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Abstract

The TROPOspheric Monitoring Instrument (TROPOMI) provides high-resolution, global measurements
of carbon monoxide (CO) for environmental pollution monitoring. The Automated Plume Detection and
Emission Estimation algorithm (APE), developed by SRON, identifies pollution plumes and estimates
emissions based on the satellite data. This study implemented four machine learning algorithms to en-
hance APE and applied them to 180 steel plant locations for 6 years to estimate the average emissions
from detected plumes using the divergence method. The models identified up to 136.1% more plumes
than APE. Comparing the estimated emissions with the European Pollutant Release and Transfer Reg-
ister (E-PRTR) dataset shows the ResNet-44 model achieves the lowest bias (1.20 kg/s) and standard
deviation (2.36 kg/s) compared to APE, which had a bias of 3.41 kg/s and a standard deviation of 2.40
kg/s. This demonstrates the potential of machine learning to improve plume detection and emission
estimation for remote sensing of pollution from space.
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1
Introduction

This thesis project was done in cooperation with SRON. SRON is a non-profit organization that does
research in the field of space science. Their main research fields are Earth observation, exoplanets
and astrophysics. This project takes place in the field of Earth observations at SRON and is about
the analysis of CO plume emissions from industry with the help of the APE algorithm. APE stands for
Automated Plume detection and Emission estimate algorithm and is designed to work on TROPOMI
CO concentration data. TROPOMI is an instrument onboard the Sentinel-5P satellite. SRON has
contributed to the creation of the instrument. The Sentinel-5P satellite is part of the ESA’s Copernicus
program. This program is focused on Earth observation [1]. With the TROPOMI instrument trace
gasses like CO can be measured. CO plays a role in climate change but is not a greenhouse gas itself.
Nevertheless, CO is harmful and therefore the emissions of this gas should be monitored. SRON is
responsible for the CO data product of TROPOMI [2].

The thesis project aims to further the development of the APE algorithm. This project focuses
on improving industrial sources’ plume detection and emission estimation. For this project, the main
focus was on researching machine learning methods as a replacement or addition to the current plume
detection implemented in APE. A smaller focus was put on developing a new emission estimation
method using the divergence method. Ultimately with the development of the APE algorithm, the aim is
to accurately estimate the emissions from industry to help with the reduction of CO emission worldwide.
This thesis project is part of this pursuit by SRON.

The thesis is structured as follows, chapter 2 explains the background information for this project.
This is followed by the research questions and research plan for the thesis in chapter 3. In chap-
ter 4, the implementation methods for the machine learning approaches are discussed as well as the
augmentation algorithm. The creation of three datasets for the training and testing of the machine
learning methods is denoted in chapter 5. The development of the new emission estimation methods
is explained in chapter 6. In this chapter, a method to calculate a time series of emissions using the
individual divergence of the single overpass data is explained. This is followed by an explanation of
how to use an entire time series of emission estimations to estimate an average emission of the plume
data for the entire time series without the use of a plume detection method. The different plume detec-
tions are compared with each other in chapter 7. The answers to the research questions of the project
are written in chapter 8. The chapter ends the thesis by giving a future outlook on the development of
APE.
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2
Background

This chapter covers the background information for the thesis project. This information comes from the
internship completed before the thesis and the literature study done in the early stages of the thesis
[3]. In section 2.1 a brief description of the climate change and air pollution problem is given. Then
an overview of space-based monitoring systems is given insection 2.2. This is followed by section 2.3,
providing a description of TROPOMI onboard Sentinel-5P. In section 2.4 dataset products and retrieval
are discussed. This is followed by a description of the APE algorithm in section 2.5. The final section
discussed different improvements for the plume detection of APE and can be found in section 2.6.

2.1. Climate change and air pollution
Earth’s atmosphere houses a variety of different chemical compounds. However, 99% of the atmo-
sphere consists of only three constituents. These are nitrogen, argon and oxygen gas. The remaining
one percent of the atmospheric contents are known as trace gases. Trace gases include carbon dioxide
(CO2), carbon monoxide (CO), methane (CH4), nitrogen dioxide (NO2), Ozone (O3) and many more.
Of which some are considered to be greenhouse gases. Large accumulations of greenhouse gases
enhance the greenhouse effect that warms Earth’s average temperature [4].

In recent years, the awareness of the need for policy and climate action has significantly increased.
Since 2015, 195 out of the 198 members of the United Nations (UN) agreed to limit the increase of
Earth’s average temperature to 1.5◦C by signing the Paris Agreement, with Earth’s average tempera-
ture measured from 1850-1900 as benchmark average value [5]. According to the most recent Intergov-
ernmental Panel on Climate Change (IPCC) report the average temperature of Earth has increased by
1.1◦C in 2010-2020 since 1850-1900 [6]. According to the Climate Action Tracker, in December 2023
the world has already warmed by an average temperature of 1.3◦C1. These temperature increases
show an accelerated need for solutions. In January 2025, it was reported by Copernicus that Earth’s
average temperature in 2024 had already increased by 1.6 ◦C [7].

The IPCC report also points out that the greenhouse gases (GHG) that cause climate change are not
significantly decreasing as stated before these GHGs enhance the greenhouse effect, which means
that these gases absorb longwave Earth radiation and emit thermal heat as a result. Without GHG,
the energy due to Earth’s radiation would have escaped into space instead of trapping them in the
atmosphere. The greenhouse effect is good as it allows life to exist on Earth. However, as the amount
of GHG increases, so does the thermal heat emitted from these gases [8]. In Figure 2.1, it is shown that
the current Nationally Determined Contributions (NDC) of governments around the world to decrease
global GHG emissions are not enough. Even worse, the figure shows an increase in GHG emissions.
The report also outlines the risks of the increase in temperature. Effects include extreme heat, droughts,
rising sea levels and an increase in extreme weather events. To avoid this future, a large decrease in
GHG emissions is necessary [9]. The IPCC figure shows that the current GHG emissions will have to
be decreased by 43% by 2030 to ensure the maximum average temperature increase of 1.5◦C.

1Retrieved on 1-5-2024, https://climateactiontracker.org/publications/no-change-to-warming-as-fossil-fue
l-endgame-brings-focus-onto-false-solutions/
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2.2. Space-based monitoring of trace gases 3

Figure 2.1: Figure 2.5 from the IPCC report showing that currently implemented climate policies are not enough [6]. Subfigure
a) shows the prediction of the emissions over time based on the actions of governments and subfigure b) shows the needed

reduction of the emissions by 2030 to reach certain targets.

The emissions that cause climate change also affect the quality of the air. It is well known that living
near industrial sources increases health risks [10]. The quality of the air is determined by increased
pollutants, such as trace gases and particulate matter, that constitute the atmosphere in the area. Thus
there is a need to monitor the concentrations of trace gases to ensure that health risks are minimized.
Most governmental bodies around the world have regulations on air quality [11]. These include stan-
dards for the concentration of gases that people are allowed to be exposed to for specific amounts of
time, the banning of the use of technology that is known to cause excessive pollution, taxes on the
emissions of certain gases and cap and trade systems for certain emission pollutants [12].

To ensure compliance with climate goals, it is necessary to monitor the amount of emissions emitted
globally. To this end, institutions and companies have started to publish emission inventories. The issue
with these is that they are often not specific enough to verify with measurements or are not based on
observations [13]. Therefore, an independent way to estimate the emissions of industry is needed.
There have already been some successes with independent monitoring of certain GHGs. In particular,
the Methane Alert and Response System (MARS) is a monitoring system that uses satellite data to
detect methane leaks. After these are found the relevant authorities are contacted to ask them to deal
with the problem 2.

2.2. Space-based monitoring of trace gases
Possible ways to measure trace gases are using in-situ, airborne and satellite measurements. All of
these methods are ways to monitor trace gases on various scales. However, due to the global scale of
the problem, most of the methods are not appealing as they focus on the regional scale. The task of
trace gas monitoring needs to be done on a global scale, especially when considering the global targets
set to fight climate change. It is important to note that GHGs mix in the atmosphere and stay there for

2Retrieved on 1-5-2024, https://www.unep.org/topics/energy/methane/international-methane-emissions-observa
tory/methane-alert-and-response-system

https://www.unep.org/topics/energy/methane/international-methane-emissions-observatory/methane-alert-and-response-system
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2.2. Space-based monitoring of trace gases 4

Figure 2.2: Improvement of resolution of trace gas satellite measurements over time[17]

a long time, making it hard to trace the origin of the pollutants. According to the National Aeronautics
and Space Administration (NASA), CO2 stays in the atmosphere of Earth for 300 to 1000 years 3.

The global coverage that satellites provide is preferable over regional measurement strategies, how-
ever, it is still useful to use regional measurements for certain areas to improve existing models and
to make sure that the global models are working correctly. Satellites have long been used to measure
trace gases for decades. Earlier missions include the Aura mission from NASA and the Environmental
Satellite (Envisat) mission from the European Space Agency (ESA). These missions paved the way
for further understanding the effects of trace gas pollution [14] [15]. With increasing demands for more
accurate data in the fight against climate change, the European Union has significantly increased the
number of Earth observation missions by working on the Sentinel program as a part of the Copernicus
Earth observation system. The program aims to supply timely, accurate and accessible information
to manage the environment, study the effects of climate change and provide civil security. Ultimately
the program should aid the European Union in sustainable policy-making4. The China National Space
Administration (CNSA) launched the Gaofen-5 satellite. The purpose of this satellite is to measure
CO2 emissions [16]. There are also commercial satellite operations that measure trace gases in the
atmosphere. For example, the company GHGsat can be contacted to perform monitoring operations5.

Over the years the technology of the different satellites has been improving. In Figure 2.2 the spatial
resolution of different missions is shown with respect to instruments from various missions. The GOME-
2 instrument is from the MetOp mission, the SCIAMACHY instrument was developed for the Envisat
mission, OMI was created for the Aura mission, the TROPOMI instrument is onboard the Sentinel-5P
satellite and TEMPO is mounted on top of an Intelsat 40e satellite.

Particularly interesting Sentinel missions are Sentinel-4, Sentinel-5, Sentinel-5P and Sentinel-CO2M.
These missions have been designed to monitor changes in the atmospheric composition. Sentinel-4
focuses on the air quality over Europe and has an hourly data rate6. Sentinel-5 and Sentinel-5P fo-
cus on monitoring the concentration of trace gas all over the world78. The Sentinel-CO2M mission will

3Retrieved on 7-5-2024, https://science.nasa.gov/earth/climate-change/greenhouse-gases/the-atmosphere-get
ting-a-handle-on-carbon-dioxide/

4Retrieved on 29-4-2024, https://www.esa.int/About_Us/Ministerial_Council_2012/Global_Monitoring_for_Envi
ronment_and_Security_GMES

5Retrieved on 7-5-2024, https://www.ghgsat.com/en/
6Retrieved on 30-4-2024, https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-4
7Retrieved on 30-4-2024, https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-5
8Retrieved on 30-4-2024, https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-5p

https://science.nasa.gov/earth/climate-change/greenhouse-gases/the-atmosphere-getting-a-handle-on-carbon-dioxide/
https://science.nasa.gov/earth/climate-change/greenhouse-gases/the-atmosphere-getting-a-handle-on-carbon-dioxide/
https://www.esa.int/About_Us/Ministerial_Council_2012/Global_Monitoring_for_Environment_and_Security_GMES
https://www.esa.int/About_Us/Ministerial_Council_2012/Global_Monitoring_for_Environment_and_Security_GMES
https://www.ghgsat.com/en/
https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-4
https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-5
https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-5p


2.3. Sentinel-5P satellite mission 5

Figure 2.3: Coverage of different Earth observation missions [18]

focus on anthropogenic climate change caused by the emission of CO2
9. The Twin ANthropogenic

Greenhouse Gas Observers (TANGO) mission, not a part of the Sentinel program, will use the Sentinel
data to support its operation. The satellites of TANGO have a spatial resolution of 300 meters by 300
meters compared to the resolution of Sentinel-5P of 5.5 km by 7 km. TANGO will use it to focus on
specific areas and does not have global coverage. To identify interesting regions to focus on, other
satellite data, such as data from the Sentinel missions, will be used10.

The distinction of Sentinel-4 compared to the other Sentinel missions is its focus on Europe. This
satellite is part of the Geostationary Air Quality mission (Geo-AQ). These satellites focus on a particular
area of the world and are able to make hourly measurements. These missions sacrifice their global
coverage for more data from a particular area. Sentinel-5P for example has global coverage but only
measures a certain place once per day while Sentinel-4 will have coverage of Europe but can make
measurements once per hour. The purpose of Geo-AQ is to make the data products of the satellite
consistent with each other [18]. The satellites in Figure 2.3 show that TEMPO, Sentinel-4 andGEMSare
part of Geo-AQ. The other satellites in the figure are seen as complementary low-Earth orbit missions
[18].

It has to be noted that most of the missions mentioned have not yet been launched. Currently, out
of the four mentioned Sentinel missions, only Sentinel-5P is in operation. The other satellites are still
awaiting their launches. In the near future, there will be more data available but currently, the data is
limited to the Sentinel-5P data.

2.3. Sentinel-5P satellite mission
The Sentinel missions are a part of the Copernicus program, which is part of the European Union Space
program. The program should facilitate effective policy-making by providing data related to a large

9Retrieved on 29-4-2024, https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Copernicus_Senti
nel_Expansion_missions

10Retrieved 30-4-2024, https://www.sron.nl/news/tango-missievoorstel-gepresenteerd-in-laatste-selectieron
de-voor-esa-s-scout-missie/

https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Copernicus_Sentinel_Expansion_missions
https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Copernicus_Sentinel_Expansion_missions
https://www.sron.nl/news/tango-missievoorstel-gepresenteerd-in-laatste-selectieronde-voor-esa-s-scout-missie/
https://www.sron.nl/news/tango-missievoorstel-gepresenteerd-in-laatste-selectieronde-voor-esa-s-scout-missie/


2.3. Sentinel-5P satellite mission 6

Figure 2.4: The Sentinel-5P satellite in space with TROPOMI pointed to Earth, image credit to ESA/ATG medialab

range of different issues11. The Sentinel program replaces earlier Earth observation missions that are
set to retire or have since retired12. The program aims to cover different aspects of Earth observation
that were done by the previous satellites individually, to improve upon previous capabilities and to
increase the time coverage of the data. Each of the six Sentinel satellites has a different objective. The
overall objective of the Sentinel program is to further our knowledge of the climate and to significantly
improve the existing climate models by increasing the measured data [19].

The launch of the Sentinel-5P occurred on October 13, 2017. The Sentinel-5P satellite is meant
to be the precursor mission to Sentinel-5. The mission is supposed to act as a bridge between the
completed Envisat and Aura missions and the future Sentinel-4 and Sentinel-5 missions. The purpose
of the mission is to measure trace gases and aerosols to monitor their concentration and study their
effect on the climate on a global scale [20]. The minimum mission duration is 7 years13. For illustration
purposes, the Sentinel-5P satellite is shown in Figure 2.4.

The satellite is in low Earth orbit (LEO) and flies in a near-polar sun-synchronous orbit with an incli-
nation of 98.7◦ at a height of 824 km. At 13:30 Mean local solar time, the satellite crosses the equatorial
ascending node14. This is presumably for trace gas measurements as it would enable the satellite to
take measurement of Europe in the afternoon when emissions would be greater. Sentinel-5P flies in
loose formation with NASA’s Suomi National Polar-orbiting Partnership (Suomi-NPP) satellite. This is
to have synergy between the measurements of Sentinel-5P’s TROPOMI instrument and Suomi-NPP’s
Visible Infrared Imaging Radiometer Suite (VIIRS) and Cross-track Infrared Sounder (CrIS) instruments
[18]. Examples of this synergy are VIIRS’s cloud measurement data that is used for destriping and the
VIIRS active fire data that could be used with TROPOMI trace gas data to estimate emissions from
wildfires [21] [22].

11Retrieved on 29-4-2024, https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Introducing_Cope
rnicus

12Retrieved on 29-4-2024, https://sentinels.copernicus.eu/web/sentinel/missions
13Retrieved on 6-5-2024, https://www.tropomi.eu/
14Retrieved on 7-5-2024, https://sentinel.esa.int/web/sentinel/missions/sentinel-5p/orbit

https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Introducing_Copernicus
https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Introducing_Copernicus
https://sentinels.copernicus.eu/web/sentinel/missions
https://www.tropomi.eu/
https://sentinel.esa.int/web/sentinel/missions/sentinel-5p/orbit
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Figure 2.5: An example of a CO plume in TROPOMI data, the blue dot represents the location of a steel plant from the
internship report [3]

The Sentinel-5P satellite holds the TROPOspheric Monitoring Instrument (TROPOMI) as its only
payload. TROPOMI was developed by various institutes and organizations, including KNMI and SRON.
The instrument was commissioned by ESA and the Netherlands Space Office15. In terms of coverage,
TROPOMI has a swath width of approximately 2600 km, the instrument has daily coverage over the
area of below -7◦ and above 7◦ latitude for radiance and reflective measurements. It can provide more
than 95% daily area coverage for the latitudes between 7◦ and -7◦16. The spatial resolution of the
instruments is approximately 5.5 km by 3.5 km or 7 km by 5.5 km. The data products were updated in
2019. Before that update all data had a resolution of 7 km in the flight direction [23].

The instrument can measure the concentrations of trace gases like SO2, CH4, CO, HCHO, NO2 and
aerosols among others [20]. A CO plume from TROPOMI can be seen in Figure 2.5. The TROPOMI in-
strument consists of four spectrometers with different spectral ranges. These include SWIR, UV, UVIS
and NIR. The last three spectrometers are included in the UVN module. The specifics of each spec-
trometer can be found in Table 2.1. The trace gases that TROPOMI can measure at each wavelength
compared to previous missions are shown in Figure 2.6. It has to be noted that even though TROPOMI
measures less wavelengths than other missions, it has a much better spatial resolution which can be
seen in Figure 2.2. With these measurements, in addition to the quantification of emissions, a large
amount of atmospheric phenomena can be studied. These include the effect of the COVID lockdowns
and the Australian Black Summer on the atmosphere among others[24][25]. The MARS project, men-
tioned in section 2.1, also uses Sentinel-5P data.

2.4. TROPOMI L2 data products
The TROPOMI datasets discussed in this section are kept to the ones that are available for downloading,
which are the L1B and the L2 data products of the instruments17. These dataset levels represent the
processing done to the instrument output data. L0 data represents the raw data measured by the
instrument. For TROPOMI this data is already time-ordered and archived but unavailable for use. L1B

15Retrieved on 14-5-2024, https://www.tropomi.eu/
16Retrieved on 8-5-2024, https://sentinel.esa.int/web/sentinel/missions/sentinel-5p/geographical-coverage
17Retrieved on 16-5-2024, https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-5p/produc

ts-algorithms

https://www.tropomi.eu/
https://sentinel.esa.int/web/sentinel/missions/sentinel-5p/geographical-coverage
https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-5p/products-algorithms
https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-5p/products-algorithms
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Table 2.1: Overview of the spectrometers of TROPOMI from (Reshi et al., 2024[23])

Spectrometer UV UVIS NIR SWIR
Band ID &
parameters 1 2 3 4 5 6 7 8

Spectal
range [nm] 267-300 300-320 305-400 400-499 661-725 725-786 2300-2343 2343-2389

Spectral
resolution [nm] 0.45-0.50 0.45-0.65 0.34-0.35 0.227 0.225

Figure 2.6: Comparing the capabilities of TROPOMI with previous mission instruments from (Veefkind et al., 2012 [20])
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Table 2.2: Available L2 TROPOMI data products

Sentinel-5/UVNS
Level-2 product Parameter(s) Distribution

O3 Ozone (O3) total column, tropospheric column,
stratospheric vertical profile To all users

NO2 Nitrogen dioxide (NO2) total column,
tropospheric column To all users

SO2 Sulfur dioxide (SO2) total column, layer height
(TBC) To all users

HCHO Fomaldehyde (HCHO) total column To all users
CHOCHO Glyoxal (CHOCHO) total column To all users
CH4 Methane (CH4) total column To all users
CO Carbon monoxide (CO) total column To all users

Cloud Cloud effective fraction, effective height, cloud
mask

To all users
(TBC)

Aerosol Aerosol UV absorption index, layer height,
optical depth (TBC) To all users

Surface Surface effective albedo, scene heterogeneity To all users
(TBC)

UV UV spectrally resolved irradiance at surface, UV
index To all users

is the radiance and irradiance data and L2 is the trace gas and aerosols concentration data. The L1B
datasets are used to generate the L2 concentration data. For different data products a retrieval is used
to convert the radiance and irradiance data into the intended product. The available L2 datasets can be
found in Table 2.2. This table is taken from the Sentinel Online website18. The TBCs, which probably
stand for To Be Continued but this is not mentioned, in the table represent datasets being worked
on, have not fully been processed and will possibly not be updated in the future. These imperfect
datasets can be found on the S5P-PAL Data Portal19. The L2 datasets can be found on the Copernicus
Dataspace website20.

The files are in NetCDF-4 format and the general format of level 2 data can be seen in Figure 2.7.
In this figure, the root level, first level group, second level group and third level group represent the data
structure, not actual variables or values. The ... in the figure presumably denotes the product-specific
variables and data that are universal for every data product[26].

A guide on each L2 dataset can be found on the Sentinel Online website. There are several types
of guides to inform potential users of the capabilities of the data for each available dataset. These
guides are a Product User Manual (PUM), an Algorithm Theoretical Basis Document (ATBD), an Input
Output Data Definition (IODD) and a Product Readme File (PRF). The PUM is supposed to give users
the technical information of the products, the ATBD gives information on the retrieval algorithm used to
create the products, the IODD describes the input and the output data used to create the products and
the PRF is a shorter document that describes the changes between product versions and the overall
quality of the product21.

As stated before the datasets are of particular interest due to their use in scientific research for the
monitoring of emissions of trace gases. An algorithm that studies the trace gas CO using L2 TROPOMI
data is called Automated Plume detection and Emission estimation algorithm (APE). This algorithm is
discussed further in section 2.5.

18Retrieved on 20-5-2024, https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-5/data-products
19Retrieved on 21-5-2024, https://data-portal.s5p-pal.com/
20Retrieved on 22-5-2024, https://dataspace.copernicus.eu/
21Retrieved on 21-5-2024, https://sentiwiki.copernicus.eu/web/s5p-products

https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-5/data-products
https://data-portal.s5p-pal.com/
https://dataspace.copernicus.eu/
https://sentiwiki.copernicus.eu/web/s5p-products
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Figure 2.7: The general structure of TROPOMI level 2 data products from the CO L2 Product User Manual [26]
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Figure 2.8: Flowchart of APE from Goudar et al. 2023 [27] showing the three parts of APE in yellow.

2.5. APE algorithm
APE is a tool created by SRON to estimate CO emissions. The tool is capable of calculating emission
estimates based on the L2 TROPOMI CO concentration column data. The intended purpose of APE is
to function similarly to MARS as described in section 2.1 but for CO emissions instead of CH4. The point
of the tool is thus to detect in near real-time the emissions of CO. To this effect, the tool should be able
to quickly process the data from TROPOMI, detect the visible plumes and estimate the emissions of
these plumes. For this purpose, APE should be able to make accurate emission estimations relatively
fast. This means that the focus is not on making the most accurate emission estimations possible
but on balancing the computational speed with the accuracy of the emission estimates. Thus any
improvement for APE has to take these considerations into account. In subsection 2.5.1, the first two
parts are explained which encompass the data downloading, processing and plume detection. The third
part of APE is explained in subsection 2.5.2. This part goes over the emission estimation using CFM
and the average divergence. The final subsection in subsection 2.5.3 goes over issues encountered
in the process of estimating the emissions.

2.5.1. Automated plume detection
Scientific researchers at SRON have been developing APE for the quantification of CO emissions from
wildfires and industry using data from the TROPOMI instrument onboard the Sentinel-5P satellite and
have written one paper on its development. This subsection is largely based on the information provided
by that paper by Goudar et al. 2023 [27]. Currently APE consists of three parts. A flowchart of APE is
presented in Figure 2.8. This flowchart shows the three different parts of APE in yellow that quantify
wildfire emissions.

The first part of APE consists of the data downloading and processing part. To start the process,
APE uses two main inputs, which are date and location. Thus the latitude and longitude coordinates of
the location of interest and the time period of investigation. When given this input APE will go through
the TROPOMI orbits and cut out granules of 41 by 41 size pixels. To avoid large pixel sizes, APE
restricts the pixel to be smaller than 12 km in swath width direction. In the 41 by 41-pixel granules, 80
% of the data must have a quality value of 0.5 or higher. The definition of the quality value parameter
is explained in Figure 2.5.3. In short, it is a measure of the cloud conditions during the measurement
of a CO concentration value. For the 7 by 7 pixels around the source, 85% must have a quality value
of higher than 0.5 [27].

