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Summary 
 

Coastal lagoons are shallow coastal water bodies separated from the ocean by a barrier and they support a 

range of natural services that are highly valued by society, including but not limited to fisheries 

productivity, storm protection, and tourism. Songkhla lagoon is the largest lagoonal water resource in 

Thailand and Southeast Asia. The lagoon is a combined freshwater and estuarine complex of high 

productivity which represents an extraordinary combination of environmental resources believed to be 

unique in the region. 

Climate change, as a response to increased greenhouse gases in the Earth’s atmosphere, is now a widely 

accepted phenomenon. Sea level rise, temperature, precipitation, and storminess are expected to change 

significantly with global climate change and to impact coastal lagoons. The nature and magnitude of these 

impacts are still not very clear. The general objective of the research is to determine the climate change 

impacts on mixing and circulation at Songkhla lagoon, Thailand.  

To achieve this objective the lagoon was be modeled with Delft 3D, a model developed by Deltares. After 

the verification with the available data for the region, different scenarios were created to represent the 

possible changes in mean sea level and riverflow due to global warming. Then, these results were 

compared to the current conditions to determine the main changes in mixing and circulation in this coastal 

lagoon. 

The results suggest an increase in water velocities of the inlet in future scenarios and a decrease of 

flushing time.  Salinity and stratification showed more complex changes in futures scenarios. 
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1. Introduction 

1.1. General 

Coastal lagoons are recognized as one of the most sensitive types of estuaries to human intervention due 

to the dynamic nature of their entrances, and general lack of tidal flushing. The environmental processes 

of coastal lagoons are largely driven by the condition of the inlet. Meanwhile, entrance behavior is driven 

by the dynamic balance between oceanic processes such as tides, waves and mean sea level (MSL), and 

fluvial/estuarine processes such as stream flow and heat fluxes. Small Tidal Inlets (STIs) are common in 

tropical and sub-tropical developing countries and particularly in monsoonal environments. 

This study is part of a project called “Climate Change Impacts on Small Tidal Inlets (CC-STI)” lead by 

UNESCO-IHE. For the purposes of this study, small tidal inlets are defined as those with inlet channels 

that are less than 500m wide, and are connected to estuaries/lagoons with surface areas less than 50 km2. 

Such inlets are common in tropical and sub-tropical regions (e.g. India, Sri Lanka, Vietnam, Florida 

(USA), and South America (Brazil), South Africa, and SW/SE Australia). The main objective of CC-STI 

is to determine how the climate change will impact on STIs and what the best adaptation strategies are. 

To achieve this aim, one of the steps of the project, which this study is included, is to determine the 

climate change impacts on water quality, mixing and circulation characteristics in STIs along the SW 

coast of the Gulf of Thailand. 

Songkhla lagoon is the largest lagoonal water resource in Thailand and Southeast Asia and is made up of 

three interconnected lakes. Southern Songkhla Lake, known as Thale Sap Songkhla, is the outer lagoon of 

the system and empities into the Gulf of Thailand through a small channel which also serves as the harbor 

entrance to the town of Songkhla.  

The depth of the harbor and its channel are maintained at six to eight meters. An open lagoon with an 

undisturbed circulation of fresh and brackish water is a prerequisite for a stable and healthy ecosystem. 

Any change in this dynamic, whether from natural or man-induced actions, is likely to affect the whole 

system. 

Future climate change (CC) is expected to change both rainfall and coastal processes. Climate change 

therefore will lead to potentially wide ranging changes to coastal lagoon environments (including 

physical, chemical and ecological processes). These impacts are likely to result in significant socio-

economic, environmental and ecological losses. 
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Using downscaling global atmospheric ocean circulation models (ECHAM and GFDL) to predict local 

future hydrological behavior and IPCC projections to determine future sea level rise, some scenarios were 

created. These scenarios were modeled, using a validated process based 3D model (Delft3D) and the 

results compared with the present situation to determine the potential CC impacts on circulation and 

mixing.  

1.2. Objectives of Study 

The general objective of this study is to determine the climate change impacts on mixing and circulation 

at Songkhla lagoon, Thailand.  

The specific objectives of the research are: 

• Analyze the available data of water level, velocity, salinity and streamflow of Songkhla Lagoon.  

• Model the area using Delft 3D and determine the present situation of the lagoon in terms of 

circulation and mixing. 

• Create future scenarios of hydrological behavior and sea level rise for the area based on 

dynamically downscaled Global Circulation Model output. 

• Determine the impacts of the different future CC modified scenarios on mixing and circulation of 

Songkhla lagoon. 
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2. Literature Review 

2.1. Coastal lagoons  

2.1.1 General 

A coastal lagoon is a shallow water body separated from the ocean by a barrier, connected at least 

intermittently to the ocean by one or more restricted inlets, and usually oriented shore-parallel (Kjerfve, 

1994). They account for thirteen percent of all coastal environments and usually are poorly flushed and 

exhibit long resident times (Barnes, 1980).  

From an evolutionary point of view, coastal lagoons are ephemeral on a geologic time scale and were 

formed by a combination of longshore drift and sea-level variation (Kjerfve, 1994). The sea level rose 

130m near the end of Pleistocene (15000 years ago) and flooded river valleys and low-lying coastal 

depressions. Usually, the sediment transport processes caused the reshape of the coast, such as growing of 

spits and barriers and formed the lagoons (Kjerfve, 1989). However, there are also some cases where 

coastal lagoons were formed in marginal depressions behind barriers of reworked deltaic sediments 

(Nichols and Allen, 1981) in active river delta systems. Such lagoons are often oriented normal to the 

coast, instead of parallel, for instance, Lake Calcasieu, Lousiana, and Lagoa Feira, Brazil. (Kjerfve, 1989) 

Coastal lagoons are formed and maintained through sediment transport processes (Anthony, 2009). They 

are often subject to rapid sedimentation, and will eventually change into other types of environments 

through sediment infillting, tectonic activity, eustatic change in sea level, and land-use activities. This 

change is geogically rapid and can be expected to occur within decades to centuries (Kjerfve, 1989).  

The size of coastal lagoons varies substantially, ranging in area from less than 0.01km2 to more than 

10000 km2, as in the case of Lagoa dos Patos in Brazil. The depth is often 1-3m and rarely is more than 

5m except for the inlet and other channels. Salinity also can vary substantially, depending on local 

climatic conditions, lagoons can exhibit salinity that range from completely fresh to hypersaline. (Kjerfve, 

1994).  

Coastal lagoons support a range of natural services that are highly valued by society, including but not 

limited to fisheries productivity, storm protection, and tourism. They are highly productive ecosystems 

and contribute to the overall productivity of coastal waters by supporting a variety of habitats including 

salt marshes, seagrasses, and mangroves. They also provide essential habitat for many fish and shellfish 

species. (Anthony, 2009) 
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Coastal lagoons experience the same force functions as coastal plain estuaries: river input, wind stress, 

tides, precipitation to evaporation balance, and surface heat balance. However, they respond unequally to 

these forcing functions because of differences in geomorphology. Water and salt balances, lagoon water 

quality, and eutrophication depends critically on lagoon circulation, salt and material dispersion, water 

exchange through the ocean canals, and turnover, residence, or flushing times (Kjerfve, 1994). 

Whereas circulation, mixing and exchange have been studied extensively in coastal plain estuaries, these 

processes have been less synthesized for coastal lagoons. However, the dependence of water quality and 

eutrophication on flushing, hydrodynamic turnover and physical dynamics is of prime importance for 

planning and implementation of coastal management strategies in coastal lagoons (Kjerfve, 1989).  

According to water exchange with the ocean, coastal lagoons can be sub-divided into three geomorphic 

types (Figure 1). The rate and magnitude of oceanic exchange reflects both the dominant forcing function 

and the time scale of hydrologic variability (Kjerfve, 1986).  

 

Figure 1 - Coastal lagoons can be conveniently subdivided into choked, restricted and leaky systems based on the degree 
of water exchange with the adjacent coastal ocean (Kjerfve, 1986). 

Choked lagoons are characterized by a single narrow entrance channel, long flushing times, dominant 

wind forcing, and intermittent stratification events. Usually found along coasts with high wave energy and 

significant littoral drift, the entrance channel acts as a dynamic filter which largely eliminates tides inside 

the lagoon. Restricted lagoons usually exhibit two or more entrance channels or inlets, have a well-

defined tidal circulation, are influenced by winds, and are usually vertically mixed. Leaky lagoons are 

enlongated shore-parallel water bodies with many ocean entrance channels. Usually found along coasts 

where tidal currents are sufficiently strong to overcome the tendencies by littoral drift to close the 

channels entrances (Kjerfve, 1986). 
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2.1.2 Water balance 

The hydrologic equation is an equation of continuity that explains volume changes in terms of processes 

that involve both salt water and fresh water: 

���� � � � � � � � � � � 

Where V is the volume of the lagoon, P and E are the spatially integrated precipitation and evaporation 

rates, D is the freshwater discharge, G is groundwater seepage and A is the advective gain or loss of water 

through a transverse cross-section. All terms are commonly expressed in units of m3/s. 

The terms of the equation have considerable temporal variability. Precipitation, Evaporation and 

Freshwater discharge show variations over time scales ranging from days to seasons. Shallow water are 

highly responsive to temporal variations to tidal and wind forcing, thus, the advective movement of water 

is the most rapidly fluctuating term (Miller et al. 1990).  

Water motions in coastal lagoons occur over many time and space scales (Figure 2). Circulation, mixing 

and material transport occur as a result of tides, runoff, weather, episodic stoms, wind, density gradients, 

sea-level oscillations and changes in heat and water balance (Kjerfve and Magill, 1989).  

 

Figure 2 - Relevant time and space scales of forcing in lagoons (Miller et al. 1990) 
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2.1.3 Circulation 

The main geomorphological factors influencing the circulation in a coastal lagoon are the inlet 

configuration and dimensions, lagoon size and orientation, bottom topography and mean depth. Inlet 

dimensions control the exchange of water, including dissolved and suspended material. Bottom 

topography, including natural or artificial channels, plays an important role in guiding the circulation of 

the lagoon (Smith, 1994).  

