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Prediction of Response to Immune Checkpoint
Inhibitors in Solid Tumours using CT-based
Biomarkers
Bente Gielen1,2

Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment by harnessing the immune system’s
ability to target cancer cells. However, only a subset of patients clinically benefit from ICIs, highlighting the
need for predictive biomarkers. Currently, FDA-approved biomarkers such as PD-L1 expression and mismatch
repair deficiency have limited efficacy and require invasive tumour biopsies. An alternative approach involves the
use of radiomics, which leverages quantitative analysis of medical images to extract a large number of imaging
features. Unlike biopsies, radiomics analysis is non-invasive and provides insights into tumour heterogeneity at a
whole-tumour level. In this study, we aimed to predict clinical benefit in patients treated with ICI therapy using
radiomic features extracted from baseline Computed Tomography (CT) images. We analysed a data set of 447
patients with 13 different primary tumour types. Five aggregation methods were employed to combine features
from lesion level to patient level. The so-called radiomics standard pipeline, LASSO and logistic regression was
used for feature selection and classification. Additionally, we explored the impact of primary tumour location and
developed tumour-specific models. The best performance was achieved in the case of bladder cancer (n = 53,
AUC: 0.717) when using the all lesions per patient for feature aggregation, using the largest lesion as feature
aggregation yielded better results for the rest of the analysed cohorts: the whole cohort (n = 447, AUC: 0.634),
thoracic cancer (n = 108, AUC: 0.741), skin cancer (n = 79, AUC: 0.766), and lower gastrointestinal cancer (n = 64,
AUC: 0.794). Interestingly, better results were obtained when using tumour-specific models. These results may
indicate the importance of distinguishing between different tumour types when predicting response to ICIs. In
order to enhance the accuracy of predicting responses to ICIs, future research should focus on investigating
tumour-specific strategies, examining the potential benefits of incorporating additional clinical, genomics, and
immunohistochemistry data and the use of deep learning techniques in larger, more representative cohorts.
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1. Introduction
Immune checkpoint inhibitors (ICIs) exploit the natural ability
of the immune system to eliminate cancer cells [1]. During
tumourigenesis, the immune system detects and eliminates
malignant cells with T-lymphocytes (T-cells) and natural-killer
(NK) cells. Tumour cells express neoantigens that are recog-
nised by the immune system and presented to T-cells, which
then eliminate malignant cells. This system is visualized in
Fig. 1a). However, the immune system has an extra con-
trol mechanism to prevent autoimmune responses: immune
checkpoints [2, 3]. Immune checkpoints are naturally present
brakes that inhibit T-cell activity. This is crucial under physi-
ologically normal conditions. PD-1 checkpoints and PD-L1
ligands block the T-cells so that they cannot induce cell apop-
tosis, see Fig. 1b). The expression of immune checkpoint
ligand on the tumour membrane, such as PD-L1, is key for

immune resistance and tumour progression. The blockade of
immune checkpoints on the tumours cells using ICIs attempts
to prevent immune resistance (Fig. 1c).

Six ICIs have been approved by the FDA and became
standard of care in clinical practice for some tumour types
such as melanoma and lung cancer [4, 5, 6]. However, only a
low percentage, between 15 % and 25 %, of patients respond
adequately to treatment [7, 8]. Therefore, there is a need for
biomarkers that can stratify patients between responders and
non-responders. In various research fields, biomarkers that
can accurately predict patients’ response to ICI treatment are
explored. These biomarkers include factors like tumour infil-
trating lymphocytes (TILs), microsatellite instability (MSI),
PD-L1 expression, as well as clinical variables such as lac-
tate dehydrogenase (LDH) and liver involvement [9, 10, 11].
However, there remains an important gap in effectively char-
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Figure 1. (a) When the T-cell receptor is able to bind to the antigen on the cancer cells, the T-cell will be activated and secretes
granzymes and perforines which induce cell death. (b) The T-cell can be inhibited when the PD-1 receptor binds to the PD-L1
receptor of the cancer cell. This way the T-cell will not be able to induce cell death. (c) Immune checkpoint inhibitors can
address this challenge by binding to PD-L1 or PD-1: in this case PD-L1. This leads to T-cell activation and subsequently, cell
death.

acterizing patients’ responsiveness at baseline.