As seen in the flowchart for wildfire plumes in Figure 2.8, APE uses the level-2 CO TROPOMI data
and the VIIRS 375m active fire data. When investigating CO, using CO TROPOMI data makes sense.
The use of the VIIRS active fire dataset is less obvious and thus requires explanation. As explained in
section 2.3, VIIRS is an instrument onboard the Suomi NPP satellite. This satellite is run by both NASA
and the National Oceanic and Atmospheric Administration (NOAA). The Suomi NPP and Sentinel-5P
satellites are flying in the same orbit with a temporal separation of 3.5 minutes [27]. This creates a
strong synergy between the data products of the two satellites. Thus VIIRS datasets can be used
almost seamlessly in conjunction with TROPOMI datasets. An example of using the active fire product
on TROPOMI data can be seen in Figure 2.9. APE is also capable of processing the data of industrial
sources. During the internship a list of 1115 steel plants was created [3].
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Figure 2.9: Example of using VIIRS active fire data with TROPOMI level 2 CO-data. The blue dot represents the location of a
plume as detected by APE. The data is not destriped and thus shows lines in the latitudinal direction.

The second part of APE is the plume detection algorithm. It relies on the Marker-based watershed
transform method. In this method, the CO concentration area is seen as a topographic map where the
concentrations represent heights. A plume in the data would appear as peaks of a mountain range
while low concentration would come across as valleys. An overview of the Marker-based watershed
transform method can be found in Figure 2.10. The method for plume detection needs to calculate two
maps before detecting the plume. These are the gradient map and the marker map. Before the plume
detection can take place, these maps have to be calculated first. In Figure Figure 2.10a the CO column
data processed in the first part from raw TROPOMI data is shown. The gradient map as shown in Figure
Figure 2.10b is created by applying Gaussian smoothing to the CO column data, to remove extreme
concentration values from affecting the gradient image and then using a Sobel operator. The next step
is to create the marker image. This is done in several steps. First, the values of the CO column data of
Figure Figure 2.10a that are larger than the median value of the smoothed CO column data or smaller
than the mean of the center 15 by 15 pixels of the CO concentration figure are obtained. Second, the
pixels that conform to these cases are clustered together by checking which pixels are next to each
other. This creates the image in Figure Figure 2.10c. Here each different connected region receives
a different label as seen in the color bar of the figure. The marker image can then be found focusing
only on the enhancements that are located near the plume and results in Figure Figure 2.10d. The
gradient map and the marker image are then inputted into the watershed algorithm which labels and
segments the remaining plume candidates as seen in Figure Figure 2.10e. Using the location of the
plume from the Active Fire data of VIIRS the correct plume is found. The resulting plume mask of the
plume is shown in Figure Figure 2.10f. After the plume is detected, several further tests are performed
to ensure Emission estimation.

Firstly, the length of the plume has to be larger than 25 km otherwise the emission is unable to be
estimated. This has to do with possible issues with the plume shape. Short plumes could have strange
shapes which makes automated processing hard and thus these are ignored for emission estimation.
Secondly, there must not be ten or more plumes at a short distance from the source as this will affect
the background value and thus the enhancement that the plume represents.

An issue that arises when using this method is that a plume needs to be present in the data for the
method to work. If this is not the case, the method can confuse certain enhancements in the data for a
plume, resulting in an emission estimation that is meaningless. For wildfire plumes, it is possible to rely
on the VIIRS active fire data to find the locations of plumes. For industrial sources, this data cannot be
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Figure 2.10: Plume detection using the marker-based watershed transform method in APE from (Goudar et al.,2023 [22])

used. It is not known for every steel plant when they are emitting pollutant. Therefore, APE has the
tendency to allow for large amount of meaningless emission estimations for industrial sources.

In the Goudar et al., 2023 [27] paper, it is explained that machine learning for plume detection has
not been implemented due to the lack of available training data. Therefore by creating such a dataset,
the current plume detection could potentially be replaced. However, this dataset should be optimized.
The optimization depends on the particular machine learning method that is implemented. A machine
learning approach for plume detection could get rid of the problem of plume-less data being used for
emission estimation.

2.5.2. Emission estimation
As written in Goudar et al. 2023 [27], the third and final part of APE consists of a cross-sectional
flux method (CFM) that estimates the emission of a plume. An explanation of this method using the
information in the paper can be found in the following subsection. What’s not written in any paper is
that APE is also capable of applying an average divergence method to calculate the average emission
over a chosen time period. This method is explained in the second subsection.

The CFM method in APE
The basic idea behind the CFM method is to determine the emission of a point source by estimating
the rate of change in the concentration of the pollutant over different locations in the plumes while using
an estimate of the velocity of the wind at those locations. This way the spread of the pollutant near the
source can be used to estimate the emission of pollutant.

The input for the third part of APE consists of a 41 by 41-pixel granule of CO concentration data, a
plume mask array, the time of the emission and the location of the point source emitter. An example
of the CFM method can be seen in Figure 2.11. The location and the time of emission are used to get
the wind field near the source of the plume. Using the plume mask, the point source emission point
and the wind direction, a line is drawn from the emission point to the end of the plume. This line shows
the plume’s downward wind direction in the mask. Perpendicular to the downward wind direction line
several other lines are drawn. These lines are known as the transaction lines and they show up as
dashed lines in Figure 2.11.

The emission is calculated by taking the mean of the fluxes through the transaction lines or cross-
sections which is defined in Equation 2.1. Here E is the emission in kg/s while n is the total number
of transaction lines and Qi represents the CO flux through transaction line i of the plume in kg/s. This
term is further defined in Equation 2.2. Here the flux term Qi is defined as the integral over the area of
the CO enhancement in the cross-section in kg/m2 represented by δCi

co times the wind speed in m/s
represented by vi. The enhancement of the CO means the CO concentration data is subtracted by the
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Figure 2.11: CFM method on a plume from TROPOMI. The plume line is defined as the black line in the figure. The transaction
lines are shown as the dashed lines in the figure. This figure is taken from Figure 4 of Goudar et al. 2023 [27]

background CO concentration. The equation shows the dependency of the δCi
co term on the position

in the cross section s and the time of measurement t0 while the wind speed velocity is also dependent
on the plume height in the cross-section zi. The paper further explains the need for a Lagrange model
to get the correct height of the plume. This is because depending on the height of the plume, the wind
speeds might be significantly different. For industrial sources, the assumption is made that the height
of the emission source remains the same. This is because it is not to be expected that blast furnaces
of steel plants move. The plume height is very important for wildfire plumes as this height can vary
significantly.

E =
1

n

n∑
i=1

Qi (2.1)

Qi =

∫
δCi

co (s, t0) · vi (zi, s, t0) · ds (2.2)

An issue arises from using the CFM method to calculate emissions related to the plume mask. The
plume mask is the result of the plume detection of the marker-based watershed transform method. This
method is explained in subsection 2.5.1 and relies on using an enhancement to find the plume in the
data granule. By performing several tests using APE it was found that the masks had a huge influence
on the emission estimate. By selecting a few more pixels to be part of the plume the emission estimate
could be off by more than 100% of the initial estimate. This issue shows the sensitivity of the method.
The problem can be made worse if the quality of certain pixels is too low or if pixels have the NaN value
assigned to them.

At first, the sensitivity of the emission estimate on the plume mask might not seem like a significant
issue. Therefore be explained that the CO column values could get changed easily as a result of a
change in destriping. An example of this can be found in Figure 2.12 an Figure 2.13. The first case
shows a not destriped array of CO Column in Figure 2.12a which results in the mask in Figure 2.12b.
The second case shows the same CO concentration data after a destriping algorithm took out the
stripes in Figure 2.13a. This CO column results in the plume mask in Figure 2.13b which is slightly
different from Figure 2.12b. The difference in the plume mas is a simple four pixels near the end of the
plume. According to APE the first case results in an emission of about 10.86 kg/s while the second
case results in an emission of 27.96 kg/s. This is a significant difference of 17.10 kg/s. The four pixels
in the mask between the two cases constitute a difference of nearly two times the first case emission.
It is hard to see the difference between the two cases in the input CO column data. Therefore, the
difference can be seen be, in Figure 2.14. Here the difference array is the stripes that were taken away
in the second case by applying a destriping method on Figure 2.13a.
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(a) Plume as detected by APE

(b) Divergence of the plume

Figure 2.12: The input CO column without destriping and the resulting plume mask created by APE
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(a) Plume as detected by APE

(b) Divergence of the plume

Figure 2.13: The input CO column with destriping and the resulting plume mask created by APE
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Figure 2.14: Subtracting the first case from the second case to show the effect of destriping

The accuracy of the cross-sectional flux method can be greatly increased with higher spatial resolu-
tion and thus the method should not be discarded. Especially when considering the spatial resolution
of the future TANGO mission which has been announced to be 300 by 300 meters [28]. However, due
to the limiting resolution of TROPOMI, which is 5.5 km by 7 kilometers, it seems clear that the cross-
sectional flux method is not the most optimal emission estimation method. Another issue is the limited
ERA5 spatial resolution in the ERA5 data which is only 31 km by 31 km [29]. These spatial resolutions
greatly limit the accuracy of the method.

Another issue of the cross-sectional flux method is the influence of NaN data points on the results. If
one or more pixels are missing in an otherwise clearly visible plume, the plume mask could be smaller
resulting in a smaller plume that will be analyzed. As stated in subsection 2.5.1, the APE algorithm
filters out data points based on how many NaN values exist in the 41 by 41-pixel granules as well as
based on how many NaN values in the 7 by 7 pixels near the source.

The average divergence method in APE
The divergence theorem as explained in Beirle et al., 2019 [30] gives a tool to analyze the average
emission of a point source. The method they provide appears simple. They define the emissions of
the source as the addition of sources and sinks. Sources are locations where emissions are produced
while sinks are locations where emissions dissipate. In the paper, they were able to separate different
NOxsources in the city of Riyadh, this can be seen in Figure 2.15. This method can also be utilized for
CO point sources.

Since the paper focuses on NOxrather than CO, the procedure for CO is a bit different. It takes
considerably longer for CO to dissipate from the atmosphere compared to NOxand thus the sinks of
CO are not taken into consideration. Instead, the divergence term is taken to equal the emission. The
equation for the divergence term can be found in Equation 2.3. In this equation, D represents the
divergence in kg/sm2, ∇ is the divergence operator, C is the column concentration of CO in kg/m2, w⃗
is the horizontal wind in m/s, u⃗ and v⃗ are the wind directions in the latitudinal and longitudinal direction
in m/s and x and y are the distance in the latitudinal and longitudinal direction respectively.

D = ∇Cw⃗ =
∂ (C · u⃗)

∂x
+

∂ (C · v⃗)
∂y

(2.3)

As can be seen in the equation, the information necessary for the calculation of the divergence
is the CO column concentration and the wind field. Naturally, for the CO column concentration data,
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Figure 2.15: Figure A showing the NOxsinks (S), B showing the divergence (D), C showing the total emission (E) over the city
while D shows the concentration of NOxof S, D and E at 47.05°E. The total values given on top of the figures are integrated

values from the dashed line boxes and from the entire figure.

TROPOMI data was used. The wind data was taken from the European Centre for Medium-Range
Weather Forecasts (ECMWF) and their dataset is called ERA5. This dataset has an hourly wind field
for the entire globe with a spatial resolution of 31 km by 31 km [29].

To analyze the average divergence of a location, the divergences of a single overpass should be at
the same locations. To make sure that this is the case, the individual granules are interpolated onto the
same grid. This was done by creating a square 160 km by 160 km grid with the center at the emission.
The spatial resolution of the divergence grid was selected to be 4 km by 4 km. The ERA5 data had
to be interpolated onto the same grid. To avoid interpolation errors because the resolution of the wind
data has a much higher spatial resolution than TROPOMI CO column data, it was decided to only use
the wind direction value at the pixel where the point source is located.

The spatial resolution of the divergence grids was chosen to be 4 km by 4 km. This is smaller
than the spatial resolution of TROPOMI, which is 5.5 km by 7 km. When averaging the values of
the grid over more than 6 years of data this would not result in large integration error. For singular
emission calculations from divergence, larger errors could occur. However, these are unavoidable as it
is necessary to interpolate onto a new grid. This is caused by the orbit of Sentinel-5P which changes the
location of TROPOMI measurement. During early work with the divergence method, a much smaller
spatial resolution was chosen which resulted in artifacts showing up in the average divergence. To
avoid this the resolution was updated from 1 km by 1 km to 4 km by 4 km.

The interpolation function used, cannot process NaN or masked values in the CO column and
therefore a placeholder value was used for the NaN values. The placeholder value was decided to be
the median value of the input 41 by 41-pixel granules. This does lead to inaccuracies in the interpolation
to the new grid.

To calculate the divergence numerically a fourth order central finite scheme was used. The scheme
for ∂(C·u⃗)

∂x can be found in Equation 2.4. A similar equation can be made for the term ∂(C·v⃗)
∂y by exchang-

ing the variables.

(∂Cu⃗)

∂x
=

(Cu⃗)x−2 − 8 (Cu⃗)x−1 + 8 (Cu⃗)x+1 − (Cu⃗)x+2

12∆x
(2.4)

As an example of the method, the average divergence of the Inner Mongolia BaoTou Steel Union
Co Ltd was calculated and can be seen in Figure 2.16. In this figure, the average divergence of the
steel plant was calculated over a time period of September 2019 to August 2024. The spatial resolution
in the image is 4 km. The divergence peak shown in the image is at the location of the steel plant which
proves that over the almost five-year period, a large emission source is located at the location of the
steel plant. Integrating over the area of the peak gives an emission estimation of the steel plant. The
emission estimation in this case would give a lower estimate of the emission as no plume detection
was done on the dataset meaning that data not containing plumes is included. Thus when taking the
average of the divergence data the no-plume divergence data will lower the average divergence. This
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Figure 2.16: The average divergence of the Inner Mongolia BaoTou Steel Union Co Ltd from September 2019 to August 2024.

image in Figure 2.16 is still useful as it can be used to validate the steel plant location. This is because
an operating steel plant should show a peak in the average divergence if it is actively emitting CO in
that time period.

During the internship this version of the divergence method was added to the APE algorithm as
an option to calculate the emissions for steel plant point emission sources [3]. As stated before, this
update has not yet been documented in a paper. The average divergence method was used to analyze
514 out of the 1115 steel plants described earlier. Out of these 185 steel plants were found to have an
average divergence peak.

2.5.3. Known issues with emission quantification of APE
When working with the CO data from TROPOMI several issues can occur. For APE to work properly
these issues have to be taken into account. The following paragraphs discuss several problems that
have been encountered by APE.

Limited spatial resolution
Due to the limited spatial resolution, it is not always possible to pinpoint the emissions sources. The
emission sources are limited by the resolution. The CO data from TROPOMI has a spatial resolution of
7 km by 5.5 km [22]. This could mean that a relatively large industrial area will be measured as a single
pixel, however, this is a hardware limitation that cannot be overcome easily. It does make it possible for
sources to be simplified as a point source. Averaging the data can give larger resolutions, by utilizing
that the satellite overpass will be slightly different each time, but this does come at the cost of individual
time measurements.

Creating a new grid for the measurements
When using the divergence method an issue with the measurements of satellites is that depending on
the orbit that the satellite takes, they might not make the measurements at the same place each time.
This results in datasets where the measurements are not the same. To fix this issue, the data will have
to be regrid so that the data can be compared to each other. To do this, the concentration data will have
to be calculated for different locations. Depending on how this is done, the outcomes of the emissions
might be affected as some methods are less accurate. Therefore, when selecting a method to regrid,
the effects on the data should be taken into account.
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Figure 2.17: Example of overlapping plumes from Goudar et al., 2023 [22] due to wildfires in Australia in 2019

Dealing with noise in the data
Due to quality differences between the measurements, it could be that there is a noise present in certain
pixels. This could lead to mistakes in the calculation errors. In Koene et al., 2021 [31], several methods
to deal with this problem are listed.

Overlapping plumes
Whenmultiple plumes overlap, it becomes very complex to model their emission. This is because many
emission estimation strategies are only meant to model one distinct plume. Issues like this can happen
in various situations. For example, Figure 2.17 shows three plumes that are hard to distinguish from
the background due to the wildfires in Australia in 2019. The paper by Koene et al., 2019 [31] states
that the issue of mixing and overlapping plumes will be left for the future and that their algorithms will
not produce emissions for these.

Missing data/cloud coverage
Due to the influence of clouds, not every measurement of the trace gas will be available. The effect on
the quality of data is shown in Figure 2.18. Here the quality of the CO data from TROPOMI is given a
quality value based on the position of the clouds in the data scene. The Product Readme File states
that quality values below 0.5 should be used with caution in analysis [32].

The result of defective data is that not all pixels hold data that can be used. This could result in pixels
missing from plumes. To resolve this issue, a good interpolation method is needed. However, if large
areas of pixels of the plume are missing the fidelity of the interpolation method will not be important. In
these cases, the data should be discarded. The same is true for missing data due to other reasons. For
example, if the data is corrupted, not everything will be available and therefore an interpolation method
should be chosen or the plume should not be considered in the analysis.

Noise due to measurements over water
The measurements of certain trace gases above water are more sensitive than over land. This is due
to the clouds above the oceans and rivers contaminating the measurements. So when measuring data,
TROPOMI also takes data from above the clouds into account, which results in errors. This is the case
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Figure 2.18: Quality value definition of CO data from the TROPOMI CO L2 Product Readme File [32]

Figure 2.19: The average divergence of plume data over Chicago with the blue dot showing the Burns Harbor industrial area
from the internship report [3]

for CO. For example, as can be seen in Figure 2.19 and Figure 2.20 the divergence of CO is significantly
affected by these measurements. The first figure shows the divergence of the data while the second
figure shows the location of Lake Michigan concerning the divergence data. As can be seen, the CO
data over the lake is significantly higher. To avoid the water data affecting the emissions, a filter should
be made to take this data out.

Plume height
Plumes do not stay at a constant height usually. Due to temperature and vertical wind speeds, the wind
can flow upwards and downwards through the atmosphere. By assuming the height of the plume to be
constant, the plume emission estimation would be influenced. A way to avoid making this assumption
is by using a three-dimensional Lagrangian tracer dispersion model as is done in APE [22]. This model
finds the height of the plume in a downwind direction. It does this by performing multiple Lagrangian
simulations of the injection height. The first simulation is at the injection height itself, the other two are
500 meters below and 500 meters above the injection height. The injection height itself was estimated
using different satellite data. The plume height is calculated by taking the average of the simulation
heights. An example of the process can be found in Figure 2.21.
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Figure 2.20: The average divergence of plume data over Chicago with the blue marker showing the Burns Harbor industrial
area from the internship report [3]

Figure 2.21: Estimation of the plume height. Subfigure (a) shows the white line of the Lagrangian model and subfigure (b)
shows the different plume heights as a result. Figure from (Goudar et al., 2023 [22])

Wind speed uncertainties
The wind speed is not estimated by TROPOMI or any previously mentioned satellite. The wind speed
data is taken from the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 prod-
uct. This product represents an hourly climate and weather model that includes the wind speed and
direction data 22. The spatial resolution of ERA5 wind data is known to be 0.25 ◦ by 0.25◦ for atmo-
spheric points and 0.5 ◦ by 0.5 ◦ for ocean waves. The resolution is thus roughly 31 km by 31 km which
is a worse resolution than TROPOMI CO data which has a resolution of 7 km by 5.5 km. Therefore a
lot of interpolation is needed to use both data sets. In Goudar et al., 2023 [22], the uncertainty of plume
emission estimation using ERA5 data is described to be less than 20% for 97% of the cases.

Stripe noise of TROPOMI CO
The raw TROPOMI data contains vertical stripes. These stripes are most likely an artifact of putting
together multiple detectors or from the movement of the sensor during the measurement. To get rid of
these stripes, there are several methods. In Borsdorff et al., 2023 [21], a new method using random
forest classifiers is utilized. This method was developed because the current destriping method uses
VIIRS cloud data. The VIIRS mission is soon to be retiring and thus this data will not be available
anymore. An overview of the method can be found in Figure 2.22. The method works by first estimating
a smooth background in the cross-track direction and then subtracting this from the raw data and
smoothing it to remove emission peaks.

22Retrieved on 3-6-2024, https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?
tab=overview

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
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Figure 2.22: Overview of the new destriping process. Subfigure A shows the TROPOMI data. Subfigure B shows an
approximation of the background. Subfigure C shows the stripes. Subfigure D shows the resulting destriped TROPOMI data.

Figure from Borsdorff et al., 2023 [21]
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Determining the background concentration
It can be hard to determine the background CO concentration data in the TROPOMI data. This is
because the data is usually not uniform which could lead to a case where the background pixels far
from the source are higher than the emission at the source. This issue can make it hard to isolate
plumes in the data. A similar problem for CO2 data is discussed in Koene et al., 2021 [31].

2.6. Alternative pollution plume detection methods for APE
As described in subsection 2.5.1, the plume detection that is currently implemented in APE is not
working as well as intended. This section discusses several alternative plume detection methods that
could serve as a replacement or an addition to the currently implemented plume detection method.

2.6.1. Machine learning approaches for plume detection
Machine learning has a broad range of applications in remote sensing [33]. A problem outlined in
Maxwell et al., 2018 [34] was that it was not so easy to implement machine learning (ML) approaches
in 2018. This was due to a lack of experience in using and optimizing ML as well as less available ML
packages as is the case now. This led to under-utilization, even though the technology was seen as po-
tentially more effective than other methods. In this section, an overview of the existing and researched
ML methods are listed. Other important aspects surrounding ML are covered here as well, starting with
the datasets.

For clarification purposes, in this document, a data scene or granule is defined as a combination
of trace gas concentration measurements in an array with their geographical coordinates. A dataset is
defined as a collection of data scenes. To make the dataset set only include useful data, a selection
needs to be made. This means that in the analysis of a point, not the entire field of view of TROPOMI
but a smaller selection of data points around the source is needed.

The creation of a dataset for TROPOMI is important because this dataset used for training and
testing must be accurate and have little to no bias if possible. A problem that could occur is class
imbalance. A class is a particular type of data. For example, if you have a dataset of pictures of fruits,
you could separate the images by making each fruit a class. So pears could be a class. The class
imbalance occurs when a particular class appears more than others, which could create a bias for the
classifier to that class [34]. To avoid this problem, the dataset(s) should include an equal amount of
data scenes from the different classes.

Another problem that can occur when using machine learning is the Hughes phenomenon. This
happens when data scenes include too much information, which could lead to overfitting. Thus adding
more parameters could decrease the accuracy of classification [35, 34]. To avoid this issue a smart
selection in the data should be made. For plume detection purposes it makes sense to focus on the
data of the plume and its surroundings which would be easily visible just by looking at the enhancement
of the concentration concerning the background. Another possible solution is to use the data only in
the direction of the wind, as a plume in the opposite direction of the wind would break our current under-
standing of science. A combination of these approaches can be made as well. During the internship,
an augmentation algorithm was developed to filter out unnecessary information for plume detection.

Plume detection using support vector machines
The Support Vector Machine (SVM) approach seeks to maximize the boundaries between the points of
different classes in a hyperspace. The dimension of the hyperspace is determined by the dimensions of
the input vectors. The boundary is defined as a hyperplane in the hyperspace. It does this by drawing
boundaries between the differently labeled data points. The SVM seeks to find the shortest distance
between the data points of the different classes. These boundaries are drawn by the kernel function.
The boundaries between classes are essential as they directly inform the SVM how to classify new
data points. Therefore, getting the right boundaries is important thus the kernel selection is important.

To draw these boundaries, different kernels can be used. The effect of using there kernels can be
seen in Figure 2.23. In this image different kernels from SCIKIT are shown [36]. By testing during
the internship it became known that the radial base function (RBF) kernel produced the best results in
training and testing of the plume detection data [3].

During the internship, a dataset was created to test the SVM machine learning tool and compare
it with results from APE [3]. When the machine learning tool was shown to be more successful com-
pared to APE in finding plumes, it was decided to do this follow-up project. To see how effective the
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Figure 2.23: Effect of using different kernels for boundary drawing for SVM from SCIKIT [36]

new datasets are, it was decided to also run the already existing machine learning tool based on the
internship dataset. The results of the machine learning tool created by the old data would serve as a
benchmark.

The dataset itself consists of about 1600 images. Half of these images contain plumes and the other
half contain no plume data. The dataset only includes data from the Inner Mongolia BaoTou Steel Union
Co.,Ltd. plant in China. This steel plant is known to emit large plumes. According to Tian et al., 2021
[37], the emission rate of the steel plant is 34.3 ± 2.0 kg/s. The location of the plant is also ideal as it
is located near the Goby desert and not close to a body of water. This makes it easy to extract plumes
from the data.

The dataset was used to train the SVM tool. The use of the tool was compared with APE. When
comparing the two tools it became clear that the SVM tool was able to find all 54 plumes that APE did
except for one. The tool was also able to detect 125 more plumes. This showed the potential of this
method. When trying to implement this method for other steel plants, an issue was encountered with
the background values showing different behavior which obscured certain plumes [3].

The drawback of the SVM tool is its sensitivity to noise in the data. Therefore when using this tool an
augmentation algorithm is needed to enhance the important information in the data. The augmentation
algorithm reduces the information in the data to only the important features that the detection. It does
this by only selecting the data points that are close to the source and data that is in the wind direction.
An example of processing data with the augmentation algorithm can be found in Figure 2.24.

The tool is also not able to learn what a plume is like a human would and thus is not always able to
classify very obvious plumes. An example of this happened during the internship where it was found
that the direction of the plume was very important to SVM classification. To avoid issues with the
directionality of a plume, every data granule is rotated three times, each time the rotation is rotated by
90◦. These 3 rotations together with the original image are added to the dataset on which the SVM tool
is trained. In Figure 2.25 different plume images are shown with their respective classification listed in
the descriptions. As can be seen, the direction of the plume influenced the classification. The issue
was solved by adding rotations of the original data scene into the dataset. This issue shows that the
SVM tool is very sensitive to biases in the data.

