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Abstract

A framework called ParHyFlex and its underlying principle are presented. ParHyFlex is based on
the sequential HyFlex framework and supports the implementation of different hyper-heuristics in a
parallel setting which the programmer does not need to be aware of. Its most novel feature is the
way the search space of a process is influenced by experience learned by other processes. ParHyFlex
was tested on the Maximum Satisfiability Problem where it gives good speedups. While ParHyFlex
cannot compete with tailor-made solvers for most problems, it offers a framework for specifying new
hyper-heuristics as well as a parallel environment for solving new problems.

1 Introduction
Informally, an optimization problem consists in finding a configuration satisfying a constraint, and such
that an objective function has a minimal value for that configuration. More formally, for the purpose of
this work, we define:

Definition 1 (Optimization problem). An optimization problem P consists of a tuple 〈C, h, f〉 with C
a set of configurations, h : C → {true, false} a hard constraint and f : C → R an objective function.
The configurations satisfying the constraint, that is the set h−1({true}), are named solutions, denoted
by S. The goal is to find a solution with a minimal value for the objective function f . The result of an
objective function applied to a solution s is sometimes called the fitness-value of s.

Often, it is too hard to find a minimal solution, e.g. when the problem is NP-hard, so in practice,
one relies on approximate methods for finding a solution that is good enough. Such approximate meth-
ods can use heuristics like Simulated Annealing (SA)[6], Genetic Algorithms (GA)[5] and Tabu Search
(TS)[4].

The next step in constructing solvers for optimization problems is the use of hyper-heuristics.
Heuristics require the design of transition functions: functions that transform one solution into another
one. Developing and combining such functions requires skill and experience. A hyper-heuristic aims to
solve this problem by combining basic transition functions into more complex ones, hereby eliminating
the need for lots of expert knowledge. Moreover, a hyper-heuristic is problem independent and because
it learns on the fly which combinations of basic transition functions are successful in finding a good
solution, it has a high chance to work well on many problems. On the other hand, this learning ability
requires additional computational effort [1, 2], and can slow down the search.

As an orthogonal way to improve a solver, one can parallelize it: the goal can be to find an acceptable
solution faster, find better solutions within the same (elapsed) time or to make the system more robust.
Parallelization can be done at the level of an exact tailor-made algorithm, or at the level of the hyper-
heuristics framework2: the latter is the subject of our research. The sequential HyFlex framework

1Most of this research was done in fulfillment of the requirements for the degree of Master in Computer Science by the first
author.

2and anything in between



[3] was the inspiration to build - from scratch - our own ParHyFlex framework, a parallel version of
HyFlex. As a test case, we have used it to implement solvers for four problems. In Section 2, the
ParHyFlex framework is introduced, its components, the concepts that are used in it, and some of its
inner workings. The novel concept of enforceable constraint and how it is used to guide the search
space of each process is particularly important. Section 3 describes related work and how ParHyFlex
differs. Section 4 discusses the benchmark results on the MAX-SAT problem. Section 5 concludes and
indicates future work.

2 The ParHyFlex framework
We start with a brief introduction of the HyFlex system, as it was the starting point of our own work.

2.1 HyFlex
In 2009 Burke et al.[3] published a framework implemented in Java supporting the implementation of
hyper-heuristics. One implements a problem by providing an implementation of the solution representa-
tion, a set of transition functions, and an objective function: the latter two are called by a hyper-heuristic.
In this way, the framework solves the problem without needing any knowledge about the problem or
functions themselves. Therefore the hyper-heuristic can be used to solve a large range of optimization
problems.

2.2 Overview of ParHyFlex
ParHyFlex3 is a variant of the HyFlex framework intended to make it easy to run hyper-heuristics in
parallel. Using the framework, one can implement a hyper-heuristic without any knowledge about
the algorithm running on parallel systems. The framework was implemented from scratch in Java.
Communication is handled using the popular Message Passing Interface (MPI) protocol. The protocol
enables to process data on different machines, on the cores of one machine, or a hybrid topology.

