
Hybrid truss layout optimization for generating multiple
design alternatives

by

Lazlo Bleker

to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Friday January 22nd, 2021 at 14:30.

Thesis committee: Dr. ir. M.A.N. Hendriks TU Delft, Chairman
Dr. ir. M. Langelaar TU Delft
Ir. L.P.L. van der Linden TU Delft

Preface

This thesis is the culmination of my master’s degree in Civil Engineering at the Delft University
of Technology. Reflecting on the last two years I realize I have learned so much not only, but
especially, in the to me ever-fascinating world of topology optimization. Despite its lengthy
academic history however, its applications in civil engineering practice are still few and far
between. With the current development of an evermore increasing emphasis on sustainability
it seems as though continuing to not utilize the power of topology optimization would be a
missed opportunity. While there exist a multitude of reasons for the scarce use of topology
optimization in civil engineering practice today, it would be an insurmountable task to address
all of these at once. It is for this reason that I have decided to focus my efforts on one of the
issues with current topology optimization methods, namely the lack of design alternatives, as
well as to focus on one area of civil engineering practice, being 3-dimensional truss design.

I want to express my gratitude to the members of my thesis committee, Dr. ir. M.A.N.
Hendriks, Dr. ir. M. Langelaar and Ir. L.P.L. van der Linden for their valuable advice and
the interest they showed in my work. On more than one occasion have they offered me a key
insight or suggestion that altered the course of my research for the better.

When I started with my research I had the intention of reducing the gap that exists today
between research in topology optimization and practical civil engineering design. I hope I have
contributed a small step towards that goal.

Lazlo Bleker
Delft, December 2020

2

Abstract

As of writing this thesis little research has been done in truss layout optimization for multiple
design alternatives. A hybrid scheme is proposed in which the fast gradient-based search of
the Ground Structure Method (GSM) is employed for the search of optimal topology and size,
while a population-based meta-heuristic algorithm explores the non-convex parameter space of
geometry optimization. The scheme works by employing a meta-heuristic algorithm to optimize
the nodal coordinates of a truss structure where for each iteration and each member of the
population a small-scale (i.e. problems with a small number of degrees of freedom) GSM is
performed, in order to obtain the optimal topology for the given nodal locations. Three variants
of the scheme based on three different meta-heuristic algorithms are developed: Firstly, an
Artificial Bee Colony (ABC) and Particle Swarm Optimization (PSO) variant are developed in
combination with an original topology identification method, to extract design alternatives from
the solutions found throughout the optimization process. The developed topology identification
method identifies different design alternatives based on topological differences by making use of
existing graph isomorphism testing algorithms from graph theory. Additionally, the topology
identification method employs a multi-step filtering process to prevent members which are non-
critical to the performance of the structure to influence the design alternative selection process.
Finally, a Multi-Species Particle Swarm optimization (MSPSO) variant is developed without
the need for a topology identification method.

For all methods convergence speed in terms of number of iterations, topological variety and
computation time per iteration have been evaluated and are compared. Of the developed meth-
ods, the ABC variant converges fastest towards a single good solution, however the topological
variety is lacking. The slower converging MSPSO variant produces solutions with moderate
topological variety, as well as reasonable material volumes. The PSO variant requires the least
computation time per iteration of the developed methods. Its produced topological variety is
closer to that of the ABC than the MSPSO variant and it has a slightly faster convergence
speed than the MSPSO variant.

Direct usage of the MOSEK API is made instead of the more commonly used CVXPY API
which reduces GSM problem setup times for small-scale (28 degrees of freedom) problems by a
factor of 13. Computation times for the hybrid method, from start to finish, for 3D structures
with 4 to 8 movable nodes (12 to 24 geometric degrees of freedom) range from 15 to 50 seconds
on standard desktop PC hardware. Because of the multiple design alternative nature of the
hybrid method, and consequently the end-user does not require fast back-to-back optimization
runs, these computation times are deemed acceptable.

It is concluded that while in its current state the methods based on the hybrid scheme are
unlikely to be suitable for usage in practice, further developments in methods to distinguish
design alternatives could make the hybrid scheme, in particular the ABC variant, useful in the
design of more material efficient truss structures.

3

Contents

1 Introduction 6
1.1 A need for design alternatives . 7
1.2 Proposed method . 7
1.3 Research questions and scope . 8
1.4 Thesis structure . 9

2 Literature review 10
2.1 Gradient-based layout optimization . 10
2.2 Meta-heuristic layout optimization . 12
2.3 Hybrid layout optimization . 14
2.4 Research gap . 14

3 Methods 15
3.1 Proposed hybrid scheme . 15
3.2 Modified Ground Structure Method . 19

3.2.1 Primal formulation . 20
3.2.2 Dual formulation . 20
3.2.3 Parametrization . 21

3.3 Meta-heuristic algorithm . 21
3.3.1 Artificial Bee Colony . 22
3.3.2 Particle Swarm Optimization . 25
3.3.3 Multi-Species Particle Swarm Optimization 26

3.4 Topology identification . 28

4 Results 35
4.1 Case study problems . 35
4.2 Convergence speed . 38
4.3 Topological variety . 39

4.3.1 Case study 1a . 39
4.3.2 Case study 1b . 42
4.3.3 Case study 2 . 44

4.4 Computational efficiency . 46
4.4.1 Ground Structure Method optimizations 46
4.4.2 Total iteration times . 46

5 Discussion 48
5.1 Comparison of variants . 48
5.2 Practicality . 49

4

6 Conclusion 50
6.1 Research questions . 50
6.2 Future research . 50

Bibliography 51

A GSM Benchmarks 55

B Extended convergence study 56

5

Chapter 1

Introduction

The design of truss structures has undergone significant changes in the last century. At the
start of the century structures were being designed with material efficiency being a primary
concern. Due to the high cost of material, the material efficiency of structures was a large
factor in the overall cost. As material has become cheaper, and labour has become more
expensive, newly designed truss structures have reflected this change: Standardized structures
such as Pratt, or Warren Trusses have become prevalent while custom truss designs have been
reserved for very large scale projects or clients willing to pay a premium for architectural novelty.
These standardized designs favour ease of construction over material efficiency, and are thus
in the current climate more cost-effective than more intricate custom designs. There are two
key reasons which suggest this development from favouring custom to favouring standardized
structures could reverse in the near future: firstly, the cost of material is expected to increase.
The world is becoming increasingly more aware of the influence of human activities on the
environment. As carbon taxes and other environmental regulations become commonplace the
price of the most common building materials, concrete and steel, are going to increase as well.
Secondly, the construction of complex structures could become significantly cheaper, due to the
emergence of large-scale additive manufacturing technologies.

(a) Magazzini Generali, Chiasso (1924) (b) Rosen centre foot bridge, Orlando (2011)

Figure 1.1: Classical (a) vs. Modern (b) truss design

During the transition from designing for material efficiency to designing for ease of construc-
tion, technology has not stood still. The introduction of technologies such as CAD and FEM
have had a profound impact on the structures that can realistically be designed by engineers
and architects. One technology however that has emerged during the era of designing for ease

6

of construction, which has not seen the wide adoption CAD and FEM have seen, is ”structural
topology optimization”, or simply ”topology optimization”. Topology optimization is a tech-
nology which allows structures to be generated which are highly optimized for material usage.
When material efficiency once again becomes a primary concern, Structural optimization, or
”layout optimization” as it is often referred to when applied to truss structures could have a
similar magnitude of impact on the design of (truss) structures as CAD and FEM once had.

1.1 A need for design alternatives

Despite the rich academic history of structural optimization, it has had relatively little impact
on structural engineering in practice [Mueller, 2014]. There are many factors contributing to
this, including shortcomings of current layout optimization methods. One major reason for this
disconnect between research and practice, is that the goal of optimization has nearly always
been to solely identify the global optimum. This approach could only work if the objective
function perfectly encapsulated all the subjective qualities on which engineers and architects
evaluate design alternatives (e.g. constructability or aesthetic qualities). Since truss design in
structural engineering rarely occurs in absence of architectural goals this is not often the case.
A more practical approach is to consider instead a selection of design alternatives. This way
the end-user can opt for a design alternative based on the subjective qualities that are difficult
to implement in the objective function of the optimization method.

Most commonly, layout optimization methods are based on gradient-descent in which the
solution is found by moving in the direction of steepest descent in a convex search space. The
advantage of such methods is that due to their convexity they are computationally inexpensive,
while at the same time being very reliable. Because of the same convexity however, there is no
obvious way to alter this method such that it is able to find multiple high quality solutions as
design alternatives, since there exist no remarkable points in a convex search space other than
the global optimum.

An alternative to a gradient-based method is a meta-heuristic method. These methods are
based on trial-and-error search and are able to handle non-convex search spaces. The non-
convexity of the search space is often considered a disadvantage since it allows the method to
become trapped in a local optimum. For the purpose of finding multiple solutions however,
the local minima in a non-convex search space provide good candidates for design alternatives.
Compared to gradient-based methods, meta-heuristic methods are computationally expensive,
making these methods unfit for problems with a considerable number of degrees of freedom.

A hybrid method that combines gradient descent and a trial-and-error approach could be
a solution to finding multiple design alternatives while still keeping computation times under
control.

1.2 Proposed method

There exist three basic types of structural optimization: size, geometry and topology optimiza-
tion [Bendsøe and Sigmund, 2003]. In the context of truss layout optimization, size optimization
changes the cross-sectional areas of the truss members while keeping the geometry and topology
constant. Geometry optimization has as its parameters the spatial coordinates of the nodes of
the truss, however still the topology remains unchanged. Finally, in topology optimization the
topology is allowed to change i.e. the connectivity between the nodes of the truss changes. The
creation of new nodes or the deletion of existing ones is also part of topology optimization.

7

Figure 1.2: The three types of structural optimization for truss structures

To arrive at a global optimum for a particular problem it is insufficient to consecutively
do a topology, geometry and size optimization. The optimal geometry for example does not
only depend on the optimal topology, but this relation is true in reverse as well. To find a
high quality solution it is therefore necessary that all three types of optimization are done
concurrently.

