
 
 

Delft University of Technology

Detection and Identification of Generator Disconnection Using Multi-layer Perceptron
Neural Network Considering Low Inertia Scenario

Verduzco, Alejandro ; Páramo Balsa, Paula ; Gonzalez-Longatt, Francisco; Andrade, Manuel A.; Acosta
Montalvo, Martha Nohemi; Rueda, José Luis; Palensky, Peter
DOI
10.1109/ISIE51582.2022.9831751
Publication date
2022
Document Version
Final published version
Published in
Proceedings of the 2022 IEEE 31st International Symposium on Industrial Electronics (ISIE)

Citation (APA)
Verduzco, A., Páramo Balsa, P., Gonzalez-Longatt, F., Andrade, M. A., Acosta Montalvo, M. N., Rueda, J.
L., & Palensky, P. (2022). Detection and Identification of Generator Disconnection Using Multi-layer
Perceptron Neural Network Considering Low Inertia Scenario. In Proceedings of the 2022 IEEE 31st
International Symposium on Industrial Electronics (ISIE) (pp. 424-429). Article 9831751 (IEEE International
Symposium on Industrial Electronics; Vol. 2022-June). IEEE.
https://doi.org/10.1109/ISIE51582.2022.9831751
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ISIE51582.2022.9831751
https://doi.org/10.1109/ISIE51582.2022.9831751


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



 

Detection and Identification of Generator 
Disconnection Using Multi-layer Perceptron Neural 

Network Considering Low Inertia Scenario 
 

Alejandro Verduzco  
School of Mechanical and Electrical 

Engineering 
Universidad Autónoma de Nuevo León 

Monterrey, México 
alejvcm@gmail.com 

Manuel A. Andrade 
School of Mechanical and Electrical 

Engineering 
Universidad Autónoma de Nuevo León 

Monterrey, México 
manuel.andradest@uanl.edu.mx 

Paula Páramo Balsa 
Department of Electrical Engineering 

Universidad de Sevilla 
Seville, Spain 

pparamo@us.es 

Martha Nohemi Acosta Montalvo 
Department of Electrical Engineering, 

Information Technology and 
Cybernetics 

University of South-Eastern Norway 
Porsgrunn, Norway 

Martha.Acosta@usn.no

Francisco Gonzalez-Longatt 
Department of Electrical Engineering, 

Information Technology and 
Cybernetics  

University of South-Eastern Norway 
Porsgrunn, Norway 

fglongatt@fglongatt.org 

Jose Luis Rueda Torres 
Department of Electrical Sustainable 

Energy 
Delft University of Technology 

Delft, The Netherlands 
J.L.RuedaTorres@tudelft.nl   

Peter Palensky  
Department of Electrical Sustainable 

Energy 
Delft University of Technology 

Delft, The Netherlands 
P.Palensky@tudelft.nl 

line 1: 1st Given Name Surname  
line 2: dept. name of organisation  

(of Affiliation) 
line 3: name of organisation  

(of Affiliation) 

line 1: 1st Given me Surname  
line 2: dept. name of organisation  

(of Affiliation) 
line 3: name of organisation  

(of Affiliation) 
 

Abstract—This research paper presents a method that uses 
measurements of voltages angles, as provided by phasor 
measurement units (PMU), to accurately detect the sudden 
disconnection of a generation unit from a power grid. Results in 
this research paper have demonstrated, in a practical fashion, 
that a multi-layer perceptron (MLP) neural network (NN) can 
be appropriately trained to detect and identify the sudden 
disconnection of a generation unit in a multi-synchronous 
generation unit power system. Synthetic time-series bus voltage 
angles considering low inertia scenarios in the IEEE 39 bus 
system were used to train the MLP NN. The training process is 
speeded up by using four GPUs hardware. The simulations 
results have confirmed the successful detection and 
identification of the generator outage. 

Keywords—Artificial neural network, deep learning, machine 
learning, outage detection and identification, power system 
dynamics. 

