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Pulsed Electromagnetic Field Interaction With a
Transmission Line: An Analytical Traveling-Wave

Approach Based on Reciprocity
Martin Štumpf , Senior Member, IEEE, Giulio Antonini , Fellow, IEEE,

Ioan E. Lager , Senior Member, IEEE, and Jonas Ekman , Member, IEEE

Abstract— Pulsed electromagnetic (EM) field signal transfer
from a general EM source distribution to a transmission line
(TL) is analyzed with the aid of Lorentz’s reciprocity theorem.
In this fashion, the transient voltage induced by the impulsive EM
source is expressed through the EM fields as radiated by the TL.
These transmitted EM fields are expressed in closed form using
an analytical procedure that resembles the Cagniard–De Hoop
(CdH) technique. The validity of the proposed reciprocity-based
methodology is verified with the aid of an alternative analytical
solution describing the EM field signal transfer excited by an
impulsive vertical electric dipole (VED). Illustrative numerical
examples are presented.

Index Terms— Cagniard–De Hoop (CdH) technique, elec-
tromagnetic (EM) field transfer, electromagnetic reciprocity,
reciprocity theorem, time-domain (TD) analysis, transmission line
(TL), traveling-wave antenna.

I. INTRODUCTION

QUANTIFYING the impact of pulsed electromagnetic
(EM) fields on transmission lines (TLs) is a matter

of paramount concern for securing the high reliability of
both electric power distribution and communication systems
(e.g., [1], [2], [3], [4]). To estimate these effects, differential
coupling models based on TL equations are traditionally
employed [5], [6], [7], [8], [9]. Recently, an integral form
of the standard (differential) TL coupling models has been
introduced in [10] using the Lorentz reciprocity theorem
[11, Sec. 28.2]. This coupling model is represented via a
reciprocity relation of the time-convolution type (see [12,
Eq. (1)]) through which the equivalent time-domain (TD)
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Thévenin-voltage responses are expressed via (integration of)
the excitation EM fields (see [12, Eq. (2)]). Under certain
special circumstances, the integrals are amenable to solution
by analytical means (e.g., [12], [13], [14] and [15, Ch. 12 and
13]), which makes it possible to solve relatively complex
EM scattering problems in an accurate and computationally
effortless manner. To enable a straightforward incorporation
of more complex EM sources, a novel TD coupling model is
proposed in this article. More specifically, without restricting
the analysis to time-harmonic EM plane waves (e.g., [16], [17],
[18], [19]), the voltage response of a TL is first related to (the
interaction of) the volume source distribution of excitation
EM fields and the impulse-excited radiated EM fields [20].
As these fields are not necessarily limited to the far-field
region, their TD computation is generally a tough task. This
difficulty is in the present work circumvented with the aid of
a dedicated inversion technique that bears a similarity with
the Cagniard–De Hoop (CdH) technique [21]. Although the
applied inversion strategy is capable of yielding remarkably
straightforward closed-form expressions for transient wave
fields radiated from nonstationary sources, it seems that its
applications have been thus far limited to the study of EM
radiation from an infinite periodic line array of sequentially
pulsed axial dipoles [22] and from a dielectric coated thin-wire
segment [23]. Accordingly, the presented TD expressions for
the radiated transient EM fields are, in their present compact
form, believed to be new.

In addition to describing the pulsed EM transfer from an
external EM source to a TL using the TD reciprocity theorem
(see [12], [13]), the presented closed-form TD expressions can
be readily used to study the TD EM radiation from traveling-
wave thin-wire antennas (e.g., [24], [25]). Moreover, as TL
models are useful for explaining the operation of leaky wave
antennas [26], it is anticipated that the presented (CdH-like)
inversion procedure will enable us to deepen our understanding
of space-time leaky wave phenomena [27], [28].

The analyzed problem configuration is described in
Section II. Subsequently, the actual (receiving) situation is in
Section III analyzed via the EM reciprocity theorem. Here,
it is shown that the TD voltage induced by an external EM
source can be expressed via the EM fields radiated from an
electric-current impulse traveling along the TL. It is further
demonstrated that such EM fields can be expressed in closed
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Fig. 1. TL that is irradiated by external EM sources.

form with the aid of an analytical CdH-like inversion proce-
dure, thereby yielding an accurate and efficient EM coupling
model. Its analytical details are summarized in Appendix A.
To demonstrate the use of the (general) solution methodol-
ogy, a vertical electric dipole (VED) excited TL is closely
analyzed in the ensuing Section IV. Using the corresponding
closed-form analytical solution [13], expressions of which are
confined to Appendix B, the proposed solution methodology
is successfully validated in Section V. Finally, we draw
conclusion in Section VII.

II. PROBLEM DESCRIPTION

We shall analyze the TD response of a TL due to externally
disturbing EM fields. The corresponding problem configura-
tion is shown in Fig. 1. In it, the spatial position is localized
using the Cartesian coordinates {x, y, z} with respect to an
orthogonal Cartesian reference frame with the origin O and
the standard base vectors {i x , i y, i z}. The position vector can
be then expressed as r = x i x + y i y + z i z .

The time coordinate is denoted by t . The Heaviside unit-step
function is represented by H(t) (H(t) = 0 if t < 0, H(0) =

1/2 and H(t) = 1 if t > 0) and the Dirac-delta distribution
is denoted δ(t). The time convolution is denoted by ∗t . Then,
the time-integration operator can be defined as ∂−1

t f (t) =

f (t) ∗t H(t).
The TL is located in a homogeneous, isotropic, and loss-

less medium above a perfectly electrically conducting (PEC)
ground plane. The TL occupies a bounded domain of space
that is enclosed by a sufficiently regular surface S0 [10,
Fig. 1]. The ports of the TL at x = x1,2 are bounded by
internal surfaces S1,2, respectively. Their outer normal unit
vector is denoted by ν(r). The ambient medium is described
by its electric permittivity, ϵ0, and magnetic permeability,
µ0. The corresponding EM wave speed and impedance are
c0 = (ϵ0µ0)

−1/2 > 0 and ζ0 = c0µ0, respectively. The
horizontal conductor of the TL extends over L = {x1 ≤ x ≤

x2, y = y0, z = z0}, where z0 > 0 is its (relatively small)
height above the ground plane. Consequently, the length of
the TL is ℓ = x2 − x1 > 0.