A hybrid scheme is proposed in which the topology and size optimization are done through
gradient-descent, based on the Ground Structure Method (GSM) approach. Concurrently the
geometry optimization is handled by a meta-heuristic algorithm. A method based on this
scheme would have a significantly lower computational cost than a purely meta-heuristic method
due to most of the degrees of freedom being offloaded to the more efficient gradient-based
approach. At the same time the problem formulation retains a non-convex search space allowing
multiple local optima to be identified as design alternatives.

1.3 Research questions and scope

To explore the feasibility of the proposed hybrid scheme the main research question has been
formulated:

”Is a method based on the proposed hybrid scheme capable of generating multiple good design
alternatives?”

How good the design alternatives are is based on two factors: firstly the quality of the
design alternatives is based on the extra material volume required as compared to a benchmark
solution produced by a standard GSM approach. Secondly, a diverse range of design alternatives
is desirable. Therefore design alternatives which are more distinct from one another are deemed
to be better than design alternatives which are only slightly different.

The proposed hybrid scheme leaves room for different variants. Multiple methods based on
the proposed scheme are be developed. In this thesis the following methods are considered:

1. An Artificial Bee Colony (ABC) method combined with a topology identification method.

2. A Particle Swarm Optimization (PSO) method combined with a topology identification
method.

8

3. A Multi-Species Particle Swarm Optimization method (MSPSO).

Based on these methods the first sub-question to be answered is:

”Which of the considered meta-heuristic algorithms is best-suited for the proposed hybrid
scheme?”

Furthermore it is the aim for the method to be applicable in engineering practice. It is
therefore of importance that problems can be solved within reasonable time-frames.

”For what problem size can a method based on the proposed hybrid scheme produce results
within a reasonable time-frame on a standard PC?”

Computation times will be measured on a PC equipped with an Intel Core i7-8700B proces-
sor (2018) and 16GB of RAM. This processor and memory size are comparable to what modern
desktop PC’s at engineering offices are equipped with and should therefore give a realistic esti-
mate of computation times. Finally, the method will be developed for 3-dimensional problems
as to increase its relevance for practical design applications.

1.4 Thesis structure

The structure of this thesis is as follows: in chapter 2 a literature review is presented on rele-
vant developments in layout optimization, meta-heuristic optimization and hybrid optimization
methods. Chapter 3 provides a detailed explanation of the proposed hybrid scheme and its dif-
ferent variants. In chapter 4 the different hybrid method variants are subjected to three case
studies. Their results are compared in terms of convergence speed, design alternative variety
and computation speed. Chapter 5 provides a discussion on the differences between the meth-
ods as well as the overall practicality of the proposed hybrid scheme. In chapter 6 the research
questions are answered and suggestions for future research are given.

9

Chapter 2

Literature review

This chapter presents existing work in the fields of layout optimization, meta-heuristic opti-
mization and hybrid optimization, in general, but mostly as applied to truss structures.

The first paper on truss layout optimization was the 1904 paper by Michell [Michell, 1904].
In this paper the conditions for a truss structure to be optimal are given. Trusses that satisfy
these conditions, and are thus optimal, are today known as Michell structures. However for
nearly all problems it is impossible to solve the Michell problem analytically. For this reason
computational methods for finding optimal truss layouts have been studied in recent decades.
The most common objectives of these methods are to minimize compliance given a material
volume constraint, or to minimize material volume given a compliance constraint. Both of
these objectives result in identical topologies [Christensen and Klarbring, 2009]. It is possible
to divide these computational methods into three categories: gradient-based, meta-heuristic
and hybrid layout optimization methods.

2.1 Gradient-based layout optimization

Gradient-based optimization methods search for an optimal solution of the design space by
moving a trial solution along the direction of steepest descent of the objective function. An ex-
ample of a general-purpose gradient-based method is sequential quadratic programming (SQP).
For truss optimization by far the most popular gradient-based method is the Ground Structure
Method (GSM). Originally proposed by Dorn et al., the GSM is based on a ground struc-
ture consisting of a dense grid of nodes interconnected by truss members [Dorn et al., 1964].
The main design variables in the optimization procedure are the cross-sectional areas of the
members. The objective function is to minimize the total material volume subject to some
equilibrium and stress constraints. Although computationally expensive, it is desirable to have
every node in the ground structure be connected to every other node (Figure 2.1). This is
called a fully connected ground structure. Such a fully connected ground structure allows the
largest number of possible solutions and thus, in general, a better optimal solution. Since its
inception many additions to the original method have been proposed. To bypass the large
computational cost of a fully-connected ground structure, an adaptive member adding scheme
has been proposed, which makes the original method more efficient, particularly for large-scale
problems [Gilbert and Tyas, 2003]. The modified method reduces the computational effort of
large-scale problems by considering only a subset of all potential members as a starting point,
after which additional members that could improve the solution are identified until no new
potential members are left. Later on this method was extended to support multiple load cases
as well [Pritchard et al., 2005].

10

(a) Ground structure (b) Optimal layout

Figure 2.1: Fully connected ground structure and accompanying optimal layout for a cantilever
problem as found by the Ground Structure Method [L. He, 2019]

Fundamentally the GSM is a sizing optimization method, since its topology and geometry
are static. However, if a fully connected ground structure is applied, and the cross-sectional
areas of individual members are allowed to approach zero, the method effectively becomes a
topology optimization method. Furthermore, if a dense enough grid of nodes is present in the
ground structure, the GSM is a geometrical optimization method as well: the coordinates of
any particular node can be altered by the vanishing of members connected to this node, and the
reappearing of members connected to another node close to the position of the original node.
This manifestation of geometry optimization does not come without complications however:
Michell found that for many truss optimization problems the solution is a ”truss-like contin-
uum”, which is a structural web of infinite members separated by infinitesimal spacing [Michell,
1904]. It is for this reason that structural optimization methods without any constraints on
the complexity of the solution will often find solutions as complex as the ground structure
allows. Since for an effective geometry optimization a dense ground structure is a prerequisite,
this inevitably leads to solutions containing huge quantities of members (Figure 2.2). From a
practical standpoint it is therefore of interest to somehow limit or penalize the complexity of
the structure. The first attempt to introduce a constraint on the complexity of the solution
was the addition of joint costs to the original GSM formulation [Parkes, 1975]. This method
involves adding a material volume penalty to each member, related to its volume. Another
variant of this concept is to have the material volume penalty be a constant [Prager, 1977].
An advantage of these simple complexity constraints is that their impact on the computational
cost is negligible. A disadvantage however is that since effectively short members instead of
the number of joints are penalized, its efficacy is found to be problem dependant [L. He, 2019],
[Fairclough and Gilbert, 2020]. More recently it has been proposed to use the truss layout
derived from the unconstrained optimization as a starting point for a geometrical optimization
post-processing step involving the merging of nodes as well [He and Gilbert, 2015]. The results
for large-scale structures are much closer to the Michell optimum structures when compared to
joint cost methods, however its efficacy for small-scale structures has yet to be demonstrated.
Another way to constrain the complexity of the structure is to enforce a limit on the number
of joints and/or the minimum angle between connected members using a mixed integer lin-
ear programming formulation [Fairclough and Gilbert, 2020]. The method produces very high

11

quality solutions, however even for small-scale structures it boasts relatively high computation
times. Continuously differentiable complexity constraints have also been developed although in
contrast to the mixed integer formulation, these constraints are non-convex [Torii et al., 2016].
To deal with this non-convexity a gradient-based algorithm was used which starts from many
different initial points in the design space.

Figure 2.2: Optimal layout for a cantilever problem as found by the unconstrained Ground
Structure Method [Gilbert and Tyas, 2003]

An alternative to the GSM has been proposed in the form of a ”growth” method [Mart́ınez
et al., 2007]. This method is capable of generating high quality solutions in short computation
times. The method allows a limit to be placed on the number of nodes which allows the solution
to be constraint in complexity. A major disadvantage of the method is that it is only capable
of treating a single load case and cannot easily be extended to treat multiple load cases [He
and Gilbert, 2015].

2.2 Meta-heuristic layout optimization

As opposed to gradient-based optimization methods, meta-heuristic optimization methods look
for an optimal solution based on trial and error. In general this leads to meta-heuristic opti-
mization methods needing significantly more function evaluations, and thus more computation
time, than gradient-based methods. On the other hand, meta-heuristic methods have the abil-
ity to escape local minima and thus do not necessarily require a convex problem formulation.
Over the years a large number of methods have been proposed, many of them claiming su-
periority over other approaches. These algorithms can be classified into trajectory-based and
population-based, in which the former is based on the random search of a single agent, and the
latter employs multiple agents (a population) simultaneously. For both types it is the goal to
maximize the so-called ”fitness” of the agents. Popular meta-heuristic methods include Genetic
Algorithms (GA) [Holland, 1975], Particle Swarm Optimization (PSO) [J. Kennedy, 1995], Dif-
ferential Evolution (DE) [Storn and Price, 1997] and Artificial Bee Colony (ABC) [Karaboga
and Basturk, 2007]. Additionally for most methods multiple variants exist. A comparison of a
handful of methods for a large number of benchmark functions shows that no single algorithm
performs best in the majority of benchmark functions [Ab Wahab et al., 2015]. It can also be

12

proven that the average performance of any pair of algorithms across all possible problems is
identical [Wolpert and Macready, 1997]. This means that if one algorithm has superior perfor-
mance over the other for a particular class of problems, the reverse must be true for some other
class of problems.

Like there is a large range of different meta-heuristic optimization methods, there exist also
many ways of handling inequality constraints by these methods. It is possible to categorize
different constraint handling techniques as follows [Michalewicz, 1996]:

1. methods based on preserving feasibility of solutions;

2. methods based on penalty functions;

3. methods that make a clear distinction between feasible and infeasible solutions and

4. other methods.