I. INTRODUCTION  

In the last years, there has been substantial renewable 
energy sources (RES) penetration in the modern power 
system; it is primarily due to the massive integration of 
photovoltaic (PV) and wind power generation units [1], [2]. 
This phenomenon brings new challenges, essentially because 
now most of the power system generator units are not 
synchronous machines (SM) but power electronics 
converters-based generation [3]. The main difference between 
them is the lack of inertia of the last ones [4], [5]. For this 
reason, energy storage systems are also being integrated to 
achieve the capability to provide inertia, among other ancillary 
services [6]. Rotational inertia is essential for the power 
system since it allows the SM an instantaneous increase of the 
active power injection. Furthermore, when a frequency 
change occurs, the rotational inertia helps to damp the 
frequency variation [7]. Appropriate levels of rotational 

inertia are required to ensure the reliable and secure operation 
of the power system [8]. Several blackouts related to 
frequency stability have demonstrated the importance of 
appropriate frequency control and inertia levels, e.g., Italy 
2003 [9] and Australia, 2016 [10]  and Uruguay-Argentina 
16th June 2019 [11]. It is clear that modern power systems are 
facing changes and updates to accommodate the integration of 
RES and new PEC-based generation technologies, electrical 
markets, regulations, measuring and communication 
technologies, among others [12]. This transition brings new 
challenges to network operation, stability, and security [13], 
[14]. 

The system operators (SOs) worldwide rely on the system 
wide-area monitoring, control, and protection (WAMPAC) to 
operate the power system securely and economically. As the 
rotational inertia is declining in modern power systems, and 
the transients are becoming faster, and extremes [15], [16], the 
power system monitoring of the power system status is 
becoming a crucial essential task and a topic in constant 
research [17]. Keeping the balance between generation and 
demand in a power system is crucial. Consequently, the online 
detection of the sudden disconnection of one or more 
generation units becomes critical in defining emergency 
operation plans [18]. Detecting the disconnection of a 
generator is very important for the system operation; as a 
consequence, the traditional method is based on the status of 
the circuit breaker of the generation unit. However, 
monitoring the circuit status using traditional SCADA results 
in prohibitive time scale, another option is using signal 
tripping coming from the protective devices and the time 
response of this signal depends on the technology used at the 
circuit breaker and station protection control, modern system 
can take advantages of fast communication using IEC 61850 
but that is not the case in all part of a system or all systems.  
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Recently, numerous machine learning (ML) techniques 
have been widely used in modelling and monitoring complex 
applications, including security [19], frequency control, etc 
[20]. It includes the use of artificial neural networks (ANN), 
decision tree (DT), principal component analysis (PCA), 
support vector machines (SVM), convolutional neural 
networks (CNN), among others.  

Now, considering the importance of precise and 
appropriate detection of generation disconnection in low 
inertia power systems and the recent development in the 
context of machine learning; this research paper is trying to 
answer the research question: Is it possible to detect the 
sudden disconnection of a generator in a power system using 
a multi-layer perceptron (MLP) neural network? The 
following hypothesis is formulated to answer the research 
question: (H0) If a multi-layer perceptron neural network is 
appropriately trained, the sudden disconnection of a 
generation unit in a multi-machine power system can be 
detected and identified?. This paper is part of the “Flexible 
solution (software/hardware) to create artificial intelligence 
in power systems: FlexAlps” inside the Digital Energy 
Systems Laboratory (DigEnSys-Lab) [21]. This paper only 
concerns about detecting and identifying the disconnection of 
generators, however, the methodology proposed in this paper 
can be extended to the over frequency events and detect 
sudden loss disconnection of loads (an event with less 
probability), in such case the detection mechanism will be able 
to detect the total power imbalance.  

II. BACKGROUND 

A. Artificial neural network (ANN) 

An ANN learns complex relations between input and 
output to make accurate predictions. This type of network 
consists of several simple nodes, also called neurons, 
connected to form either a single layer or multiple layers. 
There are different types of ANN structures like multi-layer 
perceptron (MLP), radial basis function (RBF) network, self-
organising maps (SOM) [22]. Nowadays, MLP (also known 
as the universal approximator) is the most extended and most 
frequently used type of neural network [23]. An MLP 
feedforward NN is chosen in this research paper since it can 
form arbitrarily complex decision boundaries and represent 
any Boolean function. The MLP has three (or more) layers 
created from nonlinearly activating nodes: one input layer 
(IL), one (or more) hidden layer (HL) and one output layer 
(OL), as shown in Fig. 1. 