The TL is irradiated by external EM fields that are generated
by EM sources distributed in a bounded domain DS . These
sources are represented by the electric-current volume
density, JR(r, t), or/and the magnetic-current volume density,
K R(r, t). The voltage and current quantities at the end points
at x = x1,2 are represented V1,2(t) and I1,2(t), respectively.
Within the reciprocity-based analysis that follows, these

quantities will be further supplemented with a superscript to
denote the pertaining EM-field state. The EM sources are
activated at t = 0. Prior to this instant, the EM fields are
identically zero throughout the problem configuration.

III. PROBLEM SOLUTION

The causality and the time invariance of the EM waves
are accounted for through the use of the unilateral Laplace
transform

f̂ (s) =

∫
∞

t=0
exp(−st) f (t)dt (1)

where the Laplace-transform parameter s is assumed to be
real-valued and positive. Consequently, Lerch’s uniqueness
theorem [29, Appendix] ensures the existence of a one-to-
one mapping between the (causal) original, f (t), and its
Laplace-transform counterpart, f̂ (s). Owing to the zero initial
condition, (1) entails the property ∂t → s.

A. Reciprocity Analysis

The proposed solution methodology is formulated using the
s-domain EM reciprocity theorem of the time-convolution type
[11, Sec. 28.4] and follows essentially the lines of reasoning
presented in [20] (see also [15, Ch. 11] and [29, Sec. 5.1.2]).
Accordingly, the actual (receiving) situation (see Fig. 1)
(denoted by superscript R) is related to the transmitting state
(denoted by superscript T) that corresponds to the operational
situation when the TL is at its port excited by a lumped
electric-current source (see Figs. 2 and 3).

First, the reciprocity theorem is applied to the domain that is
externally bounded by S0 and internally by S1,2 enclosing the
ports at x = x1,2. Over S1,2, the EM fields can be expressed
in terms of Kirchhoff-circuit quantities (see [20, Eq. (64)] and
[29, Sec. 1.5.2])∫

r∈S0

(
ÊR

× ĤT
− ÊT

× ĤR
)
· ν dA

= V̂ R
1 Î T

1 − V̂ T
1 Î R

1 − V̂ R
2 Î T

2 + V̂ T
2 Î R

2 (2)

where we adhered to the orientation of electric currents
that is conventional in the TL theory. In the second step,
the reciprocity theorem is applied to the unbounded domain
exterior to S0. Owing to the explicit-type boundary conditions
on the PEC ground and the property of causality of the EM
fields [29, Sec. 1.4.3], the reciprocity theorem yields∫

r∈S0

(
ÊR

× ĤT
− ÊT

× ĤR
)
· ν dA

=

∫
r∈DS

(
K̂ R · ĤT

− ĴR · ÊT
)

dV . (3)

Combining next (2) with (3) we end up with

V̂ R
1 Î T

1 − V̂ T
1 Î R

1 − V̂ R
2 Î T

2 + V̂ T
2 Î R

2

=

∫
r∈DS

(
K̂ R · ĤT

− ĴR · ÊT
)

dV (4)

which relates the (desired) induced voltages/currents at the
ports of the TL, {V̂ R

1,2, Î R
1,2}, with the (known) external sources,

{ ĴR, K̂ R
}, through (yet unspecified) testing-state quantities,

{ÊT, ĤT
}. Two particular testing states are further discussed

in detail.
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Fig. 2. Transmitting state in which the port at x = x1 is excited and the
port at x = x2 is matched.

Fig. 3. Transmitting state in which the port at x = x2 is excited and the
port at x = x1 is matched.

1) Near-End Thévenin’s Voltage: Assuming that the TL is
at x = x2 matched in both (T) and (R) states, that is, ZL

2 = Zc,
where Zc denotes the characteristic impedance, the reciprocity
relation (4) yields the open-circuit Thévenin’s voltage induced
at x = x1 (i.e., ZL

1 → ∞)

V̂ G
1 (s) =

∫
r∈DS

(
K̂ R · ĥT1

− ĴR · êT1
)

dV (5)

where we have introduced the impulse-excited transmitted
fields according to

{êT1, ĥT1
} = {ÊT, ĤT

}| Î T
1 =1. (6)

To evaluate the EM fields as radiated from the horizontal
conductor of a TL that is at x = x1 excited by the impulsive
electric-current source and matched at x = x2 (see Fig. 2)
we may adopt the methodology that resembles the CdH tech-
nique [23] (see Appendix A). The corresponding space-time
electric-current distribution traveling in the positive x-direction
is given by

I T(x, t) = δ[t − (x − x1)/c0]. (7)

Consequently, I T(x1, t) = I T
1 (t) = δ(t) and I T(x2, t) =

I T
2 (t) = δ(t − ℓ/c0). Finally, the EM fields radiated from the

vertical sections along {x = x1,2, y = y0, 0 ≤ z ≤ z0} can
be evaluated using the well-known expressions pertaining to
the EM radiation from a short, thin-wire segment carrying a
uniform electric current [11, Sec. 26.9]. The effect of the PEC
ground plane is incorporated through the method of images
[11, Sec. 23.2]. This approach is pursued in Section III-B2.

