/j.watres.2026.125436>

**Important note**

To cite this publication, please use the final published version (if applicable).

Please check the document version above.

**Copyright**

In case the licence states "Dutch Copyright Act (Article 25fa)", this publication was made available Green Open Access via the TU Delft Institutional Repository pursuant to Dutch Copyright Act (Article 25fa, the Taverne amendment). This provision does not affect copyright ownership.

Unless copyright is transferred by contract or statute, it remains with the copyright holder.

**Sharing and reuse**

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

**Takedown policy**

Please contact us and provide details if you believe this document breaches copyrights.

We will remove access to the work immediately and investigate your claim.

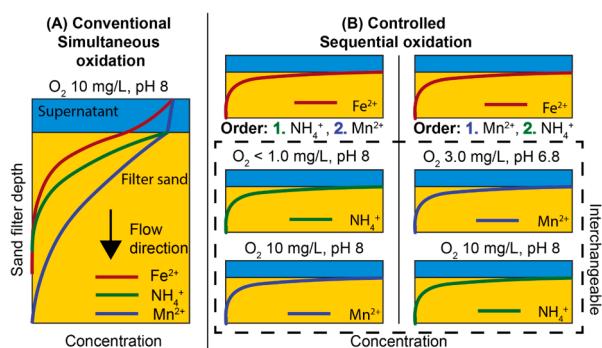
*This work is downloaded from Delft University of Technology.*



# pH-based control of $\text{NH}_4^+$ and $\text{Mn}^{2+}$ oxidation sequence in low-oxygen groundwater filters

Emiel Kruisdijk <sup>a,b,1,\*</sup>, Francesc Corbera-Rubio <sup>a,1</sup>, Simon Müller <sup>a</sup>, Frank Schoonenberg <sup>c</sup>, Michele Laureni <sup>a</sup>, Melanie Nijboer <sup>c</sup>, Doris van Halem <sup>a</sup>

<sup>a</sup> Delft University of Technology, Faculty of Civil Engineering and Geosciences, Department of Water Management, Stevinweg 1, 2628 CN Delft, the Netherlands


<sup>b</sup> Eawag, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133, CH-8600 Dübendorf, Switzerland

<sup>c</sup> Vitens N.V., Oude Veerweg 1, 8019 BE Zwolle, the Netherlands

## HIGHLIGHTS

- Three separate filters were designed to sequentially remove  $\text{Fe}^{2+}$ ,  $\text{Mn}^{2+}$ , and  $\text{NH}_4^+$ .
- Sequential oxidation was controlled by adapting  $\text{O}_2$  and pH in influent groundwater.
- The sequence of  $\text{NH}_4^+$  before  $\text{Mn}^{2+}$  oxidation could be reversed based on pH.
- $\text{MnOx}$  was reduced via  $\text{NO}_2^-$  when  $\text{O}_2$  was limited and  $\text{MnOx}$  was present.
- Interactions between  $\text{NH}_4^+$  and  $\text{Mn}^{2+}$  influenced their oxidation rates.

## GRAPHICAL ABSTRACT



## ARTICLE INFO

**Keywords:**  
Drinking water  
Groundwater  
Sand filtration  
PHREEQC, PEST

## ABSTRACT

Iron ( $\text{Fe}^{2+}$ ), manganese ( $\text{Mn}^{2+}$ ), and ammonium ( $\text{NH}_4^+$ ) are the three most common contaminants in anaerobic groundwater and are typically removed in rapid sand filters in a series of simultaneous, uncontrolled, and interconnected redox reactions. In this study, we demonstrated separation of these oxidation processes, including reversing the order of  $\text{NH}_4^+$  and  $\text{Mn}^{2+}$  oxidation, allowing  $\text{Mn}^{2+}$  to oxidize before  $\text{NH}_4^+$ . To achieve this uncommon sequence, the filter was operated with low  $\text{O}_2$  concentrations ( $\sim 0.02 \text{ mmol/L}$ ,  $\sim 0.5 \text{ mg/L}$ ) and a high pH ( $\sim 8$ ). Under these conditions,  $\text{Mn}^{2+}$  oxidation is consuming all available  $\text{O}_2$ , suppressing the occurrence of  $\text{NH}_4^+$  oxidation. In the filter with low  $\text{O}_2$  ( $0.08 \text{ mmol/L}$ ,  $\sim 3 \text{ mg/L}$ ) and low pH ( $\sim 6.8$ ), the opposite was observed, as  $\text{Mn}^{2+}$  oxidation was delayed under these conditions, resulting in complete  $\text{O}_2$  consumption by  $\text{NH}_4^+$ -oxidizing bacteria. Reactive transport modelling and parameter estimation revealed that  $\text{Mn}^{2+}$  oxidation is one order of magnitude faster in absence of  $\text{NH}_4^+$  oxidation ( $1.4 \times 10^{-2}$  vs  $2.5 \times 10^{-3} \text{ mmol/L}$ ), whereas  $\text{NH}_4^+$  oxidation seemed to be accelerated by simultaneous  $\text{Mn}^{2+}$  oxidation ( $6.8 \times 10^{-3}$  vs  $2.9 \times 10^{-2} \text{ s}^{-1}$ ). This interconnection between  $\text{Mn}^{2+}$  and  $\text{NH}_4^+$  oxidation was further emphasized by the observation of  $\text{Mn}^{2+}$  release in the presence of  $\text{NO}_2^-$ . In conclusion, this study has shown that a shift from conventional aerated groundwater treatment to

\* Corresponding author.

E-mail address: [e.kruisdijk@tudelft.nl](mailto:e.kruisdijk@tudelft.nl) (E. Kruisdijk).

<sup>1</sup> Shared co-authorship.

sequential oxidation in separate filters offers (i) a more controllable system, (ii) the potential to optimize the rates of each oxidation process separately, which would ultimately result in higher flows and less backwashing.

## 1. Introduction

About half the people worldwide rely on groundwater as their primary source for drinking water (UNESCO, 2022). The largest part of the abstracted groundwater for drinking water purposes is anoxic, as biological and chemical processes in aquifers often consume all the available oxygen ( $O_2$ ) (Fetter et al., 1999). Under these anoxic conditions, iron(II) ( $Fe^{2+}$ ) and manganese(II) ( $Mn^{2+}$ ) generally enter the groundwater due to reduction of Fe and Mn minerals present in the aquifer (Gounot, 1994; Kappler et al., 2021), while ammonium ( $NH_4^+$ ) is often formed as a product of organic matter degradation (Appelo and Postma, 2004). These solutes in anaerobic groundwater must be removed prior to human consumption, as they cause, adverse health effects, microbial re-growth and clogging in the distribution system, as well as altered color, taste, and odor (Tekerlekopoulou et al., 2013).

Rapid sand filters (RSF) are widely used for groundwater treatment around the world (Corbera-Rubio, Goedhart, et al., 2024). After abstraction, groundwater is first oxidized by means of aeration or the addition of chemical oxidants, after which the water is directed to the RSF. RSF effectively removes  $Fe^{2+}$ ,  $Mn^{2+}$ , and  $NH_4^+$  from the water through a series of simultaneous, uncontrolled oxidation reactions.  $Fe^{2+}$  can be oxidized via chemical homogeneous (Stumm and Lee, 1961) or heterogeneous (Tamura, 1976) oxidation, as well as biological heterogeneous oxidation (Emerson and De Vet, 2015). Only chemical heterogeneous (Davies and Morgan, 1989) and biological heterogeneous oxidation (Bruins et al., 2015) are relevant for  $Mn^{2+}$ , as homogeneous  $Mn^{2+}$  oxidation rates are negligible during the relatively short residence time in RSF (Diem and Stumm, 1984). The quick hydrolysis of the formed oxidized forms of  $Fe^{2+}$  and  $Mn^{2+}$  -  $Fe^{3+}$  and  $Mn^{3+}/Mn^{4+}$ , respectively - results in the precipitation of Fe- and Mn-hydroxides. The formed Fe- and Mn-hydroxides form a coating on the grains during heterogeneous oxidation of  $Fe^{2+}$  and  $Mn^{2+}$ , as a result colloidal Fe(III) and Mn(IV) is negligible compared to treatments in which homogeneous oxidation is induced by adding oxidants.

Complete  $NH_4^+$  oxidation, known as nitrification, is a solely biological process in RSFs which results in the conversion of  $NH_4^+$  to nitrate ( $NO_3^-$ ) via the intermediary nitrite ( $NO_2^-$ ) (Tatari et al., 2013).

During RSF operation,  $Fe^{2+}$ ,  $Mn^{2+}$ , and  $NH_4^+$  oxidation generally occurs simultaneously, although  $Fe^{2+}$  oxidation is energetically most favourable, followed by  $NH_4^+$  and  $Mn^{2+}$  oxidation. In some specific cases, sequential  $Fe^{2+}$  and  $NH_4^+$  (Corbera-Rubio, Kruisdijk, et al., 2024; Müller et al., 2024) or  $Fe^{2+}$  and  $Mn^{2+}$  oxidation (Kruisdijk, van Breukelen, et al., 2024) is observed. In our previous work, we showed that sequential  $Fe^{2+}$  and  $Mn^{2+}$  oxidation resulted in homogeneous Fe-oxide coated sand grains in the top section of the filter, and Mn-oxide coated sand grain at the bottom (Kruisdijk, van Breukelen, et al., 2024). This contrasts with the usual mixed Fe-Mn coated sand grains found in filters with simultaneous  $Fe^{2+}$  and  $Mn^{2+}$  oxidation. Grains with a homogeneous Fe or Mn-oxide coating result in accelerated heterogeneous oxidation rates as oxidation is not limited by the available oxide surface and have a higher potential value for reuse.