Support vector machines were also used in Latif et al., 2023[38] on CO concentration data to predict
future concentrations where they were tested among other machine learning approaches. In the paper,
the approach was not considered to be the best but it was also not the worst. If the data is relatively
simple, meaning without many parameters and does not include many errors, the approach produces
accurate and fast results.
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(a) Unprocessed TROPOMI data (b) Removal of NaN values

(c) Removal of background (d) Normalization of the data

(e) Effect of proximity and wind direction taken into account (f) Addition of the source point

Figure 2.24: Steps taken to clean up the data for plume detection
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(a) Rotation 1, not detected as plume (b) Rotation 2, detected as a different kind of plume

(c) Rotation 3, detected as a different kind of plume (d) Original data, correctly detected

Figure 2.25: Overview of the effect of rotations on detection by SVM. The data scenes are processed TROPOMI data using an
algorithm.
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Figure 2.26: Simple overview of a small decision tree.

Plume detection using random forest classifier
For a previous project, SRON commissioned a group of software engineers to create an efficient ran-
dom forest classifier (RFC). This collection of code is known as Balsa and has been made available for
the project. This subsection is based on the description from the explanation given in the Balsa code
as made available to the SRON Earth Group. Balsa was developed by the company Jigsaw B.V. with
funding from ESA [39].

The RFC approach uses a combination of decision trees that are used for classification. The training
data is used to create the decision trees. By randomly selecting parts of the training data for each
decision tree, the resulting decision trees will be different from each other. For testing, each decision
tree will have the same data as input. Each tree will output the label they think is the correct label for
the test data. The most popular label as chosen by the trees will serve as the label used to classify the
data [40] [41].

The decision tree classifiers consist of a collection of nodes. Nodes can be split into two types,
leaf nodes and internal nodes. Internal nodes have two child nodes while leaf nodes have no child
nodes. In an internal node, a data point is judged by checking if the value of a feature f in data point
p, written as p[f ], is bigger or smaller than a value L. An example of a decision tree can be found
in Figure 2.26. Here the basic structure of a decision tree is shown. Internal nodes use the value of
features to determine whether to go to the next node. The classification process at the leaf nodes,
where the class label of the leave is used to classify the data.

When data is inputted to create the decision tree classifier, the classifier splits data into two different
parts that include data. This process is continued until all data features are split from each other. The
split values L are stored per feature. The optimization of this tool is in finding the smallest trees while
not losing too much accuracy. The larger the number of features in the data, the longer it takes to
create the decision trees. To avoid the creation of huge trees, which are computationally expensive,
there are several options to consider. Examples of these include limiting the depth of the tree so that
not every feature is utilized or limiting the data itself by only inputting useful data. The random forest
is created by randomly selecting the features of the input data for each tree. The decision trees are
considered to be weak classifiers. A large combination of weak tree classifiers can result in a stronger
classifier. Thus resulting in a selection of trees that are slightly different. If the training data is chosen
well, the trees should generally vote for the right class resulting in good classifications overall.

The Balsa package has a maximum number of features of 256. This is a hard limit on the amount
of data that can be classified. This is due to the computational complexity increasing significantly with
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the number of features. This is due to the system having to create more complex trees. For SVM this
is not the case as the boundaries are drawn quickly and therefore there is no hard limit and the number
of features to use is significantly larger. It is larger than at least 5000 features. Thus the number of
features is a limiting factor for this approach, so a good selection of features is necessary to utilize
this approach best. This can be done by using certain algorithms to highlight only relevant data. For
example, only using the data points close to the emission source makes sense and reduces the number
of data points aka features used for RFC.

According to M. Pal, 2004 [41], for remote sensing purposes, the random forest classifier has a
better accuracy than SVM. They define Accuracy as the number of data scenes in testing that were
classified correctly. The paper further states that RFC is able to use imbalanced data and data with
unknown values.

Plume detection using deep learning
The plume detection of trace gases can be seen as an image recognition exercise. This is why it makes
sense to use a proper image recognition approach. The previously mentioned approaches cannot look
at the image of the data scene as they look at the data values. This causes problems such as issues
with the direction of plumes as depicted in Figure 2.25. With a deep learning approach, it should be
possible to avoid these kinds of problems by utilizing a more sophisticated method to recognize plumes.

Deep learning utilizes several layers of processing to detect patterns and classify data. The ap-
proach is supposed to mimic the brain by using nodes that are used to help in the classification. The
nodes are called neurons and are responsible for passing through the data. Putting multiple nodes
together creates a neural network. The combination of a neural network for deep learning is called a
deep neural network23. The nodes work with weights and thresholds. If a certain threshold is met, then
these particular nodes are activated. For image processing the conventional processing method is us-
ing a convolutional neural network (CNN). These networks use convolutional layers. The processing
of CNN’s work by first analyzing smaller features of the image and with each passing layer analyzing
more and more parts of the image until analyzing the full image in the last layer. This way the CNN can
fully breakdown the image and with the information gained can classify the image24

The CNN works in three parts, the first part is the convolution layer. In this layer, the input data is
processed into feature maps which investigate different features from the input data. This is done by
performing several convolutional operations to find features. During the training of the CNN, the optimal
convolutional operations are found. The second layer is called the pooling layer. In this layer, the noise
in the feature maps is reduced as well as the dimensions of the maps are reduced. At the end of the
pooling layer, a ”summary” of the important features is created. This ”summary” is a vector comprised
of the condensed and flattened most important features. This flattened feature map is then used as an
input to the final layer which is the neural network. The neural network classifies the plume at the end.
During the training process of the CNN, the weights of the convolution layer and the neural networks
are tuned. Thus the CNN will learn which features are the most important for classification and create
the weights for the filters. Unlike the previous methods, the CNN approach should be able to find the
features in the data by itself without the need for an augmentation algorithm. The augmentation could
be used to aid the network in finding the right features for classification and is thus also an asset.

An issue that arises when investigating the images as vectors as was the case for the SVM and
RFC is that the features, in this case a pixel of CO concentration, are investigated by itself without
investigating the features surrounding it. It is likely in an image that the surrounding pixels are in some
way correlated to the center pixel. SVM and RFC take that into account implicitly. The SVM tool does
not check for the correlation between the features, rather it seeks to find the optimal distance of the
margin between data points. The correlation of features can be implicitly found by using non-linear
kernels to create the boundary. These non-linear kernels can find the relationships by adapting to the
non-linear behavior of the data. The correlation between features is also not utilized explicitly by RFC
as they generate trees based on differently randomized input features. If the tree diversity is large
enough the feature correlation is used implicitly for classification. This is because different trees will
be able to represent the different correlations between different pixels. However, the CNN approach
compared to SVM and RFC uses feature correlation explicitly. For the plume detection algorithm, this

23Retrieved on 4-6-2024, https://www.ibm.com/topics/deep-learning#:~:text=Deep%20learning%20is%20a%20subset
,AI)%20in%20our%20lives%20today.

24Retrieved on 4-6-2024, https://www.ibm.com/topics/convolutional-neural-networks

https://www.ibm.com/topics/deep-learning#:~:text=Deep%20learning%20is%20a%20subset,AI)%20in%20our%20lives%20today.
https://www.ibm.com/topics/deep-learning#:~:text=Deep%20learning%20is%20a%20subset,AI)%20in%20our%20lives%20today.
https://www.ibm.com/topics/convolutional-neural-networks
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Figure 2.27: Overview of the steps taken by a CNN to classify plume data

is extremely useful. A plume is not just located in one pixel but in several pixels near the source. Thus
utilizing the correlation between pixels explicitly makes more sense than hoping to approximate the
effects of the correlations between the pixels in the previous methods.

In Finch et al., 2022 [42], a neural network is used to find NO2 plumes. Using two years of data, it
identified 310020 images with at least one NO2 plume. The network was more than 90% of the time
able to identify a plume correctly. The paper makes the case for using NO2 as a tracer for CO2 because
of the much shorter lifetime of NO2. The paper argues that by correctly identifying NO2 plumes, it is
possible to make it easier to identify CO2plumes.

The big drawback of deep learning is that it is more computationally heavy. If the previous methods
show that they are capable of producing similar accuracy in detection compared to CNN they would
be more desirable to use. Thus even though this method seems to be the most promising in terms of
producing accurate plume detection, it is not necessarily the best method.

2.6.2. Gaussian fitting model method
This method works by attempting to fit a Gaussian distribution through the cross-section of perceived
plumes. The method models the background by fitting it with a linear function. An example of the
method can be found in Figure 2.28. The figure is from Zheng et al., 2020 [43]. They use one orbit of
the climate satellite OCO-2 with CO2 data. Compared to other methods, this method works on a small
part of the plume. However, with the abundance of other information available for plume in a TROPOMI
dataset, this method is not the best suited to use with TROPOMI data this is because this method is
able to find cross-sections of the plume whereas in TROPOMI for a lot of cases, the entire plume is
visible.

2.6.3. Simple enhancement method
In this method, the enhancement of a possible plume is researched by checking the pixels around the
source and the pixels further away. An example of this can be found in Figure 2.29. In Figure 2.29a, a
TROPOMI CO data scene is shown with a known emission source in the middle. The middle pixels are
shown inFigure 2.29b, while the background pixels are shown in Figure 2.29c. To figure out if there is
an enhancement, one could average the concentration data at the source and average the background
data. The enhancement ratio can be found by dividing the average of the source pixels by the average
of the background pixels. If this ratio is bigger than one, there should be an emission visible in the
scene. A problem with this approach is that the background of CO data is usually not uniform and thus
this could lead to a case where the background pixels far from the source are higher than the emission
at the source. A similar problem for CO2 data is discussed in Koene et al., 2021 [31].
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Figure 2.28: Gaussian fitting method using OCO-2 data. Subfigure (a) and (b) show an orbit with CO2 enhancement.
Subfigure (c) fits a line through the background and the enhancement. Subfigure (d) removes the background and the result is

the CO2 density. Subfigure (e) shows the modeled level of CO2 enhancement. Figure from [43].

2.6.4. Using other trace gases such as NO
Another approach to make it easier to find plumes could by also investigating other trace gases. This
is because during the combustion process other trace gases are emitted along side CO. One of these
gases is NO. The issue with trying to use NO is that TROPOMI does not have a dataset for NO. It does
have a dataset that measures the concentration of NO2. This dataset can be combined with a model
that can convert NO2 to NO. This can be done using the model from Kuhlmann et al., 2021 [44]. This
model would make it possible to input plumes from two trace gases to see their effect. It can also be
used to refine the emission estimation method by refining the pixels that house the plume.
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(a) Destriped TROPOMI data scene

(b) Pixels at the emission source (c) Pixels used to determine the background

Figure 2.29: Overview of the simple enhancement method



3
Research plan

This chapter gives an overview and a justification for the thesis project. The justification takes the form
of research questions, to which tasks are assigned. The project tasks will be assigned to different work
packages. An estimate for how much time each work package will take is also denoted. At the end, a
Gantt chart shows the thesis duration and milestones. The research questions for the project and their
explanation are listed in section 3.1, followed by an overview of the tasks in section 3.2.

3.1. Research questions
Main research question:

• MQ1 - Can a machine learning approach improve the detection of pollution due to combustion at
a global scale?

This question will be answered by implementing multiple machine-learning approaches using the
APE algorithm. APE can calculate the emission for CO plumes but is not able to detect plumes without
a predefined source. A machine learning approach should be able to find plumes even without a set
location. The creation of the detection tool be done in work package 2. In work package 3, the new
method will be used on a large amount of data to see exactly how successful it is.

• MQ2 - Does combining different trace gases improve the quantification of emissions?

To answer this question, in work package 1, the trace gas NO2 data from TROPOMI will be added
to the APE algorithm. This will allow the data to be used in analysis. Furthermore, the NO2 data will be
converted to NOx data using the model from Kuhlmann et al, 2021 [44]. This will create two datasets.
Both of these will be used in two ways. One is to make a more accurate plume mask to aid in emission
estimation. The other purpose is to add it to the machine learning tool, to see if adding other trace
gas data will be useful in finding plumes, which is the work from work package 2. In work package
3 the newly created approaches will be tested on global data that span 7 years to see exactly how it
increases the accuracy.

Work package 1:
• QWP1.1 What is the effect of adding NO2 and NOx data for emission quantification?

In the combustion process, various trace gases are produced. These include CO, NO2 NO and
CO2 among many others. The distribution over time of these gases gives information about the com-
bustion process. Therefore, analyzing them together should provide us with more information than
analyzing them separately. To answer the question the following steps will be taken. The NO2 data
from TROPOMI will have to be included in the APE algorithm. Then the chemical model from Kuhlmann
et al., 2021 [44] will be used to get the NOx concentration data from the NO2 data. This data can be
used in different ways. For some emission estimation methods, it is necessary to find the pixels where
the plume is located. This is known as the plume mask. It is expected to be easier to find the plume
mask using the NOx data than using the CO data. Furthermore, the NO2 and NOx datasets will also
be used in work package two for plume detection.

33
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Work package 2:
• QWP2.1 - Between the machine learning approaches for plume detection as described in sec-
tion 2.6, which one detects the most plumes accurately?

To answer question WP2.1, a variety of different datasets will be created. From the literature, it
is known that these datasets are quite extensive. However, to circumvent this issue the data will be
augmented. It is interesting to create multiple datasets and compare results to see the range of different
uses in machine learning approaches. One such data set will be just a set of raw TROPOMI images.
Other datasets would use some form of augmentation to highlight specific aspects of the data to make
detection easier. For example, the data that is not in the direction of the wind will be removed. The aim
will be to create multiple large datasets of 10.000 scenes with worldwide coverage.

The machine learning methods that are being considered are SVM, RFC and a deep learning neural
network. The SVM was already considered during the internship and is therefore already implemented.
SRON has an RFC Python package made by a third party that is easily usable. During the internship,
contact was established with a PhD student from the University of Heidelberg who is capable of making
deep-learning models. This model thus already exists, however, I do not have it in my possession and
therefore will need to discuss with the person how we continue. I will ask if I can have the code so I can
run experiments and not depend on them. However, it could also be that this will not work and then I
have to possibly even create a model myself, which will take away time from the rest of the project.

During the internship, two datasets were produced. One dataset of raw TROPOMI images and one
that augmented the raw data to extract certain features. The algorithm removed the data from the raw
images that were far from the emission source and not in the direction of the wind. The run successful
SVM experiments, the augmented data was necessary. SVM can use a lot of parameters, however,
RFC is limited to 256 parameters. The SVM augmentation algorithm uses 1681 paramters. Therefore,
a new augmentation algorithm is necessary to make a dataset for this approach. For the deep-learning
model, it will be interesting to test the different datasets to see if augmentation is necessary for it or
not. This is important because augmenting the data for SVM takes 4 seconds per scene. If we have
10.000 scenes this will take 40.000 seconds which is 11 hours. Another issue in creating the datasets
is bias. The direction of plumes is a sensitive issue for SVM and thus all rotations should be part of
the datasets as well. Further investigations into the datasets will be necessary to take out as much
data-based bias as possible.

The NO2 and NOx datasets created in WP1 will also be used in machine learning to see what the
effect is of adding other trace gases. I am not exactly sure how I will include these in the CO data. But
most likely I will simply add them to it. This will be difficult when using the RFC tool so perhaps another
approach should be considered. Perhaps an algorithm to get rid of the noise in the CO data using NO2

or NOx data should be considered.
The training and testing of the datasets will be done iteratively to make sure that the training datasets

are as optimal as possible. This means that the training data will be limited to what is strictly necessary.
Thus instead of making random selections of data, the datasets will be picked one by one to see if
the classification of test data increases or not. If with the introduction of a new scene into the training
dataset, the classification of test scenes goes down the dataset will be taken out of the training set.
This could introduce bias, so it will be done with care.

• QWP2.2 - Which plume features are the most important for detection?

When making data augmentation algorithms, certain features will be picked out to investigate which
one makes the plume best visible. During the internship, two features were considered. These were
the location of the source with respect to the possible plume and the direction of the wind. It could be
that other features are also helpful in the process of plume detection and therefore will constructing
these augmentation algorithms an open mind should be kept.

Work package 3:
• QWP3.1 What is the increase in the accuracy of the new plume detection and emission estima-
tion?

To answer this question, the new methods will be combined and compared to the old methods of
APE. This will then show if the new methods outperform the old ones. The exact method of testing
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Figure 3.1: Interaction between the tasks in each work package.

will have to be thought out still but it will involve a range of different places that include plumes from
industry and wildfires. It will be interesting to compare the time series of emissions to known emission
inventories. I have not selected ones currently but I will look this over later.

• QWP3.2 What phenomena are visible in the data?

To answer this question, the plume detection and emission estimation will be done for several rel-
evant locations in the data. These locations would include places with industry and wildfires. This
should give us a lot of results to analyze. Going over the data could result in discoveries and validate
the approach.

3.2. Thesis planning
A full overview of the work is shown in Figure 3.1. The time it takes to complete each work package is
listed below. A Gantt chart showing the estimated timeline of the thesis is shown in Figure 3.2.

Planning: WP0:

• WP0: Literature study: 7 weeks, week 1 to 7
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WP1:

• WP1.1 - Implement NO2 data download in APE, 2 weeks, week 8 to 9.
• WP1.2 - Get access to Kuhlmann’s model, 1 week, week 8
• WP1.3 - Implement Kuhlmann’s model into APE, 2 weeks, week 9 to 10.
• WP1.4 - Use NOx data to find the plume mask, 3 weeks, weeks 11 to 14.
• WP1.5 - Estimate emission using NOx data, 1 week, week 15.

WP2:

• WP2.1 - Create a list of emission locations, 1 week, week 8
• WP2.2 - Get access to deep learning model, 3 weeks, week 8 to 10.
• WP2.3 - Download plume data, 2 weeks, week 11 to week 12
• WP2.4 - Label the data, 2 weeks, week 12 to week 13
• WP2.5 - Create data augmentation algorithm, 2 weeks, week 14 to week 15.
• WP2.6 - Finalize the datasets, 1 week, week 16
• WP2.7 - Test the machine learning tools on the datasets, 3 weeks, week 17 to 19.
• WP2.8 - Verify and validate the plume detections, 3 weeks, week 17 to 19.
• WP2.9 - Document the results, 1 week, week 20

WP3:

• WP3.1 - Combine the new implementations, 2 weeks. week 21 to 22.
• WP3.2 - Detect plumes and calculate the emissions on 7-year data, 2 weeks, weeks 23 to 24.
• WP3.3 - Analyze the results, 2 week, week 25 to 26
• WP3.4 - Find and compare the emissions to emission inventories, 2 weeks, week 25 to 26.

Figure 3.2: Gantt chart with the work packages shown



4
Enhancing the APE plume detection

This chapter discusses the implementation of different machine-learning approaches for plume de-
tection. The machine learning methods should improve the APE plume detection described in subsec-
tion 2.5.1. This is done by discussing the research questions the different methods and their application
in section 4.1. To better utilize the input data, the features that determine the plume detection could be
enhanced. For this purpose, the input data augmentation algorithm was developed. The algorithm is
described in section 4.2.

4.1. Overview of the possible improvement
To solve the first main research question of the research plan as outlined in chapter 3, which asked if a
machine learning application could improve the detection of pollution on a global scale, it is important
to consider the different options of machine learning that are available for the project. These methods
were already discussed theoretically in subsection 2.6.1. In this section, the implementation of these
methods in code is discussed.

When selecting the machine learning method, it is important to consider what problem needs to
be solved. The problem that needs to be solved is that APE be expanded with another part where
this happens. In subsection 2.5.1, it is explained that the emission estimation uses the plume mask
provided by the Marker-based watershed transform method. The new plume detection method should
thus be placed between the first part that performs the data preparation and the second part that finds
the plume mask in the data. An overview of this new step can be seen in Figure 4.1. Here an updated
overview of APE capabilities is shown. This figure is an updated version of Figure 2.7.

The machine learning problem of this project boils down to the extraction of plume data from a

Figure 4.1: New overview of APE’s capabilities with the proposed enhancement shown in green.
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dataset that also includes noise data. When a granule that has a plume is found, this granule should
be processed further. If no plume is found in the granule, APE should stop investigating it and move
to the next data array. The machine learning tool thus acts as a filter to remove no plume-containing
data from consideration. The problem here is thus a two-class classification problem. The classes are
plume data and no-plume/noise data. The machine learning methods that are considered should thus
be able to solve a two-class classification problem.

The plume detection methods considered are support vector machines (SVM), Random Forest Clas-
sifiers (RFC) and Convolutional Neural Networks (CNN). To save time, already existing and accessible
machine-learning tools were used. The background of these machine learning methods have already
been described in subsection 2.6.1. The SVM function in SCIKIT was utilized [36]. However, the SVM
needed an augmentation algorithm to be used effectively. As explained in subsection 2.6.1, this algo-
rithm was used for one particular industrial source. The augmentation algorithm did not work for other
sources and thus had to be updated. This is written in section 4.2. Rotated plumes were also added
to the data to avoid bias with plume directions.

For the RFC an in-house Python package called Balsa was used. Balsa was developed for other
purposes, such as utilizing Balsa’s RFC as an alternative to the cloud-clearing for the TROPOMI
XCH4product [21]. When utilizing the tool for the project, it was quickly realized that the 41 by 41-
pixel granule was too large for Balsa to handle. The creation of the decision trees kept crashing the
computer it ran on. To solve this issue it was decided to prioritize the data near the emission source.
Thus the granule was cut down to the 15 by 15 center pixels as this was the maximum granule size that
would not result in a crash. This is a significant reduction in terms of features compared to SVM. Just
like for SVM, the data augmentation was utilized as well as the rotated data when using the RFC classi-
fier. The reduction of features could mean that the tool works in a worse manner as less information will
be available for classification. However, this problem should not be significant as the pixels closest to
the source are the most important. This is because the plume will be most visible near the source and
the augmentation algorithm prioritizes pixels closer to the source. This means that the pixels further
away have an increasingly higher likelihood of being put to zero anyway further. Thus it is expected
that this reduction in information does not have a significant impact on the accuracy of the tool.

To test the CNN approach, twomethods have been utilized. Both are based on the Residual Network
(ResNet) as developed by Microsoft [45]. The first is a ResNet-44 that follows the design specifications
as described in He et al. 2016 [45] made available to the project by PhD student Thomas Plewa from
Heidelberg University. The second one is a ResNet-26 that has had small changes in its architecture
and thus differs a bit from the design as written in the previously mentioned paper made available to the
project by Peter Sterk. He works as a scientist at SRON who works on machine learning applications
in the Earth science group. The number next to the ResNet name indicates the layer depth. Thus
ResNet-44 utilizes a layer depth of 44 and ResNet-26 utilizes a depth of 26.

The utilized Residual Network (ResNet) for this project are the ResNet-26 and the ResNet-44.
These networks differ slightly from the general CNN description from subsection 2.6.1. A big draw-
back in the regular CNN architecture is an issue with vanishing gradients. These gradients are used to
update the weights of the filters during training. When the gradients get too small the weights are not
meaningfully updated. This happens as a result of the backpropagation of the error to the initial layers.
This error can then be used to update the weights of all layers. With more layers, the backpropagation
gets longer and can make the gradients smaller resulting in the aforementioned problem. This issue
limits the depth of the networks. To avoid this, a ResNet uses the addition of the input data to the output
between layers. This allows the network to get the difference between the input and the output, the
residual. This has led the ResNet to improve accuracy at higher layer depths compared to the regular
CNN. As stated before, the number next to the ResNet name denotes the layer depth. The higher the
layer depth, the more accurate the model is expected to be. The ResNet also outputs the confidence
of the tool in the given classifier. For tuning the ResNet-26 a confidence of 60% was used while for the
ResNet-44 a confidence of 80% was used. This means that results produced by ResNet-44 will have
a higher confidence and as the machine learning tool utilizes more layers.

For further implementation, the accuracy of the plume detection of the different methods should be
determined and compared with APE. This is done in the chapter 7. Only the machine learning methods
that outperform APE should be considered to be integrated into the algorithm. Before this comparison
can take place, the data to train the machine learning approaches needs to be considered first. Obvi-
ously, these have to be CO plumes. The input data can be further optimized which is discussed in the
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next section.

4.2. Data augmentation algorithm
As written in section 3.1, question QWP2.2 asks which features are the most important for detection.
These features should make it possible for the various plume detection methods to filter the data cor-
rectly. The original L1B data from TROPOMI, however, includes a lot of different other information
that could cloud the judgment of these methods. Due to the inclusion of NaN values in the TROPOMI
data, it is in most cases not even possible to process the unaltered TROPOMI data. Therefore some
augmentation of the data is needed to perform the plume detection.

For a large portion of the project, the SVM method was the only available method for plume detec-
tion. This method was thus used for the optimization of the augmentation algorithm. It was previously
discovered that the SVM tool is very sensitive and therefore the input data needed to be augmented
significantly to get a good dataset to serve as input data. Thus the aim of the data augmentation algo-
rithm is to remove the information from the input data that is not relevant and to enhance the features
of the plume. This should make the plumes easier to detect.