The implementation uses a peer-to-peer philosophy where each process runs its own (potentially
different) hyper-heuristic. The framework provides a communication mechanism enabling the hyper-
heuristics running in different processes to exchange data and cooperate with each other. As it is often
profitable to make processes explore disjunct subsets of the solution space, ParHyFlex provides a mech-
anism to define such subsets, and to confine a process to them. This mechanism is based on the novel
notion of enforceable constraints explained in Definition 2.
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Figure 1: Structure of the ParHyFlex framework.

3The source code is available at http://goo.gl/AyvHA.
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Figure 1 shows the structure of the framework. The lower components specify a particular prob-
lem and must be provided by the programmer interested in solving that problem: its components are
explained in Section 2.7. The upper components solve a problem by using the lower components, but
without any knowledge of the problem itself. The main component is the execution mechanism which is
an implemented hyper-heuristic. Each process runs its own framework and thus its own execution mech-
anism. The framework provides components for solution exchange between processes (see Section 2.3),
the generation (Section 2.4) and maintenance of an experience set (Section 2.6), and the exchange of
experience for controlling the local search space (Section 2.5).

The explanation of these components is based on the following definitions, in which the problem
P = 〈C, h, f〉 is implicit.

Definition 2 (Enforceable constraint). An enforceable constraint e is a tuple 〈c, e+, e−〉 with c : S →
{true, false} a constraint4, e+ : S → S a function mapping each solution to a solution satisfying the
constraint c, and e− : S → S a function mapping each solution to a solution that does not satisfy the
constraint c. We say that a solution satisfies an enforceable constraint 〈c, e+, e−〉 when it satisfies c.
The set of all enforceable constraints for a given problem P is denoted by EP .

Within ParHyFlex, enforceable constraints are crucial to force two processes to explore different
subsets of the solution space: by applying e+ and e− to a solution, one obtains two solutions that differ
in the fact that they do or do not satisfy c. Augmenting the problem locally with opposite enforceable
constraints thus divides the search space in different subsets. Details regarding this process are explained
in Section 2.5.

In order to generate such enforceable constraints, we need a function that knows about the specific
problem.

Definition 3 (Hypothesis generator). A hypothesis generator gP is a problem dependent partial function
gP : P (S)→ EP that generates an enforceable constraint from one or more solutions.

The idea is that from a set of solutions, possibly obtained using a particular meta-heuristic, a com-
mon characteristic of these solutions is captured by the constraint c in the generated enforceable con-
straint 〈c, e+, e−〉. e+ and e− can now be used to divide the solution set.

With experience set, we mean a set of enforceable constraints as maintained by ParHyFlex in a par-
ticular way: this is explained in Section 2.4.

We also define our notion of search space: it is based on enforceable constraints and meant to give a
means to operationally delimit the neighborhood in which a process can search for solutions.

Definition 4 (Search space). A search space A is a subset of the set of solutions A ⊆ S. A search
space is represented by a tuple 〈A+, A−〉 where A+ and A− are sets of enforceable constraints, named
respectively the positive and the negative set. A contains a solution s if and only if s satisfies at least
one enforceable constraint in A+, and s does not satisfy any of the enforceable constraints in A−.

Finally, we need the notion of correcting a solution, in case it does not belong to the intended search
space:

Definition 5 (Corrected solution). A solution s′ is corrected from s /∈ A with respect to A when s′ is
the result of the application of the positive transition function e+ of any enforceable constraint e ∈ A+,
followed by the application of the negative transition function e− of every enforceable constraint e ∈
A−.