Input 
layer

Input 1

Input 2

Input 3

Input 4

Output 1

Hidden 
layer

Output 
layer

 
Fig. 1. Diagram showing a multi-layer perceptron (MLP), it depicts four 
inputs in the IL, one hidden layer (fully connected network) and an output at 
the OL. 
 

The learning process in the MLP occurs in the perceptron; 
a training mechanism is used for changing connection weights 
after each piece of data is processed. In this paper, a 
supervised learning process is selected for the MLP. During 

the training process, the MLP will receive a group of vectors 
(organised in a matrix) of inputs, also called features (X) and 
a group of vectors of desired outputs, also called targets (D). 
The information only circulates from the neurons of the input 
layer towards the output layer. The action of a neuron depends 
on its activation functions, which is described as: 

𝑦௜ = 𝑓 ቌ෍ 𝑤௜௝𝑥௝ + 𝑏௜

௡

௝ୀଵ

ቍ (1) 

where yi is the output of the i-th neuron, f(•) is the activation 
function, ωij is the weight from the j-th input to the i-th neuron, 
xj is the j-th input of the i-th neuron, and bi is the bias of the i-
th neuron. The activation function is a non-linear function that 
describes the reaction of i-th neuron with inputs xj(t), j = 1, …, 
n. The input signal is connected to a group of hidden layers 
which use a tanh function. These are likewise connected to an 
output layer that uses softmax function. The supervised 
training of the ANN modifies the weights of the connections 
with the objective of minimising the error of the ANN output 
concerning the desired output. Usually, MLPs are trained in a 
supervised manner with a popular algorithm known as 
backpropagation [24]. When the ANN is trained, a new input 
can be introduced to estimate the output. 

Nevertheless, during the training process, an undesired 
phenomenon called overfitting may happen. This 
phenomenon causes the ANN to memorise the training data. 
It would result in the loss of generalisation of the ANN and, 
consequently, loss of the capacity to work as desired when 
new inputs are presented. The input data is divided into 
Training set (70%), Validation set (15%), and Test set (15%) 
to avoid overfitting. The Training set is used to train the ANN 
and vary the weights concerning the output error. The 
Validation set adjusts some training related parameters. The 
Test set does not change the learning of the ANN; it is used to 
test the performance of the ANN when given data not seen 
before. 

III. MATERIAL AND METHODS 

In this paper, the authors confirm the hypothesis (H0) that 
an MLP neural network can be appropriately trained. The 
sudden disconnection of a generation unit in a multi-machine 
power system can be detected and identified.  

A. Proposed MLP to detect and identify generator outage 

This section proposes using an MLP neural network to 
detect and identify the disconnection of a generator from the 
multi-machine power system. The representation of the MLP 
based detection and identification method of generator outage 
is presented in Fig. 2. 

Corollary 1: A multi-machine power system is fully 
observable if the voltage phasors at all system buses can be 
uniquely estimated using the available measurements.  

The approach used in this paper assumes that by using a 
wide-area monitoring platform (WAM) based on multiple 
phasor measurement units (PMUs) the power system is fully 
observable. Therefore, the proposed detection and 
identification method used an MLP neural network, where the 
input signals are the time series of the bus voltage angles (δ) 
of the power system, where: 

𝜹 = [𝛿ଵ 𝛿ଶ … 𝛿௡]் (2) 
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where i is the time series representing the voltage angle of the 
i-th bus (n = number of buses), {i,tT} or simply {i,t }. 

Input 
layer

Hidden 
layer

Output 
layer

 
 
 
 
 
  

1

2



n

r

δ

δ
X

δ

 
Fig. 2. Representation of the MLP based detection and identification method 
of generator outage. 

B. Data Source 

In this paper, synthetic data created using DIgSILENT 
PowerFactory is used in the learning process of the proposed 
MLP based approach. Time-domain simulations on a test 
system have produced the time series (Xr = ) used for training 
and testing purposes. The test system is the well-known New 
England 10-machine, 39 bus power system [25] (see Fig. 3). 
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Fig. 3. New England 10-machine, 39 bus test power system single line 
diagram. 