The TROPOMI CO concentration data is used as input data. This data should be 41 by 41 pixels
and the data should be destriped. The granule size of the data is determined by the APE algorithm. An
example of destriping is shown in Figure 2.22. The center of the granule should be the point source
emitter. It is possible to either increase or decrease the input array of data but this could come at the
expense of the background data value, as it would affect the median background value. Adding more
pixels would also increase the number of data points that are set to zero which would therefore not be
useful in the detection. An example of the use of the algorithm can be seen in Figure 4.2. An example
of input data can be seen in Figure 4.2a.

The steps in the algorithm are as follows. First, the NaN values in the data are removed from the
original input data. These values represent positions where, for a variety of reasons, the TROPOMI
instrument was unable to get accurate CO concentration values. The NaN values in the data are set to
zero. These values are not usable in calculations and will also cause issues with the machine-learning
approaches. The end goal is to normalize the data between 1 and 0, where 0 denotes uninteresting
features in the data, so putting them to zero is not a completely arbitrary choice. The step can be seen
in Figure 4.2b. This data is then normalized between 0 and 1.

The second step is to remove the background data and only keep the data that is significantly higher
than the background concentrations which would be the enhancement. It is assumed that for a 41 by
41 pixel granule, the noise in the background is Gaussian distributed while the CO concentration of
plume data is assumed to be higher. By taking the median value in the array to be the mean of the
noise distribution, the standard deviation in the data can be calculated by subtracting the mean of the
distribution by the value that is the 15.9th percentile. This value comes from calculating the area on the
right side of the graph of a normal distribution that is higher than 2 standard deviations. Subtracting
all the values in the array from the median value results in the enhanced data as can be seen in
Figure 4.2c. Diving this by the standard deviation calculates the number of standard deviations these
values are higher or lower than the median. An example of this result can be seen in Figure 4.2d. If
these values are at least 2 standard deviations higher, it can be said with 95% certainty that the values
are statistically significant and with 97.1% certainty that they are not part of the background noise.
The values that are not higher than 2 standard deviations are set to zero as they are expected to be
background data. The result of this can be found in Figure 4.2e.

To get to Figure 4.2f, two other important effects need to be taken into account. These can be
seen in Figure 4.3. These include the wind direction and the distance to the source. Due to the spatial
resolution of the measurement instrument, the distance of each pixel with the center pixel is variable.
Especially when the data is used near the edge of the swath-widths of the instrument, the data will be
stretched in the longitudinal direction. Since the plume originates near the source it should be visible
near the source pixel which is set in the center, the pixels that are much further from the center are far
less relevant. This is because if the plume is not visible at the center, there is no reason to investigate
the data further away. Therefore the data near the center is much more important. Using the Gaussian
function as denoted in Equation 4.1, the distance to the pixel was used to set the pixels of data located
further away to zero. The terms σ2

x and σ2
y were both found to be 10.000 by tuning. The distance in

both the latitudinal and longitudinal are equally important. The term A is set to 1 as the resulting data
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should be between 0 and 1, with 1 being the largest possible value. The result of taking the proximity
into account can be found in Figure 4.3a.

f(x, y) = A · exp
(
−
(
(x− x0)

2

2σ2
x

+
(y − y0)

2

2σ2
y

))
(4.1)

The wind direction was also taken into account. This was done by calculating the angle between
the line of the source and the locations of the grid and the wind direction line from the source. The
assumption is made that the plume should be in the direction of the wind at the source pixel. To avoid
removing too much data in the event that the wind direction changed a lot before the measurement or
because of a possible error in the wind data, the algorithm should not punish data that is not entirely
in the direction of the wind. This is done by using another Gaussian function which is shown in Equa-
tion 4.2. The term A is set to 1, as the data is normalized between 0 and 1. The maximum value should
be 1. The term σ2

θ was set to 15.000 by trial and error. This value could be further optimized. The effect
of the wind direction can be found in Figure 4.3b. The combined effect of both the proximity and the
wind direction can be found in Figure 4.3c.

f(θ) = A · exp
(
−
(
(θ − θ0)

2

2σ2
θ

))
(4.2)

The final step is to set the value of the source pixel to one. This makes it easy to see if the plume
is close to the center. It also serves as a verification. If the process of the algorithm worked as it was
supposed to, in the resulting dataset the value of the middle pixel should be 1. The final result of the
augmentation can be seen in Figure 4.2f. Examples of the augmentation algorithm used on other steel
plants’ data can be seen in Figure 4.4. The figure shows the ability of the algorithm to filter data for
different atmospheric backgrounds by being able to separate enhancements from different atmospheric
backgrounds of steel plants in China, India and Germany.

A plume from the Angang Steel Company Limited Anshan production base in China can be seen in
Figure 4.4a. The concentration of CO that comprises this plume is much higher than the background
and thus easy to separate. The result can be seen in Figure 4.4b. The plume from the Hüttenwerke
Krupp Mannesmann (HKM) steel plant from Germany in Figure 4.4c is not as easy to isolate as the
plume enhancement is only slightly higher than the background. The result in Figure 4.4d shows a
plume but the plume is much less visible than the plume in Figure 4.4b. The final plume from the
Kalyani Steels Hospet plant in India can be seen in Figure 4.4e. In this array, it is clear that the pixels
are stretched in the longitudinal direction. This does not affect the result in Figure 4.4f due to filtering
from the algorithm.
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(a) Destriped TROPOMI data used as input for augmentation
algorthm.

(b) The NaN values are set to zero to avoid issues with Python
functions.

(c) The enhancement data as a result of subtracting the data from
Figure 4.2b from the median value of the data in Figure 4.2a.

(d) Result of dividing the enhancement values from Figure 4.2c by
the calculated standard deviation.

(e) Only the values higher than 2 standard deviations remain. (f) Effect of Figure 4.3 taken into account as well as marking the
source spot.

Figure 4.2: Overview of the steps in the augmentation algorithm of a plume over the Inner Mongolia BaoTou Steel Union Co.,
Ltd. plant on 3 November 2019.
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(a) The effect of proximity of the source. The closer the pixel is
located to the source pixel, the higher the weight of the data.

(b) The effect of the wind direction. The closer the pixel is located
to the source pixel, the higher the weight of the data.

(c) The combined effects of the wind direction and the wind
direction.

Figure 4.3: Overview of the effects of proximity and the effect of the wind data on the effectivity on the data.
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(a) A plume over the Angang Steel Company Limited Anshan
production base from 24 October 2019.

(b) Result of the plume augmentation.

(c) A plume over the Hüttenwerke Krupp Mannesmann (HKM)
steel plant from 20 October 2019.

(d) Result of the plume augmentation.

(e) A plume over the Kalyani Steels Hospet plant from 22 January
2020.

(f) Result of the plume augmentation.Result of the plume
augmentation.

Figure 4.4: Examples of the augmentation algorithm used on data with different atmospheric conditions.



5
Novel training dataset for plume

detection using machine learning

In this thesis, a large dataset for training AI plume detection algorithms that can be applied to pollu-
tion events from industrial and biomass-burning sources has been developed. This chapter denotes
the process of locating and selecting the right data to be used for the training of the plume detection
algorithms. The general approach for creating the dataset is explained in section 5.1. The sections fol-
lowing the general approach describe the data that was used in the datasets. In section 5.2, the steel
plant data extraction was described while in section 5.3, the wildfire data extraction was described.
This is followed by a section about the noise data used in section 5.4. The process of labeling and the
resulting datasets are described in section 5.5.

5.1. General approach for selecting training data
The project aimed to create a dataset that includes both wildfire and steel plant data. For the machine
learning tools to know the difference between plumes and no plumes, the data must consist of data
without plumes. In the following sections, no-plume data is sometimes also referred to as noise data.
To avoid bias in the machine learning tool, the dataset should be balanced between the wildfire, steel
plant and noise data. Therefore, 50% of the data had to include plumes and 50% had not to include
plumes. If a 50% split cannot be accomplished the plume detection tool could overestimate one of the
classes versus the other. Therefore a 50-50 split would be the most optimal scenario.

Of the plume data, the idea was to include plumes from the steel industry in 50% of the plume data
and the other 50% of the plume data to be made available for the wildfire data. An overview of this
approach can be found in Figure 5.1. In terms of dataset size, the more information the better, thus the
more images the better. A selection in steel plant and wildfire data was made to create the datasets
which can be found in section 5.2 and section 5.3 respectively.

During the project, other ideas regarding the labeling of data were considered. However, it became
clear that the focus should lie on finding the plumes rather than for example classifying the plumes as
wildfire or steel plants. This is because the project would become more complex unnecessarily and
would deviate the project from the initial goals. An issue that could arise is for example that there are
not enough data points for one group compared to the other groups which would lead to a bias in the
detection. The focus is on filtering noise data from plume data to avoid processing noise data. Thus
when labeling the steel plant and wildfire plumes both datasets received the same label of 1. The noise
data would receive a label of 0. In the following sections, the selection of data for steel plants and
wildfire plumes is discussed.

5.2. Steel plant data
An issue surrounding the quantification of steel plant emission is that the location of steel plants is
not easily available online. However, the Global Energy Monitor (GEM) keeps track of these locations.
They host a Wikipedia-style article archive that can be edited by users. The coordinates of these steel
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Figure 5.1: Simplified overview of the desired composition of the dataset

plants can be manually validated using available satellite images such as those on Google Maps. A
list of steel plant locations created based on GEM entries has 1115 entries1. Some of these entries
are duplicates or are of nonexistent steel plants. These non-existing steel plants could be planned or
their construction was canceled at some point. In this project, these should be filtered as they do not
emit CO because they do not exist. An overview of the location of different steel plants based on the
available information on the GEM website can be found in Figure 5.2.

Other data taken from GEM includes a rough estimate of the capacity of the plant and whether or
not the plant is operational. This data is important as the capacity is an indication of how visible the
plumes are in the data. The visibility of the plume can be determined by subtracting the background
from the data scene which results in the plume enhancement. The bigger the enhancement, the more
visible the plume is. Thus the visibility is a product of the background and the plume enhancement itself.
The enhancement of a CO plume depends on the emission source. The more a steel plant emits, the
larger the enhancement of the plume will be. The larger the capacity, the more a steel plant could
emit. Thus the capacity is loosely connected to the visibility of a CO plume in the data. As described
in subsection 2.5.1, the steel plants with high capacity that were operational were prioritized [3].

The data for the steel plants to be used in the machine learning datasets was downloaded by first
making a selection for steel plants. To ensure that the steel plant had enough plumes in the dataset, the
average divergence was investigated. This average divergence was calculated from the time series of
data. The method to produce these images is explained in subsection 2.5.2. It is important to realize
that the average divergence over a long period of time should show a peak to indicate an emission
source at that location. If this peak is not visible, very few to no plumes from the steel plant are in
the dataset. Going through these steel plant datasets is not as interesting because it does not test the
plume detection as well. This is because a steel plant is not always operating, therefore for a steel plant
that emits a lot of pollution, there will also be no plume granules. Examples of average divergences of
steel plants can be seen in Figure 5.3. In Figure 5.3a an example of a peak in the average divergence
is visible in the right plot. The plot on the left shows a time series of emissions as calculated on the
same data used to calculate the average divergence peak. An example of a no peak in the average
divergence peak can be seen in Figure 5.3b. For this steel plant, there could be a few plumes visible in
the data but it does not line up with the time series in the right plot. That plot suggests a very active and
highly emitting plume which is extremely unlikely. It seems that the no-plume granules in the dataset
are processed to large emission estimates. This is because of the issues in APE that detect plumes
while there is no plume data. The final example of the average divergence can be seen in Figure 5.3c.
In this example, a peak is visible in the data but it is not as clear as in Figure 5.3a.

As stated in subsection 2.5.2, a large amount of data was processed to calculate the average
divergence of different steel plant locations. Due to time constraints, it was not possible to go through all
of the steel plants. In the end, out of 1115 steel plants, the average divergence of 514 steel plants was
calculated. These divergences were then inspected to see if the average had a peak at the emission
source. This resulted in a list of 185 steel plants with an average divergence peak. These steel plants

1List is created from the entries of https://www.gem.wiki/Category:Steel_plants and was retrieved on 25-9-2023

https://www.gem.wiki/Category:Steel_plants
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Figure 5.2: Locations of steel plants according to GEM based on the list of steel plants on 25-9-2023.

were primarily considered to create the plume dataset to train the machine learning methods.

5.3. Wildfire data
As denoted in subsection 2.5.1, wildfire plumes can easily be investigated by TROPOMI when the
active fire data from VIIRS is considered. Using the VIIRS dataset as input for APE resulted in a large
collection of wildfire plumes. This wildfire data was used for the training of the machine learning tools.
In particular, the locations found using the active fire data of the years 2018 to 2022 were used. It can
be seen in Figure 5.4. This approach resulted in about 8000 images of wildfire plumes that were used
in the training data. When comparing the locations of the wildfires in Figure 5.4 with the locations of
the steel plants in Figure 5.2, the locations are complementary. In places without wildfires, there are
steel plants and vice versa. This excludes areas with deserts and oceans. Combining both datasets
effectively would give worldwide coverage.

5.4. No plume data
The no-plume data used in the datasets are in two categories. First is noise data from steel plants or
wildfire locations. If no plume was visible when looking at the data from a steel plant or wildfire, it was
considered to be noise. The second category of noise data was taken from general orbit data. This
data was not taken from an individual industrial source. The idea behind this data was to ensure that
various atmospheric effects would be covered as noise data by taking a random selection of locations
without plumes.

5.5. Labeling and creation of the datasets
In the early stages of the project different labels it was considered to use different labels for types of
plumes. This approach was abandoned for the thesis project, as the different labels for plumes were
not considered to be independent of each other. Another factor was that all the different plume labels
would be summed together to calculate the number of plumes detected. In this way, the final result did
not depend on these individual labels and thus they were removed. The labels are straightforwardly 1
for a granule with a plume and 0 for a granule without a plume.

The process of labeling was relatively tough as there numerous cases that were not straightforwardly
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(a) The average divergence peak in the right plot validates the existence of an emission time series on the left plot.

(b) The nonexistence of an average divergence peak in the right plot calls into question the existence of an emission time series on the left plot.

(c) The average divergence peak in the right plot validates the existence of an emission time series on the left plot. However, the peak is less
visible so the large values of the emission estimates seem questionable.

Figure 5.3: Overview of different average divergences
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Figure 5.4: Locations of active fire data from VIIRS processed by APE from 2018 to 2022.

noise or plume. Good examples of plumes can be found in Figure 4.4. These are also examples of
plumes that experienced very little wind and are therefore pointed straight up or plumes that combine
to create a larger enhancement in an irregular form. One can be seen in Figure 5.5. When going
through the augmentation algorithm this results in large concentrations at the source but without a
plume tail. Other problematic issues came from plumes that were visible in the original data but either
disappeared completely or partially after augmentation. This happened due to the plume enhancement
concentration not being significantly bigger than the background value. This shows that the augmen-
tation algorithm creates a bias towards large CO concentration plumes in the plume detection tools.
Therefore, in the future, a different way should be found to cut plumes out of the background data. This
issue is nothing new as it is a version of the background problem described in subsection 2.5.3. The
CO concentration background data can vary and this causes issues in determining a good background
value.

When going through the initial steel plant sources for plumes to use, the data adaptation algorithm
was not finished. Therefore only the concentration data was used to perform the labeling. This resulted

Figure 5.5: Plume with an irregular shape. The blue dot represents the location of a steel plant
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in trouble when using the labels from the concentration data on the augmentation data. Thus a second
round of labeling happened to see how well the labels held up. In some cases, the labels had to be
changed to indicate noise data. Which lowered the number of steel plant data points. This showed the
challenge of getting a large and diverse steel plant plume dataset and made the labeling process much
longer than it was planned to be. The process of creating the different training datasets is described in
the following subsections.

5.5.1. The small dataset
As written in QWP2.1 in chapter 3, the initial aim was to create a dataset of 10.000 images. As written in
section 5.1, 25% of this data would have to be steel plant data. The aim was to pick 25 steel plants from
the 185 steel plants with an average divergence peak and find 100 plume images. This would amount
to 2.500 steel plant plume images. When the labeling process was found to be very time-consuming,
a small dataset was created first. This dataset would be used as an initial test. This was needed as
before the creation of this dataset, there was some concern that including wildfire data would not result
in better accuracy. This was because wildfire plumes are physically different from steel plant plumes.
This is because of the different atmospheric conditions and the processes that take place for the two
types of plumes to appear.

The dataset includes 2.000 images which is about 300 more images than the internship dataset.
About 50% of the images are noise data while the other images are plume data. Half of the plume
images are from steel plants while the other images are from wildfires. The noise data was taken from
random orbit data. For this dataset, the chosen steel plants can be found in Table 5.1. The wildfire
data was limited to 2022 data. Small tests showed that the dataset was capable of detecting plumes.
With the inclusion of different data points, it was decided to continue down the road of the project.

5.5.2. The large dataset
To continue in the same direction as the small dataset more data was needed to create the dataset as
described in section 5.1. As it became possible to download larger amounts of wildfire data, this data
was utilized first. Due to difficulties, at first, it was only possible to slowly download wildfire data. After
a fix, this changed dramatically. This resulted in the download of about 8.000 wildfire images. As it took
much longer to produce the steel plant data, the wildfire and steel plant data could not be balanced. The
dataset also includes 100 granules of 14 steel plants. They can be found in Table 5.1. The original aim
was to gather 25 steel plants. Out of the 185 steel plants with an average divergence peak, a selection
of 25 steel plants was made. This selection was based on the geographical location of these steel
plants. The aim was to have as much worldwide coverage as possible. During the labeling process,
it was found that 11 out of the 25 locations had little to no visible plumes. Due to the time-consuming
nature of labeling it was decided to proceed with the data of the 14 steel plants.

The large dataset includes about 20.000 images with the vast majority being the newly downloaded
wildfire data. Due to the size of the dataset, the quality of the labeling is not as good as for the other
datasets. An issue that was found is that the wildfire plumes were processed by APE. That means that
if APE detected it as a plume. Since APE has issues detecting plumes, this resulted in a large number
of wildfire plumes that are not actually plumes, which caused a lot of relabeling of plumes. This took a
lot of time.

5.5.3. The industrial plumes dataset
An issue that arises with the inclusion of wildfire data is the complexity that the wildfire plumes add to
the analysis of the plume detection. Since the locations of wildfires are known due to VIIRS, it is not as
interesting to focus on finding wildfire plumes as compared to steel plant plumes. During the project,
the focus shifted somewhat to investigating emissions of steel plants. Thus a dataset was created to
exclude all the wildfire data and only input the steel plant data into a separate dataset. To do this the
steel plant data from the large dataset was reused. During the transfer of steel plant data, a mistake
was made. This mistake resulted in the exclusion of the three steel plants as compared to the steel
plants included in the large data. To avoid confusion, the steel plants included in different datasets can
be found in Table 5.1.
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Table 5.1: Different steel plants with their coordinates inclusion into the different datasets

Steel plant Latitude [◦ ] Longitude [◦ ] Index Large
dataset

Small
dataset

Steel
dataset

Internship
dataset

AG der Dillinger Hüttenwerke
Dillingen steel plant 49.353884 6.746603 18 X

ArcelorMittal Kryvyi Rih
steel plant 47.874411 33.392993 81 X X

ArcelorMittal Temirtau
steel plant 50.045849 73.040384 95 X

Bengang Steel Plates Co., Ltd.
plant 41.274132 123.722099 129 X X X

Evraz ZSMK steel plant 53.88618 87.257618 257 X X
Inner Mongolia BaoTou Steel
Union Co.,Ltd. plant 40.647997 109.740898 441 X X X X

Ma’anshan Iron & Steel Co.,
Ltd. plant 31.698884 118.468194 601 X X

Magnitogorsk Iron & Steel
Works 53.427593 59.054122 602 X X X

Mechel Chelyabinsk
Metallurgical Plant 55.27073 61.436492 613 X X

NLMK Lipetsk steel plant 52.557372 39.629574 667 X X X
Shandong Iron and Steel Co.,
Ltd. Laiwu Branch plant 36.093496 117.837567 789 X X

ThyssenKrupp Steel Duisburg
steel plant 51.491649 6.733051 931 X X

Tonghua Iron & Steel Co., Ltd. 41.779125 126.022349 948 X X
Wuhan Iron and Steel Co., Ltd.
Qingshan plant 30.616222 114.444975 1009 X X

5.5.4. Availability of the dataset
The datasets are available at Zenodo This dataset includes the destriped TROPOMI data as well as the
label and the augmentation. By making these datasets available, other researchers are encouraged to
use them in their own analysis. A big issue in machine learning is the unavailability of the training data.
To aid in solving this issue I have added my datasets to the scientific community 2.

2The datasets are available at https://zenodo.org/records/14604467

https://zenodo.org/records/14604467


6
A Novel Approach to Estimate

Emission without Plume Detection

This chapter explains the development of a new emission estimation method. This method is meant to
act as an independent validation tool for the plume detection. In subsection 2.5.2, the current method of
calculating the emission of plumes in APE was discussed using either the CFM method or the average
divergence method. In this chapter, the process of refining the average divergence method to create a
time series of emission estimates is explained in section 6.1. The following section explains the benefits
of the newly created method and its use for the plume detection part. It can be found in section 6.2.

6.1. Applying the divergence method for time series analysis
Currently APE has two different emission estimation methods. The average divergence method, as
described in subsection 2.5.2, is commonly used to calculate the average emission of a source. The
CFMmethod, also described in subsection 2.5.2, is capable of estimating the emissions of single-plume
images. Would it be possible to apply the average divergence method to estimate emissions for single-
plume images? As explained in the previously mentioned section on CFM, the CFM method is very
sensitive to noise and it would thus be interesting to investigate other alternatives. Since the divergence
method is already coded into APE, it served as a starting point for this investigation.

The average divergence method performs three steps. First, the divergences of each granule are
calculated. Second, the average of the divergences is taken. Third, the area around the source is
integrated to obtain the emission estimate. These steps can also be moved around. It should not
matter if you perform step three (integration) before performing step two (averaging). If the steps are
performed in this way, a time series of emissions is calculated before the averaging. An overview of the
methods can be found in Figure 6.1. The original average divergence method explained in Figure 2.5.2
corresponds to method 1 while the change to this method suggested in this section corresponds to
method 2. Performing the first two steps of the second method results in a time series of emission
estimates. Thus it is possible to apply the average divergence method to estimate emissions for single-
plume images.

The emission estimate procedure for a single granule can be seen in Figure 6.2. Starting from an
input granule with a visible plume in Figure 6.2a, the divergence field is calculated. This field can be
seen in Figure 6.2b. The field is then divided into the inner circle and the outer circle of data as can be
seen in Figure 6.2c and Figure 6.2d. This division is important as a background correction is needed.
By correcting for the background, the enhancement due to the source can be found. Without correction,
the emission will also include background CO. The data of the outer circle will be used for that purpose.
The inner circle is defined as the divergence data around the steel plant location in a radius of 21 km.
This distance was chosen because the resolution of TROPOMI data is 5.5 km by 7 km and thus the
radius will include at least three TROPOMI pixels of information. This number was picked empirically.
This value could be further optimized as for large emitters of CO, it would be better to increase the
inner radius to capture more of the emission. Conversely for small polluters of CO, it would be better
to make the inner circle smaller to limit the background CO that gets added to its emission. The radius
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Figure 6.1: Comparing the different methods for average divergence with method 1 corresponding to the original average
divergence method described in Figure 2.5.2 and method 2 being the new approach.

here was picked to accommodate a large variety of pollution strengths in sources. When investigating
specific emission sources it would be interesting to see the effect of changing the inner radius on the
emission estimates.

It has to be noted that there aremore pixels included in Figure 6.2c which is due to the interpolation of
the data onto a grid with a spatial resolution of 4 km by 4 km. Thus about 6 pixels would be included from
the interpolated grid. The interpolation onto the 4 km by 4 km grid is not a necessary step to estimate the
emissions. It is done here to be able to check the average divergence. If the average divergence shows
a peak at the source, the data has been processed correctly. To get the emission from this collection
of pixels, first, the background value should be determined. This is done using the pixel collection in
Figure 6.2d. These pixels are taken to be in a radius of 63 km around the steel plant point source
without the inclusion of the inner circle. As previously, this number was picked empirically and could
be further optimized but this radius should include a large enough area to determine a representable
background value. The background value is determined by finding the median value of the values in the
background circle. The inner circle values are subtracted by the background value and then multiplied
by the resolution of a single pixel. These values are summed and recalculated to kg/s. The resulting
emission estimate from this example was calculated to be 16.81 kg/s.

An example of a time series calculated by the newmethod can be seen in Figure 6.3. This is the time
series for the Baosteel Desheng Stainless Steel Co., Ltd. plant in China from late 2019 to mid-2024.
The time series itself already shows a certain behavior in the data however, since the individual esti-
mates have biases in the way they are calculated, the averages in the data should also be investigated.
Structuring the time series of emission data into a histogram and normalizing it shows a clear structure
in the data. As can be seen in Figure 6.4, the data looks to be Gaussian distributed with a slight skew
to the positive emission. It is visible however that certain emission estimates make no sense. It is not
physically possible for a plume to have a negative emissions as a steel plant cannot emit a negative CO
concentration. Therefore the negative values are mistakes that need to be explained. There could be a
mistake/inaccuracy in the wind direction data or the CO column data could have too many NaN values
or too much low-quality data. These issues would result in inaccurate emission estimations. The large
emissions, like the measurement of about 150 kg/s, also seem to be an overestimation.