2.3 Exchanging solutions
The so-called island model has been successfully used in the implementation of parallel genetic algo-
rithms [14]: possibly different algorithms work on isolated populations of solutions and occasionally
exchange solutions are exchanged among several populations. ParHyFlex adheres to the same island

4not to be confused with the hard constraint of the problem



model: a hyper-heuristic chooses among a number of exchange strategies provided by the framework.
An exchange strategy specifies when a solution is exchanged together with the set of processes re-
ceiving that solution. Solutions are exchanged through unreliable asynchronous communication: for
correctness, there is no need that solutions arrive at all, or in order.

2.4 Generating experience
Modern SAT solvers try to speed up the search for a solution by learning new clauses on the fly (see for
instance [10]). Such clauses can be considered as search experience. In the parallel context, sharing of
such experience usually reduces the search in several parts of the search tree and thus leads to an overall
speedup.

A similar principle is implemented in ParHyFlex using enforceable constraints. Enforceable con-
straints are generated by a hypothesis generator, based on previously obtained solutions. They are then
used to restrict the set of considered solutions. The hypothesis generator needs knowledge of the prob-
lem, and is therefore provided by the user of ParHyFlex, not by the framework itself. Since enforceable
constraints are generated from a limited set of solutions, there is no guarantee that the optimal solu-
tion satisfies the generated enforceable constraints, i.e. a hypothesis generator merely tries to generate
enforceable constraints that are probably true.

The enforceable constraints generated by a hypothesis generator make up the experience set. The
experience set maintains a fixed number of items and occasionally eliminates items. This procedure is
discussed further in Section 2.6.

2.5 Controlling the search space by exchanging experience
Once a set of enforceable constraints is generated and maintained in the experience set, it is used to
restrict the part of the solution space that is further explored. The positive set of the search space local
to a process takes items from the process’s experience set. Complementary to that, the negative set of a
search space of one process can take items from the experience set of a different process. This exchange
of experience happens occasionally. In this way, different processes are prevented from exploring the
same search spaces, reaching similar solutions, and getting stuck in the same local optimum. Moreover,
in this way, the search space of every process can evolve over time.

The process of correcting a solution with respect to A is meant to result in a solution belonging to
A. However, the application of an e− from one enforceable constraint can revert the effects of another
e+: this is not handled by the ParHyFlex framework. Therefore, a search space is only enforced in a
fuzzy way: occasionally corrected solutions will not be part of the intended search space.

The search space concept aims at speeding up the convergence towards the optimal solution, but a
search space can become too restricted. Since one wants a hyper-heuristic to find the optimal solution
eventually, the search space is occasionally regenerated.

2.6 Maintaining experience
Generated enforceable constraints are not guaranteed to be satisfied by the optimal solution. Therefore
the ParHyFlex framework monitors continuously whether new solutions satisfy the current experience:
depending on the fitness-value of a new solution, the system evaluates the enforceable constraints. Occa-
sionally the system removes a number of enforceable constraints that are not satisfied by good solutions.

Even when newly generated solutions satisfying a particular enforceable constraint yield higher
fitness-values, this does not guarantee that this enforceable constraint is true for the optimal solution(s).
Indeed, a large set of suboptimal solutions can satisfy the enforceable constraint while better solutions
do not. Since the enforceable constraints in the experience set eventually form the search space, such
enforceable constraints can prevent further improvement. Therefore the framework can also eliminate
enforceable constraints that are considered to perform well. The system uses a probabilistic mechanism
where the probability of elimination is proportional to the performance of the constraint. Eventually,
every enforceable constraint is eliminated.



2.7 Implementing a problem
The lower components in Figure 1 show the different modules a programmer should implement when
specifying a problem. Naturally, one needs to define a set of transition function. These functions
are divided into four categories: mutation, local search, ruin recreate and crossover. This distinction
originates from the HyFlex framework. One does not need to implement transition functions of all kinds:
the categories only aim to help the hyper-heuristic in deciding which function should be applied.