The synthetic data has been created considering the sudden 
disconnection of one generator (single contingency, ten 
cases), and then subcases are generated to consider reduced 
inertia. Specific details of the scenario creation regarding 
controllers and networks details are beyond the scope of this 
paper. Scenario 1 considers the rotational inertia reduction in 
all the generators; the k-th subcase refers to the reduction of 
the system total inertia (Hgi = (1 -k×100-1)×H0gi, where H0gi is 
the initial inertia constant of the i-th generator and k = 0, 1, …, 
10, i =1, 2, ..., 10). Scenario 2 considers localised reduced 
inertia; the i-th subcase refers to the inertia reduction only in 
the i-th generator (Hgi = (1 -k×100-1)×H0gi). Each scenario 
required 110 simulations, 44.6 GB, and 89.2 GB of data were 
produced for Scenario 1 and 2, respectively. The RMS 
simulation covers the electromechanics variables of the test 
system during a time-domain simulation of 240 seconds 
(constant time step equal to 0.01 sec). The total synthetic data 
was created in approximately 15 hours (PC, Windows 10 
professional, Intel i7 -8850H 2.60 GHz, 32 GB RAM).  

C. Creation of features and targets matrices 

The data created in the previous section produced time 
series of several electro-mechanical variables; however, the 
bus voltage angles were selected to form the features matrix 
(Xr = ). The rationale behind this decision is that the electro-
mechanical dynamics that the generator disconnection causes 
in a multi-machine power system are reflected in the bus 
voltage angles faster than in frequency in inductive networks, 
which is the case of high voltage grids. Also, from the 
practical point of view, this research project investigates the 
real implementation of the proposed approach, and the 
availability of data streams from PMU offers the information 
related to the voltage angles, but also the power system state 
estimator might help with data in the case of the availability 
of the data stream of one PMU.  

The per-unit current of each generator, coming from the 
synthetic data, is used to identify if the machines are 
connected or not immediately after the disturbance. This 
information is used to label the data set during the training 
process in the targets matrix (Dr). Each generator is assigned 
a binary status variable to indicate the connection status, Dri = 
1 if the i-th generator is disconnected to the power system and 
Dri = 0 if it is connected. For instance, if at time t, the generator 
G7 is disconnected from the test system and the rest of the 
machines are connected, the targets vector in that instant 
would be Dr = [0, 0, 0, 0, 0, 0, 1, 0, 0, 0]T.  

Organising all the features and targets vectors in matrices, 
Xr and Dr results in: 

𝑿௥ =

⎣
⎢
⎢
⎡
𝛿ଵ

ଵ 𝛿ଵ
ଶ … 𝛿ଵ

௦

𝛿ଶ
ଵ 𝛿ଶ

ଶ … 𝛿ଶ
௦

⋮ ⋮  ⋮
𝛿௡

ଵ 𝛿௡
ଶ … 𝛿௡

௦⎦
⎥
⎥
⎤

௦×௡

 

 (3) 

𝑫௥ =

⎣
⎢
⎢
⎢
⎡

𝐷ଵ
ଵ 𝐷ଵ

ଶ … 𝐷ଵ
௦

𝐷ଶ
ଵ 𝐷ଶ

ଶ … 𝐷ଶ
௦

⋮ ⋮  ⋮
𝐷௡೒

ଵ 𝐷௡೒
ଶ … 𝐷௡೒

௦
⎦
⎥
⎥
⎥
⎤

௦×௡೒

 

 (4) 

where r is the number of the simulation the information is 
extracted from, n is the number of buses of the power system, 
s is the number of samples per simulation selected for the 
training, and ng is the number of generators in the system. As 
shown before, both matrices share the same number of 
samples s (columns) due to every feature vector corresponding 
to the desired output vector (targets vector). In this paper, the 
authors selected 989 samples of features and targets of every 
simulation. It represents 9.86 s of each simulation, where the 
behaviour before, during and after disturbance can be 
observed. The selected samples amount was the result of a 
search for desired performance and fast training. 
Consequently, 1,210 features and targets matrices were 
created. All feature matrices were concatenated as well as all 
targets matrices. The result is a features matrix X with 
dimensions of 39×1,196,690 and a targets matrix D with 
dimensions of 10×1,196,690, both matrices having 
information of all the RMS simulations. 