Currently, the Food and Drug Administration (FDA) has
approved two biomarkers: PD-L1 expression and mismatch re-
pair deficiency. However, relying solely on these two biomark-
ers does not provide sufficient clinical predictive efficacy.
In addition, both biomarkers require a tumour sample ob-
tained through biopsy. Biopsies are invasive, not always eas-
ily obtainable, and do not represent the heterogeneity of the
whole disease [12]. Using Computed Tomography (CT) based
biomarkers has potential to overcome these limitations.

A promising approach for developing CT-based biomark-
ers is the application of radiomics. Radiomics is a quantitative
approach to image analysis. It relies on extraction of large
numbers of shape, edge, and texture features from medical
images. The underlying hypothesis of radiomics is that dis-
ease specific pixel patterns can be identified that may not
be detectable by an expert’s eye, as such we might extract
valuable information from medical images. The use of ra-
diomics could therefore contribute to developing personalised
therapy [13, 14, 15, 16]. Radiomics analysis uses already
collected imaging data from the everyday clinical practice
and, therefore it does not result in extra work load. Radiomics
analysis offers a non-invasive approach to understanding the
heterogeneity of a disease at both the whole-tumor and disease
burden level. However, it comes with the potential drawback
of having multiple sources of information from the same pa-
tient. Aggregating features from a lesion level to perform
predictions at a patient level is particularly challenging, and
no consensus method is defined [17].

In general, we can divide the radiomics workflow in four
different steps. These steps involve (i) image acquisition,

processing and segmentation, (ii) feature extraction, (iii) fea-
ture selection to identify the most predictive features, and (iv)
model building, often entailing a classification problem. In
my literature review that I previously performed, I observed
that a range of machine learning (ML) algorithms have been
employed for feature selection and classification tasks in the
context of ICI treatment.

The objective of this project was to predict response to
ICIs using CT scans. To achieve this, various aggregation
techniques were employed to aggregate the data obtained from
the lesion level to the patient level. Additionally, we tested
two workflows to find the most optimal feature selector and
classification model. One is the most used workflow found
in the literature, defined as the radiomics standard pipeline.
The other is the the recently published Workflow for Optimal
Radiomics Classification (WORC). WORC provides cutting-
edge pipelines for automatic optimisation of the radiomics
workflow, testing several feature selectors and classifiers [18].

2. Methods
2.1 End-point
The target end-point in this study is clinical benefit. Clinical
benefit is either defined as complete response (CR), partial re-
sponse (PR) or stable disease (SD) after 5 months of treatment,
according to the RECIST 1.1 guidelines [19].

2.2 Data set
The data set includes 447 patients who received treatment
with ICIs. The patients were given either a single ICI therapy
or a combination of multiple ICIs. The patients analysed in
this study had advanced cancer including different primary
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tumour types. (e.g. thoracic, skin, lower gastrointestinal, and
bladder cancers).

2.3 Imaging preprocessing and feature extraction
Radiomic features were extracted from the baseline contrast-
enhanced CT images, which were acquired using scanners
from Siemens, Philips, or GE Healthcare. All images had
slice thickness ≤ 5 mm and were reconstructed using soft
or standard convolution kernels. An experienced radiologist
delineated lesions on baseline scans using 3D Slicer (version
4.11.20210226.). From the segmentations, 107 features were
extracted per lesion using PyRadiomics software (version
3.0.1) for Python (version 3.7.16), compliant with the Image
Biomarker Standardization Initiative guidelines [20, 21]. The
features included, 18 first order (FO) statistics, 14 shape-based
(SB) features, 24 Gray level co-occurrence matrix (GLCM)
features, 16 Gray level run length matrix (GLRLM) features,
16 Gray level size zone matrix (GLSZM) features, five neigh-
bouring grey tone difference matrix (NGTDM) features, and
14 Gray level dependence matrix (GLDM) features. Features
were extracted using the default setting of PyRadiomics, that
is, a kernel size of 3 mm (radius 1 mm) and fixed bin width
of 25HU. Images were resampled to 1x1x1mm3 voxel size
using B-spline interpolation, which has been demonstrated to
be robust and the standard for PyRadiomics analysis [22].