The circulation within a coastal lagoon can be thought as a response to local and nonlocal, or remote 

forcing. Local forcing can be sub-divided in two kinds: local wind acting on the surface and creating 

frictional circulation; and horizontal density gradient due to freshwater entering from the rivers and salt 

water entering from the inlet. Nonlocal forcing includes tidal, rivers and low-frequency variations in 

coastal sea level (Miller et al. 1990). 

 

Figure 3 - Forcings of Circulation in a Coastal Lagoon 

The various current components that may be superimposed at a particular time and place can be sorted out 

to some degree when observations in a time series are decomposed into quasi steady, periodic and 

aperiodic components. For each measument, u, in a time series, we can write: 

� � ��� �  � �! � �!! 
Where ��� is the mean over the time period of the study, U is the sinusoidal ebb and flood of the tide, �! 
is the high frequency non periodic residual and �!! is the low frequency non periodic term, usually 

associated with wind forcing circulation (Smith, 1994).  
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2.1.3.1 Wind Stress 

The wind-driven component can be considered a local forcing when acts on the lagoon surface and causes 

frictional circulation. The wind-driven circulation will dominate the nontidal circulation of lagoons with 

restricted exchanges with ocean. Usually, winds have a seasonal behavior, which will result in 

corresponding changes in the wind-driven circulation, and thus in the net transport (Miller et al. 1990).  

Local forcing by wind produces a direct downwind transport regardless of the wind direction. This will 

result in a set up water levels along the downwind shore, a set down along the upwind shore and 

consequently an upwind directed slope in the free surface of the lagoon. This effect will be especially 

pronounced if the lagoon is elongated in the wind direction. Normally, this set up will not be significant 

unless the lagoon has a longitudinal axis on the order of several tens of kilometers. The secondary 

response is an upwind directed return flow. This generally occurs at near-bottom levels and may be aided 

by navigational channels. This movement can be considered as a response of the pressure gradient forcing 

(Smith, 1994).  

2.1.3.2 Pressure gradient 

The pressure is given by 

"#$% � & '()$*
�  

Where ' water density and g is is gravity. The water density can vary horizontally and vertically. 

Furthermore, as described above, the surface of the lagoon is influenced by wind set up and set down, and 

also by river flow and tides. Therefore, a volume of water, at some intermediate depth z, can experience 

pressure gradient due to a slope in the free surface, or due to density gradients (Smith, 1994). 

+ ,",- � + ,#'($%,- � +($ ,',- � ( ,$,- 

The first term, describes the pressure gradient due to changes in density and it is called baroclinic pressure 

gradient. Usually the less important term, the baroclinic pressure gradient will always be directed toward 

regions of lower salinity. Under most circumstances, salinity is a far more important determinant of water 

density in lagoons and estuaries because temperature differences either across or from top to bottom in a 

lagoon are small compared to salinity differences. It is important to note that the baroclinic pressure is 

directly related to depth. Thus, it will increase in importance at bottom layers. The second term is 
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independent of depth and is related to the tilt of the free surface and is called barotropic pressure gradient. 

(Miller et al., 1990).  

2.1.3.3 Low frequency 

The low frequency rise and fall of coastal sea level in response to changes in surface pressure and wind 

conditions produce an inflow and outflow over time scales on the order of a few days or longer. Remote 

wind effects are manifested by oscillations in coastal sea level with a period of 2-20 days in response to 

synoptic wind stress. These effects are more important in restricted and leaky lagoons, where the wind-

influenced continental shelf response propagates readily into the system and causes large changes with 

respect to water level and currents (Kjerfve and Magill, 1989).  

The main response to far-field forcing in lagoons is low-frequency coastal water level variations that 

result in water surface slopes and lagoon water infilling or discharge. During times of infilling, extensive 

areas bordering the lagoon may become inundated as water level increases (Kjerfve and Magill, 1989). 

2.1.3.4 Rivers 

Significant river discharges, when they interact with sea water or bracking lagoonal water can result in 

gravitational (baroclinic) currents inside the lagoon. Usually, the velocity of gravitational currents in 

lagoons is less than 0.10 m/s, which is considerably smaller than tidal currents in inlets. However, they 

are still the main cause of water exchange in many systems. Restricted and leaky lagoons show a residual 

outflow up to 10-40 times larger than the river discharge. (Kjerfve and Magill, 1989). 

Gravitational circulation cannot be considered steady or persistent. Gravitational circulation has been 

found to occur only 43% of the time, with each occurrence generally lasting for no more than five tidal 

cycles (Kjerfve and Magill, 1989).  

2.1.3.5 Tidal Circulation 

Tidal currents (a horizontal motion) are a result of the rise and fall of the water level due to tides (a 

vertical motion). The effects of tidal currents on the movement of water in and out of coastal lagoons can 

be substantial. 

Tidal motions arise in response to forces associated with the interaction of the earth-moon-sun system. 

The response to this forcing is quantified by individual tidal constituents at approximately semi-diurnal, 

diurnal, monthly, annual and other periodicities. Each constituent is represented by harmonic constants, 

amplitudes and phase angles which define the magnitude and time of the rise and fall in water level for 
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that constituent. Thus, to describe tidal currents in detail, a careful harmonic analysis of the data must be 

conducted. Ideally, at least a 29-day time series should be available to include a complete lunar synoptic 

month (Smith, 1994).  

The observed tidal current can be represented by: 

 �./0123�#40 � 50%0  

Where A is the amplitude of the ith constituent, 4 is its angular frequency and 5 is the phase angle.  

2.1.3.6 Residual currents 

The tidal ebb and flood is the most important feature of the tidal circulation, nevertheless the associated 

residual flow is especially important as a baseline measure of the circulation. The residual flow results 

from unequal ebb and flood transport during a complete tidal cycle. This unequally arise from the phase 

relationship of tidal fluctuation in currents and water level, from nonlinear interactions between the tidal 

flow and bottom topography, from density gradients, wind stress and from net freshwater discharge 

(Miller et al., 1990).  

According to Van de Kreeke and Cotter (1974) the residual flow is proportional to the ratio of tidal 

amplitude to water depth. Thus, a significant residual flow requires either a large amplitude tide or 

shallow water. Usually, coastal lagoons do not have big tides, but they do provide shallow water and thus 

exhibit residual flow. Residual motion can be divided into two components, one related to the steady flow 

of water and the other one related to oscillatory motions.  

The first is called “Eulerian residual flow” and can be obtained by taken the average of the individual 

current measurements made over a appropriate time interval such as a tidal period. In mathematical terms, 

Eulerian residual flow is given by 

�6 � ��� 
Where � is the current speed and the brackets indicate a temporal average over a tidal cycle or other 

appropriate time interval.  Eulerian flow quantifies freshwater outflow, all long-period wind driven 

transport and other nontidal flow in response to lagoon-shelf exchanges onto which tidal oscillations are 

superimposed.  

The second term is called “mass transport Stokes drift” and arises from the correlation of the rise and fall 

water level with the ebb and flood of the current. The mass transport Stokes drift is given by: 
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�7 � ��89:��9�  

Where �8 � � � ��� and 9: � 9 � �9�, the differences between the individual measurements and the 

temporal mean values. A Stokes drift in the direction of tidal wave propagation will arise when over half 

of the flood tide coincides with water levels above the tidal cycle mean. While �7 is especially well-

suited for describing transport in a co-oscillating current system, the Eulerian residual current generally 

has to be evaluated as well. In lagoons with both quasi-steady and oscillatory currents, the mass transport 

residual current �; � �6 � �7 is calculated to quantify the total transport (Smith, 1994). 

In lagoons with a single pass, the Eulerian and Stokes residual motions often transport water in opposite 

directions. 

2.1.3.7 Hydrodynamic exchange with the ocean  

Inlet geometry is a very important feature for the circulation inside the lagoon. The pass acts as a filter on 

the water exchange, which the damping effect is different according to the frequency of water level signal 

in coastal sea level. Depending on inlet size, tidal amplitudes may be greatly reduced inside the lagoon, 

while low-frequency variations, may be identical in the lagoon and coastal waters. Semi-diurnal tidal 

components will also be preferentially damped compared to diurnal components. The total volume of 

water exchanged increases with the period of the tide for a fixed amplitude tide. The form number, f, is 

defined by the sum of the amplitudes of the two principal semi-diurnal tidal constituents, divided by the 

sum of the amplitudes of the principal diurnal constituents: 

< � �= � >=?@ � A@ 

The form number characteristically decreases in magnitude within a coastal lagoon. As noted above, it 

may be greater than unity in shelf waters, but less than unity inside the lagoon (Smith, 1994). 

There are two commonly used measures of lagoon flushing: hydraulic replacement time and freshwater 

resident time. The hydraulic replacement time is given by 

BC � DEF 

Where D is the mean volume of the lagoon, and EF is the total net freshwater discharge. The freshwater 

replacement time is given by 
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BF � BC #GH � GI%GH  

Where GH and GI are the mean salinities of shelf waters and the lagoon, respectively. Usually, surface 

runoff is used for EF not considering the effects of groundwater seepage, direct precipitation and 

evaporation. This approximation can lead to substantial over or underestimates in the flushing rate (Smith, 

1994). 

2.1.4 Mixing 

Mixing of water masses with different salinity and temperature characteristics gives rise to density 

gradients. These gradients drive baroclinic currents as a result of non-parallel isopycnal and isobaric 

surfaces. Therefore, the density fields will be redistributed by these baroclinic currents. The density and 

velocity fields are dynamically coupled through a set of non-linear hydrodynamic and mass balance 

equations (Kjerfve and Magill, 1989). 