Methods based on preserving feasibility of solutions rely on the optimization method generating
only trial solutions which are within the feasible region. An advantage of this class of methods is
that no time is spent by the algorithm on checking the feasibility of trial solutions. An example
of such a method is GENOCOP, in which trial solutions are linear combinations of existing
solutions [Michalewicz and Janikow, 1996]. The method requires a convex feasible region as
well as an initial population entirely situated within the feasible region. Methods based on
penalty functions consider the unconstrained optimization problem with some penalty added
to the objective function for the infeasible part of the parameter space. Advantages of these
methods are that in case of a non-convex, or even disjoint feasible region, the algorithm can take
a solution path through the infeasible region from one part of the feasible region to another. A
disadvantage is that some time is wasted searching for an optimum within the infeasible region.
The severity of the applied penalty can be static [Homaifar et al., 1994] or change throughout
the duration of the optimization [Joines and Houck, 1994]. Finally an example of a method that
makes a clear distinction between feasible and infeasible solutions is Deb’s method [Deb, 2000].
It functions by the use of a tournament selection operator where a feasible solution is always
preferred over an infeasible one. When two infeasible solution are compared the one having a
smaller constraint violation is preferred. Another technique in this category is to make infeasible
solutions feasible by moving them to a near point on the feasibility boundary [Michalewicz and
Nazhiyath, 1995]. An advantage of these methods is that, given that the initial population is
entirely feasible, no time is wasted searching in the infeasible region. Disadvantages are that
the methods perform worse on problems with a non-convex or disjoint feasible region as well
as that feasibility has to be checked for every trial solution.

Many attempts have been made to apply meta-heuristic optimization to the search for
optimal truss layouts. A modified version of the PSO algorithm has been applied to truss
structures [Luh and Lin, 2011]. The ABC algorithm in conjunction with an adaptive penalty
constraint handling method has been applied to truss structures as well [Sonmez, 2011]. A
similar study in which a DE algorithm has been used instead has also been performed [Wu
and Tseng, 2010]. A study in which GA was used to optimize truss structures subject to some
complexity constraints has also been done [Wang and Ohmori, 2010]. A combination of different
meta-heuristic methods has also been applied to truss structures [Maheri et al., 2016]. Due to
the inherent computational demand of meta-heuristic optimization methods, all of the above
named studies have been limited to small-scale truss structures with a very limited number of
degrees of freedom. Most often the meta-heuristic algorithm is supplied with the parameters
of the optimization directly, be it the cross-section size of members, the nodal coordinates, or
both.

13

An alternative approach to this is the use of a ”shape grammars”. Originally introduced
by Stiny and Gips [Stiny and Gips, 1972], shape grammars consist of a set of rules that alter
an existing geometric shape. With this approach the parameters of the meta-heuristic opti-
mization are not simply modifications of cross-section sizes or nodal coordinates but rather
the application of one of the rules from the shape- or structural grammar. Due to the geo-
metric nature of truss structures, shape grammars are suitable for and have been applied to
meta-heuristic layout optimization techniques [Shea, 1997], [Hooshmand and Campbell, 2016].
Structural grammars have also been used to generate multiple design alternatives [Mueller,
2014]. While structural grammars lower the computational load as compared to traditional
parameters for the meta-heuristic algorithm, they also limit the possible solution space. To
obtain good results it is therefore often necessary to create new rules for every new problem.

2.3 Hybrid layout optimization

Hybrid optimization methods combine gradient-based and meta-heuristic methods with the aim
to exploit advantages of both. Although when it comes to truss layout optimization these hybrid
methods have been studied much less than pure gradient-based or meta-heuristic optimizations,
some attempts have been made. In particular combining the local search speed of gradient-
based methods and the global search ability of meta-heuristic methods is often the main goal
of these hybrid methods. To exploit these respective strengths, most proposed methods are
based on a two-phase framework in which a global search is performed by the meta-heuristic
method in the first phase and a local search by the gradient-based method in the second
phase. This framework has been applied for a combination of SQP and PSO [Plevris and
Papadrakakis, 2011]. Another way to combine gradient-based and meta-heuristic methods is to
embed gradient-based operators within a meta-heuristic global search. An example of such an
approach is a method in which an optimality criteria scheme is embedded within a GA process
[Zuo et al., 2014]. For both studies speedups compared to purely meta-heuristic approaches
have been observed.

2.4 Research gap

Despite the large body of work in the field of layout optimization, its applications in engineering
practice remain nearly non-existent. For some of the requirements for application in practice,
numerous attempts to address them have been made. Support for multiple load cases as well as
the implementation of complexity constraints are examples of practical requirements in which
significant progress has been made. The desire for multiple design alternatives stemming from
the more abstract requirements of real world design however, remains largely unaddressed
(with the notable exception of Mueller’s work on structural grammars). The aim of this thesis
is to contribute to addressing this need for multiple design alternatives while retaining, or
implementing in new ways, support for previously addressed requirements such as the possibility
of multiple load cases and complexity constraints.

14

Chapter 3

Methods

This chapter provides a detailed description of the proposed hybrid scheme. Different ele-
ments of the scheme, composing of both existing methods as well as original contributions, are
explained in the different sections.

3.1 Proposed hybrid scheme

The proposed hybrid scheme works as a meta-heuristic algorithm in which each function eval-
uation is replaced with a modified version of the GSM. The modified GSM nested within the
meta-heuristic algorithm works the same way as a traditional GSM does. The difference is that
instead of a ground structure with a dense grid of nodes, only a handful of nodes initialized
at random locations within the design space are present. The number of nodes in the GSM
is a parameter of the hybrid method and is an upper bound on the number of nodes present
in the solution. The modified GSM functions as both the size and topology optimization of
the hybrid method. It does not fulfill the role of geometry optimization, since the nodes are
positioned sparsely within the design space and the GSM does not support the movement of
nodes. Because the nodal coordinates are the parameters of the meta-heuristic algorithm, it
serves the role of the remaining (non-convex) geometry optimization part of the hybrid scheme.
Allocating the role of geometry optimization to a meta-heuristic algorithm comes with a com-
putational cost, however it enables two key advantages: firstly, because the dense nodal grid
has been replaced by a select number of nodes, this number of nodes automatically functions
as a complexity constraint by limiting the possible number of nodes in the solution. Secondly,
the search of the non-convex parameter space of the geometry of the structure allows for the
discovery of multiple local minima which, when identified, can serve as design alternatives.

A simple 2-dimensional problem is presented to make the proposed method more clear.
Figure 3.1 shows a simply supported span with two movable nodes. The nodes are only free
to move in one dimension so that the problem has 2 degrees of freedom, which in turn allows
the parameter space to be visualized as a surface. In general, movable nodes would be free to
move in all available dimensions. For this case the parameters on the horizontal axes of the
surface plot, x1 and x2, represent the horizontal coordinates of the movable nodes p1 and p2
respectively. Every point on the surface represents a unique combination of locations of the
movable nodes. The height of the surface represents the material volume of the truss that
is generated by the modified GSM for the nodal locations represented by that point on the
surface.

15

Figure 3.1: Simply supported span with 2 geometrical degrees of freedom (left) and the corre-
sponding material volumes in the full parameter space (right)

Due to the nature of geometrical optimization problems the parameter space is non-convex,
with more than one local minimum. Figure 3.2 shows a selection of truss structures which are
generated for interesting points in the parameter space, such as local minima. The selected
structures display the possibility of topological variety in design alternatives, even for such a
simple problem setup.

Figure 3.2: Simply supported span parameter space and the corresponding generated truss
structures for three particular points in the parameter space

16

The parameter space is explored by a population-based meta-heuristic algorithm. Figure
3.3 gives an overview of one sample iteration. In this case each member of a population of size
10 updates its location so that it changes from the base of an arrow to its tip. Notice that not
all arrows point in a direction in which the material volume becomes lower. The meta-heuristic
algorithm allows individual members of the population to explore less optimal areas of the
parameter space to allow for the possibility of escaping local minima. Figure 3.4 displays for
one member of the population (shown as a red arrow in Figure 3.3) how the location of nodes
of the truss is influenced by the change of location in the parameter space. It also demonstrates
the impact of the geometrical change on the resulting structure generated by the modified GSM.
In this case the perturbation in the parameter space resulted in a change in topology for the
resulting structure.

Figure 3.3: One iteration of a population-based meta-heuristic algorithm exploring the param-
eter space

17

Figure 3.4: Effects on the topology of the structure of one population member from one geom-
etry optimization iteration

The population keeps exploring the parameter space until a termination criterion, such as
exceeding a limit on the number of iterations, is met. For two out of the three developed
variants of the hybrid scheme, this optimization process is followed by a design alternative
selection process in the form of a topology identification method. Figure 3.5 shows a diagram
explaining the order in which different elements of each method are executed. In the following
sections each element from the diagram will be explained in detail.

18

Figure 3.5: Diagram illustrating the high-level hybrid scheme workflow

3.2 Modified Ground Structure Method

The only change to the modified ground structure method as compared to the original method,
is with respect to the arrangement of the nodes from the ground structure. Therefore its
internal workings remain unchanged. Any existing GSM code would thus be compatible with
the proposed hybrid scheme. An example of a publicly available piece of code written in Python
by He et al. [L. He, 2019] boasts good performance for large-scale problems, as it was designed
to do so. For small-scale problems however, the implementation becomes hugely inefficient.
The cause for this is two-fold: firstly the implementation employs an adaptive member adding
scheme. While this results in major speed-ups for large-scale problems, small-scale problems
are actually slowed down by this approach. This problem can very simply be overcome by
eliminating the adaptive member adding scheme. The second reason for the inefficiency of the
script is that it makes use of a python package called CVXPY [Diamond and Boyd, 2016]. This
package allows convex optimization problems to be written in a user-friendly manner while
making use of highly efficient solver packages, such as in this case, MOSEK (www.mosek.com).
The conversion of the input given to the CVXPY API to a form in which it is compatible with
the MOSEK API does introduce some computational overhead. For large-scale GSM problems,
and thus many degrees of freedom, this overhead is negligible compared to the time spent by
MOSEK on solving the problem. For small-scale problems however, this overhead does become
significant up to the point where the time spent on this conversion overhead can be equal
to many times the solver time. This additional computational overhead can be overcome by
directly interacting with the MOSEK API instead of indirectly via the CVXPY API. Doing this
does however introduce additional requirements to how the optimization problem is formulated.