2.4 Feature aggregation
In many cases, patients have multiple lesions. Therefore
various methods were explored to identify the most effective
approach for aggregating data from lesion level to patient
level. As illustrated in Fig. 2, five aggregation methods were
employed, including all lesions, by lesion type, largest lesion,
mean, and weighted average.

We consider f⃗ as the vector containing radiomic features
( fi) extracted from each lesion. Let N be the total number
of baseline lesions segmented for every patient and Vi the
volume of one lesion. The following aggregation methods
were compared to build the predictive model.
(1) All lesions: each feature vector coming from one lesion
( f⃗ ) was considered as an individual input.

f⃗ = f⃗lesion ; lesion = 1, ..,N (1)

(2) By lesion type: in this aggregation method, we consider
four different types of lesions: lung, liver, node, and other.
We calculate the average feature for each lesion type. As such,
every patient can have a maximum of four f⃗ for each lesion,
flung, fliver, fnode, and fother. Each of them represented as
fx. Each fx represents the average of the features from the
corresponding lesion type. In Eq. 2, x stands for lung, liver,
node or other.

f⃗ = fx ; fx =
∑

N
i f (i)x

Nx
(2)

(3) Largest lesion: only the largest lesion was considered for
each patient. Thus, every patient’s feature vector, f⃗ , consisted

of the 107 feature values extracted from the largest lesion at
baseline.

f⃗ = f⃗Vmax , Vmax = max(Vi) ; i = 1, ...,N (3)

(4) Mean of all lesions: all lesions were considered for every
patient. Thus, every patient’s feature vector consisted of 107
feature values extracted from all lesions: the values of the
features were averaged.

f⃗ =
∑

N
i fi

N
(4)

(5) Weighted average of all lesions: all lesions were consid-
ered for each patient. Therefore, the feature vector for every
patient, f⃗ , consisted of 107 feature values extracted from all
lesions: the values of the features were averaged based on a
weighted proportion of total volume at baseline. Therefore,
feature values coming from larger metastases had more weight
(ω) in the model.

f⃗ =
N

∑
i

ωi fi ; ωi =
Vi

∑
N
i Vi

(5)

2.5 Radiomics standard pipeline
The radiomics standard pipeline was based on the workflow
that is most frequently found in the literature for predicting re-
sponse to ICIs. The standard pipeline included PyRadiomics,
least absolute shrinkage and selection operator (LASSO) and
logistic regression, as a feature extractor, feature selector, and
classifier, respectively.

LASSO is a valuable technique for analysing high dimen-
sional data sets. Its main purpose is to identify the most
important features for predicting a target variable while elimi-
nating less significant ones. This is achieved by incorporating
a penalty term into the regression equation, which encourages
the coefficients of less important features to be set to zero, ef-
fectively removing them from the model. Several studies have
highlighted the benefits of using LASSO to predict response,
particularly in high-dimensional data regression. LASSO’s
efficacy in handling high-dimensional data helps mitigate the
risk of overfitting, making it a valuable tool in data analysis
and modelling [23, 24].

2.5.1 Tumour specific analysis
The total studied cohort contains 13 different primary tumour
types. The relation between primary tumour and the pheno-
type by means of radiomics features and on patient response
pattern was evaluated. We explored adding the primary tu-
mour location into the feature set as an encoded label. In
this way we tried to compensate for changes in phenotype
among the different tumour types.Therefore, we developed
two different models for every aggregation method, one using
radiomics features (RF) alone and the other one using RF
combined with primary tumour (PT) location.
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Figure 2. Various methods for feature aggregation from lesion level to patient level. The use of all lesions, aggregation per
lesion type, largest lesion, mean of all lesions and the weighted average across all lesions has been evaluated.

Furthermore, we investigated the potential usefulness of
developing tumour-specific models in contrast to pancancer
approaches. Specifically, we developed five models: a compre-
hensive model that used the entire cohort and four specialised
models for thoracic (n = 108), skin (n = 79), lower gastroin-
testinal (n = 64), and bladder tumours (n = 53).