2) Far-End Thévenin’s Voltage: Assuming that the TL is at
x = x1 matched in both (T) and (R) states, that is, ZL

1 = Zc,
where Zc denotes the characteristic impedance, the reciprocity
relation (4) yields the open-circuit Thévenin’s voltage induced
at x = x2 (i.e., ZL

2 → ∞)

V̂ G
2 (s) = −

∫
r∈DS

(
K̂ R · ĥT2

− ĴR · êT2
)

dV (8)

where we have introduced the impulse-excited transmitted
fields according to

{êT2, ĥT2
} = {ÊT, ĤT

}| Î T
2 =1. (9)

To evaluate the EM fields as radiated from the horizontal
conductor of a TL that is at x = x2 excited by the impul-
sive electric-current source and matched at x = x1 (see
Fig. 3) we may again apply the methodology presented in
Appendix A. The corresponding space-time electric-current
distribution traveling in the negative x-direction is given by

I T(x, t) = −δ[t − (x2 − x)/c0]. (10)

Consequently, I T(x2, t) = I T
2 (t) = −δ(t) and I T(x1, t) =

I T
1 (t) = −δ(t −ℓ/c0). The EM-field radiation from the vertical

sections is in Section III-B2 evaluated using the approximation
pertaining to a short, thin-wire segment carrying a uniform
electric current [11, Sec. 26.9] and the method of images
[11, Sec. 23.2].

B. EM Radiation From the TL

In this section, we shall evaluate the EM field radiation
from the TL in its (T) states (see Figs. 2 and 3). In this
analysis, we shall distinguish between the EM fields radiated
from the horizontal (denoted by h) and vertical (denoted by v)
sections of the TL. The total EM fields then follow as their
superposition, i.e.,{

eT
x,y,z, hT

x,y,z

}
=

{
eT;h

x,y,z + eT;v
x,y,z, hT;h

x,y,z + hT;v
x,y,z

}
(11)

respectively. The calculation of the radiated EM fields will be
accomplished through the standard source-type representations
[11, Sec. 26.3].

1) Horizontal Conductor: The nonvanishing EM-field com-
ponents radiated from the horizontal conductor of the TL can
be expressed in the following way.

êT;h
x = −sµ0 Âx + ∂2

x Âx/sϵ0 (12)

êT;h
y = ∂y∂x Âx/sϵ0 (13)

êT;h
z = ∂z∂x Âx/sϵ0 (14)

and

ĥT;h
y = ∂z Âx (15)

ĥT;h
z = −∂y Âx (16)

where the s-domain potential function is given by 1-D convo-
lution integrals

Âx (r, s) =

∫ x2

x ′=x1

[
Ĝ(x − x ′, y − y0, z − z0)

− Ĝ(x − x ′, y − y0, z + z0)
]
Î T(x ′, s)dx ′

(17)

with Ĝ(x, y, z) = exp(−s R/c0)/4π R, R = (x2
+ y2

+ z2)1/2,
and Î T(x, s) represents the s-domain counterpart of (7) or (10).

Finally, the use of (17) in (12)–(16) leads to s-domain
wave constituents that can be transformed back to TD via the
methodology presented in Appendix A. A detailed analysis
is provided in Section IV for a VED source represented by
JR

= J R
z i z and K R

= 0.
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Fig. 4. TL excited by a VED.

2) Vertical Conductor: The non-vanishing EM-field com-
ponents radiated from the vertical sections of the TL can be
expressed via

êT;v
x = ∂x∂z Âz/sϵ0 (18)

êT;v
y = ∂y∂z Âz/sϵ0 (19)

êT;v
z = −sµ0 Âz + ∂2

z Âz/sϵ0 (20)

and

ĥT;h
x = ∂y Âz (21)

ĥT;h
y = −∂x Âz (22)

where the potential function represents the radiation from two
short thin-wire segments carrying a uniform current distribu-
tion, i.e.,

Âz(r, s) ≃ 2z0 Î T
1 (s)Ĝ(x − x1, y − y0, z)

− 2z0 Î T
2 (s)Ĝ(x − x2, y − y0, z) (23)

where the factor 2 accounts for the presence of the PEC
ground plane and ≃ indicates that we have approximated the
integral

∫ z0

ζ=−z0
Ĝ(x, y, z − ζ )dζ by 2z0Ĝ(x, y, z). Recall that

Î T
1 (s) = 1 with Î T

2 (s) = exp(−sℓ/c0) for the transmitting
state shown in Fig. 2, while Î T

1 (s) = − exp(−sℓ/c0) with
Î T

2 (s) = −1 for the one shown in Fig. 3. Finally, the use of
(23) in (18)–(22) leads to s-domain expressions that can be
readily transformed back to TD. More details are provided in
the following Section IV for a VED source excitation.

IV. VED-EXCITED TL

The VED-excited TD response of a TL (see Fig. 4) has been
described analytically in terms of elementary TD functions
in [13] (see [15, Ch. 13] for details) using the CdH tech-
nique [21] (see Appendix B). The (reference) CdH solution
has been thoroughly validated in [12] and [13] with the aid
of finite-difference implementations of the scattered-voltage
coupling model [6]. In this section, we shall provide an alter-
native closed-form solution to this problem that relies on the
(general) reciprocity-based solution introduced in Section III.

The action of a VED is described through a localized
electric-current volume density, viz

ĴR(r, s) = îR(s)ℓRδ(r − r S)i z (24)

and K̂ R
= 0, where îR(s) denotes the s-domain counterpart

of the exciting pulse shape, ℓR > 0 is the length of the dipole
and r S = xS i x + yS i y + zS i z is its position.

Substitution of (24) in (5) and (8), using the sifting prop-
erty of the Dirac-delta distribution and transforming the thus
obtained s-domain expressions into TD, we end up with

V G
1 (t) = −ℓR iR(t) ∗t eT1

z (r S, t) (25)

V G
2 (t) = ℓR iR(t) ∗t eT2

z (r S, t). (26)

Recall that eT1
z and eT2

z correspond to the transmitting states
shown in Figs. 2 and 3, respectively, and that these radiated
EM fields are in general composed of contributions from the
horizontal and vertical sections of a TL [see (11)], that is,
eT1

z = eT1;h
z + eT1;v

z and eT2
z = eT2;h

z + eT2;v
z .