During the thesis, several steel plants in Ukraine were investigated. The steel plants in question
were the Azovstal Iron and Steel Works, Metinvest Ilyich Iron and Steel Works, the ArcelorMittal Kryvyi
Rih steel plant and the Metallurgical Plant Kametstal. The first two steel plants are located in the city
of Mariupol. During the war in Ukraine, the steel plants sustained heavy damage. Almost since the
start of the war, the steel plants have been out of order [46]. As stated in section 2.3, the Sentinel-5P
satellite has been in operation since late 2017 and was thus able to capture the change in concentration
over Ukraine. The two steel plants in Mariupol are very close to each other and thus it is not possible
to separate their emissions. Thus the steel plants are analyzed together. A time series of emissions
of both steel plants can be seen in Figure 6.6. The invasion of Russia into Ukraine started in February
2022 and this has been denoted in the figure. As can be seen, there was a stark decrease in emissions
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(a) Granule with a plume used as input for the emission estimation
algorithm

(b) Divergence field of the plume

(c) Data used for integration in the calculation of the emission
estimate

(d) Data used to determine the background value

Figure 6.2: The CO column and the divergence field of a plume granule used in the emission estimation algorithm and the
data used to calculate the emission estimate

Figure 6.3: Time series of the Baosteel Desheng Stainless Steel Co., Ltd. plant which corresponds to the index of 121 in the
steel plant location list.
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Figure 6.4: Histogram of the time series of the Baosteel Desheng Stainless Steel Co., Ltd. plant which corresponds to the
index of 121 in the steel plant location list.

after the invasion. To further investigate this, the emission estimation data has been plotted into a
histogram. This resulted in Figure 6.7a and Figure 6.7b for the before-invasion and after-invasion
cases, respectively. The contrast between the cases is even more clear in the histograms. The data in
the before-invasion case looks like a positively skewed Gaussian distribution while the after-invasion
case looks like a Gaussian distribution. Since it is known that the steel plants stopped production quite
soon after the start of the invasion, it can be assumed with confidence that the histogram is composed
of almost exclusively noise data. This can also be seen in the histograms as there are vastly more
emissions around 0 kg/s in the after invasion histogram compared to before the invasion histogram.
This gave rise to the idea of modeling the noise data as a Gaussian distribution and the total data as
a skewed Gaussian distribution. The point of this is to isolate the plume data. This can be done by
simply subtracting the total data distribution function from the noise data. An example of this can be
seen in Figure 6.8. This analysis makes it possible to create an estimation of the distribution of both
the noise data and the plume data without the use of plume detection.

To fit the total data distribution, the formulas in Equation 6.1 and Equation 6.2 were used. As can
be seen in the equations and the histogram, the total fit distribution function is a skewed Gaussian
distribution function. In the equation fskewed(x) is the skewed distribution, Nskewed is the amplitude of
the function, fnorm(x) is the formula for a normal distribution, Fnorm is the cumulative normal distribution,
α is the skewness factor, µ is the average mean value of the distribution and σ is the standard deviation
of the distribution. The noise distribution was fitted using the negative emission estimates. The values
of the total distribution that are at the negative emission estimates are mirrored in the positive emission
estimate direction. This creates the blue dashed line in Figure 6.8. The plume distribution is then
created by subtracting the noise from the total distribution.

fskewed(x) = Nskewed · fnorm(x) · Fnorm(αx) (6.1)

fnorm(x) = e−
(x−µ)2

2σ2 (6.2)

In the case of Mariupol, the histograms resulted in Figure 6.5a and Figure 6.5b. The other two steel
plants in Ukraine that were mentioned are located slightly further from the front line and have been able
to keep producing. Thus the plants do emit CO after the start of the invasion. For the ArcelorMittal Kryvyi
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Rih steel plant, the change in emissions can be seen in Figure 6.5c and Figure 6.5d. The skewness in
the before-invasion case is much larger than in the after-invasion case. The average emission of the
plume distribution also decreases from 7.2 kg/s to 4.4 kg/s. For the Metallurgical Plant Kametstal, the
change in emissions can be seen in Figure 6.5e and Figure 6.5f. The skewness in the before-invasion
case is much larger than in the after-invasion case. The average emission of the plume distribution
also decreases from 6.3 kg/s to 4.7 kg/s.

(a) Mariupol before invasion data (b) Mariupol after invasion data

(c) Kryvyi Rih before invasion data (d) Kryvyi Rih after invasion data

(e) Kamianske before invasion data (f) Kamianske after invasion data

Figure 6.5: The data used to calculate the emission estimate
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Figure 6.6: The time series of the Metinvest Ilyich Iron & Steel Works and the Azovstal Iron & Steel Works in Mariupol

(a) Histogram of the emission time series of two steel plants in
Mariupol before the invasion of Ukraine.

(b) Histogram of the emission time series of two steel plants in
Mariupol after the invasion of Ukraine

Figure 6.7: Comparison between the emission estimates before the invasion and after the invasion of Ukraine showing the
large decrease in emission after the invasion.

Figure 6.8: Example of the fitted distribution to the Baosteel Desheng Stainless Steel Co., Ltd. plant from Figure 6.4
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Figure 6.9: Example of how a histogram for steel plant data can be used to validate the accuracy of a machine learning tool

6.2. Validating the plume detection method
The adapted divergence method presented in this chapter is able to create a distribution of both the
emission distribution and the measurement noise distribution without the use of a plume detection
method. Thus the method for emission estimation as developed in this chapter is independent from
plume detection and can function as an independent way to validate the plume detection.

To validate the plume detection tools, first, the required steel plant data should be downloaded. Then
machine learning should be performed on the data. APE should be used for the same time period and
location. The following step would be to perform the adapted divergence method on the data to get
the time series of emission estimates. Using the labels from both APE and the machine learning tool,
it is possible to plot the emission estimates of the detected plumes of a dataset into the histograms
together with the entire range of emission estimates. An example of this is shown in Figure 6.9. Here it
is clear that the machine learning tool in question performs better than APE as it fills up more of the area
underneath the plume distribution. The example shows that the ML tool detects far more plumes than
APE. Most of these new detections are on the positive emission estimate side. The machine learning
tool shows a large improvement in detection capability compared to APE.

The new emission estimation method can also be used to produce an estimate for the average
emission distribution. This can be used to compare with APE and the machine learning methods.
Doing this would give an independent emission estimation from the plume detection methods. The
distribution method is capable of estimating a distribution for the plume data however, it is not known
how accurate these distributions are. Comparing these average emission estimate values to validated
datasets is therefore important as it would show the accuracy of these distributions.



7
Comparing the machine learning

methods with APE

In this chapter, the machine learning approaches for plume detection are compared with the plume
detection implemented by APE. This is done by comparing their ability to detect plumes at 180 steel
plant locations. If a new approach is shown to outperform the APE plume detection algorithm it should
be considered to replace it. First, the compared methods are discussed in section 7.1. Second, the
creation of the dataset used to perform the test is discussed in section 7.2. Third, the verification and
validation tests of the approaches used in the test are discussed in section 7.3. The results are shown
in section 7.4 and discussed in section 7.5. In section 7.6, the recommendations for future work are
given.

7.1. The plume detection intercomparison test
The most straightforward way to compare the machine learning tools with APE would be to test the four
methods and APE on a large dataset of plume and no plume data. The dataset labels would then be
used to determine the accuracy of the methods. This would limit the comparison to the data that was
labeled. The process of selecting and labeling data is very time-consuming and thus this would limit the
dataset for the test significantly. Therefore another approach was selected. For this approach, a sizable
dataset is created and the emission estimations are calculated for the individual granules in the dataset
using the divergence method. These can then be used to determine the average emission estimates,
the standard deviation of these emission estimates and the number of detections for each location.
These values are then used to compare the performance of the different methods. The number of
plume detections is further investigated to see how often the different methods agree. Since the test
data is not labeled, it is not entirely certain if the detected plumes are actual plumes. Therefore, for this
chapter, the number of detections should be seen as the number of granules being flagged as a plume.
This data is also analyzed.

In total six methods will be compared in this chapter. The first method is the APE algorithm plume
detection. As written in subsection 2.5.1, APE uses the Marker-based watershed transform method
[27]. As written before this method has trouble distinguishing the difference between noise data and
plume data. This method will be used as the baseline of the plume detection performance. The next
four methods are the machine learning methods described in section 4.1. These methods have been
implemented for this thesis project and have been trained on the industrial plumes dataset described
in subsection 5.5.3. The dataset was augmented using the algorithm described in section 4.2. When
implementing the machine learning methods, the training dataset was enlarged by including three ro-
tations of each granule. This was done to avoid bias in the detection of plumes due to rotation. The
machine learning methods require augmentation of the TROPOMI data as they were trained on aug-
mented data. The first machine learning approach and the second approach in the comparison test is
the SVM. This method has been implemented using the functions in SCIKIT [36]. The third approach
in the comparison test is RFC. This method was implemented using Balsa [39]. For this method to
work the granule size had to be decreased from 41 by 41 pixels to 15 by 15 pixels. The fourth and fifth
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methods implemented were the ResNet-26 and ResNet-44 networks. These CNNs were implemented
by Peter Sterk, a scientist working at SRON, and Thomas Plewa, a PhD student at the Institute of
Environmental Physics of Heidelberg University, respectively, respectively.

The sixth and final method that is included in the intercomparison test is the distribution method.
This method is described in chapter 6. For this method, the emission estimates using the divergence
method are calculated. The time series of this estimate is then put into a histogram. To determine an
average plume emission estimate, an estimate for the noise and plume data distribution is made. The
plume distribution is then used to determine the average emission estimate and the standard deviation
of the emission estimates. The area of the plume distribution is used to estimate the number of plumes
in the data. This is done by multiplying the number of granules with the fraction of the plume distribution
data area with the total distribution data area.

With the methods for comparison determined, the focus shifts to the dataset for the intercomparison
test. This dataset should include a large variety of sources. The locations used in the comparison test
are discussed in the next section.

7.2. Plume detection comparison dataset creation
As written in section 5.2, there are about 185 steel plants that showed a divergence peak. The data
from these steel plants were used to perform the intercomparison test. The reason for using these
steel plants rather than any of the other steel plants of the total 1115, is the certainty of plume and no
plume data in the dataset. Certain steel plants in the larger list are yet to be built or are not in operation.
Another reason is time constraints, processing these steel plants is a time-consuming process. The
other steel plants could be included in future tests. The TROPOMI data for these steel plants includes
the time period of 18 September 2019 to 17 August 2024. The acquired TROPOMI data was then
destriped according to the method described in Borsdorff et al. 2024 [21]. In particular, the data for the
steel plants were sliced from the TROPOMI overpass data to be 41 by 41 pixel CO concentration data
granules with the center pixel at the source. The latitude and longitude as well as the orbit reference
time and the delta time data from TROPOMI were also sliced this way. The granule size was chosen
to line up with the data processed by APE and the machine learning training data. The ERA5 wind
data from ECMWF, as described in Hersbach et al 2020. [29], is included as well to augment the
data according to the algorithm described in section 4.2 by using the wind direction. The wind speed
from the ERA5 data is used to calculate the divergence of the data. To perform the histogram method,
the time series of emission estimates of each steel plant had to be calculated, this can only be done
with the divergences of each granule. Therefore, the divergence was calculated for each granule as
described in section 6.1. Thus the TROPOMI data was processed separately two times, once to create
the augmented version of the data used for the plume detection of the machine learning approaches
and a second time to calculate the time series of emission for the histogram analysis.

During the processing of the data, 5 of the 185 steel plants were left out of consideration. This
was done because of issues during the processing of the APE plume detection. A figure showing all
remaining steel plant locations that are in the dataset can be found in Figure 7.1. As can be seen,
most steel plants are located in Asia. The data included is from the period of 18 September 2019 to 17
August 2024. Due to a mistake with the indices of certain files during the processing of the data, the
data between November 2017 to early September 2019 was not processed. The data of the remaining
180 steel plants which comprise a timeframe of 6 years, is about 90 GB. This was deemed enough
data to continue the comparison test. In its entirety, the total dataset includes about 250.000 granules
of 41 by 41 pixel CO concentration. The list of all steel plants included in the analysis can be found in
Appendix A. The dataset includes steel plants with various emission strengths.

The dataset used to train the machine learning methods is the industrial plumes dataset which is
described in section 5.2. As written in section 5.5, the training dataset was created using data from
the same 185 steel plants used to create the comparison test data. The results of the steel plants that
were included in both the training and test data will be biased. In both datasets, only 9 steel plants
were used twice. The 11 steel plants that were used to create the dataset can be seen in Table 5.1.
The 2 steel plants whose data was not included in the comparison test dataset have the index 257 and
667 due to the aforementioned issues with processing the APE results. The bias created by the 9 steel
plants is not expected to result in a large bias in the detection accuracy for these steel plants. This is
because the data used in the training dataset consist mostly of 2018 data while the dataset used for
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Figure 7.1: Overview of the 180 steel plants that were used in the comparison test

plume detection here starts from September 2019. During the creation of the datasets at SRON, a data
migration took place which affected the amount of available data to label. This limited the available data
that could be used in the training dataset. The data used per steel plant is at most 100 granules. In the
comparison test dataset, there are about 1.400 granules per steel plant. Therefore, the effect of these
9 steel plants is expected to be limited.

7.3. Verification and validation tests
To ensure that the test is performed as intended, the implementation of the methods had to be verified.
The first verification test was performed during the training of the machine learning methods. During
this phase, the SVM and Balsa machine learning methods are first trained on 70% of the industrial
plumes dataset described in subsection 5.5.3 and then tested on the remaining 30% of the data. This
resulted in an accuracy of 91.6% and 92.0% for each method respectively. The remaining two machine
learning methods are both residual networks. As explained in section 4.1, the ResNet-44 is created
following the description in He et al. 2016 [45] while the ResNet-26 has been slightly adapted to work
better for smaller images but was otherwise also completely created following the steps outlined in the
paper. It can be argued that the two ResNet methods have been verified by the academic community
regarding image recognition [45]. The implementation of these methods into Python was performed
by Peter Sterk, a scientist working at SRON, and Thomas Plewa, a PhD student at the Institute of
Environmental Physics of Heidelberg University, respectively.

The implementation of the divergence method and the augmentation method on the TROPOMI data
can be verified by simply looking at them. An example can be found in Figure 7.2. In the figure, an
example of a granule of TROPOMI data can be seen in Figure 7.2a with the divergence of the granule
in Figure 7.2b and the augmentation of the granule in Figure 7.2c. In the example, the divergence
and augmentation were performed correctly. However, verifying every granule would be very time-
consuming. The divergence data has been interpolated onto a consistent grid and this makes it possible
to calculate the average divergence. Therefore, the divergences can be verified by checking if the
location of steel plants is at a divergence peak. This verifies the implementation of the divergence
method and also the processing of the TROPOMI data as both need to be done correctly for this to work.
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(a) Example of an overpass with a plume (b) Example of the divergence of the plume from Figure 7.2a

(c) Example of the augmentation of the plume from Figure 7.2a

Figure 7.2: Example of verification of a single overpass

Examples of these can be seen in Figure 7.3. In the figure, two examples of multiple steel plants located
on average divergence peaks can be seen, showing that this method was implemented correctly. In
the figures, the cyan-coloured dots represent the locations of steel plants. As can be seen in the figure,
the locations of the steel plants line up with the peaks of the average divergences. The verification of
the augmentation algorithm was already discussed in section 4.2 and shown in Figure 4.4. The figure
shows that the algorithm is capable of cutting out the features of the plume from its environment for
three different backgrounds.

The implementation of the histogram method needs a longer discussion. When going through the
verification, it became clear that out of the 180 steel plants, 11 steel plants were not able to fit the
distribution as described in the previous chapter. Out of the 11 steel plants, 8 steel plants have a
skewness that is smaller than 0 and 3 steel plants have a skewness that is equal to 0. The eight
steel plants that have a negative skewness have the index 122, 375, 386, 473, 779, 784, 814 and 823.
The three steel plants with skewness equal to 0 have the indices 736, 829 and 931. The name and
coordinates of these steel plants can be found in Appendix A. The skewness is a measure of the bias
of the emission estimates towards the positive emissions in the histogram. It is expected that there
is a positive skewness in a dataset that includes plumes. This is because calculating the emission
estimates of plume granules should result in positive plume emission estimates. If the skewness is
smaller than 0, it means that the bias is towards the negative emissions in the dataset. An example of
a negative skewness in a histogram is visible in Figure 7.4. As can be seen in the figure, the plume
distribution is negative. This is physically impossible and thus this distribution should be disregarded.
For 8 out of the 180 steel plants, there was no bias in positive emission estimations which could be
due to several reasons. The first reason could be that there are no plumes in the data. This seems
unlikely as the reason for picking the 180 steel plants was the fact that they had an average divergence
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(a) Example of average divergence peaks in China (b) Example of average divergence peaks in Germany

Figure 7.3: Examples of different steel plant locations with the average divergences

Figure 7.4: Example of a negative skewness factor in a histogram

peak such as in Figure 7.3. The second reason could be that there are plumes in the dataset but for
the following reasons are not visible in the augmentation. Either the plume enhancement is not large
enough compared to its background so it is not seen in the augmented granule, the plume itself is not
large enough or the wind direction is wrong. When looking at the data of one of these steel plants it was
hard to find clear plumes. Going through the average divergences of some of these steel plants showed
that they were located right next to the sea. This meant that half of the values could not be utilized in the
emission estimation process due to the different sensitivity of CO concentration measurements over
the sea. This problem was described in subsection 2.5.3. It points to a mistake in processing the data
near the sea.

One such steel plant located near the sea is the ArcelorMittal Asturias (Gijón) steel plant located in
northern Spain. Looking at the divergence of this steel plant reveals a mistake in the implementation
of the method. The average divergence can be seen in Figure 7.5. The line in the average divergence
lines up with the coastline which should not be visible. Only the peak at the location of the steel plant
should show up. The visibility of the coastline is caused by processing the measurement data above
water incorrectly. When interpolating the measurement data onto an equal distant grid to perform the
divergence a problem occurs. The function used to perform the interpolation cannot use NaN values.
To get around this issue the NaN values in the granule were replaced by the median measurement
data point. This should set the values above the ocean to zero. However, the values near the coast
are affected when calculating the divergence of the granule. Resulting in the coastline is visible in the
average divergence. For this particular steel plant, the data was corrected by taking out the pixels at the
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Figure 7.5: An error in processing the data from the ArcelorMittal Asturias (Gijón) steel plant

coastline. For the other steel plants located near large bodies of water, the data can be corrected in a
similar way. To avoid issues when calculating the emissions near the ocean, two solutions are possible.
The first solution is to use a different interpolation function that is able to process granules with NaN
values. The second solution is not to use interpolation and thus to not regrid the data before performing
the divergence method. This would also reduce errors in the data caused by the interpolation.

For the three steel plants with a skewness of exactly zero, an error occurred when fitting the distri-
bution functions. In the implementation, the emission estimates are first placed into a histogram. The
histogram values are then normalized. Then a distribution on the total normalized emission estimation
data is fit. This is done using four parameters which are the skewness α, the amplitude of the skewed
distribution Nskewed, the mean emission of the distribution µ and the standard deviation of the emission
estimates σ. The error occurred when the program took too long to find the optimal parameters for the
distributions. This does not mean that these parameters do not exist. If the skewness parameter of the
data is not positive, the number of bins in the histogram is increased. This should also have been the
case for this situation however due to a bug in the program, it skipped 3 steel plants entirely.

To check if the results of the implemented methods are comparable with reality two emission in-
ventories were used as validation datasets. As described in section 2.1, obtaining comprehensive and
reliable emission inventories often presents a significant challenge. Data might not be available or en-
tirely complete. An effort to get a clear overview of the emission inventory is the Emissions Database
for Global Atmospheric Research (EDGAR). This dataset was created by the EU Commission’s join
Research to research the effect of policy on pollution [47]. For this research, the focus is on the CO
data from industrial sources. The EDGAR dataset can be subdivided into different emission types or
pollution production. This makes the iron and steel sector dataset the most relevant for the comparison
test. The specific dataset used is EDGARv8.1 for the CO emissions of the iron and steel industry which
can be found on their website 1. This EDGAR dataset was used as an independent source to validate
the results of the average emissions. The APE, machine learning and plume distribution approach
try to use a top-down method to estimate the emissions of industrial sources while EDGAR utilizes a
bottom-up approach. The dataset is a product of combining statistics about energy usage, industrial
activity, transportation and so much more. It can therefore be used to validate the results of the in-
tercomparison test. The EDGAR data has a spatial resolution of 0.1◦ by 0.1◦. This resolution differs
from the TROPOMI CO resolution and therefore a procedure is needed to make the data comparable
with the other methods. This was done by summing the concentration at the pixels that are in the
range of 0.3◦ in both longitudinal and latitudinal directions with the source at the center. This roughly
corresponds to the method described in section 6.1. There the pixels that were in the range of 21 km
around the source were integrated. This was not possible for the EDGAR data due to the difference in
resolution. The integration was performed for the 180 steel plants. The results of the validation tests
are shown in the next section and the discussion is done in section 7.5.

Another dataset that was used to validate the steel plant emission is the European Pollutant Release
1Retrieved on 28-1-2025, https://edgar.jrc.ec.europa.eu/dataset_ap81?utm_source=chatgpt.com

https://edgar.jrc.ec.europa.eu/dataset_ap81?utm_source=chatgpt.com
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and Transfer Register (E-PRTR) dataset. This dataset is a collection of emissions of the different
industries in the European Union and nearby countries. These industries are forced by law to document
the amount of pollutants they produce and release into the air, sea or land. The dataset also includes
the emission of CO by steel plants. In this dataset, the emissions per source and location are listed
so it makes it easy to check the emissions of individual sources [48]. One downside of using this
dataset is that it only accounts for steel plants in the European Unionmember states and other countries
such as the United Kingdom, Serbia, Liechtenstein, Iceland, Norway and Switzerland. In the 180
steel plant list, only 8 steel plants are located in the EU or aforementioned countries. This makes
it a very limited validation dataset. Similarly to the validation with the EDGAR dataset, the emission
average is calculated by summing the emissions from the sources that are 0.3◦ around the steel plant
locations. The previously mentioned EDGAR data incorporates data from the E-PRTR dataset for
specific industries. The iron and steel plant data from E-PRTR data is not incorporated [47].

To ensure that the E-PRTR average emission values are implemented correctly, they are compared
with the values from the posterior model as calculated by Leguijt et al. 2025 [48]. To create the poste-
rior model, the researchers used TROPOMI observational data, a chemical transport model and prior
emission libraries (E-PRTR and TNO emission inventory). These were used as input for an inverse
framework to calculate the posterior emissions. The posterior emissions are an attempt to combine
several information sources as well as chemical reactions to increase the accuracy of the emission
estimates. Since this method is different from the ones presented in this thesis, it serves as a good
comparison to see if the E-PRTR values are implemented well and to see how the average emissions
line up with both of these methods. It has to be mentioned that the posterior model used data from
2019 to calculate the emission estimates.

7.4. Intercomparison test results
The results of the test can be split into three parameters, the average emission estimates, the standard
deviation of emission estimates and the number of observations. These parameters were calculated
for the 180 steel plants. The complete results of the intercomparison test can be found in Appendix B.
In this appendix, all the average emission estimates, standard deviations and number of detections
can be found per method per steel plant. The results are explored in the following sections.

Plotting the standard deviation of the emission estimates as a function of the average emission
results in Figure 7.6. For the plume distribution, there is a seemingly linear relationship. To show this
relationship a linear regression was performed on the data of the distribution method. For the machine
learningmethods and APE, there is no such relationship. A linear regression was also performed for the
other methods to compare the relationship between the plotted parameters. The number of detections
as a function of the average emission estimate is plotted in Figure 7.7. Once again a linear regression
was performed to see the relationship between the plotted parameters. This figure shows that every
method has an increasing average emission estimate if the number of detections increases except for
APE. For APE the number of detections does not seem to affect the average emission estimate.