2.5.2 Experimental approach
The experimental set-up is illustrated in Fig. 3. The entire
data set is initially split into a training set that comprises 75%
of the data and a test set that comprises the remaining 25%.
The split is stratified based on the clinical benefit, ensuring
balanced data. For integrity of the experimental results, when
the aggregation methods all lesions and by lesion type are
used, it was ensured that features of lesions from the same
patient are exclusively present in either the training or test set.
Experiment 1 Experiment 1 is visualised in purple in Fig.
3. The training set is used to train a model using a five-
fold cross-validation approach. In each fold, the optimal
regularisation penalty term, λ , is determined through a grid
search, resulting in five different models. For robustness of the
models, the train-test split is repeated 100 times using different
data distributions, ensuring that one split does not become
biased towards a specific distribution of the data. This nested
cross-validation procedure leads to a total of 500 different
models generated. Experiment 1 will be executed for all
aggregation methods to find the optimal aggregation method
using the whole cohort. The best-performing aggregation
methods will then be used to make tumour-specific models.
Experiment 2 The second experiment, illustrated in green
(Fig. 3) is applied to the best performing models in terms of
feature aggregation methods for the whole cohort and the four
tumour specific models. The most selected features across

all folds are counted for these models during Experiment 1,
resulting in a top 10 list of the most selected features. Sub-
sequently, the model is retrained another 100 times on the
train set using only these top 10 features and evaluated on
the test set, for different train-test splits. Since we generated
500 different models in Experiment 1, each feature had the
potential to be selected up to 500 times. This was done to
determine the improvement achieved by utilising only top 10
features. Initially, top 10 features were extracted from the best
performing models. To investigate the impact of the number
of features in the model, we evaluated the performance using
the top 5 and 15 features as well by repeating Experiment 2.

The area under the curve (AUC) and 95% CI were de-
termined from the receiver operating characteristic curve for
both Experiment 1 and 2.

2.6 WORC
To assess the potential improvement of the radiomics standard
pipeline, we employed WORC (version 3.6.2), an open-source
toolbox designed to optimise radiomic workflows automati-
cally using automated ML through random search and ensem-
bling [18]. Within WORC, a total of 564 quantitative features
were extracted from segmented lesions. The optimisation
process involved the testing of different feature selection and
classification algorithms.

The workflows were constructed by randomly sampling
algorithms, denoted as A∗, along with their associated hy-
perparameter sets, denoted as λ ∗. The sampling process is
repeated 1000 times, resulting in the generation of multiple
workflows. To rank these workflows, the performance is based
on the F1 score of the validation data set. The final ensemble
consisted of the top 100 workflows, which is then validated in
the test set.
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Figure 3. The figure illustrates the experimental setup used to evaluate feature aggregation methods and investigate the impact
of tumour-specific models. The data set is divided into training (75%) and test sets (25%) and the models are trained using
five-fold cross-validation, resulting in five models. The train-test split is repeated 100 times. For experiment 1 this results in a
total of 500 models due to the 5-fold cross validation. All generated models are consequently evaluated on the test set.
Experiment 2 examines the top 10 frequently selected features, retraining models, and evaluating their performance. AUC and
95% CI are calculated from the receiver operating characteristic curve for both experiments.

The data set was divided into an 80% training set and
a 20% testing set. Each workflow was optimised using the
training set within a 5-fold cross-validation framework. This
entire process was repeated 100 times.

2.6.1 Experimental approach
WORC is an enclosed package and therefore its complexity
limits the capacity of personalizing the data entry. It does
not allow to test feature aggregation methods, therefore, the
use of by lesion, mean of all lesions or weighted average
was excluded when using WORC. As the amount of data was
too large when using all lesions (n = 2197) from the entire
cohort, we only tested the largest lesion aggregation method
when using the whole cohort. When exploiting the tumour
specific models, we could test the all lesions and largest lesion
methods. The performance of WORC will be compared with
the performance obtained in Experiment 1 when using the
standard pipeline as this approach is most comparable.

2.7 Association with PFS
We are predicting a binary classification, specifically whether
patients experience clinical benefit or not. As a result, we
do not differentiate between patients who just experienced
clinical benefit (i.e. predicting progression-free survival (PFS)
of 5 months) compared to patients who had a very long PFS
(>> 5 months). PFS is the amount of time between the start

of the treatment to the first occurrence of disease progres-
sion or death. Therefore, to gain more insight into how well
our predictions divide the population in responders and non-
responders, we employ Kaplan-Meier analysis. We evaluated
the performance of the models in predicting PFS using both
the entire cohort and four specific tumour cohorts. The pre-
diction scores for the best performing models in terms of
aggregation method and amount of features (5, 10 or 15) were
obtained from the test sets of Experiment 2. The prediction
score (S) will be calculated by averaging all prediction scores
(si) obtained for every patient.