The interaction between the solar heating, tidal stirring and lagoon circulation give rise to diurnal or semi-

diurnal vertical stratification/de-stratification cycle. There are also long period cycles related to seasonally 

changes of solar heating, wind stirring, estuarine circulation and convective cooling (Ranasinghe and 

Pattiaratchi, 1999). 

The vertical stratification results from the gravity forces moving the densest water to the bottom and with 

intense mixing, the water column becomes homogeneous. Tidal currents usually with denser water, 

coupled with river flow with fresh water, results in both vertical and horizontal density stratification. 

Normally, during periods of quiescence and low freshwater inflow, strong vertical density gradients can 

be formed in choked and restricted lagoons as a result of surface heat exchange. According to Pritchard 

(1955), coastal lagoon can be classified in highly stratified, partially mixed and well-mixed according to 

circulation and stratification characteristics (Kjerfve and Magill, 1989). 

2.1.5 Salt Balance 

The most basic distinction in salt transport mechanisms is between advective transport and non-advective, 

diffusive processes. Over time scales longer than several days, at least, lagoons with a sufficiently strong 

and consistent freshwater outflow will have a quasi steady seaward directed advective transport and a 

landward directed salinity gradient that drives an upstream diffusion of salt. Over the longest time scales, 

a balance of these two processes maintains the brackish water conditions in the lagoon. Over shorter time 

scales, however, meteorological forcing in one form or another can effect significant imbalances, 
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redistribute salinity within the lagoon and produce significant variations in salinity patterns. Any of the 

mass transport mechanism noted previously can advect salt as well. Thus, the salt balance of a coastal 

lagoon is intimately related to the water balance (Smith, 1994). 

2.1.6 Flushing 

The residence time of water within an estuary, or flushing time, is the most important indicator of water 

quality in the estuary (Dyer, 1973; Fischer et al., 1979; Sanford et al., 1992; Sheng et al., 1996). To assess 

the fate and effects of pollutants and nutrients discharged into the estuary, it is essential that the flushing 

time of the estuary is defined accurately. When the flushing time is large, the pollutants/nutrients remain 

within the estuary for a long period while when the flushing time is small, the pollutants/nutrients are 

readily transported out of the estuary. Flushing time is often difficult to estimate through field 

measurements. Therefore, estimates must be obtained through the use of appropriate models. 

The flushing time of an estuary can be governed by tides, wind, or streamflow (Dyer, 1973; Fischer et al., 

1979; Sanford et al., 1992). Tidal flushing is produced through repeated exchange of the intertidal 

volume, or tidal prism, between the estuary and the ocean. Water entering the estuary during the flood 

phase of the tide fills the intertidal volume until high tide is reached. During the ebb phase of the tide, the 

intertidal volume of water flows out of the estuary. Models based on the flushing mechanism are known 

as ‘Tidal Prism Models’ and have been in use for quite some time. A number of 'Tidal Prism Models are 

described in detail by Dyer (1973) and also by Fischer et al. (1979). However, two major shortcomings of 

these models are pointed out by Sanford et al. (1992) as: (a) the assumption that al water entering on the 

flooding tide is fully mixed with ambient estuarine water, and (b) the proportion of flushed water that 

returns to the estuary on the following flooding tide, or the return flow factor, is assumed to be zero. 

Sanford et al. (1992) present an improved Tidal Prism Model, where streamflow and the return flow 

factor are taken into account. However, this model still assumes complete mixing of estuarine water, 

which is not a realistic assumption. 

Wind affects surface velocities and could result in the generation of a circulation pattern as explained in 

section 2.2.3. This would have a direct effect (negative or positive) on flushing time. The magnitude of 

the effect would depend on variables such as wind speed, direction, and the duration of the wind event 

(Fischer et al., 1979; Sanford et al., 1992). Wind is also a primary source of mixing (see section 2.2.2) 

which has an effect on flushing. For example, if the estuary is strongly stratified streamflow that enter the 

estuary as a buoyant surface jet would remain on the upper layers and rapidly transport the 

pollutants/nutrients resident in the streamflow out of the estuary there by reducing the flushing time. 

Wind events capable of improving flushing are likely to last for several days which is often the critical 
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period for adequate flushing to maintain good water quality (Sanford et al., 1992). Simple models that 

take the effect of wind on flushing into account do not exist in the literature. One option to evaluate the 

effect of wind on flushing is to use a 3-demensional hydrodynamic model.  

Riverflow is another process that could affect flushing. The flushing time can be affected in two ways by 

streamflow. Firstly, significant streamflow can increase the intertidal volume that accumulates within the 

estuary during the flooding tide, thus reducing the flushing time. This effect of streamflow is incorporated 

in most Tidal Prism Models (Dyer, 1973; Fischer et al., 1979; Sanford et al., 1992). The second effect is 

the generation of longitudinal, horizontal, or transverse circulation patterns as described in section 2.2.3. 

The intensity, net-direction, and duration of these circulation patterns can greatly influence flushing time 

(Sheng et al., 1996; Smith, 1996). Apart from using a sophisticated 3-D hydrodynamic model, there is no 

other option to include the full effect of streamflow on flushing (Smith, 1996). 

2.2. Climate change 

2.2.1   General 

Warming of the climate system is unequivocal, as is now evident from observations of increases in global 

average air and ocean temperatures, widespread melting of snow and ice and rising global average sea 

level. Impacts of a changing climate are already beginning to emerge (Steffen, 2006). 

The energy balance of the climate system is affected by changes in atmospheric concentrations of 

greenhouse gases (GHGs) and aerosols, land cover and solar radiation. Most of the observed increase in 

global average temperatures since the mid-20th century is very likely due to the observed increase in 

anthropogenic GHG concentrations, such as carbon dioxide and methan. It is likely that there has been 

significant anthropogenic warming over the past 50 years averaged over each continent (IPCC, 2007) 

Observational evidence from all continents and most oceans shows that many natural systems are being 

affected by regional climate changes, particularly temperature increases (IPCC, 2007).  

There is high agreement and much evidence that with current climate change mitigation policies and 

related sustainable development practices, global GHG emissions will continue to grow over the next few 

decades (IPCC, 2007). 

The possible impacts of climate change that might affect coastal lagoons includes: temperature changes, 

sea level rise, storms more frequent and stronger and changes on precipitation. 
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2.2.2 Impacts on Coastal Lagoons 

The entrance conditions of coastal lagoons are the main feature that controls the physical processes inside 

the lagoon. The entrance behavior is driven by the dynamic balance between catchment runoff and ocean 

wave/beach processes. Climate change is expected to change both rainfall and coastal processes, 

therefore, wide changes are expected to occur in coastal lagoons (Haines, 2008).  

Sea level rise, temperature, precipitation, and storminess are expected to change significantly with global 

climate change and to impact coastal lagoons (Anthony et al, 2009). 

2.2.2.1 Sea level rise 

Due to glacial melting and thermal expansion of the oceans, mean sea level, on a global scale, has been 

increasing over the past century and is expected to keep increasing in the future. IPCC (2007) estimated 

an increase between 0.18 and 0.79 (including an allowance of 0.2m for the uncertainty related to Ice sheet 

flow) by the end of 21st  century. 

Accelerated sea level rise is an important issue especially to low lying shallow-gradient coastal 

ecosystems. Most barrier-lagoon system responds naturally to sea level rise by migration landward along 

undeveloped shorelines with gentle slopes. This retreat will lead to steeper and narrower barrier profiles, 

shortening the length of existing inlets and potentially increasing the rate of exchange with the ocean. 

Salinity inside the lagoon will probably increase, altering species composition and the ecology of the 

lagoons. Changes in salt balance of coastal lagoons may change the circulation due to baroclinic 

processes (Haines, 2008).  

Sea level rise may affect cross-sectional inlet stability. For example, a permanently open, inlet may 

evolve into an intermittently closing inlet; or, a seasonally closing inlet may evolve into a permanently 

open, inlet. Such changes in inlet condition are highly likely to affect navigability and estuary/lagoon 

water quality.  

Local groundwater tables around the lagoon are expected to rise due to the increase in low tide levels. The 

typical water depth will also increase, what can cause impacts on benthic ecology, due to less penetration 

of light, and geochemical processes within the sediments. The increasing of depth may lead to a greater 

potential for stratification because the decrease of the potential for mixing by wind driven circulation 

(Haines, 2008). 
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2.2.2.2 Temperature 

Shallow water bodies with slow circulation, such as coastal lagoons, are strongly influenced by changes 

in air temperature. The increase of air temperature will have more influence in the temperature of coastal 

lagoons than in open estuaries or the ocean. Water temperature influences dissolve oxygen concentration 

as well the physiology of lagoon organisms, species ranges and patterns of migration, and can change the 

ecology of the lagoon (Anthony et al, 2009).  

2.2.2.3 Precipitation 

There will be changes in precipitation intensity, timing, volume and form due to Global Climate Change. 

These changes will vary spatially and temporally. Intense precipitation would increase freshwater inputs 

and locally reduce salinity. Alternatively, lower precipitation would reduce freshwater input and 

potentially result in higher salinity. Salinity would also be affected by changes in flushing rate, which 

may counteract the changes in freshwater inputs. Increased freshwater input can also contribute to 

stratification of deeper lagoons increasing the risk of hypoxia in bottom waters (Anthony et al, 2009). 

Other effects of increased surface water inputs include increased delivery of sediment and nutrients to 

lagoons. Increased nutrient inputs may accelerate eutrophication of lagoons, especially those with low 

flushing rates. As with sea level rise, increased turbidity will reduce light penetration and the 

photosynthetic activity of submerged aquatic vegetation, compounding the risk of eutrophication as 

nutrient dynamics are further altered (Anthony et al, 2009). 

2.2.2.4 Storminess 

Storms affect lagoons through overwash events and by erosion from wind and waves. There are 

predictions that the frequency and intensity of extreme weather events have been increasing, and will 

continue to increase with global temperatures (Anthony et al, 2009).  