We hypothesize that sequential  $Fe^{2+}$ ,  $NH_4^+$ , and  $Mn^{2+}$  oxidation in separate filters can be a major advantage to control and optimize oxidation processes, as the separate filters provides greater potential for operational optimization through adjustments in flow rates, pH of influent water, aeration, and other process parameters. Furthermore, complex intertwined processes that may lead to system failure are avoided, such as the inhibition of  $NH_4^+$  oxidation by  $Fe^{3+}$ -flocs formed during  $Fe^{2+}$  oxidation (Corbera-Rubio et al., 2024). Therefore, this allows for the determination of conditions that promote the most efficient RSF operation, ensuring maximum flow rates and prolonged runtimes.

Müller et al. (2024) studied two filter setups and achieved sequential oxidation of  $Fe^{2+}$  and  $NH_4^+$  in the filter setup that was only partially aerated (resulting in a lower pH and  $O_2$  concentration) compared to simultaneous oxidation in the filter setup that was intensively aerated. We hypothesize that the limited  $O_2$  concentrations allowed only the most energetically favourable oxidation process to occur, after which  $O_2$  was depleted and  $NH_4^+$  oxidation could not occur. In the current study, we introduce a novel approach for anaerobic groundwater treatment, where  $Fe^{2+}$ ,  $Mn^{2+}$ , and  $NH_4^+$  are oxidized sequentially over three separate filters.  $O_2$  availability was kept limited in each filter and the optimal pH was set for the highest oxidation rate for each specific process. We provide a framework for potentially more controllable and efficient groundwater treatment compared to traditional single-filter treatment, although full-scale operational performance, energy use, and financial feasibility remain to be evaluated.

This was investigated with three separate filter sequences operated at pilot-scale with natural groundwater. In all studied oxidation sequences,  $Fe^{2+}$  is removed first, and the order of  $NH_4^+$  and  $Mn^{2+}$  was studied (i) simultaneous oxidation in a fully aerated filter, (ii) sequential oxidation of  $Mn^{2+}$  in the pre-filter and  $NH_4^+$  in the post filter, and (iii) sequential oxidation of  $NH_4^+$  in the pre-filter and  $Mn^{2+}$  in the post filter. These sequences were obtained by adjusting the pH and  $O_2$  concentrations in the pre-filter. A combination of reactor transport modelling and parameter estimation was used to determine oxidation rates, as well as identify coupled processes.

## 2. Methods

### 2.1. Experimental setup

**Fig. 1** shows the experimental setup consisting of a full-scale rapid sand filter (RSF) and five pilot-scale filters. Note that the influent water to all filters was aerated, and no oxidants were dosed to initiate oxidation. The experiments were conducted at a Dutch drinking water treatment plant with abstracted groundwater abstracted from an anaerobic aquifer. The raw water had a mean pH of  $6.72 \pm 0.06$ , and contains  $CH_4$ ,  $Fe^{2+}$ ,  $NH_4^+$  and  $Mn^{2+}$  with average concentrations of  $14.1 \pm 2.8$ ,  $26.7 \pm 1.5$ ,  $2.19 \pm 0.05$  and  $0.32 \pm 0.02$  mg/L, respectively (see SI.1).

Three filter sequences were studied: (i) simultaneous  $NH_4^+$  and  $Mn^{2+}$  oxidation in filter F1, (ii) sequential oxidation of  $Mn^{2+}$  in pre-filter F2 and  $NH_4^+$  oxidation in post-filter F3, and (iii) sequential oxidation of  $NH_4^+$  in pre-filter F4 and post filter F5. The full-scale experimental RSF was the first filter for all three filter sequences, and operated as described by Müller et al. (2024). Before entering the filter,  $CH_4$  was removed by membrane degassing under anoxic conditions. This process both generates energy from the recovered  $CH_4$  and reduces the carbon footprint, as  $CH_4$  is normally released into the atmosphere. The water was subsequently mildly aerated by means of a one-step cascade aeration on top of the  $\pm 20$  cm-high supernatant water layer on the full-scale RSF. The filter bed height was 2.35 m and consisted of coarse quartz sand (1.7–2.5 mm). The average filtration rate was 10 m/h. Membrane degassing and mild aeration led to a filter that was operated under relatively low pH ( $\sim 6.9$ ) and dissolved  $O_2$  concentrations ( $\sim 5$  mg/L). Operation under these conditions resulted in mostly biological  $Fe^{2+}$  oxidation, less Fe-floc and more Fe coating formation, and negligible  $NH_4^+$  and  $Mn^{2+}$  oxidation (Müller et al., 2024). The effluent water from this filter was distributed to the pilot-scale filters. **Table 1** shows the water composition of the influent after aeration and membrane degassing and effluent water of the Fe-removing RSF.  $Fe^{2+}$  was almost completely oxidized and removed, while the oxygen concentration dropped to 1.15 mg  $O_2$ /L.

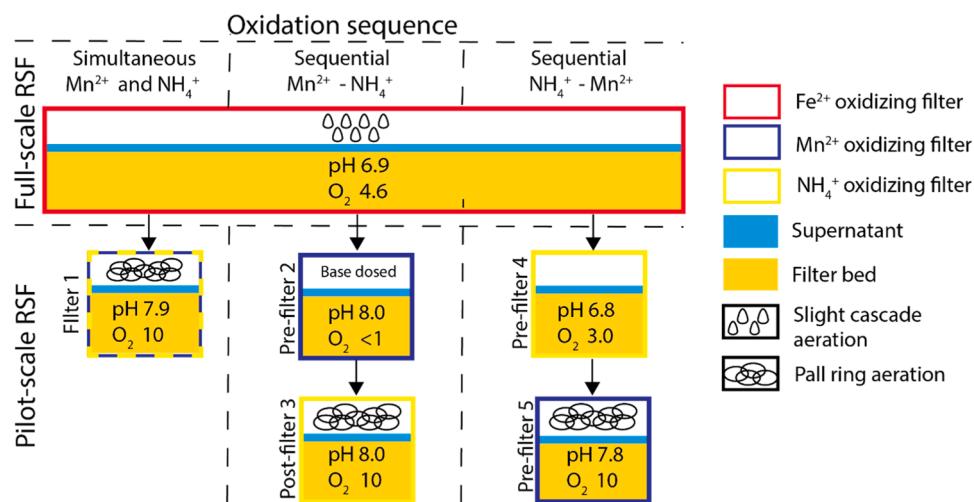
In filter F1, the effluent water from the full-scale rapid sand filter was fully aerated in a column with pall rings of 1 inch with a bed height of 1.4 m with counter-current airflow. This resulted in an increased pH (~8), and O<sub>2</sub> concentration (~10 mg/L) to facilitate complete nitrification and Mn<sup>2+</sup> oxidation in one filtration step. To accomplish the Mn<sup>2+</sup>-NH<sub>4</sub><sup>+</sup> oxidation sequence, O<sub>2</sub> concentrations were kept as low as possible in pre-filter F2, and a base was dosed (NaOH) to increase the pH (<1.0 mg/L O<sub>2</sub>, pH 8) to promote Mn<sup>2+</sup> oxidation and inhibit NH<sub>4</sub><sup>+</sup> oxidation. The effluent water was fully aerated in a pall ring column with counter-current airflow before entering post-filter F3 to remove NH<sub>4</sub><sup>+</sup>. For the NH<sub>4</sub><sup>+</sup>-Mn<sup>2+</sup> oxidation sequence, effluent water from the full-scale RSF was directly injected into the supernatant of pre-filter F4, resulting in a low pH and O<sub>2</sub> concentrations (pH 6.8, 3.0 mg/L, respectively). The effluent water was fully aerated before entering post filter F5, aimed to remove Mn<sup>2+</sup>.

All filter columns had an inside diameter of 15 cm. The filter beds consisted of anthracite (grain size between 1.4–2.5 mm), of which approximately 10 L of anthracite was re-used from a Mn<sup>2+</sup>oxidizing filter and 30 L was virgin anthracite resulting in a bed height of about 190 cm. The two types of anthracite were homogenously mixed before filling the column. The re-used anthracite grains contained a substantial Mn-oxide coating. All filters were operated with a flow of approximately 75 L/h, which corresponds to a filtration rate of 8.4 m/h assuming a porosity of 0.45. Filters F1, F4 and F5 were operated for 28 days, and filter sequence F2 and F3 was operated for 93 days. The filters were not backwashed, except for filter F2, which was backwashed on days 61, 75, and 82 to prevent clogging.