A. VED-Excited TD Near-End Thévenin’s Voltage

To evaluate V G
1 (t) according to (25), we shall express the

z-component of the electric-field strength as radiated in the
corresponding transmitting state (see Fig. 2). To that end,
we first pursue the methodology specified in Section III-B1
that yields the contribution from the horizontal conductor, i.e.,

V G;h
1 (t) = −ℓR iR(t) ∗t eT1;h

z (r S, t) (27)

where

iR(t) ∗t eT1;h
z (r, t)

= µ0∂t iR(t)∗t

{
(z − z0)[x − x+(t)]

R2
+(t)

0+(r, t)

−
(z + z0)[x − x∗

+
(t)]

R∗2
+ (t)

0∗

+
(r, t)

}
+ 3ζ0iR(t)∗t

{
(z − z0)[x − x+(t)]

R2
+(t)

0+(r, t)
R+(t)

−
(z + z0)[x − x∗

+
(t)]

R∗2
+ (t)

0∗
+
(r, t)

R∗
+(t)

}
+ 3ϵ−1

0 ∂−1
t iR(t)∗t

{
(z − z0)[x − x+(t)]

R2
+(t)

0+(r, t)
R2

+(t)

−
(z + z0)[x − x∗

+
(t)]

R∗2
+ (t)

0∗
+
(r, t)

R∗2
+ (t)

}
.

(28)

The space-time quantities that occur on the right-hand side
of (28) have been specified in Appendix A-A. Next, the
contribution from the vertical sections of the TL can be found
through the approach described in Section III-B2. Indeed, this
way readily leads to

V G;v
1 (t) = −ℓR iR(t) ∗t eT1;v

z (r S, t) (29)

where

iR(t) ∗t eT1;v
z (r, t)

= −
µ0z0

2π R1

(
1 −

z2

R2
1

)
∂t iR

(
t −

R1

c0

)
+

µ0z0

2π R2

(
1 −

z2

R2
2

)
∂t iR

(
t −

ℓ

c0
−

R2

c0

)
−

ζ0z0

2π R2
1

(
1 − 3

z2

R2
1

)
iR

(
t −

R1

c0

)
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+
ζ0z0

2π R2
2

(
1 − 3

z2

R2
2

)
iR

(
t −

ℓ

c0
−

R2

c0

)
−

z0

2πϵ0 R3
1

(
1 − 3

z2

R2
1

)
∂−1

t iR
(

t −
R1

c0

)
+

z0

2πϵ0 R3
2

(
1 − 3

z2

R2
2

)
∂−1

t iR
(

t −
ℓ

c0
−

R2

c0

)
. (30)

In (30), we used R1,2 = [(x − x1,2)
2
+ (y − y0)

2
+ z2

]
1/2 > 0,

respectively. The sum of (27) and (29), V G;h
1 + V G;v

1 , yields
the VED-excited TD near-end voltage response V G

1 . The
evaluation of the TD expressions is straightforward and does
not present any difficulties.

B. VED-Excited TD Far-End Thévenin’s Voltage

In this section, we shall employ the TD reciprocity rela-
tion (25) to provide closed-form expressions for V G

2 (t). Via
the methodology presented in Section III-B1, the z-component
of the electric-field strength as radiated from the horizontal
conductor in the transmitting shown in Fig. 3 can be found.
Along these lines, we arrive at

V G;h
2 (t) = ℓR iR(t) ∗t eT2;h

z (r S, t) (31)

where [see (28)]

iR(t) ∗t eT2;h
z (r, t)

= µ0∂t iR(t)∗t

{
(z − z0)[x − x−(t)]

R2
−(t)

0−(r, t)

−
(z + z0)[x − x∗

−
(t)]

R∗2
− (t)

0∗

−
(r, t)

}
+ 3ζ0iR(t)∗t

{
(z − z0)[x − x−(t)]

R2
−(t)

0−(r, t)
R−(t)

−
(z + z0)[x − x∗

−
(t)]

R∗2
− (t)

0∗
−
(r, t)

R∗
−(t)

}
+ 3ϵ−1

0 ∂−1
t iR(t)∗t

{
(z − z0)[x − x−(t)]

R2
−(t)

0−(r, t)
R2

−(t)

−
(z + z0)[x − x∗

−
(t)]

R∗2
− (t)

0∗
−
(r, t)

R∗2
− (t)

}
.

(32)

The space-time quantities that occur on the left-hand side
of (32) have been specified in Appendix A-B. Furthermore,
pursuing the approach described in Section III-B2, the contri-
bution from the vertical sections of the TL is given by

V G;v
2 (t) = ℓR iR(t) ∗t eT2;v

z (r S, t) (33)

where [see (30)]

iR(t) ∗t eT2;v
z (r, t)

=
µ0z0

2π R2

(
1 −

z2

R2
2

)
∂t iR

(
t −

R2

c0

)
−

µ0z0

2π R1

(
1 −

z2

R2
1

)
∂t iR

(
t −

ℓ

c0
−

R1

c0

)
+

ζ0z0

2π R2
2

(
1 − 3

z2

R2
2

)
iR

(
t −

R2

c0

)

Fig. 5. Excitation electric-current pulse shape.

−
ζ0z0

2π R2
1

(
1 − 3

z2

R2
1

)
iR

(
t −

ℓ

c0
−

R1

c0

)
+

z0

2πϵ0 R3
2

(
1 − 3

z2

R2
2

)
∂−1

t iR
(

t −
R2

c0

)
−

z0

2πϵ0 R3
1

(
1 − 3

z2

R2
1

)
∂−1

t iR
(

t −
ℓ

c0
−

R1

c0

)
. (34)

Finally, the sum of (31) and (33) can be used to calculate the
VED-excited TD far-end voltage response V G

2 .