The consequences of sea level rise become acute during storm events because sea level rise and storms 

interact to erode barriers and produce high storm surges, rapidly redistributing barrier sediment. During 

periods of high storm surges, water moves rapidly over the barrier in a process called overwash, which 

delivers sediment eroded from the front of the barrier onto the back barrier flat and into the lagoon. 

Increased storm intensity will likely cause more frequent breaches of barrier islands, which in turn will 

increase the rate of exchange with the ocean, and consequently the flushing rate and salinity of lagoons 

(Anthony et al, 2009).  
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3. Study area 

3.1. General 

Located in the southern part of Thailand around the latitude 7oN and longitude 100oE, Songkhla Lake is 

the larger natural lagoon in Thailand. It is called a lake, but actually is a shallow water lagoon formed by 

interaction of land and ocean processes over geological times (Viet et al. 2007). It is considered a choked 

lagoon according to Kjerfve classification with a mean depth of 1-2m. In some areas, the depth is around 

5 to 7m like the channel connecting Thale Luang and Thale Sap Songkhla, called Pak Ro and the channel 

connecting Thale Sap Songkhla to the ocean, where a navigation channel has been made by dredging. In 

the vicinity of the lower portion of Thale Sap Songkhla around Ko Yo the depths are between 3 and 4 m 

(Kjerfve, 1986).  

This complex is surrounded by three provinces which are Songkhla, Phatthalung and Nakorn Si 

Thammarat. The total drainage basin area is 7190 km2, of which 1043 km2 is lagoon surface. It is 

connected with the Gulf of Thailand through a narrow channel at Songkhla town, and it comprises of four 

sub-lagoons: Thale Noi, Thale Luang, Thale Sap and Thale Sap Songkhla (Figure 4) (Vongvisessomjai, 

1999). 

There are 8 major canals draining water into the lagoon, namely Khlong Pa Phayom, Khlong Tha Nae, 

Khlong Na Thom, Khlong Tha Madua, Khlong Pa Bon, Khlong Phru Pho, Khlong Rattaphum and 

Khlong Utaphao. In addition, there is a swamp in the northern part, Khru Khruan Kreang (Ganasut, 

2005). 
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Figure 4 - Map of Songkhla Lagoon 

The Songkhla lagoon basin consist of three main topographic units: a narrow range of mountains to the 

west and south of the basin, foothills and terraces used predominantly for rubber plantations, and broad 

plains on the east and west sides of the lagoon used mainly for wet season rice production 

(Vongvisessomjai, 1999). 

There is an ample variation in the soil composition of the bed materials, but soft clays are the most 

frequent. Clay loam is predominant in the northern part of the lagoon while in the southern part silty loan 

with sandy clay loam is found. In the vicinity of the tidal inlet sand and silt are found on the channel bed 

especially after dredging of the navigation channel (Vongvisessomjai, 1999). 
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This study will focus on Thale Sap Songkhla (Figure 5), which is the southernmost sub

Songkhla lagoon and connects the lagoon system with the sea. The total drainage area of the sub

is lagoon surface. Two rivers drain directly into the sub

est part and Khlong Utaphao, in the southwest part of the lagoon with a basin area of 

. Water also enters from the upper sub-lagoons through Pak Ro canal. Close to the entrance of 

the lagoon, there is an island named Ko Yo. The average depth is 1.3m and the water is 

varying seasonally (Ganasut, 2004).  
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east. The river bed is generally sandy and it has a discharge of 7.8m3/s in the dry season (March-May) and 

88.60m3/s in the wet season (September-November). The width varies from 40 to 80m and the depth 

from 3 to 8m. The distance from the upper regions to the mouth of the canal is about 70km, with varying 

channel slopes (Sae-Chew, 2006).    

3.4. Climatic conditions 

The area is located in a tropical region, which means high temperatures and high humidity during most of 

the year and two seasons: wet and dry. The climate is governed by two monsoons: the southwest 

monsoon and the northeast monsoon. According to the statistics of climatological data at Songkhla 

weather station, in the period of 1971 to 200, the average temperature and relative humidity are 

respectively, 28.1oC and 76.8%. The average annual rainfall is 1995mm and about 62.1% of the total 

normally occurs from October to December (Ganasut, 2004).  

The wind direction is influenced by the monsoon system. During the months between December and 

March, the wind direction is predominantly from eastern direction while the period of June to September, 

it is predominantly from western direction (Figure 6). The other months are transitional seasons. The 

analysis of data from 1981 to 1997 shows that the lagoon is located in a weak wind zone. Velocities 

greater of 10 knots occurred only 10% of the time while stronger than 20 knots occurred only 0.01% 

during the whole 17 year wind record (Ganasut, 2004). 
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Figure 6 – Prevailing wind direction in the study area (1981-1997)  
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3.5. Tidal conditions 

The tides in the Gulf are mixed and well defined by four tidal constituents, K1, O1, M2 and S2. Harmonic 

analysis reveals that the tides are strongly dominated by the semi-diurnal constituent (~12.4 h period). 

The tidal ranges are approximately 30 and 60 cm for neap and spring tides, respectively (Pornpinatepong, 

2006). 

3.6. Circulation 

The complexity of the lake system is governed by tide, runoff, wind and wave. The lake geometry and 

bathymetry play an important role in the circulation with the currents prevailing in deep channel. The 

maximum current speed is found in the deep channel of the lake entrance. Pornpinatepong et al. (2006) 

found a maximum current speed of about 0.75 m/s during june, 1997 at the lake entrance. Due to the 

island, close to the entrance channel, the flow diverges into two stream paths passing north and south of 

Ko Yo. Usually, the current of the northern side is stronger than that of the southern side. The tidal wave 

takes about half an hour to propagate to Pak Ro.  

According to Pornpinatepong et al. (2006), there is significant shift in the relative phase between surface 

elevation and velocity from Ko Yo to Pak Ro. At Ko Yo, the sea surface is 90o out of phase with the 

currents, and can be considered as a standing wave pattern. At Pak Ro, there is no phase shift between the 

two measurements, what is a characteristic of a partially progressive wave. This could explain the high 

complexity of Thale Sap Songkhla hydrodynamic. 

Pornpinatepong et al. (2006) also note that there is a gyre near the lake entrance when the flow changes its 

direction to ebb or flood stage. This gyre persists for less than 30 min and could indicate a sensitive area 

to human activities.  

3.7. Mixing 

Usually, complete mixing of seawater and freshwater can be found throughout Southern Lake, except for 

the deeper sections such as around Pak-ro, Ko Yo, and the lake entrance, where salinity stratification 

occurs. Normal sea salinity is 32-35 ppt and the seawater flow can cause salinity up to 31 ppt at Ko Yo in 

the dry season (Pornpinatepong, 2010). 

From October to January, in the late rainy season, the freshwater usually flush most of the salt water, and 

the Southern Lake become almost fresh on the surface, although salinity stratification can persist in the 

deeper portions. North ok Ko Yo, stratification at 3m deep was found to result in a difference of 12 ppt 
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between the water surface and the bottom, while as the lake entrance this difference reached 22 ppt. 

(Pornpinatepong, 2004)  
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4. Model Description 

This chapter is based on Lesser et al, (2004) and the Delft3D-FLOW and WAQ user manuals (2009), and 

is a summary of the important theory. 

Delft3D-FLOW is a multi-dimensional (2D or 3D) hydrodynamic and transport modeling system of 

Deltares for the aquatic environment which calculates non-steady flow and transport phenomena that 

result from tidal and meteorological forcing on a rectilinear or a curvilinear, boundary fitted grid. The 

differential equations solved numerically in the model are: the horizontal momentum equations, the 

continuity equation, the transport equation, and a turbulence closure model. Vertical accelerations are 

assumed to be small so the vertical momentum equation is reduced to the hydrostatic pressure relation. In 

3D simulations, the vertical grid is defined following the sigma co-ordinate approach. 

Delft3D-WAQ is a 3-dimensional water quality model that solves the advection-diffusion-reaction 

equation and allows great flexibility in the substances to be modeled. It should be coupled to Delft3D-

FLOW or another model to get hydrodynamic conditions.  

 

4.1. Hydrodynamic equations 

Delft3D-FLOW solves the Navier Stokes equations for an incompressible fluid with shallow water and 

Boussinesq assumptions. Vertical accelerations are neglected, which leads to hydrostatic pressure 

equation. Vertical velocities are computed from continuity equation. These differential equations are 

solved using a finite difference grid with orthogonal curvilinear coordinates.  

4.1.1 Continuity equation  

The depth average continuity equation is given by: 

J
JK � @�������� JL
#) � 
% ����MJN � @�������� JL

#) � 
% ����MJO � E 

Where Q represents the contribution per unit are due to the discharge or withdrawal of water, evaporation, 

and precipitation and is given by: 

E � P& #Q0R � QSTU%)V � W � XH
YI  
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Both spherical and orthogonal curvilinear co-ordinates can be used in Delft 3D with the following 

relations: 

���� � Z[\]	 

���� � Z 

N � � 

O � 	 

4.1.2 Momentum equations in horizontal direction 

The momentum equations in both directions are given by: 

J�JK � ����� J�JN � ^���� J�JO � 4) � 
 J�JV � ^_�������� J����JN � �^�������� J����JO � `^
� � @'H���� W� � a� � @#) � 
%_ JJV bcd J�JVe �f�  

J^JK � ����� J^JN � ^���� J^JO � 4) � 
 J^JV � �_�������� J����JO � �^�������� J����JN � `�
� � @'H���� W� � a� � @#) � 
%_ JJV bcd J^JVe �f� 

Where V is the vertical co-ordinate given by: 

V � $ � 
) � 
 � $ � 
P  

In the model, the vertical momentum equation is reduced to a hydrostatic pressure equation. For non-

uniform density, the following equations are used: 

@'H���� W� � (���� J
JN � ( ) � 
'H����& bJ'JN � J'JV JVJNeH
g )V! 