For the machine learning methods and APE, plumes are detected which are then used to estimate
the emissions. If the methods are working correctly it would be expected that they detect the same
plumes. Therefore, it is interesting to see the consistency of plume detections between the different
methods. In Table 7.1 the number of shared detections can be found. If method 1 and method 2 are
the same then the total detections for that method are written. In this table, it is shown that APE detects
significantly fewer plumes than the other methods over the same time period. As a result, the method
also has fewer plumes in common with the other methods. To put this into perspective, in Table 7.2 the
percentages of commonality are shown. These percentages are calculated by dividing the number of
detections by the total detections of the method written in the row. This shows that the machine learning
methods seem to agree with each other on the majority of the plumes. The detections of APE seem
to agree less with the other methods. Only about 40% of the plumes detected by APE are also found
by the machine learning methods while only about 20% of the plumes found by the machine learning
methods are found by APE.
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Figure 7.6: Overview of the average emission estimates and the standard deviations of the different methods

Table 7.1: Comparison of the different methods for each other for every steel plant

Method 1/Method 2 SVM ResNet-26 ResNet-44 RFC APE
SVM 56912 42415 42708 47146 11475
ResNet-26 42415 68486 36337 38839 12190
ResNet-44 42708 36337 50826 39662 10268
RFC 47146 38839 39662 54457 11148
APE 11475 12190 10268 11148 29013

Table 7.2: Comparison of the different methods for each other for every steel plant in percentage

Method 1/Method 2 SVM ResNet-26 ResNet-44 RFC APE
SVM 100 74.5 75.0 82.8 20.2
ResNet-26 61.9 100 53.1 56.7 17.8
ResNet-44 84.0 71.5 100 78.0 20.2
RFC 86.6 71.3 72.8 100 20.5
APE 39.6 42.0 35.4 38.4 100

Table 7.3: Comparison of the granules flagged by the different plume detection methods

Method Total Granules found by each method also found by other methods
All methods 3 other methods 2 other methods 1 other methods No other method

SVM 56.912 6.603 (11.6%) 27.363 (48.1%) 14.382 (25.3%) 6.479 (11.4%) 2.085 (3.7%)
ResNet-26 68.486 6.603 (9.6%) 25.983 (37.9%) 8.784 (12.9%) 7.852 (11.5%) 19.264 (28.1%)
ResNet-44 50.826 6.603 (13.0%) 26.283 (51.7%) 9.502 (18.7%) 4.710 (11.5%) 3.728 (7.3%)
RFC 54.457 6.603 (12.1%) 27.116 (49.8%) 12.380 (22.7%) 4.275 (7.9%) 4.083 (7.5%)
APE 29.013 6.603 (22.8 %) 3.403 (11.7%) 1.953 (6.7%) 4.554 (15.7%) 12.500 (43.1%)

When looking further into the plume detection the following statistics were found. The total number
of granules is 249.897. All five methods (Machine learning and APE) for plume detection agree that
6.603 granules are plumes and that 144.495 granules are not plumes. This shows that the methods
are very confident that there are significantly more noise granules than plume granules. An overview
of the granules can be found in Figure 7.8. Here it is shown that 57.8% of the data has not been
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Figure 7.7: Overview of the number of detections as a function of the average emission estimate of the different methods

flagged by any method as containing a plume. A further 16.7% of granules have only been detected by
1 method. Most of these were detected by APE and ResNet-26. The remaining data comprises about
25%. In numbers, four out of five methods agree with each other that 27.537 granules are plumes. Out
of these granules, the four machine learning methods agree with each other on 24.134 granules. Only
three methods agree with each other on 15.667 granules. Only two methods agree with each other on
13.935 granules. The number of granules that are flagged as plumes by just one method is 41.660.
From these granules the SVMmethod flagged 2.085 granules, the ResNet-26 flagged 19.264 granules,
the ResNet-44 method flagged 3.728 granules, the RFC method flagged 4.083 granules and the APE
method flagged 12.500 granules. From these statistics the following conclusions can be made, there
is a majority of no-plume data in the complete dataset. The APE method and ResNet-26 method flag
significantly more unique granules as plumes.

Figure 7.8: Pie chart showing the times individual granules have been flagged by the different plume detection methods.
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Figure 7.9: Comparison between the average emission estimates of the machine learning approaches, APE, the plume
distribution method and the EDGAR data for the first 8 steel plants in the list.

Figure 7.10: Comparison between the average emission estimates of the machine learning approaches, APE, the plume
distribution method, EDGAR data, E-PRTR data and results of Leguijt et al. 2025 [48] denoted as Posterior for the 8 steel

plants in Europe.

The results of the validation tests are shown in Figure 7.9 and Figure 7.10. For this comparison, the
data from the period of 2020 to 2022 was used. This is because the 2019 data was not complete for the
machine learning methods, APE and the distribution method and the 2023 data was not complete for
E-PRTR and not found for EDGAR. A small overview of the results of the average emission estimates
of four steel plants can be found in Figure 7.9. In this figure, the average emission estimate of the four
machine learning approaches, APE, the plume distribution and EDGAR are shown side to side. As can
be seen, the average emission estimates fluctuate between the different methods in the figure. This
is also the case for the other average emission estimates. A comparison of the approaches with the
E-PRTR data can be found in Figure 7.10. The figure shows the results for every steel plant as well
as the results of Leguijt et al. 2025 [48]. Out of the 8 steel plants that could be validated with E-PRTR
only 5 are also included in the paper. These 5 steel plants seem to line up well with the findings in this
thesis.

To validate the average emission data between the methods and the validation sets the bias and
the standard deviation (Std) were calculated. The results for these can be found in Table 7.4. In the
table, the bias is defined as the average difference between the validation and the emission estimation
method. A negative bias means that the emission estimation method estimates a higher average
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emission compared to the validation dataset. The standard deviation is used to show the spread of the
average emission estimates. In the table, it is clearly shown that the average emission estimates from
the implemented methods line up closer with the E-PRTR and are significantly better than the emission
estimates from EDGAR. This is proven by having a smaller bias and standard deviation for almost every
method. The E-PRTR data shows a positive bias for each method except for the distribution method.
This indicates that most methods underestimate the average emissions of steel plants. The EDGAR
validation dataset shows the opposite and shows that the bias is mostly negative which would mean
that the machine learning approaches overestimate the average emission of steel plants. The standard
deviation for the validation with EDGAR shows a significant difference between the validation set and
the average emissions of the other methods. The significant difference between the validation datasets
can be explained by noting that the E-PRTR dataset is used to validate the results of 8 steel plants while
the EDGAR dataset is used to validate the results of 180 steel plants. If the average emissions of the
EDGAR dataset are compared for just the 8 European steel plants the bias and standard deviation are
much smaller. The results of this validation test can be seen in Table 7.5. The table shows that the bias
is much smaller for the machine-learning approaches compared to APE while the standard deviation
is worse for most approaches except for the distribution method and ResNet-44.

Table 7.4: Comparison of the bias and the standard deviation between the average emissions calculated by the different
methods and the validation datasets with values in kg/s.

Estimation
method

EDGAR E-PRTR
Bias Std Bias Std

SVM -1.96 21.61 1.41 2.69
ResNet-26 1.50 21.47 1.96 1.96
ResNet-44 -2.03 21.58 1.20 2.36
RFC -1.90 21.79 0.46 3.60
APE -1.25 22.94 3.41 2.40
Distribution -6.36 22.63 -0.17 3.04

Table 7.5: Comparison of the bias and standard deviation between the average emissions calculated by the different methods
and the validation sets for the European steel plants with values in kg/s.

Estimation
method

EDGAR (only Europe) E-PRTR
Bias Std Bias Std

SVM -0.33 2.42 1.41 2.69
ResNet-26 0.22 2.30 1.96 1.96
ResNet-44 -0.54 1.96 1.20 2.36
RFC -1.28 2.67 0.46 3.60
APE 1.67 1.99 3.41 2.40
Distribution -2.37 1.09 -0.17 3.04

7.5. Discussion
The previous section displayed several results showing the issues present in the APE approach to
plume detection. The clearest example can be seen in Figure 7.7. Here the number of detections by
APE does not increasewith the average emission estimation, which does not make sense. When a steel
plant has a higher average emission estimate, it would make sense that these steel plants are polluting
more. Therefore, their plumes should be more visible for these steel plants. Thus it makes sense that
the number of detections increases with the increase in average emission estimate. This shows a flaw
in the APE approach compared to the other methods. The plume detections are further explored in
Table 7.2. APE is only able to find about 20% of the plumes for the same time period as the other
methods and only about 40% of the plumes are found in the datasets of the other approaches which is
significantly lower than the other methods. It shows that APE is much less capable of detecting plumes.
When comparing APE with the validation datasets in Table 7.5, the bias of APE with the validations set
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is the second worst with EDGAR and the worst with E-PRTR compared to the other methods. For the
standard deviation, APE performs the third best with EDGAR and the second best with the E-PRTR
dataset. From the validation results it can be concluded that the other methods perform better than
APE.

A deeper look into the EDGAR validation dataset is necessary to explain the large standard devia-
tion in Table 7.4. When looking at the results of the EDGAR validation dataset some steel plants show
a significantly high average emission. According to the EDGAR results 9 steel plants have an emission
higher than 80 kg/s with 2 higher than 100 kg/s. For context, the other methods do not report any steel
plant with a higher emission than 60 kg/s except for the distribution method which has its maximum
emission at about 62 kg/s. It seems highly unlikely that steel plants can emit about 40 kg/s more CO
without it being found by the other emission estimation methods. Another inconsistency in the results
in Table 7.4 is that the negative bias would point towards an overestimation of the emission estimation
methods. When comparing the average emissions with the European steel plants in Table 7.5, the
standard deviation has the same magnitude as the standard deviation from E-PRTR. This shows that
the large standard deviation is due to average emission estimations from steel plants outside Europe.
This large change warrants further investigation. Various reasons could explain the large discrepancy
between standard deviations. The first reason could be that there is an issue with the emission estima-
tion for the different methods. Perhaps the emissions are incorrectly calculated for steel plants in other
regions due to different atmospheric conditions. The second reason is similar to the first but considers
the problem to be in the plume detection instead. Perhaps the difference in atmospheric conditions
negatively affects the workings of the augmentation algorithm. The third reason considers the problem
to be with the EDGAR dataset. Perhaps the information used for other regions is less accurate. Fur-
ther research is needed to explain the discrepancy. With the large variance in the results in mind, the
results of bias and standard deviations of EDGAR will be seen as less significant than the results of
the validation with E-PRTR.

When looking at the average emission of the steel plants that are included in the E-PRTR validation
in Figure 7.10, it can be seen that three steel plants have a significantly higher emission than the
other methods. These are the ArcelorMittal Duisburg steel plant, the Hüttenwerke Krupp Mannesmann
(HKM) steel plant and the ThyssenKrupp Steel Duisburg steel plant. For the average emissions of
these steel plants, the pollution of the surrounding area was included as well to mirror the 21 km radius
that the emission estimation method is using. The three steel plants are located within a 21 km radius
of each other. Therefore they affect each other average emission estimations. This also increases the
emissions of the E-PRTR dataset. When comparing the emissions of the single steel plant with the
data it seems to line up better, however, this would be an unfair comparison as the average emission
does include the measurements in the larger 21 km radius.

Certain average emission estimates of themachine-learning approaches seem extremely high. One
way to make sense of this is by plotting the locations of these steel plants. This can be seen in Fig-
ure 7.11. In Figure 7.11a, the locations of the steel plants are shown on top of the average divergence
of the area to show that the steel plant locations are in the right place. What immediately becomes
clear is that the high-emitting steel plants, in the figure denoted as µE > 50 kg/s, are located extremely
close to each other. In Figure 7.11b, the inner radius of the emission calculation method is shown. This
radius shows that all the steel plants inside it are used to calculate the emission for the steel plant in
the middle of the area. Thus the steel plants that are located closely cannot have an emission estimate
that is separate from the others. This explains why the emissions are so high.

When comparing the linear regressions in Figure 7.6 it becomes clear that the four machine learning
methods and APE behave very similarly. Compared to the distribution method the other five methods
have amuch higher standard deviation of emission estimates. This could point to thesemethods having
significantly more false positives, implying that more noise is flagged as if it were plumes. This would
end up making the standard deviation larger. The false positives are further explored in Table 7.2.
When looking at the percentage of plumes detected by the different methods it becomes clear that the
machine learning methods agree on the majority of plumes. One way to get a sense of the number of
false positives is by looking at the ”confidence” of the different methods. The confidence here is defined
as the number of methods that agree that certain granules are plumes. What can be seen is that APE
and ResNet-26 flag a significant number of unique granules as containing a plume. These granules
would thus have a low confidence as they are only detected by one method. However, when looking
at Table 7.4 and Table 7.5, it becomes clear that the ResNet-26 method is the second most accurate
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(a) The locations of steel plants and their emission on the average
divergence of the area

(b) The radius of the emission estimation method with the location
of the steel plants

Figure 7.11: Examples of high emission steel plants. The average emissions are in kg/s

method for both EDGAR and E-PRTR. Therefore it seems that the about 20.000 plumes that were
found only by ResNet-26 are not all false positives and probably include a large amount of correctly
identified plumes. This would seem to mean that the other machine-learning methods have missed
out on a significant amount of plumes. This warrants a further investigation into these unique granules.
If these granules are found to contain plumes they should be added to the training dataset. Another
look should be taken at the training dataset as it could be that mistakes are present in the labels. The
large standard deviation in Figure 7.6 could also be the result of inaccuracies in the emission estimation
method which could bias the average emission. When performing the divergence calculation, the CO
concentration data is first interpolated onto a grid with a better spatial resolution than the TROPOMI
CO data creating interpolation errors.

It is difficult to decide on the most accurate plume detection method. Previously it was discussed
that APE should be replaced by one of the machine learning methods. It cannot be replaced by the
distribution method as this method does not detect plumes. Out of the machine learning methods, the
ResNet approaches outperform APE in terms of bias and standard deviation in both validation tests as
can be seen in Table 7.5. Thismakes both approaches good potential replacements for APE. The plume
detection problem of this thesis can be explained as an image recognition exercise and the residual
networks were specifically designed to outperform contemporary image recognition approaches as
described in He et al. 2016 [45]. Thus it makes sense that they perform well. The SVM and RFC
methods have a lower bias compared to APE but a larger standard deviation and thus do not outperform
APE. The distribution method has the highest bias and the lowest standard deviation in the validation
test with EDGAR. For the validation comparison test with E-PRTR, the bias is the lowest with the second
highest standard deviation. These results are confusing. This could be explained by the fact that the
average emission values between the validation sets do not line up perfectly.

7.6. Recommendations
During the implementation of the methods and the creation of the datasets, some choices were made
that affected the outcome of the test. For example, there are some issues in the normalization of the
data in the histogram. These affect the results of the distribution method. This should be fixed in the
future Another problem in the implementation occurs when the CO concentration data is interpolated
onto a new grid. This causes interpolation errors and also affects steel plants that are located close to
large bodies of water as discussed before. If possible the interpolation should be avoided in the future
to calculate more accurate emission estimations.

Other recommendations for the implementation include, further refining the training dataset of the
machine learning methods to not only include data from 2018 and expand the number of steel plants
included. The number of steel plants investigated in Europe should be increased as they can be verified
with E-PRTR and there are definitely many more steel plants than the 8 shown in Figure 7.10.

In terms of methods to implement instead of APE, it was already mentioned that the ResNet-44
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seemed like a good pick with the SVM approach being a good second choice. Another interesting idea
is to investigate the combination of different plume detection methods and see how that would affect
emission estimation. The different methods implemented should cover each other’s weaknesses and
combine their strengths.

It is important to investigate the results of the intercomparison tests for different regions. It could be
that the results for Europe are much better than the results for India for example. If the explanation for
this could be found it would result in a better understanding of the effects of atmospheric conditions on
the plume detection and emission estimation methods. With the E-PRTR dataset, it makes sense to
start any investigation of such effects in Europe.

The distribution method should be further explored. As mentioned before the normalization problem
should be fixed. Another interesting investigation should be in the division of the different distributions in
the noise distribution and the plume distribution. Currently, the implementation is rather arbitrary. This
should be further investigated to refine the process. Perhaps other distribution functions fit the data
better. It would be interesting to investigate how well the labels line up with the emission estimation. It
should be confirmed that all the granules labeled as plumes have high emission estimates.



8
Conclusion and future outlook

In this chapter, the project is concluded by revisiting and answering the research questions. The an-
swers and discussions of these questions are used to conclude the research. These can be found in
section 8.1. The research questions that are not answerable are discussed in section 8.2. Finally, an
outlook for future development on APE is given in section 8.3

8.1. Answering the research questions
• MQ1 - Can a machine learning approach improve the detection of pollution due to combustion at
a global scale?

Figure 8.1: Overview The number of detections as a function of the average emission estimate of the different methods

Yes, it has been shown that the machine learning approaches detect more plumes than the currently
implemented APE method. However, it has also been shown that they suffer from a not insignificant
amount of false positive detections which causes the large standard deviation in Figure 8.1. This
shows that the machine learning methods need further refinement. This should be done by improving
the training dataset. To check if the machine learning methods outperform APE on a global scale,
the intercomparison results were validated using the EDGAR dataset. This showed a large standard
deviation for every method which raised suspicions about the results. To confirm that the average
emission values for EDGAR were calculated correctly, the average emissions of the 8 steel plants that
were also in the E-PRTR dataset were also used to validate the results. As can be seen in Table 8.1 the

72
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Table 8.1: Comparison of the bias and standard deviation between the average emissions calculated by the different methods
and the validation sets with values in kg/s.

Estimation
method

EDGAR (Global) EDGAR (only Europe) E-PRTR
Bias Std Bias Std Bias Std

SVM -1.96 21.61 -0.33 2.42 1.41 2.69
ResNet-26 1.50 21.47 0.22 2.30 1.96 1.96
ResNet-44 -2.03 21.58 -0.54 1.96 1.20 2.36
RFC -1.90 21.79 -1.28 2.67 0.46 3.60
APE -1.25 22.94 1.67 1.99 3.41 2.40
Distribution -6.36 22.63 -2.37 1.09 -0.17 3.04

bias and standard deviations are comparable to E-PRTR’s validation test results. This implies that the
average emissions of the methods are much better in Europe compared to other areas. This should
be further investigated.

• QWP2.1 - Between the machine learning approaches for plume detection as described in sub-
section 2.6.1, which one detects the most plumes accurately?

The machine learning methods implemented for the project are the SVM, RFC, ResNet-26 and
ResNet-44 methods. As can be seen in Table 8.1, the ResNet-26 and ResNet-44 approaches perform
the best. These methods have a lower bias and standard deviation for the European steel plants
in both validation tests. This shows that out of the methods written in subsection 2.6.1, the deep
learning methods detect the plumes most accurately. This makes sense as the deep learning methods
implemented here are residual networks that were specifically designed to outperform other image
recognition methods as written in He et al. 2016 [45].

• QWP2.2 - Which plume features are the most important for detection?

When implementing machine learning methods, it is important to reduce the noise in the input data.
This is to ensure that only useful information is included in the input data. For this purpose, an augmen-
tation algorithm was designed. This algorithm enhances potential plumes in the data by augmenting
the data in three ways. The first feature is the wind direction. The plume should be in the direction of
the wind. The data out of the wind direction is less relevant and thus removed by the algorithm. The
second feature is the distance to the pollution source. The data closer to the source is more relevant
and thus the data further away is removed by the algorithm. The third feature is the enhancement
of CO in the data compared to the background. If the CO concentration data is twice as big as the
background concentration it is considered to be relevant while the rest of the data is removed by the
algorithm. This augmentation algorithm was used to create the training data for the machine learning
methods which have been shown to outperform the currently implemented APEmethod. Thus the most
important features for detection are the data in the direction of the wind, the data near the source and
the enhancement of the measurement data. The augmented data has been shown to outperform the
plume detection of APE in Table 8.1.

• QWP3.1 What is the increase in the accuracy of the new plume detection and emission estima-
tion?

To analyze the accuracy of the new methods the bias and standard deviation were calculated with the
validation datasets and can be found in Table 8.1. The ResNet-26 and ResNet-44 methods outperform
APE in the validation tests. The ResNet-26 detected 136.1% more plumes than APE while ResNet-44
detected 75.2% more plumes. Since not every detection is guaranteed to be a plume these values can-
not directly be taken as the accuracy but since the average emissions line up better with the validation
values, it can be safe to say that the accuracy is much higher. To find out the exact accuracy increase
the entire intercomparison dataset must be labeled. Due to the time constraints this was done.

• QWP3.2 What phenomena are visible in the data?
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Figure 8.2: Example of the fitted distribution to the Baosteel Desheng Stainless Steel Co., Ltd. plant from Figure 6.4

There are quite some phenomena visible in the data. One important phenomenon found in the
data during the project was that if you calculate the emissions and then put them into a histogram
it is possible to estimate the characteristics of the plume data without using plume detection. The
skewness of the data can be seen quite clearly in most histograms. An example of a histogram can be
seen in Figure 8.2. Here the total dataset is fitted by a skewed normal distribution. The noise data is
fitted as a normal distribution around the peak. The plume data is determined by subtracting the noise
distribution from the skewed normal distribution. This new method to determine the average emission
lines up relatively well with the E-PRTR dataset. As seen in Table 8.1, the distribution method has a
lower RMSE than APE. Further refinement of the method is needed to make it more accurate.

8.2. Unanswered research questions
• MQ2 - Does combining different trace gases improve the quantification of emissions?
• QWP1.1 What is the effect of adding NO2 and NOx data for emission quantification?

When reading the research questions and justification for them in chapter 3 one would expect a large
part of the thesis to focus on including NOx into the emission estimation process of APE. However, in
the chapters that follow, this research focus is not mentioned. This will naturally result in questions
from the reader. It might be assumed that no developments took place. This is not the case.

In Figure 3.1, the first two tasks were getting access to the chemical model from Kuhlman et al.,
2021 [44] and making it possible for APE to download NO2 column TROPOMI data. Both of these
tasks were completed. An example of APE downloading NO2data can be seen in Figure 8.3. This
figure gives an example of a CO plume and an NO2 plume in Figure 8.3a and Figure 8.3b respectively.
Overlaying the NO2 plume over the CO plume results in Figure 8.3c. The figure shows that the two
trace gases both appear at steel plants.

The Kuhlmann model focuses on four large emitters. To simulate the relationship between NO2 and
NO the model relies on background concentration values that were simulated using MicroHH. Thus to
utilize this model for other locations, these values had to be calculated individually using MicroHH. This
was deemed too time-consuming and unfeasible for this project. Other avenues to tackle the problem
were investigated but due to time constraints, the development and research for this topic must be left
for a different project.

8.3. Future outlook
With the current project coming to an end the focus must be put on the next steps of research. The
project was able to show that machine-learning methods are better for plume detections but further
refinement and implementation are needed. This should be done by expanding the number of steel
plants that are used in the training dataset and reducing the number of false positives. A critical look
must also be cast on the augmentation algorithm to see if it does not distort the plume feature enhance-
ment. One issue in the current augmentation algorithm is the inclusion of the ERA5 wind data which
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(a) An example of CO concentration data downloaded by APE. (b) An example of NO
2
concentration data downloaded by APE.

(c) Combination of both column data to show that they line up with each other.

Figure 8.3: Example of APE’s ability to download CO and NO2 data. The plumes were measured on 2-7-2018 over Lipetsk.

has a worse spatial resolution compared with the TROPOMI CO measurement data. To use the ERA5
data on the same grid as the CO data, it has to be interpolated which introduces interpolation errors.
It can happen that due to uncertainties in the data or interpolation errors, plumes get obscured by the
augmentation algorithm.

Figure 8.4: Overview of the new functionalities if they were integrated into APE. The yellow blocks denote the already existing
and implemented functions of APE and the green blocks show the implementations that were investigated in this project.

The work that is left for the future is implementing the newmethods into APE. These include the new
emission estimation method to calculate the time series as well as the histogram method and ultimately
the machine learning method. However, that last one is dependent on the outcome of other research.
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If all steps are completed, APE will be able to function as outlined in Figure 8.4. In the figure, the green
blocks show the methods explored in this thesis.

The final goal for APE is to be able to find plumes from industrial or wildfire sources without the need
for a predetermined location while processing TROPOMI data in real time. Currently APE is not able
to do the first point well and the second point at all. The new plume detection using machine learning
should make it possible to input granules from every location on Earth. After the implementation of
the improved plume detections, the development of APE should focus on the real-time processing of
the data. This process should include creating a routine to get rid of granules that include only noise
data like granules with only ocean measurements or granules that consist mostly of measurements
with low quality values. An overview of this version of APE can be found in Figure 8.5. The blue block
represents a new implementation that should be researched. This version of APE is smaller than the
one presented in Figure 8.4 as this future version of APE is only focused on real-time evaluation. A
second version of APE would be used to perform further analysis of emissions from certain locations
over specified periods of time.

With the completion of these implementations, the focus could be placed on the inclusion of other
trace gases into APE such as NOx. These trace gases could be used in several ways. They could be
used to refine the plume masking, improve plume detection, or improve the emission estimation. All
three of these implementations should be researched.

Figure 8.5: Potential future version of APE that is used for near real-time processing. The yellow blocks denote the already
existing and implemented functions of APE, the green blocks show the implementations that were investigated in this project

and the blue block indicates an area for further development.
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A
Steel plants in the comparison test

result overview

This appendix displays the locations of the 180 steel plants used in the comparison test. The names
and locations can be found in Table A.1. The name, latitude and longitude were taken from GEM. The
latitude and longitude are given in degrees.