D. Creation of the ANN 

An ANN is defined by the number of layers, the number 
of neurons in each layer, the connections links, and the 
weights. The data enters the ANN via the IL, go through the 
HL, and the output comes out of the OL. In this research paper, 
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an MLP feedforward neural network is employed. None of the 
neuron’s outputs in feedforward networks serves as an input 
to neurons of the same layer or previous layers. The input 
signal will only propagate forward, from input neurons to 
output neurons. Since using MLPs, two hidden layers are 
necessary for full generality; two hidden layers were chosen 
for this work [20]. 

The number of hidden neurons was determined by using 
the geometric pyramid rule suggested in  [26], which has 
shown good behaviour. The geometric pyramid rule is a rough 
approximation of the ideal number of hidden neurons and for 
two hidden layers shows that: 

2
1 NHN Mr  (5) 

1 NHN Mr  (6) 

3
N

r
M

 (7) 

where N is the number of inputs, M is the number of outputs, 
NHN1 is the number of neurons in hidden layer 1, and NHN2 
is the number of neurons in hidden layer 2. It results in NHN1 

= 24 and NHN2 = 15, given 39 inputs and ten outputs are being 
considered. 

E. Training process of MLP 

MLPs usually are trained using the error backpropagation 
(BP) algorithm. BP is a gradient descent-based method to 
minimise the error output computed by the ANN. BP can be 
viewed as a two stages process: (i) forward stage and (ii) 
backward stage. In the first stage, an input vector is applied to 
the ANN input nodes, and its effect propagates through the 
network layer by layer. The first stage produces a set of 
outputs as the actual response of the network. During the 
forward stage, the weights of the connections are all fixed. In 
the second stage, the weights are all adjusted following an 
error-correction rule: the actual response of the ANN is 
subtracted from the desired response (target) to produce an 
error signal. This error signal is propagated backwards 
through the network. This process is repeated layer by layer 
until completing the artificial neural network. The weights of 
each neuron are readjusted to make the actual response of the 
ANN move closer to the desired response, i.e., minimising the 
error.  

The training algorithm chosen is BP based on the 
optimisation technique Broyden-Fletcher-Goldfarb-Shanno 
(BFGS) quasi-Newton. This method has successfully solved 
nonlinear equations systems [27]. The authors of the BFGS 
quasi-Newton method suggests the method “substantially 
outperforms known conjugate gradient methods on a wide 
class of problems” [28]. A detailed discussion of the BFGS 
quasi-Newton method can be found in [29].  

Cross-entropy (CE) loss, also known as log loss, was 
selected as the error function to minimise. CE loss measures 
the performance of a classification model whose output is a 
probability between 0 and 1. CE loss increases as the predicted 
probability moves away from the actual classification. 
Minimising cross-entropy leads to good classifiers. The CE 
loss for every pair of output-target elements is calculated as:  

𝐶𝐸 = −𝑑 𝑙𝑜𝑔(𝑥) (8) 
 

where d is the desired output and x is the actual output of the 
ANN. 

F. Training the MLP feedforward neural network 

In this research paper, the synthetic data is divided 
randomly into three parts: training set (70%), validation set 
(15%) and test set (15%), avoiding overfitting of the ANN. 
The MLP consists of two hidden layers, 24 and 15 hidden 
neurons in each hidden layer (due to results of (5), (6) and (7)). 
The training process starts by giving the X and D matrices. 
Table I shows the parameters used for the training process.  

TABLE I.  LIMITS OF TRAINING CRITERIA 

Name Value Meaning 
epochs 1000 Maximum number of epochs to train 

CE 0 C-E loss goal 
min_grad 1×10-6 Minimum performance gradient 

val_checks 6 Maximum continuous increases of error (epochs) 

 
Epoch is a term used in machine learning to define the 
number of times all the data in the training set have passed 
through the learning algorithm. At each epoch, all the training 
data goes through the model so that the model learns from it. 