PFS analysis was performed using the Kaplan-Meier me-
thod after score dichotomization. Patients who did not reach
the end-point were censored to the last follow-up date. The
survival analysis and significance assessment were performed
using the R software (version 4.2.2) programming language.
The survival outcomes were compared between the groups
based on the predicted outcome. To assess the significance of
the observed differences, the log-rank test was employed.

3. Results
3.1 Data set
Table 1 provides an overview of the clinical characteristics.
The total cohort consists of 447 patients with a total of 2197
lesions. The median PFS is 3.5 months (95%CI: 2.8-4.1).
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Table 1. Cohort description
Whole cohort (n=447)

Primary tumour type
Thoracic 108
Skin 79
Lower gastrointestinal 64
Bladder 53
Breast 39
Head and neck 30
Female pelvis 20
Endocrine 17
Upper gastrointestinal 13
Renal 12
Hepatobilary 5
Bone 5
Penile 2
Clinical benefit
Yes 177
No 270
Progression free survival
Median [95%CI] 3.5 [2.8-4.1] months
Number of lesions
n 2197
Mean lesions per patient
Mean [range] 4.91 [1-37]

Among the patients, 177 experienced clinical benefit, while
270 did not.

3.2 Feature aggregation
The results in Fig. 4 illustrate the AUC values along with their
corresponding 95% CI for the various aggregation methods
used in this study. Two sets of input data were used: RF alone
and RF combined with the PT location. Incorporating the
PT location as an input led to an improvement in AUC for
all aggregation methods. Among the aggregation methods
tested, the most effective aggregation methods were all lesions
and largest lesion when using RF combined with PT. The all
lesions method yielded an AUC of 0.582 (95% CI: 0.575-
0.589) and largest lesion achieved an AUC of 0.612 (95% CI:
0.606-0.619).

3.3 Tumour specific models
The most effective aggregation methods, namely all lesions
and largest lesion, were employed to develop tumour-specific
models for thoracic cancers (n = 108), skin cancer (n = 79),
lower gastrointestinal cancer (n = 64), and bladder cancer
(n = 53). The obtained AUC values are shown in Fig. 5. Both
the results for Experiment 1 and Experiment 2 are shown.
In all cases, Experiment 2 demonstrated improved results
compared to Experiment 1.

For Experiment 2, the whole cohort (AUC: 0.634), tho-
racic cancer (AUC: 0.741), skin cancer (AUC: 0.766) and
lower gastrointestinal cancer (AUC: 0.794) obtained the best

Figure 4. AUC values with corresponding 95% CI for the
various aggregation methods using two sets of input data: RF
alone and RF combined with PT location. The most effective
aggregation methods were all lesions and largest lesion when
using RT combined with PT. The all lesions method yielded
an AUC of 0.582 (95% CI: 0.575-0.589) and largest lesion
achieved an AUC of 0.612 (95% CI: 0.606-0.619)

AUC when using largest lesion, only in the case of bladder
cancer (AUC: 0.717) using all lesions yielded better results.

3.4 Feature analysis
From Experiment 1, we extracted the top 10 features from the
best performing models illustrated in Figure 5. The amount of
features that were selected during every fold was 11.15 (SD:
2.039). In Fig. 6 we evaluated the effect of using 5, 10 and
15 features. For the whole cohort and bladder tumours, us-
ing 5 features was the most optimal (AUC: 0.653, and 0.760,
respectively). When using thoracic, skin and lower gastroin-
testinal tumours the prediction was most accurate using 10
features (AUC: 0.741, 0.766, and 0.794, respectively).

3.5 WORC
The AUC values obtained for the use of WORC are shown
in Fig. 7. The results of WORC are compared with the best
performing models of experiment 1 when using the whole
cohort and tumour-specific models. In all cases the standard
radiomics pipeline outperformed the performance of WORC.