V. NUMERICAL EXAMPLES

In this section, the closed-form expressions presented in
Section IV will be evaluated and validated with the aid of
the exact TD solution based on the CdH technique [13] (see
Appendix B). To that end, we consider a TL that is located
along L = {x1 = −3ℓ/4 ≤ x ≤ x2 = ℓ/4, y = y0 =

−ℓ/10, z = z0 = ℓ/50}, where we take ℓ = 0.10 m. The
TL is excited by a VED source of length ℓR

= ℓ/100 that is
located above the origin at r S = zS i z with zS = ℓ/8, without
loss of generality due to the (space-time) shift-invariance of
the configuration. The dipole is activated at t = 0 by an
electric-current pulse that has the shape of a bipolar triangle

iR(t)

= (2im/tw)
[
t H(t) − 2

(
t − tw/2

)
H

(
t − tw/2

)
+ 2

(
t − 3tw/2

)
× H

(
t − 3tw/2

)
− (t − 2tw) H(t − 2tw)

]
(35)

where we take the unit amplitude, im = 1.0 A and its time
width is defined by c0tw = ℓ (see Fig. 5). The time window
of observation is chosen to be {0 ≤ c0t ≤ 10 ℓ}.

Fig. 6 shows the resulting TD Thévenin voltages
as computed using the expressions from Section IV
(= Reciprocity model) and using the CdH referential solution
(see Appendix B). Overall, the results correlate very well.
Minor discrepancies at the peaks of the voltage response [see
Fig. 6(b)] can be attributed to the approximation involved in
the expression for the potential function (23). In the CdH-
based solution (= CdH reference), this integration is carried
out analytically.

VI. EXTENSIONS OF THE COUPLING MODEL

The pulsed EM source interaction with a TL has been
described under simplifying assumptions. In this section,
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Fig. 6. Thévenin’s voltage transient responses. At (a) near-end x = x1 and
(b) far-end x = x2.

we shall describe how the TD model can be applied to more
general problem configurations.

1) First, the TD closed-form expressions presented in
(see Section IV) apply to a VED source. However, the
reciprocity model accounts for the arbitrary space-time
distribution of external EM sources. For a horizontal
electric dipole source, for instance, one can use
[see (24)]

ĴR(r, s) = îR(s)ℓRδ(r − r S)ir (36)

where ir = i x cos(φ) + i y sin(φ) is a unit vector
in the radial direction and φ denotes the azimuthal
angle of the polar coordinate system. Consequently,
the voltage responses are evaluated according to (5)
and (8) via the radial components of the impulse-excited
transmitted fields. This can be done again using the
expressions presented in Section III-B and the transform
methodology described in Appendix A. Furthermore, the
results of Section V are limited to the bipolar triangle
pulse shape of a VED, but any other causal EM pulse can
be readily incorporated. Indeed, the power-exponential
pulse [30], for example, can serve the purpose [see (35)]

iR(t) = im(t/tr)n exp[−n(t/tr − 1)]H(t) (37)

where im denotes the amplitude, n denotes the rising
power, and the pulse time width, tw, follows from the
pulse rise time, tr, via tw = tr n−n−10(n + 1) exp(n).

2) The presented TD closed-form expressions are
limited to a PEC ground plane. An efficient way to

Fig. 7. Thévenin’s voltage transient responses at the far-end x = x2 above
PEC ground and lossy half-space with σ = 4.0 S/m and ϵr = 81.

incorporate the effect of finite ground conductivity and
permittivity is based on the so-called Cooray–Rubinstein
approximation [31], [32]. This strategy has been pursued
in [12], where the corresponding voltage corrections
(with respect to the ideal PEC case) have been derived
analytically using the CdH technique (see [12, Eqs.
(29) and (30)]).

The TD voltage responses of the TL have been calculated
for the power-exponential pulse (37) with im = 1.0 A,
n = 2 and c0tw = 2ℓ above both ideal PEC ground and a lossy
half-space. Fig. 7 shows the far-end voltage responses above
the PEC ground and lossy half-space with electric conductivity
σ = 4.0 S/m and relative permittivity ϵr = 81 (= sea
water). For further validation, the TD response above the PEC
ground has also been computed using the finite-integration
technique (FIT) as implemented in CST Studio Suite. Despite
fundamental differences in the models, the results, practically,
coincide. It has also been verified that the voltage corrections
for good conductors (e.g., copper, aluminum, and steel) can
be for the present configuration virtually neglected.

1) The presented TD model can be extended to multicon-
ductor TLs. A rigorous methodology to incorporate the
mutual EM coupling between conductors is presented
in [33] and [34, Sec. 15.4].

2) Finally, in this article, we have evaluated the open-circuit
voltage as observed at one TL terminal, while the
second one is loaded by the characteristic impedance.
A straightforward approach to incorporate arbitrary
loads is described in [35].

VII. CONCLUSION

The interaction of pulsed nonuniform EM fields with a
uniform TL has been studied analytically with the aid of the
TD Lorentz reciprocity theorem. It has been shown that a
dedicated CdH-like inversion technique provides straightfor-
ward closed-form expressions for the pulsed EM fields radiated
from the horizontal conductor of a TL, thus enabling the
efficient evaluation of the EM coupling directly in TD. The
proposed solution methodology is illustrated on the calculation
of transient voltages induced by an impulsive VED source,
for which a closed-form analytical solution is available. The
use of such a referential solution has decisively confirmed the
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validity of the new reciprocity-based coupling model. Finally,
extensions of the TD model have been discussed.

APPENDIX A
INVERSE TRANSFORM OF GENERIC CONSTITUENTS

Following the methodology presented in [23], we shall
carry out the inverse transform of generic integral expressions
pertaining to the EM radiation by right- and left-going current
pulses on the TL.