@'H���� W� � (���� J
JO � ( ) � 
'H����& bJ'JO � J'JV JVJOeH
g )V! 
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The horizontal Reynold’s stresses, a� and a� are determined using the eddy viscosity concept. For large-

scale simulations the forces a� and a� can be reduced to: 

a� � ch i @�������� J
_�JN_ � @�������� J

_�JO_j 

a� � ch i @�������� J
_^JN_ � @�������� J

_^JO_j 

f� and f� represent the contributions due to external sources or sinks of momentum and are given by: 

f� � Q0R#klYT% 
f� � Q0R#dlYm% 

 

4.1.3 Vertical velocities 

The vertical velocity is computed from the continuity equation. These velocities can be expressed in the 

horizontal velocities, water depths, water levels and n-vertical according to: 

o � 4 � @�������� p����� bV JPJN � J
JNe � ^���� bV JPJO � J
JOeq � bV JPJK � J
JKe 
4.1.4 Transport equation 

J#) � 
%[JK � @�������� rJL����
#) � 
%�[MJN � JL����#) � 
%^[MJO s � J4[JV

� ) � 
�������� r JJN tuhVvH�������� J[JNw � JJO tuhVvH�������� J[JOws
� @) � 
 JJV pcxSyVxSy �z{- bc|}Vv ~ ud��v�e J[JVq � ��#) � 
%[ � G 

Where S represents the source and sink terms per unit area due to the discharge or withdrawal of water, 

and the exchange of heat through the free surface, given by: 

G � #) � 
%#Q0R[0R � QSTU[% � EUSU 
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The horizontal and vertical viscosity (ch and cd) and diffusivity (uh and ud) need to be prescribed. The 

model assumes that the horizontal viscosity is a superposition of three parts: a part due to “sub-grid scale 

turbulence”, a part due to “3D-tubulence” and a part due to dispersion. 

ch � c��� � c|} � ch��v�  

And 

cd � cxSy �z{-�cd��v�~ c|}�  
Table 1 summarizes how Delft3D-FLOW calculates these terms 

Table 1 – Delft 3D calculations of viscosity terms  

Model 

description 

���� ������ ��� ������ 
2D, no HLES - 2D-turbulence + 

dispersion coefficient 

- - 

2D, with HLES Computed by 

HLES 

3D-turbulence + 

dispersion coefficient 

- - 

3D, no HLES  2D-turbulence Computed by vertical 

turbulence model 

Background 

vertical viscosity 

3D, with HLES Computed by 

HLES 

- Computed by vertical 

turbulence model 

Background 

vertical viscosity 

 

Typically, the horizontal eddy diffusivity uh exceeds the vertical eddy diffusivityud. The horizontal 

diffusion coefficient is assumed to be a superposition of three parts: the 2D part due to motions and 

mixing not resolved by the horizontal grid (“subgrid scale-turbulence”), the contribution due to 3D 

turbulence and the uh��v� by solving the Reynolds-averaged equations and/or accounting for other 

unresolved horizontal mixing. 

uh � u��� � u|} � uh��v� 

And the vertical eddy diffusivity coefficient is defined by: 

ud � cxSyVxSy �z{-�ud��v�~ u|}� 
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The 3D-turbulence part is defined as the minimum of the vertical eddy diffusivity computed by the 

turbulence model and the Ozmidov length scale: 

u|} � z{- �u|}~ ��=�S*_ ��(' J'J$� 

Summarizing, in the model many options are available for the eddy diffusivity, table presents an overview 

of these options: 

Table 2 - Delft 3D calculations for diffusivity terms 

Model 

description 

��� ������ ��� ������ 
2D, no HLES 0 2D-turbulence + 

dispersion coefficient 

- - 

2D, with HLES Computed by 

HLES 

3D-turbulence + 

dispersion coefficient 

- - 

3D, no HLES 0 2D-turbulence Maximum turbulence 

model and Ozmidov 

length scale*2 

Background eddy 

diffusivity 

3D, with HLES Computed by 

HLES 

- Maximum turbulence 

model and Ozmidov 

length scale*2 

Background eddy 

diffusivity 

 

4.1.5 Turbulence closure models 

Four turbulence closure models have been implemented in Delft3D-FLOW to determine cd and ud: 

Constant coefficient, Algebraic Eddy viscosity closure Model (AEM), k-L turbulence closure model and 

k-ε turbulence closure model. They are all based on the “eddy viscosity” concept. The eddy viscosity in 

the models has the following form: 

cd � [�!��� 

Where [�!  a constant determined by calibration, L is is the mixing length, and k is the turbulent kinetic 

energy.  
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In the present work, the model was set with the k-ε turbulence closure model, which is a second order 

turbulence model. In this model both the turbulent energy k and the dissipation ε are produced by 

production terms representing shear stresses at the bed, surface, and in the flow. The transport equation is 

used then to calculate the “concentration” of these terms. The mixing length is determined by: 

� � [} ����  

 

4.2. Boundary conditions 

In order to solve the system with differential equations and get a unique solution, a set of initial and 

boundaries conditions for water levels and horizontal velocities are required. Natural boundaries like river 

banks and coast lines are called closed boundaries and the flow velocities normal to these boundaries are 

equal to zero. Artificial boundaries “water-water” are called open boundaries and they should be located 

as far as possible from the area of interest. 

4.2.1 Bed and free surface boundary conditions 

In the σ-coordinate system, the bed and the free surface correspond with σ-planes. ω is the vertical 

velocity relative to the σ-plane. Considering the impermeability of the surface and the bottom, the 

following kinematic conditions are prescribed: 

�4�g�YI � � 

�4�g�H � � 

 

At the seabed, the boundaries conditions for the momentum equations are: 

cdP �J�JV g�YI � @'H ¡�� 

cdP �J^JV g�YI � @'H ¡�� 

Where ¡�� and ¡�� are bed shear stress components. 
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4.2.2 Lateral boundary conditions 

Along closed boundaries, the velocity component perpendicular to the closed boundary is set to zero. For 

the shear stress along the boundary one of the following conditions can be prescribed: zero tangential 

shear-stress or partial slip 

At open boundaries, one of the following types of boundary conditions must be specified: water level, 

velocity, discharge, Neumann, or Riemann invariant. For the velocity and discharge type of boundary 

condition, the flow is assumed to be perpendicular to the open boundary. In 3D models you can prescribe: 

a uniform profile, a logarithmic profile or a 3D profile. 

4.2.3 Transport boundary conditions 

The horizontal transport of dissolved substances is dominated by advection. Without diffusion, the 

equation has only one characteristic, which is parallel to the flow. During inflow, a open boundary is 

needed, while during outflow, the concentration must be free. The vertical profile can be of four types: 

uniform profile, linear profile, step profile or 3D profile.  

4.3. Numerical solution 

Delft3D-FLOW is a numerical model based on finite differences. The equations are discretized in space, 

by covering the area with a curvilinear grid, which is assumed to be orthogonal and well-structured. The 

grid co-ordinates can be Cartesian or spherical. The variables are arranged in a pattern called the Arakawa 

C-grid (a staggered grid). In this pattern, the water level points are defined in the center of a cell, and the 

velocities components are perpendicular to the grid cell faces where they are situated. 

In the vertical direction, two types of grid are available: a boundary fitted σ co-ordinates or a grid that is 

strictly horizontal called the Z-grid 

4.3.1 Hydrodynamics 

The numerical method used to solve the continuity and the horizontal momentum equations is an 

alternating direction implicit method (ADI). The main advantage of this method is that the implicitly 

integrated water levels and velocities are coupled along grid lines, leading to systems of equations with a 

small band width. In order to have stability, the scheme denoted “cyclic method” was implemented. This 

method splits one time step into two stages. The time levels in these stages are alternating, if in one stage 

a term is taken implicitly in time, this term will be taken explicitly in time in the next stage. For the 

complete time step, each separate term is still integrated second-order accurate in time. First the water 
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levels are computed and then they are substituted in the discrete momentum equations, given the 

velocities. This leads to a method that is computationally efficient, at least second-order accurate, and 

stable at Courant numbers of up to approximately 10. 

In vector form the ADI-method is given by: 

Step 1: 

 ¢¢£y¤I_ �  ¢¢£y@=�K � @=/¥ ¢¢£y¤I_ � @=/¦ ¢¢£y � § ¢¢£y¤I_ � )£ 
Step 2: 

 ¢¢£y¤I �  ¢¢£y¤I_@=�K � @=/¥ ¢¢£y¤I_ � @=/¦ ¢¢£y¤I � § ¢¢£y¤I � )£ 

/¥ �
©̈©©
©©
ª � �` ( JJ-� � JJ- � ^ JJ« �
P JJ- � � JJ-¬­

­­­
­®
 

/¦ �
©̈©
©©
©ª� JJ- � ^ JJ« � �

` � ( JJ«
� P JJ« ^ JJ«¬­

­­
­­
®
 

§ � ¯� � �� � �� � �° 
Where λ is the linearized bottom friction coefficient and )£ is a vector containing external forcing like 

wind and atmospheric pressure. 
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4.3.2 Transport 

The transport equation is formulated in a conservative form (finite-volume approximation) and is solved 

using the “cyclic method”. For steep bottom slopes in combination with vertical stratification, horizontal 

diffusion along σ-planes introduces artificial vertical diffusion. DELFT3D-FLOW includes an algorithm 

to approximate the horizontal diffusion along z-planes in a σ-coordinate framework. In addition, a 

horizontal Forester filter, based on diffusion along r-planes is applied to remove any negative 

concentration values that may occur. The Forester filter is mass conserving and does not cause significant 

amplitude losses in sharply peaked solutions. 
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5. Data Analysis 

The available data is summarized in Table 3 and the locations are showed in Figure 7 and Figure 8. 
Bathymetry and Land Boundary data were also available. 