IV. RESULTS 

The proposed neural network was implemented in 
MATLAB 2020a using the Deep Learning Toolbox. The data 
pre-processing, training and testing is performed using Intel 
Xeon W-3235 Processor, 12-Core, 24-Thread, 3.3/4.4GHz, 
64GB RAM, Windows 10 professional and four NVIDIA® 
GeForce® RTX 2080Ti graphics card. The use of four GPU 
and parallel processing allowed a substantial speed-up in the 
training process (approx. 312.87 s). 

Fig.4 shows the evolution of the ANN training and how 
the error decreases through the epochs until the optimal point 
is found. The minimum CE loss reached was 2.4×10-4; this is 
the mean of the individual CE values (as shown in (8)). The 
overall accuracy of the trained ANN is 89.8%, considering all 
three sets. This means that of the total observations presented 
during training, the ANN classified correctly 89.8% of the 
observations and misclassified 10.2%. For instance, a 
misclassification would be the ANN output showing generator 
G7 was disconnected when actually generator G4 is the one 
offline or showing generator G3 is online when it is currently 
offline. 

Fig. 5 shows the graphical results of an illustrative 
example of testing the trained ANN. The ANN received as 
input 4,000 samples (up to 39.98 seconds of the RMS 
simulation) of the 39 buses' voltage angles. For this specific 
example, the simulation case considers the initial rotational 
inertia of the synchronous generators in the system. Then, the 
outage of the generator G1 (at t = 1.00 s) is presented. 

 
Fig. 4. Error evolution through training. 
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Fig. 5 depicts the change of the status of generator G1 from 
Dr1 = 0 (online status) to Dr1 = 1 (offline status), showing the 
ANN maintains high confidence the generator G1 is 
disconnected during the rest of the simulation. The remaining 
generators maintain a very close to Dr1 = 0 (i = 2, 3, …, 10) 
status, confirming the successful detection and identification 
of the generator outage.  

 

 
Fig. 5. Example of output of trained ANN when detecting disconnection of 

generator 1. 

Fig. 6 demonstrates the performance of the trained ANN 
in a low inertia situation. The ANN received 4,000 samples of 
the 39 buses voltage angles in the input layer. The input data 
considering a 10% reduction in the inertia of all machines. 
From Fig. 6, it can be seen that at the moment of the generator 
disconnection (t = 1.00 s), the MLP detects this event 
instantaneously and correctly identifies which machine is now 
offline (in this test, G4) by modifying the status of G4 from 
zero to one. Meanwhile, the rest of the generators maintain 
their status at zero value, meaning the ANN identifies those 
generators are still connected to the power grid. 

The tests shown prove that, with proper training, an MLP 
ANN can successfully identify the disconnection of a 
generator considering different inertia level situations. 
Moreover, it can help in the decision process of SOs in a very 
fast and precise manner, in the case, the right data is available. 
This is especially important since the total inertia in modern 
power grids changes throughout the day depending on the 
dispatch and availability of natural resources for renewable 
generator units. 

 
Fig. 6. Example of output of trained ANN when detecting disconnection of 

generator 4, in a case of reduced inertia. 

V. CONCLUSIONS 

The reduced rotational inertia of modern power system is 
pressing the system operator to make decisions in an 

increasingly reduced time frame. Traditional mechanism of 
detecting the sudden disconnection of a generator has different 
time response, using modern IEC 61850 framework provided 
the faster and more reliable way and traditional signalling 
using SCADA system is the slowest and less reliable; 
however, it is clear that a real power system has not possibility 
of having a homogeneous IEC61850 framework. As a 
consequence, this research proposed an alternative for the 
detection and identification of generator disconnection. The 
proposed approach uses voltage angle measurements time 
series coming from phasor measurement units a technology 
that is growing in penetration (nowadays, many protection 
relays are already software enabled with the option of PMU).     
This research paper has demonstrated the hypothesis by 
appropriately training a multi-layer perceptron neural 
network; it can successfully detect and identify the sudden 
disconnection of a generation unit in a multi-machine power 
system observing only the bus voltage angles. This paper 
presents preliminary results of a more extended project, but it 
has been able to demonstrate the suitability of the approach by 
using synthetic data of the voltage angles of the IEEE 39-bus 
test system.  
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