A. Right-Going Traveling-Wave Constituent

Upon substituting the s-domain counterpart of (7) in (17),
it is found that a generic radiated EM-wavefield constituent
can be expressed in the following way

0̂+(r, s) =

∫ x2

x+=x1

exp{−s[R+ + (x+ − x1)]/c0}

4π R+

dx+ (38)

where we used R+ = [(x − x+)2
+ d2

]
1/2 with d2

= (y −

y0)
2
+ (z − z0)

2. To cast (38) into the form that resembles the
Laplace-transform integral [see (1)], we use

x+ − x1

c0
+

R+

c0
= τ, for {τ ∈ R; τ > 0}. (39)

Solving (39) for x+, it is found that

x+(τ ) =
c0τ + x − x1

2
−

1
2

d2

c0τ − (x − x1)
+ x1

for
{
T +

1 ≤ τ ≤ T +

2

}
(40)

where

T +

1 =
[
(x − x1)

2
+ d2]1/2

/c0, (41)

T +

2 = ℓ/c0 +
[
(x − x2)

2
+ d2]1/2

/c0. (42)

Consequently, using (39) and (40) we get

R+(τ ) =
1
2

[c0τ − (x − x1)]2
+ d2

c0τ − (x − x1)
. (43)

The Jacobian of the mapping can be then expressed in the
following way

∂τ x+ = R+(τ )/1+(τ ), for
{
T +

1 ≤ τ ≤ T +

2

}
(44)

where

1+(τ ) = τ − (x − x1)/c0. (45)

Hence, using (39) with (41)–(45), we end up with

0̂+(r, s) =

∫ T +

2

τ=T +

1

exp(−sτ)
dτ

4π1+(τ )
. (46)

Finally, relying on Lerch’s uniqueness theorem [29,
Appendix], it can be concluded upon inspection that
the desired TD original follows as described

0+(r, t) =
H(t − T +

1 ) − H(t − T +

2 )

4π1+(t)
. (47)

The corresponding image-source wave constituent, say
0∗

+
(r, t), is easily obtained from (47) by replacing d2

=

(y−y0)
2
+(z−z0)

2 with d∗2
= (y−y0)

2
+(z+z0)

2. In the same
manner, we may find x∗

+
(τ ) and R∗

+
(τ ) from (40) and (43),

respectively.

B. Left-Going Traveling-Wave Constituent

Upon substituting the s-domain counterpart of (10) in (17),
it is found that a generic radiated EM-wavefield constituent
can be expressed as below

0̂−(r, s) =

∫ x2

x−=x1

exp{−s[R− + (x2 − x−)]/c0}

4π R−

dx− (48)

where we used R− = [(x −x−)2
+d2

]
1/2 with d2

= (y−y0)
2
+

(z − z0)
2. To cast (48) into the Laplace-transform integral we

may use the following mapping [see (39)]:

x2 − x−

c0
+

R−

c0
= τ, for {τ ∈ R; τ > 0}. (49)

Solving (49) for x− we find that [see (40)]

x−(τ ) = −
c0τ + x2 − x

2
+

1
2

d2

c0τ − (x2 − x)
+ x2

for
{
T −

1 ≤ τ ≤ T −

2

}
(50)

where

T −

1 =
[
(x − x2)

2
+ d2]1/2

/c0, (51)

T −

2 = ℓ/c0 +
[
(x − x1)

2
+ d2]1/2

/c0. (52)

Consequently, via (49) and (50) we get

R−(τ ) =
1
2

[c0τ − (x2 − x)]2
+ d2

c0τ − (x2 − x)
. (53)

The Jacobian of the mapping can be then expressed in the
following way.

∂τ x− = −R−(τ )/1−(τ ), for
{
T −

1 ≤ τ ≤ T −

2

}
(54)

where

1−(τ ) = τ − (x2 − x)/c0. (55)

Finally, using (49) with (51)–(55), we arrive at

0̂−(r, s) =

∫ T −

2

τ=T −

1

exp(−sτ)
dτ

4π1−(τ )
(56)

which yields, by virtue of Lerch’s uniqueness theorem [29,
Appendix], the TD counterpart of (48), i.e.,

0−(r, t) =
H(t − T −

1 ) − H(t − T −

2 )

4π1−(t)
. (57)

The corresponding image-source wave constituent, say
0∗

−
(r, t), is easily obtained from (57) by replacing d2

=

(y−y0)
2
+(z−z0)

2 with d∗2
= (y−y0)

2
+(z+z0)

2. In the same
manner, we may find x∗

−
(τ ) and R∗

−
(τ ) from (50) and (53),

respectively.

APPENDIX B
REFERENCE TD SOLUTION

The VED-induced voltages on a TL have been expressed
analytically in closed form in [13] (see also [15, Ch. 13]) using
the CdH technique [21]. For the convenience of the reader,
these referential results are next briefly summarized.
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To begin with, the open-circuit Thévenin voltage, as induced
at x = x1, can be expressed in the following way

V G
1 (t) = −Q(x1|x2, y0, zS − z0, t) +Q(x1|x2, y0, z0 + zS, t)

+ V(x1, y0, t) − V(x2, y0, t − ℓ/c0)

for {0 < z0 < zS} (58)

and

V G
1 (t) = Q(x1|x2, y0, z0 − zS, t) +Q(x1|x2, y0, z0 + zS, t)

+ V(x1, y0, t) − V(x2, y0, t − ℓ/c0)

for z0 > zS (59)

where

Q(x1|x2, y, z, t)

= ζ0ℓ
R ∂t iR(t)∗t

[
I(x2, y, z, t − ℓ/c0) − I(x1, y, z, t)

]
. (60)

In (60) we have used

I(x, y, z, t) =
z

4π(y2 + z2)
P(x, y, z, t)H(t − R/c0) (61)

with

P(x, y, z, t) =
1

Rc0t

[
xc0t−x2

−
R
(
c2

0t2
− x2

)
+c0t

(
y2

+ z2
)

R + c0t

+
c2

0t2
(
y2

+ z2
)

R2

]
. (62)

In (58) and (59), we have further used

V(x, y, t) = U(x, y, zS − z0, t) − U(x, y, z0 + zS, t)

for {0 < z0 < zS} (63)

and

V(x, y, t) = 2U(x, y, 0, t) − U(x, y, z0 − zS, t)

− U(x, y, z0 + zS, t), for z0 > zS (64)

with

U(x, y, z, t) = ζ0ℓ
R ∂t iR(t)∗tJ (x, y, z, t) (65)

where

J (x, y, z, t) =

[
1(

c2
0t2 − x2 − y2

)1/2 −
zc0t
R3

]
H(t − R/c0)

4π
.

(66)

The TD voltage response at x = x2 can be expressed in a
similar fashion.