## 2.2. Water sampling and analysis

Water samples were taken from the full-scale RSF and the pilot-scale filters via sample points over the depth of the filter. Samples for Fe<sup>2+</sup> and Mn<sup>2+</sup> were filtered over a 0.45 µm disc filter and collected in a 330 mL bottle filled with 100 mL sample and 1.0 mL of HNO<sub>3</sub> to ensure a pH ≤ 2 for sample preservation. Particulate Fe and Mn were not measured because (i) Fe<sup>2+</sup> oxidation in Ca- and Si- containing groundwaters is assumed to produce only filterable particles (Kaegi et al., 2010; Voegelin et al., 2010), and (ii) previous studies found particulate Mn in RSF to be negligible (Haukelidsaeter et al., 2023, 2024). Samples for NH<sub>4</sub><sup>+</sup>, NO<sub>2</sub><sup>-</sup>, NO<sub>3</sub><sup>-</sup>, dissolved O<sub>2</sub>, and pH were collected without filtration in a 550 mL bottle with a cone inside the cap. The cone pushes excess liquid out while closing, preventing air from being trapped inside the sample bottle. All sample bottles were cooled between 2–8 °C and transported to

**Table 1**


Overview of the influent after aeration and membrane degassing and effluent water composition of the full-scale Fe<sup>2+</sup>oxidizing rapid sand filter on the day of the measured height profile, where the major water quality changes are highlighted with a grey background.

|                           | Influent RSF | Effluent RSF |
|---------------------------|--------------|--------------|
| pH (-)                    | 6.9          | 6.7          |
| O <sub>2</sub> (mg/L)     | 4.6          | 1.2          |
| NO <sub>3</sub> -N (mg/L) | <0.3         | <0.3         |
| NH <sub>4</sub> -N (mg/L) | 2.3          | 2.0          |
| Fe (mg/L)                 | 28           | <0.1         |
| Mn (mg/L)                 | 0.3          | 0.3          |
| Alkalinity (mg/L)         | 280          | unknown      |
| PO <sub>4</sub> (mg/L)    | 0.28         | <0.1         |
| SO <sub>4</sub> (mg/L)    | 4.5          | 4.56         |
| Ca (mg/L)                 | 74           | 74           |
| Mg (mg/L)                 | 4.2          | 4.1          |
| Si (mg/L)                 | 8.8          | 8.7          |
| CH <sub>4</sub> (µg/L)    | 300          | unknown      |

the laboratory. Fe<sup>2+</sup> and Mn<sup>2+</sup> were analysed using inductively coupled plasma mass spectrometry (Thermo Scientific iCAP RQ). NH<sub>4</sub><sup>+</sup>, NO<sub>2</sub>, and NO<sub>3</sub><sup>-</sup> were analysed with a discrete analyser (Thermo Scientific AquaKem 600). Dissolved O<sub>2</sub> and pH were measured with sensors in the lab (WTW inoLab Multi 9630 IDS). In addition, to check and adjust process conditions, dissolved oxygen and pH were measured on-site using sensors (WTW Multi 3630 IDS field set).

## 2.3. Modelling approach

PHREEQC (Parkhurst and Appelo, 2013) was used to simulate coupled processes in the filters and PEST (Doherty, 1994) was used to derive unknown parameters in the used oxidation rate equations. This is a similar modelling approached as performed by Kruisdijk, van Breukelen, et al. (2024). We simulated the filter bed as a 1-dimensional pathway. This pathway consisted of 195 cells of 1 cm length. The flow velocity in the filter bed was calculated by dividing the flow of 75 L/h by the surface area of the column multiplied with the assumed porosity of 0.3. The timestep per cell was calculated by dividing the cell length by the flow velocity. The measured influent water composition after aeration was used as the initial solution for each pilot-scale filter. We did not simulate hydrodynamic dispersion to reduce complexity and shorten run-times. An overview of the kinetic processes simulated can be found in Table 2. PEST was used to estimate the unknown parameters in these



**Fig. 1.** Overview of experimental setup, with on top the full-scale rapid sand filter, and on the bottom the three different treatments. The outline of each box shows which oxidant is removed in each filter, the inside of the box shows the pH and O<sub>2</sub> concentration in mg/L during operation. The symbols on top of the filter bed represent the type of aeration.

**Table 2**

Kinetic processes simulated in the model, their chemical formulas, and corresponding rate equations. Source equation 1: Davies and Morgan (1989).

| Eq. | Kinetic process                             | Chemical formula                                                     | Rate equation                           |
|-----|---------------------------------------------|----------------------------------------------------------------------|-----------------------------------------|
| 1   | Heterogeneous $Mn^{2+}$ oxidation           | $Mn_{ads}^{2+} + \frac{1}{2}O_2 + H_2O \leftrightarrow MnO_2 + 2H^+$ | $r_{Mn-hetero} = -k[Mn^{2+}ads]P_{O_2}$ |
| 2   | Complete nitrification                      | $NH_4^+ + 2O_2 \leftrightarrow NO_3^- + 2H^+ + H_2O$                 | $r_{nitrification} = -k_{nitr}[NH_4^+]$ |
| 3   | $NH_4^+$ oxidation                          | $NH_4^+ + 1.5 O_2 \leftrightarrow NO_2^- + H_2O + 2H^+$              | $r_{NH_4} = -k_{NH_4}[NH_4^+]$          |
| 4   | $NO_2^-$ oxidation                          | $NO_2^- + 0.5 O_2 \leftrightarrow NO_3^-$                            | $r_{NO_2} = -k_{NO_2}[NO_2^-]$          |
| 5   | $NO_2^-$ -induced $Mn^{2+}$ oxide reduction | $NO_2^- + MnO_2 + 2H^+ \leftrightarrow Mn^{2+} + NO_3^- + H_2O$      | $r_{Mn-red} = -k_{Mn-red}[NO_2^-]$      |

kinetic oxidation processes ( $Mn^{2+}ads$ ,  $k_{nitr}$ ,  $k_{NH_4}$ , and  $k_{NO_2}$ ) by optimizing the fit between the simulated and observed concentrations using the Gauss-Marquardt-Levenberg method. This method was executed simultaneously for the oxidation of  $Fe^{2+}$ ,  $Mn^{2+}$ , and  $NH_4^+$  in a single PEST run for each RSF model.

$Fe^{2+}$  oxidation was simulated similarly as in Kruisdijk, van Breukelen, et al. (2024) where this filter is represented as RSF-S3, while new simulations were performed to assess the water quality changes in the  $Mn^{2+}$  and  $NH_4^+$  oxidizing filters. For these filters, only reactions in the filter bed were simulated because no major reactions were observed and expected to happen in the supernatant. Furthermore, nitrification was simulated as two-steps -  $NH_4^+$  oxidation and  $NO_2^-$  oxidation, - in the columns where we hypothesized that complete nitrification was not occurring. More information about the modelling approach in Kruisdijk, van Breukelen, et al. (2024).

The PHREEQC models plus the corresponding database, datafiles, and python scripts for visualization are available on GitHub: [https://github.com/emielkruisdijk/Sequential\\_oxidation\\_2025/](https://github.com/emielkruisdijk/Sequential_oxidation_2025/).

### 3. Results

#### 3.1. $Fe^{2+}$ oxidation in the full-scale RSF

Fig. 2 shows the simulated and observed concentrations in the full-scale  $Fe^{2+}$ -oxidizing rapid sand filter (RSF).  $Fe^{2+}$  oxidation was stimulated to occur in the filter bed instead of conventionally in the supernatant water. This was achieved by limiting aeration to maintain low  $O_2$  concentrations (4.6 instead of  $\pm 10$  mg/L) and a relatively low pH (6.9 instead of  $\pm 8$ ) and keeping the supernatant water level low (20 cm instead of the usual 40 cm). This reduced the rate of homogeneous  $Fe^{2+}$  oxidation rate in the supernatant water almost 700 times (Stumm and Lee, 1961). These measures resulted in a  $Fe^{2+}$  concentration of approximately 0.4 mmol/L at the entrance of the filter bed. After complete  $Fe^{2+}$  oxidation in the filter bed,  $O_2$  was close to depletion ( $\pm 1$  mg/L). The low oxygen concentration, combined with the relatively high filtration

rate of 10 m/h, prevented  $NH_4^+$  and  $Mn^{2+}$  oxidation to occur.

#### 3.2. Simultaneous $NH_4^+$ and $Mn^{2+}$ oxidation

Fig. 3 shows that  $NH_4^+$  and  $Mn^{2+}$  oxidation occurred simultaneously in the fully aerated filter F1, resulting in decreasing  $NH_4^+$ ,  $Mn^{2+}$ , and  $O_2$  concentrations, increasing  $NO_3^-$  concentration, and a lower pH. The influent water reached close to  $O_2$  saturation ( $\pm 10$  mg/L) in a counter-current air flow pall ring column before entering the pilot-scale filter, which additionally resulted in a pH increase to 8.0 due to  $CO_2$  stripping. All processes occurred in the first 50–70 cm of the filter bed, after which concentrations stabilized.

The rate equations with the estimated parameters ( $Mn^{2+}ads$ ,  $k_{nitr}$ ) enable accurate simulation of  $NH_4^+$  and  $Mn^{2+}$  oxidation. The simulated  $O_2$  and  $NO_3^-$  concentrations, as well as pH, are coupled to the oxidation of  $NH_4^+$  and  $Mn^{2+}$ . Their simulated trends fit the observed measurements well, while the concentrations are slightly off. These slight deviations are likely due to higher  $NH_4^+$  concentrations in the influent water than monitored, which would explain the overestimation of  $NO_3^-$  concentration as well as the underestimation of  $O_2$  concentration and pH. Instrument inaccuracy for  $O_2$  and pH measurements may have contributed to this result as well.