19

3.2.1 Primal formulation

Arguably the most intuitive formulation of the ground structure topology optimization problem
is the primal form, in which the material volume is minimized while being subject to equilibrium
equations and stress constraints. This primal formulation of the ground structure optimization
problem, subject to multiple load cases, can be defined as follows [Bendsøe et al., 1994]:

min
A,S(l)∈RM

V = LTA

s.t. BTSl = P l

−AσC ≤ Sl ≤ AσT

for l = 1, 2, ..., K

Ai ≥ max
l=1,2,...,K

(
Sl,i

σT
,
−Sl,i

σC

)
for i = 1, 2, ...,M

(3.1)

where:

V = total material volume
L = vector of member lengths
A = vector of member cross-section areas
M = number of potential bars
B = equilibrium matrix
K = number of load cases
Sl = vector of member forces corresponding to load case l
P l = external load vector corresponding to load case l
σC = maximum allowable compressive stress
σT = maximum allowable tensile stress

As of writing this thesis, MOSEK does not support a ”maximum” operator outside of the
maximization of the objective function. It is for this reason that only the single load case
variant (K = 1) of the primal formulation can be implemented directly with MOSEK.

3.2.2 Dual formulation

Optimization problems can always be formulated from two different perspectives: the primal
and the dual formulation [Boyd and Vandenberghe, 2004]. In general, the solution to the dual
problem is a lower bound of the solution of the primal problem, and their difference is equal
to the ”duality gap”. If however the problem is convex, as well as its constraint functions
affine, then these are sufficient conditions for the duality gap to be equal to zero. As these
conditions apply to the ground structure optimization problem, the duality gap is equal to zero
and thus the solution to the dual problem equal to the solution of the primal problem. The
dual formulation is given by [Sokól, 2014]:

max
ul∈RN ,e+l ,e−l ∈R

M
W =

∑
l

P T
l ul

s.t.
∑
l

(σTe
+
l + σCe

−
l) = L

Bul − e+
l + e−l = 0

e+
l ≥ 0, e−l ≥ 0

for l = 1, 2, ..., K

(3.2)

20

where:

W = sum of external work (compliance)
ul = vector of nodal displacements corresponding to load case l
e+
l = vector of member elongation

e−l = vector of member compression

This formulation, albeit less intuitive, lacks the maximization operator in the constraint,s
and can thus be directly implemented using the MOSEK API.

3.2.3 Parametrization

Conventional GSM scripts are designed to solve any given problem only once. Since the method
is fully deterministic, there is no reason to solve a problem multiple times. In the context of the
proposed hybrid scheme however, many slight variations of the same problem are solved after
one another. Due to the similarity between the consecutive GSM runs, it is possible to save
computation time by setting up a parametrized problem only once, after which it is used for a
number of times equal to the population size of the meta-heuristic algorithm times the number
of iterations. In this parametrized model only those variables which are subject to change are
parameters, while all other variables are set up as constants. The member length vector L
and equilibrium matrix B for example, are dependent on the nodal locations. Since the nodal
locations are dynamic in between consecutive runs of the GSM subroutine, L and B are both
set up as parameters. Their size, as well as the sparsity pattern of B, are however static, and
are thus set up as constants. Finally, the variables independent of nodal locations, P l, σC and
σT can all be set up as constants.

3.3 Meta-heuristic algorithm

The modified GSM from the previous section serves as the fitness function of the meta-heuristic
algorithm. The input for the modified GSM, and thus the parameters of the meta-heuristic
algorithm are the spatial coordinates of the nodes of the truss. Thus the dimensionality of the
parameter space of the meta-heuristic algorithm is defined by

D = d ∗ n− f (3.3)

where:

D = number of dimensions of the parameters space
d = number of dimensions of the design space
n = number of nodes
f = number of fixed degrees of freedom

The output of the modified GSM is the total material volume V . In order to preserve the
convention of maximizing fitness, while still minimizing V , the following relation is employed:

f =
1

1 + V
(3.4)

in which f is the fitness value and V the material volume. This function ensures that a lower
material volume corresponds to a larger fitness value, which represents a better solution.

21

For all variants, boundaries of the design space are dealt with by converting infeasible
solutions to feasible ones. This is done by moving violating degrees of freedom to the value
of the closest boundary. This method is suitable for this type of problem first of all because
the parameter space is entirely convex, so there would be very little benefit in making use of
a penalty function. Secondly, the fitness function (modified GSM) is fairly computationally
expensive. This makes it so that the extra computation time required for checking feasibility
of solutions becomes insignificant in the total computation time of the method.

3.3.1 Artificial Bee Colony

The Artifical Bee Colony (ABC) algorithm is a population-based meta-heuristic optimization
method. First conceived by Karaboga, the algorithm is inspired by the division of labor exhib-
ited by honey bees [Karaboga, 2005]. The population is split in two, with one half becoming
”employed bees”, while the other half is assigned the task of ”onlooker bees”. These two groups
represent two distinct phases in each iteration of the algorithm (Figure 3.6).

22

Figure 3.6: Diagram illustrating the artificial bee colony workflow

The algorithm starts off with initializing and assigning a ”food source” to each employed
bee. In this context, a food source simply represents a location in the parameter space. After
initialization the employed bees phase starts with each employed bee first checking if it has
reached the evaluation limit (more on that later). If the evaluation limit has not been reached,
the fitness of a nearby food source is evaluated. The nearby food source is determined by

23

vij = xij + φij(xij − xkj) (3.5)

where:

v = nearby food source
x = original food source
φ = random number between -1 and 1
i = index of current food source
j = random index of parameter space dimension
k = random index of any food source that is not i

The perturbation from x to v is dependent on the distance between x and another randomly
chosen food source. This ensures that step sizes remain a reasonable size for the search space
that is being explored. The newly found food source is evaluated and if it has a better fitness
value than the original, it replaces it, with the employed bee now being assigned to the new
food source. If the newly found food source has a worse fitness value, it is discarded and the
evaluation counter of the original food source is increased by one.

Once all employed bees have attempted to improve their respective food source, the on-
looker bees phase starts. Every onlooker bee chooses a food source depending on its associated
probability value. This value is calculated by

pi =
f(xi)∑SN

n=1 f(xn)
(3.6)

where:

p = probability value
f = fitness function
SN = number of food sources

Since the probability value is higher for higher fitness values, the onlooker bees are dis-
tributed such that the best food sources are most frequently chosen. Once an onlooker bee
has chosen a food source its behaviour is identical to that of the employed bee: a nearby food
source is generated according to (3.5). If this new food source is better than the original, the
employed bee of the original food source is moved to the newly discovered food source. If the
new food source is worse than the original, the evaluation counter is increased once more. Once
all onlooker bees have generated a new food source, the onlooker bees phase ends and given
that the maximum number of iterations has not yet been reached, a new iteration continues
this cycle of alternating phases.

After the first iteration, it becomes possible that at the start of the employed bees phase
one of the food sources has met the evaluation limit. Once this happens, before a nearby food
source is generated, the original food source is replaced with a newly initialized food source
in a random location in the parameter space, and its evaluation counter is set to zero. This
mechanism allows food sources which are likely unimprovable (due to being stuck in a local
minimum for example) to be abandoned. The evaluation limit of unsuccessful attempts to
improve the food source before it is abandoned is a parameter of the method. A low evaluation
limit allows the algorithm to encounter many different local minima, at the cost of some solution
quality. For finding many design alternatives this could be a valuable feature, which is why it
was chosen as one of three alternatives to be implemented.

24

3.3.2 Particle Swarm Optimization

The Particle Swarm Optimization (PSO) algorithm is one of the earliest, and still one of the
most popular population-based meta-heuristic algorithms. Introduced by Kennedy and Eber-
hart, it was originally intended to simulate social behaviour in groups of animals [J. Kennedy,
1995]. Despite its age, perhaps due to its simplicity, PSO still performs very well when com-
pared with other more recently introduced algorithms [Ab Wahab et al., 2015]. PSO works by
a population of particles exploring the parameter space, in which their movement is guided by
the personal experience of each particle, but also by the swarm as a whole. Figure 3.7 shows a
diagram displaying the workflow of the algorithm.

Figure 3.7: Diagram illustrating the particle swarm optimization workflow

The algorithm starts with initializing the location, as well as a velocity, for each particle
in the swarm. For each particle their fitness value is evaluated as well. Every particle keeps
track of their personal best position, in which the best position is the position corresponding to

25

the highest fitness value. A global variable, called the global best, represents the best personal
best position of all particles. Every iteration, the velocity of each particle is updated. In the
constriction-factor variant the velocity is updated according to [Clerc and Kennedy, 2002]:

vi+1 = χ ∗ (vi + c1 ∗ r1 ∗ (pi − xi) + c2 ∗ r2 ∗ (g − xi))

χ =
2∣∣∣2 − φ−
√
φ2 − 4φ

∣∣∣
φ = c1 + c2

(3.7)

where:

v = vector of particle velocity
i = iteration number
c1 = self confidence parameter
c2 = swarm confidence parameter
p = location of personal best
g = location of global best
r = random number between 0 and 1

This function ensures that the updated velocity is a function of the original velocity, the
direction towards the personal best, and the direction towards the global best. The ratio
between their influence is dependent on some randomness as well as two parameters of the
method: c1 and c2. They respectively represent the confidence in the personal best of each
respective particle and the global best. The values of these parameters determine the emphasis
of the algorithm, in which a higher c1 value promotes more local search, and a higher c2 value
promotes more global search.

After updating the velocities of particles, their positions are are updated simply according
to:

xi+1 = xi + vi+1 (3.8)

Until the maximum number of iterations has been met, this cycle continues starting with
updating the personal and global best positions again.