V G
2 (t) = −Q(−x2| − x1, y0, zS − z0, t)

+Q(−x2| − x1, y0, z0 + zS, t)

+ V(x2, y0, t) − V(x1, y0, t − ℓ/c0)

for {0 < z0 < zS} (67)

and

V G
2 (t) = Q(−x2| − x1, y0, z0 − zS, t)

+Q(−x2| − x1, y0, z0 + zS, t)

+ V(x2, y0, t) − V(x1, y0, t − ℓ/c0)

for z0 > zS. (68)

These TD expressions have been implemented in MATLAB
and used in Section V to validate the reciprocity-based
coupling model.

REFERENCES

[1] G. Tzeremes, P. Kirawanich, C. Christodoulou, and N. Islam, “Trans-
mission lines as radiating antenna in sources aperture interactions in
electromagnetic topology simulations,” IEEE Antennas Wireless Propag.
Lett., vol. 3, pp. 283–286, 2004.

[2] J. Guo, Y.-Z. Xie, F. Rachidi, K.-J. Li, and S.-F. Wang, “On nonuniform
transient electromagnetic field coupling to overhead transmission lines,”
IEEE Trans. Antennas Propag., vol. 66, no. 6, pp. 3087–3096, Jun. 2018.

[3] K.-J. Li, Y.-Z. Xie, F. Zhang, and Y.-H. Chen, “Statistical inference
of serial communication errors caused by repetitive electromagnetic
disturbances,” IEEE Trans. Electromagn. Compat., vol. 62, no. 4,
pp. 1160–1168, Aug. 2020.

[4] H. Tirmizi, D. Vanoost, J. Lannoo, G. A. E. Vandenbosch, and
D. Pissoort, “Symbol diversity as a means to make PAM-4 modulation
more resilient in harsh electromagnetic environments,” IEEE Trans.
Electromagn. Compat., vol. 64, no. 6, pp. 1949–1957, Dec. 2022.

[5] C. Taylor, R. Satterwhite, and C. Harrison, “The response of a terminated
two-wire transmission line excited by a nonuniform electromagnetic
field,” IEEE Trans. Antennas Propag., vol. AP-13, no. 6, pp. 987–989,
Nov. 1965.

[6] A. Agrawal, H. Price, and S. Gurbaxani, “Transient response of
multiconductor transmission lines excited by a nonuniform electromag-
netic field,” IEEE Trans. Electromagn. Compat., vol. EMC-22, no. 2,
pp. 119–129, May 1980.

[7] V. Cooray and N. Theethayi, “Pulse propagation along transmission
lines in the presence of corona and their implication to lightning return
strokes,” IEEE Trans. Antennas Propag., vol. 56, no. 7, pp. 1948–1959,
Jul. 2008.

[8] F. Rachidi, “A review of field-to-transmission line coupling models with
special emphasis to lightning-induced voltages on overhead lines,” IEEE
Trans. Electromagn. Compat., vol. 54, no. 4, pp. 898–911, Aug. 2012.

[9] P. Xiao et al., “Eigenmode-BLT-based method for calculating the cou-
pling to microstrip antenna inside a cavity,” IEEE Trans. Antennas
Propag., vol. 70, no. 5, pp. 3515–3522, May 2022.

[10] M. Štumpf and G. Antonini, “Electromagnetic field coupling to a trans-
mission line—A reciprocity-based approach,” IEEE Trans. Electromagn.
Compat., vol. 62, no. 2, pp. 461–469, Apr. 2020.

[11] A. T. de Hoop, Handbook of Radiation and Scattering of Waves. London,
U.K.: Academic, 1995.

[12] M. Štumpf and G. Antonini, “Lightning-induced voltages on transmis-
sion lines over a lossy ground—An analytical coupling model based on
the Cooray–Rubinstein formula,” IEEE Trans. Electromagn. Compat.,
vol. 62, no. 1, pp. 155–162, Feb. 2020.

[13] M. Štumpf, “Pulsed vertical-electric-dipole excited voltages on transmis-
sion lines over a perfect ground—A closed-form analytical description,”
IEEE Antennas Wireless Propag. Lett., vol. 17, pp. 1656–1658,
2018.

[14] M. Štumpf, G. Antonini, and I. E. Lager, “Pulsed EM field
transfer between a horizontal electric dipole and a transmission
line—A closed-form model based on the Cagniard–de hoop tech-
nique,” IEEE Trans. Antennas Propag., vol. 68, no. 4, pp. 2911–2918,
Apr. 2020.

[15] M. Štumpf, Time-Domain Electromagnetic Reciprocity in Antenna Mod-
eling. Hoboken, NJ, USA: IEEE Press, 2019.

[16] J. L. Lagos and F. Fiori, “Worst-case induced disturbances in digital
and analog interchip interconnects by an external electromagnetic plane
wave—Part I: Modeling and algorithm,” IEEE Trans. Electromagn.
Compat., vol. 53, no. 1, pp. 178–184, Feb. 2011.

[17] F. Vanhee, D. Pissoort, J. Catrysse, G. A. E. Vandenbosch, and
G. G. E. Gielen, “Efficient reciprocity-based algorithm to predict worst
case induced disturbances on multiconductor transmission lines due to
incoming plane waves,” IEEE Trans. Electromagn. Compat., vol. 55,
no. 1, pp. 208–216, Feb. 2013.

[18] T. Liang and Y.-Z. Xie, “Determining incidence and polarization of
electromagnetic field for maximal/minimal coupling to transmission
line system,” IEEE Microw. Wireless Compon. Lett., vol. 30, no. 11,
pp. 1021–1024, Nov. 2020.

[19] M. Mehri and A. Amini, “Stochastic EMI noise model of PCB layout
for circuit-level analysis of system in IoT applications,” IEEE Trans.
Microw. Theory Techn., vol. 68, no. 12, pp. 5072–5081, Dec. 2020.

[20] A. T. de Hoop, I. E. Lager, and V. Tomassetti, “The pulsed-field
multiport antenna system reciprocity relation and its applications—A
time-domain approach,” IEEE Trans. Antennas Propag., vol. 57, no. 3,
pp. 594–605, Mar. 2009.