Table A.1: The 180 steel plants that were used in the comparison test

Steel plant name Index Latitude Longitude

AG der Dillinger Hüttenwerke Dillingen steel plant 18 49.3539 6.7466
Aichi Steel Chita Plant (Tokai) 21 35.0446 136.901
Alchevsk Iron & Steel plant 29 48.4781 38.7708
Angang Group Xinyang Iron and Steel Co., Ltd. plant 38 32.4887 114.038
Angang Steel Company Limited Anshan production base 40 41.1483 122.983
Anhui Changjiang Steel Co., Ltd. plant 42 31.5023 118.465
Anhui Guihang Special Steel Co., Ltd. plant 43 30.5311 117.251
Anhui Shoukuang Dachang Metal Material Co., Ltd. plant 48 32.3292 115.955
Anshan Baode Iron & Steel Co., Ltd. plant 51 41.1736 122.946
Ansteel Group Chaoyang Steel & Iron Co., Ltd. plant 53 41.5289 120.37
Anyang Huixin Special Steel Co., Ltd. plant 54 36.1524 114.158
Anyang Iron & Steel Co., Ltd. plant 55 36.1221 114.283
Anyang Xinpu Steel Co., Ltd. plant 56 36.1632 114.296
ArcelorMittal Asturias (Gijón) steel plant 64 43.5251 -5.73193
ArcelorMittal Duisburg steel plant 69 51.463 6.74461
ArcelorMittal Dąbrowa Górnicza steel plant 71 50.3424 19.285
ArcelorMittal Kryvyi Rih steel plant 81 47.8744 33.393
ArcelorMittal Lázaro Cárdenas steel plant 82 17.9307 -102.201
ArcelorMittal Vanderbijlpark Steel Works 97 -26.6574 27.8223
Azovstal Iron & Steel Works 113 47.1004 37.5959
Baoshan Iron and Steel Co., Ltd. Baoshan headquarters 119 31.4162 121.44
Baosteel Desheng Stainless Steel Co., Ltd. plant 121 26.4875 119.654
Baosteel Group Xinjiang Bayi Iron & Steel Co., Ltd. plant 122 43.8521 87.3046
Bengang Steel Plates Co., Ltd. plant 129 41.2741 123.722
Benxi-Beiying Iron & Steel (Group) Co., Ltd. plant 131 41.2248 123.608
Cangzhou China Railway Equipment Manufacture Material Co., Ltd. plant 145 38.2892 117.814
Changzhi Xingbao Steel Co., Ltd. plant 162 36.3324 113.155
Changzhou Eastern Special Steel Co., Ltd. plant 163 31.6026 119.724

Continued on the next page...
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Steel plant Index Latitude Longitude

Chengde Iron and Steel Group Co., Ltd. plant 166 40.9477 117.72
Chengde Jianlong Special Steel Co., Ltd. plant 167 40.515 117.596
Chengyu Vanadium & Titanium Technology Co., Ltd. steel plant 171 29.7321 104.504
Chifeng Yuanlian Steel Co., Ltd. plant 172 42.2781 119.015
Chizhou Guichi Guihang Metal Products Co 177 30.5328 117.252
Chongqing Iron & Steel Co., Ltd. plant 180 29.7903 107.04
Chongqing Yonghang Steel Group Co., Ltd. plant 181 29.8362 106.988
Chubu Steel Plate Nagoya plant 183 35.1188 136.868
Daye Xinye Special Steel Co., Ltd. plant 218 30.0675 114.934
Dniprovskiy Metallurgical Plant 229 48.528 34.6409
ESL Steel Ltd plant 251 23.6329 86.2937
Fujian Luoyuan Minguang Iron and Steel Co., Ltd. plant 279 26.4838 119.671
Fujian Quanzhou Minguang Iron and Steel Co., Ltd. plant 281 25.2444 118.03
Fujian Sanbao Iron and Steel Co., Ltd. plant 282 24.6358 117.604
Fujian Tsingtuo Nickel Industry Co., Ltd. plant 283 26.7689 119.765
Fujian Yixin Steel Co., Ltd. plant 285 26.4913 119.636
Fushun Special Steel Co., Ltd. plant 288 41.8388 123.807
Gansu Jiu Steel Group Hongxing Iron and Steel Co., Ltd. plant 290 39.8121 98.2956
Hebei Anfeng Iron & Steel Co., Ltd. 370 39.6585 118.895
Hebei Donghai Special Steel Co., Ltd. plant 373 39.6106 118.475
Hebei Huaxi Special Steel Co., Ltd. plant 375 39.2608 119.006
Hebei Jinxi Iron & Steel Group Co., Ltd. plant 377 40.2098 118.221
Hebei Longfengshan Casting Co., Ltd.plant 378 36.7051 114.105
Hebei Puyang Iron and Steel Co., Ltd. plant 380 36.7337 113.926
Hebei Rongxin Steel Co., Ltd. plant 381 39.8807 118.559
Hebei Taihang Iron and Steel Group Co., Ltd. plant 382 36.6137 114.082
Hebei Tianzhu Iron and Steel Group Special Steel Co., Ltd. plant 386 39.27 119.014
Hebei Xin Wu’an Steel Group Wen’an Iron and Steel Co., Ltd. plant 389 36.6794 114.169
Hebei Xinda Iron and Steel Co., Ltd. plant 392 39.8984 118.579
Hebei Xinghua Iron and Steel Co., Ltd. plant 393 36.7449 114.112
Hebei Xinjin Iron and Steel Co., Ltd. plant 394 36.7156 114.209
Hebei Xinxing Ductile Iron Pipes Co., Ltd. plant 395 36.6215 114.128
Hebei Zongheng Group Fengnan Iron & Steel Co., Ltd. plant 398 39.2226 118.094
Heilongjiang Jianlong Iron and Steel Co., Ltd. plant 399 46.6023 131.072
Hejin Huaxinyuan Steel & Iron Co., Ltd. plant 400 35.6055 110.652
Henan Fengbao Special Steel Co., Ltd. plant 403 36.1317 113.872
Henan Jiyuan Iron & Steel (Group) Co., Ltd. plant 404 35.0864 112.554
Henan Xinjinhui Stainless Steel Industry Co., Ltd. plant 405 34.2635 113.854
Hengyang Valin Steel Tube Co., Ltd. plant 407 26.8655 112.577
Hoa Phat Hai Duong Steel plant 415 21.0154 106.536
Hubei Jinshenglan Metallurgical Technology Co., Ltd. plant 421 29.9167 113.823
Hubei Wucheng Iron and Steel Group Co., Ltd. plant 424 30.3412 114.858
Hunan Valin Lianyuan Iron and Steel Co., Ltd. plant 426 27.7478 111.967
Hunan Valin Xiangtan Iron and Steel Co., Ltd. plant 427 27.8141 112.897
Hyundai Steel Dangjin steel plant 433 36.9863 126.697
Hyundai Steel Pohang steel plant 435 36.005 129.385
Hüttenwerke Krupp Mannesmann (HKM) steel plant 436 51.3713 6.72331
Ilyich Iron & Steel Works 437 47.1425 37.5864
Inner Mongolia BaoTou Steel Union Co.,Ltd. plant 441 40.648 109.741
Interpipe Nyzhnyodniprovskyi Tube Rolling Plant 445 48.4921 35.0927
JFE West Japan Works (Kurashiki) steel plant 472 34.5012 133.722
Jianglong Acheng Iron & Steel Co., Ltd. 473 45.562 126.968
Jiangsu Binxin Steel Group Co., Ltd. 474 35.0956 119.28

Continued on the next page...
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Jiangsu Changqiang Iron & Steel Co., Ltd. plant 475 31.9521 120.19
Jiangsu Hongtai Iron and Steel Co., Ltd. plant 477 32.1384 119.555
Jiangsu Shagang Group Huaigang Special Steel Co., Ltd. plant 478 33.566 118.988
Jiangsu Shente Steel Co. Ltd. plant 479 31.4711 119.486
Jiangsu Xugang Iron and Steel Group Co., Ltd. 481 34.577 117.34
Jiangsu Yonggang Group Co., Ltd. steel plant 482 31.8552 120.731
Jiangyin Xingcheng Special Steel Works Co., Ltd. plant 486 31.9502 120.328
Jilin Jianlong Steel Co., Ltd. plant 490 44.012 126.537
Jilin Xinda Iron and Steel Co., Ltd. plant 494 42.3249 125.247
Jinan Iron & Steel Group Co., Ltd. plant 495 36.719 114.112
Jincheng Fusheng Iron & Steel Co., Ltd. plant 496 35.663 112.882
Jinding Heavy Industry Co., Ltd. steel plant 501 36.719 114.112
Jingye Iron and Steel Co., Ltd. plant 502 38.3914 114.14
Jiugang Group Yuzhong Iron & Steel Co., Ltd. plant 506 36.0336 104.036
Jiujiang Pinggang Iron and Steel Co., Ltd. plant 507 29.7784 116.275
JSPL Chhattisgarh steel plant 509 21.9227 83.3472
JSW Odisha steel plant 515 21.764 84.0225
JSW Steel Vijayanagar steel plant 523 15.1804 76.6631
Kalyani Steels Hospet plant 527 15.3391 76.2517
Laiwu Iron and Steel Group Yinshan Section Steel Co., Ltd. plant 561 36.1061 117.82
Lengshuijiang Steel Co., Ltd. plant 570 27.6904 111.437
Lingyuan Iron & Steel Co., Ltd. plant 581 41.271 119.414
Liuzhou Iron & Steel Co., Ltd.(Liuzhou Base�plant 592 24.3853 109.38
Ma’anshan Iron & Steel Co., Ltd. plant 601 31.6989 118.468
Magnitogorsk Iron & Steel Works 602 53.4276 59.0541
Mechel Chelyabinsk Metallurgical Plant 613 55.2707 61.4365
Mesco Steel Kalinganagar plant 617 20.9763 86.0444
Minyuan Iron and Steel Group Co., Ltd. 626 34.0134 116.423
Nanjing Iron & Steel Co., Ltd. plant 638 32.2008 118.746
Nanyang Hanye Special Steel Co., Ltd. plant 640 33.2693 111.535
Nippon East Japan Works (Nagoya) steel plant 653 35.0276 136.871
Panzhihua Steel Group Panzhihua Steel Vanadium Co., Ltd. plant 713 26.5653 101.674
Pingxiang Pinggang Anyuan Iron & Steel Co., Ltd. plant 716 27.6456 113.902
POSCO Gwangyang steel plant 722 34.9201 127.749
POSCO Zhangjiagang Stainless Steel Co., Ltd. plant 725 31.9802 120.571
Puyang Linzhou Iron and Steel Co., Ltd. plant 728 36.1333 113.873
Qian’an Jiujiang Wire Co., Ltd. steel plant 731 39.9522 118.559
Qinhuangdao Hongxing Iron and Steel Co., Ltd. plant 735 39.7007 118.871
Quzhou Yuanli Metal Products Co., Ltd. steel plant 736 28.8934 118.867
Rizhao Steel Holding Group Co., Ltd. plant 754 35.1654 119.367
Rizhao Steel Yingkou Medium Plate Co., Ltd. steel plant 755 40.6711 122.395
SAIL Alloy Steel Plant 762 23.5229 87.2759
SAIL Bhilai steel plant 763 21.1852 81.3942
SAIL Bokaro steel plant 764 23.6717 86.1069
SAIL Durgapur steel plant 765 23.5484 87.2452
SAIL IISCO steel plant 766 23.6732 86.9262
SAIL Rourkela steel plant 768 22.2108 84.869
Salzgitter Flachstahl steel plant 769 52.1618 10.4094
Sansteel Minguang Co., Ltd. Fujian plant 771 26.2611 117.615
SGIS Songshan Co.,Ltd. 778 24.7082 113.636
Shaanxi Hanzhong Iron & Steel Group Co., Ltd. 779 33.1324 106.658
Shaanxi Longmen Steel Co., Ltd. plant 782 35.6185 110.576
Shaanxi Lueyang Iron and Steel Co., Ltd. plant 783 33.3237 106.167
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Shaanxi Steel Group Hanzhong Iron and Steel Co., Ltd. plant 784 33.1332 106.672
Shagang Group Anyang Yongxing Special Steel Co., Ltd. plant 785 36.1436 114.15
Shandong Chuanyang Group Co., Ltd. steel plant 786 36.8948 117.888
Shandong Fulun Iron and Steel Co., Ltd. plant 787 36.3084 117.54
Shandong Iron and Steel Co., Ltd. Laiwu Branch plant 789 36.0935 117.838
Shandong IRON&STEEL Group Rizhao Co., Ltd. plant 792 35.189 119.384
Shandong Laigang Yongfeng Steel Co., Ltd. plant 793 36.8135 116.758
Shandong Shouguang Juneng Special Steel Co., Ltd. plant 797 36.9391 118.786
Shandong Taishan Steel Group Co., Ltd. plant 798 36.2214 117.628
Shanghai Meishan Iron and Steel Co., Ltd. plant 799 31.903 118.617
Shanxi Changxin Industrial Co., Ltd. steel plant 800 36.3266 113.117
Shanxi Gaoyi Steel Co., Ltd. plant 801 35.5868 111.258
Shanxi Tongcai Industry and Trade Co., Ltd. steel plant 810 35.6943 111.429
Shanxi Zhongsheng Iron and Steel Co., Ltd. plant 813 35.7278 111.33
Shanxi Zhongyang Iron and Steel Co., Ltd. plant 814 37.3708 111.161
Shiheng Special Steel Group Co., Ltd. plant 815 36.2292 116.534
Shougang Changzhi Iron and Steel Co., Ltd. plant 821 36.3564 113.061
Shougang Jingtang Iron & Steel United Co., Ltd. plant 823 38.9537 118.503
Shougang Qian’an Iron and Steel Co., Ltd. plant 824 39.9767 118.559
Shyam Steel Durgapur plant 826 23.5084 87.2823
Sichuan Dazhou Iron & Steel Group Co., Ltd. plant 829 31.1895 107.453
Tangshan Donghai Iron and Steel Group Co., Ltd. plant 882 39.7484 118.625
Tangshan Donghua Iron & Steel Enterprise Group Co., Ltd. plant 883 39.4684 118.257
Tangshan Ganglu Iron and Steel Co., Ltd. plant 886 40.1839 118.074
Tangshan Songting Iron & Steel Co., Ltd. plant 894 39.9389 118.577
Tangshan Yanshan Iron and Steel Co., Ltd. plant 899 39.9255 118.673
Tata Steel BSL Dhenkanal plant 904 20.7961 85.2604
Tata Steel Jamshedpur steel plant 906 22.7886 86.1996
ThyssenKrupp Steel Duisburg steel plant 931 51.4916 6.73305
Tianjin Iron & Steel Group Co., Ltd. plant 932 39.0311 117.499
Tianjin Iron Works Co., Ltd. plant 933 36.5897 113.746
Tianjin Rockcheck Steel Group Co., Ltd. plant 937 38.9706 117.496
Tonghua Iron & Steel Co., Ltd. 948 41.7791 126.022
Tongling Fuxin Iron and Steel Co., Ltd. plant 949 30.9076 117.773
Tongling Xuanli Special Steel Co., Ltd. plant 950 31.0628 117.956
Vizag Steel plant 987 17.6128 83.1919
Voestalpine Stahl Linz steel plant 991 48.274 14.3343
Wu’an Yuhua Iron and Steel Co., Ltd. plant 1005 36.7318 114.098
Wuhan Iron and Steel Co., Ltd. Qingshan plant 1009 30.6162 114.445
Xinji Aosen Iron & Steel Co., Ltd. plant 1023 37.7524 115.185
Xinyu Steel Group Co., Ltd. plant 1031 27.7869 114.922
Zaporizhstal steel plant 1059 47.8684 35.1618
Zenith Steel Group Co., Ltd. plant 1061 31.7077 120.08
Zhangjiagang Hongchang Steel Co., Ltd. 1063 31.9831 120.639
Zhangjiagang Rongsheng Special Steel Co., Ltd. 1064 31.9855 120.645
Zhong Xin Iron and Steel Group Co., Ltd. plant 1070 34.3686 118.316



B
Emission estimates per steel plant

This appendix displays the results of performing the plume detection on the 180 steel plants of the
comparison test which can be found in Appendix A. The steel plants are listed by index number rather
than name to ensure that the tables fit on the page. The names that belong to the index numbers
can be found in Appendix A. The results for the APE, SVM and ResNet-26 methods are shown in
Table B.1 while the results for ResNet-44, RFC and the distribution method can be found in Table B.2.
In the tables, the parameters µ, σ and # denote the average emission estimates in kg/s, the standard
deviations of the emission estimates in kg/s and the number of detections, respectively.

Table B.1: Overview of the results of performing the APE, SVM and ResNet-26 methods on the 180 steel plants

Steel plant
index

APE SVM ResNet-26
µ σ # µ σ # µ σ #

18 1.52 5.61 234 3.57 4.17 126 3.23 4.54 129
21 6.72 8.77 28 12.43 9.09 127 7.54 12.66 386
29 1.37 6.41 201 5.45 5.85 129 5.00 8.05 74
38 3.00 7.53 153 5.03 13.70 57 1.68 11.28 122
40 36.22 27.04 305 29.41 27.51 848 28.02 29.25 828
42 4.54 10.58 124 6.18 12.60 229 3.22 13.02 264
43 2.87 8.26 150 7.05 12.13 81 2.37 10.48 172
48 3.56 5.53 168 5.70 8.94 81 3.85 12.85 126
51 39.43 26.82 293 32.41 28.82 837 30.55 29.80 823
53 3.39 10.96 318 7.69 27.19 33 3.53 21.97 68
54 16.14 21.78 258 17.91 26.96 204 13.20 27.77 369
55 13.03 19.07 246 16.26 24.15 191 11.95 24.57 360
56 10.91 16.39 248 16.00 22.83 198 10.60 23.45 345
64 1.33 13.31 43 11.28 11.98 90 6.58 10.92 334
69 4.82 6.39 246 6.87 5.71 341 6.89 5.97 302
71 0.86 5.66 162 2.24 6.62 75 1.09 6.64 92
81 4.11 5.59 294 6.20 5.41 220 5.69 5.48 236
82 19.71 12.64 46 23.25 10.51 235 19.92 11.10 363
97 5.53 5.30 233 5.47 6.45 301 4.16 8.73 343
113 0.06 5.81 36 11.75 10.68 223 8.62 10.24 339
119 11.74 18.19 26 12.41 17.63 96 10.89 15.62 162
121 14.03 26.14 36 18.31 21.36 241 10.51 20.26 407
122 -7.25 15.81 351 -3.25 19.28 88 -3.13 15.43 391
129 19.23 28.43 316 19.71 27.20 602 15.25 28.29 620
131 20.06 32.28 317 19.51 29.45 622 15.80 29.65 564

Continued on the next page...

84



85

Steel plant
index

APE SVM ResNet-26
µ σ # µ σ # µ σ #

145 11.33 17.18 20 18.04 29.26 118 10.95 23.55 213
162 6.02 14.66 112 7.32 19.30 43 2.85 17.64 125
163 0.96 10.65 68 5.93 19.85 67 1.32 15.19 132
166 14.24 15.06 351 20.71 23.55 96 15.52 21.31 157
167 5.18 13.67 46 5.95 10.97 17 -3.90 29.14 16
171 4.31 6.47 57 7.53 9.05 28 1.34 13.26 74
172 5.38 8.10 412 6.14 16.90 33 5.20 11.24 84
177 2.92 8.21 151 6.90 12.17 82 2.32 10.80 173
180 4.46 6.94 92 4.18 6.67 117 1.49 6.60 292
181 2.15 7.50 91 4.21 6.71 89 0.20 7.66 290
183 4.35 8.76 35 10.77 11.50 95 5.40 11.55 390
218 8.74 12.63 156 11.19 13.12 223 8.28 12.78 346
229 2.31 5.88 308 5.20 6.60 185 4.31 7.18 154
251 10.08 12.58 151 8.23 12.35 486 7.01 12.90 519
279 15.14 26.95 34 18.53 21.63 261 11.72 20.24 399
281 1.95 8.06 59 6.98 7.49 12 1.87 7.52 131
282 2.46 6.59 77 5.23 8.26 110 1.47 7.70 257
283 4.28 9.87 32 7.12 17.62 198 2.28 15.05 443
285 13.15 25.50 36 17.19 21.30 230 8.99 19.96 403
288 5.78 17.68 386 7.14 27.25 262 -0.21 25.61 401
290 9.10 13.67 349 15.39 17.08 54 9.52 14.09 599
370 36.42 33.95 29 20.86 33.92 802 18.32 35.04 742
373 23.41 28.13 33 16.61 28.95 806 14.14 29.72 696
375 -4.29 32.72 24 0.63 42.15 281 -5.87 40.42 405
377 2.10 26.51 257 6.34 37.69 287 4.05 35.22 233
378 51.03 45.22 271 45.20 45.33 733 41.69 45.58 739
380 13.47 58.47 219 16.06 45.83 608 8.28 45.84 716
381 48.63 49.61 66 39.35 40.10 962 38.39 41.14 788
382 44.46 41.37 223 43.68 47.58 691 37.80 47.23 737
386 -2.66 33.22 23 -1.03 42.98 280 -5.79 41.30 407
389 51.50 39.70 260 44.89 45.69 732 41.65 44.56 765
392 46.23 48.65 67 38.87 40.02 961 38.21 41.11 812
393 45.45 44.21 269 39.31 43.14 725 35.10 42.17 719
394 51.87 40.91 268 43.21 44.92 728 40.35 44.35 765
395 46.44 39.17 232 42.38 46.53 703 37.53 45.67 750
398 11.20 14.95 20 4.67 25.43 282 -0.25 28.56 278
399 5.34 7.89 226 8.71 11.60 100 5.94 14.33 72
400 10.02 27.51 214 5.30 22.55 665 3.86 23.02 599
403 -5.85 39.24 190 0.24 39.00 135 -7.08 33.12 475
404 4.14 26.47 200 13.04 29.64 68 -0.64 23.11 251
405 1.32 11.48 177 4.08 17.48 33 1.92 17.70 76
407 1.18 6.71 132 8.49 18.73 19 1.60 10.56 117
415 2.15 4.93 31 9.36 17.90 65 4.17 18.28 135
421 3.11 7.31 103 4.94 9.98 25 1.67 9.70 106
424 2.83 10.43 146 4.82 12.47 239 2.52 12.83 261
426 5.61 9.10 104 9.04 10.48 133 5.28 10.43 236
427 8.25 8.88 146 9.01 9.01 168 6.01 10.81 263
433 10.12 9.89 33 10.18 11.44 200 5.93 12.45 430
435 5.99 11.76 19 9.12 17.33 96 3.42 15.12 197
436 3.41 7.23 252 5.78 5.99 341 5.46 5.63 254
437 1.89 7.49 50 10.67 9.59 224 8.02 9.62 334
441 36.11 32.91 446 27.99 31.28 1174 27.33 31.18 1102
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Steel plant
index

APE SVM ResNet-26
µ σ # µ σ # µ σ #

445 -0.65 5.67 214 3.22 6.56 57 0.22 7.60 90
472 8.75 12.18 16 7.67 10.35 340 5.68 12.31 485
473 -3.90 12.24 328 -2.63 23.51 140 -8.00 23.71 162
474 48.63 48.59 24 29.07 33.01 510 24.88 32.11 604
475 5.09 12.23 56 4.98 13.04 267 2.30 12.97 266
477 5.00 12.60 102 5.56 14.64 81 NaN NaN 0
478 2.84 8.77 79 4.87 11.65 56 1.80 12.00 112
479 -1.08 9.02 82 2.48 13.36 34 -1.04 11.07 107
481 7.20 11.08 148 9.18 11.65 154 5.47 12.88 203
482 20.21 18.40 33 23.29 21.31 461 21.40 21.18 403
486 4.93 13.81 49 7.18 14.66 371 4.95 13.88 360
490 1.58 9.63 435 3.35 16.41 211 0.26 19.32 214
494 6.34 11.40 333 15.67 16.08 57 8.96 12.14 133
495 49.76 44.90 268 43.27 44.51 733 39.65 44.67 732
496 8.76 14.47 74 28.84 17.20 8 6.83 20.03 31
501 49.76 44.90 268 43.27 44.51 733 39.65 44.67 732
502 7.66 14.10 289 11.22 18.34 369 8.09 17.19 528
506 1.06 13.47 261 7.49 14.52 287 1.71 13.10 652
507 4.61 9.36 122 7.88 10.50 146 4.38 10.83 264
509 4.49 7.56 173 7.57 9.65 189 7.18 10.39 171
515 5.09 7.96 171 6.45 9.89 272 4.52 9.56 278
523 6.42 8.17 244 6.70 7.73 470 5.92 7.67 413
527 0.70 7.05 165 4.61 8.70 209 2.24 8.38 285
561 13.51 18.13 237 18.40 20.72 298 15.91 19.35 344
570 3.88 8.80 79 7.07 11.45 49 1.79 8.72 209
581 9.78 11.97 286 13.25 18.91 45 10.34 13.88 110
592 7.89 8.21 149 10.17 10.76 260 7.74 11.99 312
601 10.89 10.29 176 9.04 13.26 347 8.28 13.98 356
602 10.74 8.86 297 10.25 8.89 656 9.64 9.02 704
613 4.69 6.27 250 5.66 7.11 199 5.07 6.68 280
617 1.43 4.25 42 2.46 12.15 77 1.41 10.77 128
626 4.32 7.91 163 5.34 7.79 66 2.97 8.55 117
638 9.61 11.68 183 7.67 14.59 322 5.96 14.91 295
640 3.92 9.73 159 10.34 13.03 59 2.05 10.71 225
653 7.03 8.87 30 13.10 10.30 136 7.87 12.61 397
713 15.79 14.73 157 12.80 15.42 734 11.72 15.83 703
716 8.67 11.30 145 11.72 12.63 167 7.12 11.98 261
722 16.10 15.00 27 16.45 15.04 509 14.43 15.94 559
725 25.98 15.28 49 21.47 17.12 548 20.71 17.36 499
728 -5.58 38.91 192 0.17 39.03 135 -7.01 33.04 477
731 39.91 40.60 103 34.95 40.48 943 32.57 38.80 798
735 35.22 38.38 31 20.22 35.01 832 19.35 34.82 751
736 0.61 8.65 148 3.38 7.03 148 -0.11 9.20 282
754 41.96 41.26 26 27.72 31.59 506 23.14 31.96 580
755 20.97 19.14 88 20.64 25.56 595 17.86 25.81 590
762 6.98 9.76 177 6.55 10.57 331 5.42 10.10 418
763 6.13 8.44 210 6.07 7.87 618 5.70 8.48 595
764 8.96 10.33 170 8.11 10.14 472 7.20 10.18 494
765 6.76 9.13 177 6.06 10.87 330 5.31 10.47 425
766 3.61 10.88 147 2.94 12.95 278 1.45 12.99 292
768 4.18 8.89 190 7.21 9.99 266 5.01 10.23 299
769 0.85 4.21 215 2.06 3.72 70 1.92 4.19 69
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Steel plant
index