3.3.3 Multi-Species Particle Swarm Optimization

The Multi-Species Particle Swarm Optimization (MSPSO) is an extension to the original PSO
method, proposed by Iwamatsu. The extension adds a new speciation phase which splits up the
swarm into multiple species, with the goal of locating multiple minima in the parameter space
[Iwamatsu, 2006]. Figure 3.8 shows how the speciation phase is integrated with the original
algorithm.

26

Figure 3.8: Diagram illustrating the multi-species particle swarm optimization workflow

The additional speciation phase consists of going over each particle in the swarm and check-
ing whether it is within a certain threshold distance σ of any species seed. If this is not the case
the particle itself becomes the seed for a new species. If this is the case, the particle becomes
part of the species created by the seed. If a particle is within the threshold distance of multiple
species seeds, the seed with the highest fitness value is chosen. This way seeds effectively cre-
ate a hyper-sphere around themselves, within which particles can become part of that species.
Figure 3.9 shows an example of the result of speciation for a 2-dimensional parameter space.

27

Figure 3.9: 2-dimensional spheres around species seeds determine which species each particle
belongs to

Outside of the speciation phase the method functions mostly the same as the original PSO
method does. To separate the global search of each species however, the global best variable in
the velocity update function is replaced with the species best variable such that it becomes:

vi+1 = χ ∗ (vi + c1 ∗ r1 ∗ (pi − xi) + c2 ∗ r2 ∗ (si − xi)) (3.9)

where:

s = location of species best

Unlike the base PSO algorithm or the ABC algorithm, the MSPSO algorithm inherently
identifies local minima, and thus possible design alternatives through the species seeds. This
could make the MSPSO algorithm very suitable for the proposed hybrid scheme in which the
identification of multiple design alternatives is a primary objective.

3.4 Topology identification

Because the PSO and ABC algorithm posses no inherent mechanism to identify local minima,
an additional step is required to extract from all the different solutions encountered during
optimization, the ones which are worth showing to the end-user. For this purpose, an original
method is proposed. The goal of the method is to find a variety of distinct structures of which
the volume is close to that of the global minimum. It is therefore necessary for the method to
be able to be able to distinguish slight variations in the structure from structures that we would
consider to be distinct. The decision has been made to base the distinction between variations
of structures and distinct structures on whether the change is purely geometrical (i.e. nodal
locations) or topological as well (i.e. nodal connectivity). The goal is thus to be able to create
a routine that is able to identify the topology of any structure. Let us consider the structure
shown in Figure 3.10. Although the example structure is in 2D, the routine remains identical
for 3D structures.

28

Figure 3.10: 2D example structure

A connectivity array is created by examining which of all possible members are present, and
which are not. If there is a consistent method in which these members are allocated to indices
of the array, then this array can be represented as a binary number which serves as an identifier
for the topology of the structure. When this is done for the example structure according to the
member ordering method shown in Table 3.1, the binary ID is equal to 0010011111. Since it is
unpractical to store and compare binary representations of numbers, the binary ID is converted
to a decimal ID, which in this case would be equal to 159.

Digit 1 2 3 4 5 6 7 8 9 10
Start node 1 1 1 1 2 2 2 3 3 4
End node 2 3 4 5 3 4 5 4 5 5
On or Off 0 0 1 0 0 1 1 1 1 1

Table 3.1: Example binary ID

This method of identifying distinct topologies is dependent on a constant ordering of the
(movable) nodes. In this case an ordering from left to right is assumed. If this ordering would
not be present then the method described above would identify a structure in which node
4 and 5 in Figure 3.10 are switched as distinct, while in reality they are equal. A common
phenomenon that could disrupt the function of the topology identification method is when a
structure does not contain all the available nodes (Figure 3.11).

Figure 3.11: 2D example structure with one unconnected node

If no modification is made to the method, then the the binary ID of the structure would be
equal to 000100011011001, and its decimal ID equal to 2265. However if the digits associated

29

with connections to the unconnected node are removed from the binary ID (Table 3.2), then
the result is identical to the structure without the unconnected node.

Digit 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Start node 1 1 1 1 1 2 2 2 2 3 3 3 4 4 5
End node 2 3 4 5 6 3 4 5 6 4 5 6 5 6 6
On or Off 0 0 0 1 0 0 0 1 1 0 1 1 0 0 1

Table 3.2: Example binary ID with one unconnected node

One might point out that the decimal value of a binary number is not unique since adding
any number of zero’s to the lefthand side of the binary number results in an equal decimal
value. The only way in which more digits are added to the binary number is if an additional
node is connected to the structure (since unconnected nodes do not influence the ID). More
specifically if an additional node is connected to a structure of n nodes, n more connections
are possible and thus n digits are added to the binary number. For the decimal value of the
binary number of the new structure to be equal to that of the original structure the leftmost n
digits thus need to be equal to zero. These digits are associated with the members connected
to the first node, and thus if these are zero, the first node is unconnected to the rest of the
structure. This contradicts with the assumption that an additional node is connected to the
structure and thus it is impossible for two binary connectivity arrays with an unequal number
of digits to have an equal decimal value.

Unfortunately there are still some phenomena which cause this method to misidentify
topologies: if two nodes are displaced such that their order based on the nodal coordinates
is flipped, the displaced structure is misidentified as a distinct topology. Figure 3.12 shows an
example of how the structure in Figure 3.10, when the movable nodes are ordered from left to
right, could undergo a geometrical change that alters the topology ID.

Figure 3.12: 2D example structure in which a geometry change causes a topological misidenti-
fication (movable nodes are ordered from left to right)

To catch any false negatives (when two topologies are equal but are labeled as distinct) by the
ID method, an existing algorithm from graph theory is employed. Graphs are mathematical
structures consisting of vertices connected by edges. It is therefore quite straightforward to
represent a truss as an (unlabeled) graph. A set of unlabeled graphs of which their connectivity
(i.e. topology) is identical is said to be isomorphic. The VF2 algorithm, originally developed
by Cordella et al., is an efficient algorithm capable of conclusively testing whether a set of
graphs is isomorphic or not [Cordella et al., 2001]. The VF2 algorithm has been implemented

30

in a graph-related Python package called NetworkX [Hagberg et al., 2008], which is used in
the topology identification method. Although very efficient, the VF2 algorithm is still much
more computationally expensive than generating a topology ID. Moreover, once a topology ID
has been created for a structure it can be compared to any other structure with a topology ID
almost instantly. Since the VF2 algorithm can only check a set of graphs, it is only employed
to catch any false negatives from the ID method, as well as only for the structures which are
candidates for being displayed to the end-user (more on this later).

Finally, there exists a difficulty in determining which elements are part of the structure, and
which are not. The GSM determines the cross-sectional areas of all possible members in the
structure via gradient-based optimization. This means that the members of which the cross-
sectional area should be equal to zero are actually equal to some very small value. To determine
which members are actually present in the structure, and which members only seem to be due
to this numerical artifact, use is made of a method to distinguish members which are critical
for the structure, and members which are not. A very simple method would be to employ a
threshold value, defined as a percentage of the value of the largest cross-sectional area present in
the structure. Any cross-sectional area below this threshold is then considered not to be present
in the structure. If a relatively low threshold percentage is chosen (0.1%-1%), no important
structural members are left out of the final structure. However, some structural members of
lower importance remain in the final structures as well. This in itself is not an issue, however
any alteration in the topology of these secondary members results in a different topology ID,
even though the primary structures are identical. An example of such a case is shown in figure
3.13. The secondary members are barely visible due to their small cross-sectional areas, Figure
3.14 shows the same figures in which the secondary members are highlighted in green.

Figure 3.13: Two variants the same main topology, with differing topology in secondary mem-
bers

31

Figure 3.14: Two variants the same main topology, with differing topology in secondary mem-
bers. Secondary members are highlighted in green

A solution to this problem could be to increase the threshold percentage. However if large
threshold percentages are chosen (1%-10%), a new problem arises in which members that do
have a significant contribution to the load carrying capacity can disappear. This results in
strange and undesirable structures in which for example a node could be connected to the rest
of the structure by only a single member (Figure 3.15).

Figure 3.15: Example of a structure in which a node is connected to the structure by just one
member

A more elaborate set of conditions is therefore employed to separate critical from non-critical
members: firstly non-critical nodes are identified. Non-critical nodes are defined as nodes of
which the connecting member with the largest cross-section area is below 30% of the nodal
average of the largest connected cross-section area. This step effectively removes nodes, and

32

their connected members, to which no critical members are connected. Secondly, non-critical
members are identified by the condition that their member area must be below 50% of the nodal
average member area of its connecting nodes at both ends. In this way members which are
deemed non-critical to both of its end-nodes are removed from the structure as well. Thirdly,
nodes which are connected only to two other nodes are replaced with a single member directly
connecting those two neighbouring nodes. While such nodes can not exist in the original
structure, the removal of a non-critical member (in step 2) from a node connected to just three
members will create a part of the structure where two members connected only to each other
at one end effectively create a kinked member. Replacing this kinked member-construction
with a single member avoids topological misidentification. Next, it is verified that the smallest
distance between any two nodes is larger than 20% of the average distance between nodes. This
step serves to remove structures of which many topological alternatives are possible without
much change to the actual structure. Namely if two nodes are extremely close to one another,
a member could switch its connectivity from one node to the other and thus changing the
topology while the structure remains nearly unchanged.

This entire procedure is computationally quite costly and therefore unfeasible to execute
for every solution that is found by the meta-heuristic algorithm. Instead, similarly to the
VF2 algorithm, it is only employed for structures which are candidates for being displayed
to the end-user. The total structure of the topology identification method consists effectively
of two phases: the first phase simply consists of generating a topology ID for each solution
that is generated during the execution of the meta-heuristic algorithm. The second phase
takes place after the meta-heuristic algorithm has finished and has as its purpose to display a
specified number of distinct high-quality solutions to the end-user. Figure 3.16 shows a diagram
explaining the workflow of this second phase.