Authorized licensed use limited to: TU Delft Library. Downloaded on June 16,2025 at 12:27:14 UTC from IEEE Xplore.  Restrictions apply. 



ŠTUMPF et al.: PULSED EM FIELD INTERACTION WITH A TL: AN ANALYTICAL TRAVELING-WAVE APPROACH 3791

[21] A. T. de Hoop, “A modification of Cagniard’s method for solving
seismic pulse problems,” Appl. Sci. Res., vol. 8, no. 1, pp. 349–356,
1960.

[22] L. B. Felsen and F. Capolino, “Time-domain Green’s function
for an infinite sequentially excited periodic line array of dipoles,”
IEEE Trans. Antennas Propag., vol. 48, no. 6, pp. 921–931,
Jun. 2000.

[23] D. Quak, “Analysis of transient radiation of a (traveling) current pulse on
a straight wire segment,” in Proc. IEEE EMC Int. Symp. Symp. Record.
Int. Symp. Electromagn. Compat., vol. 2, Montreal, QC, Canada,
Jul. 2001, pp. 849–854.

[24] E. J. Rothwell, M. J. Cloud, and P. Ilavarasan, “Transient field produced
by a traveling-wave wire antenna,” IEEE Trans. Electromagn. Compat.,
vol. 33, no. 3, pp. 172–178, Aug. 1991.

[25] G. S. Smith, “Teaching antenna radiation from a time-domain perspec-
tive,” Amer. J. Phys., vol. 69, no. 3, pp. 288–300, Mar. 2001.

[26] A. Sutinjo, M. Okoniewski, and R. Johnston, “Radiation from fast and
slow traveling waves,” IEEE Antennas Propag. Mag., vol. 50, no. 4,
pp. 175–181, Aug. 2008.

[27] M. Štumpf, J. Gu, and I. E. Lager, “Time-domain electromagnetic leaky
waves,” IEEE Trans. Antennas Propag., vol. 71, no. 4, pp. 3382–3392,
Apr. 2023.

[28] J. Gu, M. Štumpf, A. Neto, and I. E. Lager, “Pulsed operation of a
weakly-dispersive, leaky-wave antenna: A causal numerical study,” IEEE
Trans. Antennas Propag., vol. 72, no. 1, pp. 720–732, Dec. 2024.

[29] M. Štumpf, Electromagnetic Reciprocity in Antenna Theory. Hoboken,
NJ, USA: IEEE Press, 2018.

[30] A. T. De Hoop, M. Stumpf, and I. E. Lager, “Pulsed electromagnetic
field radiation from a wide slot antenna with a dielectric layer,” IEEE
Trans. Antennas Propag., vol. 59, no. 8, pp. 2789–2798, Aug. 2011.

[31] V. Cooray, “Horizontal fields generated by return strokes,” Radio Sci.,
vol. 27, no. 4, pp. 529–537, Jul. 1992.

[32] M. Rubinstein, “An approximate formula for the calculation of the
horizontal electric field from lightning at close, intermediate, and long
range,” IEEE Trans. Electromagn. Compat., vol. 38, no. 3, pp. 531–535,
Aug. 1996.

[33] M. Štumpf, I. E. Lager, and G. Antonini, “Time-domain analysis of
thin-wire structures based on the cagniard-DeHoop method of moments,”
IEEE Trans. Antennas Propag., vol. 70, no. 6, pp. 4655–4662, Jun. 2022.

[34] M. Štumpf, Metasurface Electromagnetics: The Cagniard-DeHoop
Time-Domain Approach. London, U.K.: IET, 2022.

[35] M. Štumpf, G. Antonini, and J. Ekman, “Pulsed electromagnetic field
coupling to a transmission line with arbitrary loads—A unified method-
ology based on reciprocity,” Electr. Power Syst. Res., vol. 227, Feb. 2024,
Art. no. 109980.

Martin Štumpf (Senior Member, IEEE) received
the Ph.D. degree in electrical engineering from
Brno University of Technology (BUT), Brno, Czech
Republic, in 2011.

After his Ph.D. research, he spent a year and a half
as a Post-Doctoral Fellow with KU Leuven, Leuven,
Belgium. In 2018, he was a Visiting Professor at
the UAq EMC Laboratory, University of L’Aquila,
L’Aquila, Italy. He is currently an Associate Pro-
fessor of theoretical electrical engineering with
the Lerch Laboratory of EM Research, BUT, and

a Visiting Researcher with the EISLAB, Luleå University of Technology,

Luleå, Sweden. He has authored the books Electromagnetic Reciprocity in
Antenna Theory (Wiley–IEEE Press, 2017), Pulsed EM Field Computation
in Planar Circuits: The Contour Integral Method (CRC Press, 2018), Time-
Domain Electromagnetic Reciprocity in Antenna Modeling (Wiley–IEEE
Press, 2019), and Metasurface Electromagnetics: The Cagniard-DeHoop
Time-Domain Approach (IET, 2022). His main research interests include
modeling electromagnetic wave phenomena with an emphasis on antenna
theory and EMC. Recently, he has been exploring analytical and numerical
methods for computing the electromagnetic response of time-varying systems
and devices.

Giulio Antonini (Fellow, IEEE) received the Laurea
degree (cum laude) in electrical engineering from
the University of L’Aquila, L’Aquila, Italy, in 1994,
and the Ph.D. degree in electrical engineering from
the University of Rome “La Sapienza,” Rome, Italy,
in 1998.

Since 1998, he has been with the UAq EMC
Laboratory, University of L’Aquila, where he is
currently a Professor. He has co-authored the book
Circuit Oriented Electromagnetic Modeling Using
the PEEC Techniques (Wiley–IEEE Press, 2017).

His scientific research interests include computational electromagnetics.

Ioan E. Lager (Senior Member, IEEE) received
the M.Sc. degree in electrical engineering from
the “Transilvania” University of Braşov, Braşov,
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