

Direct Continuous-Time Linear Parameter-Varying System Identification of Li-ion Batteries

Wang, Y.; Ferrari, Riccardo M.G.; Verhaegen, M.H.G.

Publication date 2025

Document VersionFinal published version

Published in

Book of Abstracts 44th Benelux Meeting on Systems and Control

Citation (APA)

Wang, Y., Ferrari, R. M. G., & Verhaegen, M. H. G. (2025). Direct Continuous-Time Linear Parameter-Varying System Identification of Li-ion Batteries. In R. Carloni, J. Alonso-Mora, J. Dasdemir, & E. Lefeber (Eds.), *Book of Abstracts 44th Benelux Meeting on Systems and Control* (pp. 212-212). Rijksuniversiteit Groningen.

Important note

To cite this publication, please use the final published version (if applicable). Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

44^{th} Benelux Meeting on Systems and Control

 $\label{eq:march_18} \text{March 18} - 20,\, 2025$ Egmond aan Zee, The Netherlands

Book of Abstracts

The 44^{th} Benelux Meeting on Systems and Control is sponsored by

Raffaella Carloni, Javier Alonso-Mora, Janset Dasdemir, and Erjen Lefeber (Eds.) Book of Abstracts - 44^{th} Benelux Meeting on Systems and Control

University of Groningen PO Box 72 9700 AB Groningen The Netherlands

ISBN (PDF without DRM): 978-94-034-3117-8

Direct Continuous-Time Linear Parameter-Varying System Identification of Li-ion Batteries

Yang Wang, Riccardo M.G. Ferrari and Michel Verhaegen Delft Center for Systems and Control, Delft University of Technology Mekelweg 2, 2628 CD Delft, The Netherlands

Email: y.wang-40@tudelft.nl

1 Introduction

Equivalent circuit models (ECMs) are widely used for Liion battery modeling. Due to the nonlinearity of battery behaviors, ECM's parameters vary with the battery's state of charge (SOC). Identifying the physical parameters of the battery requires continuous-time (CT) identification of a linear parameter-varying (LPV) system. Existing CT-LPV approaches use numerical differentiation and iterative refinement that are prone to amplifying measurement noise. This work presents a novel CT-LPV method that can be run in a single shoot without differentiating signals. The LPV statespace model is transformed into an input-output (IO) model and is seen as a multiple-input single-output LTI system to which classical CT stable variable filter approaches can be applied. We demonstrated the efficacy of the developed method on a simulated battery.

2 Model description of Li-ion batteries

Li-ion batteries are commonly modeled using the equivalent circuit model shown in Figure 1. This model has the follow-

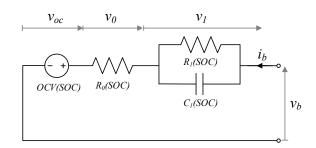


Figure 1: Equivalent circuit model

ing state-space equations:

$$\dot{v}_1(t) = -\frac{1}{R_1(z(t))C_1(z(t))} v_1(t) + \frac{1}{C_1(z(t))} i_b(t)$$
(1)
$$v_b(t) = v_1(t) + R_0(z)i_b(t) + v_{oc}(z(t)),$$
(2)

where R_0, R_1, C_1 are continuous-time battery parameters, v_{oc} is the battery's open circuit voltage (OCV), and z is the state of charge (SOC) of the battery

$$z(t) = z(t_0) + \int_{t_0}^t \frac{1}{3600C} i_b(\tau) d\tau.$$
 (3)

In practice, the OCV can be obtained from offline battery tests. This work aims to identify the continuous-time SOC-dependent model parameters of the battery from sampled input-output data.

3 Direct CT identification of battery parameters

The continuous-time LPV model can be equivalently transformed into an input-output (IO) model [1]. With parameters represented by a basis function of SOC, the obtained IO model is regarded as a multiple-input single-output linear time-invariant system with the following form:

$$v_d^{(1)}(t) = a_{10}v_d(t) + \sum_{l=1}^{\alpha} a_{1l}f_l(z(t))v_d(t) + \sum_{i=0}^{1} \sum_{l=0}^{\beta} (b_{il}g_l(z(t))i_b(t))^{(1-i)}$$
(4)

where $v_d = v_b - v_{oc}$. The resultant MISO LTI system can then be transformed into the Laplace domain as:

$$sV_d(s) = [A_1V_d](s) + s[B_0I_b](s) + [B_1I_b](s).$$
 (5)

With a state variable filter $F(s) = \frac{1}{s+v}$, we can preserve and compute all model parameters with digital filters without numerical differentiation. The SOC-dependent parameters are solved for via least squares:

$$\min_{\theta} \| V_{d,m}^{f_1} - X \theta^{a_1, b_0, b_1} \|_F^2. \tag{6}$$

4 Results

The effectiveness of the developed method is validated via a simulated battery with the result shown in Figure 2.

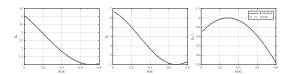


Figure 2: Battery parameter identification of a simulated battery

References

[1] R. Tóth, Modeling and Identification of Linear Parameter-Varying Systems, vol. 403. Springer, 2010.