APE SVM ResNet-26
µ σ # µ σ # µ σ #

771 4.81 7.47 156 6.78 8.25 182 4.11 8.08 306
778 4.04 8.97 158 6.33 9.52 219 3.35 10.62 251
779 1.12 9.12 110 2.89 9.81 213 -0.50 9.03 388
782 10.75 33.74 213 8.12 26.67 604 3.03 27.62 583
783 1.05 6.90 88 4.54 6.35 26 0.14 10.15 151
784 1.05 9.17 112 2.36 9.85 219 -1.04 9.07 386
785 16.81 22.39 259 17.35 29.01 208 13.48 27.86 373
786 12.50 28.81 229 13.08 26.67 444 9.77 24.62 500
787 8.92 23.77 195 20.23 19.30 216 11.20 20.58 336
789 11.89 18.31 226 15.99 20.58 292 14.23 19.43 333
792 33.89 32.48 25 26.91 30.79 503 22.68 30.18 569
793 1.75 11.22 185 3.64 19.52 51 -0.18 17.14 157
797 3.39 14.52 108 2.79 27.11 159 -0.27 20.11 214
798 18.30 19.22 215 21.05 21.17 289 18.51 19.42 335
799 6.53 11.53 174 6.17 13.21 346 5.25 13.54 321
800 8.07 13.32 115 9.31 13.82 36 2.42 16.67 121
801 23.90 26.86 249 19.62 28.97 771 17.15 28.57 748
810 -0.86 32.34 272 2.62 27.66 697 0.50 27.46 646
813 8.16 32.68 270 9.11 27.68 698 5.13 27.90 733
814 -9.31 26.42 164 7.16 18.64 121 -2.39 20.27 240
815 3.23 11.79 212 1.74 20.08 38 0.34 15.53 96
821 8.90 15.89 127 9.16 20.85 28 2.05 15.46 123
823 3.52 11.48 22 6.57 23.67 107 -4.98 25.51 172
824 36.20 37.88 112 33.75 40.56 911 30.62 40.13 791
826 6.79 9.67 175 6.37 10.23 327 5.03 10.01 431
829 1.04 5.02 99 4.95 6.38 36 0.63 6.53 169
882 40.73 40.30 36 33.28 37.13 943 31.73 36.86 815
883 14.56 36.51 22 7.84 26.29 547 5.95 28.25 440
886 6.87 20.76 286 4.94 33.05 269 1.70 33.18 207
894 42.43 42.28 80 36.36 40.66 959 35.84 40.66 814
899 44.41 51.03 52 35.68 40.39 949 34.60 41.15 849
904 4.88 8.46 115 6.12 9.33 460 4.79 10.29 449
906 9.28 9.81 198 10.39 9.48 240 8.88 9.89 359
931 4.93 6.36 244 7.00 5.72 334 7.02 5.89 294
932 8.13 22.53 49 15.94 28.13 168 7.01 25.93 240
933 -22.67 43.28 116 3.47 31.65 452 -7.86 36.20 571
937 8.06 17.37 46 16.90 30.94 175 6.52 27.89 197
948 9.28 12.88 338 16.34 15.05 136 11.87 16.23 207
949 0.68 9.41 153 1.83 16.89 111 -0.13 13.63 195
950 4.19 10.69 165 6.29 13.80 154 2.82 13.08 251
987 9.66 7.23 29 15.68 11.97 182 12.91 11.38 325
991 1.52 6.01 223 3.16 5.33 25 1.22 7.59 231
1005 47.68 45.43 273 41.02 43.31 719 36.89 42.87 720
1009 13.97 11.78 173 12.48 12.38 458 10.38 13.16 467
1023 5.66 14.92 232 9.10 31.66 84 5.01 25.28 135
1031 8.66 8.99 141 9.55 9.44 240 7.78 10.35 272
1059 3.89 5.53 282 4.71 6.08 187 4.41 5.96 174
1061 13.12 11.07 98 9.01 14.87 217 5.63 15.50 224
1063 26.31 15.14 48 21.80 18.09 573 21.62 18.63 516
1064 26.28 15.06 48 21.76 18.02 576 21.49 18.62 517
1070 4.97 9.04 89 8.52 11.28 42 4.86 10.29 117
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Table B.2: Overview of the results of performing the ResNet-44, RFC and Distribution methods on the 180 steel plants

Steel plant
index

ResNet-44 RFC Distribution
µ σ # µ σ # µ σ #

18 3.90 4.23 105 3.71 3.68 71 5.12 2.23 307
21 12.77 9.42 102 11.78 9.00 79 11.52 6.54 697
29 4.97 5.29 94 5.73 5.66 90 6.95 2.89 290
38 4.04 12.22 48 5.76 12.24 32 6.76 3.05 240
40 30.74 27.95 735 30.36 27.12 796 39.58 22.74 848
42 5.95 12.26 197 6.57 12.63 173 9.77 4.94 275
43 5.10 11.87 63 5.62 10.56 65 8.43 3.95 315
48 5.53 9.11 75 5.65 9.40 49 7.53 3.32 312
51 33.38 28.94 754 33.08 29.10 793 41.22 23.01 877
53 5.43 22.86 45 6.83 27.44 31 12.61 4.76 73
54 19.29 26.98 226 18.25 26.87 230 24.36 13.37 646
55 16.09 24.34 206 17.32 23.82 215 19.77 10.48 599
56 15.50 22.63 207 15.88 21.70 210 20.25 10.71 520
64 10.84 9.33 81 11.38 12.20 77 11.10 5.45 515
69 6.10 12.62 279 7.28 5.65 267 6.91 3.92 1067
71 2.06 6.07 70 2.55 5.91 40 6.15 2.39 86
81 6.12 5.37 168 6.35 5.33 176 6.06 2.89 481
82 22.16 11.83 215 23.99 11.43 152 17.81 10.96 950
97 5.53 7.30 235 5.44 6.57 246 6.52 3.78 690
113 11.34 10.89 188 12.36 10.95 178 6.47 2.73 268
119 14.57 15.30 101 13.57 14.64 89 15.60 8.38 600
121 17.07 22.16 220 18.16 21.98 230 11.26 5.31 225
122 1.88 21.57 77 -0.93 23.25 71 NaN NaN 0
129 20.85 26.36 508 19.53 26.33 587 29.96 16.08 625
131 21.27 29.53 539 20.10 30.25 550 30.18 16.08 730
145 16.23 28.33 110 18.57 28.99 109 12.53 5.95 360
162 5.11 16.09 100 10.50 15.88 22 17.72 8.37 308
163 4.51 17.44 61 4.57 20.66 57 8.62 3.56 78
166 21.37 20.04 124 20.77 23.59 89 14.28 8.04 794
167 0.41 29.63 44 -4.50 45.42 21 11.17 5.35 332
171 10.39 21.10 31 15.88 26.87 16 5.10 2.21 147
172 6.81 14.90 48 4.76 17.18 36 8.26 4.60 714
177 5.63 13.05 65 5.37 10.51 67 8.42 4.02 318
180 2.69 6.47 95 3.50 6.06 94 3.77 1.62 204
181 4.00 6.70 75 3.31 6.71 73 3.61 1.45 108
183 10.94 12.48 93 13.15 12.97 49 9.58 4.92 414
218 12.46 13.30 161 12.31 13.53 188 9.25 4.53 498
229 5.01 6.32 131 4.90 6.51 121 5.54 2.82 641
251 8.21 12.95 337 8.19 12.82 402 13.68 7.04 423
279 16.51 22.49 244 19.18 21.67 241 11.28 5.28 248
281 6.44 8.12 12 7.06 9.35 14 5.57 2.48 154
282 4.22 8.47 82 4.35 9.25 93 7.10 3.04 196
283 7.49 17.20 159 6.00 17.88 180 8.77 3.73 265
285 16.22 22.03 212 16.83 21.77 223 10.47 4.83 170
288 6.00 28.30 218 7.27 25.26 299 16.28 8.43 379
290 11.98 13.63 82 11.99 15.57 41 14.04 6.75 492
370 22.17 33.71 725 21.63 34.71 737 31.18 17.49 745
373 16.51 29.11 713 16.69 29.40 744 28.97 14.92 592
375 4.69 33.50 269 1.97 39.44 248 NaN NaN 0
377 4.83 29.20 418 5.25 36.59 331 18.98 7.43 164

Continued on the next page...



89

Steel plant
index

ResNet-44 RFC Distribution
µ σ # µ σ # µ σ #

378 45.69 46.29 688 44.18 45.87 700 58.70 33.74 777
380 17.06 45.14 557 10.86 48.90 600 48.99 20.63 252
381 40.74 40.98 860 39.74 40.60 932 53.46 31.68 889
382 43.92 47.54 656 44.48 49.12 614 55.95 31.48 734
386 3.73 35.28 270 1.40 39.43 250 NaN NaN 0
389 46.21 46.04 694 44.86 47.24 690 55.73 33.26 844
392 40.30 41.06 873 39.31 40.68 936 51.09 30.57 905
393 40.28 43.85 677 38.51 43.70 687 54.80 30.70 717
394 44.17 44.98 677 43.72 45.81 688 58.74 33.92 781
395 42.49 46.03 684 43.71 47.44 637 55.28 31.68 760
398 3.16 26.90 237 2.78 27.13 241 19.96 7.97 127
399 7.41 12.07 86 8.73 11.91 53 9.89 4.74 461
400 6.28 22.40 538 4.77 23.10 688 21.03 9.03 325
403 -3.00 38.73 136 -5.64 38.77 143 26.42 11.55 55
404 6.33 25.20 73 7.82 29.35 82 18.51 7.66 27
405 4.25 11.09 28 5.48 15.21 23 7.69 2.93 51
407 7.50 15.89 17 5.77 18.56 16 7.08 2.70 92
415 8.36 17.47 68 8.87 13.63 52 8.59 3.56 216
421 6.10 11.72 31 6.43 9.72 24 5.30 2.22 243
424 4.85 12.65 191 4.89 12.50 183 8.62 3.90 288
426 8.94 11.48 110 8.89 12.28 116 7.46 3.70 459
427 9.78 9.33 141 8.34 8.93 153 10.54 5.42 470
433 9.42 12.98 158 10.43 10.95 109 11.39 5.76 497
435 10.66 13.31 79 13.19 13.54 70 8.65 3.61 149
436 5.94 6.07 276 6.31 6.07 237 3.01 3.92 2013
437 10.25 9.93 181 11.53 9.85 187 6.36 2.68 280
441 29.92 31.24 1022 28.10 31.77 1128 39.18 22.82 921
445 2.33 6.17 53 4.08 5.44 32 5.29 2.09 125
472 7.67 10.03 253 8.73 10.20 257 9.08 4.64 488
473 -0.86 21.40 115 0.07 16.75 97 NaN NaN 0
474 30.14 33.44 420 30.83 34.37 431 20.62 11.89 697
475 4.35 11.99 250 4.35 13.28 202 13.04 5.39 203
477 5.28 14.58 71 4.17 15.19 73 10.09 5.07 300
478 5.67 12.11 65 3.02 15.40 45 7.03 3.54 408
479 -0.23 14.11 27 -2.55 13.52 29 8.52 3.24 34
481 8.80 12.16 124 9.66 11.92 130 10.59 4.69 364
482 23.45 21.76 417 24.34 22.94 343 22.53 13.50 798
486 6.73 13.74 337 7.07 15.43 281 13.80 6.28 377
490 2.49 18.70 167 3.57 19.75 135 7.36 3.86 326
494 14.83 14.96 56 15.49 13.38 51 10.74 5.74 565
495 43.87 45.79 681 42.80 44.85 697 56.74 32.72 781
496 7.48 23.71 24 36.17 26.23 8 17.65 8.00 181
501 43.87 45.79 681 42.80 44.85 697 56.74 32.72 781
502 11.35 18.02 376 10.16 18.63 357 17.63 8.87 536
506 9.30 13.92 235 9.37 14.19 242 9.14 3.87 250
507 7.74 9.09 126 8.58 10.08 107 8.84 4.18 358
509 7.22 10.05 164 7.21 9.36 165 6.30 3.22 388
515 6.14 10.37 221 6.67 10.41 229 7.67 3.54 392
523 6.77 7.81 395 7.11 7.56 368 9.42 5.14 517
527 3.93 9.17 201 3.49 9.59 196 8.38 3.12 72
561 18.35 20.91 241 19.30 21.25 247 20.53 11.28 607
570 6.13 11.57 46 6.85 10.88 49 6.77 2.89 276
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Steel plant
index

ResNet-44 RFC Distribution
µ σ # µ σ # µ σ #

581 13.46 13.87 47 13.23 17.46 44 13.33 7.29 601
592 11.16 10.88 209 10.26 10.82 205 12.23 6.00 463
601 8.66 13.34 299 8.51 13.24 305 13.81 7.52 647
602 10.33 8.51 554 10.82 9.03 505 10.61 5.85 1167
613 5.60 7.13 165 5.81 7.25 128 7.52 3.32 577
617 2.80 10.56 92 2.13 12.24 63 4.80 2.38 396
626 5.55 6.90 55 3.92 9.47 44 7.15 3.32 334
638 8.27 14.15 265 7.75 15.49 279 13.21 6.60 521
640 7.29 12.36 78 7.97 13.81 45 8.74 3.66 68
653 12.28 10.25 112 12.57 10.26 84 11.31 6.47 714
713 13.86 16.04 557 12.66 15.54 695 10.56 5.40 541
716 12.88 14.04 114 11.67 12.95 141 6.92 3.45 410
722 16.31 14.94 404 16.66 15.06 446 18.22 9.97 687
725 21.22 18.01 489 21.73 17.41 478 23.68 14.15 854
728 -3.07 39.18 140 -4.76 39.08 142 26.67 11.57 47
731 36.31 41.02 851 35.07 41.07 915 46.37 26.56 833
735 22.39 35.17 742 20.73 35.39 782 32.90 17.91 653
736 2.92 7.94 107 4.06 7.55 107 NaN NaN 0
754 29.47 33.35 430 29.28 31.87 469 18.25 9.71 622
755 20.46 26.50 479 21.17 25.15 549 25.73 14.25 805
762 6.95 9.87 284 6.21 10.10 292 8.87 4.82 556
763 6.24 8.10 511 6.12 7.92 544 8.26 4.43 567
764 7.71 9.97 341 7.64 10.09 393 12.27 6.69 526
765 6.71 10.67 282 5.99 10.65 280 8.94 4.94 584
766 2.67 11.95 250 2.49 13.77 232 7.94 3.85 252
768 7.01 9.98 202 7.20 9.92 213 7.85 3.40 266
769 2.10 4.20 58 2.12 3.30 36 4.96 2.05 273
771 6.63 8.47 154 6.76 8.17 160 6.51 2.75 251
778 5.89 9.69 165 7.20 10.06 149 9.03 3.78 221
779 2.55 9.55 168 1.67 10.03 217 NaN NaN 0
782 9.22 25.79 484 5.17 27.50 688 27.63 11.45 254
783 1.91 7.18 42 3.13 7.54 30 5.38 2.19 110
784 1.86 9.55 180 1.05 10.06 219 NaN NaN 0
785 19.53 27.25 220 18.00 27.91 225 24.61 13.64 665
786 13.71 27.28 357 13.79 28.26 387 16.11 9.00 719
787 17.53 20.16 209 17.06 22.08 182 23.96 11.33 383
789 16.73 20.20 255 18.09 20.51 238 19.23 10.45 552
792 28.49 31.08 433 28.18 31.10 465 20.88 10.28 521
793 4.21 18.53 50 3.17 19.61 56 9.36 3.96 149
797 3.11 28.47 141 2.89 29.49 127 15.20 6.36 210
798 20.47 20.54 231 21.26 22.03 233 20.52 11.93 771
799 5.80 13.96 289 6.29 13.95 296 12.25 6.10 450
800 6.06 16.94 104 11.69 14.26 21 16.90 7.78 360
801 21.72 28.79 668 20.01 29.30 722 30.42 16.36 650
810 5.70 27.17 544 2.26 27.67 666 23.03 9.45 220
813 10.30 28.07 576 8.19 28.13 686 29.02 12.34 285
814 -3.64 19.11 307 2.00 17.94 210 NaN NaN 0
815 5.47 15.10 47 4.21 18.61 35 9.72 4.72 379
821 7.45 17.27 88 14.64 19.57 23 16.73 7.77 384
823 4.35 21.95 103 8.65 23.99 78 NaN NaN 0
824 34.80 41.22 844 33.92 41.30 887 44.18 24.82 808
826 7.44 10.19 292 6.38 10.25 287 8.81 4.75 534

Continued on the next page...
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Steel plant
index

ResNet-44 RFC Distribution
µ σ # µ σ # µ σ #

829 4.52 5.19 36 5.77 6.22 20 NaN NaN 0
882 35.29 36.55 816 34.24 37.23 867 47.23 27.79 864
883 6.30 25.98 506 8.19 27.60 471 25.69 9.76 85
886 6.37 26.28 368 3.80 33.21 288 17.46 8.03 253
894 37.46 41.16 863 36.37 41.24 934 46.46 27.27 874
899 36.73 41.21 860 35.70 40.70 924 46.62 27.64 872
904 7.31 9.62 345 6.63 9.72 362 8.39 4.01 346
906 10.26 10.35 222 10.35 8.98 186 8.70 4.74 599
931 6.01 14.17 275 7.17 5.95 268 NaN NaN 0
932 16.22 26.80 153 14.71 28.05 167 16.03 8.87 670
933 1.65 31.02 462 -1.72 39.52 370 24.98 9.91 78
937 16.28 29.22 175 15.54 30.32 167 16.32 8.96 625
948 15.82 14.90 121 17.91 15.23 113 12.06 6.03 405
949 1.68 15.40 92 0.68 18.72 74 9.02 3.63 190
950 5.55 14.25 138 6.42 15.53 105 11.18 4.88 258
987 15.72 13.48 155 15.90 12.41 148 13.04 7.79 694
991 2.21 5.37 33 4.27 6.89 13 5.24 2.29 307
1005 41.79 44.31 668 39.91 44.36 690 54.99 31.45 760
1009 12.70 12.46 399 12.74 12.46 402 12.58 6.94 707
1023 8.81 30.74 70 8.94 32.61 78 10.66 5.41 445
1031 9.97 9.88 183 9.78 9.59 202 9.71 4.42 351
1059 4.28 6.13 156 4.82 5.95 139 5.91 3.06 574
1061 8.98 13.77 202 8.34 15.16 195 13.94 6.82 495
1063 22.11 18.00 510 22.38 17.88 495 24.73 14.52 828
1064 21.99 17.90 513 22.23 17.89 498 24.43 14.45 843
1070 9.17 11.23 36 7.96 10.83 35 9.11 4.08 313



C
Time series of European steel plants

This appendix displays the time series of emission estimates of the different methods for the 8 steel
plants in the European Union from Table A.1. The different steel plants are listed in order of their steel
plant index number from the table.

#18: AG der Dillinger Hüttenwerke Dillingen steel plant

Figure C.1: Time series of the emission estimates of the AG der Dillinger Hüttenwerke Dillingen steel plant

92
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Figure C.2: Time series of the emission estimates of the AG der Dillinger Hüttenwerke Dillingen steel plant for the SVM method

Figure C.3: Time series of the emission estimates of the AG der Dillinger Hüttenwerke Dillingen steel plant for the ResNet-26
method
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Figure C.4: Time series of the emission estimates of the AG der Dillinger Hüttenwerke Dillingen steel plant for the ResNet-44
method

Figure C.5: Time series of the emission estimates of the AG der Dillinger Hüttenwerke Dillingen steel plant for the RFC method
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Figure C.6: Time series of the emission estimates of the AG der Dillinger Hüttenwerke Dillingen steel plant for the APE method

#64: ArcelorMittal Asturias (Gijón) steel plant

Figure C.7: Time series of the emission estimates of the ArcelorMittal Asturias (Gijón) steel plant
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Figure C.8: Time series of the emission estimates of the ArcelorMittal Asturias (Gijón) steel plant for the SVM method

Figure C.9: Time series of the emission estimates of the ArcelorMittal Asturias (Gijón) steel plant for the ResNet-26 method
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Figure C.10: Time series of the emission estimates of the ArcelorMittal Asturias (Gijón) steel plant for the ResNet-44 method

Figure C.11: Time series of the emission estimates of the ArcelorMittal Asturias (Gijón) steel plant for the RFC method
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Figure C.12: Time series of the emission estimates of the ArcelorMittal Asturias (Gijón) steel plant for the APE method

#69: ArcelorMittal Duisburg steel plant

Figure C.13: Time series of the emission estimates of the ArcelorMittal Duisburg steel plant
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Figure C.14: Time series of the emission estimates of the ArcelorMittal Duisburg steel plant for the SVM method

Figure C.15: Time series of the emission estimates of the ArcelorMittal Duisburg steel plant for the ResNet-26 method
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Figure C.16: Time series of the emission estimates of the ArcelorMittal Duisburg steel plant for the ResNet-44 method

Figure C.17: Time series of the emission estimates of the ArcelorMittal Duisburg steel plant for the RFC method
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Figure C.18: Time series of the emission estimates of the ArcelorMittal Duisburg steel plant for the APE method

#71: ArcelorMittal Dąbrowa Górnicza steel plant

Figure C.19: Time series of the emission estimates of the ArcelorMittal Dąbrowa Górnicza steel plant
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Figure C.20: Time series of the emission estimates of the ArcelorMittal Dąbrowa Górnicza steel plant for the SVM method

Figure C.21: Time series of the emission estimates of the ArcelorMittal Dąbrowa Górnicza steel plant for the ResNet-26
method
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Figure C.22: Time series of the emission estimates of the ArcelorMittal Dąbrowa Górnicza steel plant for the ResNet-44
method

Figure C.23: Time series of the emission estimates of the ArcelorMittal Dąbrowa Górnicza steel plant for the RFC method
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Figure C.24: Time series of the emission estimates of the ArcelorMittal Dąbrowa Górnicza steel plant for the APE method

#436: Hüttenwerke Krupp Mannesmann (HKM) steel plant

Figure C.25: Time series of the emission estimates of the Hüttenwerke Krupp Mannesmann (HKM) steel plant
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Figure C.26: Time series of the emission estimates of the Hüttenwerke Krupp Mannesmann (HKM) steel plant for the SVM
method

Figure C.27: Time series of the emission estimates of the Hüttenwerke Krupp Mannesmann (HKM) steel plant for the
ResNet-26 method
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Figure C.28: Time series of the emission estimates of the Hüttenwerke Krupp Mannesmann (HKM) steel plant for the
ResNet-44 method

Figure C.29: Time series of the emission estimates of the Hüttenwerke Krupp Mannesmann (HKM) steel plant for the RFC
method
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Figure C.30: Time series of the emission estimates of the Hüttenwerke Krupp Mannesmann (HKM) steel plant for the APE
method

#769: Salzgitter Flachstahl steel plant

Figure C.31: Time series of the emission estimates of the Salzgitter Flachstahl steel plant
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Figure C.32: Time series of the emission estimates of the Salzgitter Flachstahl steel plant for the SVM method

Figure C.33: Time series of the emission estimates of the Salzgitter Flachstahl steel plant for the ResNet-26 method
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Figure C.34: Time series of the emission estimates of the Salzgitter Flachstahl steel plant for the ResNet-44 method

Figure C.35: Time series of the emission estimates of the Salzgitter Flachstahl steel plant for the RFC method
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Figure C.36: Time series of the emission estimates of the Salzgitter Flachstahl steel plant for the APE method

#931: ThyssenKrupp Steel Duisburg steel plant

Figure C.37: Time series of the emission estimates of the ThyssenKrupp Steel Duisburg steel plant
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Figure C.38: Time series of the emission estimates of the ThyssenKrupp Steel Duisburg steel plant for the SVM method

Figure C.39: Time series of the emission estimates of the ThyssenKrupp Steel Duisburg steel plant for the ResNet-26 method
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Figure C.40: Time series of the emission estimates of the ThyssenKrupp Steel Duisburg steel plant for the ResNet-44 method

Figure C.41: Time series of the emission estimates of the ThyssenKrupp Steel Duisburg steel plant for the RFC method
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Figure C.42: Time series of the emission estimates of the ThyssenKrupp Steel Duisburg steel plant for the APE method

#991: Voestalpine Stahl Linz steel plant

Figure C.43: Time series of the emission estimates of the Voestalpine Stahl Linz steel plant
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Figure C.44: Time series of the emission estimates of the Voestalpine Stahl Linz steel plant for the SVM method

Figure C.45: Time series of the emission estimates of the Voestalpine Stahl Linz steel plant for the ResNet-26 method
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Figure C.46: Time series of the emission estimates of the Voestalpine Stahl Linz steel plant for the ResNet-44 method

Figure C.47: Time series of the emission estimates of the Voestalpine Stahl Linz steel plant for the RFC method
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Figure C.48: Time series of the emission estimates of the Voestalpine Stahl Linz steel plant for the APE method
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