Furthermore, the framework supports multiobjectivisation. Multiobjectivisation is a process where
one objective is split into more objectives. Since a significant amount of computational resources is
spent on escaping from a local optimum, one could use another objective in the hope the algorithm
didn’t reach a local optimum according to the second objective. A problem however with this approach
is that the objectives can cancel each other out. Therefore, most algorithms use a weighted sum of
the different objectives. Estimating these weights however, is a nontrivial task. The ParHyFlex facili-
tates multiobjectivisation: the user must define the main objective O?

0 together with zero or more other
objectives Oi, but it is up to the hyper-heuristic to deal with the different objectives.

2.8 Execution pipeline
When the framework is started, the different processes acquire the problem, i.e. the tuple 〈C, h, f〉. The
memory of each process is initialized with some local solutions, using the initialization function I . A
process also has separate memory for the foreign solutions, i.e. the ones received from other processes:
in the figure, they are shown as a barred si in memory. The generation of the initial solutions has a
random component, so different processes start in a different initial state. Moreover, the hyper-heuristic
can in principle differ from process to process.

After this initialization, control is passed to the hyper-heuristic. The hyper-heuristic decides on
applying transition functions and objective functions on the solutions. The hyper-heuristic can also
restart from the (or a new) initial solution, for instance when the search gets stuck and the algorithm
does not see an opportunity for fast improvement. Each time a new solution is generated the solution is
corrected (with respect to the local search space) and the hypothesis generators are called. The resulting
enforceable constraints are used for maintaining the experience set.

Each process checks asynchronously for messages from other processes: received solutions are
corrected and stored in memory. The hyper-heuristic can use these solutions for instance as a parent
for the available crossover heuristics. When the systems generate a new search space, enforceable
constraints are exchanged and are used in the negative set of the new search space. Furthermore a hyper-
heuristic can distribute data among processes as well: for instance records describing the performance
of the different heuristics. After dealing with any messages, the hyper-heuristic regains control, and
restarts applying transition functions.

Eventually a stop criterion is reached. This could be a global criterion (e.g. wall clock time) which
stops all processes, or it could be a local criterion (e.g. the fitness-value is good enough in one process).
This results in outputting the best solution so far, and stopping all processes.

3 Related work
The research in parallel hyper-heuristics is currently quite sparse. One work is relatively close to
ours: Leon, Miranda and Segura[7] implemented a parallel hyper-heuristic using a multi-objective self-
adaptive Island-based model.

The framework combines three concepts: the master-slave paradigm, the island-based model (dis-
cussed in Section 2.3) and multiobjectivisation (as described in Section 2.7). The framework considers
two types of processes: worker and the master island. The workers perform genetic algorithms. Each
time a local stop criterion is met, the genetic algorithm sends its results to the master island. The mas-
ter island then assigns a new task to the worker. A task contains a description of the genetic operator
the worker should use together with the weights attached to the different objectives. The workers ex-
change solutions through the master island. The topology determining the set of workers that exchange
solutions is modified in a dynamic way.

In [7], the framework is tested with the Antenna Positioning Problem (APP)[11] and the Frequency
Assignment Problem (FAP)[12]. The researchers report a speedup over a sequential version. As ex-



pected from a hyper-heuristics based framework, the results are not on par with tailor-based sequential
approaches.

The main differences with the system of [7] and our work is that ParHyFlex uses a peer-to-peer phi-
losophy where the processes communicate in asynchronous way without a master process. Furthermore,
ParHyFlex explicitly restricts the search space local to a process in a cooperative way, which is, to the
best of our knowledge, the first parallel hyper-heuristic that aims to do this. Finally in ParHyFlex one
can implement any kind of hyper-heuristic instead of using an evolutionary algorithm.

4 Benchmark results
In order to test the framework, we have implemented a hyper-heuristic based on the AdapHH[8] algo-
rithm of Mustafa Mısır. The algorithm was tested on the following problems: Maximum Satisfiability,
Frequency Assignment, Antenna Positioning and Circle Positioning. We report here only on the bench-
mark results for Max-Sat. The tests were performed on machines with an Intel i5 2400 processor5 and
3.7 GiB memory running the Ubuntu 12.04 operating system. The network uses Gigabit Ethernet and
is organized with a centralized switch. The timings are shown in seconds.