33

Figure 3.16: Diagram illustrating the workflow of phase 2 of the topology identification method

34

Chapter 4

Results

In this chapter each of the three hybrid method variants: ABC, PSO and MSPSO will be
subjected to three case study problems. The results are presented and observations are made.
While observed phenomena are explained, discussion of the results is left to chapter 5.

4.1 Case study problems

The first of the three case study problems is a 4-point cantilever, displayed in Figure 4.1. Three
nodes, acting as supports, have fixed displacements in all three directions. A single point load
acts downwards on the remaining unsupported node. These 4 nodes are fixed in location during
the optimization process. Besides these 4 nodes, 4 additional movable nodes are present within
the design space: a 5 by 4 by 4 rectangular cuboid. The boundaries of the design space have
been chosen large enough such that they do not inhibit any potential optimal solutions. With
4 fixed nodes and 4 movable nodes, potential solutions can therefore contain at most 8 nodes.
From hereon this problem will be referred to as problem 1a.

Figure 4.1: Case study problem 1a

35

The second case study (Figure 4.2) is a variant of the first. It is identical, except that the
number of movable nodes has been increased from 4 to 8. This in turn increases the limit of
nodes for potential solutions from 8 to 12. This case study is designed to compare the differences
between the different method variants at different problem scales, while keeping most of the
other variables the same. This problem will be referred to as problem 1b.

Figure 4.2: Case study problem 1b

The third and final case still resembles a cantilever, however this structure is subject to
multiple load cases (Figure 4.3). It is emphasized that these loads resemble different load cases
meaning that while the structure must be capable of resisting both loads, it is not required to
resist both loads simultaneously. This case study is designed to be similar to case 1a but still
contain multiple load cases. A comparison of both cases could therefore reveal the effect of the
problem containing multiple load cases on the solution.

36

Figure 4.3: Case study problem 2

To enable a fair comparison between the three method variants, method parameters are
set equal when they apply to multiple methods. Method parameters unique to any given
method are set to appropriate values for the given problems. Table 4.1 gives an overview of
the parameters used for each method variant.

Table 4.1: Overview of method parameter values

Parameter ABC PSO MSPSO
Population 30 30 30
Max number of iterations 200a 200a 200a

Evaluation limit 100 N/A N/A
c1 N/A 2.05 2.05
c2 N/A 2.05 2.05
Distance threshold N/A N/A 5.5b

a For case 1b 400 iterations are used, b for case 1b this value is set to 10

Quality of solutions will be measured in ”volume penalty”, this value is the percentual in-
crease in volume as compared to a standard GSM solution with a dense nodal grid. Appendix
A gives an overview of the derivation of these benchmarks. It should be noted that the bench-
marks contain an extremely large number of members and nodes, while the hybrid method
solutions are limited in their complexity. A volume penalty of zero is therefore virtually always
unattainable. This means that even though a structure is labeled with a certain volume penalty,
this does not mean that it could not represent the theoretical optimum, given its complexity
constraints.

37

4.2 Convergence speed

Figure 4.4 shows the convergence of the three method variants for case 1a. The vertical axis
displays the volume penalty percentage of the least volume structure found by the method up
until the iteration displayed on the horizontal axis. The average convergence of 300 independent
realizations is shown, as is a sample of individual realizations for each method variant.

(a) ABC (b) PSO

(c) MSPSO (d) 300 realization averages

Figure 4.4: Individual realizations and 300 realization averages of convergence of ABC, PSO
and MSPSO hybrid method variants for case study 1a

From figure 4.4d it is apparent that out of the three method variants, the ABC hybrid
method convergences by far the fastest. The MSPSO variant converges the slowest, however
its difference with the PSO variant is small compared to the difference between the PSO and
ABC variants. Because the PSO and MSPSO method both start with a randomly initialized
population of structures, it is expected that before the first iteration they have an equal average
volume penalty. The reason that the ABC method initially has a higher average volume penalty,
is that only half of its population (the employed bees) initializes a random structure. Thus
while the PSO and MSPSO variants start with a volume penalty that is the lowest out of 30
random structures, the ABC variant starts with a volume penalty that is the lowest out of 15
random structures, which is naturally higher.

The samples of individual realizations indicate some differences between the three variants
as well. The ABC variant not only converges the fastest to a high-quality solution, but it also

38

appears to be the most consistent in doing so. The individual realizations of the ABC method
remain quite close to the 300 realization average for the entire optimization process. For the
PSO and MSPSO method individual realizations deviate quite starkly from the 300 realization
average with what seems to be, due to the long flat portions of the graphs, a tendency to get
stuck in local minima. Figure 4.4c does however include one realization with a sharp drop-off in
volume penalty succeeding a long period of it being constant. This could be an indication that
given enough iterations, the PSO and MSPSO methods are capable of escaping local minima
in which they have been stuck for some time.

The convergences of case study 1b and 2 have been studied as well, and their graphs display
the same pattern as seen in Figure 4.4 to a great extent. The reader is referred to Appendix B
for these graphs if further verification of the observations done in this section is desired.

4.3 Topological variety

The most insightful way of comparing topological variety between the methods is by examining
the results produced by single realizations of the method variants. Effort has been made to select
realizations which are representative for a typical result of the respective method variant. For
all methods and case studies the 20 best design alternatives are displayed, with the exception of
the MSPSO variant. Due to the nature of this method, and the somewhat limited population of
30 individuals, this method produces less than 20 design alternatives, of which all are displayed.

The members in the structures displayed in this section are coloured according to the fol-
lowing rules: members which are in tension for all load cases are displayed as red. Members
which are in compression for all load cases are displayed as blue. Finally, members which are
in tension for some load cases, while compression in others are displayed as gray.

4.3.1 Case study 1a

The design alternatives produced by the ABC variant for case study 1a (Figure 4.5) are mostly
very similar. At first sight some structures might seem to possess identical topologies. The
topology identification has made this impossible however, and upon closer inspection a differ-
ence in topology between any 2 displayed graphs, however small, is always found.

39

Figure 4.5: Design alternative variety of ABC hybrid method for case study 1a (Red = Tension;
Blue = Compression)

While still quite monotonous, when compared to the results of the ABC variant, the PSO
variant does demonstrate some more significant variety in its design alternatives. This does
come at a slight cost in solution quality however (Figure 4.6). Where the ABC variant solutions
range from 3.4% to 6.5% volume penalty, the PSO variant produces solutions with penalties
ranging from 3.6% to 9.6%.

40

Figure 4.6: Design alternative variety of PSO hybrid method for case study 1a (Red = Tension;
Blue = Compression)

Despite its low number of design alternatives, most of the alternatives displayed by the
MSPSO variant are significantly distinct. The range of solution quality still suffers more how-
ever, going from 5.5% up to 14.2%.

Figure 4.7: Design alternative variety of MSPSO hybrid method for case study 1a (Red =
Tension; Blue = Compression)

41

4.3.2 Case study 1b

The volume penalties shown by the ABC design alternatives for case 1b (Figure 4.8) are signifi-
cantly lower than those of case 1a. This reduction in volume penalty is due to the ABC variant
incorporating the additional movable nodes at its disposal, in the structures. The result is a set
of design of alternatives with lower volume penalties, but more complex structures containing
more nodes and members as well. The topological variety remains similar to case 1a, where all
variants are strictly topologically distinct, but their variations are small.

Figure 4.8: Design alternative variety of ABC hybrid method for case study 1b (Red = Tension;
Blue = Compression)

Unlike the ABC variant, the PSO variant makes little use of the additional movable nodes
of case 1b (Figure 4.9). Consequences are that the results are extremely similar to the PSO
results of case 1a, both in topological variety as well as in solution quality.

42

Figure 4.9: Design alternative variety of PSO hybrid method for case study 1b (Red = Tension;
Blue = Compression)

Similarly to the PSO variant, the MSPSO variant is unable to effectively utilize the ad-
ditional movable nodes introduced in this case study. The solutions of case 1b (Figure 4.10)
retain their high topological variety and relatively low solution quality when compared to the
results of case 1a.

Figure 4.10: Design alternative variety of MSPSO hybrid method for case study 1b (Red =
Tension; Blue = Compression)

43

4.3.3 Case study 2

Case study 2 introduces multiple load cases. Figure 4.11 displays the design alternatives pro-
duced by the ABC method variant. One could argue that the topological variety increases
when compared to case study 1a, although at most its effect is small. What is apparent, is that
despite a comparable number of nodes in the structure as case 1a, the structures produced for
case 2 are significantly more complex with a higher degree of connectivity between the nodes.

Figure 4.11: Design alternative variety of ABC hybrid method for case study 2 (Red = Tension;
Blue = Compression; Grey = Tension and compression for different load cases)

Similarly to case 1a and b, the topological variety displayed by the PSO variant (Figure
4.12) can be said to be somewhat higher than that of the ABC variant. The PSO variant also
has lower solution qualities once again, with a volume penalty that is roughly double that of
the ABC variant solutions.

44

Figure 4.12: Design alternative variety of PSO hybrid method for case study 2 (Red = Tension;
Blue = Compression; Grey = Tension and compression for different load cases)

Finally, the MSPSO variant produces once again design alternatives with the most topolog-
ical variety (Figure 4.13).

Figure 4.13: Design alternative variety of MSPSO hybrid method for case study 2 (Red =
Tension; Blue = Compression; Grey = Tension and compression for different load cases)

45

4.4 Computational efficiency

4.4.1 Ground Structure Method optimizations

Figure 4.14 displays the GSM subroutine runtime for case 1a for different code implementations.
The CVXPY API implementation is by far the slowest with a total runtime of 12.6 ms of
which just 0.9 is spent in the solver. The remaining 11.7 ms is spent interpreting the problem
formulation and converting to a form in which it can be solved efficiently. Using a basic
MOSEK API implementation less than a third of this 11.7 ms conversion time is still left, with
a conversion time of just 3.6 ms. By introducing the parametric scheme in which constants in
the problem formulation are set up only once, the problem setup time is roughly cut in three
once again, leaving 1.3 ms. Finally, making use of a sparse equilibrium matrix and implementing
its sparsity pattern as a constant in the parametrized model, the setup time is reduced to 0.9
ms. In total a problem setup time speed up of 13 times is achieved. Due to the solver time
being independent of implementation, the total GSM subroutine time is sped up by a factor of
7.