Fig. 4 shows the percentage of  $NH_4^+$  and  $Mn^{2+}$  concentrations removed in the pall rings prior to filter F1 during the experiment. While initially (first  $\sim 20$  days),  $NH_4^+$  removal was only observed in the filter bed, in weeks, removal also started to happen in the pall rings. With a steady increase, 90 % oxidation was observed after 133 days, meaning that  $NH_4^+$  removal was almost complete prior to the water reaching the filter bed. A similar, but delayed, trend was observed for  $Mn^{2+}$  removal, with approximately 50 % removal by the pall rings after 133 days. On day 68, the system was switched off for at least one full day, which seems to have resulted in temporary drop in  $NH_4^+$  and  $Mn^{2+}$  removal (red dotted line in Fig. 4). The onset of  $NH_4^+$  and  $Mn^{2+}$  oxidation in the pall rings suggests that surface limitation is not an issue in sand filters, as the surface area of pall rings is orders of magnitude smaller than that of sand.

#### 3.3. Sequential $Mn^{2+}$ and $NH_4^+$ oxidation

In pre-filter F2, the influent water was mildly aerated (4.6 mg  $O_2$ /L = 0.14 mmol  $O_2$ /L). Consequently,  $CO_2$  was only partly stripped, which resulted in a relatively low pH. The influent water pH was raised to 7.8 by dosing sodium hydroxide. Fig. 5A shows that these conditions resulted in  $Mn^{2+}$  oxidation, while  $NH_4^+$  oxidation was negligible. However, after full aeration in subsequent post filter F3 (Fig. 5B), complete nitrification occurred. The simulations accurately follow the observed trends and concentrations, except for the  $O_2$  concentrations where simulated concentrations were slightly higher than observed likely for the same reasons as mentioned for the fully aerated filter F1.

Precipitation of minerals (=scaling) was observed in pre-filter F2 and

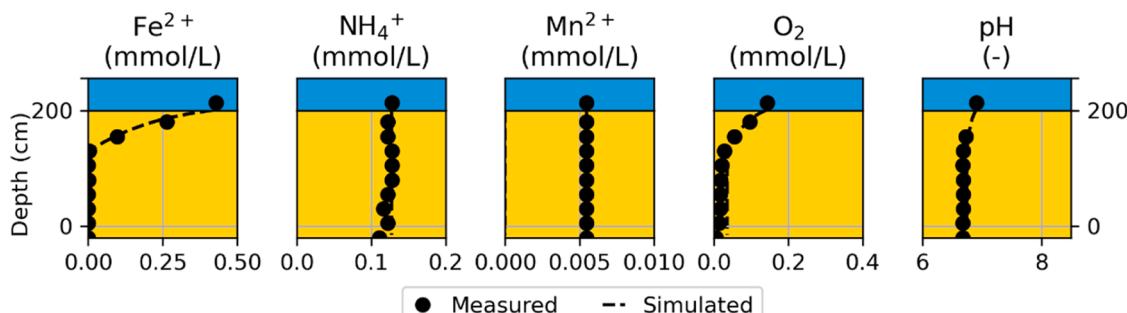



Fig. 2. Observed and simulated solute concentrations and pH with depth in the supernatant and filter bed for the full-scale rapid sand filter (adapted from Kruisdijk 2024).

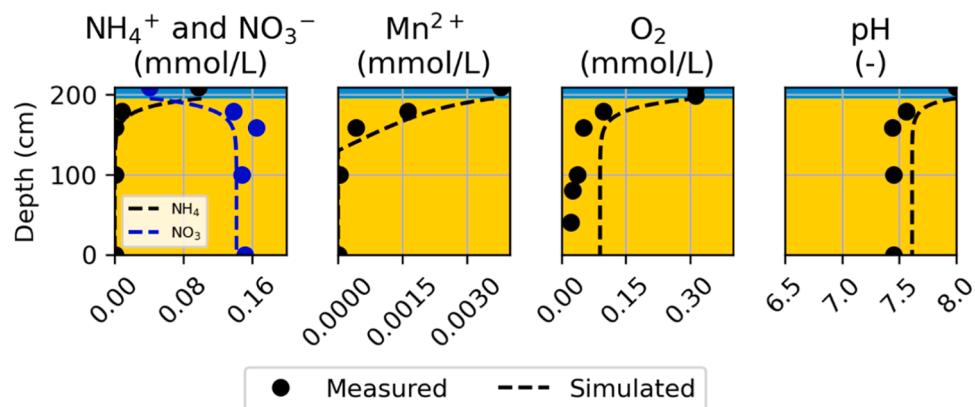



Fig. 3. Observed and simulated concentrations and pH in fully aerated filter F1, in which simultaneous NH<sub>4</sub><sup>+</sup> and Mn<sup>2+</sup> oxidation was stimulated.

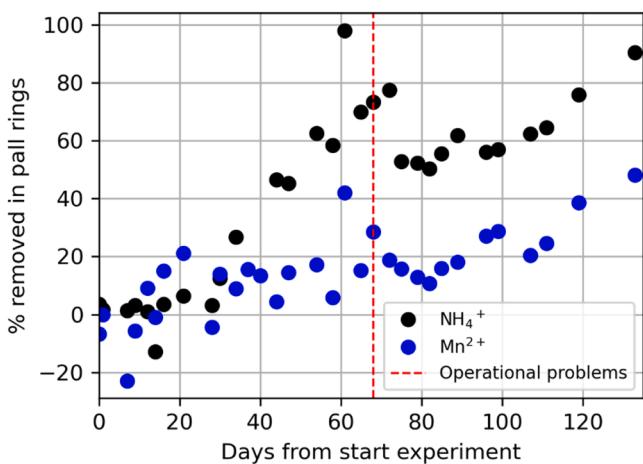



Fig. 4. Percentage of NH<sub>4</sub><sup>+</sup> and Mn<sup>2+</sup> concentrations removed during pall ring aeration prior to filter F1 over the duration of the experiment.

caused operational problems resulting in more clogging and thus, backwashing. The most severe scaling occurred especially close to the sodium hydroxide dosing tube, where we expected locally high pH due to incomplete mixing. SI.2 shows the simulated saturation index (SI) of two common carbonate precipitates, calcite (CaCO<sub>3</sub>) and rhodochrosite (MnCO<sub>3</sub>), based on the average influent groundwater composition (SI.1) at increasing pH values. Both SIs reach equilibrium (SI=0) between pH 7.2–7.3 and become supersaturated at higher pH highlighting potential mineral precipitation. The SI of calcite increases most substantially. Rhodochrosite precipitation would have caused a decrease in Mn<sup>2+</sup> concentrations, which is unlikely to have happened, since Mn<sup>2+</sup> concentrations in the supernatant water were very similar to the other pilot filters that did not cope with clogging issues.

#### 3.4. Sequential NH<sub>4</sub><sup>+</sup> and Mn<sup>2+</sup> oxidation

In pre-filter F4, influent water was only slightly aerated resulting in O<sub>2</sub> concentrations of around 3.9 mg/L and a relatively low pH of 6.8. These conditions promoted NH<sub>4</sub><sup>+</sup> oxidation, but only partially as O<sub>2</sub> concentrations were not sufficient to oxidize all NH<sub>4</sub><sup>+</sup> (Fig. 6A). Mn<sup>2+</sup> oxidation was not observed; instead Mn<sup>2+</sup> concentrations increased. The pH remained somewhat stable. The effluent water was fully aerated before entering the post filter F5, using pall rings and counter current air flow resulting in 11 mg/L O<sub>2</sub> (=0.35 mmol/L) and a higher pH (=7.9). In this filter, both NH<sub>4</sub><sup>+</sup> and Mn<sup>2+</sup> were fully removed, resulting in a decrease in O<sub>2</sub> concentration and a lower pH (Fig. 6B).

The two sequential filters show a good fit between the observed and

simulated concentrations. Only the pH dropped substantially in the second filter (Fig. 6B), a change that was not captured by the simulation - similar to aerated filter F1.

Simulating complete nitrification in a single-step (equation 2) did not result in a good fit for the simulated and observed NH<sub>4</sub><sup>+</sup> and NO<sub>3</sub><sup>-</sup> concentrations, and most importantly, the increasing Mn<sup>2+</sup> concentrations were not simulated (SI.3). The only reasonable way to simulate increasing Mn<sup>2+</sup> concentrations was to couple it to NO<sub>2</sub><sup>-</sup> oxidation. Vandebaele et al. (1995) observed this process in laboratory batch experiments with similar conditions to RSF. We added this process (equation 5) and two-step nitrification (equations 3 and 4) and simulated these processes using the model (Fig. 7A). Simulated and observed concentrations showed a good fit. To achieve an accurate model fit with the observed Mn<sup>2+</sup> concentrations, NO<sub>2</sub><sup>-</sup> concentrations are maximally 0.032 mmol/L after O<sub>2</sub> is fully depleted. NO<sub>2</sub><sup>-</sup> was observed in the samples, but not in the same concentration range as simulated. Note that in the obtained water samples probably all NO<sub>2</sub><sup>-</sup> was converted to NO<sub>3</sub><sup>-</sup> due to the high reactivity of the NO<sub>2</sub><sup>-</sup> and the low concentrations of O<sub>2</sub> available in the samples. Therefore, we assume that the sum of the simulated NO<sub>2</sub><sup>-</sup> and NO<sub>3</sub><sup>-</sup> concentrations represent the observed NO<sub>3</sub><sup>-</sup> concentrations in the samples.