Evaluating the performance of a parallel hyper-heuristic is cumbersome. The underlying heuristics
are non-deterministic, and a seed-based implementation is almost impossible. Different runs give differ-
ent results and the objective function varies in time. Therefore there is no strict definition of speedup in
this context. Finally since hyper-heuristics like AdapHH come with a number of parameters, one needs
to run experiments over a large number of settings.
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Figure 2: The evolution of the speedup with a different number of processors.

Figure 2 shows the speedup obtained by 476 runs per processor configuration solving 25 instances
of the Maximum Satisfiability problem with 10′000 variables and 42′600 clauses, and for 2 up to 4
processes. We calculate the speedup by measuring the time at which a fraction of the runs on a certain
processor configuration achieves a certain quality (the number of succeeding constraints) and compare
that time with the time the same percentage of sequential runs need to achieve this level. More formally
the speedup at time t with p processes for the q-th quartile is calculated by:

speedup (t, p, q) =
min g−11,q (gp,q (t))

t
(1)

To calculate gp,q (t), we determine for each of the runs with p processes the best fitness-value at time t:
gp,q (t) is then the q-th quartile of these values.

54× 3.10 GHz , 6 MiB cache.



As one can see the speedup of the first quartile is not significant and sometimes values below 1 are
registered. This is due to the fact that the first quartile mainly covers runs on easy problems. Therefore
it is difficult to achieve speedup since communicating data is probably equally profitable as continuing
search.

In most cases the third quartile has a lower speedup than the second one. This can be explained
since we expect exchanging solutions and redefining the search space is more useful when at least one
or more cores have generated good solutions, something which is less likely in the context of a hard
problem. In the case of premature exchange, this could result in the fact that processors are put on the
wrong track. Deciding at which moment exchanging solutions becomes profitable remains however an
open problem.
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Figure 3: The evolution of the standard deviation on the fitness-value for different numbers of processes.

Figure 3 shows the standard deviation of the fitness-values of the runs per processor configuration.
As one can see, the standard deviation decreases over time. This is reasonable since with a large number
of parallel searches, it is less likely all processes getting stuck and thus diverging from the average.

These figures show that - at least for a small number of processors - the cooperation between the
processes as provided by the ParHyFlex framework speeds up finding better solutions and with higher
reliability.

5 Conclusions and future Work
A parallel implementation of the AdapHH[8] algorithm was presented, together with benchmark results
for the MAX-SAT problem. ParHyFlex adopts a novel way to encapsulate experience from a single
process in the form of enforceable constraints, and uses the exchange of experience for influencing the
other processes’ search space, so that there is less chance that they get stuck in similar regions of the
configuration space. In our experience, ParHyFlex allows to specify new hyper-heuristics relatively
easily, as well as new problems. We are currently experimenting with the Frequency Assignment,
Circle Positioning and Antenna Positioning problems that were used in [7], and we need to extend
our experience to a larger number of processes. We would also like to make a formal model of the
parallel hyper-heuristics framework, and in particular study the relation with speedup prediction theory
as for instance in [13].

The performance of a hyper-heuristic depends on the underlying transition functions (see [9]).
Therefore it is hard to prove that the obtained results are not just a lucky coincidence between the
parallel algorithm and the transition functions. In order to understand this better, we intend to imple-
ment a compiler that from a logical specification of the problem 〈C, h, f〉 generates transition functions
without any interaction of the programmer. In this way, we hope to obtain more objective results proving
the reported speedup for a variety of problems.

Many decisions within our framework are under the control of parameters that are often evolving
during the solving process. More effort is needed to understand the role of these parameters.

Finally, we intend to work on automatic specialization of our framework to specific problems, and
on applying the framework to new problems e.g. for the generation of secure, low-energy, small area
integrated circuits.
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