Figure 4.14: MOSEK API performance increase as compared to CVXPY API (case 1a)

4.4.2 Total iteration times

Next to the solver and problem setup time in the GSM subroutine, the third and final part of
the algorithm taking up computation time is the logic within the meta-heuristic algorithms.
Figure 4.15 displays the time spent in each of the three categories for each method variant, for
each case study.

46

Figure 4.15: Computation time distribution comparison

A number of observations can be made: The solver time for case 1b is roughly 50% higher
than that of case 1a. This increase in solver time is expected since the problem remains
identical except for the addition of more (movable) nodes, and thus degrees of freedom to the
GSM problem. The problem setup time increases as well, but only by approximately 33%. It
is known that for large-scale problems the problem setup time becomes much less significant,
which is consistent with this pattern of a more aggressive increase in solver time than problem
setup time. Case 2 boasts an even larger solver, as well as problem setup time, despite containing
9 instead of 12 nodes. Apparently the addition of an extra load case is computationally more
expensive than an increase from 9 to 12 nodes in the ground structure. The GSM problem setup
time and solver time are equal for all three method variants. This is because all three variants
use an identical GSM subroutine, which is the only factor in determining these computation
times.

The meta-heuristic optimization does show significant differences in computation times be-
tween the method variants. With the ABC variant being the slowest and the MSPSO variant
being only slightly faster, the PSO variant is much faster than its competitors. Because the
PSO method is by far the simplest method of the three it requires the least amount of logic
in its Python implementation. Since Python is a high-level programming language, differences
in the amount of logic required can have a significant impact on the total computation time.
Shifting the attention to the difference in meta-heuristic computation time between the case
studies, it is apparent that case 1b is computationally the heaviest. This is to be expected
since case 1b boasts double the number of movable nodes compared to case 1a and case 2. The
meta-heuristic optimization time is independent of the number of load cases, and thus unlike
for the solver and problem setup time, the meta-heuristic optimization time for case 2 is lower
than that for case 1b.

When the comparatively small additional computation time of the topology ID method is
taken into account, total run-times for the results displayed in this chapter range from 15 to
25 seconds, depending on the case and method variant. An exception to this are the results
for case 1b: because of the doubling of the number of iterations from 200 to 400, results for
these cases take roughly double the computation time to produce as well, ranging from 40 to
50 seconds.

47

Chapter 5

Discussion

5.1 Comparison of variants

Table 5.1 shows a ranking of the three method variants in the tested categories based on the
results found in chapter 4.

Table 5.1: Ranking of method variants in the tested categories.

Category ABC PSO MSPSO
Convergence speed 1 2 3
Topological variety 3 2 1
Computation time 3 1 2

The fast convergence speed of the ABC variant is a huge advantage compared to the other
variants. It is likely however that it is also partially responsible for its observed low topological
variety. The ABC variant finds a good solution so quickly because, due to its division of labor,
it is able to focus its attention to the best solutions in the population. Because of this attention
to the best solutions, many slight variants of this solution are generated. Since the topology
ID method is unable to distinguish slightly topologically different structures from structures
which are entirely distinct, the best n distinct structures consist of mostly slight variants of
this one good solution. Because of how the topology ID method works, the PSO method,
which is effectively worse at solving the geometry optimization problem than the ABC method
is, results in more topological variety. The MSPSO variant produces results with the best
topological variety. This is naturally due to it not making use of the topology identification
method, but rather by its build-in mechanism to find multiple solutions with a predetermined
minimum parameter space distance between them. Unfortunately due to the MSPSO method
being a PSO method extension, its convergence to quality solutions is very similar to the PSO
variant.

The fact that even the worst structure produced by the MSPSO method has a material
penalty of less than 20% does reveal some characteristics about the hybrid scheme as well. It is
not rare for structural engineers to design structures with volume penalties of more than 30%.
The method might be unable to find these structures because only non-optimal geometries are
tolerated. The topology of any given structure is always optimal due to the convex optimiza-
tion of the modified GSM. Given the nodal locations of a Pratt truss for example, the GSM
will generate a topology which does not resemble a Pratt truss. While high volume penalty
structures such as the Pratt truss are not desired to be found by the method, it is likely that
lower volume penalty structures with non-optimal topologies are out of reach for the hybrid
scheme as well.

48

As for computation time, the PSO method is the fastest of the three, which does give it a
genuine advantage over the ABC and MSPSO variants with their current prototype implemen-
tations. An implementation build for actual usage by engineers would change this however:
due to the usage of a highly efficient solver package, which for the ABC and MSPSO variants
takes up roughly a third of the total runtime, the solver time will not see any reduction for a
more polished implementation of the methods. The problem setup time could possibly still be
reduced, however due to the already implemented optimizations it is very likely that a signifi-
cant part of its computation time will remain. The meta-heuristic optimization time could be
made much faster than it is in the current state, implementing it in a lower level programming
language, such as C, instead of Python. It is not unrealistic that speedups of tens, up to ten
thousand times, are possible. Such speedups would make the meta-heuristic optimization time
negligible compared to the problem setup and solver time. This would effectively make the
speed advantage the PSO variant currently has over the ABC and MSPSO variants, vanish.

5.2 Practicality

The limitation on the number of nodes in the structure has, in most cases, the desired effect
of limiting the number of members, connections and therefore complexity of the structure. An
exception to this is the case in which multiple load cases are considered. For these structures
the connectivity between the nodes is quite dense, resulting in more complex structures. While
at least for the single load case problems the structures are limited in its number of members,
the angles between members are highly irregular. The effect this has on the constructability of
the structures is highly dependent on the available manufacturing techniques.

Computation times of 15 to 25 seconds for small-scale problems are, given enough variety
in the design alternatives, acceptable. For most topology optimization methods it is desired
to have any particular run take up to at most a couple of seconds. Such short computation
time targets stem from the tendency of users to run slightly different versions of the same
optimization consecutively. This way the user is exploring different design alternatives by
changing parameters or boundary conditions. The proposed hybrid methods (intend to) pro-
duce a selection of design alternatives for every run. Thus larger computation times are not
only understandable, but acceptable as well. For larger-scale problems, however, computation
times quickly increase. A doubling of the number of movable nodes, and thus the number
of degrees of freedom for the meta-heuristic algorithm (the GSM experiences an even larger
increase in number degrees of freedom) resulted in a 2 to 3 times increase in total computation
time. Because there remain only relatively small speed-ups to be gained in the GSM subroutine,
the meta-heuristic algorithm will need to be optimized for the number of GSM calls to make
larger-scale problems feasible as well.

49

Chapter 6

Conclusion

6.1 Research questions

The main research question is repeated:

”Is a method based on the proposed hybrid scheme capable of generating multiple good design
alternatives?”

The answer to this question, for any of the implemented methods is debatable: the ABC
variant of the hybrid scheme is capable of producing good results, however the variety in its
design alternatives is limited. The MSPSO variant produces moderately low volume structures
as well as exhibiting a reasonable variety of design alternatives. It is likely however that with
a more advanced topology identification method for the ABC variant, or a faster convergence
for the MSPSO variant, a set of good design alternatives is achievable.

The first of two sub-questions was as follows:

”Which of the considered meta-heuristic algorithms is best-suited for the proposed hybrid
scheme?”

In the current state of the three methods, the MSPSO algorithm is considered to be the
best-suited, due to its ability of finding the most distinct design alternatives. Due to the fast
convergence of the ABC algorithm however, the author’s judgement is that the ABC variant
has the most potential.

”For what problem size can a method based on the proposed hybrid scheme produce results
within a reasonable time-frame on a standard PC?”

Problems of similar size to the three case studies (3-dimensional problems with up to 12
nodes or 2 load cases) can be solved in as little as 15 seconds and always in less than one
minute on most contemporary desktop PCs. Considering that each run produces multiple
design alternatives, less iteration is needed by the end-user which renders these computation
times as acceptable.

6.2 Future research

For future research that directly builds on the work presented in this thesis, it is recommended
that a more advanced topology identification method is developed, with the goal of increasing
the design alternative variety. Other markers than solely topology could possibly be used to

50

distinguish design alternatives. Borrowing from the MSPSO algorithm for example, the dis-
tance between alternatives in the parameter space could be a good indicator for distinguishing
design alternatives. In any case it has become clear from this research that equating every
possible topological change to a distinction in design alternatives leads to an insufficient design
alternative variety.

Alternatively, artificial intelligence technologies could be used to determine whether struc-
tures are distinct without a clearly defined definition on when they are. If somehow a sufficiently
sized data set of structures with accompanying information about how distinct they are from
one another could be acquired or generated, a machine learning algorithm might be very effec-
tive for this purpose. Generation of such a data set could prove to be quite difficult however:
structures would have to be generated of which it is known that they are considered to be
distinct, however in order to generate these structures, the algorithm resulting from the ma-
chine learning process is needed. An alternative way of obtaining such a data set would be by
having people directly determine whether a set of structures is distinct or not. Depending on
the number of data required however, this task is likely to be at least equally challenging.

More fundamentally, the way in which the problem is set up could be reconsidered as
well. More ways of creating a non-convex parameter space other than only by the separation
of geometric and topological parameters as has been done in this research can be imagined.
Other non-convex problem setups could possibly be more easy to explore, or less constricting
on the designs which can be generated.

51

Bibliography

[Ab Wahab et al., 2015] Ab Wahab, M. N., Nefti-Meziani, S., and Atyabi, A. (2015). A com-
prehensive review of swarm optimization algorithms. PLoS ONE, 10(5):1–36.

[Bendsøe et al., 1994] Bendsøe, M. P., Ben-Tal, A., and Zowe, J. (1994). Optimization methods
for truss geometry and topology design. Structural Optimization, 7(3):141–159.