To investigate the influence of O<sub>2</sub> limitation on Mn-oxide reduction, the filter operation of pre-filter F4 was temporarily adjusted to full aeration, resulting in a higher pH (=7.33) and O<sub>2</sub> concentrations (9.2 mg/L). Fig. 7B shows the results of this adaptation to the observed concentrations over the filter bed. NH<sub>4</sub><sup>+</sup> is fully depleted within the first 80 cm and converted to NO<sub>3</sub><sup>-</sup>. Mn<sup>2+</sup> oxidation is occurring resulting in complete removal, instead of the Mn<sup>2+</sup> mobilization observed in O<sub>2</sub> limited conditions. This strongly indicates that the Mn-oxide reduction observed in F4 is a result of O<sub>2</sub> limitation and likely coupled to NO<sub>2</sub><sup>-</sup> presence.

#### 3.5. Parameter estimation

Table 3 shows the estimated first order rate constants for NH<sub>4</sub><sup>+</sup> oxidation and adsorbed Mn<sup>2+</sup> (which is a proxy for the heterogeneous Mn<sup>2+</sup> oxidation rate), their 95 % confidence intervals, and the influent pH and O<sub>2</sub> concentrations. The estimated parameters reflect the behaviour of the filter columns under the specific conditions but should not be interpreted as having predictive skill outside this dataset.

First order complete nitrification rate constants ranged between  $6.8 \times 10^{-3}$  -  $3.2 \times 10^{-2}$  s<sup>-1</sup>, while adsorbed Mn<sup>2+</sup> ranged between  $1.2 \times 10^{-3}$  -  $1.4 \times 10^{-2}$  mmol/L. In fully aerated filter F1, NH<sub>4</sub><sup>+</sup> and Mn<sup>2+</sup> oxidation occurred simultaneously with an estimated first-order NH<sub>4</sub><sup>+</sup> oxidation rate constant of  $3.5 \times 10^{-2}$  s<sup>-1</sup> and adsorbed Mn<sup>2+</sup> of  $1.2 \times 10^{-3}$  mmol/L. In pre-filter F2, with partial aeration and high pH, Mn<sup>2+</sup> oxidation was about one order of magnitude faster ( $1.4 \times 10^{-2}$  mmol/L), despite the slightly lower pH (7.74). In pre-filter F4, with low

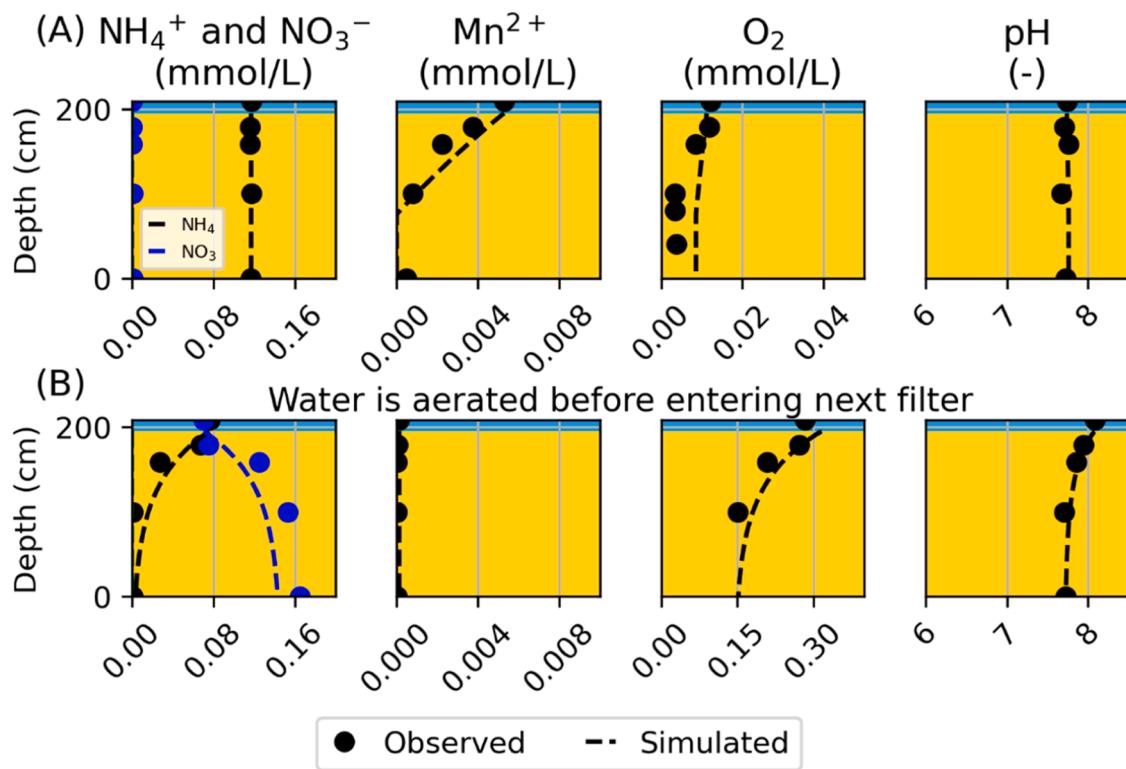



Fig. 5. Observed and simulated concentrations and pH for sequential  $\text{Mn}^{2+}$  and  $\text{NH}_4^+$  oxidation in (A) pre-filter F2, and (B) post filter F3.

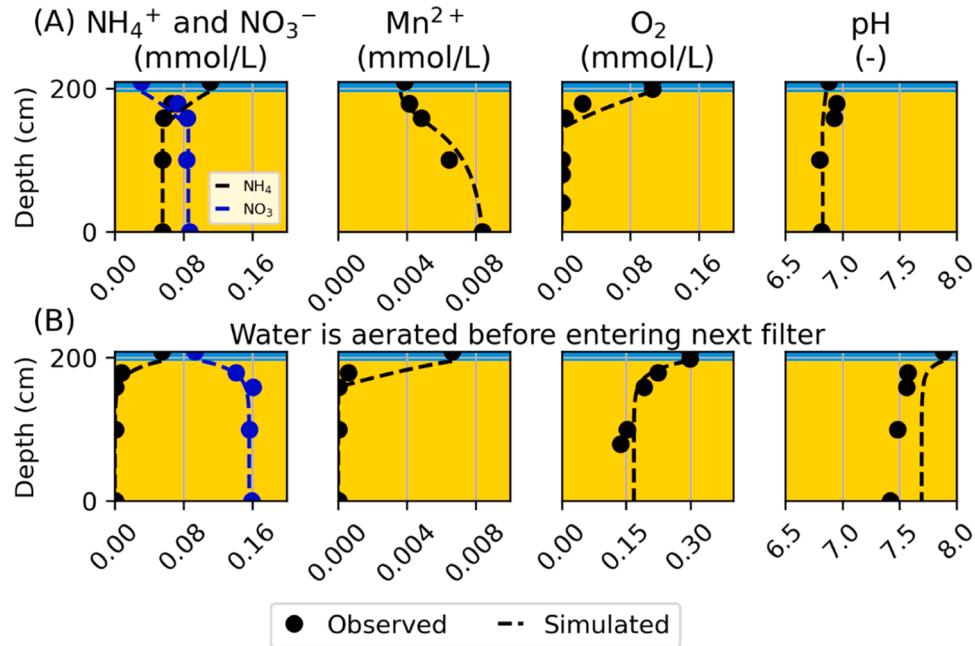
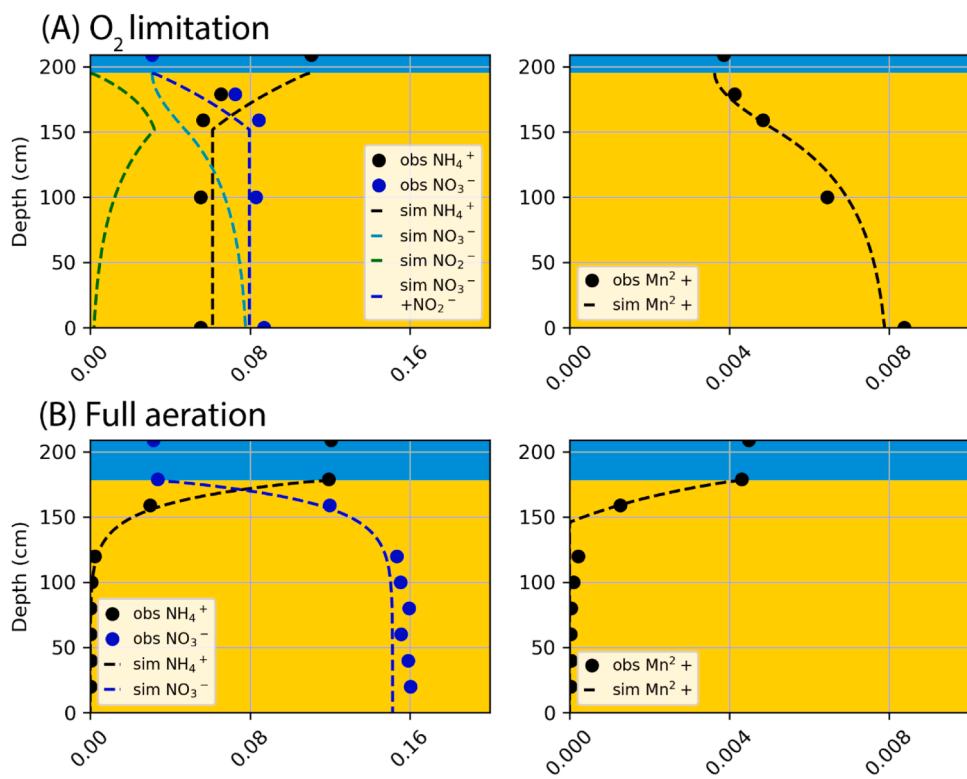