Table 3 - Data available information 

Data Point Latitude Longitude Depth Period 
Water level Songkhla 7.21ºN 100.58ºE 8m 1986-2006 
Water level Pattani 6.9ºN 101.27ºE 1m 1987-2008 
Velocity North of Ko Yo 7.186°N 100.55ºE 4m 29th June – 1st July (1997) 
Velocity South of Ko Yo 7.14°E 100.55ºE 2m 27th – 29th June (1997) 
Salinity Point A 7.174°N 100.544ºE 1m 8th – 11th October (2006) 

 

 

Figure 7 - Locations of Water Level Data 
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Figure 8 - Location of Velocity (left) and Salinity (risgh) Data of Songkhla Lagoon 

 

5.1. Water Level 

Around 21 years of hourly water level data is available for two points: Songkhla and Pattani. The 

Songkhla point is located in the inlet, while the Pattani point is located in a bay (Figure 7). Both of them 

do not represent the ocean fluctuations without disturbance, as they are located in shallow, protected 

areas. Nevertheless, Pattani point is located in an area more exposed than Songkhla point. 

A spectral analysis was performed in order to analyze the data (Figure 9). The results show that both 

locations have similar spectral components for water level data. There are three important cycles: an 

annual, a semidiurnal and a diurnal. The annual cycle is probably related to the monsoon climate, while 

the semidiurnal and diurnal cycles are related to tides. According to the figure, the energy related to the 

annual cycle is almost the same for both points, while the data from Pattani shows more energy on the 

high frequencies compared to Songkhla. The different exposure to ocean fluctuations can explain this 

difference; the high frequencies are filtered by the inlet before reaching the Songkhla measurement point.  
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Figure 9 - Spectral Analysis of 21 years of hourly Water Level Data for Pattani and Songkhla. The principal components 
are also indicated: semidiurnal, diurnal and annual. 

To analyze the annual cycle, the two series of data were filtered with a low pass filter which removed all 

signals with periods less than 4 days. Figure 10 shows the 21 years of this filtered data and also the mean 

with the standard deviation. The figures show that the annual cycle has amplitude of around 0.5m for both 

locations. The water level reaches its minimum during the dry season, from June to August and maximum 

during the wet season, from November to December. The wet season is also the period with higher 

variability over the years.  

 

Figure 10 - Monthly Mean Water Level at Songkhla Lagoon (left) and Pattani (right). Blue lines: 21 years of filtered 
water level data. Red lines: Monthly Mean water level for 21 years of data for both locations and its respective standard 
deviation. 

The water level for the period of October was analyzed and compared for both locations (Figure 11). Both 

curves are very similar, and have a correlation coefficient of 0.93. The maximum tidal range is about 

0.7m for Pattani and 0.6 for Songkhla during spring tides.   
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Figure 11 - Water Level Data of the two stations for the period October 2005. The mean is subtracted from the data prior 
to plotting for comparison. 

In order to determine the harmonic components of the tides for the two points, three different methods 

were used and compared: World tides routine, T tide routine and Delft Dashboard. The four main tidal 

components (O1, K1, M2 and S2) were analyzed and each amplitude and phase compared to check which 

method reproduces the data better. 

World Tides is a general purpose program for the analysis and prediction of tides. Using least squares 

harmonic analysis, it allows the user to decompose a water level record into its tidal and non-tidal 

components by fitting between 5 and 35 user-selectable tidal frequencies (tidal harmonic constituents).  

The T TIDE program is a Matlab package used for tidal analysis. The package is the Matlab version of 

widely-used program for performing harmonic analysis of oceanic tides using FORTRAN created by 

Mike Foreman (Pawlowicz, 2002). 

Delft Dashboard is a standalone Matlab based graphical user interface aimed at supporting modelers in 

setting up new and existing models. It includes some tidal data, and a tool to estimate tides for any point 

in the world. 

The results are summarized in Figure 12 and show that T tide and World Tides are correlated but Delft 

Dashboard gives a different result. Unlike the other methods, Delft Dashboard uses built-in assimilation 

data and doesn’t include the obtained data in its analysis, which is probably the reason for this difference. 

Taking the components from T tide and World tide and comparing them to the original data, the method 

with better approximation is the World Tides and thus this will be the one used in further analysis. 
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The components given by World Tides show that the main component of the two locations is M2, 

followed by S2 (Table 4). The amplitudes of the components at Pattani are higher than at Songkhla, and 

this difference occurs specially with the semidiurnal components. There is a difference in phase for all the 

components. 
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Figure 12 - Principal Harmonic Components (Amplitude and Phase) for the two locations using three different 
methods (T tide, World tides and Delft Dashboard) 
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Table 4 - Principal Harmonic Components of Songkhla and Pattani 

 Amplitude (m) Phase (o) 

Component Songkhla Pattani Songkhla Pattani 

K1 0.05 0.075 248 274 

O1 0.05 0.053 131 158 

M2 0.155 0.193 219 309 

S2 0.063 0.09 302 288 

 

5.2. Velocity 

Velocity data was digitalized from Pornopinatepong et. al. (2006). Current measurements of two points 

were conducted during the dry season during 6 days of 1997. The two points are located in the two 

channels formed by the island, one at the north and the other one at the south of the Ko Yo island. 

The observed tidal current fluctuation north of Ko Yo Island in June 1997, shows a maximum current 

speed of about 40cm/s during flood tide (Figure 13). South of Ko Yo the maximum registered was about 

30cm/s.  

 

Figure 13 - Velocity Data for two locations. North of Ko Yo Island (left) and South of Ko Yo Island (right) 
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5.3. Salinity 

Salinity data was digitalized from Viet et. al. (2007). Salinity measurements of one point were conducted 

during October of 2006, during 3 days. The point is located very close to the island in a very shallow area. 

The observed salinity fluctuation at point A, shows a maximum salinity of about 32.4 psu and a minimum 

of about 31(Figure 14). 

 

Figure 14 – Salinity Data for Point A 

5.4. Modeled Stream flows  

The results of two global models ECHAM and GFDL were downscaled to the region of interest.  

ECHAM is a Global Climate Model developed by the Max Planck Institute for Meteorology, one of the 

research organizations of the Max Planck Society. It has its original roots in global forecast models 

developed at ECMWF. This model has been modified for climate research and is a comprehensive 

general circulation model of the atmosphere. The model resolves the atmosphere up to 10 hPa and has 

been used extensively to study the climate of the troposphere. 

GFDL CM2.X (Geophysical Fluid Dynamics Laboratory Coupled Model, version 2.X) is a coupled 

atmosphere-ocean general circulation model developed at the NOAA Geophysical Fluid Dynamics 

Laboratory in the United States. It is one of the leading climate models used in the Fourth Assessment 

Report of the IPCC. 
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The two models show very different results for the stream flow of Songkhla Lagoon for 2000 and 2100 

simulations (Figure 15). Considering the year of 2000, the two models have the same behavior, but are 

different in absolute values. Both of them have a maximum from September to November and a minimum 

from January to March. They also show a local minimum from July to August. However, the maximum 

of ECHAM model is around 130m3/s while GFDL have a maximum around 100m3/s. The standard 

deviations of both models are very high.  

Considering the year of 2100, the models show different results. Compared to present conditions, 

ECHAM forecast show an increase of streamflow for most of the year, while GFDL show a decrease of 

streamflow in most of months.  

  

Figure 15 - Monthly Averages Stream flow for Songkhla Lagoon and its respective standard deviation using two different 
Global Models: ECHAM (left) and GFDL (rigth). The curves were obtained by averaging 20 years of simulations for each 
period. The blue curve in both figures represents the average of the period 1981-2000 and the red represents the period 
2081-2100. 

The difference between the results of these two models is an indicator of how variable the models are for 

river streamflows. These models are based on a lot of assumptions, and probably most of them are not 

totally correct. Besides all the assumptions of the models, these values are based on models of 

precipitation/evaporation and don’t take into account factors such as irrigation use, or human 

consumption. In this case study, this might cause large errors.  

The values represent the stream flow for the whole basin. For this lagoon, this flow is drained into two 

main rivers: Rattaphum and Khlong Utaphao. From literature (Ganasut, 2004) it is known that Khlong 

Utaphao has a flow 4 times greater than Rattaphum. To represent the wet season, the maximum stream 

flow was taken, and the dry season, the minimum was taken. Using this information, the stream flow was 

divided as Table 5. 
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Table 5 - River Flow for the two rivers using GFDL and ECHAM for four periods: 2000 (wet and dry) and 2100 (wet and 
dry) 

 GFDL ECHAM 
Year 2000 2100 2000 2100 
Season wet dry wet dry wet dry wet dry 

Total Flow  100 8 92 1.3 122 3 134 6.5 
Utaphao 80 6.4 73.6 1.04 97.6 2.4 107.2 5.2 

Rattaphum 20 1.6 18.4 0.26 24.4 0.6 26.8 1.3 
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6. Application for Songkhla Lagoon 

6.1. Grid 

The optimal grid size is a balance between the computation effort and the physical processes of interest. 

The model grid should be fine enough to reproduce the processes present in the space scale of interest. 

However, the computation effort increases with decreasing grid size.  

The curvilinear model grid was constructed in a spherical coordinate system with the total of 10159 grid 

cells using the Delft3D-RGFGRID. The grid size varies in space such that finer grids are located in the 

inlet and coarser grids are located in the northern part of the lake (Figure 16). 

The grid is in agreement with the conditions specified by the Delft3D-RGFGRID User Manual for 

Orthogonality, M-Smoothness, N-Smoothness and Aspect Ratio. 

Table 6 - Characteristics of the grid 

Grid size ��±± ��²² 
Maximum 370m 420m 

Minimum 20m 30m 

 

 

Figure 16 – Grid Configuration 
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6.2. Bathymetry 

The bathymetry inside the lagoon has a average depth of 1.5m. Most of the lagoon has a depth around 2m, 

in the entrance channel the depth is around 8m. This channel divides into two near the island; the north 

part has a depth greater than the south part. Pak Ro, the channel which connects Thale Luang with Thale 

Sap Songkhla is also relatively deep. Outside the lagoon, 7km from the entrance channel, the depth 

reaches 13m. To setup the bathymetry file, the data was interpolated using Delft3D-QUICKIN (Figure 

17).  