[Bendsøe and Sigmund, 2003] Bendsøe, M. and Sigmund, O. (2003). Topology Optimization:
Theory, Methods and Applications. Springer.

[Boyd and Vandenberghe, 2004] Boyd, S. and Vandenberghe, L. (2004). Convex Optimization.
Cambridge University Press.

[Christensen and Klarbring, 2009] Christensen, P. and Klarbring, A. (2009). An Introduction
to Structural Optimization. Springer.

[Clerc and Kennedy, 2002] Clerc, M. and Kennedy, J. (2002). The Particle Swarm—Explosion,
Stability, and Convergence in a Multidimensional Complex Space. IEEE Transactions on
Evolutionary Computation, 6(1):58–73.

[Cordella et al., 2001] Cordella, L. P., Foggia, P., Sansone, C., and Vento, M. (2001). An
improved algorithm for matching large graphs. 3rd IAPR-TC15 workshop on graph-based
representations in pattern recognition, pages 149–159.

[Deb, 2000] Deb, K. (2000). An efficient constraint handling method for genetic algorithms.
Computer Methods in Applied Mechanics and Engineering, 186(2):311 – 338.

[Diamond and Boyd, 2016] Diamond, S. and Boyd, S. (2016). CVXPY: A Python-embedded
modeling language for convex optimization. Journal of Machine Learning Research, 17:1–5.

[Dorn et al., 1964] Dorn, W., Gomory, R., and Greenberg, H. (1964). Automatic design of
optimal structures. Journal de Mècanique, 3:25–52.

[Fairclough and Gilbert, 2020] Fairclough, H. and Gilbert, M. (2020). Layout optimization
of simplified trusses using mixed integer linear programming with runtime generation of
constraints. Structural and Multidisciplinary Optimization, 61(5):1977–1999.

[Gilbert and Tyas, 2003] Gilbert, M. and Tyas, A. (2003). Layout optimization of large-scale
pin-jointed frames. Engineering Computations (Swansea, Wales), 20(7-8):1044–1064.

[Hagberg et al., 2008] Hagberg, A. A., Schult, D. A., and Swart, P. J. (2008). Exploring net-
work structure, dynamics, and function using NetworkX. 7th Python in Science Conference
(SciPy 2008), pages 11–15.

[He and Gilbert, 2015] He, L. and Gilbert, M. (2015). Rationalization of trusses generated via
layout optimization. Structural and Multidisciplinary Optimization, 52(4):677–694.

52

[Holland, 1975] Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. MIT
Press.

[Homaifar et al., 1994] Homaifar, A., Qi, C. X., and Lai, S. H. (1994). Constrained optimization
via genetic algorithms. Simulation, 62(4):242–254.

[Hooshmand and Campbell, 2016] Hooshmand, A. and Campbell, M. I. (2016). Truss layout
design and optimization using a generative synthesis approach. Computers and Structures,
163:1–28.

[Iwamatsu, 2006] Iwamatsu, M. (2006). Locating all the global minima using multi-species
particle swarm optimizer: The inertia weight and the constriction factor variants. 2006
IEEE Congress on Evolutionary Computation, CEC 2006, pages 816–822.

[J. Kennedy, 1995] J. Kennedy, R. E. (1995). Particle swarm optimization. In Proceedings of
IEEE International Conference on Neural Networks, pages 1942–1948.

[Joines and Houck, 1994] Joines, J. A. and Houck, C. R. (1994). On the use of non-stationary
penalty functions to solve nonlinear constrained optimization problems with GA’s. IEEE
Conference on Evolutionary Computation - Proceedings, 2:579–584.

[Karaboga, 2005] Karaboga, D. (2005). An idea based on honey bee swarm for numerical
optimization. Erciyes University.

[Karaboga and Basturk, 2007] Karaboga, D. and Basturk, B. (2007). A powerful and efficient
algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. Jour-
nal of Global Optimization, 39(3):459–471.

[L. He, 2019] L. He, M. Gilbert, X. S. (2019). A python script for adaptive layout optimization
of trusses. Structural and Multidisciplinary Optimization, 60:835–847.

[Luh and Lin, 2011] Luh, G. C. and Lin, C. Y. (2011). Optimal design of truss-structures using
particle swarm optimization. Computers and Structures.

[Maheri et al., 2016] Maheri, M. R., Askarian, M., and Shojaee, S. (2016). Size and topology
optimization of trusses using hybrid genetic-particle swarm algorithms. Iranian Journal of
Science and Technology - Transactions of Civil Engineering, 40(3):179–193.

[Mart́ınez et al., 2007] Mart́ınez, P., Mart́ı, P., and Querin, O. M. (2007). Growth method
for size, topology, and geometry optimization of truss structures. Structural and Multidisci-
plinary Optimization, 33(1):13–26.

[Michalewicz, 1996] Michalewicz, Z. (1996). Evolutionary algorithms for constrained parameter
optimization problems. Evolutionary Computation, 4(1):1–32.

[Michalewicz and Janikow, 1996] Michalewicz, Z. and Janikow, C. Z. (1996). GENOCOP: A
Genetic Algorithm for Numerical Optimization Problems with Linear Constraints. Commu-
nications of the ACM, 39:175.

[Michalewicz and Nazhiyath, 1995] Michalewicz, Z. and Nazhiyath, G. (1995). Genocop iii: a
co-evolutionary algorithm for numerical optimization problems with nonlinear constraints. In
Proceedings of 1995 IEEE International Conference on Evolutionary Computation, volume 2,
pages 647–651 vol.2.

[Michell, 1904] Michell, A. (1904). The limits of economy of material in frame-structures.
Philosophical Magazine, 8(47):589–597.

53

[Mueller, 2014] Mueller, C. T. (2014). Computational Exploration of the Structural Design
Space. PhD thesis, Massachusetts Institute of Technology.

[Parkes, 1975] Parkes, E. W. (1975). Joints in optimum frameworks. International Journal of
Solids and Structures, 11(9):1017–1022.

[Plevris and Papadrakakis, 2011] Plevris, V. and Papadrakakis, M. (2011). A Hybrid Particle
Swarm-Gradient Algorithm for Global Structural Optimization. Computer-Aided Civil and
Infrastructure Engineering, 26(1):48–68.

[Prager, 1977] Prager, W. (1977). Optimal layout of cantilever trusses. Journal of Optimization
Theory and Applications, 23(1):111–117.

[Pritchard et al., 2005] Pritchard, T., Gilbert, M., and Tyas, A. (2005). Plastic layout opti-
mization of large-scale frameworks subject to multiple load cases, member self-weight and
with joint length penalties.

[Shea, 1997] Shea, K. (1997). Essays of Discrete Structures: Purposeful Design of Grammatical
Structures by Directed Stochastic Search. PhD thesis, Carnegie Institute of Technology.

[Sokól, 2014] Sokól, T. (2014). Multi-load truss topology optimization using the adaptive
ground structure approach. Recent Advances in Computational Mechanics - Proceedings
of the 20th International Conference on Computer Methods in Mechanics, CMM 2013, pages
9–16.

[Sonmez, 2011] Sonmez, M. (2011). Artificial Bee Colony algorithm for optimization of truss
structures. Applied Soft Computing Journal, 11(2):2406–2418.

[Stiny and Gips, 1972] Stiny, G. N. and Gips, J. (1972). Shape Grammars and the Generative
Specification of Painting and Sculpture,” Information Processing 71, IFIP, North-Holland,
Amsterdam. Information Processing, 71:125–135.

[Storn and Price, 1997] Storn, R. and Price, K. (1997). Differential Evolution – A Simple
and Efficient Heuristic for Global Optimization over Continuous Spaces. Journal of Global
Optimization, 11(4):341–359.

[Torii et al., 2016] Torii, A. J., Lopez, R. H., and Leandro, L. F. (2016). Design complexity
control in truss optimization. Structural and Multidisciplinary Optimization, 54(2):289–299.

[Wang and Ohmori, 2010] Wang, H. and Ohmori, H. (2010). Truss optimization using ge-
netic algorithm, considering construction process. International Journal of Space Structures,
25(4):205–215.

[Wolpert and Macready, 1997] Wolpert, D. H. and Macready, W. G. (1997). No free lunch
theorems for optimization. IEEE Transactions on Evolutionary Computation, 1(1):67–82.

[Wu and Tseng, 2010] Wu, C. Y. and Tseng, K. Y. (2010). Truss structure optimization using
adaptive multi-population differential evolution. Structural and Multidisciplinary Optimiza-
tion, 42(4):575–590.

[Zuo et al., 2014] Zuo, W., Bai, J., and Li, B. (2014). A hybrid OC-GA approach for fast
and global truss optimization with frequency constraints. Applied Soft Computing Journal,
14(PART C):528–535.

54

Appendix A

GSM Benchmarks

The benchmarks used to compute volume penalty values are obtained from large-scale GSM
solutions. A study has been done in which for both case study problems convergence of the
material volume has been analysed, as the density of the ground structure increases. The
material volume corresponding to the ground structures with the most nodes at the right end
of the graphs in Figure A.1 are used as benchmarks. Case studies 1a and 1b use the same
benchmark since their only difference lies in the complexity constraints, which do not affect the
method by which the benchmark is derived.

(a) Case study 1 (b) Case study 2

Figure A.1: Standard GSM solution material volume versus nodes in ground structure

55

Appendix B

Extended convergence study

(a) ABC (b) PSO

(c) MSPSO (d) 300 realization averages

Figure B.1: Individual realizations and 300 realization averages of convergence of ABC, PSO
and MSPSO hybrid method variants for case study 1a

56

(a) ABC (b) PSO

(c) MSPSO (d) 300 realization averages

Figure B.2: Individual realizations and 300 realization averages of convergence of ABC, PSO
and MSPSO hybrid method variants for case study 1b

57

(a) ABC (b) PSO

(c) MSPSO (d) 300 realization averages

Figure B.3: Individual realizations and 300 realization averages of convergence of ABC, PSO
and MSPSO hybrid method variants for case study 2

58