3.6 Association with PFS
For the best performing models we obtained the prediction
scores which were used to stratify patients into responders
and non-responders. The best performing models were for
the whole cohort using largest lesion and 5 features, for the
thoracic tumour model using largest lesion and 10 features,
for the skin tumour model using largest lesion and 10 features,
for the lower gastrointestinal tumour model using largest le-
sion and 10 features, and for the bladder tumour model using
all lesions and 5 features. The survival outcomes were com-
pared between the two groups and the resulting Kaplan-Meier
curves are shown in Fig. 8. The whole cohort and thoracic
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Figure 5. AUC values with corresponding 95% CI for Experiment 1 and 2 using the whole cohort (n = 447) and for
tumour-specific models, thoracic cancers (n = 108), skin cancer (n = 79), lower gastrointestinal cancer (n = 64), and bladder
cancer (n = 53). When using the whole cohort radiomic features were combined with the primary tumour location.

Figure 6. AUC values with corresponding 95% CI from Experiment 2 using the top 5, 10 and 15 selected features in the model.
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Figure 7. AUC values with corresponding 95% CI for the
standard pipeline compared to WORC. For the whole cohort,
thoracic cancer, skin cancer and lower gastrointestinal cancer
largest lesion is used as aggregation method. For bladder
cancer all lesions is used. The standard workflow for the
whole cohort incorporated PT location.

tumour model showed significant differences in survival out-
comes between responders and non-responders, with p-values
of less than 0.01. The skin tumour model showed a statisti-
cally significant result, with a p-value of 0.0059. Similarly,
the lower gastrointestinal model demonstrated a significant
difference in survival outcomes, yielding a p-value of 0.01.
However, the bladder tumour model did not exhibit a signif-
icant distinction between the two groups, with a p-value of
0.27.

4. Discussion
Our main objective was to predict response to ICI therapy
using CT based biomarkers. To achieve this objective, three
subobjectives were identified. Firstly, we aimed to determine
the most effective approach for aggregating features from the
lesion level to the patient level. Secondly, we investigated the
impact of the primary tumour in our model. We added the
primary tumour location as an encoded label and developed
four tumour-specific models. Lastly, we sought to identify
the most optimal radiomic workflow for creating radiomic
signatures, a radiomics standard workflow and WORC.

Regarding feature aggregation, the signature achieved the
highest performance when using features from the largest
lesion only. This finding aligns with previous research con-
ducted by Montagnon et al. [25], as they found that using
largest lesion in combination with the amount of lesions pro-
vided the highest concordance index for prediction of disease-
free survival. Interestingly, the authors found that using mean
as aggregation method yielded the highest performance when
predicting recurrence. However, we found that using aggre-
gation methods in which we average over lesions (by lesion,
weighted averaged and mean) does not result in good perfor-

mances. We believe that averaging over features loses crucial
information that can be kept when not averaging beforehand.

Predicting response to any therapy is a highly complex
task, and unfortunately, we did not achieve satisfactory results
when utilising the pancancer approach. Despite the advantage
of having access to a larger volume of data, incorporating
more data did not yield improved prediction performance.
Potentially the heterogeneity in the data made it complex to
model. It might be that the response prediction for ICIs is in-
fluenced by the specific tumour type. This was also observed
when incorporating the PT location as an additional feature as
this also improved the predictive capacity. When we focused
on tumour-specific models, we observed more promising re-
sults. These results indicate the importance of distinguishing
between different tumour types when attempting to predict
response to ICIs. By tailoring our models to specific tumour
types, we were able to uncover more meaningful patterns that
contribute to response prediction. Future research should con-
tinue to explore tumour-specific approaches to improve the
precision of response prediction for ICIs.

Interestingly, despite the utilisation of tumour-specific
models that improved our results, we were unable to achieve
comparable outcomes to previously published papers that fol-
lowed similar approaches, as mentioned by [24, 26, 27, 28].
This finding suggests that the generalisability of using ra-
diomics for predicting response to ICI therapy is limited.
Consequently, future research should not only concentrate
on employing tumour-specific models but also focus on incor-
porating larger cohorts with multi-center data to obtain more
representative and reliable results.