Fig. 6. Observed and simulated concentrations and pH for sequential  $\text{NH}_4^+$  and  $\text{Mn}^{2+}$  oxidation in (A) pre-filter 4, and (B) post filter F5.


pH and partial aeration,  $\text{NH}_4^+$  oxidation was about one order of magnitude slower, compared to the aerated filter F1 ( $5.5 \times 10^{-3} \text{ s}^{-1}$ ).

Post-filters F3 and F5 (Table 3) had similar process conditions as the fully aerated filter F1. Nonetheless,  $\text{NH}_4^+$  oxidation is one order of magnitude slower in the post filter after partial aeration with high pH. Interestingly, the two lowest  $\text{NH}_4^+$  oxidation rate constants were observed when there was no  $\text{Mn}^{2+}$  oxidation occurring.

#### 4. Discussion

##### 4.1. Controlling the $\text{NH}_4^+$ and $\text{Mn}^{2+}$ oxidation sequence

The working hypothesis of this study was that by applying specific process conditions ( $\text{O}_2$ , pH) it is possible to control the sequence of  $\text{Mn}^{2+}$  and  $\text{NH}_4^+$  oxidation in sand filters. All pilot filters were operated with mature filter sand, containing Mn-oxides as well as biofilms that were



**Fig. 7.** Two model scenarios of pre-filter F4, where (A) shows the scenario where two-step nitrification is simulated during O<sub>2</sub> limitation in the pre-filter and (B) shows the scenario in the same pre-filter but during a temporarily operational period of full aeration.

**Table 3**

Estimated rate constants and adsorbed Mn<sup>2+</sup> including their 95 % confidence intervals for the kinetic processes simulated by the reactive transport model for the different filters.

|                                                                               | Influent pH (-) | Influent O <sub>2</sub> concentrations (mmol/L) | NH <sub>4</sub> <sup>+</sup> oxidation (s <sup>-1</sup> ) | NH <sub>4</sub> <sup>+</sup> oxidation – 95 % confidence limits (s <sup>-1</sup> ) | Adsorbed Mn <sup>2+</sup> (mmol/L) | Adsorbed Mn <sup>2+</sup> – 95 % confidence limits (mmol/L) |
|-------------------------------------------------------------------------------|-----------------|-------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------|-------------------------------------------------------------|
| F1 – Simultaneous Mn <sup>2+</sup> and NH <sub>4</sub> <sup>+</sup> oxidation | 8.00            | 0.33                                            | $3.5 \times 10^{-2}$                                      | $3.3 \times 10^{-2}$ – $3.7 \times 10^{-2}$                                        | $1.2 \times 10^{-3}$               | $1.1 \times 10^{-3}$ – $1.35 \times 10^{-3}$                |
| F2 – Sequential Mn <sup>2+</sup> and NH <sub>4</sub> <sup>+</sup> oxidation   | 7.74            | 0.08                                            | 0                                                         | -                                                                                  | $1.4 \times 10^{-2}$               | $1.0 \times 10^{-2}$ – $1.7 \times 10^{-2}$                 |
| F3 – Sequential Mn <sup>2+</sup> and NH <sub>4</sub> <sup>+</sup> oxidation   | 8.08            | 0.32                                            | $6.8 \times 10^{-3}$                                      | $1.4 \times 10^{-3}$ – $1.2 \times 10^{-2}$                                        | -                                  | -                                                           |
| F4 – Sequential NH <sub>4</sub> <sup>+</sup> and Mn <sup>2+</sup> oxidation   | 6.88            | 0.12                                            | $5.5 \times 10^{-3}$                                      | $4.2 \times 10^{-3}$ – $7.0 \times 10^{-3}$                                        | 0                                  | -                                                           |
| F5 – Sequential NH <sub>4</sub> <sup>+</sup> and Mn <sup>2+</sup> oxidation   | 7.88            | 0.35                                            | $2.9 \times 10^{-2}$                                      | $2.7 \times 10^{-2}$ – $3.1 \times 10^{-2}$                                        | $2.5 \times 10^{-3}$               | $2.3 \times 10^{-3}$ – $2.6 \times 10^{-3}$                 |

capable of oxidizing NH<sub>4</sub><sup>+</sup> and NO<sub>2</sub><sup>-</sup>. As such, the conditions were present in all filters to oxidize both contaminants in an effective manner. Under saturated O<sub>2</sub> concentrations (10 mg/L) and high pH ( $\pm 8$ ), indeed both NH<sub>4</sub><sup>+</sup> and Mn<sup>2+</sup> were oxidized from day 1, with NH<sub>4</sub><sup>+</sup> oxidation rate constant of  $3.5 \times 10^{-2}$  s<sup>-1</sup> and adsorbed Mn<sup>2+</sup> (a proxy for the heterogeneous Mn<sup>2+</sup> oxidation rate) of  $1.2 \times 10^{-3}$  mmol/L. Under O<sub>2</sub> limiting conditions, however, it was possible to separate the two oxidation processes.

Theoretically, chemical heterogeneous Mn<sup>2+</sup> is slowed down by a factor 825 at a low pH (pH~6.8) compared to a high pH after full aeration (pH~8), according to the rate equation proposed by Davies and Morgan (1989). In this way, Mn<sup>2+</sup> oxidation was effectively suppressed at low pH in pre-filter F4, while NH<sub>4</sub><sup>+</sup> oxidizing bacteria utilised the limited O<sub>2</sub> available. Nonetheless, these conditions also resulted in a

lower NH<sub>4</sub><sup>+</sup> oxidation rate constant ( $5.5 \times 10^{-3}$  s<sup>-1</sup> compared to  $3.5 \times 10^{-2}$  s<sup>-1</sup> in the fully aerated filter F1) (Table 3).

We demonstrated control over this oxidation sequence by reversing the order of NH<sub>4</sub><sup>+</sup> and Mn<sup>2+</sup> oxidation, allowing Mn<sup>2+</sup> to oxidize before NH<sub>4</sub><sup>+</sup>. To achieve this uncommon sequence, the pre-filter F2 was operated with low O<sub>2</sub> concentrations ( $\sim 0.017$  mmol/L, 0.54 mg/L) and a high pH ( $\sim 8$ ). The O<sub>2</sub> concentration was sufficient to oxidize all Mn<sup>2+</sup>, whereas  $\sim 18$  times more O<sub>2</sub> ( $\sim 0.3$  mmol/L) would have been required for complete nitrification. Furthermore, the high pH favoured and accelerated heterogeneous Mn<sup>2+</sup> oxidation (Davies and Morgan, 1989). The pH in this system was as high as the one in the fully aerated filter, where NH<sub>4</sub><sup>+</sup> is completely oxidized, suggesting that the adjusted O<sub>2</sub> concentration was the key factor to suppress NH<sub>4</sub><sup>+</sup> oxidation and allow Mn<sup>2+</sup> oxidation.

It must be noted that accurate pH and O<sub>2</sub> control played a central role in the set-up. If the pH is too high, precipitation of calcite and potentially other minerals can accelerate sand filter clogging. Similarly, O<sub>2</sub> control is crucial: insufficient O<sub>2</sub> results in residual reductants in the next filter, while excessive O<sub>2</sub> potentially initiates oxidation of other reductants in the filter. Therefore, monitoring and process control are necessary during the start-up of a sequential Fe<sup>2+</sup>, Mn<sup>2+</sup>, and NH<sub>4</sub><sup>+</sup> oxidizing filter. Adjustments can be made in the filter based on the monitoring data. For example, aeration can be reduced or increased depending on the effluent concentrations of the separate filters.