 

Figure 17 - Bathymetry of Songkhla Lagoon 
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Figure 18 - Boundaries of the domain 
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Figure 19 - Spectral Analysis of the results of salinity at the inlet for different time steps simulations 

Table 7 - Correlation Coefficient between the results of salinity at the inlet for different time step simulations 

Time step 12s 30s 1min 2min 5min 
12s 1.0000 0.9792 0.9360 0.8906 0.7926 
30s  1.0000 0.9714 0.9225 0.8183 
1min   1.0000 0.9608 0.8348 
2min    1.0000 0.8565 
5min     1.0000 

 

Considering the criteria of correlation adopted, the results show that for velocity and water levels, the 

model is consistent even for the greatest time step (5 minutes). For salinity, time steps of 2 and 5 minutes 

were not well correlated with the results of the other time steps. The conclusion is a time step of 30 

seconds is the optimum time step for this case. 
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Eddy viscosity is the turbulent transfer of momentum by eddies, while eddy diffusivity is the exchange 
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• Eddy viscosity=0.1 m2/s and Eddy diffusivity=0.05 m2/s 

• Eddy viscosity=1 m2/s and Eddy diffusivity=0.5 m2/s 

• Eddy viscosity=10 m2/s and Eddy diffusivity=5 m2/s 
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Water level and velocities almost don’t change with the different configurations. However, results for the 

center of lagoon (Figure 20) show that eddy viscosity and eddy diffusivity have high influence on salinity. 

Decreasing both parameters, the salinity increases in absolute values and also in amplitude. The salinity 

data available show that the salinity amplitude is better represented by the combination of Eddy 

viscosity=0.1 m2/s and Eddy diffusivity=0.05 m2/s. 

 

Figure 20 – Salinity comparison at the center of the lagoon for three different combination of Eddy Viscosity and Eddy 
Diffusivity for October 2006. 
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Table 8 – Harmonic Components with respectives corrections of Pattani for June 1997.  

Constants Amp (W) Factor Phase (W) Correction Model amp. Model Pha. 
O1 0.041 1.1 174.3 +46 0.045 220.3 
K1 0.118 1.1 291.3 +8 0.130 299.3 
N2 0.034 1.5 113.9 -222 0.051 251.3 
M2 0.177 1.5 221.2 +55 0.265 276.2 
S2 0.037 1.5 314.3 - 0.055 314.3 

 
In order to compare data with model results, Songkhla data was filtered with a high pass filter to eliminate 
long period signals that are not related with tides (Figure 21).  

 

 

Figure 21 - Filter for Songkhla Water Level Data to be compared with the results. Top: Songkhla Water Level data. 
Middle: Filtered data (Low frequency) Bottom: Filtered data (High frequency) 
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signals until they match (Figure 23). The factor obtained was of 1.1 for diurnal components and 1.5 for 

semidiurnal components. 

 

 

Figure 22 - Comparison between model result and filtered measured data of Songkhla water level during July 1997. 

 

Figure 23 - Spectral Analysis of model result and filtered measured data of Songkhla water level during July 1997 
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and Figure 25. The results from North of Koyo show a small phase lag comparing to the data, but the 

amplitude of the tidal currents are well correlated. The South of Koyo results show smaller amplitude 

when compared to the data. Despite these small differences, the results were considered good enough.  

 

Figure 24 - Comparison between model results and measured data of velocity at North of Ko Yo. 

 

Figure 25 - Comparison between model results and measured data of velocity at South of Ko Yo. 
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first were set with the flow given by the two models: GFDL and ECHAM for the 1980-2000 time slice. 

The results for salinity in point A were a lot fresher than the measurement. Some reasons were pointed for 

this difference: 

• The river flows from the GFDL and ECHAM models don’t take into account the deviation of the 

river for irrigation and human consumption, which can lead to an overestimation. 

• The models do not take into account evapotranspiration in the lagoon, which might be very high 

due to the low latitude of the area and the presence of aquatic plants. 

• The measurement point is located in shallow water, which usually is difficult to be modeled. 

• The high variability of the natural river flow can also be problem to the modeling. The river flow 

was considered as the mean flow or October. The natural river flow of the region is dominated by 

extreme events, which is a characteristic of the monsoon climate. The river has small flow most 

of the year and during some days, this flow is extremely high. If in this specific year no extreme 

evens have occurred during or before the measurement period, the real river flow could be much 

lower than the mean river flow for the considered month. 

Taking all these reasons into account, the calibration of the model for salinity was done by reducing the 

river flows until the measured data and model results match. These values are around 5% of the wet 

month of ECHAM model and 4% of GFDL (Table 9). The comparison between the model result and the 

data are plotted in Figure 26.  

Table 9 - River flows used to calibrate the model. 

River Flow (m3/s) 

Utaphao 4 

Rattaphum 1 
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Figure 26 - Comparison between model results and measured data of salitiny at Point A. Riverflow was obtained from 
ECHAM model output for the 1980-2000 time slice. 
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7. Simulations 

7.1. Scenarios  

After the calibration, several scenarios were defined to simulate current and future conditions. For each 

scenario, a period of 15 days was simulated using Delft3D-Flow and Delft3D-WAQ. The scenarios are 

summarized in Table 10 and Table 11. To represent the river flows, two models were used: GFDL and 

ECHAM. These models give the current and future conditions, represented by the year 2000 and 2100 

respectively. The dry month is represented by February, while the wet is October. Because the uncertainty 

about the river flows, two different percentages of the flow given by the two models were used: 5% and 

20%. 

To represent the sea level rise for the year 2100, the bathymetry for the entire region was deepened by 

0.79m, which represents the worst case estimate of IPCC for the year 2100.  

Table 10 – Simulated scenarios with 5% of the rivers flows 

Model GFDL ECHAM 
Year 2000 2100 2000 2100 
Season wet dry wet dry wet dry wet dry 

Total Flow 5 0.4 4.6 0.065 6.1 0.15 6.7 0.32 
Utaphao 4 0.32 3.68 0.052 4.88 0.12 5.36 0.256 

Rattaphum 1 0.08 0.92 0.0057 1.22 0.03 1.34 0.064 
 

Table 11 - Simulated scenarios with 20% of the rivers flows 

Model GFDL ECHAM 
Year 2000 2100 2000 2100 
Season wet dry wet dry wet dry wet dry 

Total Flow 20 2 18.4 0.26 24.4 0.6 26.8 1.3 
Utaphao 16 1.28 14.72 0.208 19.52 0.48 21.44 1.04 

Rattaphum 4 0.32 3.68 0.052 4.88 0.12 5.36 0.26 
 

7.2. Circulation pattern 

The model has been employed to simulate circulation pattern in Thale Sap Songkhla. All the simulations 

showed a similar circulation pattern, with different magnitudes. Figure 27 shows the Water level results 

for the simulation using ECHAM model for October of 2000 (wet season) with the four points 

characterizing typical current vectors at 3-h intervals starting from the maximum flood current (13th 

October 2000 at 22:00h).  
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At the first stage, the lake geometry and bathymetry play a crucial role in controlling circulation with the 

current prevailing in the deep channel. The maximum current speed of about 1 m/s is in the deep channel 

of the lake entrance. The flow then diverges into two stream paths passing north and south of Ko Yo 

(Figure 28).  

Three hours later, slack tide is present in the Thale Sap Songkhla. A maximum current speed of around 

0.5 m/s is predicted in the channel.  

After 6 hours, the flow turning to ebb current. A similar current pattern can be expected as previously 

shown for the maximum flood. The dominate current prevails in the deep channel and north of Ko Yo. 

The flow continues ebbing after 9 h and a slack tide occurs throughout the lake. 

 

 

Figure 27 - Water level results for the simulation ECHAM-2000-wet showing the four stages of tides at which circulation 
patterns were compared  
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Figure 28 - Circulation pattern in Thale Sap Songkhla for 3 hours interval. Colors indicate speed. 
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7.3. Velocity 

The maximum velocities at the inlet are represented in Table 12 and Table 13 According to the results, 

there are no significant changes of velocities at the inlet between the dry and wet months or between 

scenarios with 5% and 20% of river flow, which means that probably the river discharges doesn’t have 

high influence on velocities at the inlet. Comparing the current and future scenarios, it can be observed 

that the maximum velocities in the future will be higher than today due to sea level rise, this increase 

corresponds to around 20% for all cases. However, it is likely that the inlet morphology will also change 

in the future in order to preserve inlet equilibrium velocities of around 1 ms-1.  

Table 12 - Maximum velocities at the inlet for the scenarios with 5% of river flow 

 GFDL ECHAM 

 2000 2100 2000 2100 

Season wet dry wet dry wet dry wet dry 

Maximum 

velocity (inlet) 
1.05 1.02 1.24 1.25 1.06 1.02 1.24 1.25 

 

Table 13 - Maximum velocities at the inlet for the scenarios with 20% of river flow 

 GFDL ECHAM 

 2000 2100 2000 2100 

Season wet dry wet dry wet dry wet dry 

Maximum 

velocity (inlet) 
1.04 1.03 1.22 1.25 1.06 1.03 1.23 1.25 

 

7.4. Flushing time 

To calculate the flushing time, Delft-WAQ model was used. The transport and dispersion of a 

conservative tracer in the lagoon and its exchange with the ocean is examined. A uniform concentration 

of 1mg/l is set inside the lagoon, while a concentration of 0mg/l is set as the ocean boundary condition.  

Hydrodynamic results of simulations with different conditions of river flow and sea level as defined 

earlier was coupled with this model. The concentrations averaged for the entire lagoon for each time step 

is calculated to investigate flushing of the lagoon. This signal is filtered to eliminate high frequencies due 

to tide oscillations and is represented in Figure 29 (5% of river flow) and Figure 30 (20% of river flow). 
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Figure 29 – Filtered Mean results of concentration for the entire lagoon of a tracer given by Delft3D with 5% riverflows 
derived from GFDL (left) and ECHAM (right) models. 