Using WORC, which incorporates random searches for
selecting feature selectors and classifiers, did not surpass the
performance of the standard radiomics workflow. Based on
these findings, it is unlikely that employing alternative ML
approaches would significantly enhance the results. Neverthe-
less, there is still an opportunity to investigate the potential
of deep learning (DL) in predicting ICI response. In a recent
study conducted by Zhao et al. [29], they investigated the
application of a multilayer perceptron (MLP) to predict re-
sponse in patients with advanced breast cancer. Their findings
were highly promising, as the MLP demonstrated exceptional
performance in distinguishing between responders and non-
responders. These results show the potential value of utilising
a MLP in tumour-specific cohorts.

To gain more insight into how well our predictions di-
vided the population in responders and non-responders, we
employed Kaplan-Meier analysis. In four out of five models,
we observed a significant difference in PFS between the two
populations based on our predictions. However, the bladder
model did not show any significant differences. This sug-
gests that even if the predictive accuracy of individual models
might not be very high, they are still capable of capturing
meaningful patterns that can effectively divide the population
into responders and non-responders. To further enhance the
accuracy and effectiveness of predicting immunotherapy re-
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Figure 8. Kaplan-Meier PFS curve analysis. The analysis was done using the the whole cohort, and tumour-specific analysis
for thoracic, skin, lower gastrointestinal and bladder cancers.
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sponse, it might be beneficial to integrate various types of
data, such as radiomics, histopathologic, and genomic data.
Vanguri et al. [30] already conducted a study to determine the
value of using multimodal features to improve prediction of
immunotherapy response in patients with advanced non-small
cell lung cancer (NSCLC). They combined medical imaging,
histopathologic, and genomic features to create a predictive
model for immunotherapy response. The results showed that
the multimodal model outperformed the unimodal measures
reported in the study. Therefore, future research should pri-
oritize the integration of multimodal data to further improve
the accuracy and effectiveness of predicting immunotherapy
response.

Our study had several limitations. First, the use of tumour-
specific cohorts resulted in a decreased number of patients,
which may affect the generalisability of our findings. Sec-
ondly, it should be noted that the findings of Experiment 2
are influenced by bias due to the incorporation of features
derived from the outcomes of Experiment 1, where the entire
data set had already been observed. However, the classifi-
cation models developed in Experiment 2 were entirely new
and did not depend on Experiment 1. Ideally, it would have
been preferable to evaluate Experiment 2 on a completely
independent data set. Unfortunately, again due to the limited
data availability of tumour-specific cohorts, we were unable
to pursue this approach. Third, in Experiment 2, we examined
the effectiveness of the top 10 features that were selected the
most frequently. A similar approach was done by Shahzadi et
al. [31] in which they selected the top 5 features. Radiomic
features are known to be highly correlated, which means that
certain features can be used interchangeably without affect-
ing predictive performance and therefore different features
can be randomly selected in different splits [32]. Due to this,
the final features incorporated in the models when using the
most selected features might be highly correlated. Shahzadi
et al. added an additional feature selection method namely, if
features showed a Spearman correlation > 0.5, only the fea-
ture with the highest cumulative occurrence was considered.
This would be a good addition in the final feature selection
of our approach to avoid the problem of incorporating highly
correlated features in the model. Lastly, when using feature
aggregation method all lesions, it was assumed that all lesions
within a given patient would exhibit a uniform response. This
assumption implied that applying the same treatment would
yield identical effects on all lesions of the patient. Nonethe-
less, clinical studies have revealed that in 8% to 14% of cases
exhibit a mixed response [33, 34]. This indicates that certain
lesions may respond favourably to a specific treatment while
others may not, resulting in a heterogeneous response. In this
project, we disregarded the occurrence of mixed responses.
For future research, it could be essential to consider the pres-
ence of mixed responses and incorporate strategies to account
for this variability in treatment outcomes.

In conclusion, our study aimed to identify CT-based bio-
markers that can predict response to ICI therapy. Among

the five aggregation methods tested, we found that utilising
largest lesion obtained the best results. Additionally, tumour-
specific model obtained more predictive capacity compared
to a pancancer model. Furthermore, the identified radiomics
standard workflow obtained the best results which indicates
that using LASSO as feature selector and logistic regression
as classifier proves to be an effective strategy. However, to val-
idate these findings, data from larger tumour-specific cohorts
is necessary. Looking ahead, the potential of DL, specifically
MLP, and multimodel approaches that combine medical im-
ages, immunohistochemistry slides and genomics data could
be explored to improve predictive capacities ideally resulting
in patient specific medicine.
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