#### 4.2. Ammonium – manganese interactions

Mn<sup>2+</sup> concentrations increased in pre-filter F4. Its mobilization poses a risk to RSF operation, as the elevated Mn<sup>2+</sup> concentrations in the effluent water counteract the primary function of RSFs to remove Mn<sup>2+</sup>. Model simulations indicate that this increase was potentially caused by NO<sub>2</sub><sup>-</sup> dependent reduction of Mn-oxides. This interpretation is consistent with the observations of [Vandenabeele et al. \(1995\)](#), who reported chemical interactions between NO<sub>2</sub><sup>-</sup> and Mn-oxides in batch experiments. In theory, abiotic or biotic oxidation of organic matter can also be coupled to MnO<sub>2</sub> reduction ([Gounot, 1994](#); [Remucal and Ginder-Vogel, 2014](#)). In groundwaters, reduction generally follows a sequence, where reduction of MnO<sub>2</sub> only starts after the reduction of the more energetically favorable O<sub>2</sub> or NO<sub>3</sub><sup>-</sup> ([Appelo and Postma, 2004](#)). This makes the reduction of MnO<sub>2</sub> coupled to organic matter oxidation less likely in F4, as O<sub>2</sub> or NO<sub>3</sub><sup>-</sup> is always present. Furthermore, anaerobic groundwaters are often low in reactive organic carbon due to prior aerobic oxidation during infiltration ([Hartog et al., 2004](#)). Assimilable organic carbon (AOC) represents the fraction of dissolved organic carbon that can be readily taken up and metabolized by microorganisms. Anaerobic groundwater is generally characterized by low AOC concentrations (<10 µg/L in the Netherlands ([van der Kooij et al., 1982](#)), on average 60 µg/L and up to 114 µg/L in Flanders, Belgium ([Polanska et al., 2005](#))). While organic matter oxidation coupled to MnO<sub>2</sub> reduction cannot be excluded, environmental conditions (presence of O<sub>2</sub>, NO<sub>3</sub><sup>-</sup>, and low AOC) indicate that NO<sub>2</sub><sup>-</sup>-dependent Mn oxide reduction is the most probable pathway.

In conventional RSFs, where sufficient O<sub>2</sub> is present, the NO<sub>2</sub><sup>-</sup> resulting from NH<sub>4</sub><sup>+</sup> oxidation is quickly microbially converted to NO<sub>3</sub><sup>-</sup>. In pre-filter F4, where the concentration of O<sub>2</sub> was insufficient to fully oxidize NH<sub>4</sub><sup>+</sup> to NO<sub>3</sub><sup>-</sup>, the Mn-oxides present seem to react with the formed NO<sub>2</sub><sup>-</sup>. Interestingly, [Vandenabeele et al. \(1995\)](#), performed a similar experiment with limiting O<sub>2</sub> at a higher pH (7.7), which is a more regularly observed influent pH in RSFs, and observed that Mn-oxide reduction did not occur. These observations seem to indicate that NO<sub>2</sub><sup>-</sup>-dependent Mn-oxide reduction is only a risk, when (i) the pH is relatively low, (ii) incomplete NH<sub>4</sub><sup>+</sup> oxidation is occurring resulting in NO<sub>2</sub><sup>-</sup> due to O<sub>2</sub> depletion, and (iii) Mn-oxide coated sand is present as in the current study. These conditions are not rare in conventional RSFs and could explain the ever-lasting problem of Mn<sup>2+</sup> breakthrough faced by drinking water utilities ([Bruins et al., 2013](#); [Haukelidsaeter et al., 2023](#)). The easiest way to eliminate NO<sub>2</sub><sup>-</sup>-dependent Mn-oxide reduction and the subsequent mobilization of Mn<sup>2+</sup> is to use virgin sand instead of Mn-oxide coated sand for future sequential oxidizing filters.

Parameter estimation highlighted potential interactions between NH<sub>4</sub><sup>+</sup> and Mn<sup>2+</sup> affecting oxidation rates. First, we observed that Mn<sup>2+</sup> oxidation proceeded about one order of magnitude faster in the absence of NH<sub>4</sub><sup>+</sup>, despite the slightly lower pH and O<sub>2</sub> concentration. Faster oxidation of Mn<sup>2+</sup> in the absence of NH<sub>4</sub><sup>+</sup> could be related to their competition for O<sub>2</sub> for oxidation, as NH<sub>4</sub><sup>+</sup> oxidation is a more favorable redox reaction compared to Mn<sup>2+</sup> oxidation. Second, faster NH<sub>4</sub><sup>+</sup> oxidation was observed when simultaneously Mn<sup>2+</sup> oxidation was occurring. Recent studies in constructed wetlands for treating wastewater showed that 92 % of the Mn<sup>2+</sup>-oxidizing bacteria could potentially play a role in the nitrogen cycle and that NH<sub>4</sub><sup>+</sup> oxidation was

closely related to Mn-oxides and Mn<sup>2+</sup> concentrations ([Cheng et al., 2022](#); [Wang et al., 2021](#)). These findings highlight the interconnection between NH<sub>4</sub><sup>+</sup> and Mn<sup>2+</sup> oxidation, however, further research on these potential interactions is needed to validate the outcomes of the current study and to assess the specific mechanisms.

#### 4.3. Outlook

To the best of our knowledge, this is the first study that demonstrates the sequential oxidation of Fe<sup>2+</sup>, Mn<sup>2+</sup>, and NH<sub>4</sub><sup>+</sup> in three separate filters and that the sequence of Mn<sup>2+</sup> and NH<sub>4</sub><sup>+</sup> oxidation is interchangeable. We believe that sequential oxidation has the potential to improve system controllability and operating efficiency. However, this study only shows a proof of principle, and further research is needed before implementation in full-scale drinking water production. To guide the future development, we propose the following research lines:

1. Assess the long-term operational stability and optimal process conditions at demo-scale.
2. Compare functioning of sequential oxidation treatment with conventional aeration/filtration treatment.
3. Investigate practical issues for implementation, as optimal design, and costs of operation and maintenance.

From an operational perspective, the sequence in which NH<sub>4</sub><sup>+</sup> precedes Mn<sup>2+</sup> oxidation is preferred, as it provides greater assurance of biological stability in treated groundwater ([Prest et al., 2016](#)). In this configuration, nitrification occurs prior to Mn<sup>2+</sup> oxidation, allowing any minor NH<sub>4</sub><sup>+</sup> breakthroughs to be removed in the second filter. Thereby, decreasing the chance of residual NH<sub>4</sub><sup>+</sup> in the effluent water. Another benefit of this sequence is that it does not require chemicals. We believe that sequential oxidation is particularly relevant for new drinking water treatment plants, as the single or dual media filter configurations in existing plants are not compatible with a three-filter sequential oxidation system. Constructing a new plant allows for smaller sequential filters while maintaining flexibility for operational adjustments. Although three filters are needed for treatment by sequential oxidation instead of one for conventional treatment, the plant footprint potentially can stay similar, as the likely higher flows and reaction rates enable using smaller sized filters. However, further research on this is needed.

#### 5. Conclusions

We demonstrated that the main anaerobic groundwater contaminants, namely Fe<sup>2+</sup>, NH<sub>4</sub><sup>+</sup>, and Mn<sup>2+</sup>, can be oxidized sequentially in separate filters; and that the common order of NH<sub>4</sub><sup>+</sup> before Mn<sup>2+</sup> oxidation can be reversed to allow Mn<sup>2+</sup> to oxidize first. These atypical oxidation dynamics were driven by low O<sub>2</sub> concentrations (~0.017 mmol/L, ~0.54 mg/L) and a high pH (~8), which strongly favoured Mn<sup>2+</sup> oxidation, leading to rapid O<sub>2</sub> depletion which suppressed NH<sub>4</sub><sup>+</sup> oxidation. The opposite occurred in the filter with low O<sub>2</sub> concentrations (0.08 mmol/L, ~3 mg/L) and low pH (~6.8) where Mn<sup>2+</sup> oxidation was inhibited, enabling NH<sub>4</sub><sup>+</sup>-oxidizing bacteria to consume all O<sub>2</sub>. This shift from conventional anaerobic groundwater treatment with simultaneous oxidation to sequential oxidation in separate filters can result in (i) a more robust and controllable system, (ii) the potential to optimize the rates of each oxidation process separately, and (iii), ultimately, higher flows and less backwashing. However, further research is needed before implementation in full-scale drinking water production on long-term stability, optimal process conditions and design, and costs of operation and maintenance.

#### CRediT authorship contribution statement

**Emiel Kruisdijk:** Writing – review & editing, Writing – original draft, Visualization, Software, Methodology, Formal analysis, Data

curation. **Francesc Corbera-Rubio:** Writing – review & editing, Writing – original draft, Methodology, Investigation, Formal analysis, Conceptualization. **Simon Müller:** Writing – review & editing, Methodology, Investigation, Conceptualization. **Frank Schoonenberg:** Resources, Methodology, Conceptualization. **Michele Laureni:** Writing – review & editing, Writing – original draft, Methodology, Conceptualization. **Melanie Nijboer:** Methodology, Investigation, Data curation. **Doris van Halem:** Writing – review & editing, Writing – original draft, Project administration, Methodology, Investigation, Funding acquisition, Formal analysis, Conceptualization.

## Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

## Supplementary materials

Supplementary material associated with this article can be found, in the online version, at [doi:10.1016/j.watres.2026.125436](https://doi.org/10.1016/j.watres.2026.125436).

## Data availability

Data will be made available on request.

## References

Appelo, C.A.J., Postma, D., 2004. *Geochemistry, Groundwater and Pollution*. CRC press.