 

Figure 30 - Filtered Mean results of concentration for the entire lagoon of a tracer given by Delft3D with 20% riverflows 
derived from GFDL (left) and ECHAM (right) models. 

 

The percentage of the initial mass of the tracer remaining within the lagoon was calculated at each time 

step and was expressed as an exponential curve of the following form to obtain the e-folding time (the 

time taken for the initial mass to reduce to 1/e of initial mass) for the lagoon.  

³ � /´-"#µB% 
Where, 

³ = Percentage mass remaining,  

B = Time in hours, 

/~ µ = constants 
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The e-folding time is an estimate the flushing time of the lagoon (Aubrey et. al., 1993). The results are 

summarized in Table 14 and Table 15. The results show that for all cases, the flushing time for wet 

months is smaller than for dry months. Scenarios with 20% of river flow also showed smaller flushing 

times comparing with the 5% ones. The rivers help to flush the lagoon so its flow is inversely 

proportional to flushing time. Also, the flushing time will decrease in future scenarios of sea level rise; 

this decrease will be different, depending on the river flow changes. When the river flow increase, which 

is the case of ECHAM model, the flushing time have a higher decrease.   

Table 14 - Calculated flushing time for the scenarios with 5% of river flow 

 GFDL ECHAM 

 2000 2100 2000 2100 

Season wet dry wet dry wet dry wet dry 

Flusing time (h) 270.05 319.15 199.87 267.36 318.92 331.02 200.70 267.38 

 

Table 15 - Calculated flushing time for the scenarios with 20% of river flow 

 GFDL ECHAM 

 2000 2100 2000 2100 

Season wet dry wet dry wet dry wet dry 

Flusing time (h) 146.6 281.8 110.4 235.9 134.5 281.2 102.7 236.1 

 

7.5. Salinity 

All the simulations showed a similar salinity distribution, with different magnitudes. Figure 31 shows the 

result of depth average salinity of the entire lagoon for the scenarios using ECHAM model for the instant 

13th October 2000 at 22:00h. This result shows a salinity of 35 psu outside the lagoon. Inside the lagoon 

the salinity decreases near the rivers, with a minimum of 25 psu close to the river mouth.  
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Figure 31 – Result for depth average salinity for Scenario ECHAM - 2000 - wet for the instant 13th October 2000 at 
22:00h 

There is variation of salinity in the lagoon due to tides; Figure 32 represents this variation for a point in 

the center of the lagoon for one scenario. This point was chosen because is a point influenced by tides and 

river flows. It can be seen that, after stabilization, the mean salinity at this point is about 33 psu with 

amplitude of 1.5 psu. 

 

 

Figure 32 - Salinity results for a point in the center of lagoon for Scenario ECHAM – 2000 – wet 

The mean salinity for a point in the center of the lagoon was calculated and the results are summarized in 

Table 16 and Table 17. During wet months, the salinity will increase for future scenarios, especially 
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considering the simulations with 20% of river flow. For both models, the results showed a difference in 

salinities between wet and dry months. The wet months presents lower salinity than the dry months for all 

the simulations, but especially for the scenarios with 20% of river flow, where the difference can reach 

more than 15 psu. The salinity during the dry months didn’t show much change for all the scenarios. 

However, it should be noted that CC driven variation in temperature and hence evaporation was not 

considered in these simulations. 

Table 16 - Mean salinity at a point in center of the lagoon for the different scenarios with 5% river flow 

 GFDL ECHAM 

 2000 2100 2000 2100 

Season wet dry wet dry wet dry wet dry 

Salinity (psu) 31.52 34 31.44 34 33.24 34 31.13 34 

 

Table 17 - Mean salinity at a point in center of the lagoon for the different scenarios with 20% river flow 

 GFDL ECHAM 

 2000 2100 2000 2100 

Season wet dry wet dry wet dry wet dry 

Salinity (psu) 15.8 33.0 17.14 33.0 13.05 33.0 14.3 32.9 

 

7.6. Stratification 

The stratification of the lagoon is defined as the difference between the bottom and the top layers of the 

simulation results. Figure 33 shows this difference for the entire lagoon for the scenarios when using 

riverflow derived from the ECHAM model for the instant 13th October 2000 at 22:00h. It can be 

observed that there is no stratification in the east part of the lagoon. The greatest stratification is found on 

the western part, especially close to the river mouths, where it can reaches 15 psu. 
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Figure 33- Difference between the bottom and the top layer of salinity results for Scenario ECHAM - 2000 - wet for the 
instant 13th October 2000 at 22:00h 

Stratification also varies with tide; Figure 34 represents this variation for one scenario: Wet season of 

2000 with riverflow derived from the ECHAM model for a point in the west part of the lagoon. It can be 

seen that, after stabilization, the stratification reaches a mean of 1.4psu with amplitude of 0.4psu. 

 

Figure 34- Difference between the bottom and the top layer of salinity results for a point in the west of lagoon for Scenario 
ECHAM – 2000 – wet 

The maximum stratification for a point located in the west part of the lagoon was calculated and the 

results are summarized in Table 18 and Table 19. This point was chosen because is a point with 

significant stratification and not very close to the rivers. The results show that the stratification for this 

point is greater during wet season. Comparing current with future scenarios, it can be observed that during 
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wet months there is a decrease of stratification in the future for the simulations with 5% of river flow and 

a increase of stratification for simulations with 20% of river flow. For the dry months, all simulations 

showed an increase in stratification in future. It should be noted that CC driven variations in future wind 

effects were not considered in these simulations. 

Table 18 – Average Difference salinity at a point in the western part of the lagoon for the different scenarios with 5% of 
river flow 

 GFDL ECHAM 

 2000 2100 2000 2100 

Season wet dry wet dry wet dry wet dry 

Difference (psu) 1.45 0.33 1.09 0.83 1.72 0.29 1.27 0.81 

 

Table 19 - Average Difference salinity at a point in the western part of the lagoon for the different scenarios with 20% of 
river flow 

 GFDL ECHAM 

 2000 2100 2000 2100 

Season wet dry wet dry wet dry wet dry 

Difference (psu) 2.17 0.73 2.30 0.82 2.15 0.36 2.92 0.68 
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8. Conclusions and Recommendations 

The available data of water level, velocity, salinity and streamflow of Songkhla Lagoon were analyzed 

and some conclusions were reached. 

Spectral analysis of water level data showed three main periods of oscillation: annual, semidiurnal and 

diurnal. The annual signal is related to the monsoon climate of the region, with high water level during 

the wet season from November to January and low water level during the dry season, from June to 

August.  

The semidiurnal and diurnal periods are related to tides. Delft Dashboard was not successful to represent 

the tides in the region. T-tides and World tides, two Matlab routines, presented similar results for tidal 

harmonic components, however, World tides presented slightly better results and was adopted in this 

study. The results showed that semi-diurnal tidal components were preferentially damped compared to 

diurnal components, the damping factor was 1.1 and 1.5 for diurnal and semidiurnal amplitudes 

respectively. The phases presented a shift between the World tides and Delft3D. 

The riverflows obtained using dynamically downscaled projections from two global models GFDL and 

ECHAM showed different results. The year of 2000, both showed the same behavior, but different 

magnitudes. For the year 2100 they showed opposite behavior, ECHAM predicts an increase of river 

flow, while GFDL predicts a decrease. The high variability associated to the river flow and uncertainties 

of long prediction are possible reasons for this difference. 

Delft 3D model was used to simulate the hydrodynamic conditions of Songkhla lagoon in Thailand and 

proved to be an efficient model for this purpose. The optimum time step for the chosen grid was 30 

second. The appropriate eddy viscosity found was 0.1m2/s and eddy diffusivity of 0.05 m2/s.  

The calibration for water level and velocity showed good correlation. The calibration for salinity was 

achieve with a river flow of about 5% of the given by the world models. Some hypotheses for this 

include: fresh water deviation for irrigation and human consumption; evapotranspiration of the lagoon; 

the inappropriate position of the measured data; and a high variability of the river flow.  

Some scenarios were created to simulate current and future scenarios for the region during dry and wet 

seasons and for river flow of 5% and 20% of the two available models, with a total of 16 simulations. The 

results show that circulation in Thale Sap Songkhla is strongly influenced by the lake geometry. The 

strong flow, coming from the lake entrance, deflects to the north and the south of Ko Yo. The velocities at 
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the entrance channel are around 1m/s and the simulations show an increase of 20% for the year 2100 (in 

the absence of morphological adjustments, which were not simulated here).  

The flushing time is smaller during wet months, because of the higher river flows and is expected to 

decrease for future scenarios due to the sea level rise.  

Salinity also presented different values for wet and dry months, being higher during dry months because 

the weaker river flows. Stratification results showed a higher stratification during wet season. The results 

suggest distinct behavior for future scenarios, during wet months the stratification can decrease or 

increase depending on river flow considerations and during dry months, it will increase for future 

scenarios. This result was not sufficient and further analysis should be done to find the reasons for this 

behavior. 

The main limitation of this study is the lack of data for the region. Due to this limitation, the results of this 

study should be interpreted in a qualitative way. The comparison between the scenarios are valid, but the 

absolute values needs further investigation. 

For future modeling efforts, there is an urgent need for high quality simultaneous measurements of water 

level, velocity, and salinity at several points spread across the lagoon over a duration of at least 30 days 

during both the wet and dry seasons. River discharge data and atmospheric data, such as: wind, 

evaporation, rainfall, solar incidence should also be measured.   

Preferable these measurements should be repeated over a few years to take into account annual variations. 

Sufficient model validation will be impossible without such high quality, consistent data, which will 

inevitably result in unreliable predictions 

A more complete study of future scenarios of river flow discharge for this region using global models 

should also be performed to understand the impacts of climate change not only for the lagoon but for the 

entire region.  

The vertical resolution for future models should be increased and to perform a more precise investigation 

other variables should be include, such as: evapotranspiration of the lagoon; storms surges; and winds.  
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