Bruins, J.H., Petrushevski, B., Slokar, Y.M., Huysman, K., Joris, K., Kruithof, J.C., Kennedy, M.D., 2015. Biological and physico-chemical formation of Birnessite during the ripening of manganese removal filters. *Water Res.* 69, 154–161. <https://doi.org/10.1016/j.watres.2014.11.019>.

Bruins, J.H., Vries, D., Petrushevski, B., Slokar, Y.M., Kennedy, M.D., 2013. Assessment of manganese removal from over 100 groundwater treatment plants. *J Water Supply: Res. Technol.-Aqua* 63 (4), 268–280. <https://doi.org/10.2166/aqua.2013.086>.

Cheng, C., He, Q., Zhang, J., Chai, H., Yang, Y., Pavlostathis, S.G., Wu, H., 2022. New insight into ammonium oxidation processes and mechanisms mediated by manganese oxide in constructed wetlands. *Water Res.* 215, 118251. <https://doi.org/10.1016/j.watres.2022.118251>.

Corbera-Rubio, F., Goedhart, R., Laureni, M., van Loosdrecht, M.C.M., van Halem, D., 2024a. A biotechnological perspective on sand filtration for drinking water production. *Curr. Opin. Biotechnol.* 90, 103221. <https://doi.org/10.1016/j.cobio.2024.103221>.

Corbera-Rubio, F., Kruisdijk, E., Malheiro, S., Leblond, M., Verschoor, L., Loosdrecht, M.C.M., Laureni, M., Halem, D.V., 2024b. A difficult coexistence: resolving the iron-induced nitrification delay in groundwater filters. *bioRxiv*. <https://doi.org/10.1101/2024.02.19.581000>, 2024.2002.2019.581000.

Davies, S.H.R., Morgan, J.J., 1989. Manganese(II) oxidation kinetics on metal oxide surfaces. *J Colloid Interface Sci* 129 (1), 63–77. [https://doi.org/10.1016/0021-9797\(89\)90416-5](https://doi.org/10.1016/0021-9797(89)90416-5).

Diem, D., Stumm, W., 1984. Is dissolved Mn<sup>2+</sup> being oxidized by O<sub>2</sub> in absence of Mn-bacteria or surface catalysts? *Geochim. Cosmochim. Acta* 48 (7), 1571–1573. [https://doi.org/10.1016/0016-7037\(84\)90413-7](https://doi.org/10.1016/0016-7037(84)90413-7).

Doherty, J., 1994. *PEST: Model Independent parameter Estimation* (W. Computing, Ed.).

Emerson, D., De Vet, W., 2015. The role of FeOB in engineered water ecosystems: a review. *J. AWWA* 107 (1), E47–E57. <https://doi.org/10.5942/jawwa.2015.107.0004>.

Fetter, C.W., Boving, T.B., Kramer, D.K., 1999. *Contaminant Hydrogeology* (Vol. 500). Prentice hall Upper Saddle River, NJ.

Gounot, A.-M., 1994. Microbial oxidation and reduction of manganese: consequences in groundwater and applications. *FEMS Microbiol. Rev.* 14 (4), 339–349. <https://doi.org/10.1111/j.1574-6976.1994.tb00108.x>.

Hartog, N., Van Bergen, P.F., De Leeuw, J.W., Griffioen, J., 2004. Reactivity of organic matter in aquifer sediments: geological and geochemical controls. *Geochim. Cosmochim. Acta* 68 (6), 1281–1292. <https://doi.org/10.1016/j.gca.2003.09.004>.

Haukelidsaeter, S., Boersma, A.S., Kirwan, L., Corbetta, A., Gorres, I.D., Lenstra, W.K., Schoonenberg, F.K., Borger, K., Vos, L., van der Wielen, P.W.J.J., van Kessel, M.A.H.J., Lücker, S., Slomp, C.P., 2023. Influence of filter age on Fe, Mn and NH<sub>4</sub><sup>+</sup> removal in dual media rapid sand filters used for drinking water production. *Water Res.* 242, 120184. <https://doi.org/10.1016/j.watres.2023.120184>.

Haukelidsaeter, S., Boersma, A.S., Piso, L., Lenstra, W.K., van Helmond, N.A.G.M., Schoonenberg, F., van der Pol, E., Hurtarte, L.C.C., van der Wielen, P.W.J.J., Behrends, T., van Kessel, M.A.H.J., Lücker, S., Slomp, C.P., 2024. Efficient chemical and microbial removal of iron and manganese in a rapid sand filter and impact of regular backwash. *Appl. Geochem.* 162, 105904. <https://doi.org/10.1016/j.apegeochem.2024.105904>.

Kaegi, R., Voegelin, A., Folini, D., Hug, S.J., 2010. Effect of phosphate, silicate, and Ca on the morphology, structure and elemental composition of Fe(III)-precipitates formed in aerated Fe(II) and As(III) containing water. *Geochim. Cosmochim. Acta* 74 (20), 5798–5816. <https://doi.org/10.1016/j.gca.2010.07.017>.

Kappler, A., Bryce, C., Mansor, M., Lueder, U., Byrne, J.M., Swanner, E.D., 2021. An evolving view on biogeochemical cycling of iron. *Nat. Rev. Microbiol.* 19 (6), 360–374. <https://doi.org/10.1038/s41579-020-00502-7>.

van der Kooij, D., Visser, A., Hijnen, W.A.M., 1982. Determining the concentration of easily assimilable organic carbon in drinking water. *J. AWWA* 74 (10), 540–545. <https://doi.org/10.1002/j.1551-8833.1982.tb05000.x>.

Kruisdijk, E., van Breukelen, B.M., van Halem, D., 2024. Simulation of rapid sand filters to understand and design sequential iron and manganese removal using reactive transport modelling. *Water Res.* 267, 122517. <https://doi.org/10.1016/j.watres.2024.122517>.

Müller, S., Corbera-Rubio, F., Schoonenberg-Kegel, F., Laureni, M., Loosdrecht, M.C.M. v., Halem, D.V., 2024. Shifting to biology promotes highly efficient iron removal in groundwater filters. *bioRxiv*. <https://doi.org/10.1101/2024.02.14.580244>, 2024.2002.2014.580244.

Parkhurst, D.L., Appelo, C.A.J., 2013. *Description of input and examples for PHREEQC version 3: a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations* [Report] (6-A43). (Techniques and Methods, Issue. U. S. G. Survey. <http://pubs.er.usgs.gov/publication/tm6A43>.

Polanska, M., Huysman, K., van Keer, C., 2005. Investigation of assimilable organic carbon (AOC) in Flemish drinking water. *Water Res.* 39 (11), 2259–2266. <https://doi.org/10.1016/j.watres.2005.04.015>.

Prest, E.I., Hammes, F., van Loosdrecht, M.C.M., Vrouwenvelder, J.S., 2016. Biological stability of drinking water: controlling factors, methods, and challenges. *Front. Microbiol.* 7. <https://doi.org/10.3389/fmicb.2016.00045>.

Remucal, C.K., Ginder-Vogel, M., 2014. A critical review of the reactivity of manganese oxides with organic contaminants [10.1039/C3EM00703K]. *Environ. Sci.: Process. Impact.* 16 (6), 1247–1266. <https://doi.org/10.1039/C3EM00703K>.

Stumm, W., Lee, G.F., 1961. Oxygenation of ferrous iron. *Ind. Eng. Chem.* 53 (2), 143–146. <https://doi.org/10.1021/ie50614a030>.

Tatari, K., Smets, B.F., Albrechtse, H.J., 2013. A novel bench-scale column assay to investigate site-specific nitrification biokinetics in biological rapid sand filters. *Water Res.* 47 (16), 6380–6387. <https://doi.org/10.1016/j.watres.2013.08.005>.

Tekerlekopoulou, A.G., Pavlou, S., Vayenas, D.V., 2013. Removal of ammonium, iron and manganese from potable water in biofiltration units: a review. *J. Chem. Technol. Biotechnol.* 88 (5), 751–773. <https://doi.org/10.1002/jctb.4031>.

UNESCO. (2022). The United Nations World Water Development Report 2022: Groundwater: Making the invisible visible.

Vandenabeele, J., Vande Woestyne, M., Houwen, F., Germonpré, R., Vandesande, D., Verstraete, W., 1995. Role of autotrophic nitrifiers in biological manganese removal from groundwater containing manganese and ammonium. *Microb. Ecol.* 29 (1), 83–98. <https://doi.org/10.1007/BF00217425>.

Voegelin, A., Kaegi, R., Frommer, J., Vantelon, D., Hug, S.J., 2010. Effect of phosphate, silicate, and Ca on Fe(III)-precipitates formed in aerated Fe(II)- and As(III)-containing water studied by X-ray absorption spectroscopy. *Geochim. Cosmochim. Acta* 74 (1), 164–186. <https://doi.org/10.1016/j.gca.2009.09.020>.

Wang, D., Lin, H., Ma, Q., Bai, Y., Qu, J., 2021. Manganese oxides in phragmites rhizosphere accelerates ammonia oxidation in constructed wetlands. *Water Res.* 205, 117688. <https://doi.org/10.1016/j.watres.2021.117688>.